
Empowering Tomorrow‘s Automotive Software
www.etas.com

Five major challenges in
software development for
automotive microcontrollers

Our heart
beats
embedded.

A guide for vehicle manufacturers and suppliers

https://www.etas.com/en/software-development-for-automotive-microcontrollers.php

Abstract
As exclusive enablers of real-time capability and functional safety within
vehicles, microcontrollers continue to play a crucial role in the automotive
industry. However, optimizing the development process of the microcon-
troller software is not commonly a top priority. The market is paying more
attention to differentiating and innovative applications than to embed-
ded functions working in the background. On the road towards the soft-
ware-defined vehicle, basic development tasks tend to fall by the wayside.
However, it is precisely the optimization of this process that guarantees
future success for both vehicle manufacturers and suppliers.

To facilitate a state-of-the-art automotive software development process,
we as ETAS have compiled the top five major challenges our customers are
facing: high integration efforts, complex calibration, time-consuming test-
ing, limitations in scalability and flexibility, as well as holistic cybersecurity
requirements. Mapped to the specific process steps along the V-model, this
white paper describes the challenges and provides adequate solutions,
which will help you boost the efficiency of your development processes,
reduce workloads, implement higher security standards, and ultimately
keep pace with the fast-evolving market.

Table of contents

1. 	 Introduction	 4

2. 	 A glance into the world 		

	 of vehicle microcontrollers 	 5

3. 	 The vehicle microcontroller 	 6

	 software development process

	 3.1 	 Reasons for ECU generation changes 	 6

	 3.2 	 Major steps in the development process 	 7

4. 	 Main challenges of manufacturers and suppliers	 9

	 4.1 	 High integration efforts 	 9

	 4.2 	 Complex calibration 	 10

	 4.3 	 Time-consuming testing and debugging 	 11

	 4.4 	 Limitations in scalability and flexibility 	 12

	 4.5 	 Holistic cybersecurity requirements 	 13

5. 	 Conclusion 	 14

Five major challenges in software development for automotive microcontrollers 4

1. Introduction
Safety, real-time capability, resource optimization – these properties
largely depend on electronic control units (ECUs), specifically microcon-
trollers, and are the basis for a variety of important functions in modern
vehicles. However, the innovation pressure on original equipment manu-
facturers (OEMs) and suppliers often causes them to disregard the
development processes of ECU software in favor of more exciting techno-
logies. Nevertheless, ECUs offer a lot of potential for improvement: more
automation, higher efficiency, overcoming security limitations, to name just
a few. As requirements increase and innovation speed becomes a decisive
factor, not updating these basic processes will eventually take its toll.

There is a lot of this fundamental work to do during the development of a
typical modern vehicle. The largest part of the vehicle’s code is spread out
on microcontrollers and fulfils its routine job without being noticed by the
user. However, this deeply embedded software has a very special respon-
sibility in a vehicle: a malfunction in a car component can have a serious
impact on the health of passengers. The requirements from the automo-
tive industry are accordingly high, especially when it comes to fulfilling
permanently evolving safety regulations. Although a routine task, software
development for embedded microcontroller systems is extremely
important – and will remain so for years to come.

This white paper is designed to help manufacturers and suppliers re-
organize their processes towards state-of-the-art microcontroller soft-
ware development. It sets off with basic information about the importance
of vehicle microcontrollers and the steps needed to develop new software
for an ECU generation change. It then provides a deep dive into the main
topic: the five major challenges during the development process and pos-
sible solutions. Not every automotive company is affected equally by all
challenges. Some manufacturers and suppliers do not perform all steps
in-house. Further factors are just as decisive, e.g. the maturity of digitali-
zation, the composition of existing tools, the amount of legacy software,
and the hardware setup. Nevertheless, knowing the big picture, the com-
mon struggles, and potential remedies is always beneficial for each player
within the automotive industry.

Five major challenges in software development for automotive microcontrollers 5

Most control and communication tasks in a vehicle are
carried out by a variety of microcontrollers as the heart
of ECUs: from cost-effective 8-bit variants for sensor
interface and control through to 32-bit for modern info-
tainment displays and vehicle dynamic systems. Stan-
dard modern vehicles contain over 40 of these elec-
tronical components, high-end variants even up to 150.
They ensure the reliable functionality of e.g. airbags,
ABS, ESC, controlling engines, tire pressure, and battery
status. All this happens in the background, unnoticed by
the driver.

Currently, OEMs and suppliers are facing increasingly
shorter E/E architecture innovation cycles and a growing
number of vehicle variants and functionalities. Hence,
microcontroller-based software development must
also become more and more efficient. Trends associ-
ated with the software-defined vehicle, such as hard-
ware-software decoupling, centralized vehicle comput-
ers, or vehicle cloud computing, only seemingly replace
the classic ECU approach. In reality, embedded systems
will continue to play a decisive role, since they are the
only way to ensure real-time capability and functional
safety up to ASIL-D. Market reports predict consider-
able growth in the microcontroller sector (see figure 1).
OEMs and suppliers must therefore adapt their develop-
ment processes for ECU software to the new market
requirements regarding speed, flexibility, and security.

Software development for embedded microcontroller
systems is neither new nor exclusive to the automotive
sector. These components are installed in electronic
devices and everyday objects, from toothbrushes to
vacuum cleaners. What makes the development pro-
cess special when it comes to automotives? The most
important aspect is the high safety and reliability re-
quirements from the very first minute the vehicle hits
the road, followed by the maintainability over decades.
Moreover, reliable real-time capability is crucial for many
systems like powertrain controls or vehicle dynamics:
the electronic control system must always keep pace
with the physical processes unfolding within the vehicle
or the environment.

Although microcontroller programming is a cyclical rou-
tine task for OEMs and suppliers with each generation
change, adapting the process to the high regulatory
demands while making it as efficient as possible within
a global OEM and supplier network is challenging. This
is particularly true for companies that use long-estab-
lished process chains with tools and methods that are
only partially compatible with current requirements.

2. A glance into the world of vehicle microcontrollers

Briefly explained:

The harmony of ECU, MCU,
MPU, and VCU

Electronic Control Units (ECUs) employed in
automotive systems are specialized computers
that manage specific functions in the vehicle.
Within these ECUs, microcontrollers (MCUs)
handle real-time tasks like engine control and
sensor management. Microprocessors (MPUs),
which are found in more advanced ECUs, pro-
vide higher processing power for complex
applications such as infotainment and ADAS,
often running on operating systems like Linux.
The vehicle computer (VCU) coordinates these
ECUs, ensuring seamless communication and
operation across the entire vehicle network.

2023

annual growth
 6.7%

5 b USD

10 b USD

2032

9.65

5.48

The global market size for automotive microcontrollers is expected to grow at

an annual rate of 6.7%.

Source: https://www.fortunebusinessinsights.com/de/markt-f-r-mikrocontrol-

ler-f-r-die-automobilindustrie-104084

Figure 1: Global microcontroller market growth

Five major challenges in software development for automotive microcontrollers 6

need for automation

Although E/E architectures are being reorganized
towards a more centralized approach, microcontroller-
based ECUs are here to stay. The general development
process for the embedded software could theoretically
continue as it is. However, the development cycles will
accelerate drastically to fulfil the needs of a function-
ality-thirsty market, as we are encountering with the
trending software-defined vehicle (SDV). Traditional
approaches cannot keep up with that speed. They
can, however, also not simply be replaced overnight. In
many cases, the optimal solution consists in combining
tried and tested processes and tools with innovative
solutions.

In the first instance, it is important to understand the
triggers for the process as such, and to segregate the
various steps within this process.

3.1 Reasons for ECU generation changes

Before taking a deep dive into the specific challenges,
let’s briefly look at the reasons why new ECU software
must be developed in the first place and why this pro-
cess is so time-consuming and complex. It all starts
with a shift from one ECU generation to the next, en-
tailing a substantial re-shaping of the software. Before

3. The vehicle ECU software development process

programmers can even start with the creation of the
new software, they must invest effort into the tool-
chain setup. Each new ECU generation has its own de-
velopment process, depending on the specific domain
and cooperation models. The corresponding toolchain
is individually defined for this upcoming generation and
can therefore contain considerable changes, in con-
trast to the minor adaptations that are solvable with
updates. The guiding principle is to change as little as
possible (or only as much as necessary) from one gen-
eration to the next, as a new toolchain always entails a
high migration effort and project risks.

There are plenty of reasons why these changes from
one generation to the next are needed (see figure 2).
Some are intrinsic, such as quality issues or a low level
of satisfaction with current tools or tool suppliers.
Others are necessitated by external factors like new
legislative or process requirements (e.g., ASPICE, ISO
26262 ASIL-D). The market pressure or an enhanced
usability and state-of-the-art user interface also play
a decisive role. The most common obstacles for a gen-
eration change consist in high costs, quality risks, and
an inconsistent legacy, i.e. a hard-to-adapt, inflexible
toolchain setup. A main need consists in a higher level
of automation within the process.

Main reasons for changes

Figure 2: Reasons and obstacles for ECU generation changes

Main obstacles for changes

low level of satisfaction
with current tools

or tool suppliers

hard-to-adapt and
inflexible toolchain setup

legislative or process
requirements state-of-the-art

user interface

enhanced usability

market pressure

high costsquality risks

hard-to-handle and
inconsistent legacy

quality issues

Five major challenges in software development for automotive microcontrollers 7

A common illustration of the development process
for embedded software is the V-model, which comes
in different variants. According to our experiences,
we divided the phases into the following major work
steps,as depicted in figure 3 below. They are not ne-

Architecture design

As part of an ECU, a microcontroller is responsible for
specific interlinked functionalities, such as engine
or vehicle dynamics control. Hence, a very detailed
requirements catalogue is key. The very first step
consists in identifying all functionalities, constraints,
hardware elements, the middleware, and their inter-
dependencies. All hardware and software components
must already comply with the rigorous automotive
standards in this early phase, demanding meticulous
attention to detail.

Middleware configuration

Middleware refers to the software layer between the
operating system or hardware and the application
software in an ECU. It serves as a bridge that facilitates
communication and data exchange between various
components within the vehicle’s software architecture.
By decoupling applications and the hardware-related

3.2 Major steps in the development process

cessarily processed one after the other. Some can
run in parallel or must be carried out several times.
Requirement and variant management is necessary
across all work steps and is iterated several times.

systems, middleware makes it possible to develop,
maintain, and upgrade them independently. Middle-
ware acts as an intermediary, abstracting the under-
lying hardware and providing a standardized interface
for software components for seamless interaction.

It goes without saying that such an intermediary must
meet the highest security standards, as vulnerabilities
and compliance issues in the ECU can lead to un-
authorized access, data breaches, and system failures,
compromising vehicle safety and reliability. Ensuring
this level of compliance with stringent industry stan-
dards requires extensive testing and validation, adding
complexity and time to the development process. The
selection of middleware is therefore crucial, with a
high focus on maturity (ISO 26262 ASIL-D compliance),
future orientation (no vendor lock-in), and cybersecu-
rity. Only a robust and highly configurable middleware
solution with continuous updates can safeguard the
ECU against evolving threats and fulfill all (changing)
regulatory requirements.

Requirement
specification

Requirement and variant management

Holistic security​

D
et

ai
lin

g

Time

IntegrationMiddleware
configuration

Architecture
design

Coding

Deployment

Testing and
validation

Calibration

Figure 3: The V-model for software development in vehicles

The V-model splits software development into two major parts. This version is adapted to the ECU software development process.

Five major challenges in software development for automotive microcontrollers 8

Coding

Once the architecture has been defined and all com-
ponents with their specific requirements are identi-
fied, the developers translate the system design into
functional software. The required functionalities are
already present in a standard process. Here, the soft-
ware developers write new (supplementary) functions,
eliminate errors, and optimize or extend existing func-
tions. The challenge consists in setting up a process
that ensures the possibility of implementing existing
functions without needing to rewrite them. This implies
high re-usability, while maintaining a high level of func-
tional safety, cybersecurity, and code efficiency.

Integration

At this point, all the work streams can come together:
the middleware configuration, information from the
architecture design, the application software, as well
as the pre-calibration data are built to a code that can
be flashed onto the microcontroller.

A major challenge consists in optimizing, i.e. balancing
the performance of the automotive function with the
new hardware’s capabilities to meet specific efficiency
goals and environmental conditions. This involves
fine-tuning the middleware for efficient system re-
source usage and real-time operation. Of course, safe-
ty and compliance are also crucial: meeting the strin-
gent safety standards and regulatory requirements
again means executing rigorous testing and certifica-
tion processes.

Testing and validation

The testing and validation phase ensures that the
functions of the ECU meet all requirements and
specifications regarding safety, performance, and
reliability. Extensive testing identifies any potential
issues or malfunctions that may arise. This process
can become extremely complex and lengthy in the
case of software-heavy vehicles. Performing as
many tests as possible within a short timeframe is
therefore crucial to minimize costs and maximize
performance.

Calibration

During calibration, the parameters and fields are
filled with data, ensuring that the behavior of the
software is adapted to the physical system. Some
applications may consist of many thousands of pa-
rameters that influence each other. Also, parameters
need to meet specific performance goals, environ-
mental conditions, and regulatory standards. Adjust-
ments must be implemented in later updates, e.g.
when emission norms change.

Deployment

Once the software reaches the “ready for use”
stage, it undergoes a final approval process and is
fully flashed onto the target ECUs.

Five major challenges in software development for automotive microcontrollers 9

Now that we have a good overview of the steps involved in the process, it is easier to match the specific challen-
ges along the way. Some are bound to only one of the steps, some apply to the process as such or the shift from
one generation to another. We have identified five major challenges that we encounter time and again throughout
the automotive industry.

4. Main challenges of manufacturers and suppliers

Vehicle systems are nearly always developed in a brownfield situation, i.e. in an already existing software environ-
ment, leading to a lot of legacy issues during integration and thus a complicated development process. The di-
verse and complex communication interfaces between various components necessitate intricate configurations
and extensive testing to ensure seamless interoperability. Additionally, relying on manual processes for integra-
tion tasks leads to increased error rates, prolonged development cycles, and higher labor costs.

4.1 High integration effort

Approaches to solving the challenge

Incremental modernization
Gradually update legacy components with modern
equivalents, ensuring backward compatibility to fa-
cilitate a smooth transition and integration with new
systems, and without completely overturning estab-
lished processes or risking high investment costs.

Automation of integration tasks
Implement automated tools and scripts to handle
repetitive integration tasks, reducing error rates
and accelerating development cycles.

Middleware solutions
Employ state-of-the-art middleware to abstract
and manage the complexity of interfaces, providing a
consistent communication layer that simplifies inte-
gration efforts. Adopt and enforce standardized
communication protocols to simplify interface
configurations and ensure interoperability across
different components.

 Requirement
 specification

Integration

Architecture
 design

Coding

Testing and
validation

Calibration

 Middleware
 configuration

Figure 4: Allocation in the V-model within the process step “Integration”

Five major challenges in software development for automotive microcontrollers 10

The time-consuming nature of calibration extends development cycles, pushes back project timelines, increases
costs, and limits efficiency. Difficulties in understanding calibration parameters can lead to errors in the setup,
which necessitate repeated testing and re-calibration cycles. Misconfigured parameters may result in the micro-
controller failing to meet regulatory standards, entailing further revisions and potentially leading to costly recalls.
Additionally, in the case of complex projects, conventional software documentation, which is sometimes even still
performed manually, reaches its limits and is also highly error-prone.

4.2 Complex calibration

Approaches to solving the challenge

Enhanced documentation and knowledge sharing
Establish a comprehensive documentation that
clearly explains each calibration parameter, its
purpose, the interdependencies with other para-
meters, and its impact on the system. Implement
automated documentation solutions to reduce
errors and increase process efficiency.

User-friendly interfaces
Simplify the calibration process by using solutions
that present only relevant parameters and options
to the users. Interactive elements such as visual
sliders and dynamic charts make it easier to under-
stand and adjust calibration settings.

Automation and standardization
Use automated tools that can handle routine cali-
bration tasks. They reduce the manual effort and
streamline the calibration process, additionally
ensuring consistency and reliability across different
projects and teams.

Simulation and modeling
Utilize simulation and modeling tools to create
virtual testing environments where calibration
changes can be tested without negative conse-
quences for the actual hardware. The impact of
different calibration settings can be visualized for
better decision making. Furthermore, model-based
design approaches, where calibration parameters
are embedded within system models, allow easier
manipulation and testing.

 Requirement
 specification

Integration

Architecture
design

Testing and
validation

Calibration

Coding

 Middleware
 configuration

Figure 5: Allocation in the V-model within the process step “Calibration”

Five major challenges in software development for automotive microcontrollers 11

The more complex the software becomes, the more it needs to be tested – testing is becoming a bottleneck for
innovation. Efficiency combined with reliability and safety is therefore a central element of a future-proof testing
process. Additionally, the interaction between different modules and systems can lead to complex test scenarios
that are difficult to manage and execute – and lead to a long integration process before testing even starts. On
top of that, deeply embedded microcontrollers often have limited processing power, memory, and storage, which
might constrain the types and scope of tests that can be run directly on the hardware. Hence, traditional debug-
ging and testing tools may not be suited for the above-mentioned constraints of deeply embedded systems.

4.3 Time-consuming testing and debugging

 Requirement
 specification

Integration

Architecture
design

Coding

Testing and
validation

Calibration

 Middleware
 configuration

Approaches to solving the challenge

Model-based development
Use simulation tools to model and test systems in a
virtual environment. This reduces hardware-based
testing time as programming bugs are detected im-
mediately and feedback is given to the programmer.

Advanced debugging tools
Use in-circuit emulators (ICE) for real-time de-
bugging, as well as tracing and profiling tools to
analyze execution flow, performance bottlenecks,
and memory usage, aiding efficient debugging and
optimization.

Software-in-the-Loop testing
Execute tests in a virtual environment (front-
loading), which make it possible to detect errors at
an early stage. Parallelization and time lapse also
accelerate tests in the virtual environment.

Continuous integration/continuous deployment
Implement CI/CD pipelines to automate building,
testing, and deployment processes, reducing
manual effort and accelerating iteration loops.
Automated tests detect issues early, cutting time
and costs for bug fixes in development.

Unit testing and test-driven development
Adopt TDD practices to ensure that tests are done
before coding and to achieve high test coverage.
Develop and run unit tests for components before
integration to simplify issue isolation and resolu-
tion.

Code generation
Automatically generate code from models, ensuring
consistency and reducing the potential for human
error.

Automation frameworks
Automate complex test scenarios with scripts to
ensure consistency and reduce manual effort. Use
code coverage tools to cover all execution paths and
edge cases.

Parallel and continuous testing
Continuously test the system, whenever a change
has been executed. Run the tests in parallel using
multiple test rigs or virtual environments to reduce
testing time. Optimize hardware resource allocation
for efficient utilization and reduced bottlenecks.

Figure 6: Allocation in the V-model within the process step “Testing and validation”

Five major challenges in software development for automotive microcontrollers 12

Rigid, monolithic software designs restrict modifications and extensions, complicating updates and the addi-
tion of new features. Proprietary systems and a lack of standardization lead to vendor lock-in and complex, er-
ror-prone integrations with new functionalities or third-party components. Also, the insufficient modularity in
software design prevents efficient code reuse and hinders the seamless integration of new features, affecting
overall system adaptability.

4.4 Limited scalability and flexibility

 Requirement
 specification

Integration

Architecture
design

Coding

Testing and
validation

Calibration

 Middleware
 configuration

Approaches to solving the challenge

Modular design and standardized interfaces
Implement a modular, component-based architec-
ture and standardized communication protocols to
break down the monolithic structure, allowing for
easier updates and extensions.

Open standards and interoperability
Implement open standards and design systems sys-
tems into the toolchain with interoperability in mind
to avoid vendor lock-in and simplify the integration of
new functionalities or third-party components. Avoid
suppliers who do not comply to common standards
and thus provoke a vendor-lock in.

Middleware and abstraction layers
Utilize middleware and abstraction layers to de-
couple application logic among each other and
from hardware specifics, ensuring easier updates
and improved scalability.

Modularity and code reuse
Design software with a high degree of modularity
and reusable components to facilitate the seam-
less integration of new features and improve overall
system adaptability.

Figure 7: Allocation in the V-model across the process steps “Architecture

design”, “Middleware configuration”, and “Coding”

Five major challenges in software development for automotive microcontrollers 13

The diverse and evolving nature of cyber threats, including malware, hacking, and unauthorized access, compli-
cates the task of securing ECU systems. Unfortunately, microcontrollers have limited computational resources,
making it difficult to implement comprehensive security measures without impacting performance. Additionally,
adhering to stringent and varying cybersecurity regulations and standards across different regions and industries
adds complexity to the development process.

4.5 Holistic cybersecurity requirements

 Requirement
 specification

Integration

Architecture
design

Coding

Testing and
validation

Calibration

Holistic security​

 Middleware
 configuration

Approaches to solving the challenge

Multi-layered security architecture
Address the diverse threat landscape comprehen-
sively with a multi-layered security approach that
includes encryption, authentication, intrusion de-
tection, and secure boot mechanisms.

Security for resource-constrained environments
Use lightweight, efficient security protocols
tailored to the limited computational resources of
microcontrollers to ensure robust protection with-
out compromising performance.

Alignment with regulatory standards
Ensure continuous monitoring and adapt to evolv-
ing cybersecurity regulations and standards; incor-
porate compliance requirements into the develop-
ment lifecycle and conduct regular audits to ensure
regulatory adherence.

Figure 8: Allocation in the V-model across all process steps as a holistic challenge

Five major challenges in software development for automotive microcontrollers 14

5. Conclusion
Despite being the smallest component in the E/E architecture, micro-
controllers are crucial in any setup – from function-specific control units
to domain-independent zone ECUs. Investing in the improvement of
microcontroller software development will remain an important factor for
competitiveness in the automotive market over the coming decades. The
aim is to increase speed, reduce costs, and guarantee security – all while
taking legacy and increasing vehicle complexity into account. This can
only be accomplished by reconsidering the established processes, includ-
ing the gradual solution of the challenges presented in this white paper.
Sophisticated solutions from experienced partners like ETAS allow OEMs
and suppliers to optimize their deeply embedded software development,
making it resilient against future (market) requirements and (legal) regula-
tions. Such a strong basis creates long-term competitiveness in the global
automotive industry.

Five major challenges in software development for automotive microcontrollers 15

As a leading automotive supplier with more than 30 years of experience, we at ETAS have an extensive, proven
portfolio of solutions. In the following, we have compiled a selection of bundles specially for ECU software de-
velopment processes, tailored to your current needs and market requirements.

We offer OEMs and suppliers a solution bundle for
the seamless integration of software and hardware,
as well as comprehensive protection against cyber
threats. Additionally, our virtual testing solutions en-
able early integration in the development lifecycle,
resulting in reduced testing time and increased exe-
cution speed.

We provide modular tools and services for SIL testing
in the cloud. They enable the creation, debugging,
and pre-calibration of virtual ECUs as well as the inte-
gration and simulation of virtual artefacts, executed
in parallel in the cloud. Engineers can test and iterate
even large sets of test cases, resulting in a drastic
increase in efficiency and simulation speed. Moreover,
the cloud-based solutions are scalable and support
continuous integration and deployment of software,
which is particularly important for modern develop-
ment processes.

ETAS RTA-CAR (Classic AUTOSAR)
is a tool set used for developing and configuring
Classic AUTOSAR software components, enabling
efficient integration, code generation, and validation
for ECUs
+
ESCRYPT CycurHSM
is an innovative and flexible HSM security firmware
that ensures secure boot of the ECU, in-vehicle com-
munication, ECU component protection, and flashing
+
ESCRYPT CycurLIB
is a cryptographic library specifically geared to the
requirements of embedded systems
+
Virtual ECUs
to perform complex tests in early developmental
stages

ETAS VECU-BUILDER
is a tool to generate virtual ECUs for verification and
validation of automotive microcontroller software
in software-in-the-loop (SIL) setups
+
COSYM (CO-simulation of SYsteMs)
is the powerful simulation and integration platform to
test and validate software at system level in the early
development phase
+
ETAS MODEL-SYMULATOR
enables users to execute simulations in the cloud
+
ESCRYPT CycurFUZZ
is a state-of-the-art fuzz testing tool that helps meet
current regulations and standards

ETAS AUTOSAR solutions:
easy, safe, and secure software integration

ETAS virtualized environment solutions:
cloud-based software-in-the-loop testing

About our solutions

About ETAS

Founded in 1994, ETAS GmbH is a wholly owned
subsidiary of Robert Bosch GmbH with a local pres-
ence in all major automotive markets in Europe,
North and South America, and Asia.

ETAS offers comprehensive solutions for the reali-
zation of software-defined vehicles in the areas of
software development solutions, vehicle operating
system, vehicle cloud services, data acquisition and
processing solutions, integrated customer solu-
tions and cybersecurity.

As industry pioneers in cybersecurity, we assist our
customers in managing cybersecurity-related com-
plexities, reducing cyber risks, and maximizing their
business potentials with a proven on- and offboard
portfolio of software products and professional se-
curity services.

ETAS automotive security solutions are safeguard-
ing millions of vehicle systems around the world –
and are setting standards for the cybersecurity of
software-defined vehicles.

Or follow us on social media:ETAS GmbH
Borsigstraße 24, 70469 Stuttgart, Germany
T +49 711 3423-0, info@etas.com

Are you interested in
ETAS products or solutions?
Please visit www.etas.com

Contact

Anthony Esteban
Customer Chief Engineer, ETAS
Get in touch on LinkedIn

Contact Form

All information provided is of a general nature and is not intended to address the circumstances of any particular individual or entity. Although we endeavor to
provide accurate and up-to-date information, there can be no guarantee that this information is as accurate as it was on the date it was received or that it will
continue to be accurate in the future. No one should act upon this information without appropriate professional advice and without thoroughly examining the
facts of the situation in question.
© ETAS GmbH. All rights reserved. Last updated: 09/2024

Our seamless tool-coupling solution automates data
search, analysis, and transmission. By integrating
these proven products in one bundle, we boost the
efficiency, accuracy, and team collaboration in ECU
calibration and diagnostics.

Our solution bundle facilitates real-time validation
of calibrations and rapid feedback, allowing for swift
adjustments and high-quality outcomes. This inte-
grated approach minimizes delays, enhances team
collaboration, and accelerates development cycles,
driving success in ECU projects and ensuring efficient
project completion. ETAS EHANDBOOK

provides new tools for the documentation of ECU soft-
ware, displaying the logic of the functions interactively
and graphically at different levels of abstraction
+
INCA (Integrated Calibration and Application Tool)
contains flexible tools for the calibration, diagnostics,
and validation of automotive electronic systems

ETAS EHANDBOOK
gives an instant access to detailed ECU documentation
+
ETAS MDA (Measure Data Analyzer)
simplifies data analysis and visualization, uncovering
trends and issues for precise calibration and
optimized ECU performance
+
ETAS EATB (ETAS Analytics Toolbox)
automates and streamlines testing, providing power-
ful analysis and reporting tools for comprehensive
insights and informed decision making
+
ETAS ASCMO (Advanced Simulation for Calibration,
Modelling, and Optimization)
allows detailed simulation of ECU behavior and ad-
vanced calibration for higher performance and efficiency

ETAS calibration and documentation solutions:
turning data into valuable information

Real-time calibrations validation solutions:
unlocking data insights

https://www.youtube.com/user/etasgroup
https://www.linkedin.com/company/etas
https://www.xing.com/pages/etasgmbh
https://www.etas.com/en/software-development-for-automotive-microcontrollers.php
https://www.linkedin.com/in/anthony-esteban-718281a6/
https://gtmep.bosch.tech/content/?f=YcKk6&ft=contact

