
ESDL as a basis for more secure software

In the field of embedded software, the C programming language still reigns supreme.

Making sure that C code is safe and secure however, is not so easy. Increased vehicle auto-

nomy will require an even greater reliance on vehicle software integrity than today. To meet

this challenge, ETAS has developed the Embedded Software Development Language

(ESDL). ESDL helps software engineers meet the challenge of building more software in

less time while still satisfying the constraints of ISO 26262, IEC 61508, or related standards.

Safety and Security
in Code

A U T H O R

Dr. Darren Buttle

is Senior Product

Manager ASCET at

ETAS GmbH.

16 N E W P R O G R A M M I N G L A N G U A G E

Over the last forty years, C has

become the de facto language for

developing embedded software. C is

simple, small, fast, and portable and

has extensive tool support.

But C has a dark side. It is too easy

for errors to creep into the code that

can be extremely difficult to find.

Problems start with the syntax be-

cause it makes writing code vulner-

able to error. For example, optional

braces, assignment in expressions,

and automatic switch/case fall

through, etc. Then there are seman-

tically dubious or complex features

that are difficult to use correctly and

encourage “programming on the

edge of safety.“ For example, goto

statements, pointers, and integral

promotion. These aspects can also

interact in dangerous ways.

Using C programming guidelines, for

example MISRA-C or CERT-C, helps

to avoid many of these risks. Even

when following guidelines, C pro-

gramming remains prone to errors.

Guidelines do not prevent runtime

problems like the “buffer overflow”

or numeric problems like underflow/

overflow and division by zero. Nor

can guidelines fix problems of pro-

gram meaning such as increasing

a speed past a limit, reducing a

temperature below absolute zero,

or accidentally adding distance to

a pressure.

C is not expressive enough to cap-

ture this information so preventing

these problems requires additional

measures like static analysis and

testing to identify and remove bugs

from the code. This is inefficient:

it would be more effective to stop

bugs from being created in the first

place.

A better language for develop-

ment

ETAS is rising to all these challenges

with a new language to engineer

safe and secure software effectively:

Embedded Software Development

Language (ESDL). ESDL eliminates

typical C pitfalls and, in addition,

enables software reuse, simplifies

maintenance, and supports product-

line variant engineering. ESDL enables

developers to spend time solving

problems instead of programming

around the inadequacies of C.

Using code generation to create C

Efficient use of ESDL in develop-

ment is enabled with ETAS ASCET-

DEVELOPER 7 (see page 15), an

Eclipse-based Integrated Develop-

ment Environment (IDE) and a

C code generator.

The IDE provides modern editing

features like language templates,

content assistance proposals and

quick fixes for problems. This makes

ESDL easy to learn for beginners.

ASCET-DEVELOPER 7 also continu-

ally checks for ESDL programming

violations, calculates quality metrics,

and offers best-practice recommen-

dations. Feedback is provided to

developers “on-the-fly” during edit

time, therefore reducing the time

between making a coding error and

its detection to zero.

The C code generator translates

ESDL to MISRA-conformant C.

ASCET-DEVELOPER 7 automatically

adds defensive coding checks where

they are essential to ensure runtime

safety so they do not need to be

built and maintained by hand. The

generated C easily integrates into

any existing C-based development

process.

Securing the language against

potential errors

ESDL incorporates many of the

aspects included in C programming

guidelines into the language. Further-

more, ESDL’s design includes fea-

tures that make it easy to satisfy

the requirements on language selec-

tion in standards like ISO 26262

and IEC 61508. Integrating these

concepts into ESDL enables the

ASCET-DEVELOPER 7 tools to check

more error cases at editing time than

is possible with classic C develop-

ment.

ESDL has a similar syntax to C so

that developers can feel comfort-

able immediately. However, ESDL

removes the dangerous C features

that guidelines typically restrict or

forbid. ESDL has no optional braces,

no use of statements as expressions,

no assignment to loop variables, no

automatic switch/case fall-through,

no implicit integral promotion, no

global variables, no pointers, no

goto, no unions, etc. Removing all

these pitfalls make ESDL intrinsically

safer to use than C.

All calculations in ESDL are free

from common numeric problems

like underflow, overflow, division by

zero, and signed overflow.

Out-of-bounds array access is not

possible in ESDL: the common

buffer overflow problem, seen in

many security reports, cannot

happen in ESDL.

ESDL has an extensible type system

that assigns a name to a type (like

a C typedef) but with additional

information about what value range

is allowed and (optionally) what res-

olution is needed. For example, in

17N E W P R O G R A M M I N G L A N G U A G E

18 N E W P R O G R A M M I N G L A N G U A G E

ESDL it is possible to define speed

as a real number with a range 0.0

to 260.0 km/h and a resolution of

0.01 km/h. Types can use units, for

example meters, degrees or time, etc.

Unit compatibility is checked auto-

matically to prevent errors like

adding a time to a distance. ASCET-

DEVELOPER 7’s code generator uses

ESDL type information to select the

optimal C type for storage and to

generate runtime defensive coding

checks to guarantee that values are

always plausible.

Changes can easily be made at one

location in the program and can be

systematically applied by regener-

ating the C code. An added bonus

is that review and inspection is easier.

And ESDL programs are not pol-

luted with hand written range checks

that can make it difficult to under-

stand what a program is really

doing.

Controlling data access and en-

abling reuse

ESDL is object-based, using classes

to manage and control access to

data. Objects can be used safely,

securely and have known memory

bounds. Unlike C++ and Java, ESDL

is free from memory leakage prob-

lems because there is no dynamic

storage allocation.

Classes in ESDL also support prod-

uct line variations without needing

to “clone and own” functionality.

Variation is possible for:
■ Code
■ Data initialization
■ Memory allocation
■ C storage representation (e.g., to

 switch between a floating-point

 and a fixed-point).

Data consistency in a real-time en-

vironment is provided in ESDL using

a thread-safe communication mech-

anism called messages. Messages

have a clear definition of readers

and writers. This prevents unde-

clared access to data.

Conclusion

In the complex development envi-

ronment of increasingly connected

vehicles, the flexibility of the C pro-

gramming language can become a

disadvantage. It is too easy for errors

to creep into the code unchecked

and too time-consuming and ineffi-

cient to remove them later in the

development process. When work-

ing with C, engineers often spend

an inordinate amount of time work-

ing around the inadequacies of the

C language.

With ESDL and the ASCET-

DEVELOPER 7 tooling, ETAS enables

to produce safe and secure C code

in a more effective and efficient

way. ESDL removes entire catego-

ries of potential error sources and

ensures that it is easier to reuse

software and the generated code

between multiple projects.

With ESDL embedded software

development has reached a new level

of efficiency, safety, and security.

Security gaps can be

closed immediately while

programming.

