
Planning data acquisition on the

test bench 

The DoE module used for test

planning divides the workflow into

eight user-friendly steps. A useful

function facilitates the compression

of measuring points via selected

input variables, Figure 2. In the case

at hand, the measuring points were

compressed in the vicinity of small

air masses, because in addition to

greater measuring inaccuracy, less

smooth physical dependency was

also expected in this area due to

high EGR rates.

Another function allows users to

divide the test plan into a variable

number of sections (“blocks”).

Given a sufficient number of mea-

suring points, each individual block

offers optimum distribution for

modeling. During live measurement

on the test bench, it is therefore

possible to quickly determine after

each block has been run whether

the requisite model quality has

been achieved and the test run can

be completed early. This can signi-

ficantly reduce the amount of time

and effort required for measuring.

As an example, Figure 3 plots mod-

eling accuracy for the smoke num-

ber as a function of the number of

measuring points used for model

generation.

Key element: Raw data analysis

Once the measurement data has

been gathered, the next phase is

raw data analysis. This often proves

to be the most important data

evaluation step. As well as identify-

ing faulty measurements and drifts,

it also provides insight into opti-

mization potential. 

The DoE software supports this

process very efficiently: interactive

diagrams allow users to display
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A key to calibrating modern internal combustion engines

Design of Experiments and model-based parameter optimization are the keys to mastering

complex engine management systems. In the following report, Hyundai and ETAS show

how model-based development methods can sensibly support the calibration of modern

internal combustion engines.

With CO2 and exhaust gas emis-

sions limits getting tougher all the

time, engine management systems

are becoming increasingly complex

in response. The result is a constant

increase in the calibration param-

eters that need to be optimized in

the overall system. At the same

time, strong competition is forcing

manufacturers to shorten develop-

ment cycles and cut development

costs. To be able to carry out en-

gine calibrations that ensure max-

imum ride comfort, high dynamics,

and low emissions under these

circumstances, there is a need for

new computer-assisted calibration

methods to complement conven-

tional ones1.

Engineers at the Hyundai Motor

Europe Technical Center GmbH

(HMETC) in Rüsselsheim, Germany,

were quick to recognize this need:

in powertrain development, they

have been making greater use of

Design of Experiment (DoE) and

model-based optimization methods

on top of increased automation

levels since 2005. Acceptance of the

initial solutions was severely ham-

pered by their lack of user-friend-

liness and the fact that they did

not cover all engine development

process steps.

However, the introduction of the

ETAS ASCMO2 software resolved

this situation: in addition to a pro-

gram structure and user interface

tailored to model-based ECU cali-

bration, the software provides

helpful functions to support inex-

perienced users. As an example,

the following sections describe the

use of this new solution in a pre-

production engine project at the

HMETC Powertrain Division. 

Project scenario

The test candidate was a 2.0-l, four-

cylinder diesel engine with pre-

production engine hardware and

ECU software. At the beginning of

the tests, the existing calibration

already complied with the Euro 5

emissions standard. The objective

was to use the DoE software to

further reduce the engine’s fuel

consumption. 

To do this, it was important to find

the optimal balance for the follow-

ing calibration parameters:
■  air mass/EGR rate
■  start of injection
■  swirl flap position
■  exhaust back pressure flap position

  for low-pressure EGR control
■  boost pressure
■  rail pressure

The relevant target variables are

listed below:
■  fuel consumption (CO2)
■  particulate mass (soot)
■  nitrous oxides (NOX)
■  hydrocarbons (HC)
■  carbon monoxide (CO)
■  combustion acoustics (dBA)

All tests were conducted on the

engine test bench, with subse-

quent in-vehicle verification on the

emissions chassis dynamometer.

During the basic measurement run,

the CO2 value was determined as

a reference for the optimization.

As shown in  Figure 1, the relevant

operating points for optimization

were supplied by the dwell times

of rpm and load in the NEDC.
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Model-based 
Development Methods
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Figure 1: Distribution and weighting of operating points in the NEDC test.

Figure 2: Experiment planning using local measuring point concentration.



for them based on Gaussian pro-

cesses (GP). This approach makes it

possible to model even highly non-

linear behavior by very complex sys-

tems to a high degree of accuracy

without overfitting. To do this, users

do not have to parameterize the

model. A critical issue for GP models

is often the computing times and

memory capacities required for

processing large measuring ranges.

However, the efficient GP imple-

mentation allows to generate

models from tens of thousands of

measuring points even on a stan-

dard PC in an acceptable time.

The high flexibility of the GP models

also enables users to create global

engine models with rpm and load

as additional input variables. In

order to assess the maximum attain-

able quality in our sample project,

the measurement data of the six

operating points was used to create

a global model in addition to local

models. In both instances, the qual-

ity of the models was satisfactory

and the modeling of physical de-

pendencies was largely correct. In

some cases, the global model pro-

vided even better characteristics

than its local counterparts. Only the

modeling of CO emissions, with a

value range of up to 16 g/kWh and

a standard deviation of 0.57 g/kWh,

remains somewhat too inaccurate.

The table shows the statistical qual-

ity levels of the global models based

on verification measurements.

Optimization results

While ETAS ASCMO’s range of

functions for local optimization is

comparable with that of other com-

mercial tools, its strength lies in its

global modeling and evaluation ca-

pabilities, which enable it to auto-

matically optimize entire engine

maps with respect to drive cycles.

Then, based on a list of weighted

operating points, a current cycle

prognosis is calculated online for

each change of the characteristic

maps. This means that a powerful

optimizer can be used to auto-

matically generate calibration data,

which achieves minimal fuel con-

sumption while staying within the

cycle’s limit values and respecting

local limit values and map smooth-

ness. The optimization results

achieved in this way based on the

analyses are summarized in Fig-

ure 4. During verification on the

dynamometer, the vehicle with

optimized calibration achieved a

2.5 percent reduction in fuel con-

sumption compared to the base

data, accompanied by slightly re-

duced smoke and NOX emissions.

When we consider that the base

data version was mature to start

with, we can see these increases

for the impressive achievement that

they are. Moreover, the value mea-

sured is very close to the DoE model

forecast. Figure 5 shows the results

of pre- and post-optimization cycle

extrapolations. 

Summary

Overall, the evaluation of ETAS

ASCMO had a very positive out-

come. Particularly in the area of

engine calibration, the tool quickly

achieved a high degree of accep-

tance among calibration engineers

on account of its advanced task-

centered functionality and its user-

friendliness. Whereas many publi-

cations on model-based optimi-

zation have tended to emphasize

the time and cost savings it delivers,

the focus for HMETC was more on

the measurable increase in quality

and the improved documentation

of calibration results.
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Figure 3 (top):

Model accuracy of ETAS 

ASCMO model (ASC) 

versus data record size: 

mean error of global 

smoke number model 

(determined by means 

of verification measure-

ments, error bar 

= standard deviation 

obtained with five 

repeat measurements).

Figure 4 (center):

Optimization results 

based on measurements 

taken at six operating 

points on the engine 

test bench.

Figure 5 (bottom):

Prognosis based on cycle 

extrapolations before 

and after optimization 

(partly screenshot).

Quality of global model within the limits 

of definition range established by verification

measurements.
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calibration parameters and/or tar-

get variables in relation to each

other and, for example, to isolate

the areas in which target variables

display their optimal values. This

facilitates the effective visual eval-

uation of measurement data and

the identification of good param-

eter combinations. 

Automated modeling

The core of ETAS ASCMO is its

user-friendly modeling function,

which is largely automated. Unlike

the model-based calibration tools

available on the market until now,

users are not required to select a

specific type of model from a large

number of options. Instead, the

tool suggests a single, particularly

flexible and powerful model type
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