
ASCET-SE V6.1
User’s Guide

2

Copyright

The data in this document may not be altered or amended without special noti-
fication from ETAS GmbH. ETAS GmbH undertakes no further obligation in rela-
tion to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license. Using
and copying is only allowed in concurrence with the specifications stipulated in
the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2011 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document EC014201 R6.1.3 EN

Contents

1 Introduction . 9

1.1 About this Document . 9
1.1.1 Target Audience . 9
1.1.2 Document Structure . 9
1.1.3 Conventions . 10

1.2 Installation . 11
1.3 Abbreviations and Definitions . 12

2 Safety Hints for Application Software Design . 17
2.1 Interpolation Routines . 17
2.2 FPU Usage . 17
2.3 Non-Volatile Elements . 18
2.4 Provision of Customized Data Types . 18

3 Getting Started . 19
3.1 Components of ASCET-SE . 19
3.2 Basic Stages from Model to Executable . 21

3.2.1 Code Generation. 23
3.2.2 Compilation and Linking . 23
3.2.3 ASAM-MCD-2MC Generation . 23

3.3 Configuring ASCET-SE for Code Generation . 24
3.3.1 Target Selection . 24
3.3.2 Path Settings for External Tools . 24
3.3.3 Code Generation Settings . 25
3.3.4 Operating System Configuration . 26
3.3.5 Memory Class Configuration . 26
3.3.6 Target Initialization Code . 27
3.3.7 Customizations for Compiling and Linking. 27
3.3.8 Generating the Executable File and Running it on the Target 28
Contents 3

4

3.4 ASCET-SE Installation Reference . 31
3.4.1 Installation Contents . 31

4 Implementation Configuration . 39
4.1 Implementations for Basic Model Types . 39

4.1.1 Implementation Data Types . 41
4.1.2 Conversion Formula. 42
4.1.3 Value Range (Only for Numerical Quantities) 43
4.1.4 Implementation Master . 43
4.1.5 Implementation Types . 44
4.1.6 Value Range Limitation . 44
4.1.7 Zero Containedness in the Value Range . 45
4.1.8 Memory Locations . 45
4.1.9 Consistency Check . 45
4.1.10 Additional Information . 45
4.1.11 Sizes of Composite Model Types . 46
4.1.12 Summary of Element Implementation . 46

4.2 Implementations for Complex Model Types (Classes, Modules, Projects) . . . 47
4.2.1 Optimized Method Calls . 48
4.2.2 User-Defined Service Routines . 49
4.2.3 Prototype Implementations . 51
4.2.4 Processes and Methods . 52

4.3 Implementations for Temporary Variables . 53
4.4 Implementations for Implementation Casts . 54
4.5 Implementations for Method- and Process-Local Variables 54
4.6 Migration of Operator Implementations . 55

5 Configuring ASCET for Code Generation . 59
5.1 The codegen[_*].ini Files . 59
5.2 The target.ini File . 61
5.3 The memorySections.xml File . 64

5.3.1 Defining a Memory Class. 65
5.3.2 Migration of Legacy Projects . 66

5.4 Build System Control & Configuration Settings . 67
5.4.1 Project Settings - make file project_settings.mk 69
5.4.2 Target and Compiler Settings – Make Files target_settings.mk

and settings_<compiler>.mk . 69
5.4.3 Code Generation – Make File generate.mk 69
5.4.4 Compilation – Make File compile.mk . 70
5.4.5 Build – Make File build.mk . 70

5.5 Customizing Code Generation . 71
5.5.1 Banners . 71
5.5.2 Formatting Generated Code – the .indent.pro Configuration

File . 71
5.5.3 Code Post-Processing . 71

5.6 Customizing the Build Process . 72
5.6.1 Including Your Own Make Files . 72
5.6.2 Including User-Defined C and H Files . 72
5.6.3 Special Makefile variables provided by ASCET 73
Contents

5.7 Controlling What is Compiled Using ASCET Header Files 73
5.7.1 The Include File a_basdef.h . 73
5.7.2 The Include File proj_def.h . 73

6 Interpolation Routines. 77
6.1 Use of Interpolation Routines . 78
6.2 The Interpolation Procedure . 78
6.3 Accuracy and Allowed Range of Values . 78

7 Operating System Integration . 81
7.1 Scheduling and the Priority Scheme . 81
7.2 Setting Up the Project . 83

7.2.1 Generating ASCET’s OS Configuration File 83
7.2.2 Providing Additional OS Configuration . 84

7.3 Providing the Main Program . 86
7.4 The dT Variable . 86

7.4.1 Dynamic dT . 87
7.4.2 Static dT . 89
7.4.3 Implementing Your Own dT Routines. 90

7.5 Template-Based OS Configuration Generation . 91
7.6 Interfacing with an Unknown Operating System . 92

7.6.1 Configuration of Tasks. 93
7.6.2 Interfacing with the OS API . 93

7.7 Template Language Reference . 94
7.7.1 Templating Basics . 94
7.7.2 Object Reference . 96

8 Measurement and Calibration with ASAM-MCD-2MC . 105
8.1 Project Definitions in ASAM-MCD-2MC (prj_def.a2l File) 105
8.2 Memory Layout in ASAM-MCD-2MC (mem_lay.a2l File) 105
8.3 ETK Driver Configuration in ASAM-MCD-2MC (aml_template.a2l and

if_data_template.a2l) . 105
8.4 Generation of an ASAM-MCD-2MC Description File 106
8.5 Suppressing Exported Elements and Parameters . 109

9 Integration with External Code . 111
9.1 Calling C Functions from an ASCET Model . 111

9.1.1 Use of Prototypes . 111
9.1.2 Invocation by C Code Specified in ASCET 113
9.1.3 Including C Source Files in the ASCET Make Process 114

9.2 Calling ASCET-Generated Functions from External C Code 114
9.3 Using External Global Variables/Parameters in ASCET Code 114
9.4 Generating Code for Use with External Data Structures 115
9.5 Configuring the ASCET Optimization Features . 116

9.5.1 Configuring Method Calls . 116
9.5.2 Configuring Message Copies . 117

9.6 Working with Variant Parameters . 117

10 Modeling Hints . 119
10.1 Implementations . 119

10.1.1 Definition of Conversion Formulas . 119
Contents 5

6

10.1.2 Definition of the Value Intervals . 120
10.1.3 Defining Implementations for Related Variables 121
10.1.4 Multiplication of Large Results . 123

10.2 Model Structure . 125
10.2.1 Division . 125
10.2.2 Multiple Calculations, Concatenated Calculations, Logical

Operators . 126
10.2.3 Classes and Modules . 129
10.2.4 State Machines . 130

11 Migrating an Existing Project to a New Target . 131

12 Understanding Quantized Arithmetic . 135
12.1 Degrees of Freedom and Optimization . 135
12.2 Numerical Aspects of Integer Arithmetic . 136

12.2.1 Quantization Errors . 136
12.2.2 Errors from Integer Division . 136
12.2.3 Error Propagation . 137

12.3 Rules of Integer Code Generation . 137
12.3.1 Assignments . 138
12.3.2 Addition and Subtraction. 140
12.3.3 Multiplication . 141
12.3.4 Division . 142
12.3.5 Comparisons . 143
12.3.6 Switches and Multiplexers . 144
12.3.7 Literals . 144
12.3.8 Treatment of Operators With Multiple Inputs 144
12.3.9 Optimization of Mathematical Expressions. 145

13 Understanding Generated Code . 149
13.1 Modularity . 149
13.2 Distribution of Generated Code to Files . 149

13.2.1 Include Hierarchy. 150
13.3 Software Architecture . 152

13.3.1 Naming Conventions . 153
13.3.2 Storage Systems, Data Structures, Initialization of Primitive

Objects . 154
13.3.3 Data Structures and Initialization for Complex (User-Defined)

Objects . 166
13.3.4 Local Variables and Parameters . 168
13.3.5 Exported and Imported Variables . 168
13.3.6 Method Declarations and Calls . 169
13.3.7 Constants and Literals . 170
13.3.8 System Constants . 171
13.3.9 Virtual Parameters . 171
13.3.10 Dependent Parameters . 172

13.4 Real-Time Constructs . 172
13.4.1 Tasks . 172
13.4.2 Processes. 172
13.4.3 Messages . 173
Contents

13.4.4 Resources . 175
13.4.5 Application Modes . 175

14 Inside ASCET-SE . 177
14.1 Structure of the Code Generator . 179

14.1.1 Front-End Transformation . 179
14.1.2 MDL and MDL Builder . 179
14.1.3 Code Generator . 180

14.2 Code Administration . 181
14.2.1 Make Mechanism . 181
14.2.2 Code Manager . 182

14.3 Directory Structure of the CPRs (Code Production Rules) 183

15 ASCET-SE — Restrictions . 185
15.1 General Restrictions . 185

15.1.1 Interval Arithmetic . 185
15.1.2 No Quantization for Literals . 185
15.1.3 ASCET Direct Access and Characteristic Maps 185
15.1.4 ESDL: No Length() Method for Arrays and Matrices 186

15.2 Restrictions in Using ASCET-SE . 187
15.2.1 Inputs of Characteristic Curves and Maps 187
15.2.2 No Separate Search for Interpolation Nodes and Interpolation . . . 187
15.2.3 No Choice for Interpolation Method . 187
15.2.4 Uniqueness of Component Names. 188
15.2.5 Make Mechanism for Controllers and Fixed-Point Arithmetic 188

15.3 Known Errors in the ASCET-SE Code Generation . 188
15.3.1 Build Executable Code After Exiting ASCET 188

16 ETAS Contact Addresses . 189

Index . 191
Contents 7

8
 Contents

1 Introduction

ASCET Software Engineering (ASCET-SE) is a tool for:

• generating target-specific C code for selected microcontrollers;

• integrating the code with a target operating system or run-time environ-
ment; and

• (optionally) invoking the target-specific compiler and linker to generate an
executable application and calibration configuration file (e.g. for use with
ETAS’ INCA tool).

In this user guide you will learn how to:

• take models developed in ASCET-MD and define the attributes required
by ASCET-SE to convert those models to C code.

• define the real-time requirements of your system and how those require-
ments are realized on the target microcontroller

• integrate 3rd party C code with ASCET generated code

• understand the code ASCET generates

• build models in an efficient way

1.1 About this Document

1.1.1 Target Audience

This ASCET-SE User’s Guide is a supplement to the ASCET documentation (Get-
ting Started and online help). You should be familiar with the basic features and
operation of ASCET before attempting to understand code generation.

This guide assumes you have:

1. a basic understanding of the C programming language

2. experience of compiling and linking C programs for embedded microcon-
trollers

3. knowledge of the target microcontroller.

1.1.2 Document Structure

The remainder of this manual is structured as follows:

Chapter Contents

Chapter 2 Safety hints regarding the use of ASCET-SE

Chapter 3 An overview of how to get started with ASCET-SE and a descrip-
tion of the contents of the installation

Chapter 4 Explains how to configure the implementation of model elements
so that code can be generated.

Chapter 5 Explains how to configure ASCET-SE for C code generation, how
the compilation and build process is controlled and how it can be
customized.

Chapter 6 Describes how to provide the service routines required by
ASCET-SE to do interpolation in characteristic tables
Introduction 9

10
1.1.3 Conventions

The following typographic conventions are used:

Chapter 7 Explains how ASCET-SE configured to generate code to integrate
with an operating system to provide real-time scheduling of the
application.

Chapter 8 Shows how to generate an ASAM-MCD-2MC A2L file for use in
ECU calibration.

Chapter 9 Explains how to integrate hand-written C code with ASCET-SE, to
either call or be called by ASCET-SE at runtime, and how to inte-
grate that code with the ASCET build process.

Chapter 10 Provides some modelling hints that help ASCET-SE generate opti-
mal code.

Chapter 11 Describes how to migrate a project from an existing target to an
new target.

Chapter 12 Explains the design choices and issues involved when using quan-
tized (fixed point) arithmetic.

Chapter 13 Explains the principles by which ASCET-SE generates code, the
structure of the generated source code and provides a reference to
how each part of a model is converted to C code.

Chapter 14 Provides a technical overview of how ASCET-SE works.

Chapter 15 Describes the restrictions of ASCET-SE code generation.

Chapter 16 Explains how to contact ETAS for technical support.

Select File  Open. Menu commands are shown in blue bold-
face.

Click OK. Buttons are shown in blue boldface.

Press <ENTER>. Keyboard commands are shown in angled
brackets and capitals.

The "Open File" dialog window
opens.

Names of program windows, dialog windows,
fields, etc. are shown in quotation marks.

Select the file setup.exe. Text in drop-down lists on the screen, path-
and file names, program code, C type names
and C functions and ASCET-SE API call names
all appear in an monospaced typeface
(Courier)

A distribution is always a one-
dimensional table of sample
points.

General emphasis and new terms are set in
italics.

The OSEK group (see
http://www.osek-vdx.org/) has
developed certain standards.

Links to internet documents are set in blue,
underlined font.
Introduction

Important notes for the users are presented as follows:

1.2 Installation

The installation of ASCET-SE is described in the ASCET installation guide.

Like all ETAS products, ASCET-SE requires a valid license file. The entitlement
letter provides an URL from where a license file can be obtained. Licenses are
installed and managed using the ETAS License Manager.

You can choose to install ASCET-SE in the Silent mode; see the ASCET installation
guide, chapter "Command Line Installation". To select the target(s) to be
installed, you can either define environment variables or edit the [SilentIn-
stallation] section of the install.ini file.

If you want to use environment variables, you must define them in your environ-
ment before running the ASCET-SE installation program. The easiest way to do
this is to write a batch file like this:

setlocal
set TRG_ANSI=true
set TRG_C16X_CLASSIC=false
set TRG_C16X_VX=false
set TRG_XCV2_VX=false
set TRG_TRICORE=false
set TRG_FFMC16LX=true
set TRG_HC12M=false
set TRG_HCS12XM=false
set TRG_HCS12XC=false
set TRG_MPC55XX=true
set TRG_MPC56X=false
set TRG_NEC850=false
set TRG_SH2A=false
set TRG_TMS470=false
set TRG_SELF_CONTAINED_MODE=true
ASCET-SE.exe /S
endlocal

Each variable denotes an ASCET-SE target. If set to true the target will be
installed. If set to false the target will not be installed. If a target is not speci-
fied then true is assumed by default.

TRG_SELF_CONTAINED_MODE controls whether or not targets share common
files. If set to true, each installed target directory (trg_*) will include a copy
of all the common target files. You should choose this option if you plan to make
target-specific changes to the common files.

If set to false, the common target files are installed in a shared common direc-
tory called common-se. You should choose this option if you want any changes
in the common files to apply for all installed targets.

Note

Notes like this contain important instructions that you must follow carefully in
order for things to work correctly.
Introduction 11

12
Instead of setting environment variables, you can configure installation parame-
ters in the install.ini file. To do so, define the following entries in the
[SilentInstallation] section:

[SilentInstallation]
set TRG_ANSI=true
set TRG_C16X_CLASSIC=false
set TRG_C16X_VX=false
set TRG_XCV2_VX=false
set TRG_TRICORE=false
set TRG_FFMC16LX=true
set TRG_HC12M=false
set TRG_HCS12XM=false
set TRG_HCS12XC=false
set TRG_MPC55XX=true
set TRG_MPC56X=false
set TRG_NEC850=false
set TRG_SH2A=false
set TRG_TMS470=false
set TRG_SELF_CONTAINED_MODE=true

Values set in install.ini override environment variables.

1.3 Abbreviations and Definitions

ASAM-MCD

Association for Standardisation of Automation- and Measuring Systems,
with the working groups Measuring, Calibration, Diagnosis

ASAM-MCD-2MC file

Standard exchange format for program descriptions for calibration pur-
poses.

ASCET

Development tool for control unit software

ASCET-MD

ASCET Modeling and Design

ASCET-SE

ASCET Software Engineering – integration package for microcontroller
targets; allows the generation of an executable application for the target
(control unit) with ASCET.

AUTOSAR

Automotive Open System Architecture; see http://www.autosar.org/

BD

Block Diagram

BDE

Block Diagram Editor

BLOB
Introduction

http://www.autosar.org/

Binary large object, interface-specific description data provided in ASAM-
MCD-2MC files.

Class

A class is one of the component types in ASCET. Classes in ASCET are
comparable to object-oriented classes. The functionality of a class is
described by methods.

Code Generation

Code generation is the first step in the conversion of a physical model to
executable code. The physical model is transformed into ANSI C code.
Since the C code is partly compiler (and therefore target) dependent, dif-
ferent code for each target is produced.

Component

A component is the basic unit of reusable functionality in ASCET. Compo-
nents can be specified as classes, modules, or state machines. Each com-
ponent is built up of elements which are combined with operators to build
up the functionality.

CPR

Code Production Rules

ECCO

Embedded Code Creator and Optimizer

ECU

Electronic Control Unit

ESDL

Embedded Software Description Language

ETK

Emulator test probe (German: Emulator-Testkopf)

Implementation

An implementation describes the transformation of the physical specifica-
tion (model) to executable fixed point code. An implementation consists
of a (linear) transformation formula, a limiting interval for the model val-
ues, and further information (as memory assignment) where necessary.

Implementation Cast

Element that provides the users the possibility to control the implementa-
tions of intermediate results in arithmetic chains without changing the
physical representation of the elements in question.

Implementation Data Types

Implementation data types are the data types of the underlying C pro-
gramming language, e.g. unsigned byte (uint8), signed word
(sint16), float.

Implementation Types

Implementation types offer the user the possibility to define implementa-
tion once at the center of the project, and assign them as often as needed.
Introduction 13

14
INCA

INtegrated Calibration and Acquisition Systems

Literal

A literal is used in the descriptions of components. A literal contains a
string that is interpreted as a value, e.g. as a continuous or logical variable.

Memory class

A memory class is the name of the abstract memory area where a quantity
is placed later in the electronic control unit.

Message

A message is a real-time language construct in ASCET for protected data
exchange between concurrent processes.

Method

A method is part of the description of the functionality of a class in terms
of object-oriented programming. A method has arguments and one
return value.

Module

A module is one of the component types in ASCET. It describes a number
of processes that can be activated by the operating system. A module can-
not be used as a subcomponent within other components.

OIL

OSEK Implementation Language

OS

Operating System

OSEK

Working group "open systems for electronics in automobiles" (German:
Arbeitskreis Offene Systeme für die Elektronik im Kraftfahrzeug)

OSEK operating system

Operating system conforming to the OSEK standard.

Parameter

A parameter (characteristic value, curve, or map) is an element whose
value cannot be changed by the calculations executed in an ASCET model.
It can, however, be calibrated during an experiment.

Priority

Each OS task has a priority, represented by a number. The higher the num-
ber, the higher the priority. The priority determines the order in which the
tasks are scheduled.

Process

A process is program function called from an operating system task. Pro-
cesses are specified in ASCET modules and do not have any arguments or
return values. Inputs to and outputs from a process are handled by mes-
sages.
Introduction

Project

A project describes an entire embedded software system. It contains com-
ponents which define the functionality, an operating system specification,
and a binding system which defines the communication.

RAM

Random Access Memory

RE

Runnable Entity; a piece of code in an SWC that is triggered by the RTE at
runtime. It corresponds to the process concept in ASCET.

Resource

A resource is used to model parts of an embedded system that can be
used only mutually exclusively, e.g. timers. When such a part is accessed,
it has to be reserved; after executing its task, it is released again. These
reservations and releases are done using resources.

ROM

Read Only Memory

RTA-OSEK

ETAS’ OSEK-compatible Real-Time Operating System.

RTA-RTE

ETAS’ implementation of the AUTOSAR Run-Time Environment.

RTE

AUTOSAR Run-Time Environment which provides the interface between
software components, basic software, and operating systems.

Scheduling

Scheduling is the assigning of processes to tasks, and the definition of task
activation by the operating system.

Scope

An element has one of two scopes: local (only visible inside a component)
or global (defined inside a project).

SM

State Machine

SWC

Atomic AUTOSAR software component; the smallest non-dividable soft-
ware unit in AUTOSAR.

Target

The hardware a program or an experiment runs on. In ASCET-SE, a target
is specific to a combination of a microcontroller and compiler.

Task

A task is the entry point for functionality that is scheduled by an OS.
Attributes of a task are its priority, its mode of scheduling and its operat-
ing mode. The functionality of a task in ASCET-SE is defined by a collec-
tion of processes. When a task runs the processes of a task are executed
in the specified order.
Introduction 15

16
Trigger

A trigger activates the execution of a task (in the scope of the operating
system) or a state machine action.

Type

In an ASCET model, variables and parameters can have various types:
cont (continuous), udisc (unsigned discrete), sdisc (signed
discrete) or log (logic). Cont is used for physical quantities that can
have any value; udisc for positive integer values, sdisc for negative
integer values; and log is used for Boolean values (true or false).
These types are not the same as the data types generated in the code.

Variable

A variable is an element that can be read and written during the execution
of an ASCET model. The value of a variable can also be measured with the
calibration system.
Introduction

2 Safety Hints for Application Software Design

ASCET and ASCET-SE provide numerous mechanisms to ensure safe and consis-
tent microcontroller code. Some details, however, cannot be checked by the
code generator. This may be the case due to technical reasons or because the
correctness of an implementation cannot be clearly determined in certain cases
(e.g. because the correctness is related to the usage of a model).

This chapter describes some general points that should be paid attention to
when designing application software in ASCET.

2.1 Interpolation Routines

Each ASCET-SE target is supplied with a pre-compiled interpolation routine
library.

The interpolation routine library is provided for example only. It is not permitted
to use the library in production code or within ECUs running in vehicles. The
libraries are signed. Any use of them in a project will give the following warning:

WARNING(): Disclaimer for interpolation rou-
tines.txt(1): Invalid interpolation library linked. THE
ETAS GROUP OF COMPANIES AND THEIR REPRESENTATIVES,
AGENTS AND AFFILIATED COMPANIES SHALL NOT BE LIABLE FOR
ANY DAMAGE OR INJURY CAUSED BY USE OF THIS ROUTINES

ASCET-SE is also supplied with the source code and scripts required to re-build
the library. By re-building the library you take full responsibility for ensuring the
correctness of the source code, the build process and the interpolation routines
in the library.

2.2 FPU Usage

ASCET-SE supports floating point code generation. This is especially advanta-
geous for microcontrollers with an on-chip floating point unit (FPU).

However, if an application does not use floating-point, run time and stack con-
sumption can be saved by not saving and restoring the FPU’s floating point reg-
isters over task context switches. RTA-OSEK provides this type of optimization
and ASCET-SE will automatically enable the optimization in the OS configuration
if all processes and methods in a task do not use the FPU.

The information about whether or not a process or method uses the FPU is pro-
vided by a flag in the implementation information. By default, this flag is
enabled, indicating the FPU is used. If the process or method does not use the
FPU then the flag can be disabled.

It is the user’s responsibility to ensure the FPU flag is only disabled when they are
certain that no floating-point code is used in the process or method.

If the flag is disabled and the process or method uses the FPU then the floating-
point context will not be saved and may be corrupted over a context switch,
resulting in unpredictable application behavior.

Note

The ETAS group of companies and their representatives, agents and
affiliated companies shall not be liable for any damage or injury
caused by use of these routines.
Safety Hints for Application Software Design 17

18
If in doubt, leave the FPU flag enabled.

2.3 Non-Volatile Elements

ASCET-SE supports the handling of different memory classes, as described in
chapter 5.3 "The memorySections.xml File". Each memory area can either
be volatile or non-volatile. For this reason, ASCET-SE checks the uniform usage
of each memory class either for volatile elements or for non-volatile elements. If
both properties are mixed within one memory class, an error message is gener-
ated.

Non-volatile variables are intended to remain in the ECU memory persistently,
also after a re-boot of the ECU. For this reason, variables specified as non-volatile
are not initialized, even if an initialization value can be entered in the respective
data editor.

It is the user’s responsibility to care for a correct explicit initialization of non-
volatile variables as a part of the function specification.

2.4 Provision of Customized Data Types

If customized data types are used then it is important to ensure that the types
declared in a_user_def.h are sufficiently wide to hold values of the associ-
ated ASCET data type. For example, a customized data type which replaces sint8
must be wide enough to hold the value range -128..127.

ASCET cannot check for correct customized data type width, so it is essential that
declarations are checked during other stages of the development process (for
example by code review).
Safety Hints for Application Software Design

3 Getting Started

ASCET-SE is a tool for generating software for embedded microcontrollers from
an ASCET-MD model. ASCET-SE uses the project to hold configuration inform-
stion.

Each ASCET project includes target-neutral code generation settings, an integra-
tion of ASCET modules and configuration settings for one or more targets as
shown below:

Fig. 3-1 ASCET project

The ASCET online help provides more information about how to create ASCET
projects.

To generate code using ASCET-SE you will need to configure a target. In
ASCET-SE a target is a specific combination of a microcontroller, a computing
platform and a compiler.

Code generation produces C source code files that implement your ASCET
project and also produces configuration files for an underlying operating system
(OS) or run-time environment (RTE) that capture the real-time requirements of
the model, such as sampling rates and communication between models. These
configuration files define what ASCET requires from the OS or RTE.

ASCET-SE supports code generation for:

1. OSEK Operating Systems (OSEK OS).

2. AUTOSAR Run-Time Environments (AUTOSAR RTE)

ASCET-SE provides dedicated OSEK OS support for ETAS’ RTA-OSEK, however,
code can be generated for use with any OSEK operating system and optionally
for any OS with a similar scheduling model to OSEK OS.

3.1 Components of ASCET-SE

The ASCET-SE delivery includes:

• The ASCET-SE code generator tools.

• A set of configuration files for each supported target.

• A hex file reader.

These components have the following functions:

Project

Project
Settings

Option 1

Option 2

Option N

Target #N

Target #2

Target #1

Modules

Classes
Getting Started 19

20
• The ASCET-SE code generator tools extend the ASCET system with target
neutral C code generation, OS/RTE configuration file generation and
optional invocation of the compiler toolchain to build the ECU executable.
All targets use the same core code generator.

• The configuration files hold all the target-specific information needed by
the ASCET-SE code generator to produce code for a particular embedded
microcontroller that interfaces with a specific OS/RTE. In addition, the con-
figuration files contain information on how to build the complete system
with a supported compiler to produce an executable to run on an ECU.

• The Hex file reader extracts address information from the executable so
that ASCET-SE can generate an ASAM-MCD-2MC file for measurement
and calibration.

Note

The modeling capabilities of ASCET are not included in the ASCET-SE
shipment. They are subject to separate orders.

Note

The RTA-OSEK operating system configuration tools and target plug-ins
are not included in the ASCET-SE shipment.
Please contact your local ETAS sales office for a quotation

Note

Target compilers and linkers are not included in the ASCET-SE shipment.
They are subject to separate orders from the compiler vendor. The
release notes included in the ASCET-SE installation describe the com-
piler and linker versions that are supported.

Note

This applies only to the addresses of elements declared as ASCET ele-
ments.
Getting Started

3.2 Basic Stages from Model to Executable

The main stages in ASCET-SE code generation are:

1. Generation of C code by the code generator

2. Invocation of the compiler toolchain to compile and link the code to cre-
ate an executable ready for the ECU

3. Generation of an ASAM-MCD-2MC file for measurement and calibration

The following figure shows these stages in outline:

Fig. 3-2 Main stages of ASCET-SE code generation

A more detailed view of what happens is shown in Fig. 3-3.The next three sec-
tions explain what happens in each stage

COMPILER
Host: PC
Target:

Embedded C

ASCET-SE
Object-based

Controller
Implementation

Model
Behavioral

and
Implementation

C-Code

C-Code

TOOL

Input Ouput

Key:

Executable
C hosted

A2L File

Executable
C hosted

ASCET-SE
Object-based

Controller
Implementation
Getting Started 21

22
.

Fig. 3-3 Basic stages in ASCET-SE code generation

User provided linker

User C
code

[*.h, *.c]

ASCET Model
[BDE, SM, ESDL, C]

User
Libraries

[*.<lib>]

Object Files
[*.o]

Executable
[.hex]

Invoke
Compiler

Invoke
Linker

Target
Configuration
[*.ini, *.xml, *.mk,

conf*.oil,*.lnk]

Compilation and Linking

Key

Control flow

Data flow

Automatically
Generated

Supplied by
ASCET

user configurable

User created
with

ASCET-MD
User provided

User provided C compiler

Invoke
A2L
file

generation

Compilation and Linking

ASCET-SE
Code Generator

ASCET code
[*.h, *.c]

OS config
[temp.oil]

OS code
[*.h, *.c, *.asm]

RTA-OSEK
[or other OS tool]

Invoke
OS

Generator

Code Generation

ASCET -SE
[HEX File Reader]

ASAM2-MCD-2MC
[.a2l]

ASAM-MCD-2MC GenerationASAM-MCD-2MC Generation
Getting Started

3.2.1 Code Generation

The main function of ASCET-SE is the conversion of the ASCET model into
C code. Code generation in ASCET-SE always uses a complete model, i.e. a
project in ASCET, for the chosen target. C source code files are generated for

• the project itself,

• each module,

• each class,

• each OS task body.

The software architecture, or mapping of model structures into code, is identical-
for all ASCET-SE targets. However, the code generator uses target-specific infor-
mation provided by target configuration files to optimize code generation or
customize the code where necessary. For example, the target configuration files
can be used to tell ASCET-SE to generate compiler-specific pragmas to place code
or data into specific memory sections, whether the hardware provides bit-
addressable memory that can be used to optimize bit-fields for space etc.

ASCET-SE also generates an OS configuration file that defines all the OS objects
required by the ASCET configuration and then runs the OS generator tools to
generate the data structures required by the operating system.

The combination of the ACSET and OS code includes all variable and data defini-
tions required to make the ASCET system work.

Code generated in this way will need to be built to produce a final executable.
ASCET-SE supports two use cases for this process:

1. additional programmer, where the generated C code is exported to exter-
nal files and can be used in an external (to ASCET) build process.

2. integration platform, where ASCET-SE uses your compiler toolchain to
build the executable. This is described in the next section.

More detailed information about how the ASCET-SE code generator works can
be found in Chapter 14.

3.2.2 Compilation and Linking

In the integration platform use case the target toolchain, comprising compiler,
linker and locator, is driven from ASCET, so that the complete project can be built
in a similar way to developing software with an Integrated Development Environ-
ment (IDE). The integration platform capabilities of ASCET-SE allow you to
include non-ASCET C source code and/or libraries in the build process.

ASCET uses a "make"-based system to control the build process, but interaction
is similar to the build for experimental targets: on selecting a menu option, the
build is started, and when it completes without error, a complete executable pro-
gram for the project that can be flashed to the ECU.

3.2.3 ASAM-MCD-2MC Generation

At the end of the build process, ASCET-SE uses the hex file reader to extract the
addresses of all variables and parameters declared in the ASCET model from the
generated hex file.

An ASAM-MCD-2MC description (commonly called an A2L file) can be gener-
ated, using a separate menu item, to supply information about the system to
calibration systems like ETAS’ INCA.
Getting Started 23

24
3.3 Configuring ASCET-SE for Code Generation

The following sections explain how to configure ASCET-SE for target code gen-
eration.

3.3.1 Target Selection

During installation, the user chooses the target(s) to install. ASCET-SE can gener-
ate code for any installed target.

Each target is installed in a directory named by the target microcontroller family
<install_dir>\target\trg_<targetname>, for example:

<install_dir>\target\trg_c16x

<install_dir>\target\trg_mpc55xx

A special microcontroller independent target, called the ANSI-C target, is also
provided that generates portable ANSI-C code. This is installed in:

<install_dir>\target\trg_ansi

Unlike embedded targets, the generated code does not include any compiler-
specific intrinsics for memory mapping and data access on segmented or paged
hardware architectures.

ANSI-C code can be used as a basis for supporting targets not supported by
ASCET-SE.

In some cases, the supplied target will need to be customized for your specific
microcontroller and/or operating system. Please observe the hints provided in this
manual at the appropriate places. You are referred to the following sections in
particular:

• section 3.3.5 "Memory Class Configuration"

• section 5.2 "The target.ini File"

• section 5.3 "The memorySections.xml File"

• section 7.6 "Interfacing with an Unknown Operating System"

3.3.2 Path Settings for External Tools

ASCET needs to know where the compiler and OS tool chains are installed before
it can use them to build ASCET applications. The paths for compiler and operat-
ing system must therefore be set in ASCET. If these tools have been installed
before ASCET, then the ASCET installation process may be able to find them if
they have been installed on the same host PC.

To set Compiler and OS toolchain paths:

• In the ASCET Component Manager, select Tools 
Options.

The "Options" dialog window opens.

• Go to the "External Tools\Compiler" node.

Note

It is recommended that automatically identified toolchain paths are checked
for correctness before building an ASCET project. In particular, check that the
versions of the tools are compatible with the versions expected by ASCET.
Getting Started

• Go to the subnode of your compiler, e.g., "Tasking
Vx V2.x for C16x".

• Click on the button next to the "Tool Root Path"
field.

• In the "Path Selection" window, select the path for
the compiler/linker and close the window.

• In the "Options" dialog window, go to the "Oper-
ating System" node.

• Go to the subnode of the OS you want to use and
select the OS Installation Path.

• Click OK to accept the changes.

3.3.3 Code Generation Settings

Code generation settings are specified on a per-project basis in ASCET’s Project
Editor. The settings control which compiler and OS are used for the build process.

To set the project options:

• In the project editor, click the Project Properties
button.

The "Project Properties" window opens in the
"Build" node.
Getting Started 25

26
• Select the target and the corresponding compiler.

In the "Code Generator" combo box, the entry
Object Based Controller Implementa-
tion is the only valid choice.

• Select the operating system.

Some or all of the following operating systems are
available:

• Set the code generation options in the various sub-
nodes.

• Click OK to accept the changes.

More details on code generation settings are given in the ASCET online help.

3.3.4 Operating System Configuration

Operating system configuration is used to configure how the OS is integrated
with ASCET. OS integration includes mapping processes into tasks, defining task
attributes settings, defining interrupt attributes

Configuration is done in the "OS" tab of the Project Editor (see the ASCET online
help for additional details about the Project Editor).

ASCET assumes a priority-based pre-emptive operating system like OSEK OS. It is
important to understand how the OS schedules tasks at runtime because this
influences how ASCET processes (mapped into tasks) are scheduled. Some basic
guidance, including the restrictions which apply to OS integration, is provided in
section 7.1 "Scheduling and the Priority Scheme". Code generation errors will be
issued if the restrictions mentioned there are not observed.

3.3.5 Memory Class Configuration

Unlike a PC, embedded microcontrollers usually require that data and code is
located in specific sections of memory, often at specific addresses. Program code
and static data (e.g. constants) is usually located in ROM. Dynamic data (i.e. vari-
ables) must be located in RAM.

Some microcontrollers also allow memory sections that can be addressed in dif-
ferent ways. For example, some sections might be addressable with an 8 or 16-
bit address and other sections may only be accessible with a 32-bit address.

RTA-OSEK Vx.y Code and configuration data are generated to interface
with Version x.y of ETAS’ OSEK operating system.

GENERIC-OSEK Code and configuration data are generated for a
Generic OSEK. Additional vendor-specific configuration
may be required outside of ASCET.

RTE-AUTOSAR x.y Code and configuration data are generated to interface
with Version x.y of the AUTOSAR RTE.

Note

For the RTE-AUTOSAR "operating system", only ANSI-C code generation is
supported and no operating system settings are required. Any settings you
make in the "OS" tab for a newly created project that uses RTE-AUTOSAR are
removed together with the "OS" tab itself when you close the project editor.
Getting Started

The arrangement of elements in the controller memory is determined by the
memory classes they are assigned to in the implementation. In the ASCET data
model, memory classes are represented simply by abstract names, freely selected
by the user. Example names might be:

• IRAM - Internal RAM

• IFLASH1 - First bank of internal Flash ROM memory

• IFLASH2 - Second bank of internal Flash ROM memory

• NEAR_RAM - RAM addressable with an 8-bit address

• FAR_ROM - ROM addressable with a 32-bit address

The definition of the names and the conversion to compiler-specific conventions
for marking up the C code correctly is stored in a file called memorySec-
tions.xml in the target directory. ASCET-SE supplies a typical file for each tar-
get.

The section names defined in memorySections.xml are selectable in the
implementation editor for each ASCET element.

During the second phase of code generation, ASCET-SE uses the conversion
information in memorySections.xml to add the correct compiler intrinsics
(usually #pragma statements) to the generated C code.

The use of memory classes is described in detail in section 5.3 "The memorySec-
tions.xml File".

The assignment of actual memory addresses to these locations is done in the
linker control file.

3.3.6 Target Initialization Code

Each ASCET target includes an example application which provides simple target
configuration. By default, ASCET-SE uses the target configuration and the main
program from this example when building a project. The files used are

<install_dir>\target\example\target.[hc]

<install_dir>\target\example\system_counter.c

These files contain a main program and the code required to initialize the target
hardware to provide a 1ms periodic timer interrupt used to drive task scheduling.
The interrupt handler itself is provided in system_counter.c. This code
must be reviewed for suitability in production projects.

If additional interrupts are defined in ASCET, then additional target code is
required to configure the interrupt sources and (possibly) to initialize interrupt
priority registers. You should consult your OS documentation for further informa-
tion.

Note that ASCET assumes that memory sections have been initialized correctly
for executing C programs. By default, ASCET uses the C start-up code (the code
which executes before the main program is entered) provided by the compiler
vendor for initializing the C environment.

3.3.7 Customizations for Compiling and Linking

The following settings are required in the linker/locator control file to customize
for a specific hardware target:
Getting Started 27

28
• Locate the ASCET memory classes defined in memorySections.xml to
the applicable physical memory space (see section "Linker/Locator Con-
trol" on page 70).

• Locate the memory sections for the operating system into the physical
memory space. Note that it may be necessary to tell the OS the location of
the stack pointer. For specific instructions, refer to the OS documentation
(for RTA-OSEK this information is given in the RTA-OSEK Binding manual
for the target).

Comp i le r and l i nke r in voca t ion can be cus tomized in the
project_settings.mk make file (see section 5.4.1). For example, special
supplementary header files and pre-compiled objects can be integrated via this
make file, as well as user-provided libraries (e.g. for drivers, external code, inter-
polation routines), compiler, assembler and linker options and some settings con-
cerning the build process.

On some targets, additional configuration for time measurements may be
required.

• Enter the input frequency and timer prescale factor in the
project_settings.mk file (see section 5.4.1).

Modifications are also possible in the target_settings.mk configuration
make file (see section 5.4.1), which contains compiler-specific configurations.
However, changes in this file should be avoided, if possible.

3.3.8 Generating the Executable File and Running it on the Target

Before an application can be executed on the target microcontroller an execut-
able file must be created. If a measurement and calibration tool will be used,
then an ASAM-MCD-2MC file also needs to be generated. This section reviews
the steps for generating source code, the executable, and the ASAM-MCD-2MC
file.

Depending on the target, the following modifications may be necessary:

• Enter the memory layout into the ASAM-MCD-2MC data file
mem_lay.a2l (see section 8.2).

• Enter global blobs for the ETK (TP and QP blobs) into the ASAM-MCD-
2MC data files aml_template.a2l and if_data_template.a2l
(see section 8.3).

The following sections explain each stage.
Getting Started

To generate the source code:

• In the project or component editor, select Build 
Generate Code to generate source code.

Code can be generated for the entire project or any
component (i.e., module or class). All the necessary
components are generated automatically.

• Select File  Export  Generated Code  * to
save the source code to a file.

Until this step is performed, the code only exists
internally within the ASCET code manager.

To generate executable code for the project:

• In the project editor, select Build  Build to create
an executable file.

Code for the complete project is generated, com-
piled, and linked. If no errors occur, an executable
file in hexadec. format, named temp.*, is created.
The source and object code created during the code
generation is stored in the ASCET database.

When generating an executable file, all files (including the source code) are cre-
ated by default in the <install_dir>\CGen\ directory. When the Keep files
in Code Generation Directory option in the "Build" node of the ASCET
options is deactivated (see the ASCET online help), the content of the
<install_dir>\CGen\ directory is deleted whenever you exit your ASCET
session.

Note

Code can be generated and simulation for an ASCET module without a project
context when using the code generator in physical experiment mode only.
Using other modes of the code generator requiire that modules are integrated
into a project. A default project can be defined for each class or module for
that purpose. This is the only way to access the implementation information.
Without project context, the conversion formulas as well as all implementa-
tions of imported entities are missing.

Note

To retain any of these files, they should be copied into another directory before
closing ASCET. Retrospectively activating the option has no effect for the run-
ning session.
The files generated in <install_dir>\CGen\ are not compilable C source
files.
If only the source code needs to be saved, then the code should be exported
using File  Export  Generated Code  *. These menu options prompt
the user for a location in which to save the generated code provided the code
was previously stored in the database during the code generation process.
Getting Started 29

30
ASCET’s "make" mechanism does not take all dependencies (e.g., formula
changes, etc.) into account for efficiency reasons. Some global side effects from
changes in the model are therefore not recognized. After changes in the model
structure, a complete regeneration should therefore be enforced via Build 
Touch  Recursive before the generation of important code is started.

Once the executable is being generated, the ASAM-MCD-2MC data for the
interface to the application system needs to be created.

To write the ASAM-MCD-2MC file:

• In the project editor, select Tools  ASAM-2MC 
Write to generate the ASAM-MCD-2MC file.

The "Write ASAM-2MC To:" dialog window is dis-
played.

• In the dialog window, enter the specific file name
and select the specific storage directory.

At this point, the user has everything that is needed to run the program on the
target. The executable program can be loaded onto the controller or evaluation
board, for instance, using a debugger or calibration system. The ASAM-MCD-
2MC file is used by the calibration system (e.g., INCA) for calibration and mea-
surement.

Other tools (e.g., logic analyzer, source level debugger) can be used if necessary,
based on the user's preference.

Differences for the ANSI-C Target

Linking is suppressed for the ANSI-C target due to undefined behavior for e.g.
startup code, memory layout etc. This suppression is controlled by the noLink-
ing option in the target.ini file; this option contains a list of all compilers
for which linking is disabled.

If you use a compiler listed after the noLinking option, Build  Build All and
Build  Rebuild All stop after the creation of the *.obj files and the following
error message is shown in the monitor window:

Selected target "ANSI-C" / compiler "<compiler name>"
combination does not support "Link Code" --- please
refer to target description file ("c:\ETAS\ASCETx.y\
Target\trg_ansi\target.ini")

For compilers as Microsoft Visual C++ , the calculation of physical addresses is
meaningless. To suppress map file generation for these compilers, target.ini
offers the noMapFileGeneration option which contains a list of compilers
for which no map files shall be generated.

Similarly, generation of an ASAM-MCD-2MC description needs access to the
executable program file. As ANSI-C code generation usually does not produce an
executable (because linking does not happen) the generation of an ASAM-MCD-
2MC file is not possible.

Note

If the ASAM-MCD-2MC file is to be stored, be careful when placing in the
directory .\CGen\. The files in this directory may be deleted upon exiting
ASCET, depending on the settings in the ASCET options (see the ASCET online
help).
Getting Started

It is recommended that the code generation option Generate Map File (see the
"Project Properties" window or the ASCET online help for details) is deactivated
in order to avoid the generation of the Virtual Address Table and the etas.map
file. See also the notes in section 8.4.

The following table show which ASCET-SE features are supported by a default
installation for which combinations of target and operating system.

3.4 ASCET-SE Installation Reference

This section provides a quick reference to an ASCET-SE target installation direc-
tory <install_dir>\target\trg_<targetname>.

3.4.1 Installation Contents

Some important ASCET-SE files are listed and shortly described below. They are
located in a subdirectory of the ASCET installation, i.e., relative to the
<install_dir>\ETAS\ASCET6.1 directory. The subdirectory is called
.\target\trg_<targetname>.

Target

Operating System Embedded ANSI-C

RTA-OSEK Code Generation
Compile
Link
A2L generation

Code Generation
Compile

Generic OSEK Code Generation
Compile
Link
A2L generation

Code Generation
Compile

RTE-AUTOSAR Code Generation
Compile

Code Generation
Compile
Getting Started 31

32
Directory .\target\trg_<targetname>

File Meaning / Explanation

.indent.pro Configuration file for the "Indent" code for-
matting utility.

aml_template.a2l Template file with type descriptions of global
configuration BLOBs for the ETK. This file must
be customized by the user (see section 8.3 on
page 105).

build.mk Makefile for the linker/locator phase (see sec-
tion 5.4.5).

clean.mk Makefile to customize the Build  Clean
Code Generation Directory menu option in
the project editor.

codegen.ini File with macro definitions for code generation.
The individual entries are explained in the file
itself.

codegen_<target-
name>.ini

File with target-specific settings for code gener-
ation. The individual entries are explained in the
file itself.

codegen_ecco.ini File with ECCO settings for code generation. It
is read by ECCO each time code generation for
a specific target is started. The entries are
explained in the file.

compile.mk Makefile for the compiler phase.

custom_settings.mk Makefile for customizing the Make process.

depend.mk Makefile for generating the dependencies of
the generated files.

do_compile.mk Make file for actual compiler invocation.

generate.mk Makefile only for code generation via ECCO.
After execution of this makefile, all project
modules are generated as C and H files and are
written in the directory .\CGen of the ASCET
installation (see section 5.4.3 "Code Genera-
tion – Make File generate.mk").

global_settings.mk ASCET-SE internal makefile.

if_data_template.a2l Template file with type descriptions of global
configuration BLOBs for the ETK. This file must
be customized by the user (see section 8.3 on
page 105).

mem_lay.a2l Example data file defining the memory layout
of the controller in ASAM-MCD-2MC format.
This file must be customized by the user (see
section 8.2 on page 105).
Getting Started

Directory .\target\trg_<targetname>\cp_rules

This subdirectory contains the Perl macros, know as the Code Production Rules,
that are used by ECCO during C code generation.

Directory .\target\trg_<targetname>\docco

This subdirectory contains the stylesheets and definitions files used in by the
DOCCO automatic code documemtation tool.

memorySections.xml Contains XML definitions of memory classes.
See section 5.3 "The memorySections.xml File"
for more information.
Note that the ANSI-C target (trg_ansi) con-
tains additional memory class definitions files
memorySections_Autosar.xml and
memorySections_Autosar4.xml.

OS_<osname>_<ver-
sion>.template

OS template file for <osname> (and optionaly
<version>) used by ASCET-SE to generate an
OS congfiguration file.

os_settings.mk Makefile for general OS settings.

postasap.mk Makefile for post-processing ASAM-MCD-2MC
files.

prj_def.a2l Example ASAM-MCD-2MC file to define the
MOD_PAR section (see section 8.1 on
page 105).

project_settings.mk Contains project-specific configuration settings
like included libraries or special compiler and
linker settings (see section 5.4.1).

services.ini File containing arithmetic services (see
the"Arithmetic Services" section in the ASCET
online help).

settings_<compiler>.mk Defines compiler- and target-specific settings
valid for all projects, such as file extensions, call
conventions for precompiler, compiler, linker
and other programs, as well as paths for pro-
gram calls, include files and libraries (see sec-
tion 5.4.4).

smart_compile.mk Makefile for SmartCompile control.

target.ini Target-specific settings for ASCET for the
default variant of the target microcontroller;
the individual entries are described in more
detail in section 5.2.

target_<variant>.ini Target-specific settings for ASCET for alterna-
tive variants of the target microcontroller; the
individual entries are described in more detail in
section 5.2.

target_settings.mk Makefile to specify target specific settings (see
section 5.4.1).

File Meaning / Explanation
Getting Started 33

34
Directory .\target\trg_<targetname>\example

This directory contains files with target-specific settings for a small ASCET-SE
example project.

Directory .\target\trg_<targetname>\include

This directory contains the C include files for ASCET-SE.

File Meaning / Explanation

confV50.oil A template OIL file, which is the entry point for the
example project. This file contains definitions of OIL
objects like CPU, OS, COUNTER (system counter,
for the time raster), an ISR (which drives the sys-
tem counter) and COM.

example_rta.exp ASCET export file containing the example project.

HowTo.html HTML file that describes the further content of this
directory and explains what the exampel applica-
tion does and how to build it in ASCET.

<targetname>_user
.<lnk>

Example linker/locator control file; see also section
"Linker/Locator Control" on page 70. The <lnk>
extension depends on the target.

File Meaning / Explanation

a_basdef.h Central header file with ASCET controller defini-
tions; the file is to be included by all ASCET projects
files.

a_limits.h Definitions of the upper and lower boundaries for
standard ASCET types.

a_sect.h Header file with memory section definitions. Not
required for all targets.

a_std_type.h Contains definitions of ASCET standard types, e.g.,
uint16.

a_user_def.h Used to define customized data types. By default,
this file contains no compilable code.

message_scheme.h Header file for the selection of the message variant
(for more information, see section 13.4.3 "Mes-
sages").

os_inface.h Header file containing OS interface definitions; the
file is included by all generated component C files.

os_rta_inface.h Header file containing OS interface adaptations for
RTA-OSEK.

os_unknown_inface.h Template header file containing OS interface adap-
tations that allows customization to an OSEK-like
OS.

proj_def.h Header file for application-specific adaptations (see
section 5.7.2 "The Include File proj_def.h").

tipdep.h Header file for target-specific declarations.
Getting Started

Directory .\target\trg_<targetname>\Intpol

Note

The interpolation routines provided with ASCET are examples, not intended to
be used in production or in ECUs running in a vehicle. See also the safety hints
in section 2.1.

File Meaning / Explanation

a_intpol.h interface definitions of the interpolation routines

build_cmd.bat Batch file used during the build process of the inter-
polation library.

This file must not be called directly. It is to be called
only by intpol_<target>_<compiler>.bat
files.

customize.pm Perl macro with functions that can be customized to
generate desired type combinations for interpolation
routines.

HowTo.html Instructions on handling of interpolation routines.

intpol_<target>_
<compiler>.bat

Batch file to start the build process for an interpola-
tion library for the target <target> and the com-
piler <compiler>. The source files have to be
located in the subdirectory
.\target\trg_<targetname>\as\
intpol\src

makeintpol.pl Perl script to generate the type combinations of inter-
polation routines.

makeintpol_
header.pl

Perl script to generate a header file with prototypes of
interpolation routines, used by ASCET-SE for charac-
teristic tables.

path_settings.bat Batch file to set compiler paths for all targets. Called
by intpol_<target>_<compiler>.bat.

settings_
<compiler>.mk

Make file for compiler-specific settings.
Getting Started 35

36
Directory .\target\trg_<targetname>\Intpol\lib

For further details see chapter 6 "Interpolation Routines"; if in doubt, please
contact ETAS.

Directory .\target\trg_<targetname>\Intpol\Src

This directory contains all source code templates for interpolation routines.

Directory .\target\trg_<targetname>\scripts

This directory contains several Perl scripts. The table lists the most important
ones.

File Meaning / Explanation

Disclaimer for
interpolation
routines.txt

Important information regarding the provided inter-
polation routines. Read carefully!

intpol_<target>_
<compiler>.<lib>

Library of interpolation routines, which is linked to
the project in project_settings.mk (included in
build.mk, see section 5.4.5).
The library does not contain all possible interpolation
routines. Further routines can be generated automat-
ically on demand via the customized.pm file.
The extension <lib> is the target-specific extension
for libraries defined by the target compiler. Typical
examples are *.lib, *.h12, *.a

File Meaning / Explanation

convert_hip_db.bat Batch file for migration of memory class definitions
from the old format (hip.db/target.ini) to the
current format (memoryScections.xml).

convert_hip_db.pl Perl script used by convert_hip_db.bat.

cctolog.pl Perl script that transforms error/warning messages
generated by a compiler into a format readable by
ASCET. Thus, errors/warnings can be automatically
displayed in the ASCET monitor window.

lltolog.pl Perl script that transforms error/warning messages
generated by a linker into a format readable by
ASCET. Thus, errors/warnings can be automatically
displayed in the ASCET monitor window.

ostolog.pl Perl script that transforms error/warning messages
generated by an OS configuration tool (like rta-
build.exe) into a format readable by ASCET. Thus,
errors/warnings can be automatically displayed in the
ASCET monitor window.
Getting Started

Directory .\target\trg_<targetname>\source

File Meaning / Explanation

blkcopy.c Block Copy routines for initializing the arrays in the controller
code.

msgcopy.c Contains methods for copying non-atomic messages (i.e., mes-
sages larger than one machine word).

upmsgcp.c unprotected message copy - used to allow communication
between two processes via messages.
Getting Started 37

38
 Getting Started

4 Implementation Configuration

When modelling with ASCET, the physical model’s functional behavior can be
tested. Then, the embedded control software can be refined gradually up to the
production stage of development. This is done by specifying the implementation
information in conjunction with the code generation.

The task of the implementation consists of mapping the physical model, repre-
sented by continuous, discrete and logical entities, to the implementation layer
in a semantically correct way. A major part of this task is to decide how to map
continuous real arithmetic of the model into the discrete integer (fixed-point)
arithmetic supported by embedded target microcontrollers. The transformation
requires a quantized representation of all entities. Quantization introduces
numerical error that cannot be avoided. The behavior of the generated code will
always differ slightly from the physical specification.

In the context of the user’s specifications, the implementation code generators
create a compromise between numerical precision, RAM and stack requirement,
code size, and code performance.

Implementations are a refinement (the addition of detail) of the physical model
and are necessary to create embedded control software in ASCET. They deter-
mine how the physical functionality is mapped to an implementation in an ECU.
The separation of the physical model and its corresponding implementation in
ASCET helps to support a structured development process.

4.1 Implementations for Basic Model Types

To edit an element implementation:

• Right-click the element you want to implement, e.g.
the parameter P_Gain in the following example.

Note

In ASCET, "Implementation code generators" serves as a generic term for the
code generators used for the "implementation experiment" and "controller
implementation" (or "object-based controller implementation", respectively).
They resemble each other closely in terms of structure and mode of operation.
Implementation Configuration 39

40
• Choose Edit Implementation.

The implementation editor shown below opens.

In this example, P_Gain is the proportional gain for a PID controller. It has a
physical range of 0.0 to 50.0 and a quantization of 0.015625, i.e.

Ximpl = 0 + 64*xphys

The implementation of the variable has type uint16 with a range of 0 to 3200.
The following table shows how physical values are mapped onto implementation
values:

xphys Ximpl

Integer Binary

0.000000 0 00000000_00000000

0.015625 1 00000000_00000001

0.031250 2 00000000_00000010

...

0.984375 63 00000000_00111111

1.000000 64 00000000_01000000

1.015625 65 00000000_01000001
Implementation Configuration

Since this is a calibration parameter (the parameters are typically located in a
ROM memory area), the memory class IROM is selected.

The following sections describe the various aspects of element implementation.

4.1.1 Implementation Data Types

Unlike the abstract data types used for quantities in the physical model (i.e., con-
tinuous, discrete, logical), a concrete data type is used in the implementation.
ASCET uses the following implementation data types:

The following special cases apply:

• When a variable of model data type udisc is mapped to an implementa-
tion data type of sint*, the lower limit of the implementation interval is
not set to the corresponding negative value, but to zero.

• When a variable of model data type sdisc is mapped to an implementa-
tion data type uint*, the upper limit of the model interval is not set to
2147483647, but to the maximum value of the implementation data
type. This is valid even for the uint32 implementation data type.

• When you edit a variable of model data type cont or sdisc and imple-
mentation data type uint*, the lower limit of the model interval is not
set to the corresponding negative value, but to zero.

...

49.968750 3198 00001100_01111110

49.984375 3199 00001100_01111111

50.000000 3200 00001100_10000000

Type Contents Comment

sint8 8-bit signed integer -128 to +127

uint8 8-bit unsigned integer 0 to +255

sint16 16-bit signed integer -32768 to +32767

uint16 16-bit unsigned integer 0 to +65536

sint32 32-bit signed integer -2147483648 to +2147483647

uint32 32-bit unsigned integer 0 to +4294967296

real32 32-bit IEEE Floating-Point not available for all targets

real64 64-bit IEEE Floating-Point not available for all targets

bit directly addressable single bit not available for all targets

Note

On certain processors, the floating-point implementation is only possible with
software libraries that are capable of emulating floating-point arithmetic. In
such cases, it is not recommended for typical applications in electronic control
units because it requires considerable more execution time and memory.

xphys Ximpl

Integer Binary
Implementation Configuration 41

42
The code generation allows a combination of floating-point and integer arith-
metic in the software for assignment only:

• The assignment of non-quantized floating-point to quantized integer
quantities and vice versa is valid.

• The code generator creates the necessary code for the conversion and
automatic limits.

• The same holds true regarding method calls for the implicit mapping
between formal and actual arguments.

4.1.2 Conversion Formula

A conversion formula transforms the physical value of a model quantity into its
implementation value in the software. This transformation must be invertible in
the valid interval (i.e. value range) for the quantity. In ASCET, the conversion
formula is always specified from physical model to implementation, i.e.

Ximpl = f(xphys)

Conversion formulas are required:

• for physical quantities of type cont that are to be mapped to integer in the
generated code.

The identity conversion formula (Ximpl = xphys) must be used in the follow-
ing cases:

• for logical (Boolean) quantities, there is no possibility to specify conversion
formulas.

• for discrete physical quantities, those of type udisc or sdisc, the identity
conversion formula is mandatory.

• for physical quantities of type cont with floating-point implementation,
the identity conversion formula is mandatory.

In the following discussion, physical quantities are generally represented in
lower-case characters. The corresponding implementation values are written in
upper-case characters.

Conversion formulas can be defined globally for an entire project in the "Formu-
las" tab of the Project Editor. There, choose Global Formulas  Add in order
to define a new formula. Afterwards, you can use the defined conversion formu-
las in the implementation editors.

ASCET knows different types of conversion formulas (i.e., linear, linear rational,
square rational, tabular and verbal formulas). However, the code generation sup-
ports only simple linear formulas of the following form:

X = ax+b

Here, a and b are called the scale value and offset, respectively. The quantiza-
tion of a value is the reciprocal of the scale value:

q = 1/a

Note

The combination of floating-point and integer implementations in mathemati-
cal operations or comparisons is invalid and results in an error message.
Implementation Configuration

In the following, it is assumed that scale values and offsets are rational numbers.
This is not a substantial restriction because real values can be approximated with
a given level of precision using rational numbers. Note also that only rational
numbers can be used in for integer arithmetic anyway.

Non-linear conversion formulas can be used in the specification. However, an
automatic conversion between non-linear formulas in the code generation is not
supported.

Arithmetic with non-linear quantizations is not possible. They can only be used
for inputs of characteristics and methods, e.g., as a time constant of an integra-
tor. The user is responsible for ensuring that non-linearly quantized quantities are
used only in such a way. There is no further tool support of this, including the
code generation.

4.1.3 Value Range (Only for Numerical Quantities)

The range of values for a quantity is simply its valid numerical interval. The spec-
ified value ranges are then used by the code generator to calculate the intervals
of intermediate results. In doing so, the occurrence of overflows can be detected.
The code generator decides through this how to generate intermediate results
and calculations in the software. If necessary, the use of limiters must be
enabled.

Both the physical and implementation value ranges can be specified. Then, the
linear, invertible conversion formula updates the other value range. Therefore,
the user can choose which environment (physical or implementation environ-
ment) to work in.

In the following cases, however, the specification of a value range is not possible
or will be ignored:

• For logical (Boolean) quantities and enumerations, there is no possibility to
specify a value range.

• Continuous physical quantities with floating-point implementation are
mapped without limits to the specified implementation data type. Though
you can enter a value range in the ASCET editors, it will be ignored. A
pseudo-infinite interval is used instead.

4.1.4 Implementation Master

Either the physical model specification or the implementation specification can
be chosen as implementation master. The values entered by the user for the
implementation master will be used to adapt the opposite, non-master side
according to the master specification and the formula.

After the global change of a formula in the project editor, all affected implemen-
tations can be updated automatically by means of the Extras  Update Imple-
mentations option in the project editor. In this context, the "Master" options in
the implementation editor can be used to specify whether to preserve the value
range on the model side or the implementation side. If the model side is selected

Note

The code generation treats non-linear conversion formulas internally like iden-
tity so that no automatic conversions are performed.
Implementation Configuration 43

44
as the master, the settings of the model side will remain unchanged and the
implementation side will be updated. If the implementation side is the master,
the model side will be updated.

4.1.5 Implementation Types

To be able to edit the implementations of individual variables more easily and to
be able to easily assign the same implementations to elements with comparable
physical significance, you can define what are referred to as implementation
types in the project context. This is also true of the default project of a class or a
module. These implementation types contain the implementation parts
described in chapters 4.1.1 to 4.1.4; they can be assigned to individual elements
in their implementation editors.

How to create and set up implementation types is described in the ASCET online
help, section "Implementation Types". How these are used during implementa-
tion is described in the instruction "Using Implementation Types" of the ASCET
online help.

4.1.6 Value Range Limitation

The Limit Assignments option can be used to specify for each element individ-
ually if its value range shall be limited to the defined range. Calculated values
which are less than the lowest permitted value are set to the lowest value. Simi-
larly, calculated values that are higher than the highest permitted value are set to
the highest value. This is called saturated arithmetic - the highest (lowest) value
in the type range is "saturated" with all higher (lower) values. Saturated arith-
metic prevents underflow and overflow at runtime.

If the option is activated, additional code is generated for each assignment oper-
ation to check and ensure that the specified range is kept. If the option is deac-
tivated, it is the user’s responsibility to keep the value range. Continuos physical
quantities with floating-point implementation are generated with the selected
implementation data type and without limitation.

By means of the option Limit to maximum bit length the user can specify
individually for each element, whether and how ASCET checks and avoids poten-
tial overflows during assignments. In addition, the user can define the way by
which overflow is avoided.

• Reduce Resolution: potential overflows are avoided by a suitable re-quan-
tization. This results in a loss of precision.

• Keep Resolution: potential overflows are avoided by means of limitation.
The resolution remains unchanged. This option can only be used in con-
nection with arithmetic services.

• Automatic: ASCET treats potential overflows according to the option
Keep Resolution if the usage of arithmetic services is active, and according
to the option Reduce Resolution otherwise.

Note

In the "Integer Arithmetic" node of the Project Properties dialog window, the
Generate Limiters option must be activated for the element-specific limiter
configuration to become active.
Implementation Configuration

4.1.7 Zero Containedness in the Value Range

Division in ASCET can be protected against division by zero. This option intro-
duces a run-time check in the generated code to ensure that such a division does
not occur.

However, for a given element in the model, if zero is not in the range of possible
values then the option Zero not included can be used to disable the check for
division by zero. This options is an assertion to the code generator that the user
himself will take care that the denominator does not take the value zero.

4.1.8 Memory Locations

Memory locations (selected in the "Memory Location of *" combo boxes) specify
the name of the abstract memory section where a quantity (and its reference
where applicable) is placed in the memory of the ECU. The code generator uses
this information to generate C code data structures according to the required
layout of elements in the control unit memory. Besides, the memory classes are
used for the generation of corresponding compiler intrinsics, typically #pragma
statements. The locator uses these #pragma statements to map the memory
classes to certain address ranges in the control unit. This is done with the help of
a transformation table specified by the user.

The code generation checks whether all elements in a certain memory class have
the same attribute (volatile or non-volatile) assigned in the "Memory" field of
element editor or not. In the latter case, an error message is generated because
one memory class cannot refer to both volatile and non-volatile memory at the
same time.

Depending on the "Memory" attribute, variables are treated differently by the
code generation: only volatile elements are automatically initialized.

For databases, ASCET provides an easy way to get rid of the error message: the
Component Manager menu functions Tools  Database  Convert  Vari-
ables to Volatile and Tools  Database  Convert  Parameters to Non-
volatile. The former function assigns the attribute volatile to all variables in the
database, while the latter assigns the attribute non-volatile to all parameters.

For workspaces, there are no such global conversion functions.

4.1.9 Consistency Check

If the implementation editor contains inconsistent data, ASCET will notify the
user by means of the Consistency check list in the implementation editor. The
user can highlight single inconsistencies in the list and correct them automatically
means of the Auto Correction button, if desired.

4.1.10 Additional Information

Further implementation information can be entered in the "Additional Informa-
tion" tab, if required. This can be necessary for a specific electronic control unit.
They can also be used for supporting special infrastructures (e.g., DAMOS and
MSRDOC). Depending on the application, this field may contain the following:

Note

Activate the option Zero not included only if you are completely sure that the
implemented value can never take the value 0. Otherwise, severe exception
errors can occur at ECU run time as a consequence of divisions by zero.
Implementation Configuration 45

46
• Code syntax, address scheme

• Bit base address and binary position for bit packets

This field is not used in the ASCET basic system. Its syntax and semantics are not
defined here. The field definition is application-specific. Through the open inter-
face it is possible to add further implementation information.

4.1.11 Sizes of Composite Model Types

The size of composite model types, i.e. arrays, matrices, distributions, character-
istic curves and maps, are not part of the implementation specification. Instead,
this information is part of the data sets in ASCET.

4.1.12 Summary of Element Implementation

The table below summarizes the implementation information required for each
basic model type used in ASCET. Note that only logicals (log type) and enumer-
ations do not require all of the implementation information, e.g., no conversion
formula. The other scalar types (i.e. continuous and signed/unsigned
discrete) require all of the implementation constituents. This is also true for
the array, matrix, and distribution composite types.

Characteristic lines and maps have special treatment. For these composite types,
separate implementation data types, conversion formulas, and value ranges may
be specified for the independent and dependent axes. Besides, the access type
(linear, rounded, user-defined) can be specified in the properties editor of a char-
acteristic.

Note

For continuous model types with floating-point implementation, the Identity
Conversion Formula (identity, i.e., multiplication with the factor 1.0) is
required. For discrete data types, the Identity Conversion Formula is required,
too.
In both cases, a warning is displayed when another formula is selected.

Scalars Enu-
mera-
tions

Arrays,
Matrices,
Distribu-

tions

Characteristics

logical dis-
crete

cont. Lines Maps

Implementation
Type

+ + + + 2*(x,y) 3*(x,y,z)

Formula o + + 2*(x,y) 3*(x,y,z)

Implementation
Data Type

+ + + + 2*(x,y) 3*(x,y,z)

Value Range + + + 2*(x,y) 3*(x,y,z)

Data Representa-
tion*

+ + + + +

* for parameters only
o identity is mandatory
x in the properties editor
Implementation Configuration

4.2 Implementations for Complex Model Types (Classes, Modules,
Projects)

The implementation of a complex model type (i.e. class, module or project)
involves the following steps:

• Enter the implementations for all the basic model types included in that
component.

• Enter the implementations for any other complex model types (i.e., other
classes, modules or projects) contained in that component.

• Only if an individual memory class or other component-specific settings (e.
g. for the use of user-provided service routines, or for calling hand coded
functions) are necessary for the data structures of the component: Acti-
vate the respective settings in the "Settings" tab of the implementation
editor for components.

The implementation of an entire project defines the implementation of all ele-
ments within that project.

In ASCET, it is possible to indicate a number of different implementation alterna-
tives for complex model types. For the code generation, however, only one of the
indicated alternatives is activated for each instance.

Changing between the alternatives can be done in the implementation editor of
the specific element (e.g., on project level). Due to the hierarchic linking of the
implementations of a model, the implementations of all child elements are also
adapted.

Memory Location + + + + + + +

"Additional
Information" tab

+ + + + + + +

Access Type
(linear / rounded
/ userdef)

x x

Scalars Enu-
mera-
tions

Arrays,
Matrices,
Distribu-

tions

Characteristics

logical dis-
crete

cont. Lines Maps

* for parameters only
o identity is mandatory
x in the properties editor
Implementation Configuration 47

48
To edit a project or component implementation:

• In the project or component editor, select Edit 
Component  Implementation.

The implementation editor of the component or
project opens.

• In the "Elements" pane, double-click on one of the
elements.

The implementation editor for that element opens.

This process can be repeated to access the implementation editor for any ele-
ment in the project or component. The above example only allows selecting a
standard implementation. However, it is also possible to define target-specific
implementation alternatives that can be selected.

To copy and paste element implementations:

In the implementation editor of complex model elements, implementations of
basic model elements can be copied and pasted easily.

• In the component/project implementation editor,
right-click on a basic element and select Copy
Implementation To Buffer.

The complete implementation information of the
selected element is copied into a buffer.

• Right-click on another basic element and select
Paste Implementation From Buffer.

The entire implementation information from the
buffer is assigned to the selected element.

4.2.1 Optimized Method Calls

For methods defined in classes, ASCET is able to handle multiple instances using
identical code but different data structures (see chapter 13.3.3 "Data Structures
and Initialization for Complex (User-Defined) Objects"). In these cases, a pointer
to the data structure is passed to the generated C function, the so called self-
pointer. As an example, a respective method declaration has the form:
Implementation Configuration

sint16 PIDT1_IMPL_out (
const struct PIDT1_IMPL *self,
sint16 in);

For classes using only one data structure (so called single instances), ASCET auto-
matically optimizes the method call and the data elements are accessed directly,
e. g.

sint16 PIDT1_IMPL_out (sint16 in);

This optimization is done by default.

If a user intends to call ASCET-generated methods from code created manually,
however, it is not desirable to have the self-pointer optimization done by the tool
automatically, as the calling conventions for a method may change unexpectedly
due to model changes. For this purpose, ASCET offers the possibility to deacti-
vate the single method optimization in the "Settings" tab of the class implemen-
tation editor.

In this case, the self pointer will always be generated, no matter if the class is
multiply instantiated or not.

If a class will only be single instantiated in a model, a method interface that does
not use a self-pointer can be attained by activating the Optimize method calls
option.

4.2.2 User-Defined Service Routines

The code generator offers the possibility to implement class methods and pro-
cesses as user-defined service routines. The method body is then no longer gen-
erated by ASCET, but must be provided by the user, for example, by adding the

Note

When calling ASCET-generated methods or using ASCET-generated variable
and parameter definitions from handcoded functions, the user must be sure to
observe the data type definitions generated by ASCET carefully. It is not recom-
mended to use types other than the ones generated by ASCET. This is especially
emphasized for the self-pointer.
The function interfaces provided by the ASCET generated code might change
in successor versions of the tool.
Implementation Configuration 49

50
code during the link process. This makes it possible, e.g., to implement highly
optimized methods in assembler code. In particular, service routines have the
following properties:

• No method bodies are generated for class methods implemented as ser-
vice routines. The functionality modeled in ASCET (as block diagram, ESDL
or C code) will be ignored for the microcontroller code generation. The
user must provide the respective code in other sources. However, ASCET
still offers the possibility to specify method contents as they could be
needed in simulation experiments executed in ASCET.

• Methods and method arguments specified for service routines can be
used from the enclosing ASCET model. However, the generated code pro-
vides no "extern"-declarations for them. If a class has local elements, self-
pointers will be used and will not be optimized (see section 4.2.1), i.e. for
service routines multiple class instances are supported.

• Variables exported from the prototype class can be used from the enclos-
ing ASCET model. The generated code provides "extern"-declarations for
the prototype methods at the respective locations. The user must provide
the respective definitions in his hand coded sources.

• Local instance variables and parameters are generated as a part of the
local data structure and passed to the service routine by means of the self-
pointer. Imported variables and method local variables are not regarded in
the code generated for service routines, as they do not concern the
method interfaces.

To specify service routines:

Service routines are specified as follows:

• Select Edit  Component  Implementation to
open the implementation editor for a class or mod-
ule.

• In the "Settings" tab, deactivate the Generate
method body option.

• Activate the Service routine option.

The name of the service routine must follow a strict naming convention: It is
comprised of the name of the class or module, the implementation name, and
the name of the method or process, each name segment connected with the
next by underscores. If the implementation name itself includes underscores
(e.g., U8_MASSFLOW_INTEG), it is used in the name of the service routine only
up to the first underscore.

Note

To avoid nested structures as argument types for service routines, it is highly
recommended to assign the respective class itself as well as its local vari-
ables to the same memory class. In addition, the class using service routines
should not contain any local parameters. Parameters should be specified
globally, or passed as method arguments, if necessary.

Note

The user must be sure to observe the naming convention.
Implementation Configuration

For example: Assume a class instance with the name MassFlow_Integ of type
INTEGRATORK. The class contains a specification for a method with the name
compute. The class was implemented as U8_MASSFLOW_INTEG.

The data type prefix of the implementation leads to the call

INTEGRATORK_U8_compute(…),

i.e., for the name of the implementation, only the data type prefix is taken into
the generated function call. Hence there is no need to specify a service routine
for every concrete implementation, but only for every data type.

To work with multiple implementations, the following naming convention is rec-
ommended (not mandatory): Choose a name after the data type prefix corre-
sponding to the name of the class instance. If necessary, append a consecutive
sequence number (e.g., U8_MASSFLOW_INTEG1).

These naming conventions can also be met by means of preprocessor commands
(#define).

Service routines are called from the generated code in the same way as "normal"
class methods. This means that the user must observe all conventions regarding
arguments, return values, and local elements in the specification of the routine
(see chapter 13.3.6 "Method Declarations and Calls").

The Make mechanism does not generate, compile and link any code for the cor-
responding class. Instead, the user must provide the respective code (function
code, variable and parameter definitions) another way. Within ASCET, service
routines can also be defined in the external C code.

4.2.3 Prototype Implementations

Especially for the use of hand coded functions, ASCET and ASCET-SE provide the
user the possibility to declare class prototypes. Like function prototypes in the
context of a programming language, class prototypes can be used in the ASCET
context to declare function interfaces without defining the function contents. In
particular, this has the following consequences:

• No method bodies are generated for a class implemented as prototype.
The functionality modeled in ASCET (as block diagram, ESDL or C code)
will be ignored for microcontroller code generation of prototype classes.
The user must provide the respective method code in his hand-coded
sources.
However, ASCET still offers the possibility to specify method contents as
they could be needed in simulation experiments executed in ASCET.

• Methods and method arguments specified in the ASCET prototype class
can be used from the enclosing ASCET model. The code generated for the
surrounding model provides "extern"-declarations of the prototype meth-
ods at the calling locations. No self-pointers will be used (see section

Note

When calling handcoded functions or using hand oded variable and parameter
definitions from ASCET, the user must be sure to observe the data type defini-
tions generated by ASCET carefully. It is not recommended to use types other
than the ones generated by ASCET. This is especially emphasized for the self-
pointer.
Implementation Configuration 51

52
4.2.1), i.e. for prototype classes no multiple instances are supported. The
user must provide the respective function definitions in his hand coded
sources.

• Variables and parameters exported from the prototype class can be used
from the enclosing ASCET model. The code generated for the surrounding
model provides "extern"-declarations for the prototype methods at the
respective locations. As these declarations are embraced by preprocessor
commands, they can be deactivated if required. The user must provide the
respective definitions in his hand coded sources.

• Local instance variables, imported variables and method local variables are
not regarded in the code generated for a prototype class, as they do not
concern the method interfaces. Direct access (whether optimized or not)
to local elements of prototype classes is not supported.

To specify method prototypes:

Method prototypes are specified as follows:

• Select Edit  Component  Implementation to
open the implementation editor for a class.

• In the "Settings" tab, deactivate the Generate
method body option.

• Activate the Prototype implementation option.

The name of the C function must follow a strict naming convention: It is com-
prised of the name of the class or module, the implementation name, and the
name of the method or process, each name segment connected with the next by
underscores. Unlike service routines, no special naming conventions apply for
prototypes. The naming conventions can also be met by means of preprocessor
commands (#define).

The Make mechanism does not generate, compile and link any code for the cor-
responding class. Instead, the user must provide the respective code (function
code, variable and parameter definitions) another way (see Chapter 9 for possi-
bilities).

4.2.4 Processes and Methods

Processes and methods can be implemented as well. Their implementation edi-
tors provide three different options:

• The memory location of the process or method code can be defined.

Note

When calling handcoded functions or using handcoded variable and parameter
definitions from ASCET, be sure to observe the data type definitions generated
by ASCET carefully, especially for element types like arrays, matrices, character-
istic tables and maps and classes. It is not recommended to use types other
than the ones generated by ASCET.
The function interfaces provided by the ASCET-generated code might change
in successor versions of the tool.
Implementation Configuration

• The usage of the microcontroller’s floating point unit (FPU) can be speci-
fied.

This option is used during OS configuration generation to work out
whether or not the FPU context needs to be saved during a task context
switch. If all the processes and methods used in an OS task have this
option disabled, then the OS does not need to save and restore the FPU
context as there is no code in the task than can corrupt the current FPU
context. This optimization reduces execution time and stack RAM con-
sumption at runtime.

The default setting is to support FPU usage.

If the process or method does not use the FPU and this option is enabled,
then the FPU will not be used for calculation but the FPU context will be
saved unnecessarily.

• For methods, the user can define whether function inlining should be
applied to their code. This option only has an affect if the configuration of
the compiler defines an appropriate keyword in the "Inline Directive". See
the entries in the "External Tools\Compiler\<compiler>" node of the
ASCET options dialog for the current settings for your compiler.

To open the implementation editor for processes and methods:

• In the "Outline" tab of the component editor,
select the process or method.

• Select Edit  Implementation to open the imple-
mentation editor.

4.3 Implementations for Temporary Variables

Temporary variables can be specified at the outputs of operators and complex
model elements. In order to do this, right-click onto the desired element and
choose Temporary Variable from the context menu. These temporary variables
cannot be implemented explicitly. Instead, method-local variables can be imple-
mented as described in chapter 4.5.

Note

If the microcontroller does not have an FPU then this option has no effect.
Implementation Configuration 53

54
For temporary variables, the code generator determines the implementation
automatically: when a temporary variable is assigned an implemented quantity
for the first time, it obtains the corresponding conversion formula and value
range. The implementation data type is chosen so that it is appropriate for the
conversion formula and value range.

4.4 Implementations for Implementation Casts

Implementation casts (see the ASCET online help) provide the user with the abil-
ity to specify the implementation in a targeted manner at any chosen position of
a calculation or a data stream. Unlike variables and parameters, implementation
casts do not allocate any memory, and thus have no storing effect in the model
and cannot be calibrated.

Implementation casts do not have data; they are always of the cont model
type, always have a scalar dimension and a local range of validity (see section
3.3). Unlike other elements, the properties of implementation casts cannot be
edited. The implementation of an implementation cast is edited the same way as
implementations of basic model types (cf. chapter 4.1).

4.5 Implementations for Method- and Process-Local Variables

For methods and processes, local variables can be created. For this purpose, dou-
ble-click on the method or process name in the corresponding class or module
editor and then select Edit from the context menu. In the "Locals" tab of the
signature editor, click Add to create a local variable.

After creating these variables, you can provide them with an implementation as
described in section "Implementations for Basic Model Types" on page 39. If you
do not specify an implementation, the code generator automatically defines the
conversion formula, a value range, and an implementation data type in the same
way as for temporary variables.

Note

The insertion of temporary variable in a mathematical expression does not
affect the generation of mathematical operations for this expression. Tempo-
rary variables should not be used in different branches of the control flow (e.g.,
in the branches of an If statement). The result and the implementation (e.g.,
quantization) may be different for the separate branches. This could cause seri-
ous arithmetical errors in the generated code.
Implementation Configuration

4.6 Migration of Operator Implementations

You can delete operator implementations in older models (see the ASCET online
help) or replace them automatically by the newly introduced implementation
casts. Automatic replacing, however, applies to the entire database and not indi-
vidual components.

Rules for automatic conversion: The following conditions have to be ful-
filled for an operator implementation to be converted automatically.

• The operator implementation must not contain any other quantization
than Auto (addition, subtraction, MIN, MAX and MUX).

• The operator output has to be connected.

• The operator output can only be connected to primitive elements.

It cannot be connected to a component or operator or hierarchy.

• If an implementation cast is connected to the operator output, something
other than <No implementation> has to be selected for this imple-
mentation cast in the combo box next to the Use Implementation Type
option.

• The operator implementation must not contain any special pre-shift (mul-
tiplication and division).

• If the operator is a division operator and the Allow zero in phys. inter-
val option is activated in the operator implementation, the following rules
also apply for the denominator input:

– The denominator input has to be connected.

– The denominator input can only be connected to primitive elements.

It cannot be connected to a component or operator or hierarchy.

Note

ASCET V5.0 and later replaced operator with implementation options Limit to
maximum bit length and Zero not included, and implementation casts to
insert requantizations in concatenated arithmetic operations without creating
additional storage space requirements.
Existing operator implementations in older projects can be viewed, replaced by
implementation casts or removed, but not edited.

Note

Implementation Casts are described in sections "Implementation Casts",
"Implementation Casts in ESDL" and "Implementation casts in Block Diagrams"
in the ASCET online help.

Note

This is the only condition which has to be fulfilled for automatic conver-
sion for MIN, MAX and MUX operators. The other conditions only apply
to +, -, *, /.
Implementation Configuration 55

56
– If an implementation cast is connected to the denominator input,
something other than <No implementation> has to be selected
for this implementation cast in the next to the Use Implementation
Type option.

If one of these conditions is not fulfilled in any implementation of the component
(see the ASCET online help), the relevant operator has to be converted manually.

To replace an operator implementation with an implementation cast:

• In the Component Manager, select Tools 
Database  Convert  Operator Implementa-
tions to Impl. Casts.

The operator implementations of the entire data-
base are converted into implementation casts in
accordance with the above rules.

If an operator (apart from MIN, MAX, MUX) can be converted automatically, the
following occurs:

• An implementation cast is created on every connection of the operator
output.

• If the operator is a division operator and the Allow zero in phys. inter-
val option is activated in the operator implementation, an implementa-
tion cast is created on the connection to the denominator input.

• The implementation information of the following element is accepted for
every implementation cast at the output of an implemented operator.
This is not the case for the model type; this is always cont for implemen-
tation casts.

• The implementation information (apart from the model type) from the
previous element is accepted for implementation casts which were added
at the denominator input of a division operator.

• The overflow handling is converted in accordance with the following
scheme:

Each row shows the settings set for the implementation cast to replace
the corresponding setting of the operator implementation.

• The operator implementation is removed.

Note

For implementations of the component (see the ASCET online help) in
which the operator has no implementation, <No implementation>
is selected for newly created implementation casts.

Reduce Resolution

Keep Resolution And
Limit

Keep Resolution And
Don't Limit

Limit to
maximum
bit length

X

X

Reduce
Resolution

X

Keep
Resolution

X

X

Operator
Implementation:

Implementation
Cast:
Implementation Configuration

If a MIN, MAX or MUX operator can be converted automatically, only the opera-
tor implementation is removed. No implementation cast is added.

If an operator cannot be converted automatically, the following occurs:

• An implementation cast is created on every connection of the operator
output—even with components, operators etc., <No implementa-
tion> is selected for these implementation casts in all implementations
of the component.
This implementation cast is given the relevant implementation informa-
tion during manual conversion of the operator implementation.

If this kind of implementation cast already exists on one of these connec-
tions, no other implementation cast is added to this connection.

• If the Allow zero in phys. interval option is activated in the operator
implementation of a division operator, an implementation cast with <No
implementation> is created on the connection of the denominator
input.

If this kind of implementation cast already exists, another one is not
added.

• The operator implementation remains unchanged.

If it is not possible to convert all operator implementations automatically in the
database, the following message is issued:

Not all operator implementations could be replaced
automatically. Please do the conversion manually.

Confirm this message with OK. The "Operator Implementations" window
opens; it shows the components which contain the remaining operator imple-
mentations. You can now convert these manually.
Implementation Configuration 57

58
 Implementation Configuration

5 Configuring ASCET for Code Generation

The properties of generated code are controlled in three different ways in ASCET:

1. Globally for all projects (see Tools  Options in the Component Man-
ager).

2. For a specific project (see File  Properties in the Project Editor).

3. For all projects on a specific target by configuring *.ini, *.mk and
*.xml files in the corresponding target directory.

The first two ways are described in the ASCET online help. This chapter describes
the third way.

Code generation for all projects on a specific target is controlled by three types
of configuration file:

1. codegen[_*].ini files control the core code generator.

2. target.ini provides the target specific information to the Project Edi-
tor for OS configuration.

3. memorySections.xml defines memory class names for use in the
Implementation Editors in ASCET and the mapping between these names
and the target-specific compiler intrinsics to provide them.

How code is compiled by ASCET is controlled by a set of GNU makefiles (with the
extension .mk). The make process is run by ASCET to build a project.

The following sections describe these aspects of configuration file in more detail.

5.1 The codegen[_*].ini Files

ASCET uses three files to control the code generator:

• .\target\trg_<targetname>\codegen.ini

Contains macro definitions defining the naming conventions of objects
generated by code generator and additional settings for some aspects
of code generation. This file is read only by the ASCET base system.

• .\target\trg_<targetname>\codegen_<target>.ini

Contains target-specific settings for code generation. This file is refer-
enced by the CODEGEN_INI make file variable in
project_settings.mk. Note that by default, ASCET-SE uses
codegen_example.ini in preference to this file. The
EXAMPLE_MODE make file variable in project_settings.mk
must be set to FALSE to change this behavior.

• .\target\trg_<targetname>\codegen_ecco.ini

Contains target-independent settings for code generation. This file is
included in by codegen_<target>.ini. This file is read only by
ECCO.

Together, these files control the following properties:

• code appearance, e.g., the naming of variables

• code generation, e.g., initialization of variables, and use of #pragma
statements

• inclusion of operating system, e.g., selection of message semantic, cre-
ation of hook routines, and generation of the OIL description file
Configuring ASCET for Code Generation 59

60
The first section of codegen_<target>.ini offers the possibility to include
other *.ini files. codegen_ecco.ini is inserted automatically, other files
can be added. Since [INCLUDE] is the first section, the settings in the included
file(s) are made first, and afterwards, the settings defined in codegen_<tar-
get>.ini are made. Thus, codegen_<target>.ini can be used to make
specific settings that override those in the other two files.

The options are described in detail in the codegen[_*].ini files themselves.

Including a user-defined *.ini file:

In a user-defined *.ini file, the include mechanism can be used to set specific
options without changing the original codegen_*.ini files. Proceed as fol-
lows:

• Create the <MyIniFile>.ini file and place it in
the target directory.

• In the project_settings.mk file, include the
<MyIniFile>.ini file.

###################################
CODEGEN SETTINGS (ECCO)
###################################
complete path to codegen.ini  

(ECCO options)

CODEGEN_INI =$(P_TARGET)/ 
<MyIniFile>.ini

• In the <MyIniFile>.ini file, add the
[INCLUDE] section at the first place.

• Include the codegen_<target>.ini file to set
the target-specific default options.

• If necessary, include further *.ini files.

[INCLUDE]
File1=codegen_<target>.ini
File2=<path>\<filename>.ini
...

• Add the [ECCO] section with your individual set-
tings.

[ECCO]
<option1>=<value>
<option2>=<value>
...

These settings override settings in the included files.

Note

The configuration files are always read at the start of code generation; there-
fore, changes take effect immediately. However, it is usually necessary to force
code generation for all components in the current project to ensure that
changes are applied. For this purpose it is recommended to call Build 
Touch  Recursive before code generation is started.
Configuring ASCET for Code Generation

The codegen_*.ini file which ASCET-SE V6.1 uses during code generation is
defined in project_settings.mk.

A default installation of ASCET-SE V6.1 is configured to build projects using the
codegen_example.ini file provided in the examples directory. Use of
codegen_example.ini can be disabled by defining the EXAMPLE_MODE
make variable EXAMPLE_MODE as FALSE. The following fragment of
project_settings.mk shows the first part that must be changed.

EXAMPLE_MODE=TRUE
EXAMPLE_PATH=$(P_TARGET)/example
EXAMPLE_CONF_OIL=$(EXAMPLE_PATH)/confV50.oil

##
CODEGEN SETTINGS (ECCO)
##
complete path to codegen.ini (ECCO options)
ifeq ($(strip $(EXAMPLE_MODE)),TRUE)

CODEGEN_INI =$(EXAMPLE_PATH)/codegen_example.ini
else

CODEGEN_INI =$(P_TARGET)/codegen_tricore.ini
endif

The other parts that use EXAMPLE_MODE require adaptation, too.

5.2 The target.ini File

Each ASCET-SE target is supplied with a target description file called tar-
get.ini. The contents of this file are used to configure the OS editor (see
ASCET online help). In addition, the file contains internal configuration settings
for ASCET-SE that must not be altered by the user.

The entries allowed in target.ini are described in this section. The file must
follow the Windows *.ini format.

By default, target.ini includes definitions that match the generic or default
target microcontroller variant provided with RTA-OSEK. A target directory may
provide additional target_<variant>.ini files where <variant> is the
name of a corresponding RTA-OSEK microcontroller target variant.

All variants of a microcontroller share the same CPU architecture but differ in
peripherals. This often means that each variant of a microcontroller has a differ-
ent number of interrupt vectors and/or mapping between vector addresses and
peripheral interrutp sources. The correct variant is required if interrupts need to
be configured in the ASCET Project Editor.

To use a different target variant:

• Rename target.ini as target_default.ini

• Choose the variant required

• Rename target_<variant>.ini as tar-
get.ini
Configuring ASCET for Code Generation 61

62
The following tables describe the contents of a target.ini file.

Section [Target]:

Compiler settings can be made via the "External Tools\Compiler\<compiler
name>" node in the ASCET options window.

OS settings:

Note

Modifications to the target.ini file are effective only after restarting
ASCET. This is also true for a change between different targets or target vari-
ants.

type=<target type> Unique identifier for the target. Do not
change this setting.

label=<target name> A label to be shown in the ASCET user inter-
face.

compilerTools=<compiler
list>

List of compilers available for the target. The
entries are separated by blanks.

osTools=<OS list> List of operating systems available for the
target. The entries are separated by blanks.

maxCoopLevels=<n> Max. allowed number of cooperative priority
levels. For OSEK OS, maxCoopLevels is set
to 6 by default.

maxPreempLevels=<n> Max. allowed number of preemptive priority
levels. Equal to numHWlevels + num-
SWLevels - maxCoopLevels.

numHWLevels=<n> Number of hardware levels, equal to the
number of hardware interrupt priorities on
the target. (Further information about inter-
rupt levels can be found in the RTA-OSEK
User Guide or RTA-OSEK Binding Manual for
the target.)

numSWLevels=<n> Number of software levels, defined by the
OS. For RTA-OSEK this will usually be n=16
or 32 depending on the target.

event:<n>=<identifier>,
<x>,<y>,<address>a

Description of an interrupt source, n is the
event number, identifier denotes the
event, x and y are min. and max. priority,
address is the interrupt vector address.

a: These entries are usually not changed by the user.
Configuring ASCET for Code Generation

Sections [<osname>]

The target.ini file contains one section [<osname>] for each operating
system that can be used with the target.

The settings define the default paths, library names and options for each OS
supported by the ASCET-SE target.

The values are automatically included in the "OS Configuration" node in the
"Project Properties" dialog in ASCET’s Project Editor. It is not necessary to adapt
these settings in target.ini to suit an individual project. Instead, project-spe-
cific changes are best entered as overrides in the "OS Configuration" node by
selecting Enable OS Configuration. The configuration options are described in
the ASCET online help.

Default OS settings are specified relative to $(P_OS_ROOT) which defines the
root installation directory of the OS. This is set globally in ASCET for each sup-
ported OS in the respective subnode of the "External Tools\Operating System"
node in the ASCET Options dialog.

Note

For the purposes of target.ini files, an AUTOSAR RTE is handled in the
same way as an operating system.

P_OS_INCLUDE Comma-separated list of path names for OS header
files.

P_OS_LIBRARY Comma-separated list of path names for OS-specific
libraries.

OS_LIBS Comma-separated list of OS libraries to be linked
with the project.

OS_CONFIG_TOOL_CMD Command line options to be passed to the the OS
configuration tool.

PROJ_OIL_FILE An OIL file which is the entry point for the example
project. Only required for integration with an OSEK
OS.
Default: $(EXAMPLE_CONF_OIL) which refers to
the conf_<version>.oil file in
<install_dir>\target\trg_<target-
name>\example.
Configuring ASCET for Code Generation 63

64
5.3 The memorySections.xml File

ASCET models allow data and code to be assigend to different memory classes.
Memory classes are defined abstractly and given unique names, for example sec-
tions might be IROM (Internal ROM), EXT_RAM (EXTernal RAM), FLASH (FLASH
memory). In addition, the ASCET code generator automatically creates certain
memory class names depending on the context, e.g., for references or virtual
parameters.

During the code generation process, the memory class names need to be con-
verted into actual names, compiler-specific pragmas and type qualifiers. Both the
memory class names and the conversion of memory class names are defined in
an XML-based memory section defintion file called memorySections.xml.

A sample configuration file of that name is provided for each target, it can be
found in the target directory. If you need different section names or settings then
the file needs to be modfied. Details on how to write memorySections.xml
files are provided in the file ReadMe_memorySections.html located in the
target directory.

The ANSI C target includes three sample configuration files:

• memorySections.xml defines the memory sections for standard code
generation. It is used when non-AUTOSAR code generation is selected.

• memorySections_AUTOSAR.xml defines the memory sections for
AUTOSAR code generation. It is used by ASCET automatically when
AUTOSAR code generation is selected. The sections are compatible with
AUTOSAR’s Memory Mapping (MemMap.h) and Compiler Abstraction
(Compiler.h, Compiler_Cfg.h) concepts.

• memorySections_AUTOSAR4.xml defines the memory sections for
AUTOSAR code generation, assuming AUTOSAR Release R4.x conventions
(function parameters passed by reference use a pointer instead of a const
pointer). The file can be used instead of the standard
memorySections_AUTOSAR.xml by renaming it
memorySections_AUTOSAR.xml.

Note

The default settings for RTA-OSEK are:

P_OS_INCLUDE = $(P_OS_ROOT)\<targetname>\inc
P_OS_LIBRARY = $(P_OS_ROOT)\<targetname>\lib
OS_LIBS = rtk_s.<lib>
OS_CONFIG_TOOL_CMD = -ds

These settings use the RTA-OSEK Standard Status library (indicated by the s
after rtk_) and force the RTA-OSEK configuration tool to generate Standard
Status data structures regardless of the setting in the OIL file (indicated by the
-ds command line option).
If a different library and/or build level is required then both the library and the
tool options must be modified. The library designator must match the -d
parameter and can be one of s, t, e, ts, tt, te, att, ate.
For example, to use Extended (debug) status use rtk_e.<lib> and -de.
Configuring ASCET for Code Generation

The definition of memory classes depends on the target and compiler. Refer to
the compiler documentation when adjusting the sample file to your needs.

At the beginning of the memorySections.xml file, the default memory
classes for the following four memory class categories are defined:

• Code – memory classes for code (e.g. methods, processes etc.)

• Variable – memory classes for variables

• Characteristic – memory classes for parameters

• ConstData – memory classes for structural data (type descriptor infor-
mation for components)

The default memory classes for the categories depend on the target; an example
for such a definition can look like this:

<MemClassCategories>
<Code defaultMemClass="ICODE"/>
<Variable defaultMemClass="IRAM"/>
<Characteristic defaultMemClass="IFLASH"/>
<ConstData defaultMemClass="IFLASH"/>

</MemClassCategories>

The definitions of individual memory classes appear in the <MemClasses> sec-
tion. A memory class definition looks like this:

<MemClass>
<name>string</name>
<guiSelectable>Boolean</guiSelectable>
<prePragma>string</prePragma>
<postPragma>string</postPragma>
<typeDef>string</typeDef>
<typeDefRef>string</typeDefRef>
<funcSignatureDef>string</funcSignatureDef>
<constQualifier>Boolean</constQualifier>
<volatileQualifier>Boolean</volatileQualifier>
<storageQualifier>string</storageQualifier>
<description>string</description>
<category>string</category>

</MemClass>

Code parts set in italics have to be replaced by appropriate values. The ele-
ments and their meanings are described in the memorySections.xml file in
your t a rge t d i rec to r y (e .g . , ...\ETAS\ASCET6.1\target\
trg_mpc55xx\memorySections.xml).

String elements may contain line breaks, entered as \n. Some string elements
can use macros. The macros available for template definitions are also described
in the memorySections.xml file in your target directory.

5.3.1 Defining a Memory Class

The following steps must be performed to define a memory class and assign
ASCET variables to it:
Configuring ASCET for Code Generation 65

66
Step 1

Variables are assigned to the required memory class (in the "Memory Location"
combo box) in the ASCET implementation editor. The class names available are
those defined in the target-specific configuration file memorySections.xml
(cf. section 5.3 on page 64).

To provide a different set of names, or to add new memory classes, you need to
edit the classes in the <MemClassCategories> declaration of memorySec-
tions.xml. Each memory class category you define must have a corresponding
<MemClass> definition.

Step 2

After compilation, the memory sections present in the object files must be
located in the microcontroller’s memory space. The linker control file defines the
mapping of memory sections to address ranges. An example linker control files
can be found in the .\target\trg_<targetname>\example\ directory of
each target. The example can be modified to the needs of your project or you
can provide your own file.

If you choose to write your own linker control file, then the MEM_LAYOUTFILE
variable in the project_settings.mk needs to be modified to reference the
name and path of your file, e.g.:

MEM_LAYOUTFILE = my_layout_file.inv

When you change the memory layout file or linker invocation file, make sure that
the following constraints are met:

• VIRT_PARAM section

This memory section should be placed beyond your real memory range,
since virtual parameters are only important for calibration tools like INCA.

• VATROM section

This memory section should be placed beyond your real memory range,
and VATROM should not interfere with the placement strategy of other
memory sections. This memory section is only used to collect virtual
address tables used by the hex file reader to extract correct addresses of
all project elements (ASAM-MCD-2MC generation). Therefore all other
objects should be placed in memory independent of whether the VATROM
section is used or not.

For MPC55xx and MPC56x targets only, the a_sect.h file has to be adapted,
too. Details can be found in the compiler toolset manual.

5.3.2 Migration of Legacy Projects

ASCET projects developed with ASCET-SE V5.x define memory classes using
hip.db, target.ini and codegen.ini. Such projects can be migrated to
later versions of ASCET-SE by converting the older form of memory class defini-
tions into a memorySections.xml file.

ASCET-SE provides a perl script, convert_hip_db.pl, in the .\tar-
get\trg_<targetname>\scripts\ subdirectory for this purpose.
Configuring ASCET for Code Generation

Migrating memory class definitions:

• Copy the convert_hip_db.pl file to the direc-
tory containing the old hip.db, target.ini and
codegen.ini files.

• Run convert_hip_db.pl from a command line
window.

The command line window logs the procedure, and
lists relevant entries from codegen.ini and tar-
get.ini, as well as the memory classes imported
from hip.db.
The following figure shows an example for a con-
version where codegen.ini contained no rele-
vant entries.

• Check the new memorySections.xml file and
adjust the attributes, if necessary.

5.4 Build System Control & Configuration Settings

ASCET-SE uses a "make"-based build system for running the code generator, the
compiler and the linker. The basic control is shown in Fig. 5-1:

Note

Use the Perl version provided in the Tools subdirec-
tory of ASCET V6.1. The conversion may fail with
older Perl versions.
Configuring ASCET for Code Generation 67

68
Fig. 5-1 Build system – basic control

The make process is managed using GNU Make. All make files and build scripts
support paths with spaces.

• If a path containing spaces is to be used in a makefile, ASCET converts it
to a Windows shortname format (for example, c:\Documents and
Settings would be converted to c:\DOCUME~1).

• If a path containing spaces is to be used in a batch file, ASCET generates
it encapsulated in ", or converts it to Windows shortname format.

The makefile file itself is generated and run whenever you select an option
from the Build menu, using the information you specify in the project properties.
The following is an excerpt from the makefile file, using the MPC56x with
RTA-OSEK as example:

ASCET-SE
[Code Generation]

generate.mk
Controls

postGenerateHook

Compiler
[User provided]

compile.mk

build.mk

Controls

Controls

postCompileHook

postBuildHook

ASCET Model
[BDE, SM, ESDL, C]

Source Code
[*.h, *.c, *.asm]

Linker
[User provided]

Object Code
[*.h, *.c, *.asm]
Configuring ASCET for Code Generation

path definitions
P_TGROOT = C:\etas\ascet6.1\target
P_TARGET = c:\etas\ascet6.1\target\trg_mpc56x
...
P_CCROOT = c:\compiler\diab\5.0.3
...
phase definition
include $(P_TARGET)\compile.mk

The following sections describe how these phases are controlled and explain how
each one can be customized via configuration files that are located in the target-
specific subdirectory.

5.4.1 Project Settings - make file project_settings.mk

This make file defines project-wide configuration settings and can be found in in
the ta rge t d i re c to ry (e .g . , .\target\trg_<target>\
project_settings.mk).

The file project_settings.mk can be modified by the user and thus be
adjusted to the project requirements, and it is included by the make files com-
pile.mk and build.mk.

project_settings.mk is shipped with example mode switched on, i.e. the
variable EXAMPLE_MODE is set to TRUE. This means that the settings given in
the example files (see "Directory .\target\trg_<targetname>\exam-
ple" on page 34) are used for the build process. To use your own configuration
f i les , set EXAMPLE_MODE=FALSE and adapt further sett ings in
project_settings.mk.

The parameter STOPWATCH_TICK_DURATION tells ASCET the length of a sin-
gle tick of the dT time reference in nanoseconds. The value specified must match
your target hardware configuration for dT timings in ASCET to be accurate.

5.4.2 Target and Compiler Settings – Make Files target_settings.mk and
settings_<compiler>.mk

The make file target_settings.mk is included by the two make files control-
ing compiling and linking (compile.mk and build.mk respectively) and
includes, in turn, settings_<compiler>.mk.

The settings_<compiler>.mk file defines file extensions, call conventions
for precompiler, compiler, linker and other programs, as well as paths for pro-
gram calls, include files and libraries. Command line parameters for compiler and
linker calls are defined here, too.

You can change the values set in the COMPILER SETTINGS section to include
another compiler than the preset one selected in the project properties. If you do
so, make sure that all compiler-specific settings are correspondingly modified as
well.

5.4.3 Code Generation – Make File generate.mk

This make file should not be modified by the user. It controls the ECCO genera-
tion process. All project and target-specific files are passed to ECCO here. For
example, the Make variable FILES_HEADER_PROJ is defined here, which con-
tains all generated header files of a project.
Configuring ASCET for Code Generation 69

70
5.4.4 Compilation – Make File compile.mk

This make file controls the translation process. All files corresponding to the
project are compiled and assembled here using the appropriate options. As a
result, all object files are written into the cgen directory. Additionally, all com-
piler errors are evaluated and transferred to ASCET, if necessary. If an error occurs
during compilation, the generation process is terminated and an error window is
displayed.

"Smart-Compile"

ASCET-SE supports the option to re-compile only those C source files that have
changed since the last build. The code is compared explicitly to find out whether
a re-compilation is necessary.

Smart-Compile is controlled by two make variables:

• COMPILE_MODE in compile.mk specifies whether Smart-Compile is
active or not. COMPILE_MODE is either smartCompile (smart compila-
tion – check code explicitly for changes) or compile (conventional com-
pilation behavior – only check timestamps). Smart compile is enabled by
default.

• SMART_COMPILE_COMPARE in smart_compile.mk specifies the file
comparison and is either smart (ignore only time and date of generation
within comments, default), strict (do not ignore anything), or
relaxed (ignore anything within arbitrary C comments).

When using Smart-Compile, several intermediate files are generated during
compilation. These files are of no relevance for the user.

The "Smart-Compile" feature has led to an increased complexity and number of
make files with respect to earlier versions. Not all details can be described here.
To avoid problems, it is thus highly recommended to change the
project_settings.mk file and, if necessary, the target_settings.mk
file only.

5.4.5 Build – Make File build.mk

The link process is controlled by build.mk. The compiled object files and the
required libraries are integrated into an executable program file which is written
to the CGen directory.

The build process can be customized be editing project_settings.mk. Edits
to build.mk itself should not be required.

Linker/Locator Control

The build process controlled by build.mk uses the Linker/Locator provided by
the compiler toolchain to allocate parts of the executable program (code, static
data, dynamic data etc.) to physical memory areas (RAM, ROM etc.) on the
microcontroller. This process is controled by linker/locator control file. The file
fomat is specifc to the compiler toolchain. The file contents are specific to your
microcontroller variant (i.e. different devices with diffrenent memory layouts or
sizes will need different linker/locator control files.

The linker/locator file ASCET uses is specified by the MEM_LAYOUTFILE variable
in project_settings.mk file (see section 5.4.1). The variable must reference
a valid linker-locator control file for your microcontroller.
Configuring ASCET for Code Generation

A sample linker/locator file is supplied with each ASCET-SE target. and can be
found in the .\target\trg_<targetname>\example folder.

You will need to consult both your compiler documentation and your microcon-
troller documentation to make changes to the file.

5.5 Customizing Code Generation

5.5.1 Banners

Banners in the generated code are described in the "Project Editor" section of
the ASCET online help.

5.5.2 Formatting Generated Code – the .indent.pro Configuration File

The code formatting utility "Indent" can be used to re-format generated code.
The properties of the code format can be widely influenced this way. The
.indent.pro file, found in the target directory, serves for the configuration.
You can find a detailed documentation of Indent’s capabilities in <install
dir>\..\ETAS Manuals\ASCET V6.1\Tools\indent.html, that is
installed together with the ASCET-SE documentation. Indent is redistributed
under the "GNU Public License".

5.5.3 Code Post-Processing

ASCET-SE offers the user the possibility to modify the generated code by means
of Perl scripts. The called scripts must be specified in the make variable
POST_CGEN_PERL_MODS in project_settings.mk, e.g.:

POST_CGEN_PERL_MODS= postCGenIndent postCGenSample

A sample file called postCGenSample.pm is included in the ASCET-SE delivery,
in the .\target\trg_<targetname>\scripts directory. The calling con-
ventions can be derived from that file easily. All scripts implemented by the user
must comply with these conventions:

• Provision of a Perl macro called process

• Utilization of three invocation arguments. These arguments represent the
path to the source code, a list of the C files and a list of H files to be
processed.

Example:

sub process ($$$) {
my $src_path,$c_files, $h_files) = @_;
...

}

In the delivered version, ASCET-SE uses the code formatting utility "Indent",
which is called through the described mechanism as well. By specifying

POST_CGEN_PERL_MODS=

the execution of Indent can thus be suppressed. See also "Formatting Generated
Code – the .indent.pro Configuration File" on page 71 for more details on
"Indent".
Configuring ASCET for Code Generation 71

72
5.6 Customizing the Build Process

5.6.1 Including Your Own Make Files

The make process in ASCET can be customized to run user-provided make rules
at selected points in the overall build process. For this purpose ASCET-SE provides
special make targets:

• PRE_GENERATE_HOOK is executed before code generation

• POST_GENERATE_HOOK is executed after code generation

• PRE_COMPILE_HOOK is executed before compilation

• POST_COMPILE_HOOK is executed after compilation

• PRE_BUILD_HOOK is executed before linking.

• POST_BUILD_HOOK is executed after linking.

• POST_FILEOUT_HOOK is executed after file out

The hooks can be defined in custom_settings.mk.

Your make file must conform to GNU make syntax. Documentation for GNU
make is included in the ASCET-SE installation and can be found in
<install_dir>\ETASManuals\ASCETx.y\Tools. Additional informa-
tion can be found in the GNU-Make Manual (ISBN: 1-882114-80-9, not sup-
plied).

5.6.2 Including User-Defined C and H Files

ASCET-SE can include additional C source files in the make process. Lists of file
names can be defined in the project_settings.mk file. In addition, lists of
path names can be indicated to specify where the compiler searches for the
defined files. The following make variables can be used:

• C_INTEGRATION indicates, whether additional C source files are to be
considered by the make process. Possible values are FALSE or TRUE.

• P_C_SRC_FILES indicates a list of one or more paths for additional C
source files, separated by blanks.

• C_SRC_FILES indicates a list of one or more additional C source file
names, separated by blanks. If a file of a list of files is specified in
C_SRC_FILES, a valid path must be provided in P_C_SRC_FILES and
C_INTEGRATION must be set to TRUE.

• P_H_SRC_FILES indicates a list of one or more paths for additional H
(header) files, separated by blanks.

• LIBS_USER contains a list of user-defined libraries. The respective path
names have to be specified as parts of the file names.

• P_ASM_SRC_FILES indicates a list of one or more paths for additional
assembler files, separated by blanks.

Note

For RTA-OSEK integration, C_INTEGRATION must be set to TRUE
because task and ISR bodies generated by ASCET-SE are placed in sepa-
rate files which are compiled via the C code integration mechanism.
Configuring ASCET for Code Generation

• ASM_SRC_FILES indicates a list of one or more additional assembler file
names, separated by blanks.

The following example illustrates how the make file variables can be used
(extract from project_settings.mk):

...

P_H_SRC_FILES = $(P_TARGET) $(P_DATABASE)/math
C_INTEGRATION = TRUE
P_C_SRC_FILES = $(P_DATABASE) $(P_DATABASE)/math
C_SRC_FILES = mathop.c hwdriver.c errhndl.c
...

The files from the C_SRC_FILES list are compiled and linked by the ASCET
make process.

5.6.3 Special Makefile variables provided by ASCET

Some special make variables can be used to access files at locations predefined
by the system. These are:

• $(P_TARGET), the specific path of the current target installation, e.g.,
.\target\trg_mpc56x,

• $(P_TGROOT), the .\target path in the ASCET installation,

• $(P_DATABASE), the specific path of the currently used ASCET data
base,

• $(P_CGEN), the CGen directory.

More information on the make variables is provided by the comments in
project_settings.mk.

5.7 Controlling What is Compiled Using ASCET Header Files

The C code generated by ASCET-SE includes various C pre-processor directives
that allow compile-time configuration using ASCET-SE header files. The header
files are located in .\trg_<targetname>\include unless indicated other-
wise.

5.7.1 The Include File a_basdef.h

The a_basdef.h file is included by all files generated by ASCET. It provides
access, through further header files, to:

• the standard ASCET types (a_limits.h, a_std_type.h)

• target-dependent definitions (tipdep.h)

• the operating system interface (os_inface.h)

• project specific configuration (proj_def.h)

Project-specific configuration definitions for a project can be provided via the
proj_def.h file. A template proj_def.h file can be found in th same include
folder as a_basdef.h; the template shall be adapted by the user.

The a_basdef.h file itself should not be modified by the user.

5.7.2 The Include File proj_def.h

The supplied version of this file contains some macro definitions and an empty
section that can be used for application-specific adaptations.
Configuring ASCET for Code Generation 73

74
In particular, the file offers the possibility to include preprocessor commands that
are valid throughout the complete code generated by ASCET. The switches noted
below have a particular meaning in the code:

• COMPILE_UNUSED_CODE: This switch can be defined to compile code
that is generated from the ASCET model, but not used by the model itself,
e.g., a method that is never called.

Example:

#define COMPILE_UNUSED_CODE

• DECLARE_PROTOTYPE_METHODS: In ASCET, classes can be imple-
mented as prototypes (see section 4.2.3 "Prototype Implementations").
This switch defines, whether (extern-)declarations shall be generated for
the respective methods. This may become relevant, if the user intends to
map method names to macros by means of pre processor commands
(#define).

Example:

#define DECLARE_PROTOTYPE_METHODS

• DECLARE_INLINE_METHODS: For methods implemented as inline (see
section 4.2.4 "Processes and Methods"), function declarations can be
made visible for the compiler via this switch, if desired. Extern declarations
for inline functions are usually not required, since the functions are
expanded textually, so that their definitions must be known before they
are used. ASCET takes care of that.

Example:

#define DECLARE_INLINE_METHODS

• Model-specific switches for the individual deactivation of single extern-
declarations and type definitions.

• Switches for message configuration: the default optimization of message
copies based on the operating system’s priority scheme is not suited for all
applications. The message handling can thus be configured, provided the
modularMessageUse option is activated in the codegen_ecco.ini
file. Four different variants exist:

– Default message optimization:
As a default, messages are optimized based on the operating system’s
priority scheme. In this case, the compiler switch

#define __MESSAGES __OPT_COPY

is used. It can be set by the user explicitly as well.

– No message copies:
Messages are used like global variables in this case. No copies are gen-
erated. This can be achieved using the compiler switch:

#define __MESSAGES __NO_COPY

– No message optimization (copy always):
Messages are always copied using the compiler switch:

Note

For methods in modules, only __OPT_COPY and __NO_COPY are avail-
able. Other optimizations are not supported.
Configuring ASCET for Code Generation

#define __MESSAGES __NON_OPT_COPY

In this case, no optimization takes place.

– If supported by the respective operating system, the OSEK COM mes-
sage definition can be used:

#define __MESSAGES __OSEK_COM
Configuring ASCET for Code Generation 75

76
 Configuring ASCET for Code Generation

6 Interpolation Routines

If your project uses characteristic tables then it is necessary to provide interpola-
tion routines. Suitable interpolation routine libraries named intpol_<tar-
get>_<compiler>.<libext>1 and the header file a_intpol.h2 are
delivered with ASCET-SE. These files contain several routines for the interpola-
tion of characteristic curves and maps for various combinations of data types.

For characteristic curves and maps, over 500 possible combinations of input and
output data types exist, each of which must have its own interpolation routine.
However, since only a few of these combinations are actually used in a real
project (usually less than 10), it does not make sense to deliver all 500 additional
routines with ASCET-SE or to always integrate them into the code. The library,
therefore, does not include the entire set of interpolation routines.

Further routines can be generated automatically at need. This is done by using
the batch file intpol_<target>_<compiler>.bat2 and a Perl interpreter
provided with the system. The generated files are then compiled into the new
library.

Interpolation routines use the following naming convetion:

• Distributions: RoutineName_<Distribution-Type>

• 1d Tables: RoutineName_<X-Axis-Type><Y-Value-Type>

• 2d Tables: RoutineName_<X-Axis-Type><Y-Axis-Type><Z-
Value-Type>

The following type combinations are supported by these libraries for normal
characteristic curves and maps as well as group characteristic curves and maps
(for fixed characteristic curves and maps, interpolation is performed without call-
ing interpolation routines).

Distributions:

All <Distribution-Type>s (e.g. u8, s16, r32 etc.).

1d Table Routines:

All combinations of <X-Axis-Type><Y-Value-Type> for all integer types
(e.g. u8u8, s8s8, u16s32 etc.) plus r32r32 and r64r64 values.

Note

The interpolation routines provided with ASCET are for example only. They are
not intended for use in production ECUs or development ECUs running in a
vehicle. See chapter 2.1 for further details.

1. In the .\target\trg_<targetname>\intpol\lib directory. Possible
library extensions are *.lib, *.a, *.h12.

2. In the .\target\trg_<targetname>\intpol directory.

Note

The generation of interpolation routines is described in the
ReadMe_Interpolation.html file in the .\target\trg_<target-
name>\Intpol interpolation routine directory.
Interpolation Routines 77

78
2d Table Routines:

All combinations of <X-Axis-Type><Y-Axis-Type><Z-Value-Type> for
all integer types (e.g. u8u8u8, s8s8s8, u16s32u8 etc.) plus r32r32r32 and
r64r64r64 values.

6.1 Use of Interpolation Routines

For each target, ETAS provides some example interpolation routines in a pre-
compiled library. The library is not intended for production projects without addi-
tional assessment and quality assurance. Nevertheless the routines contained in
the library demonstrate how interpolation routines are generated, referenced
and linked to a project and can serve as a starting base for customer specific
improved routines.

After ASCET-SE has been installed, a directory \intpol is located in the target
directory of each installed target, e.g.,

C:\ETAS\ASCET6.1\target\trg_<targetname>\intpol

The ASCET online help descibes the callbacks to interpolation routines required
by ASCET.

The following example describes how ASCET uses interpolation routines assum-
ing an interpolation routine for GetAt() for characteristic curves.

For uint8 values, the GetAt() call logically required by ASCET is replaced by a
call to the CharTable1_getAt_u8u8() method. ASCET accesses the rou-
tines via the a_intpol.h header file. Yon need to implement a method with
the same C signature in your interpolation rotuine library. The library must be
linked with the application.

When using the example source code provided by ASCET, follow the instructions
of the included ReadMe_Interpolation.html file to generate the related
library and link it during the make process.

6.2 The Interpolation Procedure

The interpolation procedure for all variants consists of two steps:

1. Searching the proper interval of interpolation points and deriving the off-
set, i.e. the distance between the interpolation point and the x-axis value
to be interpolated.

2. Calculating the linearly interpolated value at the desired position.

For group characteristic curves/maps, the search result is stored in intermediate
variables to avoid multiple calculations of the values for the various characteristic
curves/maps.

For characteristic curves with equidistant interpolation node distribution (fixed
characteristic curves), less memory is required because an offset and a distance
are stored instead of a list of interpolation points. Instead of the search proce-
dure, the nearest fixed interpolation node to the x-axis value is used.

6.3 Accuracy and Allowed Range of Values

The supplied interpolation routines do calculation in the integer implementation
to within ± 1.0 of the exact integer result.
Interpolation Routines

The distance of interpolation nodes, and the difference between consecutive
characteristic values cannot be arbitrarily large, due to a possible overflow during
the interpolation.

Fig. 6-1 Interpolating a characteristic curve

The condition to avoid overflows is as follows:

(dv * dx)  231 [dv > 0, a positive slope]

(dv * dx) -231 [dv < 0, a negative slope]

For very steep characteristic curves (large differences between consecutive char-
acteristic values), the number of interpolation nodes has therefore to be
increased.

Within the current implementation, all routines are affected that use the data
types uint16, sint16, uint32 and sint32. To avoid wrong results in case
of a possible overflow, the calculated value is checked by these routines. If the
characteristic value does not fall within the value range of the two adjacent inter-
polation nodes, the value from the lower interpolation node is returned.

The algorithm for floating-point value interpolation differs only slightly from the
one for integer value interpolation. In theory, an overflow can occur for floating-
point values, too.

0

v

x

dv

delta

dx

v(x)

v1/x1

v0/x0

v(x) = v0 + (dv * delta) / dx
Interpolation Routines 79

80
 Interpolation Routines

7 Operating System Integration

This chapter describes how ASCET-SE integrates with an operating system to
provide real-time scheduling of ASCET processes.

The focus is primarily on integration with OSEK OS, in particular with ETAS’ RTA-
OSEK operating system. Integration with other OSEK-compatible operating sys-
tems is similar, but specific details will differ.

To integrate with the OS, ASCET-SE generates:

• an OS configuration file fragment that configures the OS to run the
ASCET tasks and interrupts; and

• C code implementations of OS task and interrupt bodies that will be
invoked by the OS

To integrate with the OS, ASCET-SE requires:

• an OS configuration file for system as a whole which must at least config-
ure the OS objects required to schedule ASCET’s tasks

• an implementation of a "main" program which configures the target
hardware and starts the OS in the required application mode

• an implementation of a callback function to provide the dT model variable

7.1 Scheduling and the Priority Scheme

Tasks in OSEK OS are statically assigned a priority at configuration time. Zero
represents the lowest priority task and higher numbers indicate higher priorities.

Tasks in OSEK can be scheduled preemptive and non-preemptively. These are
configured by the "Scheduling" options FULL and NON respectively in ASCET
task configuration (see the ASCET online help for details).

In addition to the standard OSEK OS scheduling modes, ASCET uses features of
OSEK OS to support cooperative scheduling. This is configured by the "Schedul-
ing" option COOPERATIVE in ASCET task configuration (see the ASCET online
help for details).

Preemptive tasks can be preempted at any point during their execution by tasks
with higher priority or any interrupt.

Non-preemptive tasks can preempt both preemptive and cooperative tasks, but
once they are executing they cannot be preempted by any other task. Any higher
priority task that becomes ready to run while a non-preemptive task is executing
must wait until the non-preemptive task completes execution. However, non-
preemptive tasks can be preempted by interrupts.

Cooperative tasks can be preempted at any point during their execution by pre-
emptive and non-preemptive tasks and by interrupts. However, they can only be
preempted by other cooperative tasks between processes.

To support these models, ASCET apparitions the OSEK OS task priority space into
two parts:
Operating System Integration 81

82
1. Priorities used for cooperative scheduling

The number of priority levels used for cooperative scheduling is defined by
the configuration option Coop. Levels (in the "OS" tab of the project
editor). Cooperative tasks can therefore be assigned priorities in the range
0..Coop. Levels-1.

The maximum value that the option can take is defined by maxCoopLev-
els in target.ini. The value of maxCoopLevels is defined to be 6
by default.

2. Priorities used for preemptive and non-preemptive scheduling

The number of priority levels is equal to the maximum number of tasks
supported by RTA-OSEK on the target minus the maximum number of
cooperative levels. The value is equal to numSWLevels - maxCoop-
Levels in target.ini.

Preemptive and non-preemptive tasks can therefore be assigned priorities
in the range 0..numSWLevels - 1.

The ASCET partitioning is overlaid onto the OSEK OS priority scheme when the
OS configuration is generated.

For interrupts, ASCET uses the Interrupt Priority Level (IPL) model of RTA-OSEK.
In this model, RTA-OSEK standardizes IPLs across all target microcontrollers, with
IPL 0 indicating user level, where all tasks execute, and an IPL of 1 or more indi-
cating interrupt level1. The maximum IPL which can be assigned is equal to the
priority of the highest priority OSEK OS Category 2 ISR supported by the micro-
controller. The maximum level is target dependent; it is equal to the setting of
numHWlevels in the target.ini file in the target directory.

Fig. 7-1 shows the relationship between task and interrupt priorities in the OS
and ASCET.

1. The IPL concept is explained in more detail in the RTA-OSEK User Guide. Spe-
cific details about how IPLs are mapped onto target hardware interrupt priori-
ties are provided in the RTA-OSEK Binding Manual for the microcontroller.

Note

Do not confuse IPLs with task priorities. An IPL of 1 is higher than the highest
task priority used in your application.
Operating System Integration

Fig. 7-1 Priority Levels

7.2 Setting Up the Project

7.2.1 Generating ASCET’s OS Configuration File

During code generation for either RTA-OSEK or Generic OSEK, an OS configura-
tion file called temp.oil is generated automatically using the configured OS
template file. This file contains an OSEK Implementation Language (OIL)1 config-
uration for the OS objects declared in ASCET, e.g. tasks, ISRs, resources, mes-
sages, alarms and application modes.

1. Details about OIL can be found on www.osek-vdx.org.

ASCET-SERTA-OSEK

Type: Interrupt

[OSEK OS Category 2 Interrupts]

Type: Software|Alarm

Scheduling:
COOPERATIVE

[OSEK OS Tasks]

Not supported
by ASCET-SE

[OSEK OS Category 1 Interrupts]

0

2
1

Max

Type: Software|Alarm

Scheduling:
FULL|NON

[OSEK OS Tasks]

0

Coop.Levels-1
0

Max

Coop.LevelsO
S

E
K

 T
a

s
k

 P
ri

o
ri

ti
e

s

P
re

e
m

p
ti

v
e

 a
n

d
 N

o
n

p
re

e
m

p
ti

v
e

 T
a

s
k

P
ri

o
ri

ti
e

s
C

o
o

p
e

ra
ti

v
e

 T
a

s
k

P
ri

o
ri

ti
e

s

IPL i+1

IPL i

IPL 1

IPL 0

IPL Max

In
te

rr
u

p
t

P
ri

o
ri

ty
 L

e
v

e
ls

 (
IP

L
s

)

Operating System Integration 83

http://www.osek-vdx.org

84
Fig. 7-2 Selecting the OS and the template on project settings

7.2.2 Providing Additional OS Configuration

The temp.oil file does not contain a complete OS configuration. Additional OS
configuration is required to integrate ASCET with the OS. The following defini-
tions are required:

• An OSEK OS object that defines global OS settings, including the build
status, error logging modes and any hook routines required.

• An OSEK COUNTER that defines the counter used to drive the alarm tasks
generated by ASCET. By default, ASCET expects the name to be
SYSTEM_COUNTER. The name of the COUNTER is defined in the OS tem-
plate file.

• An OSEK Category 2 ISR that provides the real-time "tick" for the
COUNTER.

This additional configuration is provided as a framework OIL file. The framework
file to be used for a project is specified in the Project Properties in the "OIL File"
field of the "OS Configuration" node as shown in Fig. 7-2. Further details about
configuration can be found in the ASCET online help.

An example framework OIL file for integration with RTA-OSEK is provided with
the example application that can be found in ..\target\trg_<target-
name>\example\conf<version>.oil. This can be referenced using the
macro $(EXAMPLE_CONF_OIL).

It is recommended that you copy the example framework OIL file and adapt it
according to your specific project needs.

The conf<version>.oil file supplied works with RTA-OSEK. RTA-OSEK uses
"smart comments" (OIL comments with the form //RTAOILCFG or //
RTAOSEK) to provide additional OS configuration that is required but not
defined in OIL (for example, the interrupt priority level and the interrupt vector
address).

The following objects are defined:

• CPU - The container for all other objects.

• OS - Defines the OS properties.

• COUNTER - The system counter defines the time base for the triggering
of alarm tasks. By default, ASCET-SE expects this counter to be called
SYSTEM_COUNTER.
Operating System Integration

Example:

COUNTER SYSTEM_COUNTER {
MINCYCLE = 1;
MAXALLOWEDVALUE = 4294967295;
TICKSPERBASE = 1;
//RTAOILCFG OS_TIMEBASE ts_SYSTEM_COUNTER;
//RTAOILCFG OS_SYNC FALSE;
//RTAOILCFG OS_PRIMARY_PROFILE ISR 

system_counter OS_PROFILE default_profile;
};

• ISR - The Category 2 interrupt that "ticks" the SYSTEM_COUNTER. The
name of the ISR is not important, but by convention ASCET-SE uses
system_counter.

Example:

ISR system_counter {
CATEGORY = 2;
//RTAOILCFG PRIORITY = 1;
//RTAOILCFG ADDRESS = 0x170;
//RTAOILCFG OS_EXECUTION_BUDGET OS_UNDEFINED;
//RTAOILCFG OS_BEHAVIOUR OS_SIMPLE;
//RTAOILCFG OS_USES_FP FALSE;
//RTAOILCFG OS_STACK {OS_UNDEFINED };
//RTAOILCFG OS_PROFILE default_profile { };
//RTAOILCFG OS_PROFILE default_profile { 

OS_BASE OS_WCSU {OS_UNDEFINED }; };
//RTAOSEK OS_TRACE 0;

};

• COM - Defines properties for message communication using OSEK COM.

Example:

COM RTACOM {
USEMESSAGERESOURCE = FALSE;
USEMESSAGESTATUS = FALSE;

};

Other OIL objects can be defined here, too, as well as additional RTA-OSEK con-
figuration information (see the RTA-OSEK User Documentation for details).

The generated temp.oil file is included using RTA-OSEK’s auxiliary OIL file
mechanism. The inclusion must be placed after the OIL CPU clause as shown
below:

CPU rta_cpu {
OS RTAOS {

...
};
...

};
//RTAOILCFG OS_SETTING "AuxOIL" "1";
//RTAOILCFG OS_SETTING "AuxOIL0" "temp.oil";
Operating System Integration 85

86
The system_counter ISR must be implemented in external C code. An exam-
ple is provided for each ASCET target in ..\target\trg_<target>\exam-
ple\target.c. Additional information can be found in the RTA-OSEK User
Guide.

The duration of each SYSTEM_COUNTER counter tick in nanoseconds (which
will usually equal the rate of the system_counter ISR) must to be entered into
the "Tick Duration" field of the ASCET OS editor prior to code generation. For
RTA-OSEK based systems, the value should be identical to the value of the macro
OSTICKDURATION_SYSTEM_COUNTER in the generated oscomn.h file.

ASCET uses the value of Tick Duration for tick/time conversion for alarm tasks
only. The value is unrelated to dT calculation.

7.3 Providing the Main Program

The main program, usually called main, is responsible for target hardware initial-
ization and starting the OS in the required application mode.

By default, a build of an ASCET project will use an external main program pro-
vided in ..\target\trg_<targetname>\example\main.c. The example
main program for an embedded target configures the hardware to generate the
system_counter interrupt every 1 ms and starts RTA-OSEK in the active
application mode.

A different main program can be used by setting the makefile variable
EXAMPLE_MODE in project_settings.mk to FALSE and either:

• configuring ASCET-SE to generate the main program in conf.c auto-
matically (Os-Config-C_gen_main=TRUE in ..\tar-
get\trg_<targetname>\codegen_ecco.ini.); or

• ensuring that ASCET-SE is configured to not generate the main program
(Os-Config-C_gen_main=FALSE) and setting the variables
P_C_SRC_FILES (and/or P_ASM_SRC_FILES) to refer to your own
source code.

7.4 The dT Variable

ASCET provides each project with a model variable called dT (delta time). dT
provides each task and interrupt with the time, in microseconds, which has
elapsed since the start of the previous execution.

You can choose to scale the value of dT to represent a different time unit by
providing an implementation formula (in the same way as for other ASCET vari-
ables). ASCET handles the scaling automatically.

In generated code, a special variable called dT is created globally for each
project. dT holds the time elapsed between since the previous execution of a
task/interrupt started.
Operating System Integration

dT is normally a dynamic value that holds the actual time that has elapsed
between executions. The value of dT will change depending on how much inter-
ference (due to preemption) and blocking (due to resources being held or inter-
rupt being disabled) a task or interrupt suffers.

To provide dT, ASCET needs to be provided with a free-running timer and must
be told the duration of a tick of the timer in nanoseconds. This configuration is
described in section 7.4.1.

In some use-cases, it is sufficient for dT to hold the configured period for alarm
tasks. In ASCET this is called "static dT" and configuration is described in section
7.4.2.

The difference between dynamic and static dT (and the difference between a
scaled and non-scaled dynamic dT) is shown below.

Fig. 7-3 Static and dynamic dT

7.4.1 Dynamic dT

To use dynamic dT, the option Generate Access Methods for dT (Alterna-
tive: use OS dT directly) must be enabled in the Project Properties. ASCET-SE
will generate the code to use and calculate dT at runtime. However, to do this
ASCET-SE must be given access to a free-running 32-bit timer source (see
below).

ASCET generates a function called setDeltaT() that is used in each generated
task body to update the ASCET model element dT (generated as
dT_PROJECT_IMPL in the code). If the model element dT is scaled (i.e. it does
not use the identity implementation) then ASCET-SE automatically ensures that
the scaling is handled correctly. For example, if the model variable dT is imple-
mented in milliseconds, the following code is generated:

dT = 7s
(7x1000ns)

dT = 3s
(3x1000ns)

dT =7s
(7x1000ns)dT

(unscaled)

dT
(f(phys) = 0+(1000 x

phys))

Static dT
(unscaled)

dT = 5s
(5x1000ns)

dT = 5s
(5x1000ns)

dT = 5s
(5x1000ns)

dT = 7000ns
(7x1000ns)

dT = 3000ns
(3x1000ns)

dT = 7000ns
(7x1000ns)

Task A (Low Priority)
5s period,
0s offset

Task B (High Priority)
10s period,
5s offset

1110 1413

STOPWATCH Ticks
1 tick = 1s = 1000ns

STOPWATCH_TICK_DURATION = 1000

12 1615 1817 19 20 232221

Task A Task A Task A

Task B

Task A

24 25 26 292827

Task B
Operating System Integration 87

88
void setDeltaT (void)
{

TimeType dTMicroSeconds =
(STOPWATCH_TICK_DURATION*dT)/(TickType)1000;

(dT_PROJECT_IMPL = ((dTMicroSeconds/1000)));
}

Providing a Time Reference for Dynamic dT Calculation

ASCET uses a callback function called GetSystemTime() to get access the
time reference for the dT value used by in ASCET models. The implementation of
the callback must provide the current value of a free-running hardware timer on
your target microcontroller.

The following steps are required to provide dynamic dT.

1. Enable the Generate Access Methods for dT * code generation option.

Fig. 7-4 Production Code options

2. Enable the following options in codegen_ecco.ini:

Os-Config-C_gen_process_container=1
Os-Config-C_gen_dt_calc=1

3. Ensure that the following line is not commented out in .\target\
trg_<targetname>\include\os_inface.h:

extern TimeType GetSystemTime(void);

4. Provide an implementation of the GetSystemTime() callback function.
The implementation of this function must return the value of a free run-
ning 32-bit hardware timer.

When integrating ASCET-SE with RTA-OSEK, GetSystemTime() can
be mapped onto RTA-OSEK’s GetStopwatch()callback automatically
by setting ASD_OS_INTEGRATION in project_settings.mk as fol-
lows.

ASD_OS_INTEGRATION = ASD_OS_INTEGRATION_RTA 
MAP_TO_GETSTOPWATCH

RTA-OSEK’s GetStopwatch()callback is required by the OS in timing or
extended build. It provides the OS with access to a free-running 32-bit
hardware timer for time measurement (see the RTA-OSEK documentation
for details) – i.e. the RTA-OSEK callback provides identical functionality to
that required by ASCET-SE for GetSystemTime(). Note that the imple-
mentation of GetStopwatch() must be provided in external C code.
Operating System Integration

An example implementation is supplied in .\trg_<target-
name>\example\target.c in your target directory; here, the imple-
mentation from ..\example\trg_tricore\ target.c is shown.

OS_NONREENTRANT(osStopwatchTickType)
GetStopwatch(void)
{

/* Get the current value of the lowest 32 bits of
the STM timer. */
return (osStopwatchTickType)_STM_TIM0;

}

5. ASCET is told the duration of a dT tick in nanoseconds by the macro
STOPWATCH_TICK_DURATION defined in project_settings.mk
(see section 5.4.1):

Free-running HW counter for GetSystemTime()
has a tick every 50ns
STOPWATCH_TICK_DURATION = 50

These settings allow ASCET to calculate dT at runtime for use in the code gener-
ated from your ASCET model.

7.4.2 Static dT

ASCET-SE can be configured to provide alarm tasks with their configured inter-
arrival time as a static dT.

To configure static dT you must

1. Disable the Generate Access Methods for dT * code generation option
in Project Settings (see Fig. 7-4).

2. Enable the static dT option in codegen_ecco.ini:

Os-Config-C_gen_dt_static=1

3. Enable USE_ASD_CALC_SCALED_DT in project_settings.mk

When these sett ings are made, ASCET generates a macro ca l led
_ASD_TICKS_PER_TASK_PERIOD in each task body that defines the task's
configured period in ticks of the System Counter. For example:

TASK(task_100ms)
{

#define _ASD_TICKS_PER_TASK_PERIOD 10
...
/* Rest of task body */
...
#undef _ASD_TICKS_PER_TASK_PERIOD

}

In this case, SYSTEM_COUNTER is being ticked every 10 ms, so the macro is set
to 10 ticks (i.e. 10 ticks X 10 ms = 100 ms).

Note

The value of static dT is only defined for alarm tasks. Other types of tasks and
interrupts must not include processes that use dT.
Operating System Integration 89

90
To convert the ticks into time for use in runtime calculations, or to handle any
scaling of the model dT by an implementation formula, you must modify the
macro ASD_CALC_SCALED_DT in proj_def.h. By default, the macro
assumes an identify scaling and converts DT ticks into VAR time VAR assuming 1
DT tick = 1 VAR us as shown below:

#define ASD_CALC_SCALED_DT(VAR,DT) \
do {\

VAR = DT; \
}while(0);

#endif

With static dT, a DT tick has the same duration in nanoseconds as a
SYSTEM_COUNTER tick (i.e. it is equal to the value Tick Duration configured in
the ASCET OS editor). To convert _ASD_TICKS_PER_TASK_PERIOD into
microseconds, the macro would need to be modified to multiply DT by TickDu-
ration (DT*10000000) and then divide the result by 1000 to convert from nano-
seconds to microseconds (DT*10000000/1000=DT*10000), for example:

#define ASD_CALC_SCALED_DT(VAR,DT) \
do {\

VAR = DT*10000; \
}while(0);

#endif

7.4.3 Implementing Your Own dT Routines

If you require any special functionality from dT then you can provide your own
implementation. In this case, the option Generate Access Methods for dT
(Alternative: use OS dT directly) must be disabled (see Fig. 7-4).

ASCET-SE will not generate setDeltaT() or defined the dT variable. You
must provide definitions of these externally in your own code. ASCET expects the
function and the variable to correspond to the following C extern defintions:

extern TickType dT;
extern void setDeltaT();

Your implementation of TickType must be at least uint32. The unit of
TickType variables is one tick (i.e. one increment) of the free-running hardware
timer accessed through GetSystemTime().

extern TickType GetSystemTime()

Your implementation of setDeltaT() should be a void/void function that
updates the global dT variable, taking account of any scaling defined in your
model.

ASCET-generated code uses C macros to access dT functionality. Default imple-
mentations of the macros are provided in .\trg_<targetname>\
include\os_inface.h. If you want to provide an alternative implementa-
tion of dT, the following macros in os_inface.h should be modified:

Note

When doing any re-scaling you must ensure that any intermediate results do
not result in overflow or underflow. It is your responsibility to ensure that this
does not occur.
Operating System Integration

• DEF_GLB_DT_MEASURE — This macro is used in conf.c. It provides
global variables or extern declarations necessary for the dT calculation.

• DEF_TASK_DT_MEASURE — This macro is used at the beginning of each
task. It can be used to define task-local variables necessary for the dT
calculation.

• PRE_TASK_DT_MEASURE — This macro is also used at the beginning of
each task, after DEF_TASK_DT_MEASURE. Here, code can be inserted
that calculates dT at the beginning of the task.

• POST_TASK_DT_MEASURE — This macro is used at the end of each task.
Here, code can be inserted that restores the global dT variable for the
other tasks.

7.5 Template-Based OS Configuration Generation

OSEK OS configuration files are generated by ASCET using a template-based
mechanism. Templates (*.template files) are supplied for all supported Oper-
ating Systems and can be found in the <installation directory>\tar-
get\trg_<targetname> directories.

When an OS is selected in the "Project Properties" window, "Build" node,
ASCET-SE will automatically select the default template for the chosen OS. The
template in use is shown in the "Project Properties" window, "OS Configura-
tion" node. No additional configuration is necessary.

Fig. 7-5 shows these two parts of configuration.

Tab. 7-1 shows which template is used for which OS, where %TARGET% is the
path to the target directory.

The template for a chosen OS can be changed by entering the full path to the
template file or by selecting a template file by clicking on the (Open File)
button.

When OS configurations are changed in the "Project Properties" window, Build
node, ASCET-SE will remember which template file is in currently in use for the
selected OS.

At code generation time, ASCET-SE uses the template together with the config-
uration settings specified for the OS in the project editor to generate a configu-
ration file for the chosen OS. The configuration file is always called temp.oil.

Note

Templates are only used for generating OSEK-based Operating System config-
urations. The templating mechanism is not used for AUTOSAR RTE configura-
tion.
Operating System Integration 91

92
The template mechanism is highly flexible and OS configurations can be changed
simply by modifying one of the supplied templates or by providing a customized
template. This is of most use when an OS configuration that works with a spe-
cific 3rd party OSEK OS configuration tool is required.

Tab. 7-1 Default templates for supported Operating Systems

Fig. 7-5 Selecting the OS and the template in the "Project Settings" window
(a: "Build" node, b: "OS Configuration" node)

7.6 Interfacing with an Unknown Operating System

ASCET-SE can be interfaced to an unknown operating system. This is particularly
useful when working with the ANSI-C target. The generated code accesses the
OS interface through the definitions in the os_unknown_inface.h file in the
target directory.

Operating System Default Template

RTA-OSEK 5.0 %TARGET%\OS_RTA-OSEK_V50.template

GENERIC-OSEK %TARGET%\OS_Generic-OSEK.template

RTE-AUTOSAR Vx.y <empty>

Note

The templating mechanism customizes the generation of OS configuration files
only. It does not modify the properties of generated C code.

(a)

(b)
Operating System Integration

7.6.1 Configuration of Tasks

ASCET generates task bodies with the following structure:

• Task definitions start with the TASK keyword and the task name, e.g.,

TASK(t10ms){

• A list of processes assigned to the task in the form of function calls, e.g.,

MODULE1_IMPL_process1();
MODULE2_IMPL_process1();
MODULE2_IMPL_process2();
...

• A function call to terminate the task:

TerminateTask();
}

The supplied os_unknown_inface.h file contains the following definitions of
the TASK macro and TerminateTask().

#define TASK(x) void task_ ## x (void)
#define TerminateTask()

These must be modified to the appropriate definitions for your OS.

The following code is obtained from the C preprocessor when using the default
definitions

void task_t10ms (void)
{

MODULE1_IMPL_process1();
MODULE2_IMPL_process1();
MODULE2_IMPL_process2();

}

It is recommended that the trigger mode setting for ASCET tasks is set to either
Software or Init when interfacing with an unknown OS. Trigger modes Interrupt
and Alarm require special OS support and should not be used unless you are
confident that your OS can provide this.

7.6.2 Interfacing with the OS API

Calls to the OS use the OSEK OS naming conventions, but their implementation
is not defined. All operating system calls are mapped to empty character strings
using #define statements.

Example:

#define GetResource(x)

With this, the GetResource call in the generated code is removed by the pre-
compiler, and ignored during compilation.

Note

When the ANSI-C target is used, by default no ASCET features are supported
that rely on OSEK OS functions (e.g. resources). This applies also to OSEK func-
tion calls used in the C code.
Operating System Integration 93

94
By changing the #define statements, function calls can be mapped onto those
provided by the your OS. e.g.:

#define GetResource(x) lock(x)

7.7 Template Language Reference

This section describes how templates can written and provides a reference to the
OS objects to which ASCET-SE provides access.

7.7.1 Templating Basics

A template is an ASCII text file. When the template is processed by ASCET-SE
V6.1, any content that is not enclosed by template tags [% and %] is written to
the output temp.oil file.

The template mechanism uses the "Template Toolkit" as the templating engine
and any construct supported by the toolkit can be used in custom template. This
section provides an overview of the template language constricts used in
ASCET-SE templates. For a complete description of the capabilities of the tem-
plating engine, see http://template-toolkit.org/.

Listing 1. shows a template that contains no tags. When this is processed by
ASCET-SE, the resulting temp.oil file contains identical content as shown in
Listing 2.

1. Content of MyFile.template

CPU MyCPU {
...

};

2. Content of generated temp.oil file

CPU MyCPU {
...

};

Directives

The text between template tags is processed as a directive to the templating
engine to do some kind of action. Directives can be placed anywhere in a line of
text and can be split across several lines.

Expressions: Expression directives are replaced by the result of the evaluation
in the output temp.oil file.

Expressions are typically used to evaluate the value of OS object properties pro-
vided by ASCET-SE. A complete list of objects and properties made available is
provided in section 7.7.2.

The following example shows how to add a comment into the template that
shows the number of interrupt and task priority levels by reading the numOf-
HardwareLevels and numOfSoftwareLevels attributes from the OS
object.

Note

Templates must have the extension .template to be recognized by ASCET-SE
V6.1 as such.
Operating System Integration

http://template-toolkit.org/

// There are [% OS.numOfHardwareLevels %] 
interruptpriority levels

// There are [% OS.numOfSoftwareLevels %] task 
priority levels

Conditionals: The templating language provides a conditional construct. The
following example shows how to add a comment into temp.oil depending on
whether or not there are any OSEK COM messages defined.

[% IF OS.isEnabledOSEKCOM %]
// OS message objects need to appear here
[% ELSE %]
// No OS message objects need to be added
[% END %]

Iteration: The majority of OS configuration generation requires adding a con-
figuration element for each object declared in the ASCET-SE V6.1 project config-
uration. ASCET-SE provides access to most configuration objects as a list that can
be iterated over, writing out the correct configuration for each object.

The following example shows how to write out the correct configuration for an
OSEK OS application mode.

[% FOREACH appmode IN AppModes %]
APPMODE [% appmode.name %];
[% END %]

Assuming that the list AppModes contains the items Normal, Diagnostic
and LimpHome, the effect of processing the directive in the this example would
be this OIL language fragment:

APPMODE Normal;
APPMODE Diagnostic;
APPMODE LimpHome;

Sub-Routines: Common operations can be placed in subroutines called
BLOCKS. A block can contain any template text, including other directives. Each
block must be uniquely named.

[% BLOCK Greeting %]
[% parameter %] World!
[% END %]

A block can be called from the main template using the PROCESS command.
Variables that are used inside the block need to be passed in as parameters:

[% arg=’Hello’ %]
[% PROCESS Greeting parameter=arg %]

Blocks do not need to be defined before use, but they must be placed in the
same file as the calls.

Including other files: External files can be included using the INCLUDE direc-
tive. The directive will add the contents of the specified file into the output.

Path can be absolute or relative. Relative paths are relative to the location of the
template code generation path.

Note

The content of included files is not processed by the templating engine.
Operating System Integration 95

96
[% INCLUDE ’..\RelativeDir\Relative.txt’ %]
[% INCLUDE ’C:\MyFiles\Absolute.txt’ %]

Comments: Comments in a directive are marked using the # symbol. Com-
ments can span multiple lines. The following examples show single and multi-line
comments respectively.

Example 1: Single line comment

[%# This is a single line comment %]

Example 2: Multi-line comment

[%# This
is
a
multiple
line
comment
%]

Chomping Whitespace: When a directive is placed on its own line and it eval-
uates to null, the templating engine will insert a blank line into the output. This
includes any control flow directives that are placed on their own lines.

This can be avoided by "chomping" whitespace using an equals sign (=) as the
first character after the open directive tag. A directive like this:

AAAA
[%= IF ConditionWhichIsFalse %]
BBBB
[%= END %]
CCCC

will result in an output like this

AAAA
CCCC

Note that blank lines have not been inserted.

7.7.2 Object Reference

The template can assess the OS configuration using pre-defined objects. The
objects generally correspond to configuration items in an OSEK OS, though there
are some non-OS objects provided to support legacy operating systems.

The following objects are accessible:

Note

It is recommended that path names are quoted using single quotes.

Object Type Description

OS Structure Contains general OS properties.

AppModes List of AppMode
objects

All application modes defined in cur-
rent project.

Tasks List of Task objects All tasks (both software and alarm
tasks) defined in current project.
Operating System Integration

Each object has a set of properties. Object properties are accessed using the
"dot" notation, <object_name>.<property_name>, e.g. task.prio.

The following example shows how to iterate over a list of task objects, extracting
properties:

[% FOREACH task IN Tasks %]
TASK [% task %] {

PRIORITY = [% task.prio %];
SCHEDULE = [% task.schedule %];
ACTIVATION = [% task.activation %];
...

}
[% END %]

The following sections describe the properties available for each object.

OS

An OS object defines the global properties of the OS. Exactly one OS object is
defined.

InitTasks List of InitTask
objects

All init tasks.

ISRs List of ISR objects All interrupt service routines.

Alarms List of Alarm objects All alarms used to activate tasks.

Resources List of Resource
objects

All resources used within current
project.

Messages List of Message
objects

All messages used within current
project.

UsedMessages List of UsedMessage
objects

All messages used by a Task or ISR.

Processes List of Process
objects

All processes used within current
project.

Functions List of Function
objects

All functions used within current
project.

Note

Object and property names are case-sensitive.

Property Type Description

numOfCoopLevels integer Defines the number of cooperative priority
levels.

numOfHardwareLevels integer Defines the number of hardware priority
levels supported by the target.

tickDuration integer Defines the duration of a tick of the
ASCET-SE system counter in nanoseconds.

Object Type Description
Operating System Integration 97

98
AppMode

The AppMode object defines an OSEK-like application mode.

Task

A Task object defines the properties of an OS task defined in the ASCET project.

numOfSoftwareLevels integer Defines number of software priority levels
supported by the target. For embedded tar-
gets, this is equal to the number of tasks
the target supports (as defined in tar-
get.ini).
For experimental targets, this value is equal
to the priority of the highest priority soft-
ware task plus the number of cooperative
levels.

numOfPreempLevels integer Defines number of all preemptive levels. It is
defined as
numOfHardwareLevels
+ numOfSoftwareLevels
- numOfCoopLevels

isEnabledOSEKCOM boolean Defines if OSEK-COM messages, rather
than ASCET messages, are used for inter-
process communication. It is true if OSEK
COM messages are used and false other-
wise. If the value is true, then the gener-
ated OIL file shall include message
definitions.

Property Type Description

name string Name of the application mode.

initTask string Name of the init task to activate when the
OS is started in this application mode.

timeTable string Name of time table to start when the OS is
activated in this application mode. This is
ERCOSEK specific.

Property Type Description

name string Name of the task.

id string ASCET-SE internal identifier for the
task.

prio integer Priority of current task. Higher inte-
gers are higher priorities.

prioERCOSEK integer Priority of current task following the
ERCOSEK priority scheme.

Property Type Description
Operating System Integration

schedule NON / FULL Defines whether the task can be pre-
empted by other tasks or not.
Equivalent to the OSEK OIL property
SCHEDULE.

activation integer Defines the maximum number of
queued activation requests for the
task.

autostart TRUE / FALSE Defines if the task shall be
autostarted.

autostartAppModes list List of application mode names in
which the task shall be autostarted.

usedResources list List of resource names representing
the resources used by the task.

usedMessages list List of OSEK COM message names
used by the task.

usesFPU TRUE / FALSE Specifies whether the task uses float-
ing point registers which will need to
be saved and restored during an OS
context switch. The value is TRUE if a
floating point context save is required
and FALSE otherwise.

usedProcesses list List of ASCET processes that shall be
called by the task.

hook MONITORING /
NONE

The (non-OSEK) hooks used by the
task.

deadlineMicroSeconds integer The maximum allowed time in micro-
seconds between task activation and
completion.

usesTerminateTask TRUE / FALSE Defines whether the task uses OSEK
TeminateTask() API.

Property Type Description
Operating System Integration 99

100
InitTask

ISR

Property Type Description

name string Name of the init task.

id string ASCET-SE internal identifier for the init task.

autostartAppModes list List of application mode names in which the
task shall be autostarted.

usedProcesses list List of ASCET-SE processes that are called by
the task.

Property Type Description

name string Name of current ISR.

prio integer Priority of current ISR. Priorities are
target-independent and take values
in the range 1 to OS.numHWlev-
els. Priority 1 is the lowest priority.

prioERCOSEK integer Priority of current ISR following the
ERCOSEK priority scheme.

autostartAppModes list List of application mode names for
which the ISR shall be autostarted.
Not used in OSEK.

usedResources list List of resource names used by the
ISR.

usedMessages list List of OSEK COM message names
used within this ISR.

usesFPU TRUE / FALSE Specifies whether the ISR uses float-
ing point registers which will need
to be saved and restored during an
OS context switch. The value is
TRUE if a floating point context
save is required and FALSE other-
wise.

usedProcesses list List of ASCET processes called by
the ISR.

category 1 / 2 The OSEK interrupt category.
ASCET-SE V6.1 only uses Category
2 ISRs.

source string The symbolic name of the ISR as
shown in the ASCET-SE V6.1 OS
editor. Symbolic names use the
same convention as RTA-OSEK.
Operating System Integration

Alarm

vectorAddress string The interrupt vector address. The
address is target dependent and will
be an absolute address for non-relo-
catable vector tables, or a vector
location for relocatable vector
tables. Addresses use the same con-
vention as RTA-OSEK.

hook MONITORING /
NONE

The (non-OSEK) hooks used by the
ISR.

minPeriodMicroSeconds integer The minimum inter-arrival time
between two subsequent instances
of this ISR in microseconds.
This is ERCOSEK specific.

Property Type Description

name string Name of the alarm.

taskToActivate string The name of the task to be activated
when the alarm expires.

autostart TRUE / FALSE Defines whether or not the alarm shall
be autostarted.

autostartAppModes list List of application mode names in which
the alarm shall be autostarted.

delay integer The number of ticks that must elapsed
before the alarm expires for the first
time.

period integer The period of the alarm in ticks.

delayMicroSeconds integer The value of the delay property in micro-
seconds instead of ticks.

periodMicroSeconds integer The value of the period property in
microseconds instead of ticks.

Property Type Description
Operating System Integration 101

102
Resource

Message

UsedMessage

Process

Property Type Description

name string Name of the resource.

property STANDARD /
LINKED /
INTERNAL

The type of the resource. ASCET-SE gener-
ates only STANDARD resources.

ceilingPrio TRUE / FALSE The ceiling priority of this resource.

Property Type Description

name string Name of the message.

CDATAType string C-type used for message definition.

Property Type Description

name string Name of the message.

sentAccessor string Accessor name used by the task to send this
message.

recvAccessor string Accessor name used by the task to receive
this message.

Property Type Description

name string Name of the process.

usedRessources list List of resource names used by the process.

usedFunctions list List of function names called from the pro-
cess.

usedMessages list List of OSEK COM messages used by the
process.

usesFPU TRUE / FALSE Specifies whether the process uses floating
point registers which will need to be saved
and restored during an OS context switch.
The value is TRUE if a floating point con-
text save is required and FALSE otherwise.
Operating System Integration

Function

Property Type Description

name string Name of the function.

usedRessources list List of resource names used by the func-
tion.

usedFunctions list List of function names called from this
function (i.e. functions that are nested
inside the current function).

usesFPU TRUE / FALSE Specifies whether the function uses float-
ing point registers which will need to be
saved and restored during an OS context
switch. The value is TRUE if a floating
point context save is required and FALSE
otherwise.
Operating System Integration 103

104
 Operating System Integration

8 Measurement and Calibration with ASAM-MCD-2MC

ASCET provides support for measurement and calibration by generating ASAM-
MCD-2MC (A2L) files. Generated files rely on a set of statically defined configu-
ration files that are supplied with ASCET. This chapter describes the content of
the static files and then the generation of the ASAM-MCD-2MC data.

8.1 Project Definitions in ASAM-MCD-2MC (prj_def.a2l File)

The MOD_PAR section of the ASAM-MCD-2MC file (see ASAM-MCD-2MC spec-
ification) can be defined by the user in the prj_def.a2l configuration file,
which is located in the directory of the ASCET-SE installation (.\target\
trg_<targetname>). At delivery of ASCET-SE the file contents are as follows:

VERSION "000"

ADDR_EPK 0x0

EPK ""

SUPPLIER "xxx"

CUSTOMER "xxx"

CUSTOMER_NO "000"

USER "xxx"

PHONE_NO "000"

ECU "NO_ECU"

CPU_TYPE ""

Edit the file to suit your requirements.

8.2 Memory Layout in ASAM-MCD-2MC (mem_lay.a2l File)

The data file mem_lay.a2l is used to define the memory layout of the control-
ler in ASAM-MCD-2MC format (i.e. MEMORY_LAYOUT, compare with the
ASAM-MCD-2MC standard for syntax and semantics). Its content is inserted
unchanged in the generated ASAM-MCD-2MC data file. This file is located in the
target directory (.\target\trg_<targetname>); it modified to match the
controller hardware and the memory layout defined in the locator invocation file.

8.3 ETK Driver Configuration in ASAM-MCD-2MC
(aml_template.a2l and if_data_template.a2l)

The file aml_template.a2l contains type descriptions of global configuration
BLOBs—e.g., IF_DATA, TP_BLOB—for the ETK.

The file if_data_template.a2l contains global configuration BLOBs for the
ETK (TP and QP BLOB) in ASAM-MCD-2MC format.

Note

The alignment definitions in ASAM-MCD-2MC are determined automatically
by ASCET-SE. The formerly necessary align.a2l file is obsolete.

Note

This file is provided as an example only. You must edit the file and adjust it to
your target system.
Measurement and Calibration with ASAM-MCD-2MC 105

106
Both files are located in the target directory (.\target\trg_<target-
name>). The syntax is taken from the description of ASAM-MCD-2MC stan-
dards, the semantics from the documentation of the respective application
system.

Both files are copied into the generated ASAM-MCD-2MC file. To generate a
useful result, you must make sure that the IF_DATA configuration in the
if_data_template.a2l f i le matches the type descr ipt ions in
aml_template.a2l. For that purpose, you can either update the content of
the files in the target directory or replace the content with a reference (contain-
ing complete path and file name) to a suitable file stored elsewhere.

8.4 Generation of an ASAM-MCD-2MC Description File

ASCET-SE provides the possibility to generate project-specific ASAM-MCD-2MC
description files that can be used for calibration using an appropriate calibration
tool (e.g., INCA). For this purpose, a so-called Virtual Address Table (VAT) is gen-
erated by ASCET-SE on demand as a part of the project-specific C file.

To generate a Virtual Address Table:

To generate a Virtual Address Table as a prerequisite for ASAM-MCD-2MC gen-
eration, proceed as follows.

• In the project editor, click the Project Properties
button.

The "Project Properties" window opens.

• In the "Production Code" node, activate the Gen-
erate Map File option.

• Click OK to close the "Project Properties" window.

• In the project editor, select Build  Build or
Build  Rebuild All to generate code including
the VAT.

The VAT consists of various C structures. It mainly contains the names of all
quantities of the generated code that are part of the ASAM-MCD-2MC descrip-
tion as well as pointers to these quantities.

After compiling and linking a project containing a VAT, the resulting hex-file
(temp_vat.*, the extension depends on target controller and compiler), as well
as all other result files, contains all address information needed for ASAM-MCD-
2MC generation.

Note

The files aml_template.a2l and if_data_template.a2l contain only
examples. To adopt the description to your application hardware you have to
edit or replace the file content.

Note

For the Additional Programmer use case, it is impor-
tant to ensure that all code is consistent and free of
VATs. To grant this, you can use the addressTable
option in the codegen_*.ini file to override the
Generate Map File option.
Measurement and Calibration with ASAM-MCD-2MC

By means of a special hex-file reader, this address information is extracted from
the hex file. Additional information about element sizes, alignment, byte order,
etc. is read from the Virtual Address Table as well. An intermediate file called
etas.map is generated that contains the names and the memory addresses of
all elements as ASCII text.

As the VAT is not intended to be part of the program running on the ECU,
another hex file (temp.*) and the respective result files containing no VAT are
linked.

To generate an ASAM-MCD-2MC file:

• In the project editor, select Tools  ASAM-2MC 
Write to generate the ASAM-MCD-2MC file.

The "Write ASAM-2MC To:" window opens.

• In that window, enter the desired file name and
select the specific storage directory.

• Click Save.

The ASAM-MCD-2MC file is saved to the selected
directory, with the name you entered.

Note

If the ASAM-MCD-2MC file is to be stored, be careful when placing in the
directory .\cgen\. The files in this directory may be deleted upon exiting
ASCET, depending on the settings in the Options window (see the ASCET
online help).
Measurement and Calibration with ASAM-MCD-2MC 107

108
The diagram below shows the code generation process with and without ASAM-
MCD-2MC generation.

Fig. 8-1 Code generation with and without ASAM-MCD-2MC and VAT gen-
eration

You must ensure that the Virtual Address Table is mapped to a memory section
that is not part of the ECU’s physical memory. For details, please refer to section
3.3.5 "Memory Class Configuration". If the VAT is located in the ECU’s physical
memory then addresses in the ASAP2-MCD-2MC file may not be correct (and
the mapped section of memory will be wasted).

Note

In order not to waste ECU memory, it is recommended that the Virtual Address
Table is located outside the physical ECU memory.

*.h, *.c

executable
with VAT

temp.oil

*.h, *.c
RTA-OSEKCode Generation

ASCET project

Compiler/Linkervirtual address
table file

Hex File Reader

etas.map

ASAM-MCD-
2MC Generation

ASAM-MCD-
2MC file

executable file

conf.oil

... generate Map file = true
Measurement and Calibration with ASAM-MCD-2MC

8.5 Suppressing Exported Elements and Parameters

ASCET allows the generation of ASAP2-MCD-2MC information for elements and
parameters whose scope is "Exported" to be suppressed. This allows you to pro-
vide the definitions of these elements outside of ASCET (for example, with 3rd
party tooling). This is configured in the Project Properties.

The behavior of suppression differs between ASCET objects (modules, classes
and prototype classes) as shown in the following table. A plus (+) indicates that
the element or parameter is generated in the the A2L file. A minus (-) indicates
that the element or parameter is not generated in the A2L file.
Measurement and Calibration with ASAM-MCD-2MC 109

110
Su
p

p
re

ss
 e

xp
o

rt
ed

M
o

d
u

le
s

C
la

ss
es

Pr
o

to
ty

p
e

C
la

ss
es

Pa
ra

m
et

er
s

El
em

en
ts

Ex
p

o
rt

ed
El

em
en

ts
Ex

p
o

rt
ed

Pa
ra

m
et

er
s

Ex
p

o
rt

ed
El

em
en

ts
Ex

p
o

rt
ed

Pa
ra

m
et

er
s

Ex
p

o
rt

ed
El

em
en

ts
Ex

p
o

rt
ed

Pa
ra

m
et

er
s

N
ot

 s
et

N
ot

 s
et

+
+

+
+

-
-

N
ot

 s
et

Se
t

+
+

-
+

-
-

Se
t

N
ot

 s
et

+
-

+
-

-
-

Se
t

Se
t

+
-

-
-

-
-

Measurement and Calibration with ASAM-MCD-2MC

9 Integration with External Code

ASCET-SE provides powerful features that allow the combination of ASCET-gen-
erated code with external C code (either written by hand or generated by third-
party tools). There are two main use cases:

• ASCET as an integration platform, supporting the complete make process
from the model to the executable file and the ASAM-MCD-2MC descrip-
tion.

• The use of ASCET-generated code in an external make tool chain provided
by the user.

This chapter describes the features that ASCET and ASCET-SE offer to support
these use cases, in particular, the following features:

• User defined C- and H-files can easily be included in the ASCET make tool
chain.

• Global declarations of functions, variables, and parameters provided out-
side ASCET can be easily accessed from the ASCET model. For this pur-
pose, a special "prototype" model element has been introduced,
comparable with a C function prototype.

• The optimizations concerning messages and method interfaces (signa-
tures) can be configured by the user to ensure a stable interface for exter-
nal code.

• Special header files are provided by the code generation that can be used
as interfaces between ASCET and the user defined files.

The following sections describe some of the possibilities available.

9.1 Calling C Functions from an ASCET Model

ASCET offers different possibilities to call external functions from an ASCET
model, which are described in this chapter.

9.1.1 Use of Prototypes

ASCET-SE provides a special interface to use C code functions, parameters and
variables that are defined outside the ASCET environment (e. g. externally pro-
vided software). For this purpose, the ASCET implementation editor for classes
provides the user the option to generate a "Prototype". Like a C function proto-
type, an ASCET prototype implementation provides the interface description for
external C code. Similar to the use of service routines, this option can be set in
the implementation editor of a class. See section 4.2.3 "Prototype Implementa-
tions"for details on the usage of the feature and the properties of the generated
code.

Only extern declarations are generated for a class implemented as prototype. The
code generated for a prototype contains neither variable and parameter defini-
tions nor method definitions. The environment of the prototype element mod-
eled in ASCET, however, refers to the prototype by means of extern declarations,
wherever methods or global variables and parameters of the prototype are used.
This way, it is the user’s task to provide the global variables and parameters
expected by the ASCET model in the external C code.

The following example shows how to call a function using a global variable from
an ASCET model. Assume a file with the following content:
Integration with External Code 111

112
#include ".\include\a_std_type.h"

sint16 i;

void my_calc(void)

{

i++;

}

To call the function my_calc from ASCET, the user can provide a class in the
ASCET model that defines the global variable i and a method definition
my_calc. The following example shows a possible implementation.

By setting the prototype flag in the implementation editor of the class, the user
can specify that the actual content specified in the BDE shall not be used for code
generation.

Instead, the code generated for the environment of the class in ASCET contains
only the interfaces to the class, e. g.

#define _Class

#define _i i

#ifndef NO_DECLARE_i

extern sint16 i;

#endif

extern void CLASS_IMPL_my_calc (void);
Integration with External Code

...

void MODULE_IMPL_process (void)

{

CLASS_IMPL_my_calc ();

}

As the example shows, the names of the "prototype" methods are still
gene ra ted acco rd ing to the ASCET naming conven t ion (e .g . ,
<Class>_<Impl>_<Methodname>, see "Data Structures and Initialization for
Complex (User-Defined) Objects" on page 166). To adapt the interfaces of the
external code and the ASCET-generated code, an include file named
proj_def.h is provided in the target directory of the ASCET-SE installation.
This file is included in the ASCET generated code by default and offers the user
the possibility to map the ASCET names to external code names using preproces-
sor directives ("#define"). In the example, the following adaptation of
proj_def.h is suitable:

#define CLASS_IMPL_my_calc() my_calc()

For prototypes, the extern declarations of global variables and parameters are
enclosed by #ifndef preprocessor directives (see code example above). This
allows you to provide your own extern declarations if required by #define
NO_DECLARE_<variablename>.

For example, assume that the ASCET variable i needs to be mapped to your
externally declared variable i_usr. The respective extern declaration could look
as follows:

#define NO_DECLARE_i
#define i i_usr
extern uint16 i_usr;

Again, this code can be provided in proj_def.h.

ASCET does not generate A2L file entries for exported parameters or exported
elements of prototype classes. If entries are required, then you must provide
them externally and merge them with ASCET-generated A2L files outside of the
ASCET development process.

9.1.2 Invocation by C Code Specified in ASCET

As well known from previous versions, of course ASCET V6.1 also offers the pos-
sibility to specify C code in internal or external editors. C functions specified out-
side ASCET can be called by this code using extern declarations.

Note

Warning: all of these changes modify ASCET code generation. You must pro-
vide adequate macro definitions for elements and methods or own declara-
tions for exported elements. You assume full responsibility of the
consequences for your external code as well as for the correct inter-operation
with ASCET-generated code. Problems may arise with respect to the ASAM-
MCD-2MC generation (see below) and similar. Note that the interfaces to
ASCET-generated code may be changed in future product versions.
Integration with External Code 113

114
9.1.3 Including C Source Files in the ASCET Make Process

To include C source files in the make process controlled by ASCET, ASCET-SE
allows the definition of a list of file names in project_settings.mk. In addi-
tion, a list of path names can be defined to specify where ASCET-SE searches for
the defined files.

See section 5.6 "Customizing the Build Process" for further details.

9.2 Calling ASCET-Generated Functions from External C Code

ASCET generates a function_declarations.h file, containing extern dec-
larations of all functions of the ASCET model. This file can be included in the user
software to easily access ASCET-defined methods or processes in external code.

For classes implemented as prototypes, these extern declarations can be disabled
by means o f the p rep roces so r sw i t ch . The sw i t ch i s named
DECLARE_PROTOTYPE_METHODS, as the following example (extract from
function_declarations.h) shows:

#ifdef DECLARE_PROTOTYPE_METHODS

extern void CLASS_IMPL_my_calc (void);

#endif

9.3 Using External Global Variables/Parameters in ASCET Code

As described in section 9.1.1, global variables and parameters can be defined in
external C code and accessed by ASCET-SE generated code model by means of
a prototype implementation. The proj_def.h file, which is provided by the
installation in the target-specific directory, can be used to map the external code
name space to ASCET’s symbolic names by means of preprocessor directives
("#define").

In addition, ASCET generates a variable_declarations.h file, containing
extern declarations of all global variables of the ASCET model. This file can be
included in the user software to easily access ASCET model elements from the
external code.

For classes implemented as prototypes, the extern declarations are configurable
by means of special preprocessor directives, as the subsequent example shows:

#ifdef DECLARE_PROTOTYPE_ELEMENTS

#ifndef NO_DECLARE_i

extern sint16 i;

/* min=-32768.0, max=32767.0, ident, limit=yes */

#endif

#endif

The switch DECLARE_PROTOTYPE_ELEMENTS can be used to globally disable
the ex te r n dec la ra t ions o f a l l p ro to type e l ement s i n the f i l e
variable_declarations.h. Individual switches are provided for single vari-
ables and parameters exported by prototypes, as described in chapter 9.1.1 "Use
of Prototypes".
Integration with External Code

9.4 Generating Code for Use with External Data Structures

By default, ASCET-SE generates all data structures it needs so that a project is
always internally consistent. However, if you have many projects that use the
same logical model and differ only in the data values used, then it is desirable to
generate the code in ASCET and supply the data sources externally (usually with
a 3rd party tool).

Such a workflow can offer processes benefits, for example the code can be veri-
fied once and re-used without the risk of it being "touched" with each minor
data change.

ASCET-SE provides support for this workflow by allowing the generation of
ASCET data structures to be disabled.

Data structure generation is configured in the "Project Properties" window,
"Production Code" node. Three mode of operation are available:

1. Generate for every component.

2. Generate for no components.

3. Use component settings. By default, components are configured for data
structure generation. Component settings are overridden by the other
two options. This mode allows you to generate some data structures using
ASCET and provide other by external code.

Fig. 9-1 shows a configuration where data structure generation has been dis-
abled for all components.

Fig. 9-1 Disabling data structure generation for all components

Note

It is expected that user’s working with externally generated data structures are
also building their systems outside of ASCET (i.e. you are not using ASCET as an
integration platform).
Integration with External Code 115

116
For the Use Component Settings mode, each component implementation
can specify whether or not data structures are generate as shown in Fig. 9-2.

Fig. 9-2 Selecting data structure generation on a per component basis

9.5 Configuring the ASCET Optimization Features

When using ASCET with external code it is important that the interface remains
stable. ASCET’s default optimization strategies are designed to produce the
smallest and fastest code and, consequently, may result in changes to the exter-
nal interface when changes are made to the model.

The default optimizations that can have this side-effect can be deactivated to
guarantee a stable interface.

9.5.1 Configuring Method Calls

For methods of classes which can be multiply instantiated, ASCET passes a
pointer to the instance’s data structures as the first element of the method argu-
ment list. This is called the self-pointer in ASCET (and is analogous to the self
point in C++) (see Section 13.3.3).

For methods of classes that are only instantiated once, this pointer is not needed
as there is only one data instance and that can be accessed directly without
ambiguity. Optimizing away the self pointer increases the run-time performance
and reduces the stack space requirements on ASCET-SE generated code. This
optimization is done by default during code generation.

However, combining ASCET-generated code with external C code requires a
software interface that is widely invariant to changes of the ASCET model. The
optimization of single instance classes can therefore be switched off to avoid
Integration with External Code

unexpected changes of calling conventions for methods due to model modifica-
tions. The single method optimization can be deactivated in the "Settings" tab
of the class implementation editor.

In this case, the self pointer will always be generated, no matter if the class is
multiply instantiated or not.

If you are certain that a class will only be single instantiated in a model, then
generation of a method interface without the self-pointer can be re-enabled by
re-activating the Optimize method calls option.

9.5.2 Configuring Message Copies

ASCET uses the configured OS task types and priorities to generate message cop-
ies only where needed to ensure data consistency (see section 13.4.3
on page 173). However, this optimization relies on ASCET knowing about all
data accesses at code generation time.

ASCET cannot know about any data access of scheduling issues that are defined
outside of the ASCET model. To prevent data consistency problems when using
external OS configuration or external C code, ASCET-SE allows the generation
and the use o f message cop ie s to be de f ined . P l ease see
chapter 13.4.3 "Messages" for details.

9.6 Working with Variant Parameters

When parameters are configured in ASCET, it is possible to set the Variants
attribute in the Properties editor of a parameter to control whether access to
multiple variants of the parameter is available.

Note

When calling ASCET-generated methods or using ASCET-generated variable
and parameter definitions from external C code, you must observe the data
type definitions generated by ASCET carefully. It is not recommended to use
types other than those generated by ASCET. This is especially true for the self-
pointer.
The function interfaces provided by the ASCET- generated code might change
in successor versions of the tool.
Integration with External Code 117

118
When the option is enabled, ASCET assumes that all parameters with the variant
attribute set are grouped into a single memory section. This set of parameters
defines a "variant". Furthermore, ASCET assumes that multiple sets of parame-
ters, each set representing a specific variant, exist and generates code to access
parameters using an indirection (through an externally defined offset).

This feature is EXPERIMENTAL in ASCET. Please contact ETAS for further details
on its use.
Integration with External Code

10 Modeling Hints

This section provides some general guidelines for structuring models and speci-
fying implementations with an emphasis on efficient and numerically correct
implementation code.

The requirements to the model are often contradictory. An optimization of the
memory requirement can be achieved at the expense of execution time and
accuracy. If execution time is optimized, increased memory requirement and a
worse readability of the code may be the consequences. Finally, high accuracy is
connected with increased memory requirement as well.

10.1 Implementations

The different requirements have to be considered during implementation. The
implementation of single entities thus depends on

• the physically possible value range,

• the required accuracy,

• the properties of hardware and sensors.

10.1.1 Definition of Conversion Formulas

Offset: Conversion formulas should have an offset of zero. A nonzero offset has
little advantage, and results in additional code for mathematical operations. Pos-
sible exceptions include:

• Entities which already have an offset represented in the system, e.g.,
results from sensors.

• Arrays, matrices, distributions, or characteristic curves and maps, where a
more compact representation (i.e. with smaller word length) is enabled
with an offset, to save memory space.

For example: Assume a temperature from -50 to +150° C and a resolution of 1°
C. Without an offset, a word length of 16 bits is required; with an offset, 8 bits
suffice. One byte per quantity (e.g., an array element) is saved. Here, one should
weigh between memory requirements and run-time/code overhead.

Usually, using an offset for a single value to save memory space is not justified.

Scale values: The approximate range of a scale value depends on the physics of
the overall system. Such numerical requirements must be determined theoreti-
cally or experimentally. However, within the given order of magnitude, one has
many possibilities when choosing the actual scale value.

• Scale values should be simple, rational numbers. For example, fractions
should have simple coefficients that are small numbers, powers of two or
ten, and not larger prime numbers, e.g., 8/3, 256/100, 50. In general,
fractions (e.g., 3/16) should be preferred over decimals (e.g., 0.1875)
when entering a scale value. The following rules should be observed:

• Scale values of the form 2K/n are best suitable for unsigned results, and
2K-1/n for signed results. K is the corresponding word length in bits, and
n is a suitable number slightly greater than the maximum representable
value. This assures usage of nearly the entire value range.

• Simple coefficients should have priority over using the entire available
range of values.
Modeling Hints 119

120
Example: The given range of values is [0,9.1]. To implement in 8 bits, a sim-
ple scale value of 28/10=25.6 should be used. The resulting quantization and
interval are 0.039 and [0,9.96], respectively.

If, in this example, the aim would be the highest possible precision (for 8 bits),
the scale value would be 255/9.1=28.02=2550/91. This has only an insignif-
icantly higher resolution of 0.036, and hence no visible numerical improvement
in the control algorithm. On the other hand, considerable run-time and loss of
precision are probable if users must convert between this complex scale value
and a different one in the generated code. For instance, if a conversion of this
unfavorable scale value into the above-mentioned simple scale value is neces-
sary, the unfavorable rational rescaling factor (256/10)/(5824/
6375)=2550/91 emerges, which causes numerical inaccuracies and requires a
32-bit intermediate result.

To view a formula:

• In the project editor, you can view the conversion
formulas by clicking on the "Formulas" tab.

• View a formula by double-clicking on it.

The advantage of using scale values that are a power of two has already been
demonstrated in several examples. Re-scale operations are simply reduced to bit
shifts. Therefore, these should be used whenever possible.

10.1.2 Definition of the Value Intervals

When specifying value intervals, their use by the code generator to transform
mathematical expressions must be considered. Thus, two goals are important
when creating the value interval:

• Avoid overflow protection (i.e. right shifts) which results in the unneces-
sary loss of numerical precision.

• Avoid clippings which result in additional overhead in the code.

Hence, only the range of values that are physically relevant should be selected for
an implementation.

Example:

{ A  [0.. 40] } + {B  [0,10]} = C

If the same value interval is chosen for A and for B, i.e. Aphys[0,40],
Bphys[0,40], a scale S = 0.25 for all quantities will result in the following
implementations:

Auint8[0, 160], Buint8[0, 160], Cuint16 [0, 320]

The result uses the double bit length as the two addends.

If, however, the interval Bphys[0, 10] is chosen, the same bit length is suffi-
cient for all three quantities:

Auint8[0, 160], Buint8[0, 40], Cuint8 [0, 200]

Therefore, the common practise of using the default value range for a given
implementation type (e.g. [-128, 127] for int8), is never recommended,
especially if this default exceeds the relevant range by a factor of 2 or more.
Modeling Hints

Example definition of the formula and interval for a throttle position
measurement:

• Regard the following example.

The throttle position measurement is converted
from voltage to degrees using a characteristic curve.

For the Interpolation node distribution ("X Distribu-
tion" tab), the implementation editor of
Meas_v2deg looks as follows:

Here, the throttle position measurement is the difference of two signals that are
both 0 – 5 volts. Each signal is converted using a 10-bit A/D converter. As a
result, the finest resolution of this signal is 5 V/210 bits, giving the scale value
of 1024/5. The interval, [-5,5], results from the subtraction of the two sig-
nals.

10.1.3 Defining Implementations for Related Variables

Conversion formulas and implementation types for variables (or method argu-
ments) which are assigned to each other or connected mathematically should, if
possible, be chosen to match each other. The following are examples of this
concept:

• Choose offset 0 if possible.
Modeling Hints 121

122
• For addition or subtraction, variables should be assigned the same, or at
least similar, scale values.

Scale values are called "similar" if their quotient is a power of two, a small
integer number, or a simple fraction. The first case is preferred for effi-
ciency, whereas the simple fraction is the least favorable solution.

• For multiplications and divisions the scale should ideally be the product or
the quotient of the operands, respectively. The result type has to be
extended if necessary.

• For more complex classes, the following scales are recommended:

The input arguments and the quantities assigned to them have the same
scales, as well as the return value and the value it is assigned to. The scale
of the return value depends on the scales of the arguments and the inter-
nal elements of the class.

• Assignments:

– Re-scaling should be avoided in the model, as it involves additional
multiplications and divisions. These result in additional run time and
memory consumption.
For the generated code in the above example, e.g., the generated
code for different scales shows the following differences:

Sd = Se  (e = d);
Sd=1/5, Se=1/3  (e = ((d*3)/5);

– Quantizations with a fix base (mantissa) allow re-scaling by means of
one single multiplication or division.

Sd=10
-1, Se=10

-2  (e = (d*10));

– Quantizations with a base of 2 allow re-scaling by shifts:

Sd=2
-2, Se=2

-1  (e = (d>>1));

Sa = Sb = Sc

(S: scale factor)

Sa = Sb * Sc Sa = Sb / Sc

Sa = Sin1; Sb = Sin2; Sc = Sout

Sout = f(Sin1,Sin2,Sp_int)

(p_int: internal quantities)
Modeling Hints

• By using dependent parameters,

– re-scaling can be avoided, e. g. for comparators or concatenated cal-
culations with parameters;

– "odd scale factors" can be cancelled, e. g. when converting different
units;

– run time and code can be optimized. By using virtual parameters,
memory can be saved.

Disadvantageous is, however, the use of an additional parameter.

• Internal intermediate memories in which results are accumulated (i.e., in
integrators, filters, low-passes, etc.) should be represented with at least
twice the word size of the accumulated result to assure precision.

10.1.4 Multiplication of Large Results

If two quantities with large intervals are multiplied, numerical precision may be
lost. This happens when the code generator avoids a possible overflow via right
shifts.

Example 1: Compute X*Y, where X and Y both have implementation type
uint32 and use the full 32-bit range. To avoid overflows, the following code is
generated:

(X>>16)*(Y>>16)

This may be numerically inaccurate; if, e.g., X or Y<65536, the result is 0.

The problem is particularly critical when several multiplication operations are exe-
cuted in a sequence.

Example 2: Consider an integrator that computes X*K*DT, where X (input), K
(integration constant) and DT (time difference) have type uint16 and use the
full 16-bit range. Assuming the intermediate result is stored in a 32-bit memory,
a total of 16 right shifts are needed. This leads, e.g., to the following:

((X>>5)*(K>>5))*(DT>>6)

However, a small value for any of the three variables will yield zero, causing the
integrator to stay at zero. This is entirely a result of the automatic overflow pro-
tection.

To avoid such problems, the following rules should be adhered to during the
modeling stage:

• Do not represent operands for multiplication more precisely than
required, i.e. with smallest possible word size.

Note

Of course these effects are not special problems caused by the code generator,
but common problems occurring with quantized arithmetic with limited word
size. The effects occur in the same way for manual coding.

Sin1=1/10

SParameter=1/16 SParameter_dep=1/10

Sin1=1/10
Modeling Hints 123

124
• Reduce the operand’s value range to that which is physically relevant only.
For example, the time difference, DT, in the integrator can be represented
in 16 bits with a quantization of 10 μs. This gives a range to 655 ms,
which should suffice for a typical vehicle application.

• If several multiplication operations must be performed in sequence, the
quantizations and the interval have to be carefully selected using the
above criteria. This portion of the model should be tested in detail. If float-
ing point arithmetic is possible for the target, it should be considered.

• For integrators, low-pass and similar filters, expressions of the following
type occur:

in * k * dT

If this computation runs in a static time frame, the variable dT should be
replaced with a fixed value which is included (with the aid of the conver-
sion formula) in the constant k, i.e.

in * (k * dTfix) = in * kfix

In doing so, the multiplication sequence and the possible inaccuracy aris-
ing from the sequence are avoided.

To study the effects of dT in the PID derivative term calculation:

• Look at the derivative term calculation in the PIDT1
controller (see section 12.3.9 on page 145).

To study the effects of dT, we will focus on the cal-
culation of Temp2.

The calculation of Temp2 consists of dT*t3, where t3 is the expression
assigned to D_term also discussed in "To optimize the derivative term calcula-
tion:" on page 147. The implementations are dT=214*dt [0,0.1], and for
the intermediate result t3, a scale of 213 and interval [-42000,42000] (see
example on page 147).

• The multiplication dT*t3 results in an overflow of 9 bits (i.e., 7 right-shifts
for t3 and 2 for dT).

• Since this calculation occurs in a static time frame, dT can be represented
with a literal or parameter. With a parameter, a much smaller interval can
be specified to reduce the overflow.

• Replace dT with the parameter delta as shown
below. Assign to it a value of 0.001, a scale value
of 214, and an interval of [0,0.001].

• Generate new code for the example and examine
the changes.
Modeling Hints

Because of the smaller interval, dT*t3 results in an overflow of only 2 bits, even
though the time step is represented with the same precision. Using a literal in this
case also produces better results than using dT, but not as good as those
obtained when using a parameter. The reason comes from the accuracy criteria
for literals (see section 12.3.7 on page 144). This criterion produces the repre-
sentation of a literal with a relative error of less than 0.1%. For 0.001, this
requires a scale value of 217, and therefore an overflow of 5 bits occurs.

10.2 Model Structure

This section contains considerations of the optimal design of ASCET models with
respect to efficient code generation.

10.2.1 Division

Division leads to many numerical problems which have already been described
elsewhere, and should be avoided, if possible. This can be achieved by, e.g.,

• introducing dependent parameters with the reciprocal value,

• temporarily storing the result of a division and reusing it.

The following rules concerning division should be adhered to:

• Divisions within mathematical expressions should be performed as late as
possible.

• In integer representation, the numerator should always be considerably
larger than the denominator (double word size if possible).

• The denominator should not use the highest valid word size. For example,
if a word length of 32 bits is valid, the denominator should have no more
than 16 bits.

• The denominator interval must be restricted from 0.
Modeling Hints 125

126
10.2.2 Multiple Calculations, Concatenated Calculations, Logical Operators

Multiple Calculations

Multiple calculations like the ones shown below should be avoided, where pos-
sible. They require additional runtime and can cause wrong results, e.g. when
used in timers or integrators.

There are several possibilities to avoid multiple calculations:

1. By inserting temporary variables.

On the one hand, this realization allows quick access to the intermediate
result without additional memory consumption. On the other hand, the
temporary variable can neither be implemented nor measured with a cal-
ibration system. It cannot be used in another context and the sequencing
cannot be influenced. Stack management becomes more expensive.

2. By inserting process-/method-local variables.

This way the intermediate result can be accessed quickly. The method-/
process-local variable can be implemented and multiply used in different
contexts, and the sequencing can be specified. Like the temporary vari-
able, the method-local variable can neither be measured nor be assigned
a memory class. Additional expenses for stack management are necessary.
Modeling Hints

3. By inserting variables.

A variable can be implemented and measured. It has a unique memory
location in the ECU and can thus be assigned a memory class. It can be
multiply used, and is simultaneously available in different methods or pro-
cesses. The sequencing information can be explicitly specified. On the
other hand, introducing a variable causes additional permanent use of
RAM.

4. If a send message is used as an intermediate result, it can be changed to
a send&receive message.

This does not cause additional RAM consumption. Only the RAM amount
for the already existing message is needed. The element can be imple-
mented and measured, it has a unique address in the ECU and can be
assigned a memory class. It is simultaneously available in different pro-
cesses. However, this approach is restricted to a limited number of cases,
the more so since the sequencing has to be kept in mind for the whole
model.
Modeling Hints 127

128
Concatenated Calculations

Intermediate variables (method-/process-local variables) should be inserted into
long concatenated calculations. Otherwise, the overflow handling (i.e. right
shifts) for the temporary intermediate results generated by the code generation
can cause a loss of precision.

Introducing intermediate variables allows the specification of the desired preci-
sion for partial results.

Logical Operators

The code generator maps the inputs of a logical operator in descending order to
a catenation from the left to the right.

During runtime, the code is processed from left to the right as well; if the result
can be determined before the calculation is complete (e.g. Express_1 =
false), the evaluation is interrupted. It is thus recommended to arrange the
inputs of logical operators top down in the order of calculation time and propa-
bility. For the AND-operator,

• expressions with short calculation time,

• unlikely expressions;

for the OR-operator,

• expressions with short calculation time,

• likely expressions

are specially recommended for the upper inputs of the operator.

Express_1

Express_2

Express_3 results_log =
((Express_1)&&(Express_2)&&(Express_3))
Modeling Hints

Example:

10.2.3 Classes and Modules

When using classes, keep the following in mind:

• A dead beat response (z-1) can be replaced by a single variable (mind the
sequencing!).

• Unnecessary nesting of classes causes nested function calls and additional
consumption of stack and run time. It should be avoided.

• If multiple instances of a class are used, all instances use the same pro-
gram code, but each instance has its own data sets. This saves code space
(ROM) but requires an extra indirection for each data element access.

• Classes should be decoupled, i.e. the return value should be separated
from the calculation by means of separate return methods or direct
access. Direct access methods should be preferred.

Where applicable, the code generation option optimize direct access
methods (a description is given in the ASCET online help) can be activated.
Thus, no special function call is necessary for return.

With this approach, the class is calculated only once, even if the return
value is used several times; this means runtime saving. The calculation of
the internal algorithms and the return values do not have to take place at
the same rate. Both the old and the new return value can be accessed. The
downside is the use of an additional variable, which is needed as interme-
diate memory for the results of the calculation.

• When inlining of methods is used, the method program code is written
directly into the module program code by the compiler; no function call is
needed. Runtime is optimized thereby, but additional memory is required
when the method is used more than once.

• ASCET creates separate program code for each implementation of a class.
If an implementation is used repeatedly, the memory requirement is
reduced; however, the usability of this approach is restricted.

When using methods in modules, keep the following in mind:

• You can access messages and resources in a method in a module. How-
ever, only the message optimizations _OPT_COPY and _NO_COPY are
supported during code generation for messages in modules. If you use
another variant (_NON_OPT_COPY, _OSEK_COM, or
_OSEK_COM_STACK_BUFFER), code generation produces an error mes-
sage.
Modeling Hints 129

130
• If a method in a module uses a message, this method may be called from
one task only; a static assignment is required between task priority and
the place in the code where the message is accessed.
Calls from other tasks are forbidden; they produce an error message.

10.2.4 State Machines

You can optimize a state machine under three aspects:

• Response time

• Runtime

• Code size

The various optimization options are described in detail in the ASCET online help.
Modeling Hints

11 Migrating an Existing Project to a New Target

ASCET-SE allows a project that was originally developed for one target to be
migrated to a new target by copying the C code and OS settings from the old
target, experiment type or implementation to the new target.

To copy the C code for an entire project:

To copy the C code for all classes and modules of a project from another target,
experiment type, or implementation, proceed as follows.

• In the project editor, select the appropriate target
and code generation options for your controller.

• Select Extras  Copy C-Code From.

The "Selection Required" window opens.

• Select the target you want to copy the code from,
and click OK.

To copy C code for single classes or modules:

To copy existing C code of a single class or module to another target, experiment
type, or implementation, use one of the two possibilities described here.

1. Use the menu item Tools  Code Variants  Copy To.

• Open the module/class in the C code editor.

• In the "Target" combo box, select the target the
C code was written for.

• In the "Arithmetic" combo box, select the experi-
ment type the C code was written for.

• In the "Implementation" combo box, select the
implementation the C code was written for.
Migrating an Existing Project to a New Target 131

132
• Select Tools  Code Variants  Copy To.

The "Copy C-Code To:" selection window opens.

• In the "Code for Target" field, select the target you
are using.

• In the "Code Gen. Arithmetic" field, select the
appropriate experiment type.

• In the "Implementation" field, select the desired
implementation.

Once you have completed the selection, the OK
button is activated.

• Click OK to close the window.

2. Use the menu item Tools  Code Variants  Copy From.

• In the C code editor, use the "Target", "Arith-
metic", and "Implementation" combo boxes to set
up the target you want to use with the appropriate
experiment type and implementation.

• Now select Tools  Code Variants  Copy
From.

The "Selection Required" window opens.
Migrating an Existing Project to a New Target

• Choose the target, experiment type, and implemen-
tation you want to copy the code from, and click
OK.

To copy the operating system settings:

• In the project editor, select the "OS" tab.

• Select Operating System  Copy From Target.

• In the "Selection Required" window, choose the
target you want to copy the OS configuration from.

• Click OK to close the window.

The operating system settings are copied to the cur-
rent target.

Further possibilities of target-specific adaptation of code generation are provided
in chapter 5 "Configuring ASCET for Code Generation".
Migrating an Existing Project to a New Target 133

134
 Migrating an Existing Project to a New Target

12 Understanding Quantized Arithmetic

This chapter provides a detailed description of how the code generator produces
code for algorithms specified in ASCET. The rules of this transformation are
described in more detail in later sections. Examples are used to illustrate how the
base operations are first transformed and how the mathematical expressions are
then optimized using the implementation specifications. One section is devoted
to an overview of the numerical aspects of integer arithmetic.

The most essential task of implementation code generation is the automatic
transformation of the arithmetic in the physical model into the quantized arith-
metic for the target implementation. Necessary conversions and correction fac-
tors are generated and overflows avoided or corrected automatically. In the
traditional manual coding process, this step has proven to be unreliable. Thus, a
reliable automatic generation improves software quality.

The generated integer arithmetic could further be optimized.

Logical (Boolean) operations, control structures, and method calls are converted
the same way in both the implementation and physical code generations. The
main difference between the two is that implementation code generation pro-
duces integer arithmetic, while physical generation does not.

The main goal of the implementation code generation is the semantically correct
transformation of the physical specification while considering the implementa-
tions given by the user. Numerical errors are inevitable due to quantization and
integer division. However, these errors are minimized. The generated code is
robust, e.g. no overflows occur at run-time.

12.1 Degrees of Freedom and Optimization

The variable/parameter implementations defined by the user are mandatory for
the code generator. However, even in a mathematical expression containing sev-
eral of these "fixed" implementations, there usually exist some degrees of free-
dom. The degrees of freedom are the choices of implementations for
intermediate results. These can be defined by the code generator. However,
restrictions for the target must be taken into account, particularly the maximum
available bit length for integer quantities.

The degrees of freedom are used by the code generator for optimization based
on the following criteria:

• Minimizing numerical errors.

• Avoiding or correcting overflows.

• Minimizing run-time and memory requirement, i.e. code size, RAM and
stack space.

These optimization goals partially contradict each other. A complete optimiza-
tion program cannot be created with acceptable overhead. The code generator,
therefore, uses a heuristic procedure that has two essential components:

• Local rules for good transformation of the individual base operations.

• Global control strategy with which the local transformations are coordi-
nated for more optimal mathematical expressions.
Understanding Quantized Arithmetic 135

136
This procedure may produce unsatisfactory results in individual cases. In these
cases, the user must intervene manually and reduce the degrees of freedom
allowed to the generator. This is done by introducing temporary variables with
defined implementations at strategic points in the mathematical expressions.

Further potential for optimization exists by selecting special fixed point code gen-
eration options (see the description of the "Integer Arithmetic" node in the
ASCET online help).

12.2 Numerical Aspects of Integer Arithmetic

When physical arithmetic is transformed to integer arithmetic, numerical errors
arise. Two different sources for these errors exist: quantization and integer divi-
sion.

12.2.1 Quantization Errors

When a real quantity is mapped to a quantized representation, an error arises
which is, at most, half the quantization.

This representation error cannot be avoided. It can, theoretically, be made arbi-
trarily small by choosing a finer quantization. However, the smaller the quantiza-
tion chosen, the larger the corresponding integer results become. Of course, in
practice only a restricted range of values (i.e., 32-bit numbers) is available for the
quantized representations of both the quantities and the computations per-
formed on them (i.e. the intermediate results).

Therefore, the achievable precision depends on the selection of those quantized
representations (i.e. value range and quantization). While choosing the quantiza-
tions, a compromise must be found between numerical precision and memory
space requirements. In addition, available word sizes for the target must be
taken into account.

12.2.2 Errors from Integer Division

In integer arithmetic, addition, subtraction and multiplication are, in principle,
calculated exactly – provided no overflows occur. But for integer division, errors
occur because the fractional remainder is truncated. For example, 2/3 equals 0
and 9/5 equals 1. Principally, the result could be rounded-up, thus reducing the
error (max. by half). Division results in particularly unfavorable behavior with
respect to error propagation.

As to not impair the numerical precision unnecessarily, obey the following rules
when using integer division:

• Completely avoid division if possible.

• The numerator should be noticeably larger than the denominator, e.g., 32
bits/16 bits. Numerators should be typically twice the word size and use
these additional bits.

• In mathematical chain operations, perform the division as late as possible.
For example, (x*y)/z usually allows higher precision than (x/z)*y
provided that x*y may be calculated without overflow.
Understanding Quantized Arithmetic

12.2.3 Error Propagation

Quantization and division errors will be propagated through mathematical oper-
ations. They can grow quickly. This also applies to operations like addition, which
is normally calculated correctly in integer arithmetic if the input quantities do not
contain errors.

During the practical realization of embedded control software, investigate
whether or not the resulting numerical precision will suffice after choosing the
quantizations. If not, use the following possibilities:

• Select finer quantizations, if possible in the context of available word sizes.

• Select "strategic" quantizations to avoid automatically generated divi-
sions during the re-scaling operations for expressions.

• Convert/simplify/approximate the mathematical expressions to reduce
divisions or error propagation from multiplications.

• Modify algorithms altogether to make them numerically more stable.

An example for reducing error propagation:

• Consider the calculation of I_term as shown
below.

In a PID controller, the expression for the integral term is commonly written as:

I_term = fintegral(in*(K/Ti)*dT)

where the function in and the factor K/Ti are computed before taking the
integral. Doing so in the above expression causes numerical errors not only due
to dividing first (which are then magnified by a multiplication), but also from
overflow protection (i.e., due to the left shift of K before the division – this is
explained later). Thus, the algorithm shown in the block diagram provides much
better precision than the usual mathematical representation.

An even better solution is to remove the division completely by placing the
inverse of Ti in the characteristic map in the PIDT1_MOD module. In doing this,
however, the direct relation to the usual parameters gets lost.

12.3 Rules of Integer Code Generation

This section describes the local rules by which the code generator maps basic
operations specified physically in the model to quantized integer arithmetic for
the target. It also discusses the optimization of complex mathematical expres-
sions.

The following principles are used for the transformation of base operations:

• Keep numerical precision: Numerical precision is sacrificed only if
required due to overflows.
Understanding Quantized Arithmetic 137

138
• No overflows in intermediate results: A priority of the code generator
is to prevent overflows in the intermediate results. When required, a
coarser quantization is selected automatically, even at the expense of
numerical precision.

• Minimize the number of additional operations: When customizing
quantizations for intermediate results, the number of added operations
must be minimized.

• Compliance of specified value ranges: The code generator guarantees
compliance to the value ranges specified by the user. When required, an
explicit limit is generated.

The rules for transformation of base operations are derived from these principles.

12.3.1 Assignments

How is an assignment of physical quantities, e.g. y := x, transformed to C code
with the corresponding quantized representation? To illustrate this, let us assign
a quantized source value X to a target value Y with, perhaps, a different quanti-
zation:

assignment (phys.): y := x

source: X = ax+b

target: Y = cy+d

If source and target have the same conversion formula, the implementation
value can be assigned directly.

Y := X

The source must otherwise be transformed into the conversion formula of the
target before the assignment.

Y := fx,y(X)

One of the substantial advantages of the code generator is the automatic pro-
duction of this transformation. In the first step, the source is re-scaled to match
the target by multiplying with the correct conversion factor, i.e. the quotient of
the target and source scales.

X1 := X*(c/a)

The offset is then adapted in a way suitable for the target.

Y = X2 := X1 + d - b*(c/a)

Re-scaling, i.e. multiplication by a rational but generally not integer conversion
factor, is problematic. This multiplication can, in principle, be converted into inte-
ger arithmetic in different ways. For the following alternatives, the factor c/a is
assumed to be a simple fraction.

• Multiply first: (X*c)/a

This is the most correct variant and should always be chosen if the inter-
mediate result is calculable without overflow.

• Divide first: (X/a)*c

This possibility causes very large numerical errors, because the division
error is inflated by the following multiplication.
Understanding Quantized Arithmetic

• Approximate: (X*c’)/a’

Here, c´/a´ should be a "simple" rational approximation of c/a, i.e.,
with smaller coefficients. It is generally quite difficult to design such an
approximation with an algorithm. The attempt used by the code genera-
tion is the so-called continued fraction expansion.

The approach is clarified now with an example:

Suppose that X*(20/13) is to be calculated, with X bound by the interval
[0,80], only numbers with 8 bits (0-255) are allowed, and the current
value of x is 73.

Calculation in floating point yields 112.31.

In integer arithmetic, the following emerges:

• Multiplying first to get (73*20)/13=112 is not feasible because the
intermediate result 73*20=1460 is far too large.

• Dividing first yields too imprecise a result, namely
(73/13)*20=5*20=100.

On the other hand, if the user chooses the approximation 3/2=1.5 for the
needed division 20/13=1.538, this becomes (73*3)/2=19/2=109. This
result is reasonably precise, and no overflow occurs in the intermediate result.

The code generator tries to reach the highest possible numerical precision in the
context of available word size. Therefore, the following algorithm is used for re-
scalings:

1. The scales of the individual quantities are generally approximated by sim-
ple quotients. In doing so, it is assured that the re-scaling factor of c/a
does not have any large coefficients.

2. If the intermediate result is representable in the available word size, then
the multiplication comes first:

(X*c)/a

3. Otherwise, a check is made for the amount of overflow (in bits) in the
intermediate result. Then, the more numerically correct approach of the
two following possibilities is selected for each individual case:

– Divide first, then multiply:

(X/a)*c

– Right-shift by s places, then proceed as in step 2 above:

(((X>>s)*c))/a)<<s)

This variant is mainly used if the scale can be specified as a multiple of
a power of two. The final shift operation is then dropped.

To summarize the overall process, assignments are generated in the following
steps:

1. Re-scale the source to the target scale.

2. Adjust the offset.

3. Limit the value interval of the result, if necessary.

4. Assign the converted implementation value to the variable.

The assignments between actual and formal arguments for method calls are
treated the same.
Understanding Quantized Arithmetic 139

140
An assignment example:

• Consider the calculation of P_term shown below.

Here, the intermediate result, in*K, is assigned to P_term. The implementa-
tions are:

in = 2048*in [-2,2],
K = 64*k [0,50],
P_term = 256*pterm [-100,100]

Therefore, the intermediate result has a scale of 2048*64 and a range of
[-100,100]. Assigning this to P_term requires a re-scaling of

1/512 = 256/2048/64 (i.e. 2-9 = 28-11-6)

Since all scale values are powers of two, this is simply done with a right-shift. No
limits are required, and the resulting code is:

P_term = ((in * K) >> 9);

12.3.2 Addition and Subtraction

Since addition and subtraction are treated analogously, only the addition is
described here.

When adding two quantities, the quantizations must be brought to the same
scale value first. The offset is added thereafter. For example, you can not add two
lengths in meter and kilometer without re-scaling one or the other first.

The code generation for addition is carried out in the following steps:

Re-scaling: Both operands are brought to the same scale. To avoid unnecessary
loss in precision, the scale with the finer quantization is selected. If this is not
possible, the less accurate representation is used. This may be the case if the
coarser quantized value is not representable in the finer quantization using the
available bit length.

Addition: The re-scaled operands are added including the offsets, if present.

Overflow Handling: If a possible overflow because of the specified value
ranges is detected, then one or both operands are right-shifted before the addi-
tion. This reduces resolution but eliminates the overflow.

For example: Compute x+y, given

X = 3*x and
Y = 5*y,

both within the interval [0,100]. Assume only 8-bit results are valid.

• First, X is re-scaled to the finer scale of Y (5). Division is done first (loss of
precision) because the intermediate result X*5 does not fit in a byte:

X’:=(X/3)*5

• The intermediate result, X' has the value range [0,165]. The addition
of X'+Y results in an overflow. Both operands are therefore down-scaled
using a right shift before they are added.
Understanding Quantized Arithmetic

• The generated code for the complete addition operation looks like this:

((X/3)*5)>>1)+(Y>>1)

12.3.3 Multiplication

Unlike addition, multiplication of two quantities with different quantizations is
possible. For example, multiplying X=ax+b and Y=cy+d gives

X*Y = acxy + adx + bcy + bd

However, the integer result is simplified if both operands are represented with
offsets b=d=0. Then, the integer result is simply a linear scale of the physical
result.

X*Y = (a*c)*(x*y)

As a result, the code is generated for multiplication in the following steps:

Offset brought to zero: Both operands are brought to an offset of 0.

Multiplication: The results are then multiplied.

Overflow Handling: If a possible overflow due to the specified value ranges is
detected, both operands are right-shifted until the multiplication is possible with-
out overflow. This necessary loss of resolution is divided up proportionally based
on the number of significant bits in each operand.

For example: Compute x*y, given

X = 50x+3  [3,203] and
Y = 4y  [0,10],

with only 8-bit arithmetic possible.

• First, X is shifted to offset 0, i.e.
X’= X-3  [0,200].

• The multiplication X’*Y would result in an overflow, i.e. new interval 
[0,2000]. In order to stay within 8 bits, a right shift of three positions
is necessary. The larger value X’, is shifted two positions, while Y is shifted
by one.

• The generated code for the multiplication is:

((X-3)>>2)*(Y>>1)

• The result has a scale value of 200/8=25 and an offset of 0.

Note

Addition is usually seen as a commutative operation with mutually inter-
changeable inputs. This is not true for the target code generation due to the
application of different shift operations. The user should consider the specific
situation, especially in complex arithmetic expressions.

Note

The avoidance of overflows by performing right-shifts reduces resolution and
can easily result in unsatisfactory numerical precision, especially with
sequences of several multiplications using large values. However, this is not an
error caused by the code generator, but an inherent problem of the limited
available word length. Chains of multiplication should, therefore, only be used
with caution. If required, intermediate results must be forced to a given scale
value with the help of inserted variables.
Understanding Quantized Arithmetic 141

142
12.3.4 Division

As with multiplication, operands of different scales may be divided. Here as well,
the operands must first be brought to an offset of 0. The result of the division is
then scaled with the quotient of the two scale values:

X=ax, Y=cy and X/Y=(a/c)*(x/y)

Unlike multiplication, no overflow can occur here. The denominator can never
become 0 at run-time. This is guaranteed with a check of the value range by the
code generator. If the denominator’s interval contains 0, an error message is
given.

Integer division can result in considerable numerical errors, as already discussed.
To reduce these, the code generator uses the following rules:

• The numerator must, as far as possible, have twice the word size of the
denominator (for example, for 8-bit denominators, the numerator must
be represented using 16 bits). This corresponds to the usual assembler
instructions used for division in microcontroller targets.

• The numerator must make full usage of the word size.

If, at first, this is not the case, the numerator is increased with a left shift.

The code for division, correspondingly specified physically, is generated in the
following steps.

Offset brought to zero: Both operands are brought to an offset of 0.

Test for zero in the denominator: If the range of values for the denominator
contains 0, the code generator stops with an error message.

Increase numerator: Through some suitable left shifts, the numerator is
increased so that it has twice the word size of the denominator, if possible, and
makes full use of this word size.

Division: The division is finally performed.

For example: Compute x/y, given

X = 3x [0,255] and
Y = y [2,10].

• X is left shifted eight positions to fully use its 16-bit word size.

• Next, the division of 16-bit by 8-bit is performed. The generated code
looks like this:

(X<<8)/Y

• The result has a scale of 3*256, an offset of 0, and the value range [0,
32640].
Understanding Quantized Arithmetic

To calculate the integral term in the PID controller:

• Consider the calculation of I_term shown below.

It combines assignment, addition, multiplication,
and division operations.

The implementations are:

in = 2048*in [-2,2],
K = 64*k [0,50],
dT = 214*dt [0,0.1],
Ti = 1024*ti [0.005,2],
temp_1 = 1024*temp1 [-2,2],
I_term = 256*iterm [-100,100]

Intermediate results may be 32 bits long. Since there is an additional variable,
Temp1, the expression is calculated in two parts:

• The first multiplication, K*dT, has the scale value 64*214 and the interval
[0,5]. This result has no overflow as only 23 bits are needed.

• The next multiplication, K*dT*in, has the scale value 26*214*211=231
and the interval [-10,10], which creates an overflow of 4 bits. There-
fore, the right-shift is divided proportionally based on the number of sig-
nificant bits between in (12 bits) and K*dT (24 bits, signed).

• Next, the result is divided by Ti. The numerator is already using the full
word size so no left-shift is required. Assigning the result to temp_1
requires a re-scaling of 1/128=2-7=210+10-6-14-11+4. The generated code
looks like this (note that clipping is required but not shown):

temp_1 = (((in>>1)*((K*dT)>>3))/Ti)>>7;

• The second part is the addition of temp_1 + I_term. Normally, the
finer quantization (that of temp_1) would be used to re-scale, but since
the result must be assigned back to I_term, a re-scaling of
1/4=2-2=28-10 is used. This saves one re-scale operation – see more on
this in section 12.3.9 on page 145. The generated code looks like this
(again, clipping is not shown):

I_term = ((temp_1>>2) + I_term);

• Re-examine the generated code to verify the above
expressions. Note how the limiters are imple-
mented.

12.3.5 Comparisons

Inputs for comparison operators must be transformed to a common conversion
formula. Customizing of the conversion formulas occurs in two steps. First the
scaling is adapted, and then the offset is adjusted.
Understanding Quantized Arithmetic 143

144
Normally, the comparison is executed using the finer of the two quantizations, to
avoid unnecessary loss of precision. If this is not possible because the re-scaled
representation exceeds the available word size, the coarser quantization is used.

12.3.6 Switches and Multiplexers

As in comparisons, all inputs for switches and multiplexers must also be trans-
formed to a common conversion formula. This is carried out analogously to the
comparison operators. The selection is then executed via the usual control struc-
tures in C, i.e. if/else, case, (a?b:c).

12.3.7 Literals

Literals cannot have an implementation specified in ASCET. The code generator
transforms literals automatically using a conversion formula matching the
respective context.

For example: The computation of x+1.0 in a model is transformed to X+10 if
X is scaled with 10.

The automatically adapting quantization of the environment can result in unsat-
isfactory results if, through this, the literal is represented too coarsely. This can
occur particularly if literals are multiplied or divided in the midst of mathematical
expressions with intermediate results. For example, consider the expression

y := x*1.049,

where x and y are quantized with 0.1. Depending on the value range for x, the
literal 1.049 could get approximated by the integer 10 (i.e., physical value 1.0).
If this is the case, it vanishes from the expression completely:

y := (x*10)/10 = x

In order to suppress this effect, the literal gets a refined scale value. The goal is
to keep the relative error lower than 0.1%. In the example above, the literal
1.049*10=10.49 is represented as 671/64=10.484. Hence the expres-
sion from above reads:

y := (x*671)/640,

and the factor is reasonably approximated.

12.3.8 Treatment of Operators With Multiple Inputs

Mathematical operators with multiple inputs are dissolved into sequences of
binary operations for which code is then generated in succession.

Note

The precision threshold of 0.001 is hard-coded and cannot be adjusted by the
user. The quantization of the automatically refined literal can, therefore,
become too inaccurate in rare cases. In such cases, the literal can be replaced
by a constant in the model. In this case, the user can provide a conversion
formula.
Understanding Quantized Arithmetic

Subsequently, the result in the picture below is always True.

12.3.9 Optimization of Mathematical Expressions

The code generator uses a heuristic control strategy for optimizing mathematical
expressions. The control strategy works in two phases. Optimization data is col-
lected during the bottom-up semantic analysis for each intermediate result in a
mathematical expression. Then, a target-scaling is defined for each result in the
top-down generation phase from this data. The available degrees of freedom
(see section "Degrees of Freedom and Optimization" on page 135) allow the
selection of optimal scales for the overall mathematical expression. The goal is to
minimize the number of additional calculations used during re-scaling.

The optimal scale values are determined using a normalized scale, i.e., the factor
in the total scale value that is not a power of 2.

For example, a normalized scale of 3 indicates that the intermediate result can be
scaled with 3*2N-1, i.e. with 3/2, 3, 6, 12 etc. This is important for the follow-
ing reasons:

• The range of the scale must be variable, so that customizing the numerical
precision to avoid overflows is possible.

• Such customizations are executed by shifts.

• The basis for this is the assumption that shift operations are more efficient
than multiplications or divisions. This is true for most targets.

A simple example is presented to illustrate this approach.

Example: Compute the addition of four variables v, w, x, y and assign the
result to z.

z := ((v+w)+x)+y

Assume the variables are scaled as follows:

Note

Usually, addition is seen as a commutative operation with mutually inter-
changeable inputs. This is not true for the target code generation due to the
application of different shift operations. The user should consider the specific
situation, especially in complex arithmetic expressions.

Variable Scale Value Normalized

v 4 1

w 3 3

x 8 1

y 5 5

z 10 5
Understanding Quantized Arithmetic 145

146
First, during the bottom-up semantic analysis, a set of optimal scale values is
collected using the normalized scale values (i.e. excluding the power-of-two fac-
tor) for every intermediate result.

Then, in the generation phase, this local data is used to select the best scale value
for each result by downward back tracing (top-down) through the entire expres-
sion.

These scale values are then inserted according to the necessary re-scalings and
shift operations. Under the assumption that no overflow can occur for the inter-
mediate results, the code represented below is compiled for the expression.

For clarity, the intermediate results are shown separately. During the code gen-
eration, one lengthy mathematical expression is produced for the C code. The
generation of the individual operations is performed locally, according to the
control strategy. No global optimization is carried out for these operations.

So far all examples from the PID controller have used scale values that are a
power of two. Therefore, all re-scaling has been performed with shift operations.
This makes it less evident when optimization does occur. For example, in the
calculation of the integral term (see above), the final addition temp1+I_term
was performed with the less refined scale value in order to save one shift opera-
tion in the final assignment to I_term.

In the next example, a scale value that is not entirely a power of two is intro-
duced.

Intermediate
Result

Optimum
Scale Value

Comment

v+w 1 or 3 Either scale value works equally well because
only one re-scaling is required. In any other
case, both inputs would have to be re-scaled.

(v+w)+x 1 Since x has the scale value of 1, it is best to
scale v+w also with 1. This saves one addi-
tional re-scaling. Hence, 1 is better than 3
here.

((v+w)+x)+y 1 or 5 Here again both choices work equally well.
At least one side needs to be re-scaled.

z:=
((v+w)+x)+y

5 The entire expression should be generated
with the scale value of 5, because then a re-
scaling is not necessary before the assign-
ment.

Intermediate Result Scale value*

t1 := v+((w>>2)/3) 4

t2 := (t1<<1)+x 8

z := ((t2*5)>>2)+(y<<1) 10

*: not normalized
Understanding Quantized Arithmetic

To optimize the derivative term calculation:

• Consider the derivative term calculation in the
example of a PID-controller shown below:

This example will focus on the calculation of
D_term only.

• Verify the implementations of quantities in the
expression. They are summarized below.

The implementations are:

in = 2048*in [-2,2],
K = 64*k [0,50],
Td = 640*td [0,2],
Tv = 640*tv [0.005,2],
D_memory = 1024*dmem [-10,10],
D_term = 256*dterm [-100,100]

Again, intermediate results may be 32 bits. The calculation of D_term occurs as
follows:

• As in the integral term calculation, the first two multiplications, K*Td*in,
result in an overflow of 3 bits (i.e. 3 right-shifts). The result has a scale
26*640*211*2-3 = 5*221 and interval [-200,200].

• Next, D_memory is subtracted from the result, but first the operands must
be brought to the same scale. Here is where the optimization occurs. The
following scale values must be considered:

• Either normalized scale, 5 or 1, could be used for the subtraction result,
K*Td*in-D_memory. If 1 is used, the next step of dividing by Tv re-
introduces the scale value of 5. This result would have to be re-scaled for
the final assignment to D_term, requiring a total of three re-scalings.

Thus, the normalized scale of 5 is the better choice. The division by Tv
then cancels the 5-scale out so that no rescaling is needed for the final
assignment. Only one rescaling (i.e. Dmem to scale value 5) is then
required.

Operand Scale Value Normalized

K*Td*in 5*221 5

D_memory 210 1

Tv 5*27 5

D_term 28 1
Understanding Quantized Arithmetic 147

148
• Subsequently, for the subtraction, Dmem is rescaled to 5*221 (not normal-
ized). However, both operands must be right-shifted to avoid an overflow,
resulting in an actual scale value of 5*220.

• Finally, this result is divided by Tv. The numerator is already using the full
32 bits, so no left-shift is required. Assigning the result to Dterm requires
a re-scaling (i.e. right-shift) of 5*27*28/(5*220)=2-5.

The intermediate results are summarized below:

Again, the intermediate results are shown separately for clarity. One lengthy
expression is generated in the actual C code.

• Re-examine the generated code for the example to
verify the above expressions. Note how the limiters
are implemented.

Intermediate Result Scale Value

t1 := (in>>1)*((K*Td)>>2) 5*221

t2 := (t1>>1) -
D_memory*5120

5*220

D_term := (t2/Tv)>>5 28
Understanding Quantized Arithmetic

13 Understanding Generated Code

This chapter describes the properties of the code generated by ASCET-SE. The
basic rules of converting the ASCET model contents and structures into C code
are described to help you understand what is generated and to ease a code
inspection of formal review if required by your development process.

13.1 Modularity

The code generation of ASCET-SE is modular. C code and header files are cre-
ated separately for each individual complex ASCET element (project, module, or
class). One nested data structure is generated for each ASCET module and its
element hierarchy. Knowledge of the entire system is not required for this pur-
pose. However, the code for a module and its hierarchy can be created correctly
only if, for all dependent modules, the public interface (exported variables, public
methods) is known. Thus, the code generator creates an internal structure,
referred to as a class interface, for the project and every class or module. The
code generation of an element only needs the class interfaces of all referenced
elements. This is analogous to the strategy frequently used for manual program-
ming: using a header file with prototype declarations in C.

13.2 Distribution of Generated Code to Files

For each element (class, module, or project) the generated C code is divided into
several files. The file names are automatically generated using Windows file for-
mat allowing a maximum of 255 characters. File names can optionally be gener-
ated in MS-DOS-compatible 8.3 format.

The following rules apply:

• A C source code (*.c) file is generated for the project, each module and
each class and implementation. C header (*.h) files are generated
according to the setting of the "Header Structure" configuration option
in the "Build" node of the "Project Properties" window.

– Component (default): a header file is generated for the project, each
module and each class.

– Module: a header file is generated for the project and each module.

– Project: a header file is generated for the project only.

• For elements with external C code, two additional files (*E.c and *E.h)
are generated that contain the external code.

• All generated header files of a project are included by the code generation
via the FILES_HEADER_PROJ variable (see Chapter 5.4.3).

• A function_declarations.h file is generated, containing extern
declarations of all functions of the ASCET model.

• A variable_declarations.h file is generated, containing extern
declarations of all variables and parameters of the ASCET model.
Understanding Generated Code 149

150
13.2.1 Include Hierarchy

The include hierarchy of the generated code depends upon the setting of the
"Header Structure" configuration option in the "Build" node of the "Project
Properties" window.

The following figures (Fig. 13-1, Fig. 13-2, Fig. 13-3) show the differences
between the three options and use the same key:

Key

C Source File
Generated by ASCET

C Header File
Generated by ASCET

C Header File
Supplied by ASCET

target

C Header File
 Example supplied by
 ASCET target - user
 editable

#include

conditional #include

OS Header File
Supplied/Generated by

OS
Understanding Generated Code

Fig. 13-1 Include Hierarchy: Component Headers

Fig. 13-2 Include Hierarchy: Module Headers

<Project>.c

<Project>.h

conf.h

a_basedef.h

conf.c <Module>.c <Class>.c <Task>.c

<Task>.h

<Module>.h

<Class>.h

function_declarations.h

variable_declarations.h

<Project>.c

<Project>.h

function_declarations.h

conf.h

variable_declarations.h

a_basedef.h

conf.c <Module>.c <Class>.c <Task>.c

<Task>.h

<Module>.h
Understanding Generated Code 151

152
Fig. 13-3 Include Hierarchy: Project Headers

The include hierarchy of a_basedef.h itself is identical for all variants and is
shown in Fig. 13-4.

Fig. 13-4 Include Structure of a_basedef.h

13.3 Software Architecture

We consider software architecture to mean all the basic rules by which the
ASCET model data and function structures are converted into C code. This
includes, among other things, naming conventions, supported storage systems,
and the conversion of data structures. A common Base Software Architecture is
used for all ASCET SE targets. Its essential parts will be described in this section.

<Project>.c

<Project>.h

conf.h

a_basedef.h

conf.c <Module>.c <Class>.c <Task>.c

<Task>.h

function_declarations.h

variable_declarations.h

a_basedef.h

asd_dyn_osinface.h

tipdep.h

os_inface.h

os_unknown_inface.hos_rta_inface.h

osek.h

a_limits.hmessage_scheme.h

proj_def.h

a_std_type.ha_intpol.h

Rte_Type.h

a_user_def.h

AUTOSAR RTERTA-OSEK
Understanding Generated Code

The major design criteria of this software architecture are the following:

• The instantiation of data, and thus the reservation of memory, in the con-
troller is completely static. The use of dynamic allocation is not allowed.
For example, memory and run-time overhead for variables caused by
pointer management and malloc calls are intolerable.

• The chosen data structure must allow a static multiple instantiation of
classes, whereby the same code is to be used for all instances with the
same implementation. It would waste memory to duplicate the same
code.

• Optimization occurs throughout the system.

• Data storage in user-defined memory classes is supported.

• All static data, such as parameters, must also be initialized statically.

The following design decisions were made based on the above criteria:

• Exported parameters are statically created and initialized as global C vari-
ables in the exporting C file; they are declared as external in the importing
files. Parameters are assigned to a ROM area.

• Exported and imported variables are treated similarly, but created and ini-
tialized statically in a RAM area. Variables specified as non-volatile are not
initialized statically. If this is required, then you must write the initialization
code yourself.

• The local elements of classes and modules are stored in specific C struc-
tures. If they pertain to different memory classes, C structures are added
for each memory class. They can be accessed by using C pointers. Based
on the model structure, for each module a so-called instance tree is cre-
ated by nesting (modules contain classes that may contain instances of
other classes as elements). Besides embedding instances into a structure,
access by pointer is also possible if the "as reference" option has been
selected in the model. This is necessary in cases where two objects are to
mutually reference each other (e.g., the wheels of a vehicle axle).

• A pointer to the memory area of the receiving instance is passed in each
method call allowing the same code of the methods to be used also for
the instances of all classes having the same implementation (The so called
self-pointer. This applies only to multiple instance generation or if explic-
itly configured in the element’s implementation).

• For each memory area, the elements of a component are grouped in a
structure. For each component (provided it contains data), a structure
exists from which the memory class structures are referenced.

• All implicit initializations are static.

• Only one fixed storage system (record layout) for characteristic curves and
maps is supported.

13.3.1 Naming Conventions

The C name for an ASCET component (i.e., class, module, or project) is built
according to the following convention:

<name of component>_<name of implementation>
Understanding Generated Code 153

154
The addition of the implementation name is required for classes because several
instances of a class can occur in the model along with different implementations.
This name is called the classIdentifier in the following sections.

Modules and projects have a single instance, so the addition of the implementa-
tion name could be avoided for these components. For consistency, however,
the above convention is followed for these components as well.

In contrast to code generation for experimental targets, this naming convention
produces the restriction that class, module, and project names have to be unique
within the project. Otherwise, malfunctions or compiler/linker errors could occur.
The uniqueness of the name is, therefore, checked in the make mechanism at
the start of the code generation.

The user can partially modify the rules for producing class and variable names in
the expander configuration file codegen.ini (see chapter 5.1 "The code-
gen[_*].ini Files" for more details).

13.3.2 Storage Systems, Data Structures, Initialization of Primitive Objects

A generic object structure, which allows the recording and changing of data at
arbitrary locations during simulation, is used for supporting experimental targets.
The dynamic memory allocation associated with it would have memory and run-
time requirements which are too high for use in the controller. The supplemen-
tary data used in the simulation are not needed in the controller. They are
replaced by condensed structures which are preset by this base software archi-
tecture and cannot be modified by users.

The generic definitions for implementation types (e.g., uint16, etc.) are also
used in the controller and are defined in a global system header file.

Scalar and Logical Values

Global scalar and logical values are directly realized by a C variable of specified
implementation type:

uint16 scalarVariable;

The initialization of global scalar parameters and variables occurs statically in the
definition:

const uint16 scalarParameter = 123;

Local values are defined and initialized as parts of data structures. Non-volatile
variables are not initialized, no matter if they are local or exported.

Note

In the following examples, global elements are shown for clarity because their
data structures are created isolated (i.e. not embedded in the instance tree).
Thus, the generated data structures for declaration and initialization can be
documented. For local elements, declaration and initialization are generated
accordingly, but embedded in the instance tree.

Note

Variables specified as non-volatile are not initialized at all.
Understanding Generated Code

Arrays and Matrices

Arrays and Matrices are directly realized as C arrays of the specified implementa-
tion type:

sint32 array[size];

uint16 matrix[size];

The array size is fixed and, therefore, cannot be modified at execution time. It
corresponds to the size in the model. Matrices are generated as one-dimensional
arrays in the C code.

In memory, arrays are stored in order of increasing index. Matrices are stored in
column-major-order. For example, the following matrix:

1 2 3
4 5 6
7 8 9

Would be stored as:

1 4 7 2 5 8 3 6 9

Initialization of a global parameter array occurs statically in the C code definition:

const uint16 arrayParam[4] =
{ 10,1,4,9 };

Arrays and matrices cannot be created as constants or system constants because
these are generated as #define. In case of a migration from older ASCET ver-
sions, possibly existing system constants have to be switched to parameters man-
ually.

Local values are defined and initialized as parts of nested data structures. Non-
volatile variables are not initialized, no matter if they are local or exported.

Enumerations

Enumerations are mapped onto a primitive integer data type in the C code. In
contrast to the C type enum, usually less than machine word is necessary in this
way to represent an enumeration.

uint8 Lights;

The symbolic names (red and green in the example) are mapped onto integer
values. In the ASAM-MCD-2MC description file generated by ASCET, the respec-
tive symbolic name is assigned again to each integer value so that these names
are visible in the application system:

Note

For multiple instances, the size of an array or matrix must be the same in all
instances since the same object definition is used for all data records. The size
is not stored with it. It is not required because the array size cannot be accessed
in the model.
Understanding Generated Code 155

156
/begin COMPU_VTAB enum_Lights_tab_ref
""
TAB_VERB
2
0 "red" 1 "green"
DEFAULT_VALUE "Error"
/end COMPU_VTAB

Characteristic Curves

The following simple storage system is used for characteristic curves:

Tab. 13-1 Storage system - characteristic curve

The number of nodes is stored in one byte if both the nodes and the character-
istic values (X or W) are represented in one byte. Otherwise, two bytes are used.

For such a storage system, no generic structure definition can be used in C
because the number of nodes and the implementation types of nodes and values
can vary. A separate structure definition must therefore be produced by code
generation for every individual characteristic curve. This definition must be
named and entered into the C header code because of the separate generation
of module and initialization code.

Characteristic curve – example:

KL has three nodes. The input and output data types are both sint16.

In the C code, the structure is defined as follows (component header file <com-
ponent>.h):

struct PIDT1_MOD_IMPL_KL_TYPE {

uint16 xSize;

sint16 xDist [3];

sint16 values [3];

};

The static initialization of the global element KL occurs in the declaration:

Value Stored Description Number of Bytes

n (start address) No. of interpolation nodes 1 or 2 bytes (see below)

X1

X2

… interpolation nodes n*x bytes, increasing index

Xn

W1

… characteristic values n*w bytes, increasing index

Wn
Understanding Generated Code

const struct PIDT1_MOD_IMPL_KL_TYPE KL =
{

3,
{

-2, 1, 4
},
{

5, 6, 7
}

};/*** KL ***/

Local characteristic curves are defined and initialized as parts of nested data
structures.

The storage system makes no distinction between the current and maximum
number of nodes. An adjustment of the number of nodes during calibration is
not planned. The dimensions of the vectors in struct correspond to the current
number of nodes set at generation time.

Access occurs with the help of access routines. There are two possibilities of
accessing characteristics: "linear", i.e. by means of interpolation routines, or
"rounded", i.e. using the characteristic as a look-up table. Both kinds of access
routines are shipped with ASCET-SE. For the above example, linear access looks
like this:

pwm_out = CharTable1_getAt_s16s16
((void *)&KL, xin);

Code for rounded access is generated as follows:

pwm_out = CharTable1_getAtR_s16s16
((void *)&KL, xin);

In the data editor of a characteristic, the user can specify whether to use linear or
rounded access.

Note

When creating access routines, be aware that the storage of the structure ele-
ments in the memory ("Alignment") is defined by the compiler.
Understanding Generated Code 157

158
Characteristic Maps

The storage system for characteristic maps is illustrated in the following table. It
is similar to characteristic curves:

Tab. 13-2 Storage system – characteristic map

Here, the number of X and Y nodes (n and m) are both stored in one byte if all of
the nodes and characteristic values (X,Y, or W) are represented in one byte. Oth-
erwise, two bytes are used.

As in case of characteristic curves, code generation produces a separate struct
definition for every individual characteristic map.

Characteristic map – example:

KF has three nodes on the x axis and four on the y axis. Both input data types
are sint16, and the outputs are uint16.

In the C code, the structure is defined as follows (component header file <com-
ponent>.h):

struct PIDT1_MOD_IMPL_KF_TYPE {

uint16 xSize;

uint16 ySize;

sint16 xDist [3];

sint16 yDist [4];

sint16 values [3 * 4];

};

Value Stored Description: Number of Bytes

n (start address) No. of X interpolation nodes 1 or 2 bytes (see below)

m No. of Y interpolation nodes 1 or 2 bytes (see below)

X1

… X interpolation nodes n*x bytes, increasing index

Xn

Y1

… Y interpolation nodes m*y bytes, increasing index

Ym

W1,1

W1,2

… characteristic values (n*m)*w bytes, column-major
ordering (Y index m increases
faster than X index n)

Wn,m-1

Wn,m
Understanding Generated Code

The static initialization of the global element KF occurs again in the declaration:

const struct PIDT1_MOD_IMPL_KL_TYPE KF =
{

3,
4,
{ 1, 3, 5 },
{ 0, 1, 8, 15 },
{ -5, -3, 0, 1,
 0, 1, 4, 6,

8, 5, 4, 4 }
};/*** KF ***/

Local characteristic maps are defined and initialized as parts of nested data struc-
tures.

Nodes and values are stored by increasing index; the respective storage space is
reserved for the number of nodes currently set at generation time. The storage
of the value matrix is column-by-column. Everything else is the same as for char-
acteristic curves. Access takes place in an analog way, too, as the following
example for linear access (i.e. an interpolation routine call) shows:

pwm_out
= CharTable2_getAt_s16s16s16(

(void *)&KF, xin, yin);

Also the rounded access (i.e. look-up functionality) is similar to curves:

pwm_out
= CharTable2_getAtR_s16s16s16(

(void *)&KF, xin, yin);

The user can specify in the data editor of a characteristic whether to use linear or
rounded access.

Interpolation Node Distributions, Group Characteristic Curves and Maps

For group characteristic curves and maps, only the values are stored as an array
with increasing index.

Tab. 13-3 Storage system - group characteristic curve

Value Stored Number of Bytes

W1 (start address)

… n*w bytes, increasing index

Wn
Understanding Generated Code 159

160
The respective interpolation nodes are saved in separate objects, the interpola-
tion node distributions.

Tab. 13-4 Storage system interpolation node distribution

An interpolation node distribution can thus be used for several group character-
istic curves or maps.

Example for interpolation node distributions and group characteristic
curves:

PWM1 and PWM2 have six interpolation nodes each, as defined in pwm_in.
pwm_in has an input data type of uint16. Both curves have an output data
type of uint16.

The static definitions in the C code have the following form (component header
file <component>.h):

struct PIDT1_MOD_IMPL_pwm_in_TYPE {
uint16 size;
uint16 dist [6];

};

struct PIDT1_MOD_IMPL_PWM1_TYPE {
sint16 values [6];

};

struct PIDT1_MOD_IMPL_PWM2_TYPE {
sint16 values [6];

};

Additionally, three variables are generated for each interpolation node distribu-
tion, as intermediate memory for the interpolation results. They are then used to
access the group characteristic curve.

uint16 pwm_in_index;
uint16 pwm_in_offset;
uint16 pwm_in_distance;

Because these elements are exported in the example, the initialization of the data
structures is again performed in separate structures. The intermediate variables
are not initialized separately.

Value Stored Description Number of Bytes

n (start address) number of interpolation nodes 2 Byte

X1

X2

… interpolation nodes n*x bytes, increasing index

Xn
Understanding Generated Code

const struct PIDT1_MOD_IMPL_pwm_in_TYPE pwm_in =
{

6,
{

0, 4, 8, 10, 12, 13
}

};/*** pwm_in ***/

const struct PIDT1_MOD_IMPL_PWM1_TYPE PWM1 =
{

{
1584, 16, 16, 0, 0, 0

}
};/*** PWM1 ***/

const struct PIDT1_MOD_IMPL_PWM2_TYPE PWM2 =
{

{
16, 16, 1584, 0, 0, 0

}
};/*** PWM2 ***/

Local distributions and group characteristic curves are defined and initialized as
parts of nested data structures.

Access occurs in two steps, analog to the model. First, a search for the interpola-
tion nodes is performed.

Distribution_search_u16(
(void*)&pwm_in.dist,
(uint16)pwm_in.size,
(uint16)out,
(void *)&pwm_in_index,
(void *)&pwm_in_offset,
(void *)&pwm_in_distance);

The results of the search for interpolation nodes are stored in the intermediate
variables pwm_in_index, pwm_in_offset and pwm_in_distance. After
that, these results can be accessed with the help of special interpolation routines.
Thus, several different characteristic curves and maps can be evaluated based on
one search for interpolation nodes.

pwm_out
= GroupTable1_getAt_u16s16(

(void*)&PWM1,
pwm_in_index,
pwm_in_offset,
pwm_in_distance);

pwm_out
= GroupTable1_getAt_u16s16(

(void*)&PWM2,
pwm_in_index,
pwm_in_offset,
pwm_in_distance);
Understanding Generated Code 161

162
Example for interpolation node distributions and group characteristic
map:

GKF1 has four X interpolation nodes (defined in pwm_in1) and three Y interpo-
lation nodes (defined in pwm_in2). pwm_in1 and pwm_in2 have an input data
type of uint16, the characteristic map has the output data type sint16.

The static definitions in the C code have the following form (component header
file <component>.h):

struct PIDT1_MOD_IMPL_pwm_in1_TYPE {
uint16 size;
uint16 dist [4];

};

struct PIDT1_MOD_IMPL_pwm_in2_TYPE {
uint16 size;
uint16 dist [3];

};

struct PIDT1_MOD_IMPL_GKF1_TYPE {
sint16 values [4 * 3];

};

Again, the three intermediate variables are generated for each interpolation
node distribution.

uint16 pwm_in1_index;
uint16 pwm_in1_offset;
uint16 pwm_in1_distance;

uint16 pwm_in2_index;
uint16 pwm_in2_offset;
uint16 pwm_in2_distance;

Initialization of data structures:

struct PIDT1_MOD_IMPL_pwm_in1_TYPE pwm_in1 =
{

4,
{

0, 4, 8, 12
}

};/*** pwm_in1 ***/

struct PIDT1_MOD_IMPL_pwm_in2_TYPE pwm_in2 =
{

3,
{

1, 2, 3
}

};/*** pwm_in2 ***/
Understanding Generated Code

struct PIDT1_MOD_IMPL_GKF1_TYPE GKF1 =
{

{
-5, -3, 0,
0, 1, 4,
8, 5, 4,
19, 7, 0

}
};/*** GKF1 ***/

Local group characteristic maps are defined and initialized as parts of nested data
structures.

The search for interpolation nodes is done separately for each interpolation node
distribution:

Distribution_search_u16(
(void *)&pwm_in1.dist,
(uint16)pwm_in1.size,
(uint16)xin,
(void *)&pwm_in1_index,
(void *)&pwm_in1_offset,
(void *)&pwm_in1_distance);

Distribution_search_u16(
(void *)&pwm_in2.dist,
(uint16)pwm_in2.size,
(uint16)yin,
(void *)&pwm_in2_index,
(void *)&pwm_in2_offset,
(void *)&pwm_in2_distance);

The results of the search for interpolation nodes are stored in the intermediate
variables. After that, these results can be accessed with the help of special inter-
polation routines.

pwm_out
= GroupTable2_getAt_u16u16s16(

(void *)&GKF1,
pwm_in1_index,
pwm_in1_offset,
pwm_in1_distance,
(uint16)pwm_in1.size,
pwm_in2_index,
pwm_in2_offset,
pwm_in2_distance,
(uint16)pwm_in2.size);
Understanding Generated Code 163

164
Fixed Characteristic Curves and Maps

Fixed characteristic curves and maps have equidistant axis points, so there is no
need to store the axis points extensionally in a distribution array. Instead, the
data structure can store the intensional description based on the number of axis
points, the offset to the first point and the distance between points.

Tab. 13-5 Storage system fixed characteristic curve

Tab. 13-6 Storage system - fixed characteristic map

Fixed characteristic curve - Example:

The fixed characteristic curve FKL1 has five interpolation nodes with the distance
2. The offset of the first interpolation node is 0.

Value Stored Description Number of Bytes

n (start address) No. of interpolation nodes 2 Byte

Xoff offset of the first interpolation
node

2 Byte

Xdist distance between interpolation
nodes

2 Byte

W1

… characteristic values n*w bytes, increasing index

Wn

Value Stored Description Number of Bytes

n (start address) No. of X interpolation nodes 2 Byte

m No. of Y interpolation nodes 2 Byte

Xoff offset of the first X interpolation
node

2 Byte

Xdist distance between X interpolation
nodes

2 Byte

Yoff offset of the first Y interpolation
node

2 Byte

Ydist distance between Y interpolation
nodes

2 Byte

W1,1

… characteristic values (n*m)*w bytes, column-
major ordering (Y index m
increases faster than X
index n)

Wn,m
Understanding Generated Code

In the C code, the declaration for this exported characteristic curve has the fol-
lowing form (component header file <component>.h):

struct PIDT1_MOD_IMPL_FKL1_TYPE {

uint16 xSize;

sint16 xOffset;

uint16 xDistance;

sint16 values [5];

};

The definition and static initialization of the fixed characteristic curve look like
this:

const struct PIDT1_MOD_IMPL_FKL1_TYPE FKL1 =

{

5,
0,
2,

{
0, 1, 2, 3, 4

}

};/*** FKL1 ***/

Local fixed characteristic curves are defined and initialized as parts of nested data
structures.

Fixed characteristic curves and maps can be evaluated by direct calculations of
indices, without special subroutines (search routines), because they have con-
stant and equidistant interpolation nodes. In the example, the C code has the
following form:

pwm_out = CharTableFixed1_getAt_s16s16(&FKL1,xin);

Fixed characteristic map - Example:

The fixed characteristic map FKF1 has four interpolation nodes on the x-axis and
five on the y-axis. The X interpolation nodes have an offset of 2 and a distance
of 2, The Y interpolation nodes have an offset of -3 and a distance of 3.

In the C code, the declaration for this exported characteristic map has the follow-
ing form (component header file <component>.h):

struct PIDT1_MOD_IMPL_FKF1_TYPE {

uint16 xSize;
uint16 ySize;
sint16 xOffset;
sint16 yOffset;
uint16 xDistance;
uint16 yDistance;
sint16 values [4 * 5];

};
Understanding Generated Code 165

166
The definition and static initialization of this global fixed characteristic map look
like this:

const struct PIDT1_MOD_IMPL_FKF1_TYPE FKF1 =
{

4,
5,
2,
-3,
2,
3,
{

23, 23, 24, 25, 26,
23, 15, 16, 17, 18,
23, 7, 8, 9, 10,
23, -1, 0, 1, 2

}
};/*** FKF1 ***/

Local fixed characteristic maps are defined and initialized as parts of nested data
structures.

The call in the C code has the following form:

pwm_out =
CharTableFixed2_getAt_s16s16s16(&FKL1,xin,yin);

13.3.3 Data Structures and Initialization for Complex (User-Defined) Objects

Classes

A C structure is defined for each user-defined class. It contains the instance vari-
ables of the classes, ordered in terms of memory classes. The name of the struc-
ture is the C name of the class (class + implementation name; see also section
13.3.1 "Naming Conventions"). For each memory class, an individual structure is
generated and referenced. All instance variables can be accessed directly via this
structure. There are no exceptions. From the PID controller example, the struc-
ture definition for the class PIDT1 is:

struct PIDT1_IMPL_RAM_SUBSTRUCT {
sint16 temp_1;
sint16 temp_2;

};

struct PIDT1_IMPL {
struct PIDT1_IMPL_RAM_SUBSTRUCT *PIDT1_IMPL_RAM;
sint16 memory_D_term;
sint16 D_term;
sint16 P_term;
sint16 I_term;

};

An instance of a user-defined class is created in the C code by creating a struc-
ture with the type of the class PIDT1_IMPL.

To access class instance variables in methods, you can usually directly access the
values stored in the structure. However, this is not so when multiple instances of
the same class are allowed. In this case, an additional receiver argument (self
Understanding Generated Code

pointer) is used. This way, the same code for the method can be used for all
instances of the class. Again using the PIDT1 class as an example, the call for the
compute method looks like the following:

void PIDT1_IMPL_compute (const struct PIDT1_IMPL
*self, sint16 in, uint16 K,
uint16 Tv, uint16 Ti, uint16 Td) {
sint32 _t1sint32;
sint16 _t1sint16;

...(the rest of code for method "compute")

};

Prototype Classes

• encapsulation of extern declarations with define

• no function bodies

• no local data structures

Service Routines

• no function bodies

• local data structures

• special naming convention

Modules

Modules are treated like classes by the code generator. In addition, each module
contains the root for its so-called instance tree, the nested data structure for all
local elements located in the module’s hierarchical element structure.

Only one instance can be defined for each module. It is therefore possible to
directly access all instance variables and parameters of the module. Different
from classes, a self pointer is not required. Processes are implemented as void-
void functions. The normal process in PIDT1_MOD looks like this (with most of
the code left out):

void PIDT1_MOD_IMPL_normal (void) {
...
PIDT1_MOD_IMPL_TP_cmd_d =

CharTable1_getAt_s16u16((CharTable1*)&
(PIDT1_MOD_IMPL_Cmd_pct2deg),
(sint16)_t1sint16);

...(the rest of code for process "normal")

};

Note

The receiver is omitted if only one instance is used per class. The respective
components are determined in the global analysis.
The optimization of the self pointer can be switched off in the class implemen-
tation editor.
Understanding Generated Code 167

168
Boolean Tables

Boolean tables are treated like classes during code generation. They are special
only in so far that they may not include parameters.

The logical dependencies defined in the table are converted into sequences of
logical operators, as shown in the following example:

sint8 CLASS_BOOLTAB_Y1
(struct CLASS_BOOLTAB_Obj *self)

{
return ((sint8) ((

((!_X1) && _X2)
|| (_X1 && (!_X2)))
|| ((_X1 && _X2)

&& _X3)));

}

Conditional Tables

Conditional tables are transformed into ESDL classes internally and processed by
the code generation accordingly. See the ASCET online help for a description of
their functionality.

13.3.4 Local Variables and Parameters

Local elements are realized in the code as parts of data structures (see section
13.3.2 on page 154). In the generated code, these elements are accessed via the
path name provided by their respective data structure. To increase the readability
of the generated code, the complex hierarchical names are mapped to simple
names via preprocessor definitions.

Example:

#define _a ModuleA_IRAM.Class.a

#define _b ModuleA_IRAM.Class.b

...

void CLASS_IMPL_calc (void)

{

 _a = _b;

}

13.3.5 Exported and Imported Variables

Exported variables and messages are implemented as global C variables defined
in the code of the exporting module.

In ASCET, exported variables are commonly referred to as class variables in the
sense that they only exist once for all instances of a class.

An imported variable is accomplished by using its global C-variable name directly
in the importing module's generated code. To do so, the variable is declared as
external in the header of the importing module. The code for the importing
Understanding Generated Code

module thus has a direct reference into the exporting module code, and is there-
fore not completely modular at this point. A pointer assignment for the linkage,
as in the simulation code, does not exist.

Also in this case, the element names are mapped via preprocessor definitions.

13.3.6 Method Declarations and Calls

A method's C name results from concatenating the class identifier and method
name with an underscore in between:

classIdentifier_methodName()

The C name of a method's formal argument agrees with the model name:

returnType classIdentifier_methodName(argType1
argName1, argType2 argName2)

The passing of parameters, such as arguments and return values, depends on
whether the type is a value or a pointer.

• Scalar and Boolean parameters are passed directly as value of the corre-
sponding implementation type.

• Characteristic curves and maps pass a pointer to the structure of the char-
acteristic curve/map.

• Arrays and Matrices pass a pointer to the first element.

• Complex objects pass a pointer to the corresponding class structure.

This corresponds with the semantics which is generally defined in ASCET, and
which also holds in the physical experiment: scalar and Boolean parameters are
passed by value, all other types by reference.

To handle multiple instances correctly, an additional parameter with the C name
self is inserted into the first location of the parameter list. A pointer to the
receiver of the method call or its instance variable structure is passed in this
parameter. This parameter is eliminated in the following cases where it is not
needed:

• Processes of modules because they can have only one instance.

• Methods of classes without instance variables because in this case the
receiver is irrelevant.

However, the generation of this parameter can be forced by means of the
respective setting in the implementation editor of a class.

As an example, the out method in the PIDT1 class has the form:

sint16 PIDT1_IMPL_out
(const struct PIDT1_IMPL *self);

Note

After changes, such as renaming or converting of exported variables, the user
needs to explicitly regenerate the entire model in the export/import structure.
This is achieved by choosing Build  Touch  Recursive prior to code gen-
eration.
Understanding Generated Code 169

170
13.3.7 Constants and Literals

Literals are represented as such, namely literals, in the C code. They are trans-
formed depending on the implementation context when needed. The same
holds true for constants. Both cannot be implemented. In addition, constants are
created in the C code using #define.

Example:

The constant used in the example is represented in the generated C code as
follows:

/**** constants defined by module MOD_IMPL ****/
#ifndef MOD_IMPL_X
#define MOD_IMPL_X 2.0
#endif

The following code is generated for the example:

void MOD_IMPL_process (void) {
dist = ((dist + (sint16)2));
/* min=-10, max=10, hex=1phys+0 */
/* end of process MOD_IMPL_process */

Constants created as global elements are generated without the appended
project and implementation names, according to the naming convention for
other global elements.

Example:

/**** exported constant ****/

#ifndef X_GLOBAL
#define X_GLOBAL 5.0
#endif

The generated code is equivalent to that for a local constant:

void MOD_IMPL_process (void) {
output = ((dist + (sint16)5));
/* min=-20, max=20, hex=1phys+0 */
/* end of process MOD_IMPL_process */
Understanding Generated Code

13.3.8 System Constants

System constants are created in the C code via #define, and used symbolically.
They can be implemented. In the following example, the system constant was
created with a quantization of 1/2.

The following code is generated for the definition of the system constant:

#ifndef MOD_IMPL_SYS_C
#define MOD_IMPL_SYS_C 2
#endif

The system constant is used symbolically in the function definition:

void MOD_IMPL_process (void) {
dist = ((((sint16)MOD_IMPL_SYS_C << 1) + dist));
/* min=-10, max=10, hex=1phys+0 */
/* end of process MOD_IMPL_process */

System constants created as global elements are generated without the
appended project and implementation names, like global constants (see
page 170). The names are generated in capital letters in each case. ASCET model
names are adapted, if necessary.

13.3.9 Virtual Parameters

Virtual parameters are parameters that do not exist physically in the control unit
memory. Instead, they can be used to define real (i.e., non-virtual) dependent
parameters. In combination with a calibration system supporting this mechanism
(e.g., INCA), it is then sufficient to calibrate a virtual parameter in order to affect
several real parameters at the same time.

Example: Suppose the radius of a wheel is defined as a virtual parameter. There-
fore, it cannot be used in the ASCET model directly. The diameter and circumfer-
ence of the wheel are defined as parameters dependent on the radius, and they
are used in various locations of the model.

For the use of virtual parameters, a separate memory class VIRT_PARAM is
defined in the memorySections.xml file. All parameters defined as virtual are
assigned to this memory class.

When creating the C structure for a class or module, a separate substructure for
virtual parameters is created for the memory class, the same as for all other
memory classes (see section "Classes" on page 166). Unlike the substructures
for normal memory classes, this substructure is not referenced in the main struc-
ture (MOD_IMPL).

Note

Virtual parameters cannot be used directly in the ASCET model, because they
do not physically exist in the control unit.
Understanding Generated Code 171

172
struct MOD_IMPL_IRAM_SUBSTRUCT {
uint16 cont;

};

struct MOD_IMPL_VIRTPAR_SUBSTRUCT {
uint16 radius;

};

struct MOD_IMPL {
struct MOD_IMPL_IRAM_SUBSTRUCT *MOD_IMPL_IRAM;
uint16 diameter;

};

The reason for this special treatment is because the memory area for virtual
parameters is allocated physically outside of the control unit memory. Conse-
quently, it may not be referenced by the code. To achieve this, the memory con-
figuration simply specifies a memory area that does not exist in the control unit
(see also chapter 3.3.5 "Memory Class Configuration").

13.3.10 Dependent Parameters

Regarding the generated code, dependent parameters do not differ from normal
parameters. However, their initialization value is not specified directly by the
user, but determined indirectly by the code generator due to the defined depen-
dency. Beyond that, the dependency is not reflected in any other way in the
code. It is included in the ASAM-MCD-2MC file where it is used by the calibra-
tion system.

13.4 Real-Time Constructs

13.4.1 Tasks

Task are ordered collections of processes that can be activated by the application
or the operating system. The activation of a task does not imply its immediate
execution. The start of the task, i.e. the beginning of its execution, is scheduled
by the operating system. Attributes of a task are e.g. its operating modes, its
activation trigger, its priority and the mode of scheduling. On activation the pro-
cesses of a task are executed in the given order.

For OSEK operating systems, tasks are marked in C source code using the TASK()
macro. The expansion of this macro is OS-vendor dependant. It ensures that the
task body can be called in the correct way by your OS.

ASCET and ASCET-SE support the following task scheduling modes:

• Alarm tasks

• Interrupt tasks

• Software tasks

• Init tasks

Only one Init task may exist for each application mode.

13.4.2 Processes

Processes are concurrently executable pieces of functionality. Processes are
mapped into tasks, i.e. a task can call a sequence of processes.
Understanding Generated Code

Processes have no arguments or return value. For all targets (including ANSI C),
processes are generated as void/void functions, as the following simple
example shows:

void MOD_IMPL_process (void) {
CL_IMPL_calc();

}

The only purpose of this example process is to call method calc from the class
CL.

13.4.3 Messages

Messages should be used to ensure data consistency at any time during the pro-
gram execution under real-time conditions. The use of "normal" global variables
bears the risk of data inconsistency if, for example, a variable may be changed
during its use in a process because another process with higher priority accesses
the same entity.

When using messages, message copies are generated in all required cases as a
result of the global analysis. This does not require any user intervention.

The user should ensure, however, that each message is sent by one process only.
If different processes write to the same message in a real time environment,
there is no deterministic way to define from which sender a receiver will receive
the message.

As the default optimization of message copies is not suited for all applications,
the message handling can be configured extensively by the user. Four different
variants exist.

Selection of Message Copy Variants at Compilation Time

The codegen[_*].ini files can be configured so that all supported message
copy variants are generated in C code at once (modularMessageUse=true).
Each variant is separated in generated code by pre-compiler directives #if ...
#endif.

This allows you to choose the message copy variant at compilation time (rather
than at code generation time).

The choice of message copy variant is made by defining the C macro
__MESSAGES that can be included in the user-defined header file
message_scheme.h or defined in the compiler options (see make variable
PROJECT_DEFINES in project_settings.mk).

The following options are available:

Note

The optimization of message copies is based on the priority scheme of an OSEK
operating system. Therefore, it must be ensured that ASCET knows all tasks
used on your ECU, and their priorities.
If this cannot be ensured—because, e.g., the operating system you use is not
OSEK compliant, or messages are accessed from outside (hand-coded
sources)—, it cannot be ensured that the optimization of message copies is
performed an appropriate way. This may even endanger the safety of the gen-
erated code. It is highly recommended to switch message optimization off in
these cases.
Understanding Generated Code 173

174
• Optimize message copies (default):

Messages copies are optimized by exploiting knowledge about the oper-
ating system’s priority scheme. This variant is enabled by the C macro def-
inition:

#define __MESSAGES __OPT_COPY

Prerequisite: For this message copy variant, it is essential that ASCET
knows the priorities of every Task and ISR in the OS that uses messages. If
this information is not complete then the generated code for message
copies can be erroneous and there is a risk of data corruption at runtime.

• No message copies:

Messages are used like global variables in this case. No copies are gener-
ated. This variant is enabled by the C macro definition:

#define __MESSAGES __NO_COPY

• No message optimization (always copy the message):
Messages are always copied. This variant is enabled by the C macro defi-
nition:

#define __MESSAGES __NON_OPT_COPY

In this case, no optimization takes place. This variant is most flexible and
can be used even if ASCET does not know the whole OS configuration
("Additional Programmer" use case).

• Use OSEK COM:
Use OSEK COM for message communication. This is only possible if the
the operating system supports OSEK-COM messaging. This variant is
enabled by the C macro definition:

#define __MESSAGES __OSEK_COM

OSEK_COM assumes that all messages and their copies are defined by the
underlying OSEK operating system. The OSEK-COM1 API calls Receive-
Message() and SendMessage() are used to access current values of
messages before and after each process respectively.

Selection of Message Copy Variant at Generation Time

If only one specific message copy variant shall be generated, the code-
gen[_*].ini option modularMessageUse must be set to false. Addition-
ally, the option messageUsageVariant must be defined to specify the
required message copy variant (see descriptions in codegen_ecco.ini for
more information). In this case, C code will be generated only for the specified
message copy variant, so there is no need to define the compiler macro
__MESSAGES.

Note

If messages are accessed in methods in modules, only __OPT_COPY and
__NO_COPY are available. Other optimizations are not yet supported.

1. OSEK Communication Specification, see http://www.osek-vdx.org/
Understanding Generated Code

http://www.osek-vdx.org/

13.4.4 Resources

The resources are protected by the OSEK operating system mechanisms GetRe-
source and ReleaseResource. The code is suited for the use with other
operating systems or in combination with handcoded sources without restric-
tions.

RTA-OSEK supports the OSEK resource RES_SCHEDULER (see OSEK specifica-
tion). The ceiling priority of this resource corresponds with the OS scheduler pri-
ority. In ASCET, this resource can be used only in C code. To do so, you first have
to define the resource in the C code module by clicking on the button Resource
() and name the resource e.g., RES_SCHEDULER).

You can then access the resource in the C code editor via the corresponding
ASCET macros, e.g.,

ASD_RESERVE(RES_SCHEDULER);
/* user code */
...

ASD_RELEASE(RES_SCHEDULER)

The code generated by ASCET will then look like this:

...
DeclareResource(RES_SCHEDULER);
...
void process(void)

{
...
GetResource(RES_SCHEDULER);
/* user code */
...
ReleaseResource(RES_SCHEDULER);
...

}

13.4.5 Application Modes

Application modes are designed to support different runtime configurations of
the whole system at different times. This allows an easy and flexible design and
a management of system states with completely different function. Examples of
such modes are Startup, Normal Operating Mode, Shutdown, Diagnosis and
EEPROM Programming. Each application mode can be defined with its individual
tasks, priorities, timer configuration etc.

ASCET supports OSEK OS’s application mode concept. The application mode
required is passed as a parameter to the OS’s StartOS() API call. Control of
modes and mode switching is outside the scope of ASCET.

When integrating ASCET with RTA-OSEK V5.x is possible to re-start the OS in a
different application mode. However, such functionality is not part of the OSEK
OS standard and may not be supported by other implementations of OSEK OS.
Understanding Generated Code 175

176
 Understanding Generated Code

14 Inside ASCET-SE

This chapter provides an overview of the key parts of the ASCET-SE code gener-
ator. It describes the process by which an ASCET model is converted to an exe-
cutable program when the Build  Compile / Build All / Rebuild All menu
options are selected.

This is background material for the interested reader. It is not necessary to read
this chapter in order to work successfully with ASCET-SE.

Fig. 14-1 Structure of the program generation process for ASCET-SE

Code generation in ASCET-SE is similar to compilation and has two phases.

1. Expander

In the first phase, a "front-end" called the expander converts the ASCET
model specified in the block diagrams, ESDL and C code editors into inter-
mediate code. During this phase, the physical model is transformed into
the quantized model. Each module and each class are treated separately,
and optimizations are done locally.

ASCET-SE

RTA-OSEK
[or other OS tool]

.h,.c

Intermediate
code

conf.oil

temp.oil

OSEK OIL file
defining
objects
generated by
ASCET code

Base OS configuration
OS objects for ASCET
Other OS objects

.h,.c

rtk_*.<lib>

BD ESDL SM C
ASCET model

BD: Block Diagrams
ESDL: Embedded
Systems Development
Language
SM: State Machines
C: C code

generate.mk

Expander

ECCO

*.h.pl
*.c.pl

Controls

.h,.cpostGenerateHook

Executable

*.o

User provided C compiler

User provided linker

compile.mk

build.mk

Controls

Controls

postCompileHook

postBuildHook
Inside ASCET-SE 177

178
The expander writes the ASCET data model into the CGen directory on the
hard disk. Each module specified in ASCET is expanded into three files: the
database with the extension *.db, a header file with the extension
*.h.pl, and the C file with the extension *.c.pl.

2. ECCO

In the second phase, a "back end" called ECCO (Embedded Code Creator
and Optimizer) uses its global view of the ASCET project to do extensive
global optimization and then converts the intermediate code into C code,
adding any target compiler intrinsics (e.g. pragmas to place code into
memory sections) required for the target microcontroller. ECCO uses a set
of code production rules (CPRs) to do the conversion. These CPRs can be
modified, within certain restrictions, to adapt the code generation to
changing requirements.

The generation process is controlled by the generate.mk and make-
file files. The latter is generated automatically by ASCET for the individ-
ual steps of code generation.

An OSEK OIL file, temp.oil, is created and RTA-OSEK is invoked on a
basic OS configuration called confVx.y.oil to generate the OS data
stuctures.

Building the executable from the generated code needs two additional phases
that are managed by ASCET-SE:

3. Compile

The C source and header files generated by ECCO and RTA-OSEK are com-
piled by the target-specific compiler. This process is controlled by ASCET
using several make files. ASCET makefiles have a .mk extension, e.g.
project_settings.mk and target_settings.mk. The make-
file file itself is generated by ASCET and contains all paths the user has
entered via the user interface, as well as an include command for the
compile.mk file. The following is an excerpt from the makefile file,
using the MPC56x with RTA-OSEK as example:

path definitions
P_TGROOT = C:\etas\ascet6.1\target
P_TARGET = c:\etas\ascet6.1\target\trg_mpc56x
...
P_CCROOT = c:\compiler\diab\5.0.3
...
phase definition
include $(P_TARGET)\compile.mk

As a consequence of the "Smart-Compile" optimization, many different
files are generated and used during the compile phase. As a result, a set
of object files is created.

4. Build

The compiled files are now linked to an executable program. This process
is controlled by the build.mk file and the specific makefile, as well as
project_settings.mk and target_settings.mk. As a result, the
user receives an executable program.
Inside ASCET-SE

14.1 Structure of the Code Generator

The code generation subsystem has a layered structure. The tasks of the individ-
ual layers are discussed briefly in the following sections.

14.1.1 Front-End Transformation

A respective front-end conversion exists for each different type of specification
(i.e., block diagram, state machine, ESDL). Here, the specification is analyzed syn-
tactically. For example, a check is made to determine whether or not all necessary
ports on a block were connected during graphical input. For ESDL, a parser is
used. If the specification is syntactically correct, the front-end converts these files
into the so-called MDL format.

C code modules, in which the user works directly on the implementation layer,
form an exception in the specification. C code, in this case, is entered manually
for the respective target. Because of this special position, C code modules are not
important for the code generation. These are discussed later in this document.

14.1.2 MDL and MDL Builder

The MDL (method definition language) is an intermediate format, invisible to the
user, which is used internally to represent all the specification types uniformly.
MDL offers an object-based view. Classes and methods can be declared and
defined. In addition, MDL has elements to represent real-time behavior, i.e. pro-
cesses, messages, etc. Algorithms are still represented physically, without target
dependence. User-specific quantizations (e.g., re-scaling with correction factors)
occur later in the generation process. However, all elements (e.g., variables,
method arguments) are detailed with the available implementation information
in this format.

Semantic Analysis

In the MDL builder, also a general semantic analysis occurs. After this, a special
analysis takes place for the implementation code generation. The mathematical
expressions are analyzed semantically according to a stack-based mode of oper-
ation. The following additional checks are performed:

• Usage of non-linear conversion formulas? If yes: error message.

• Illegal mixture of floating point and integer entities? If yes: error message.

• Maximum bit width exceeded in an implementation specified by the user?
If yes: error message.

• For division, does the physical interval of the denominator contain zero? If
yes: error message.

• For assignments, does the physical interval of the assigned expression fit
in the physical destination interval of the variables to which it is assigned?
If no: warning. In this case, the generation of limiters is strongly recom-
mended.

Collecting Optimization Data

After the semantic analysis, additional information (e.g. scaling factors, intervals)
is calculated during the setup of the MDL tree. This data is used to optimize the
transformation of the arithmetic and is stored with each node in the MDL tree.
Inside ASCET-SE 179

180
Computation of physical intervals for intermediate results: The user speci-
fies intervals for all variables, parameters, method arguments and return values.
However, for the intermediate results found in mathematical expressions, the
range of values must be computed using interval arithmetic.

Computation of optimization data: To balance the precision and efficiency of
the generated code, a skillful choice of quantizations for the intermediate results
is important. For each operation in a mathematical expression, a list of optimal
scales is created which are based on minimizing the number of re-quantization
operations. The optimization data serves as a decision base in the generation
phase.

14.1.3 Code Generator

The code generator maps the object-oriented structure of the MDL to a function-
oriented structure. This contains simpler language features that are more akin to
C.

The code generator is still independent of the target. A distinction is made, how-
ever, between experimental targets and electronic control unit targets because
special optimizations are carried out for electronic control unit targets which are
required even at this layer.

In ASCET, four different code generators are available for selection. They differ
mostly in the method of arithmetic conversion. The four code generators corre-
spond to the four phases of an integrated development. The first three phases
are executed with experimental targets. The last phase corresponds to the work
with a specific microcontroller target.

• Physical experiment produces physical entities and floating-point arith-
metic (without quantizations). For this code generator, no implementation
information is required.

• Quantized physical experiment produces a physical simulation with quan-
tizations. Floating-point arithmetic is used, but value ranges and quantiza-
tions can be indicated for any entity. Implementations may be partially
specified and can be changed at run-time.

• Implementation experiment produces a simulation on the implementation
layer. All implementations (e.g., data types, conversion formula, etc.) must
be specified (as needed later in the Controller Implementation). Algo-
rithms are transformed automatically into fixed-point arithmetic of the
target system.

• The object based controller implementation performs additional optimiza-
tions for the electronic control unit (e.g., imported entities are directly ref-
erenced). Name conventions are converted differently. Here, names are
used instead of data base IDs. The generation of fixed-point arithmetic is
identical to that of the implementation experiment, which ensures the
same behavior.

All ASCET-SE targets are only capable of an object-based controller imple-
mentation, i.e. the object structures selected in the model are mapped in
the controller software.
Inside ASCET-SE

For an ASCET module, code can be generated and simulated without project
context only in the physical experiment. For the other code generators the mod-
ule must be integrated into a project. This is the only way to access the imple-
mentation information. Without project context, the conversion formulas as well
as all implementations of imported entities are missing.

Expander

The expander creates a target-independent intermediate code (*.pl files),
which is used for the generation of the final, target-specific C code. It creates the
desired software architecture. A substantial task of the expander is transforming
the physical/mathematical expressions in the MDL into concrete calculations
appearing later in the C code. It is directed by the code generator, using a stan-
dardized internal interface. The user can therefore select the expander indepen-
dently of the code generator.

Unlike the MDL Builder, the expander is function oriented. The MDL tree is tra-
versed from top to bottom recursively, in order to generate intermediate code for
the individual operations that correspond to the nodes in the MDL tree. At first,
code generation for individual operations is executed using basic principles in a
local context, i.e. for that operation only. Then, using the value intervals and
optimization data calculated during the semantic analysis, optimal code is gener-
ated for each entire mathematical expression.

The expander works on the implementation layer, i.e., it uses C data types
instead of physical representations.

ECCO

Finally, the intermediate code generated by the expander is translated into exe-
cutable C code by ECCO.

14.2 Code Administration

The administration systems described below are not directly part of the code
generation subsystem. They aid the code generator and allow permanent, safe
storage of automatically generated and handwritten code.

14.2.1 Make Mechanism

The Make mechanism performs the task of creating an up-to-date and consistent
code version for a module. Due to modularity, the turn-around times are mini-
mized after model changes, because code is regenerated and compiled for as
few modules as possible. The Make mechanism creates a dependency network
from the ASCET data model. The time stamps of each module in this network are
analyzed to determine which modules must be regenerated.

Unfortunately, the time stamps are not always sufficient to decide whether
regeneration is necessary. Regeneration is not required with every change in the
time stamp, but this cannot be recognized automatically.

As a result, the Make mechanism is optimized for physical experiment code gen-
eration. Emphasis is given to achieving short turn-around times. In individual
cases, too many modules or, in rare cases, too few modules get regenerated.
Users should therefore select Build  Touch  Recursive after larger modifica-
tions to the model structure (e.g., creation/deletion of variables/methods, or
changing exported/imported variables) before generating new code.
Inside ASCET-SE 181

182
14.2.2 Code Manager

The code manager acts internally as the central interface for code generation and
storage. Through this interface, all other subsystems communicate demands for
code generation, the Make mechanism, and code storage. Some example func-
tions controlled by this interface are:

• Generating source code for a component (by selecting Build 
Generate Code).

• Generating the executable (by selecting Build  Build the code is gener-
ated, compiled, linked and stored in the ASCET database).

• Loading code into the target (e.g., by selecting Build  Experiment).

• Saving source code to files (by selecting File  Export  Generated
Code  *). This option is only available, if the code has been stored to the
database before.

• Executing a "Touch" (by selecting Build  Touch  * the time stamp is
updated, specifically for the Make mechanism).

Code management ensures permanent, safe storage in the ASCET database of
software-generated and handwritten code. For any ASCET component (i.e. mod-
ule, state machine, class, etc.), several code variants may simultaneously be
stored in the database as separate entities.

A code variant is essentially based on the target, code generator, and expander
selection in the code generation settings.

Therefore, if one of these selections is changed at any time, a new variant will be
created and stored separately. Conversely, any time one of the other Code Gen-
eration Options (e.g., protected division, generate limiters) is changed, the code
of the existing variant is overwritten with the altered form.

When a code generator that does not allow different implementations is selected
(e.g., "Physical Experiment"), system-generated and handwritten code is stored
with the component.

When a code generator that allows different implementations has been selected,
system-generated and handwritten codes are stored in different locations. Gen-
erated code is stored with the project, since that is the only location where the
necessary data (i.e., formulas, global variables, etc.) are available for generation
with implementations. Handwritten code is, again, stored with the component
of the respective implementation.

Note

As the target and expander are chosen in relation to each other, the target and
code generator suffice to identify a code variant.

Note

"Physical Experiment" is currently the only code generator in ASCET for which
this is the case.
Inside ASCET-SE

14.3 Directory Structure of the CPRs (Code Production Rules)

The code production rules (CPRs) are Perl programs that are stored in a directory
with the following structure:

Fig. 14-2 Directory structure of the CPRs

The technical prerequisite for a re-use on the CPR level is based on the following
Perl feature:

For searching a function (Macro, CPR), Perl processes a list of directories that can
be passed at start-up. The search ends either when the first function with a
matching signature is found, or with an error message if no matching function is
found.

If the CPRs of each component contained in ASCET-SE are stored in individual
directories, and if the Perl interpreter, in the corresponding make file, is provided
with a directory list that follows the order "from special CPR to general CPR", a
superimposition of standard CPRs by user-specific CPRs, i.e. overwriting of the
standard functionality, is possible.

CP Rules (Generation
Base)

General Code Generation Rules

bo_* Code generation adaptations for elements, types,
components, and executables.

custom (user-specific) User-defined rules for the code generation

eHooks Rules for the eHooks package.

milieu Adaptation of the code generated by ECCO to the
target
operating system configuration
CPU frequency, prescaler

oil OIL generation rules

os OS generation rules
Inside ASCET-SE 183

184
 Inside ASCET-SE

15 ASCET-SE — Restrictions

This chapter describes what restrictions exist in the structure of the code gener-
ation and how these can be avoided. The known errors are also listed.

15.1 General Restrictions

15.1.1 Interval Arithmetic

The ranges for intermediate results in mathematical expressions are computed by
interval arithmetic. Functional relationships cannot be recognized in this; inter-
mediate results are always computed as if all intervals arose from input variables
independent of each other. This can lead to unnecessarily large word lengths,
incorrectly detected overflows, and the corresponding unnecessary loss of
numerical precision. Another consequence can be the unnecessary generation of
code for limiters in a later assignment.

Example: x  [9.0,99.0]. Then the expression x/(x+1) has the actual
interval of [0.9, 0.99], because x is in both the numerator and denominator.
If, on the other hand, the interval algorithm first calculates x+1 ,
[10.0,100.0], the interval for x/(x+1) is obtained from this by dividing the
intervals: [9.0,99.0]/[10.0,100.0]=[0.09,9.9]. This is two orders of
magnitude larger than the actual interval.

Therefore, when part of a larger expression, e.g., (x/(x+1))*y, this excessive
interval can cause an unnecessary right-shift in the immediate result (and possi-
bly even in y) in order to prevent a supposedly possible overflow. This can, in
turn, significantly worsen the numerical behavior of the system.

To avoid such effects, the range of the intermediate result can be explicitly spec-
ified using an additional variable, based on the known function dependence.

15.1.2 No Quantization for Literals

In rare cases, the automatic establishment of quantization of a literal according
to its context can lead to unsatisfactory results if the literal is thereby represented
too roughly. These cases are quite rare, however, and generally only occur for
irrational literal values.

The use of a parameter or an implemented temporary variable helps to alleviate
the problem.

15.1.3 ASCET Direct Access and Characteristic Maps

Direct access on a characteristic table in nested classes may lead to correct, but
inefficient code.

It is expected that the expression which delivers a characteristic curve or map
within a call of the interpolation routine

CharTable2_getAt_s8s8s8(ASD_CHTBL_PTR(Two_D),
(sint8)1,(sint8)1);

is a simple expression. If not, correct, but inefficient code is generated if the
optimization options Optimize Direct Access Methods * are deactivated, e.g.,

ASD_INPL_CharTable2_getAt_s8s8s8(

INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(

(struct MIDDLE_IMPL *)&self->Middle))).xSize, 
ASCET-SE — Restrictions 185

186
(const sint8 *) 

(INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(

(struct MIDDLE_IMPL *)&self->Middle))).xDist), 

INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(

(struct MIDDLE_IMPL *)&self->Middle))).ySize, 

(const sint8 *) 

(INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(

(struct MIDDLE_IMPL *)&self->Middle))).yDist), 

(const sint8 *) 

(INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(

(struct MIDDLE_IMPL *)&self->Middle))).values), 

(sint8)1, (sint8)1) ;

Workaround: For performance optimization, it may be useful to use tempo-
rary variables in a model if the getAt method of a characteristic curve or map
reference shall be called, which was delivered via a method call:

res = Middle.Inner().Two_D().getAt(1,1);

In such a situation, a reference should be assigned to a temporary variable. Then,
the getAt method of the temporary variable is called.

_Two_D_REF = Middle.Inner().Two_D();

res = _Two_D_REF.getAt(1,1);

This results in a more efficient generated code:

_Two_D_REF = INNER_IMPL_getTwo_D(
(MIDDLE_IMPL_getInner((struct MIDDLE_IMPL *) 
&self->Middle)));

ASD_INPL_CharTable2_getAt_s8s8s8(
_Two_D_REF->xSize,(const sint8 *) 
_Two_D_REF->xDist, 
_Two_D_REF->ySize,(const sint8 *) 
_Two_D_REF->yDist,(const sint8 *) 
_Two_D_REF->values, 
(sint8)1, (sint8)1);

15.1.4 ESDL: No Length() Method for Arrays and Matrices

For ASCET-SE targets, the ESDL methods length() (for arrays), xLength()
and yLength() (for matrices) are not supported. Using them results in the fol-
lowing error message:

ERROR(MCCg3): Array/Matrix <name>: length access not
supported for controller targets.
ASCET-SE — Restrictions

15.2 Restrictions in Using ASCET-SE

15.2.1 Inputs of Characteristic Curves and Maps

Restriction: Inputs of characteristic curves and maps must be static variables
(stored in RAM). In the ASCET-SE software architecture, these are exported or
imported class variables and also local instance variables of modules, but not
method arguments, method local variables, or instance variables of classes.

Reason: Modern calibration systems and the ASAM-MCD-2MC format require
(i.e., for display of operating point) the name and memory address of the input
variable which must be stored in static RAM cell (i.e. not on the stack) for every
characteristic curve, etc. If an expression or a variable is used which is neither
global nor visible, rather than in a RAM location, then the characteristic curve
cannot be calibrated, or only with limitations.

Check: In the code generation, a warning indicates that the parameter is not
calibratable, if applicable.

Workaround: If necessary, insert an appropriate static intermediate variable
(RAM cell) in the model before the input of the characteristic curve.

15.2.2 No Separate Search for Interpolation Nodes and Interpolation

Restriction: Separate processes to search for interpolation nodes and the inter-
polation itself are not possible for normal (individual) characteristic curves and
maps, i.e., the methods search and interpolate (extended interface of
characteristic curves and maps) can not be used.

Reason: Characteristic curve objects are stored in static memory areas (ROM/
FLASH) in the controller and therefore cannot contain storage spaces. To make a
separate search for interpolation nodes possible, additional separate variables
would always have to be created in RAM in order to store the result of the
search. This is not performed for reasons of efficiency.

Check: A failure report is indicated during code generation when applicable.

15.2.3 No Choice for Interpolation Method

Restriction: Individual selection of different interpolation or extrapolation meth-
ods for characteristic curves and maps (rounded, linear) as in the simulation is not
possible. Interpolation and extrapolation behaviors are determined globally by
the interpolation routines used.

Reason: If the type of interpolation were to be individually selected for each
characteristic curve, then it would be necessary either to provide separate rou-
tines for each type of interpolation (i.e., greater amount of code), or to use a
generic routine to which the interpolation type is passed as a switch when it is
called (i.e., greater amount of code and longer running time). Thus, this is not
provided in the controller for reasons of efficiency.

Check: None. The interpolation routine provided (or supplied by the user) for the
respective combination of characteristic curve type and data type is always
called.
ASCET-SE — Restrictions 187

188
15.2.4 Uniqueness of Component Names

Restriction: The names of components must be unique within a project. Addi-
tionally, the project may not have the same name as a component contained
within it.

Reason: The C names of functions and variables in the controller code must be
readable and therefore contain the names of components. If two components in
the project have the same name, then this could cause a name conflict in the
code (compiler/linker error).

Check: In the Make mechanism, a failure report is indicated when applicable.

15.2.5 Make Mechanism for Controllers and Fixed-Point Arithmetic

Restriction: The make mechanism does not recognize all dependencies (e.g.,
changes of formulas, etc.) that, together with Implementation Experiment or
Controller Implementation, require a regeneration of the entire project or indi-
vidual project parts. If it did, the entire project would have to be analyzed, which
would take about as much time as a complete regeneration.

Reason: The make mechanism for the Object Based Controller Implementation
works the same way as for the physical simulation. Some global side effects from
changes in the model are therefore not recognized.

Workaround: For changes with global effects, the user has to force a complete
regeneration of the project by selecting Component  Touch  Recursive.
Thus, the code consistency is put under the user's control.

15.3 Known Errors in the ASCET-SE Code Generation

The following errors are known for ASCET-SE. Only errors which are specially
associated with controller code generation via ASCET-SE are listed here. General
restrictions associated with ASCET are not given here.

15.3.1 Build Executable Code After Exiting ASCET

When selecting Build  Build, an executable program is generated in the tem-
porary ..\ascet6.1\cgen directory and stored into the ASCET database.
When the Keep files in Code Generation Directory option is deactivated in
the ASCET options (cf. ASCET online help), the content of the .\cgen\ direc-
tory is deleted whenever you exit your ASCET session. Retrospectively activating
the option has no effect for the running session.

The executable code is still in the database, but there is no way of reading it from
there. The workaround is, upon re-entering ASCET , to force a new compilation
of a component and relinking by selecting Build  Touch  Flat before
rebuilding the executable.
ASCET-SE — Restrictions

16 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team
and product hotlines, take a look at the ETAS website:

Borsigstraße 14 Phone: +49 711 89661-0

70469 Stuttgart Fax: +49 711 89661-106

Germany WWW: www.etas.com

ETAS subsidiaries WWW: www.etas.com/en/contact.php

ETAS technical support WWW: www.etas.com/en/hotlines.php
ETAS Contact Addresses 189

http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etas.com
http://www.etas.com/en/contact.php
http://www.etas.com/en/hotlines.php

190
 ETAS Contact Addresses

Index

Symbols
*.template file 91
.\target\trg_<targetname> 32–37

A
a_basdef.h 73
a_intpol.h 77
Algorithms 135
alignment

definition 105
aml_template.a2l 105
ANSI-C 92
ANSI-C target 24

code generation 30
interfacing with OS API 93
task configuration 93

application modes 175
array 155
ASAM-MCD-2MC 28, 30

alignment definition 105
description file 106
ETK driver configuration 105
generate ~ file 107
generation 23, 105–108
memory layout 105
project definitions 105
virtual address table 106

ASCET
configure optimization

features 116
include external code 114
include handcoded sources 114

B
banners 70
Boolean tables 168
build.mk 70

C
C files

including own ~ 72
characteristic curve 156

fixed ~ 164
group ~ 159
rounded access 157

characteristic map 158
fixed ~ 164
group ~ 159
rounded access 157, 159

Class instance variables 166
Classes 166
code

banners 70
formatting 71
postprocessing 71

code formatter "Indent" 71
documentation 71

Code generation 24–30
ANSI-C target 30
copy C code 131
copy operating system settings 133
generate ASAM-MCD-2MC file 30
generate executable code 29
generate source code 29
target-specific adaptations 131
Index 191

192
code generation settings 25
Code generator 180

implementation experiment 180
object based controller

implementation 180
physical experiment 180
quantized physical experiment 180

Code manager 182
Code Production Rules (CPR) 183
codegen.ini 59
codegen_<target>.ini 59
codegen_ecco.ini 59
compile.mk 70
Compiler 23

path 24
path selection 25

Conditional tables 168
configuration files

a_basdef.h 73
prj_def.a2l 105
proj_def.h 73, 113, 114

Constants 170
Conversion Formulas 119
convert_hip_db.pl 66
cooperative task 81
copy C code

entire project 131
module/class 131

D
Data structure

Boolean tables 168
classes 166
conditional tables 168
modules 167

data structure generation 115
Degrees of freedom 135
Degrees of optimization 135
Dependent Parameters 172
dim_x.a2l 28
directory

.\target\trg_<targetname>
32–37

dT 86, 124
generate 88
optimize calculation 90
static 89

dynamic dT 87

E
ECCO 181
Enumerations 155
Error propagation 137
ETAS Contact Addresses 189

Expander 177, 181
Exported variables 168
External Code Integration 111–118

see also handcoded sources

F
FILES_HEADERS_PROJ 69
fixed characteristic curve

example 164
fixed characteristic map

example 165
Front-End transformation 179

G
generate dT 88
generate.mk 69
Generated Code 90, 149–175

distribution to files 149
Modularity 149

group characteristic curve
example 160

group characteristic map
example 162

H
H files

including own ~ 72
handcoded sources

call ASCET C Code 113
call ASCET-generated functions 114
code for use with external data

structures 115
configure message copies 117
configure method calls 116
configure optimization features

(ASCET) 116
include in ASCET make process 114
integration via prototypes 111
interface

function_declarations
.h 149

interface
variable_declarations
.h 149

optimization features 116
use external global variables/param-

eters in ASCET code 114
variant parameters 117

Header Structure 149, 150
hip.db

convert to memorySections.xml
66
Index

I
if_data_template.a2l 105
Implementation 39–57

additional information 45
basic model types 39
complex model types 47
conversion formula 42
copy/paste 48
edit element ~ 39
Identity Conversion Formula 46
implementation type 41, 44
limiters 44
memory class 45
method-local variables 54
methods 52
operators 55
optimized method calls 48
processes 52
process-local variables 54
related variables 121
temporary variables 53
value range 43
zero in value range 45

Implementation casts 54
Implementation code generation

collecting optimization data 179
generation of C code 181
semantic analysis 179

Implementation Types 44
arrays 155
logical values 154
matrices 155
scalar values 154

Imported variables 168
Indent code formatter 71

documentation 71
individual instance trees for

modules 153, 167
Input Frequency 28
Installation

install.ini 12
silent mode 11

Installation variants
ANSI-C 191

Integer Arithmetics 136
error propagation 137
errors from integer division 136
quantization errors 136

Integer code generation
addition 140
assignments 138
comparisons 143
degrees of freedom 135
degrees of optimization 135

division 142
literals 144
multiplexers 144
multiplication 141
optimization 145
re-scaling 138
rules 137
subtraction 140
switches 144

interface to handcoded sources
function_declarations.h 149
variable_declarations.h 149

Interpolation
accuracy 78
range of values 78

Interpolation node distributions 159
Interpolation procedure 78
Interpolation routines 77–79
Interrupt Priority Level 82

L
Linker 70
Linker/Locator 23

path selection 25
Literals 144, 170
local Parameters 168
local variables 168
Locator 70

M
make files

build.mk 70
compile.mk 70
include own ~ 72
project_settings.mk 70
settings_<compiler>.mk 69
target_settings.mk 69, 70

Make mechanism 181
Make Variables

ASM_SRC_FILES 73
C_INTEGRATION 72
C_SRC_FILES 72
COMPILE_MODE 70
FILES_HEADERS_PROJ 69
LIBS_USER 72
P_ASM_SRC_FILES 72
P_C_SRC_FILES 72
P_CGEN 73
P_DATABASE 73
P_H_SRC_FILES 72
P_TARGET 73
P_TGROOT 73
POST_CGEN_PERL_MODS 71
SMART_COMPILE_COMPARE 70
Index 193

194
matrix 155
MDL and MDL Builder 179
mem_lay.a2l 28, 105
Memory classes 45

convert_hip_db.pl 66
define 65–66
memorySections.xml 64
migrate old projects 66

memorySections.xml 27, 28, 64
Memory classes 66

Messages 168, 173
optimization 74, 173

Methods 166
call 169
declaration 169

modeling hints 119–130
classes 129
concatenated calculations 128
conversion formulas 119
division 125
implementation 121
logical operators 128
multiple calculations 126
multiplication 123
scale values 119
state machines 130
value intervals 120

Modularity 149
Class interface 149
Public interface 149

module 167
individual instance trees 153, 167

N
non-preemptable task 81
non-volatile variables 45

no initialization 154

O
Object Based Controller

Implementation 26
Operating System Integration

see OS Integration
operating system settings

copy 133
RTA-OSEK 26

operator implementation
conversion rules 55

Optimization Features 116
configure message

copies 74, 117, 173
configure method calls 48, 116

optimize dT calculation 90
optimized method calls 48

OS
interfacing with unknown ~ 92
path 24

OS configuration
RTA-OSEK 26
template-based ~ 91

OS editor
Tick Duration field 86

OS Integration 81–103
additional OS configuration 84
dT 86
interfacing with unknown OS 92
provide main program 86
scheduling 81
set up project 83
template language reference 94
template-based OS

configuration 91
OS template 91, 94

Alarm object 101
AppMode object 98
basics 94
chomping whitespace 96
comment 96
conditionals 95
directives 94
expressions 94
Function object 103
include other files 95
InitTask object 100
ISR object 100
iteration 95
Message object 102
object reference 96
OS object 97
Process object 102
Resource object 102
subroutine 95
Task object 98
UsedMessage object 102

os_unknown_inface.h 92, 93
OSEK Resource

RES_SCHEDULER 175
Overflow handling 140, 141

P
Parameter

dependent 172
local 168
virtual 171

physical experiment 180, 182
preemptive task 81
preprocessor definitions 168, 169
Index

preprocessor switch
__MESSAGES 174
COMPILE_UNUSED_CODE 74
DECLARE_INLINE_METHODS 74
DECLARE_PROTOTYPE_ELEMENTS

114
DECLARE_PROTOTYPE_METHODS 74,

114
message configuration 74
model specific ~ 74
NO_DECLARE_* 112, 113

Prescaler 28
priority scheme 81
prj_def.a2l 105
process 172
proj_def.h 113, 114
project

migrate to new target 131–133
project editor

implementation type 44
project_settings.mk 28, 69
Prototypes 51, 167

integrate handcoded sources
via ~ 111

specify 52

Q
Quantized arithmetic 135–148

see also Integer Arithmetics

R
Real-Time Constructs 172

Application Modes 175
Messages 173
Processes 172
Resources 175
Tasks 172

Re-scaling 138, 140
Resources 175
Restrictions 185

direct access 185
General 185
in Using ASCET-SE 187
interval arithmetic 185
known errors 188
no length() for array/matrix 186
no quantization f. literals 185

S
Safety Hints 17

FPU Usage 17
Non-Volatile Elements 18

Scheduling 81
cooperative 81
non-preemptable 81
preemptive 81

scheduling modes for tasks 172
Service routines 49

specify 50
settings_<compiler>.mk 69
Smart-Compile 70
Software architecture 152

data structures 154
initialization of primitive

objects 154
instantiation 153
naming conventions 153
storage system 154

static dT 89
Storage system

characteristic curves 156
characteristic maps 158
distributions 159
fixed characteristic curve 164
fixed characteristic map 164
group characteristic curve 159
group characteristic map 159

System constants 171

T
target.ini 61
target_settings.mk 69
task 172

cooperative 81
non-preemptable 81
preemptive 81
scheduling modes 172

task configuration
ANSI-C target 93

temp.oil 83, 94

U
user-defined service routines 49

specify 50

V
Value intervals 120
Variants 117
Virtual Address Table 106

generate 106
virtual Parameters 171
Index 195

196
 Index

	ASCETSE V6.1
	1 Introduction
	1.1 About this Document
	1.1.1 Target Audience
	1.1.2 Document Structure
	1.1.3 Conventions

	1.2 Installation
	1.3 Abbreviations and Definitions

	2 Safety Hints for Application Software Design
	2.1 Interpolation Routines
	2.2 FPU Usage
	2.3 Non-Volatile Elements
	2.4 Provision of Customized Data Types

	3 Getting Started
	3.1 Components of ASCET-SE
	3.2 Basic Stages from Model to Executable
	3.2.1 Code Generation
	3.2.2 Compilation and Linking
	3.2.3 ASAM-MCD-2MC Generation

	3.3 Configuring ASCET-SE for Code Generation
	3.3.1 Target Selection
	3.3.2 Path Settings for External Tools
	3.3.3 Code Generation Settings
	3.3.4 Operating System Configuration
	3.3.5 Memory Class Configuration
	3.3.6 Target Initialization Code
	3.3.7 Customizations for Compiling and Linking
	3.3.8 Generating the Executable File and Running it on the Target
	Differences for the ANSI-C Target

	3.4 ASCET-SE Installation Reference
	3.4.1 Installation Contents
	Directory .\target\trg_<targetname>
	Directory .\target\trg_<targetname>\cp_rules
	Directory .\target\trg_<targetname>\docco
	Directory .\target\trg_<targetname>\example
	Directory .\target\trg_<targetname>\include
	Directory .\target\trg_<targetname>\Intpol
	Directory .\target\trg_<targetname>\Intpol\lib
	Directory .\target\trg_<targetname>\Intpol\Src
	Directory .\target\trg_<targetname>\scripts
	Directory .\target\trg_<targetname>\source

	4 Implementation Configuration
	4.1 Implementations for Basic Model Types
	4.1.1 Implementation Data Types
	4.1.2 Conversion Formula
	4.1.3 Value Range (Only for Numerical Quantities)
	4.1.4 Implementation Master
	4.1.5 Implementation Types
	4.1.6 Value Range Limitation
	4.1.7 Zero Containedness in the Value Range
	4.1.8 Memory Locations
	4.1.9 Consistency Check
	4.1.10 Additional Information
	4.1.11 Sizes of Composite Model Types
	4.1.12 Summary of Element Implementation

	4.2 Implementations for Complex Model Types (Classes, Modules, Projects)
	4.2.1 Optimized Method Calls
	4.2.2 User-Defined Service Routines
	4.2.3 Prototype Implementations
	4.2.4 Processes and Methods

	4.3 Implementations for Temporary Variables
	4.4 Implementations for Implementation Casts
	4.5 Implementations for Method- and Process-Local Variables
	4.6 Migration of Operator Implementations

	5 Configuring ASCET for Code Generation
	5.1 The codegen[_*].ini Files
	5.2 The target.ini File
	Section [Target]:
	Sections [<osname>]

	5.3 The memorySections.xml File
	5.3.1 Defining a Memory Class
	Step 1
	Step 2

	5.3.2 Migration of Legacy Projects

	5.4 Build System Control & Configuration Settings
	5.4.1 Project Settings - make file project_settings.mk
	5.4.2 Target and Compiler Settings - Make Files target_settings.mk and settings_<compiler>.mk
	5.4.3 Code Generation - Make File generate.mk
	5.4.4 Compilation - Make File compile.mk
	"Smart-Compile"

	5.4.5 Build - Make File build.mk
	Linker/Locator Control

	5.5 Customizing Code Generation
	5.5.1 Banners
	5.5.2 Formatting Generated Code - the .indent.pro Configuration File
	5.5.3 Code Post-Processing

	5.6 Customizing the Build Process
	5.6.1 Including Your Own Make Files
	5.6.2 Including User-Defined C and H Files
	5.6.3 Special Makefile variables provided by ASCET

	5.7 Controlling What is Compiled Using ASCET Header Files
	5.7.1 The Include File a_basdef.h
	5.7.2 The Include File proj_def.h

	6 Interpolation Routines
	6.1 Use of Interpolation Routines
	6.2 The Interpolation Procedure
	6.3 Accuracy and Allowed Range of Values

	7 Operating System Integration
	7.1 Scheduling and the Priority Scheme
	7.2 Setting Up the Project
	7.2.1 Generating ASCET’s OS Configuration File
	7.2.2 Providing Additional OS Configuration

	7.3 Providing the Main Program
	7.4 The dT Variable
	7.4.1 Dynamic dT
	Providing a Time Reference for Dynamic dT Calculation

	7.4.2 Static dT
	7.4.3 Implementing Your Own dT Routines

	7.5 Template-Based OS Configuration Generation
	7.6 Interfacing with an Unknown Operating System
	7.6.1 Configuration of Tasks
	7.6.2 Interfacing with the OS API

	7.7 Template Language Reference
	7.7.1 Templating Basics
	Directives

	7.7.2 Object Reference
	OS
	AppMode
	Task
	InitTask
	ISR
	Alarm
	Resource
	Message
	UsedMessage
	Process
	Function

	8 Measurement and Calibration with ASAM-MCD-2MC
	8.1 Project Definitions in ASAM-MCD-2MC (prj_def.a2l File)
	8.2 Memory Layout in ASAM-MCD-2MC (mem_lay.a2l File)
	8.3 ETK Driver Configuration in ASAM-MCD-2MC (aml_template.a2l and if_data_template.a2l)
	8.4 Generation of an ASAM-MCD-2MC Description File
	8.5 Suppressing Exported Elements and Parameters

	9 Integration with External Code
	9.1 Calling C Functions from an ASCET Model
	9.1.1 Use of Prototypes
	9.1.2 Invocation by C Code Specified in ASCET
	9.1.3 Including C Source Files in the ASCET Make Process

	9.2 Calling ASCET-Generated Functions from External C Code
	9.3 Using External Global Variables/Parameters in ASCET Code
	9.4 Generating Code for Use with External Data Structures
	9.5 Configuring the ASCET Optimization Features
	9.5.1 Configuring Method Calls
	9.5.2 Configuring Message Copies

	9.6 Working with Variant Parameters

	10 Modeling Hints
	10.1 Implementations
	10.1.1 Definition of Conversion Formulas
	10.1.2 Definition of the Value Intervals
	10.1.3 Defining Implementations for Related Variables
	10.1.4 Multiplication of Large Results

	10.2 Model Structure
	10.2.1 Division
	10.2.2 Multiple Calculations, Concatenated Calculations, Logical Operators
	Multiple Calculations
	Concatenated Calculations
	Logical Operators

	10.2.3 Classes and Modules
	10.2.4 State Machines

	11 Migrating an Existing Project to a New Target
	12 Understanding Quantized Arithmetic
	12.1 Degrees of Freedom and Optimization
	12.2 Numerical Aspects of Integer Arithmetic
	12.2.1 Quantization Errors
	12.2.2 Errors from Integer Division
	12.2.3 Error Propagation

	12.3 Rules of Integer Code Generation
	12.3.1 Assignments
	12.3.2 Addition and Subtraction
	12.3.3 Multiplication
	12.3.4 Division
	12.3.5 Comparisons
	12.3.6 Switches and Multiplexers
	12.3.7 Literals
	12.3.8 Treatment of Operators With Multiple Inputs
	12.3.9 Optimization of Mathematical Expressions

	13 Understanding Generated Code
	13.1 Modularity
	13.2 Distribution of Generated Code to Files
	13.2.1 Include Hierarchy

	13.3 Software Architecture
	13.3.1 Naming Conventions
	13.3.2 Storage Systems, Data Structures, Initialization of Primitive Objects
	Scalar and Logical Values
	Arrays and Matrices
	Enumerations
	Characteristic Curves
	Characteristic Maps
	Interpolation Node Distributions, Group Characteristic Curves and Maps
	Fixed Characteristic Curves and Maps

	13.3.3 Data Structures and Initialization for Complex (User-Defined) Objects
	Classes
	Modules
	Boolean Tables
	Conditional Tables

	13.3.4 Local Variables and Parameters
	13.3.5 Exported and Imported Variables
	13.3.6 Method Declarations and Calls
	13.3.7 Constants and Literals
	13.3.8 System Constants
	13.3.9 Virtual Parameters
	13.3.10 Dependent Parameters

	13.4 Real-Time Constructs
	13.4.1 Tasks
	13.4.2 Processes
	13.4.3 Messages
	Selection of Message Copy Variants at Compilation Time
	Selection of Message Copy Variant at Generation Time

	13.4.4 Resources
	13.4.5 Application Modes

	14 Inside ASCET-SE
	14.1 Structure of the Code Generator
	14.1.1 Front-End Transformation
	14.1.2 MDL and MDL Builder
	Semantic Analysis
	Collecting Optimization Data

	14.1.3 Code Generator
	Expander
	ECCO

	14.2 Code Administration
	14.2.1 Make Mechanism
	14.2.2 Code Manager

	14.3 Directory Structure of the CPRs (Code Production Rules)

	15 ASCET-SE - Restrictions
	15.1 General Restrictions
	15.1.1 Interval Arithmetic
	15.1.2 No Quantization for Literals
	15.1.3 ASCET Direct Access and Characteristic Maps
	15.1.4 ESDL: No Length() Method for Arrays and Matrices

	15.2 Restrictions in Using ASCET-SE
	15.2.1 Inputs of Characteristic Curves and Maps
	15.2.2 No Separate Search for Interpolation Nodes and Interpolation
	15.2.3 No Choice for Interpolation Method
	15.2.4 Uniqueness of Component Names
	15.2.5 Make Mechanism for Controllers and Fixed-Point Arithmetic

	15.3 Known Errors in the ASCET-SE Code Generation
	15.3.1 Build Executable Code After Exiting ASCET

	16 ETAS Contact Addresses
	ETAS HQ
	ETAS Subsidiaries and Technical Support

	Index

