
ASCET-SE V6.3
EHOOKS Target User Guide

ETAS Copyright

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-
ment. The software described in it can only be used if the customer is in possession of a
general license agreement or single license. Using and copying is only allowed in concur-
rence with the specifications stipulated in the contract. Under no circumstances may any
part of this document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of ETAS GmbH.

©Copyright 2014 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document EC015301 V6.3 R01 EN - 11.2014

ASCET-SE V6.3 EHOOKS Target User Guide 2

ETAS CONTENTS

Contents

1 Introduction 5
1.1 Safety Advice . 5

1.1.1 Correct Use . 5
1.1.2 Labeling of Safety Instructions . 5
1.1.3 Demands on the Technical State of the Product 6

1.2 About You . 6
1.3 Document Conventions . 6

2 Installation 8
2.1 Prerequisites . 8
2.2 Installation . 8
2.3 After Installation . 8

3 Understanding ASCET/EHOOKS Integration 9
3.1 Typical Workflow . 9
3.2 On-Target Bypass Concepts . 9

3.2.1 ASCET Models as Bypass Functions 10
3.3 Key Features of the EHOOKS Target . 11
3.4 Summary . 12

4 Getting Started with an EHOOKS Project 13
4.1 Project Administration . 13

4.1.1 Creating an ASCET/EHOOKS Project 13
4.1.2 Specifying the Configuration File Location 15
4.1.3 Configuring ASCET-EHOOKS Interaction Settings 15

EHOOKS Build Options . 16
Global Name Space Prefix . 16
Cont Implementation Type . 18

4.1.4 Basic EHOOKS Configuration . 19
4.2 Integrating Bypass Functions . 20

4.2.1 Preparing the Project . 20
4.2.2 Connecting Inputs and Outputs to ECU Variables 21

"Input" Tab . 21
"Output" Tab . 27
Mapping Messages and ECU Variables 29
Auto-Mapping . 36

4.2.3 Configuring the Scheduling . 38
"Scheduling" Tab . 39
Mapping Processes to Dispatch Points 40

4.2.4 Exporting and Importing Mappings 44
4.3 Building the ECU Code . 46

4.3.1 Generating ECU Code Only . 46
4.3.2 Viewing the ASCET Build Log . 47

5 Calibrating Bypass Functions 48

6 Interacting with EHOOKS Control Variables 51

ASCET-SE V6.3 EHOOKS Target User Guide 3

ETAS CONTENTS

7 Arithmetic Services and Interpolation Routines 54
7.1 Arithmetic Services . 54

7.1.1 Preparing a Service Set . 54
7.1.2 Using a Service Set . 57

7.2 Interpolation Routines . 59
7.2.1 Understanding Interpolation Routine Use in ASCET 60

Definition Files . 60
Mapping Files . 62
Header Files . 62
Library . 62

7.2.2 Using the Default Routines . 62
7.2.3 Using Custom Routines . 63

Modifying an Existing Interpolation Scheme 63
Creating a New Interpolation Scheme 63

7.3 Callbacks to Existing ECU Code . 65
7.3.1 Arithmetic Services . 68
7.3.2 Interpolation Routines . 68
7.3.3 Mixing Callbacks to Off-ECU and On-ECU Code 68

8 Using Libraries 70
8.1 Model Libraries . 71
8.2 Service Libraries . 71

8.2.1 Controlling Method Names in Generated Code 71
8.2.2 Optimizing Data Structure Accesses 72
8.2.3 Using Services Routines on the ECU 73

8.3 Working with Formulas . 73
8.3.1 Using the Same Formulas as the ECU 73

9 Using EHOOKS-DEV V3.0 75
9.1 Updating Projects from EHOOKS-DEV V2.0 to EHOOKS-DEV V3.0 75
9.2 Using the Code Generator: Object Based Controller Physical 76

9.2.1 Arithmetic Services . 78
9.2.2 Interpolation Routines . 78
9.2.3 Interacting with EHOOKS Control Variables 78

9.3 Calibrating Bypass Functions . 78
9.3.1 Global Name Space Prefix . 79

9.4 Building the ECU . 79

10 Using EHOOKS-DEV V3.1 81

11 Contacting ETAS 83
11.1 Technical Support . 83
11.2 General Enquiries . 83

11.2.1 ETAS Global Headquarters . 83
11.2.2 ETAS Local Sales & Support Offices 83

Bibliography 84

ASCET-SE V6.3 EHOOKS Target User Guide 4

ETAS Introduction

1 Introduction

Welcome to the EHOOKS Target for ASCET!

The EHOOKS Target allows you to use ASCET to build software for on-target bypass hooks
and integrated it with existing ECU software using ETAS’ EHOOKS tools.

This guide explains:

• how to install the EHOOKS Target

• the basic concepts behind ASCET and EHOOKS interaction

• how to configure an ASCET project to use the EHOOKS Target

• how to map ASCET messages onto hooks and processes into bypass containers pro-
vided by EHOOKS

• how to use services provided by external libraries and/or the ECU itself in ASCET-
generated code

1.1 Safety Advice

Please adhere to the Product Liability Disclaimer (ETAS Safety Advice) and to the follow-
ing safety instructions to avoid injury to yourself and others as well as damage to the
device.

1.1.1 Correct Use

ETAS GmbH cannot be made liable for damage which is caused by incorrect use and not
adhering to the safety instructions.

1.1.2 Labeling of Safety Instructions

The safety instructions contained in this manual are shown with the standard danger
symbol shown below:

The following safety instructions are used. They provide extremely important informa-
tion. Read this information carefully.

WARNING

Indicates a possible medium-risk danger which could lead to serious or even fatal
injuries if not avoided.

CAUTION

Indicates a low-risk danger which could result in minor or less serious injury or
damage if not avoided.

ASCET-SE V6.3 EHOOKS Target User Guide 5

ETAS Introduction

NOTICE

Indicates behavior which could result in damage to property.

1.1.3 Demands on the Technical State of the Product

The following special requirements are made to ensure safe operation:

• Take all information on environmental conditions into consideration before setup and
operation; see the documentation your computer, hardware, etc.

CAUTION

Wrong word size and/or compiler division lead to wrong compilable code.
Wrong compilable code may lead to unpredictable behavior of a vehicle
or test bench, and thus to safety-critical situations.
To avoid wrong compilable code, users must ensure that word size and and compiler
division match the selected EHOOKS-DEV backend.

• Read, and adhere to, the safety advice given in the EHOOKS documentation.

• Further safety advice is given in the ASCET V6.3 safety manual (ASCET Safety
Manual.pdf) available at ETAS upon request.

1.2 About You

You are a trained function developer who wants to do on-target prototyping using the
ECU as the prototyping platform. You have knowledge of software development using
ASCET and the use of the EHOOKS tools.

You should also be familiar with common use of the Microsoft XP or later operating sys-
tems, including installing software, selecting menu items, clicking buttons, navigating
files and folders.

1.3 Document Conventions

The following conventions are used in this guide:

Select File Ô Open. Menu options are printed in bold, blue characters.

Click OK. Button labels are printed in bold characters

Press <Enter>. Key commands are enclosed in angle brackets.

The "Save" dialog
window appears.

The names of program windows, dialog windows, fields, etc. are
enclosed in double quotes.

ASCET-SE V6.3 EHOOKS Target User Guide 6

ETAS Introduction

Function(P1,P2)
Select the setup.exe
file.

Text in drop-down lists on the screen, program code, as well as
path and file names are printed in a monospaced typeface.

A distribution is a
one-dimensional table
of sample points.

General emphasis and new terms are set in italics.

See section 1.3. Hyperlinks through the document are shown in blue letters.

. . . available at
www.autosar.org . . .

Hyperlinks to Web addresses are shown in
magenta, underlined letters.

Tip

Important note to the user.

Tip

Notes that appear like this contain important information that you need
to be aware of. Make sure that you read them carefully and that you follow
any instructions that you are given.

Tip

Good practice! Sections marked with a "thumbs up" logo are recommended
practice that will make your use of the product easier.

ASCET-SE V6.3 EHOOKS Target User Guide 7

http://www.autosar.org

ETAS Installation

2 Installation

2.1 Prerequisites

This version of the EHOOKS Target requires the following products:

Product Version

EHOOKS Dev Front End V2.0 Build 242

EHOOKS Dev MEDC17 V2.0 Build 242

ASCET V6.3.0

You must install the EHOOKS Front End and ECU Back Ends for each ECU you want to use
for on-target prototyping.

2.2 Installation

The EHOOKS Target is part of ASCET-SE. When you install ASCET-SE, you must select the
EHOOKS-enabled ECU target to install EHOOKS Target.

2.3 After Installation

Unlike other ASCET targets, the EHOOKS Target does not need to know which compiler
and operating system are required. Compilation and OS integration issues for the target
ECU are handled by EHOOKS.

Furthermore, ASCET does not need to be told where EHOOKS is installed on your system
- the EHOOKS Target will find the EHOOKS tools automatically.

It is possible to have more than one EHooks Versions installed on the same host PC as
ASCET-SE for the EHOOKS Target to work correctly. As default ASCET will use V2.0 for
usage with the EHOOKS Target.

ASCET-SE V6.3 EHOOKS Target User Guide 8

ETAS Understanding ASCET/EHOOKS Integration

3 Understanding ASCET/EHOOKS Integration

The ASCET EHOOKS Target provides a special ASCET-SE target that generates code for
use as on-target bypass functions suitable for integration with an EHOOKS-prepared ECU.
The EHOOKS Target can also transparently run the EHOOKS-DEV tool chain to integrate
the generated code with ECU software with access to only the ECU hex and A2L files.

3.1 Typical Workflow

Figure 3.1 shows the standard workflow when using the EHOOKS Target:

Figure 3.1: Workflow for ASCET/EHOOKS Development

1. You design ASCET models for your bypass functionality and integrate them into an
ASCET project.

2. You configure the EHOOKS target for your ASCET project. ASCET will interact with
EHOOKS to create a *.ehcfg configuration file.

3. ASCET stores the information about which parts of the ASCET model are hooked
onto which ECU variables in the database or workspace.

4. ASCET generates code from the model as normal, but also the code and configura-
tion files (SCOOP-IX) necessary to interface ASCET code with EHOOKS.

5. ASCET runs the EHOOKS build process to automatically generate new .hex and
.a2l files that include your bypass functionality.

3.2 On-Target Bypass Concepts

On-target bypass allows run-time control of whether the original value calculated by the
ECU or a value calculated by a bypass function running on the ECU is used for subsequent
calculations as shown in Figure 3.2.

When the ECU is built, the ECU supplier decides which values can be switched between
the ECU value and the bypass value, and creates a hook to allow the choice to be made.

ASCET-SE V6.3 EHOOKS Target User Guide 9

ETAS Understanding ASCET/EHOOKS Integration

Figure 3.2: On-target bypass hooks with ASCET-generated C code

Hooks are therefore writeable values in the ECU software. The EHOOKS-PREP tool from
ETAS allows ECU suppliers to choose and insert hooks into the ECU software; see [ETA11].
The ECU is also prepared to include placeholders called dispatch points, into which by-
pass code can be placed. Dispatch points are typically found in existing ECU functions or
OS tasks.

To use a hook you need to provide a bypass function and the associated EHOOKS config-
uration:

• which data is read

• which data is written

• when does the bypass function run

You could do this by hand, however, the EHOOKS Target allows functions to be developed
as ASCET models.

3.2.1 ASCET Models as Bypass Functions

On-target bypass using the EHOOKS Target follows the same basic principles as bypass
using ASCET-RP: the bypass model interacts with the ECU over the message interface.
The ECU sends messages to the bypass function and receives messages that contain the
bypass values from the bypass function, as shown in Figure 3.3 on page 11.

The EHOOKS Target interacts with the EHOOKS-DEV tool to allow the ASCET on-target by-
pass model to be configured to have access to one or more input variables from the ECU
software (ECU measurements) and to write to one or more hooked ECU write variables.
Each ASCET model can contain one or more bypass functions containing the processes
of the ASCET model in which the hooked variables are read and written.

The EHOOKS Target can also use the features of EHOOKS-DEV to enable the introduction
of new calibration parameters for the on-target bypass function. ASCET model elements
that need to be calibrated must be assigned the scope "Exported" in the element’s prop-
erties editor. This is because EHOOKS has to generate the data structures so it can
integrate them with calibration parameters that already exist on the ECU. The EHOOKS
Target tells EHOOKS-DEV what elements need to be generated for calibration using a
SCOOP-IX (*.six) file.

ASCET-SE V6.3 EHOOKS Target User Guide 10

ETAS Understanding ASCET/EHOOKS Integration

Figure 3.3: ECU sending and receiving messages from the bypass function

3.3 Key Features of the EHOOKS Target

Key features of the EHOOKS Target are:

No special modeling required. It is not necessary to modify your models to work with
the EHOOKS target. Models can be used unmodified with EHOOKS for complex
internal bypass. It is only necessary to configure an EHOOKS target for a project
and hook model messages onto hooks provided by the ECU.

No changes to generated code. ASCET generates identical C code from the model as
it would when generating code for an embedded ECU. This means that the code for
modules and classes is not modified in any way for the EHOOKS target. ASCET
interfaces to EHOOKS by generating bypass functions that set up the context for
ASCET on entry and tear down the context on exit.

No special memory configuration needed. EHOOKS does not have the notion of dif-
fering memory sections - there is simply code space, variable space and parameter
space. ASCET ignores any memory sections definitions declared in model configu-
ration.

No need to know the target ECU or compiler. ASCET does not need to know what
micro-controller is being used in the ECU or what compiler needs to be used for
building the bypass functions for integration - ASCET just sees a special EHOOKS

ASCET-SE V6.3 EHOOKS Target User Guide 11

ETAS Understanding ASCET/EHOOKS Integration

target. Any EHOOKS-supported ECU can be used as an EHOOKS target. Details of
supported ECUs can be obtained by contacting ETAS.

CAUTION

Wrong word size and/or compiler division lead to wrong compilable
code. Wrong compilable code may lead to unpredictable behavior of
a vehicle or test bench, and thus to safety-critical situations.
To avoid wrong compilable code, users must ensure that word size and and
compiler division match the selected EHOOKS-DEV backend.

Automatic conversion between ECU types and model types. ASCET automati-
cally converts between ECU types and model types.

One-click ECU rebuild. ASCET generates code, the EHOOKS configuration, and runs
the EHOOKS build process with a single mouse click.

3.4 Summary

ASCET automatically

• adds configuration information to the EHOOKS configuration file to integrate the
bypass function, including telling EHOOKS-DEV what file to include in the ECU build;

• creates a SCOOP-IX file defining all global data, measurements and calibration pa-
rameters required for the bypass functions;

• generate code that implements the ASCET model. The code is identical in structure
and content to the code generated for all other ASCET-SE targets;

• generates bypass functions that integrate ASCET-generated code with the
EHOOKS-generated interface;

• runs the EHOOKS-DEV tool to integrate the bypass functions with the ECU.

EHOOKS-DEV automatically

• uses the SCOOP-IX (.six) file to generate ASCET-compatible data structures for all
parameters;

• uses the EHOOKS (.ehcfg) configuration file to generate an interface to the ECU
data for the ASCET-generated bypass functions;

• integrates all the source generated by both ASCET and EHOOKS-DEV with the ex-
isting ECU hex file.

ASCET-SE V6.3 EHOOKS Target User Guide 12

ETAS Getting Started with an EHOOKS Project

4 Getting Started with an EHOOKS Project

You are now ready to create an ASCET project that uses an EHOOKS target.

Before you start, you must have the following mandatory items from your ECU supplier:

1. the ECU *.hex file, pre-prepared for EHOOKS use, for the ECU you want to use for
on-target prototyping

2. the *.a2l file, pre-prepared for EHOOKS use, for the ECU you want to use for on-
target prototyping

3. the password for the *.a2l file (if is it password-protected)

Use of advanced capabilities of the EHOOKS Target, for example use of external or on-
ECU services, requires some or all of the following optional items from your ECU supplier:

1. a services.ini from your ECU supplier defining the services available on the
ECU

2. a *.ini file from your ECU supplier defining the interpolation routines available for
use on the ECU

3. an ASCET workspace (or database) from your ECU supplier defining the model in-
terface for library functions that are available for use on the ECU

4. C source code files and/or pre-compiled libraries for your ECU that implement ser-
vice routines

Further information about what is required and when can be found in chapters 7 and 8.

4.1 Project Administration

A new EHOOKS project is created with the following steps:

1. in ASCET: create an ASCET project for an EHOOKS target (section 4.1.1)

2. in ASCET: specify which EHOOKS *.ehcfg configuration file ASCET will use (sec-
tion 4.1.2)

3. in ASCET: configure ASCET-EHOOKS interaction (section 4.1.3)

4. in EHOOKS: select the *.hex and *.a2l files EHOOKS will use (section 4.1.4)

The following sections explain these steps in more detail.

4.1.1 Creating an ASCET/EHOOKS Project

You must create an ASCET project in which to build your bypass functionality. You can
use an existing project or create a new one.

ASCET-SE V6.3 EHOOKS Target User Guide 13

ETAS Getting Started with an EHOOKS Project

To define an EHOOKS project:

The project needs to be configured to target an EHOOKS prepared ECU as follows:

• Create and open a project as described in the ASCET online
help.

• In the project editor, select File Ô Properties (or use
<Ctrl> + <p>) to open the "Project Properties" window.

• Go to the "Build" node and select EHOOKS as the target for
the build as shown in Figure 4.1 on page 14.

• In the "Code Generator" combo box, select a code genera-
tor.

Two code generators are available, Object Based
Controller Implementation and Object Based
Controller Physical.

Tip

Do not select Object Based Controller
Physical when you are using EHOOKS V2.0.
Object Based Controller Physical can
only be used with EHOOKS V3.0.0 or higher.

Figure 4.1: Configuring a project to use an EHOOKS target

ASCET-SE V6.3 EHOOKS Target User Guide 14

ETAS Getting Started with an EHOOKS Project

When you set up the project to use the EHOOKS target, a new tab appears in the project
editor (see Figure 4.2 on page 15). This new tab replaces the "OS" tab; here you do all
the configuration that is specific to EHOOKS projects in ASCET.

Figure 4.2: "EHOOKS" tab in the project editor (no configuration file selected)

4.1.2 Specifying the Configuration File Location

Each project that uses the EHOOKS target must be associated with an EHOOKS configu-
ration file (*.ehcfg).

Tip

You must associate your ASCET project with an EHOOKS configuration file before
you can do any further configuration.

You can choose an existing EHOOKS configuration file or create a new one. If you use
an existing EHOOKS configuration file, any pre-existing configuration items will be pre-
served. When ASCET generates EHOOKS configuration information in the file, only the
parts owned by ASCET are modified. Non-ASCET-generated EHOOKS configuration is un-
changed.

To select an EHOOKS configuration file:

• In the project editor, go to the "EHOOKS" tab.

• In the "EHOOKS" tab, click the Change File button.

The Windows file selection window opens. The file extension

*.ehcfg is preselected.

• Select your EHOOKS configuration file and click Open.

Path and name of the EHOOKS configuration file are shown
in the "Configuration file" field at the top of the "EHOOKS"
tab. The sub-tabs "Scheduling", "Input" and "Output" ap-
pear.

4.1.3 Configuring ASCET-EHOOKS Interaction Settings

When you have associated an EHOOKS configuration file with the ASCET project, you
need to configure how ASCET interacts with EHOOKS.

ASCET-SE V6.3 EHOOKS Target User Guide 15

ETAS Getting Started with an EHOOKS Project

Figure 4.3: "EHOOKS" tab with EHOOKS configuration file
(In the "Input" and "Output" tabs, another button Open EHOOKS functions
is available between Change File and Open EHOOKS.)

EHOOKS Build Options

The EHOOKS Target uses the EHOOKS toolchaindriver program to re-build the ECU.

Any options that you want ASCET to pass to the toolchaindriver can be entered in the
ASCET options window, "Targets\EHOOKS\Build" node (see Figure 4.4 on page 17), "Build
Tool Options" field. The values are passed directly to the toolchaindriver without
any modification and must be valid EHOOKS options.

Permitted options are listed in the EHOOKS-DEV user’s guide, section "EHOOKS-DEV
Command Line Usage".

Global Name Space Prefix

Global names generated by ASCET will not clash with names used by the ECU because
EHOOKS works with a compiled HEX image.

However, the names that you use in your project may clash with the symbolic names of
elements used on the ECU and stored in the *.a2l file.

To prevent this, ASCET automatically adds a user-defined prefix to all global data ele-
ments generated. The prefix is defined in the ASCET options window, "Targets\EHOOKS\
Name Templates" node (see Figure 4.5 on page 17); it is added to the element name and
the element display name in the *.a2l file.

ASCET-SE V6.3 EHOOKS Target User Guide 16

ETAS Getting Started with an EHOOKS Project

Figure 4.4: Build options for the EHOOKS target

Figure 4.5: Name Templates options for the EHOOKS target

ASCET-SE V6.3 EHOOKS Target User Guide 17

ETAS Getting Started with an EHOOKS Project

Cont Implementation Type

The code generator (Object Based Controller *; see "To define an EHOOKS
project:" on page 14), in combination with the EHOOKS target option "Cont Implementa-
tion Type" (see Figure 4.4 on page 17), controls how ASCET generates bypass function
code for continuous (real number) elements in the model.

The following combinations are available:

Code Generator Cont Implemen-
tation Type

effect

Object Based
Controller
Implementation

* Use the implementations specified in the
model.

When a variable is read from the ECU, the
EHOOKS Target will automatically convert
the value to the type defined in the
model.
When a variable is written to the ECU, the
EHOOKS Target will automatically convert
the value to type used by the ECU.

Object Based
Controller
Physical

(not available for
EHOOKS-DEV
V2.0)

Phys. Single
Precision

Generate all continuous elements as
single precision floating point values.

When a variable is read from the ECU the
EHOOKS Target will automatically convert
the value to single precision floating
point.
When a variable is written to the ECU the
EHOOKS Target will automatically
re-quantize the value to use the
quantization defined by the ECU.

Phys. Double
Precision

Generate all continuous elements as
double precision floating point values.

When a variable is read from the ECU the
EHOOKS Target will automatically convert
the value to double precision floating
point.
When a variable is written to the ECU the
EHOOKS Target will automatically
re-quantize the value to use the
quantization defined by the ECU.

Table 4.1: Effects of "Code Generator" and "Cont Implementation Type" combinations

ASCET-SE V6.3 EHOOKS Target User Guide 18

ETAS Getting Started with an EHOOKS Project

4.1.4 Basic EHOOKS Configuration

If you decided to create a new EHOOKS *.ehcfg configuration file, then you need to
start EHOOKS and configure the locations of the *.hex and *.a2l files.

Figure 4.6: EHOOKS-DEV window: Choosing EHOOKS files

To configure input and output files:

• In the "EHOOKS" tab, click on Start EHOOKS (see Fig-
ure 4.3 on page 16).

If EHOOKS is not running, it is started now. The *.ehcfg
file is opened in the EHOOKS-DEV window.

• In the EHOOKS-DEV window, use the first and third Browse
buttons (I in Figure 4.6 on page 19) to select input *.a2l
and *.hex files.

ASCET-SE V6.3 EHOOKS Target User Guide 19

ETAS Getting Started with an EHOOKS Project

If you access a password-protected *.a2l file for the first
time, you are asked for a password.

• Enter the password and click OK.

• Activate the Save Password in Project option to store the
password in the *.ehcfg file.

• In the EHOOKS-DEV window, use the second and fourth
Browse buttons (O in Figure 4.6 on page 19) to enter output

*.a2l and *.hex files.

• In the EHOOKS-DEV window, select File Ô Save to save the

*.ehcfg file.

ASCET will generate the warning shown in Figure 4.7 on page 20 if you do not specify any
files in EHOOKS.

Figure 4.7: Warning if no EHOOKS files are selected

4.2 Integrating Bypass Functions

Bypass functions are created as normal ASCET models, and integrated in an ASCET
project in the same way as any other ASCET model. Please consult the ASCET online
help if you are unsure about how to create ASCET models.

The project can be an arbitrarily complex ASCET model.1

4.2.1 Preparing the Project

When you integrate a normal ASCET project for series production, the code generator
checks that:

• every sent message has a receiver

• every received message has a sender

ASCET will generate warnings if these checks fail.

When you build a bypass function, however, your model will typically have "uncon-
nected" messages because they will be sent from or received by the ECU.

ASCET needs to know that these "loose ends" will be joined up. You can do this by
selecting Extras Ô Resolve Globals in the project editor, as shown in Figure 4.8. In
the EHOOKS Target this creates "virtual" messages that can then be hooked onto ECU
variables.

1 Not all functionality is currently supported. See the ASCET-SE release notes for known limita-
tions in this release.

ASCET-SE V6.3 EHOOKS Target User Guide 20

ETAS Getting Started with an EHOOKS Project

Figure 4.8: Resolving globals

4.2.2 Connecting Inputs and Outputs to ECU Variables

Messages that are sent or received by the project technically have no sender or receiver
as the project context is passive. These messages represent the unconnected parts of
the ASCET model. To connect them to ECU variables, you need to do the following things:

1. select ECU measurements and ECU write hooks

2. map messages that have no sender to ECU measurements (the message will be
read from the ECU)

3. map messages that have no receiver to ECU write hooks (the messages will be
written to the ECU)

The "Input" and "Output" sub-tabs of the "EHOOKS" tab in the ASCET project editor allow
mapping ASCET messages to ECU variables.

Tip

To make sure that the view in these tabs is up to date, click the Update
button to refresh the tab.

The "Input" and "Output" tabs are described in section "Input" Tab on page 21 and
section "Output" Tab on page 27. Section "Mapping Messages and ECU Variables" on
page 29 contains detailed instructions for manual mapping, and section "Auto-Mapping"
on page 36 describes automatic mapping.

"Input" Tab

The "Input" tab contains the following GUI elements:

1. top bar

(a) information field

Shows whether message mapping is complete (), incomplete (), or contains
invalid mappings ().

ASCET-SE V6.3 EHOOKS Target User Guide 21

ETAS Getting Started with an EHOOKS Project

Figure 4.9: "Input" tab

ASCET-SE V6.3 EHOOKS Target User Guide 22

ETAS Getting Started with an EHOOKS Project

(b) Update button

Updates the instances of the modules, i.e. imports changes in these compo-
nents into the project.

(c) Auto-Mapping button

This button maps all unmapped messages to ECU variables with identical
name and type.

(d) / button

Shows () or hides () the upper table.

2. upper table (hidden by default)

(a) "Messages" column

This column lists all receive and send&receive messages from all modules di-
rectly or indirectly used in the project. The messages are displayed as follows:

exported/imported
messages:

<message>

local messages: <module_inst>2[.<nested module_inst>...]
.<message>

Tip

Receive messages with an external Set method are not shown.

If one module contains a send message <name>, and another module
contains a receive message with identical <name>, the receive message
<name> is not shown.

* input field and button above the column

You can enter a text string in the input field and then click on to filter the
list of available messages by name. The filter is case-insensitive; it finds
all messages whose names contain the text string.

* properties filter above the column

Opens the "Filter Criteria" dialog window (see Figure 4.17 on page 35),
which allows filtering the list by selected properties.

An active type filter is indicated by a green overlay icon on both filter buttons:

An active filter is indicated by a green overlay icon: Click the button to
remove the filter.

(b) "ECU Variables" column

This column lists all unmapped ECU measurement variables that are available
for mapping. The elements are displayed the same way as in the EHOOKS
variable selection dialog window (see Figure 4.13 on page 30).

* input field, properties filter and button above the column

The same as in the "Messages" column.

(c) context menu

2 <module_inst> is the module instance name

ASCET-SE V6.3 EHOOKS Target User Guide 23

ETAS Getting Started with an EHOOKS Project

* Get ECU Labels

Opens the EHOOKS variable selection dialog window (see Figure 4.13 on
page 30). Variables you select there will be available in the "ECU Variables"
columns when you close the window with OK.

See also To select ECU variables: on page 29.

* Get ECU Backup Copy Labels

Opens the EHOOKS backup copy selection dialog window (see Figure 4.15
on page 31). This allows to map a message to a backup copy of an ECU
write hook (i.e. the value calculated by the original ECU before the ECU
variable was hooked and bypassed by EHOOKS).

* Get ECU Labels and Map (overwrite existing mappings)

Opens the EHOOKS variable selection dialog window (see Figure 4.13. Vari-
ables you select there will be mapped automatically to messages with iden-
tical names. Existing mappings are overwritten.

See also To use the Get ECU Labels and Map commands: on page 38.

* Get ECU Labels and Map (keep existing mappings)

Opens the EHOOKS variable selection dialog window (see Figure 4.13 on
page 30). Variables you select there will be mapped automatically to mes-
sages with identical names. Existing mappings are kept.

See also To use the Get ECU Labels and Map commands: on page 38.

3. button

Maps a message selected in the "Message" column to an ECU variable selected in
the "Variables" column.

Tip

In the "Input" tab, one message can be mapped to one ECU variable. How-
ever, you can map several messages to the same ECU variable.

4. "Mapping" field - lower table

(a) input field, properties filter and button

The same as in the "Messages" column of the upper table; see page 23.

(b) "Messages" column

This column lists the same messages as the "Messages" column in the upper
table; see page 23.

(c) icon column

This column contains icons that represent the mapping status.

The message is unmapped.
Mapping is valid: the message is mapped to a suitable ECU variable
Mapping is invalid

(d) "ECU Variables" column

This column shows the ECU variables mapped to the messages in the "Mes-
sages" column of the "Mapping" field. The elements are displayed as in the
upper "ECU Variables" column.

If no mapping exists (---; see Figure 4.10 on page 25, 3rd row), the "ECU
Variables" column can be used to perform mapping. A double-click in a table
cell opens a list of all suitable ECU variables (see Figure 4.10, 4th row).

ASCET-SE V6.3 EHOOKS Target User Guide 24

ETAS Getting Started with an EHOOKS Project

Unsaved changed mappings are indicated by blue font (see Figure 4.10, 2nd

row).

Figure 4.10: "Mapping" field in the "Input" tab

(e) context menu

* Edit

Opens the list of available ECU variables for selection.

* Remove

Removes an existing mapping.

* Revert Changes

Reverts unsaved mapping changes.

Tip

Edit, Remove and Revert Changes work the same way as the
respective commands described in the ASCET online help for message
and parameter mapping in AUTOSAR software components.

* Get ECU Labels

Opens the EHOOKS variable selection dialog window (see Figure 4.13 on
page 30). Variables you select there will be available in the "ECU Variables"
columns.

See also To select ECU variables: on page 29.

* Get ECU Backup Copy Labels

Opens the EHOOKS backup copy selection dialog window (see Figure 4.15
on page 31). This allows to map a message to a backup copy of an ECU
write hook (i.e. the value calculated by the original ECU before the ECU
variable was hooked and bypassed by EHOOKS).

See also To connect a message to an backup copy of an ECU variable: on
page 30.

* Get ECU Labels and Map (overwrite existing mappings)

Opens the EHOOKS variable selection dialog window (see Figure 4.13 on
page 30). Variables you select there will be mapped automatically to mes-
sages with identical names. Existing mappings are overwritten.

ASCET-SE V6.3 EHOOKS Target User Guide 25

ETAS Getting Started with an EHOOKS Project

See also To use the Get ECU Labels and Map commands: on page 38.

* Get ECU Labels and Map (keep existing mappings)

Opens the EHOOKS variable selection dialog window (see Figure 4.13 on
page 30). Variables you select there will be mapped automatically to mes-
sages with identical names. Existing mappings are kept.

See also To use the Get ECU Labels and Map commands: on page 38.

* Export

Opens the "Export Settings" dialog window where you can export mappings
to an *.xml or *.csv file.

* Import

Imports mappings from an *.xml or *.csv file.

Tip

Instructions for Export and Import are given in section 4.2.4 "Ex-
porting and Importing Mappings" on page 4.2.4.

The Mapping menu contains the same options as the context menu in the
lower table.

5. Without Send/Receive Messages option

If activated, no send&receive messages appear in the upper and lower "Messages"
columns.

The state of this option is not stored when the project editor is closed; the option is
always deactivated when the project editor is opened.

ASCET-SE V6.3 EHOOKS Target User Guide 26

ETAS Getting Started with an EHOOKS Project

"Output" Tab

Figure 4.11: "Output" tab

The "Output" tab contains the following GUI elements:

1. top bar

Contains the same elements as the top bar in the "Input" tab; see page 21.

2. upper table (hidden by default)

(a) "Messages" column

This column lists all send and send&receive messages from all modules di-
rectly or indirectly used in the project. The messages are displayed as follows:

exported / imported
messages:

<message>

local messages: <module>[.<nested module>...].<message>

Tip

Send messages with an external Get method are shown.
If one module contains a send message <name>, and another module
contains a receive message with identical <name>, the send message
<name> is shown.

ASCET-SE V6.3 EHOOKS Target User Guide 27

ETAS Getting Started with an EHOOKS Project

* input field, properties filter and button above the column

The same as in the "Input" tab, "Messages" column of the upper table; see
page 23.

(b) "ECU Variables" column

This column lists all unmapped ECU Write Hook variables that are available
for mapping. The elements are displayed the same way as in the EHOOKS
variable selection dialog window (see Figure 4.13 on page 30).

* input field, properties filter and button above the column

The same as in the "Input" tab, "Messages" column of the upper table; see
page 23.

(c) context menu

The same as the context menu in the upper table of the "Input" tab (see
page 23), except that Get ECU Backup Copy Labels is deactivated.

3. button

Maps a message selected in the "Message" column to an ECU variable selected in
the "Variables" column.

Tip

In the " Output" tab, one message can be mapped to several ECU variables.

4. "Mapping" field - lower table

(a) input field, properties filter and button

The same as in the "Input" tab, "Messages" column of the upper table; see
page 23.

(b) "Messages" column

This column lists the same messages as the "Messages" column in the upper
table; see page 27. If a message is mapped more than once, each mapping is
shown in a separate row.

(c) icon column

The same as in the "Input" tab; see page 24.

(d) "ECU Variables" column

This column shows the ECU variables mapped to the messages in the "Mes-
sages" column of the "Mapping" field. The elements are displayed as in the
upper "ECU Variables" column.

If no mapping exists (---; see Figure 4.12 on page 29, 3rd row), the "ECU
Variables" column can be used to perform mapping. A double-click in a table
cell opens a list of all suitable ECU variables (see Figure 4.12, 4th row).

Unsaved changed mappings are indicated by blue font (see Figure 4.12, 2nd

row).

(e) context menu

The same as the context menu in the lower table of the "Input" tab (see
page 25), except that Get ECU Backup Copy Labels is deactivated.

5. Without Send/Receive Messages option

Works the same way as in the "Input" tab; see page 26.

ASCET-SE V6.3 EHOOKS Target User Guide 28

ETAS Getting Started with an EHOOKS Project

Figure 4.12: "Mapping" table in the "Output" tab

Mapping Messages and ECU Variables

This section contains step-by-step instructions for selecting ECU variables and mapping
them to messages.

To select ECU variables:

• In the project editor, go to the "EHOOKS" tab.

• Do one of the following:

– To select ECU Measurement variables, go to the "Input"
tab (Figure 4.9 on page 22).

– To select ECU Write Hook variables, go to the "Output"
tab (Figure 4.11 on page 27).

• To open the EHOOKS variable selection dialog window (see
Figure 4.13 on page 30), do one of the following:

– Right-click in the tab and select Get ECU Labels from
the context menu.

– Select Mapping Ô Get ECU Labels.

– Click on the Open EHOOHS functions button and se-
lect Get ECU Labels.

• In the EHOOKS variable selection dialog window, select the
required EHOOKS variables, then click OK.

The selected ECU variables appear in the "ECU Variables"
column in the upper table of the "Input" or "Output" tab.

Tip

It is recommended that you leave the EHOOKS option Convert All acti-
vated. This will cause EHOOKS to generate the conversion functions from ECU
types to floating-point types. ASCET uses these functions when generating
code for the Object Based Controller Physical code generator (see
section 4.1.3).

ASCET-SE V6.3 EHOOKS Target User Guide 29

ETAS Getting Started with an EHOOKS Project

Figure 4.13: EHOOKS variable selection dialog window
(see the EHOOKS-DEV user’s guide for further information)

To connect a message to an backup copy of an ECU variable:

Tip

Backup copies are only available for ECU measurement variables whose "Create
Backup Copy" property is set to Yes; see Figure 4.14 on page 30.

Figure 4.14: Activating backup copies in the "Variable Bypass" tab of the EHOOKS
window (see the EHOOKS-DEV user’s guide for further information)

• In the project editor, go to the "Input" sub-tab of the
"EHOOKS" tab.

• Do one of the following:

– Right-click in the tab and select Get ECU Backup Copy
Labels from the context menu.

ASCET-SE V6.3 EHOOKS Target User Guide 30

ETAS Getting Started with an EHOOKS Project

– Select Mapping Ô Get ECU Backup Copy Labels.

– Click on the Open EHOOHS functions button and se-
lect Get ECU Backup Copy Labels.

The "Hook Selection" window (see Figure 4.15 on page 31)
opens. The left table lists all ECU variables with backup copy
enabled.

Figure 4.15: EHOOKS "Hook Selection" window

• In the left column of the "Hook Selection" window, select the
EHOOKS variables whose backup copies you want to con-
nect to ASCET messages.

• Click the button to shift the selected ECU variables to
the right column.

• Click OK to close the "Hook Selection" window.

Backup copies (named EH_copy_<ecu variable>) of the
selected ECU variables are now available for mapping (see
Figure 4.16 on page 32).

• Map the backup copies to ASCET messages.

Tip

Note that when selecting a backup copy, the GUI presented by EHOOKS
supports multiple selection. ASCET can only use a single selection. If you
select more than one backup variable per message using the dialog, ASCET
will only use the first item you select.

ASCET-SE V6.3 EHOOKS Target User Guide 31

ETAS Getting Started with an EHOOKS Project

Figure 4.16: Backup copies of ECU measurement variables available for mapping

ASCET-SE V6.3 EHOOKS Target User Guide 32

ETAS Getting Started with an EHOOKS Project

To map messages and ECU variables in the "Mapping" field:

Tip

You cannot use the "Mapping" field in the "Output" tab for multiple mappings of
the same message.

• In the project editor, go to the "EHOOKS" tab.

• Do one of the following:

– To map ECU Measurement variables, go to the "Input"
tab (Figure 4.9 on page 22).

– To map ECU Write Hook variables, go to the "Output"
tab (Figure 4.11 on page 27).

• If desired, filter the columns (see also "To filter the
columns:" on page 35).

• In the "Mapping" field, double-click in a cell in the "ECU Vari-
ables" column.

A list with all ECU variables available for mapping opens.

• Select an ECU variable.

The mapping is performed. The results are shown in the
"Mapping" field.

The mapped ECU variable is removed from the "ECU Vari-
ables" column of the upper table.
In the "Input" tab, the mapped message is removed from
the "Messages" column of the upper table.

Changed mappings are indicated by blue font in the "ECU
Variables" column of the "Mapping" field.

The icon column in the "Mapping" field shows the mapping
status; see page 24.

To map messages and ECU variables in the upper table:

• In the project editor, go to the "EHOOKS" tab.

• Do one of the following:

– To map ECU Measurement variables, go to the "Input"
tab (Figure 4.9 on page 22).

– To map ECU Write Hook variables, go to the "Output"
tab (Figure 4.11 on page 27).

• If necessary, click on to show the upper table.

ASCET-SE V6.3 EHOOKS Target User Guide 33

ETAS Getting Started with an EHOOKS Project

• If desired, filter the columns (see also "To filter the
columns:" on page 35).

• In the "Messages" column of the upper table, select a mes-
sage.

• In the "ECU Variables" column of the upper table, select an
ECU variable.

The button becomes available if the selected
elements can be mapped.

• Click on to map the selected elements.

Tip

As an alternative to these steps, you can drag a message
from the "Messages" column and drop it onto a suitable
element in the "ECU Variables" column.

The mapping is performed. The results are shown in the
"Mapping" field.

The mapped ECU variable is removed from the "ECU Vari-
ables" column of the upper table.
In the "Input" tab, the mapped message is removed from
the "Messages" column of the upper table.

Changed mappings are indicated by blue font in the "ECU
Variables" column of the "Mapping" field.

The icon column in the "Mapping" field shows the mapping
status; see page 24.

To remove a message/ECU variable mapping

• In the project editor, go to the "EHOOKS" tab.

• Go to the "Input" (Figure 4.9 on page 22) or "Output" (Fig-
ure 4.11 on page 27) tab.

• In the "Mapping" field, "Messages" or "ECU Variables" col-
umn, select a mapped element.

• Do one of the following:

– Open the context menu or the Mapping menu and se-
lect Remove.

– Press <Delete>.

– In the "Mapping" field, double-click a cell in the "ECU
Variables" column and select <None>.

The mapping is removed. If it was the 1+nth mapping of a
Send or SendReceive message, the entire line is removed
from the "Mapping" field.

The ECU variable reappears in the upper table.

If the message is a Receive message, it reappears in the
upper table, too.

Changed mappings are indicated by blue font in the "ECU
Variables" column of the "Mapping" field.

ASCET-SE V6.3 EHOOKS Target User Guide 34

ETAS Getting Started with an EHOOKS Project

The icon in the icon column is reset to .

To filter the columns:

You can filter the columns in the "Input" or "Output" tabs for more clearness. You can
filter for element names or for element properties.

• To filter for element properties, do the following:

– In the column you want to filter, click on the button.

The respective "Filter Criteria" dialog window (Fig-
ure 4.17 on page 35) opens.

– In the combo boxes of the "Filter Criteria" dialog win-
dow, select the properties you want to show in the col-
umn.

– Click OK to apply the filter.

Only elements with all of the selected properties are
shown in the list. The active type filter is indicated by a
green overlay icon on both filter buttons:

(A) (B) (C)

Figure 4.17: "Filter Criteria" windows
(A): upper table, "Messages" column; (B): upper table, "ECU Variables"
column; (C): lower table

• To filter for element name, do the following:

– In the column you want to filter, enter a text string in
the input field.

– Click on or press <Enter> to apply the filter.

Only elements whose names contain the text string are
shown in the list. The filter is case-insensitive, i.e. a
search term Msg will also find msg, MSG, etc. The active
name filter is indicated by a green overlay icon on the

second filter button:

In the "Mapping" field (lower table), the filter is applied
to both columns (see also Figure 4.18 on page 36). An
entry is displayed if at least one name contains the text
string.

• If desired, combine both filters.

• To deactivate all filters in a list, click on the button of the
respective list.

ASCET-SE V6.3 EHOOKS Target User Guide 35

ETAS Getting Started with an EHOOKS Project

(A) (B)

Figure 4.18: Example: Name filter in the "Mapping" field
(A): no name filter; (B): active name filter

The filter is deactivated, all entries of the respective list are
shown. The filter settings, i.e. the text string in the input
field and the settings in the "Filter Criteria" dialog window,
are kept until you delete or overwrite them.

Auto-Mapping

Mapping each individual message can be time-consuming if you have a lot of variables.
To simplify the task, the EHOOKS Target provides an auto-mapping function.

Auto-mapping automatically maps unconnected ASCET messages in the project to ECU
measurements or write hooks with an identical name according to the following heuristic:

• If a message has no sender (or is sent only by the project itself) and is received by
one or more modules, then it will be automatically mapped to an ECU Measurement
with an identical name.

• If a message has no receiver (or is only received by the project itself) and is sent
by one module, then it will be automatically mapped to an ECU Write Hook with an
identical name.

Tip

There is no guarantee that a message and an ECU variable with the same
name represent the same concept. For example, a message named Speed in
the model representing speed in km/h is not the same as a message named
Speed on the ECU that represents speed in miles/h. You must therefore
verify that any auto-mappings represent valid connections by using the ECU
information provided by your ECU supplier.

Auto-mapping is accessed via the Mapping menu, the Open EHOOKS functions button
or the Auto-Mapping button ((A) – (C) in Figure 4.19 on page 37).

Auto-mapping has the following modes:

Overwrite existing mappings replaces any mappings you have done with the map-
pings that are automatically detected.

ASCET-SE V6.3 EHOOKS Target User Guide 36

ETAS Getting Started with an EHOOKS Project

Figure 4.19: Accessing auto-mapping
(A): via the Mapping menu, (B): via the Get ECU Labels and Map
functions in the Open EHOOKS functions button, (C): via the
Auto-Mapping button

ASCET-SE V6.3 EHOOKS Target User Guide 37

ETAS Getting Started with an EHOOKS Project

Keep existing mappings adds automatically detected mappings only if a mapping is
not already defined.

Tip

This is the mode used by the Auto-Mapping button.

ASCET will show the changes that auto-mapping has made by highlighting the mappings
in blue text. The highlighting is removed when you save the project.

To use the Auto-Mapping button:

Automatic mapping via the Auto-Mapping button uses only ECU variables that are al-
ready present in the "ECU Variables" columns.

• Go to the "Input" or "Output" tab.

• Click on the Auto-Mapping button.

Unmapped Messages and ECU variables with identical ele-
ment name are mapped. Module names in labels of local
messages (see page 23 and page 27) are not considered.
The results are shown in the "Mapping" field.

Existing mappings are kept; messages with no matching
counterpart remain unmapped.

The mapped ECU variable is removed from the "ECU Vari-
ables" column of the upper table. A mapped receive mes-
sage is removed from the "Messages" column of the upper
table.

To use the Get ECU Labels and Map commands:

• Go to the "Input" or "Output" tab.

• Do one of the following:

– Select Mapping Ô Get ECU Labels and Map (*3).

– Click on the Open EHOOKS functions button and
select Get ECU Labels and Map Ô *3.

If it is not yet running, EHOOKS is started. Matching ECU
variables are selected automatically and mapped to mes-
sages with identical names.

4.2.3 Configuring the Scheduling

To map the processes of your ASCET model to dispatch points on the ECU, you first need
to map the processes into a "virtual" task called a bypass function, and then associate the
bypass function with a dispatch point provided by the ECU. This is done in the "Schedul-
ing" sub-tab of the "EHOOKS" tab.

The "Scheduling" sub-tab is described in section ""Scheduling" Tab" on page 39.

ASCET-SE V6.3 EHOOKS Target User Guide 38

ETAS Getting Started with an EHOOKS Project

Figure 4.20: "Scheduling" tab

"Scheduling" Tab

The "Scheduling" tab contains the following GUI elements:

1. "Processes" field

Lists all modules included in the project. Each module can be expanded to display
its processes.

2. Unused processes only option

If activated, only processes not assigned to any bypass function are shown in the
"Processes" field.

3. and buttons

These buttons are used to map/unmap processes to bypass functions. At least one
process in the "Processes" field and one bypass function in the "Bypass function"
field must be selected.

4. "Bypass function" field

Lists all bypass functions in the project. Each bypass function can be expanded to
display its assigned processes.

The "Bypass function" field offers a context menu with the following functions:

– Create from operating system

Creates bypass functions according to the task list of an existing OS configura-
tion.
See also "To copy an existing OS configuration:" on page 41.

– Add (<Insert>)

Creates a bypass function.
See also "To create a bypass function:" on page 40.

3 * is either overwrite existing mappings or keep existing mappings

ASCET-SE V6.3 EHOOKS Target User Guide 39

ETAS Getting Started with an EHOOKS Project

– Rename (<F2>)

Renames a bypass function.

– Delete (<Delete>)

Deletes a bypass function.

– Move Up (<Ctrl> + <↑>) and Move Down (<Ctrl> + <↓>)

Moves a process upwards/downwards within the bypass function.

– Open Module

Opens a suitable component editor and edits the module that contains the se-
lected process.

– Remove undefined processes

Removes undefined processes from the bypass functions.

– Export

Opens the "Export Settings" dialog window where you can export mappings to
an *.xml or *.csv file.
See also To export all mappings of one or more tabs: on page 45.

– Import

Imports mappings from an *.xml or *.csv file.
See also "To import message/ECU variable mappings:" on page 45.

5. "Settings" field

This field allows to set properties for a selected bypass function.

– "Dispatch point" combo box

Used to associate a bypass function with an ECU dispatch point.
See also "To associate a bypass function with a dispatch point:" on page 42.

– "Period" input field

Used to specify a period in seconds. ASCET will use this period for dT for all
processes mapped to the bypass function.

Possible selections: <None>, <Select>, previously selected dispatch points

Mapping Processes to Dispatch Points

To create a bypass function:

• In the project editor, go to the "EHOOKS" tab and the
"Scheduling" sub-tab.

• In the "Scheduling" sub-tab, right-click in the "Bypass func-
tion" field and select Add from the context menu.

A new bypass function is created. Its name is highlighted
for editing.

• Enter a name and press <Return>.

To map a process to a bypass function:

• In the project editor, go to the "EHOOKS" tab and the
"Scheduling" sub-tab.

ASCET-SE V6.3 EHOOKS Target User Guide 40

ETAS Getting Started with an EHOOKS Project

Figure 4.21: Mapping processes to bypass functions

• In the "Processes" field, select one or more processes ((1)
in Figure 4.21 on page 41).

• In the "Bypass function" field, select one or more bypass
functions ((2) in Figure 4.21 on page 41).

• Click the button ((3) in Figure 4.21 on page 41).

The selected processes are assigned to the bypass func-
tion(s).

To copy an existing OS configuration:

You can copy a process-to-task mapping from other target/OS combinations (e.g. your
PC experiment) to a process-to-bypass function mapping for the EHOOKS Target. To do
so, proceed as follows.

• In the project editor, go to the "EHOOKS" tab and the
"Scheduling" sub-tab.

• In the "Scheduling" sub-tab, right-click in the "Bypass func-
tion" field and select Create from operating system from
the context menu (see Figure 4.22 on page 42).

The "Selection Required" window opens.

ASCET-SE V6.3 EHOOKS Target User Guide 41

ETAS Getting Started with an EHOOKS Project

• Select the combination of target and operating system you
want to copy and click OK.

For each task in the copied mapping, a bypass function is
created, and the respective processes are assigned.

Figure 4.22: Copying an existing configuration from another target

To associate a bypass function with a dispatch point:

• In the project editor, go to the "EHOOKS" tab and the
"Scheduling" sub-tab.

• In the "Scheduling" sub-tab, select a bypass function.

The "Dispatch Point" combo box is now available.

• Open the "Dispatch Point" combo box and select <Select>.

If EHOOKS is not already running, it is started now. A con-
figuration dialog (see Figure 4.23 on page 43) that lists all
available dispatch points opens.

• In the configuration dialog, select the dispatch point you
want to associate with the bypass function.

• Close the configuration dialog with OK.

The selected dispatch point is now shown in the "Dispatch
Point" combo box.

To access dT:

The EHOOKS Target does not currently provide a way to use a dT value from the ECU.
If your model needs a notion of time, then you have to specify a period in seconds that
ASCET will use for dT for all processes mapped into the bypass function. To do so, proceed
as follows.

• In the "Scheduling" sub-tab, select a bypass function.

• If necessary, associate a dispatch point (see page 42).

The "Period" field is now available.

ASCET-SE V6.3 EHOOKS Target User Guide 42

ETAS Getting Started with an EHOOKS Project

Figure 4.23: Selecting a Bypass Container Dispatch Point

ASCET-SE V6.3 EHOOKS Target User Guide 43

ETAS Getting Started with an EHOOKS Project

• In the "Period" field, enter the desired time in seconds.

Tip

If you do not specify a period, ASCET will use an
undefined value for dT.

4.2.4 Exporting and Importing Mappings

You can export selected message/ECU variable mappings from the "Input" or "Output"
sub-tab of the "EHOOKS" tab, or you can export all mappings of one to three sub-tabs.

To export selected message/ECU variable mappings:

• Go to the tab that contains the mappings you want to ex-
port.

– "Input" tab

– "Output" tab

Tip

You cannot export selected mappings from the "Schedul-
ing" tab.

• In the "Mapping" field of that tab, select one or more map-
pings.

• Do one of the following:

– Select Mapping Ô Export.

– Right-click in the "Mapping" field and select Export
from the context menu.

If your project contains unsaved mapping changes, you are
asked if you want to store the changes.

• Click Save or Revert to continue.

The "Export Selections" dialog window opens. The option
Only Selected Elements in Mapping Table is prese-
lected.

Tip

You cannot combine the export of selected mappings
and the export of all mappings in a tab. If you activate
one of the other options, Only Selected Elements in
Mapping Table is deactivated.

• Click OK to continue.

A file selection window opens.

• Select the export format and path and name for the export
file.

You can select either XML (*.XML) or CSV (*.CSV).

• Click Save to export the selected mappings.

The export file is created. When you selected the CSV for-
mat, you are informed that the export file is not compatible
with ASCET V6.2.0.

ASCET-SE V6.3 EHOOKS Target User Guide 44

ETAS Getting Started with an EHOOKS Project

• Read the message carefully, then confirm with OK.

To export all mappings of one or more tabs:

Tip

In this instruction, the term mapping refers to message/ECU variable mapping in
the "Input" and "Output" tabs and to the mapping of processes to ECU dispatch points
in the "Scheduling" tab.

• Go to the "Scheduling", "Input" or "Output" tab.

• Do one of the following:

– Select Mapping Ô Export.

– Right-click in the "Mapping" field or in the "Bypass func-
tion" field and select Export from the context menu.

If your project contains unsaved mapping changes, you are
asked if you want to store the changes.

• Click Save or Revert to continue.

The "Export Selections" dialog window opens. The options
in the "Mapping Types" area are preselected.

Tip

You cannot combine the export of all mappings in a
tab and the export of selected mappings. If you activate
Only Selected Elements in Mapping Table, the other
options are deactivated.

• In the "Export Selections" dialog window, select one or more
mapping tabs in the "Mapping Types" area.

• Click OK to continue.

A file selection window opens.

• Select the export format and path and name for the export
file.

You can select either XML (*.XML) or CSV (*.CSV).

• Click Save to export the selected mappings.

The export file is created.

You can import mappings from a mapping export file.

To import message/ECU variable mappings:

• Go to the "Scheduling", "Input" or "Output" tab.

• Do one of the following:

– Select Mapping Ô Import.

– Right-click in the "Mapping" field or in the "Bypass func-
tion" field and select Import from the context menu.

If your project contains unsaved mapping changes, you are
asked if you want to store the changes.

ASCET-SE V6.3 EHOOKS Target User Guide 45

ETAS Getting Started with an EHOOKS Project

• Click Save or Revert to continue.

A file selection window opens. You can filter the display ei-
ther for XML (*.XML) or CSV (*.CSV).

• Select the mapping export file you want to import.

Tip

All mappings in the export file will be imported. There is
no check if the imported mappings are valid or invalid.
Existing mappings in the "Mapping" fields are overwrit-
ten.

• Click Open to import the mappings in the selected file.

• Check the "Scheduling", "Input" and "Output" tabs and cor-
rect invalid mappings.

4.3 Building the ECU Code

To rebuild the ECU hex image, update the ASAM-MCD-2MC file, and generate the
SCOOP-IX file4, select Build Ô Build All or Build Ô Rebuild All from the project editor
menu. Alternatively, you can use the keyboard shortcuts: <F7> to build; and <Shift> +
<F7> to re-build.

ASCET will generate code for your bypass function(s) and call EHOOKS to rebuild the ECU
image and generate a new *.a2l file.

The *.a2l and *.hex files will be located in the places you specified in EHOOKS for
output configuration (see section 4.1.4 on page 19).

4.3.1 Generating ECU Code Only

You can generate C code and the *.ehcfg file from ASCET by selecting Build Ô Gener-
ate Code from the project editor menu or pressing <Ctrl> + <F7>.

Tip

ASCET does not update the EHOOKS configuration until the Generate
Code step is executed. If you have ASCET and EHOOKS open simultaneously,
you must perform Generate Code to see the ASCET-configured parts of the
configuration in EHOOKS.

The SCOOP-IX file is not generated in the Generate Code step.

ASCET generates all bypass functions in a single C source file called
asd_bypass_func.c. This file is located in the directory specified in the ASCET
options, "Build\Paths" node, "Code Generation Path" field (see the ASCET online help for
details)5.

In combination with EHOOKS-DEV V2.0, each generated bypass function has the struc-
ture shown in Listing 4.1 on page 47. The structure for bypass functions generated in
combination with EHOOKS-DEV V3.0 is shown in Listing 9.1 on page 79.

4 EHOOKS-DEV V2.0 and V3.0 generate *.six files with SCOOP-IX V1.3, EHOOKS-DEV V3.1
generates *.six files with SCOOP-IX V1.4.

5 By default, "Code Generation Path" is set to <ASCET installation_directory>\CGen.

ASCET-SE V6.3 EHOOKS Target User Guide 46

ETAS Getting Started with an EHOOKS Project

EH_USER_BYPASS_FUNC(<function_name>)
{
/* save the current value of dT for later restoring */
ASD_DT_SCALED_TYPE Saved_ASD_DT_SCALED = ASD_DT_SCALED;

/* Perform RAM initialization. Use default number of bytes

** to initialize. The OTB function will return with failure

** until the RAM has been initialized.

*/
if (!EH_InitRam(0)) {

return 0;
}

/* *** Copy the EHOOKS input arguments to ASCET messages *** */
BP_<Message> = ASD_REAL32_TO_IMPL_<Message>(

EH_IMPL_TO_float_PHYS_<ECUVar>(EH_args->in_<ECUVar>));
...

/* *** Copy the EHOOKS output arguments to ASCET messages for
initialization, if not already done by EHOOKS input
arguments *** */

BP_<Message> = ASD_REAL32_TO_IMPL_<Message>(
EH_IMPL_TO_float_PHYS_<ECUVar>(EH_args->in_<ECUVar>));

/* ASD_CALC_SCALED_DT macro expects the dT value in
milliseconds */

ASD_CALC_SCALED_DT(ASD_DT_SCALED, 1000U);

/* *** Execute processes *** */
<Module>_<Implementation>_<Process>();
...

/* *** Copy ASCET output messages to EHOOKS output arguments

*** */
EH_args->out_<ECUVar> = EH_float_PHYS_TO_IMPL_<ECUVar>(

ASD_IMPL_TO_REAL32_<Message>(BP_<Message>));
...

/* restore the original value of dT */
ASD_DT_SCALED = Saved_ASD_DT_SCALED;

return 1;
}

Listing 4.1: Example bypass function structure (EHOOKS-DEV 2.0)

4.3.2 Viewing the ASCET Build Log

ASCET logs code generation and EHOOKS invocation information in the monitor window.
Additional information can be found in the file Makelog.txt in the same directory as
the asd_bypass_func.c file (see section 4.3.1 on page 46).

ASCET-SE V6.3 EHOOKS Target User Guide 47

ETAS Calibrating Bypass Functions

5 Calibrating Bypass Functions

Calibration on bypass functions requires a slightly different approach when using
EHOOKS to using other embedded targets.

For non-EHOOKS targets, ASCET itself must generate all data structures, export all mea-
surement and calibration labels to an A2L file and then, after the build stage, extract
address information for all symbols from the executable image and patch them into the
A2L file.

With the EHOOKS target, ASCET is not in control of the build process; this is managed
transparently by EHOOKS-DEV. This means that EHOOKS-DEV is responsible for all data
location and the extraction of addresses to generate the updated ECU *.a2l file.

The impact of this is that any elements in an ASCET bypass model that need to be avail-
able for calibration in the re-built ECU image must be generated by EHOOKS itself and
not by ASCET. This can be trivially configured by placing any element that needs to be
available for calibration in the global scope. The following global elements for calibration
are supported:

• scalar elements

• characteristic lines (1D characteristic tables): fixed, normal and group

• characteristic maps (2D characteristic tables): fixed, normal and group

• arrays

• matrices

Restriction exits that only parameter characteristic tables and distributions are supported
for calibration. Variable elements of characteristic tables and distribution types are not
shown in the generated ECU *.a2l file. Global elements of the type Record are not
supported and therefore will not be shown in the generated ECU *.a2l file.

The easiest way to do this is to set the element scope to Exported1.

To set the element scope to Exported:

• Open the component that contains the desired element in a
component editor.

• In the "Outline" tab of the component editor, right-click the
element and select Properties from the context menu to
open the "Properties Editor".

• Set the "Scope" of the element to Exported.

• Set the "Calibration Access" to Read and – for parameters –
additionally to Write.

For variables, it is only possible to set the Read flag.

• Click OK.

Figure 5.1 on page 49 shows how a curve called MyFixedCurve is marked for calibration
when working with the EHOOKS Target.

1 You can also set the scope to Imported (where this is permitted by normal ASCET modeling
conventions), but you must then ensure that a corresponding export exists, for example by doing
a Resolve Globals action in the project.

ASCET-SE V6.3 EHOOKS Target User Guide 48

ETAS Calibrating Bypass Functions

Figure 5.1: Exporting an element

ASCET-SE V6.3 EHOOKS Target User Guide 49

ETAS Calibrating Bypass Functions

EHOOKS is responsible for generating any exported element and must do so us-
ing exactly the same data structures expected by ASCET (their format is described
in the ASCET-SE User’s Guide [ETA12]). ASCET generates a SCOOP-IX file that tells
EHOOKS-DEV which data structures are required and how they need to be generated.

Tip

You should ensure that for parameters both options in the "Calibration
Access" area of the element’s properties editor are set, to ensure that
EHOOKS generates the data structures correctly. Otherwise an error will be
issued during code generation.

ASCET-SE V6.3 EHOOKS Target User Guide 50

ETAS Interacting with EHOOKS Control Variables

6 Interacting with EHOOKS Control Variables

EHOOKS configurations can define enablers that allow calibration-time and/or run-time
control of hooked variables (see Figure 3.2 on page 10).

When an enabler is configured, EHOOKS generates a C variable with the name you spec-
ify that acts as a switch to control whether or not the hook is active.

Tip

Give your EHOOKS hook control variables names that are valid C names.

For more details on EHOOKS control variables, see the EHOOKS-DEV user’s
guide ([ETA11]), sections "EHOOKS-DEV Hook Configuration Properties" and
"Configuring Properties of a Variable Hook".

The hook can be enabled and disabled at run-time by writing the following values:

Function Write Value

Enable 0x12 (18 in decimal)
Disable Any other value

You can access this capability from your ASCET bypass function by creating a C code
class that writes to the EHOOKS-generated variable. Figure 6.1 shows an example model
that disables a hook when a value reaches a specific threshold:

Figure 6.1: Using C code classes to access control variables

To write a C code class to access control variables:

You will need to write the C code class(es) to write to the control variables as follows1:

• Create a C code class to store your control methods.

1 There are alternative ways of building this functionality – you are only limited by the capabil-
ities of the C programming language!

ASCET-SE V6.3 EHOOKS Target User Guide 51

ETAS Interacting with EHOOKS Control Variables

• Add a method for each variable you need to enable or dis-
able.

The method can use any valid ASCET method name.

• At the bottom of the C code editor pane, do the following:

– Set "Target" to EHOOKS.

– Set "Arithmetic" to Object Based Controller
Implementation.

– Leave "Implementation" set to the default.

• Click on the "Header" tab (in any method or in main – head-
ers are shared across all methods in C code classes) and
enter the following code:

#include "UserBypassFuncs.h"

This header file defines all the available control variables. It
is automatically generated by EHOOKS and included in the
build process.

• For each method, if the method must enable the hook, add
this code:

control_variable_name = 18;

• If the method must disable the hook, add this code:

control_variable_name = 0;

Figure 6.2 shows a method called enableSpeedHook that writes to a control variable
called B_srfdke__control.

Figure 6.2: C code to enable a hook

ASCET-SE V6.3 EHOOKS Target User Guide 52

ETAS Interacting with EHOOKS Control Variables

Tip

The control variable name used by your configured C code class must be
identical to the C name of the EHOOKS hook control variable you declare in
the EHOOKS configuration.

It is important to remember the following: If a configured hook control
variable name is not a valid C identifier then EHOOKS will automatically
convert the name into a valid C identifier by replacing all characters that are
not permitted in a C identifier with double underscores (__).

For example, if you call a control variable MyVariable.control then
EHOOKS will automatically convert the name to MyVariable__control. You
must use the converted C name when building C code classes that write to
EHOOKS hook control variables.

ASCET-SE V6.3 EHOOKS Target User Guide 53

ETAS Arithmetic Services and Interpolation Routines

7 Arithmetic Services and Interpolation Routines

ASCET can interact with user code that is provided outside of ASCET’s own code genera-
tion process. To do this, ASCET needs to know what code exists and when to use it. This
information is provided by *.ini files.

During code generation, ASCET uses the information in the *.ini files to generate call-
backs to user code. At compile time you must provide the implementation of the call-
backs you have told ASCET to use. These callbacks are sometimes called service routines
because they provide services to ASCET.

ASCET uses callbacks in the following cases:

Arithmetic services are used to override the compiler’s and/or ASCET’s default arith-
metic operations. Arithmetic services are optional and are disabled by default.

Interpolation routines are used to interpolate between axis points in curves (1D char
tables) or maps (2D char tables). Interpolation routines are mandatory if your
model uses curves or maps.

Further information about these topics is provided in the ASCET online help.

The EHOOKS Target handles callbacks using exactly the same mechanisms as all other
ASCET embedded targets. This means that the classic use-case, where callbacks are
made to access code you provide to the project, works with EHOOKS as well. However,
another possibility is available with EHOOKS - using callbacks to access functionality that
is already available in the ECU.

Tip

Your ECU supplier must have prepared the ECU to support this use case.

You can also combine both approaches, using callbacks that you provide as C code at
build time together with callbacks to services provided by the ECU as shown in Figure 7.1
on page 55.

The following sections explain how to configure your bypass functions for use within the
context of an EHOOKS project.

7.1 Arithmetic Services

This section provides a brief introduction to principles behind arithmetic services and
their use in ASCET. It is not intended to be a comprehensive tutorial; further details are
described in the ASCET online help system.

7.1.1 Preparing a Service Set

To use arithmetic services with the EHOOKS Target, you need the following:

• A services.ini file that defines which operator signature should be replaced by
which arithmetic service routines. This must be located in ASCET’s EHOOKS target
directory. The default location is <install_dir>1\targets\trg_eHooks.

• The source code and/or libraries for the service routines defined in the
services.ini file

1 <install_dir> is the ASCET installation directory, e.g., C:\ETAS\ASCET6.3

ASCET-SE V6.3 EHOOKS Target User Guide 54

ETAS Arithmetic Services and Interpolation Routines

Figure 7.1: Providing callbacks and accessing them in ASCET generated code

The services.ini file uses Windows INI file format to define one or more service sets.
Each service set appears in a uniquely named section:

[MyServiceSet]
+|*|*|*=Add_NOLIMIT_%t1%%t2%_%tr%(%i1%, %i2%)
-|*|*|*=Sub_NOLIMIT_%t1%%t2%_%tr%(%i1%, %i2%)
...
[MyOtherServiceSet]
+|*|*|*=ADD_%t1%%t2%_%tr%(%i1%, %i2%)
-|*|*|*=SUB_%t1%%t2%_%tr%(%i1%, %i2%)
...

Each un-commented line in the file defines a mapping rule as follows:

<operator>|<type-signature>=[<return-type>]<function>(<parameters>)

For example, the rule for + defined in MyServiceSet will cause the replacement of
every plus with a call to function Add_NOLIMIT_%t1%%t2%_%tr%() where %t1% and
%t2% are the types of the input parameters and %tr% is the type of the return value.

When ASCET generates code, each time the operator is required in the context defined
by the type signature, a call to the function is generated instead of the normal ASCET
code.

For example, Figure 7.2 on page 56 shows a model that uses four numerical operations.
The inputs are both signed 16-bit integers, and the outputs are signed 32-bit integers.
Listing 7.1 shows the code generated by ASCET when no arithmetic service set is se-

ASCET-SE V6.3 EHOOKS Target User Guide 55

ETAS Arithmetic Services and Interpolation Routines

lected. Listing 7.2 on page 56 shows the code generated by ASCET when the arithmetic
service set MyServiceSet is selected2.

Figure 7.2: ASECT model using arithmetic operators

void SERVICES_IMPL_process (void)
{

/* process: sequence call #5 */
out1 = (sint32)(in1 + in2);
/* process: sequence call #10 */
out2 = (sint32)(in1 - in2);
/* process: sequence call #15 */
out3 = (sint32)(in1 * in2);
/* process: sequence call #20 */
out4 = (sint32)(((in2 == (sint16)0) ? in1 : in1 / in2));

}

Listing 7.1: Code generation without services

void SERVICES_IMPL_process (void)
{

/* process: sequence call #5 */
out1 = Add_NOLIMIT_s16s16_s32(in1, in2);
/* process: sequence call #10 */
out2 = Sub_NOLIMIT_s16s16_s32(in1, in2);
/* process: sequence call #15 */
out3 = Mul_NOLIMIT_s16s16_s32(in1, in2);
/* process: sequence call #20 */
out4 = (sint32)(((in2 == (sint16)0) ? in1 :

Div_NOLIMIT_s16s16_s16(in1, in2)));
}

Listing 7.2: Code generation with services from MyServiceSet

You must provide an implementation for every function referenced by services.ini.
The implementation can use any valid C code, including macro definitions. The following

2 The code shown has been simplified for clarity. Comments and variable prefixes have been
removed.

ASCET-SE V6.3 EHOOKS Target User Guide 56

ETAS Arithmetic Services and Interpolation Routines

C code examples show the header and source files that would be required to implement
the functions in Listing 7.2 on page 56.

#include "a_basdef.h"
sint32 Add_NOLIMIT_s16s16_s32(sint16 x, sint16 y);
sint32 Sub_NOLIMIT_s16s16_s32(sint16 x, sint16 y);
sint32 Mul_NOLIMIT_s16s16_s32(sint16 x, sint16 y);
sint16 Div_NOLIMIT_s16s16_s16(sint16 x, sint16 y);

Listing 7.3: Header File: services.h

#include "services.h"
uint32 Add_NOLIMIT_s16s16_s32(sint16 x, sint16 y){

...
return ...;

}
uint32 Sub_NOLIMIT_s16s16_s32(sint16 x, sint16 y{

...
return ...;

};
uint32 Mul_NOLIMIT_s16s16_s32(sint16 x, sint16 y){

...
return ...;

}
uint32 Div_NOLIMIT_s16s16_s16(sint16 x, sint16 y){

...
return ...;

}

Listing 7.4: Source File: services.c

7.1.2 Using a Service Set

Figure 7.3 on page 58 shows the interaction between ASCET, EHOOKS and you when
integrating arithmetic services.

Tip

The casting strategies named MISRA-compliant and Target Optimized
are not permitted when using arithmetic services. See the ASCET online help
for details on casting.

The following step-by-step guide explains what you need to do.

To use an arithmetic service set:

• Open the "Project Properties" window and go to the "Build/
Code Generation/Integer Arithmetic" node.

• In the "Arithmetic Service Set" combo box (see also Fig-
ure 7.4 on page 58), select the service set you want to use.

• Go to the "Build/Code Generation" node and select
the Arithmetic services strategy from the "Casting"
combo box.

• Close the "Project Properties" window with OK.

ASCET-SE V6.3 EHOOKS Target User Guide 57

ETAS Arithmetic Services and Interpolation Routines

Figure 7.3: Using external arithmetic services with EHOOKS

Figure 7.4: Selecting the service set in ASCET

ASCET-SE V6.3 EHOOKS Target User Guide 58

ETAS Arithmetic Services and Interpolation Routines

• #include the header file(s) for the service implementation
in proj_def.h in the targets\trg_eHooks\include
directory.

• Add the path(s) to the include directories and the names
of the source files and/or library files for your arithmetic
services to the EHOOKS build as shown in Figure 7.5 on
page 59.

Figure 7.5: Adding a source file to the EHOOKS build

When you re-build, ASCET will generate code that includes the calls to your services
at the appropriate places using services.ini, and EHOOKS will compile and link the
service implementations with the ASCET-generated code.

7.2 Interpolation Routines

When your model uses characteristic lines (1D tables) or maps (2D tables), ASCET makes
callbacks to C functions called interpolation routines to calculate interpolated values.

The following discussion provides some basic information. You can find out more in the
ASCET online help: select the Help Ô Contents menu option and – in the help viewer –
open the book "Introduction/Basics/Types and Elements/User-defined Interpolation Rou-
tines".

Tip

You must use Help Ô Contents to open the entire online help. <F1>
opens only a part of the online help, and the "Introduction" book may be
invisible.

ASCET-SE V6.3 EHOOKS Target User Guide 59

ETAS Arithmetic Services and Interpolation Routines

7.2.1 Understanding Interpolation Routine Use in ASCET

Interpolation routine use in ASCET has both model-specific and target-specific parts. Fig-
ure 7.6 shows how the various parts of ASCET that influence the use of interpolation
routines interact in an "out-of-the-box" installation of ASCET.

Figure 7.6: From model to code with interpolation routines

The following sections explain the contents of these files in more detail.

Definition Files

Interpolation definition files tell ASCET what interpolation schemes exist so they can be
selected in the model. These definitions allow ASCET to use different interpolation rou-
tines for different elements in the same project.

The definitions are located in XML files in <install_dir>\Tools\Interpolation
Routine. You can see which definition has been configured for a characteristic line or
a map by opening the properties editor for the line or map as shown in Figure 7.7 on
page 61.

Each interpolation definition specifies the search path to the *.ini mapping file that
ASCET will use at code generation time. By default, the search path is configured with
the following search order:

1. target\trg_<target>\intpol\Intpol<name>.ini

2. target\common\interpolation\Intpol<name>.ini

ASCET-SE V6.3 EHOOKS Target User Guide 60

ETAS Arithmetic Services and Interpolation Routines

Figure 7.7: Characteristic line using the Linear interpolation model

ASCET-SE V6.3 EHOOKS Target User Guide 61

ETAS Arithmetic Services and Interpolation Routines

This forces ASCET to look in the target directory first and then in the common directory.
ASCET will use the first matching definition file it finds.

Tip

ASCET only installs definitions into the common directory by default.

Mapping Files

Mapping files are *.ini files, referenced by interpolation definition files, that define the
mapping between logical access functions (e.g. getAt1, getAt2 etc.) and the interpo-
lation routines that must be used in the generated code. The file is similar in principle to
a services.ini file.

There are two sections – [Experiment] and [Production] –, and each section de-
fines a complete set of mappings. The following example shows the start of the
[Production] section of the standard IntpolLinear.ini file.

[Production]
; One D Char Tables
getAt1|*|*=CharTable1_getAt_%tx%%tv%(%ct%,%x%)
getAtFixed1|*|*=CharTableFixed1_getAt_%tx%%tv%(%ct%,%x%)
getX1|*=%ct%->xDist[%i%]
setX1|*=%ct%->xDist[%i%]=%x%
getValue1|*=%ct%->values[%i%]
setValue1|*=%ct%->values[%i%]=%v%
getValueFixed1|*=%ct%->values[%i%]
setValueFixed1|*=%ct%->values[%i%]=%v%
...

Note that EHOOKS is classified as a Production target as it is an ASCET-SE target.

Header Files

Header files declare the interpolation routines and must be included by ASCET code
that uses interpolation. Every function named in the .ini files must be declared in
the header file(s).

Library

The interpolation routine library provides the implementation of the interpolation rou-
tines declared in the header file(s).

7.2.2 Using the Default Routines

The EHOOKS Target (like all ASCET-SE targets) is supplied with example source code and
a pre-compiled library that includes routines for linear and rounded interpolation.

The ASCET EHOOKS Target will automatically use the example routines when generating
code. ASCET will add the include file path and the library path to the EHOOKS build for
the example library.

ASCET-SE V6.3 EHOOKS Target User Guide 62

ETAS Arithmetic Services and Interpolation Routines

Tip

In this release of the EHOOKS Target, the library (intpol_ehooks_hitec.a)
is built for the Infineon TriCore device using the HighTecs C compiler. If
you need these routines to work with another microcontroller and/or com-
piler, follow the instructions in ReadMe_Interpolation.html in the
<install_dir>\target\trg_eHooks\intpol directory or contact ETAS
for further assistance.

7.2.3 Using Custom Routines

Using your own interpolation routines in ASCET code generated for the EHOOKS target
is possible in the same way as for all ASCET-SE targets. You can either choose to modify
the supplied mapping files for linear and rounded interpolation (IntpolLinear.ini or
IntpolRounded.ini) or you can create new definition and mapping files.

Modifying an Existing Interpolation Scheme

You can modify an existing interpolation scheme to use your own interpolation routines.
The following list explains how:

1. For each interpolation type you use, you will need entries in the interpolation rou-
tine mapping file (IntpolLinear.ini or IntpolRounded.ini as appropriate)
that call your routines. The EHOOKS target is an embedded target and entries must
be created in the [Production] section.

2. Define a C header file that declares every function in your mapping file.

Tip

If you replace the ASCET-supplied header file a_intpol.h in
trg_eHooks\intpol, then ASCET will use the file because it is
always #included in a_basdef.h).

If you want to use a different file name then you must ensure that it is visible
to ASCET generated code. This can be done by #includeing the header file
in ASCET’s standard location for custom header files: the proj_def.h file in
trg_eHooks\include.

3. Implement your interpolation routines and build a library.

4. Add the include path, source files and/or library files for your interpolation routines
to the EHOOKS build as shown in Figure 7.5 on page 59.

Creating a New Interpolation Scheme

You can create an entirely new interpolation scheme to use with your models. The fol-
lowing step-by-step guide explains how to create a new set of routines called "Custom-
Interpolation":

ASCET-SE V6.3 EHOOKS Target User Guide 63

ETAS Arithmetic Services and Interpolation Routines

To create a new interpolation scheme:

• Create a copy of the file etas.aid.xml.template in
<install_dir>\Tools\Interpolation Routine,
delete the .template suffix and replace etas with
the name of your interpolation routine definition, e.g.
CustomInterpolation.aid.xml.

• Open the file in a text/XML editor of your choice and set the
<DefaultValue> of the Identifier and the Label to
the name of your interpolation routine.

The name you specify will be used in the "Interpolation"
combo box in the properties editor for a characteristic line
or map.

<!-- mandatory, fixed options -->
<OptionDeclaration optionCategory="FIXED"

xmlCategory=""
optionClass="EtasStringOption"
attributeName="Identifier">

<Group/>
<Label>Identifier</Label>
<Description>Unique name for ASCET

internal management of this
interpolation routine.</Description>

<Tooltip>Identifier for the interpolation
routine</Tooltip>

<DefaultValue>CustomInterpolation
</DefaultValue>}

</OptionDeclaration>
<!-- required, variable options -->
<OptionDeclaration optionCategory="FILE"

xmlCategory=""
optionClass="EtasStringOption"
attributeName="Label">

<Group/>
<Label>Label</Label>
<Description>Unique name to display the

interpolation routine in
ASCET.</Description>

<Tooltip>Name of the interpolation
routine</Tooltip>

<DefaultValue>ETAS Interpolation
</DefaultValue>

</OptionDeclaration>

Tip

It is recommended that the file name and
the <DefaultValue>s of Identifier and
Label are the same - this makes it easy for you
to identify which description file contains which
interpolation scheme.

ASCET-SE V6.3 EHOOKS Target User Guide 64

ETAS Arithmetic Services and Interpolation Routines

• Save and close the file.

• Start or re-start ASCET and select Tools Ô Options to open
the ASCET options dialog window.

• In the ASCET options dialog window, go to the "Options/
Build/Interpolation Routine/CustomInterpolation" node and
do the following:

– In the "Interpolation Header" field, enter the header file
name you want to use.

– In the "Interpolation Library" field, enter the library
name you want to use.

– Add a "Mapping File" entry, e.g.,
%P_TARGET%\CustomInterpolation.ini.

– If desired, set other options.

– Click OK.

• Create the file CustomInterpolation.ini in the
trg_eHooks directory.

For each interpolation type you use, you will need entries
in the interpolation routine mapping file that call your rou-
tines. The EHOOKS target is an embedded target, and en-
tries must be created in the [Production] section.

• Create the C header file with the same name you specified
in the "Interpolation Header" and declare every function in
your mapping file.

• Implement your interpolation routines and build a library.

• Add the include path, source files and/or library files for your
interpolation routines to the EHOOKS build as shown in Fig-
ure 7.5 on page 59.

To use the new interpolation routine, open the properties editor for your characteristic
line or map and select the interpolation routine in the "Interpolation" combo box (see
Figure 7.8 on page 66).

7.3 Callbacks to Existing ECU Code

ASCET can use callbacks to arithmetic services or interpolation routines that are al-
ready present in the ECU. Figure 7.9 on page 67 shows the interaction between ASCET,
EHOOKS, the ECU supplier and you when using services provided by the ECU.

Neither ASCET nor EHOOKS can work out what routines are available in the ECU. Your
ECU supplier, however, can optionally make routines available when they prepare the
ECU using the EHOOKS-PREP tool. They can do this by providing a header file that de-
fines function pointers with the names of the service routines that you can use and then
placing the header file in the ECU_INTERNALS section of the *.a2l file.

For example, the following code shows how to create a function pointer to an arithmetic
service called Div_limit_s32s32_u16 on the ECU:

ASCET-SE V6.3 EHOOKS Target User Guide 65

ETAS Arithmetic Services and Interpolation Routines

Figure 7.8: Selecting a user-defined interpolation routine

ASCET-SE V6.3 EHOOKS Target User Guide 66

ETAS Arithmetic Services and Interpolation Routines

Figure 7.9: Making callbacks to ECU provided functions

typedef uint16 (*FPtr_Div_limit_s32s32_u16) (sint32 x, sint32 y);
#define Div_limit_s32s32_u16

((Fptr_Div_limit_s32s32_u16)(0x1234ABCD))

Tip

It is only possible to make callbacks to services that the ECU supplier
makes available to you.

The EHOOKS Target can use callbacks to ECU routines at code generation time instead of
(or in combination with) normal externally provided routines. The mechanism is identical
to accessing routines that you provide, i.e.:

1. Define *.ini files that tell ASCET which routines to use and when.

2. Ensure the header files for the routines are included by ASCET.

You therefore need the following information to use these routines in ASCET-generated
code:

• The *.ini file mappings for the ECU routines made available by the ECU supplier.

• The name of the header file(s) that declare the C function names for routines. AS-
CET needs to #include these files 3.

The only difference is where the implementation of the routines is found – in the ECU
instead of in a C source file or pre-built library.

3 You only need the name of the file(s) - not the files themselves. Your ECU supplier will embed
the header files in the *.a2l file when preparing the ECU for EHOOKS. When EHOOKS rebuilds
the ECU it will automatically extract the header files and use them in the build process so the
ASCET-generated code will compile correctly.

ASCET-SE V6.3 EHOOKS Target User Guide 67

ETAS Arithmetic Services and Interpolation Routines

7.3.1 Arithmetic Services

To use arithmetic services from the ECU:

• Define a service set in the services.ini file.

• Select the service set in the "Project Properties" window,
"Build/Code Generation/Integer Arithmetic" node.

• Select a suitable casting strategy in the "Project Properties"
window, "Build/Code Generation" node.

Tip

The casting strategies MISRA-compliant and
Target Optimized are not permitted when
using arithmetic services.

• #include the header file(s) for your service implementa-
tion in the ASCET proj_def.h header file.

When you re-build, ASCET will generate code that includes the calls to the ECU services
at the appropriate places, and EHOOKS will compile and link the service implementations
with the ASCET-generated code.

7.3.2 Interpolation Routines

Using interpolation routines from the ECU is very similar to using interpolation routines
in other case. You need to do the following:

1. Create or modify (see section 7.2.3 on page 63) an interpolation routine signature
mapping file that maps routine signatures to the routines provided by the ECU. For
the EHOOKS target, you must create entries in the [Production] section.

2. #include the header file(s) for your service implementation in ASCET’s
proj_def.h header file.

When you re-build, ASCET will generate code that includes the calls to the ECU interpo-
lation routines at the appropriate places.

7.3.3 Mixing Callbacks to Off-ECU and On-ECU Code

You can freely mix callbacks to both Off-ECU and On-ECU code by defining a mapping file
(services.ini and/or IntPol*.ini as appropriate) that include mappings to both
ECU functions and functions you will provide as external code and/or libraries. You must
then include appropriate header files.

It may be the case that you do not know which services will be on the ECU and which will
need to exist externally at the point you decide to write your header files. You will have
two header files, one for the Off-ECU functions that declares a C function, and one for the
On-ECU functions that defines a function pointer for the C function. For example, in the
Off-ECU header you might have the following code:

uint32 SomeFunction (uint32 x, uint32 y);

In the On-ECU header file, you might have a C function pointer to access the same func-
tion on the ECU:

ASCET-SE V6.3 EHOOKS Target User Guide 68

ETAS Arithmetic Services and Interpolation Routines

typedef uint32 (*SomeFunction_Ptr) (uint32 x, uint32 y);
#define SomeFunction ((SomeFunction_Ptr)(0xABCD1234))

This is not a problem if you include the header files for On-ECU functions after those for
Off-ECU functions (because this ordering will ensure that the On-ECU functions are used
in preference to the Off-ECU functions). For example, assume that there are two header
files:

• OFF_ECU_Services.h that declares the function prototypes for Off-ECU func-
tions; and

• ON_ECU_Services.h that includes the function pointer definitions for On-ECU
functions.

The correct include file ordering would be:

...
#include "OFF_ECU_Services.h"
#include "ON_ECU_Services.h"
...

Tip

The On-ECU services must be included after all header files defining Off-
ECU services. The application may not compile if you reverse the include
order.

This structure exploits the fact that the On-ECU functions are declared as
#defines in the ON_ECU_Services.h header file. While a function name
can appear in both files, it is only a #define to a function pointer in the
ON_ECU_Services.h header file. The C programming language is permis-
sive enough to allow this type of construct, and the C pre-processor will use
the last definition, the On-ECU function, in preference to the Off-ECU function.
Most modern C compilers will generate a warning when this occurs, which can
be safely ignored.4

4 Note, however, that these warnings provide an easy way to check which functions are actually
being called on the ECU!

ASCET-SE V6.3 EHOOKS Target User Guide 69

ETAS Using Libraries

8 Using Libraries

You can use ASCET libraries with the EHOOKS Target in exactly the same way as all other
ASCET-SE targets.

There are typically two types of library:

Model libraries typically provide ASCET class models that implement common func-
tionality. Model libraries contain pre-defined, complete ASCET models that can be
re-used across multiple projects. Each library is self-contained – everything that
ASCET needs to generate code is contained in the library itself.

Service libraries also provide ACSET class models, but typically with methods imple-
mented as services as shown in Figure 8.1 on page 70. This means that a service
library defines only the interface between ASCET and some externally provided im-
plementation of the functionality. The library is therefore not self-contained. If you
want to use a service library, you will need both the ASCET model and the external
implementation of the library (either as C source code or a pre-compiled library).

Figure 8.1: Class configured for methods to be implemented as service routines

ASCET-SE V6.3 EHOOKS Target User Guide 70

ETAS Using Libraries

Tip

Any given library may contain some classes that are complete models (i.e. those
classes are a model library) and some other classes that define the interface to
services (i.e. those classes are a service library).

8.1 Model Libraries

Use of model libraries is straight-forward: import the library into your workspace (or
database), and then use the models in your project in exactly the same way you would
use models you have built yourself.

ETAS supplies ASCET with two model libraries as standard:

• the ETAS_SystemLib

• the ETAS_MBFS_Library

The libraries can be found in the <install_dir>1\export directory. More information
about the functionality of the libraries can be found in the ASCET online help (opened with
the Help Ô Contents menu option) and in the System_Libraries.pdf document in
...\ETAS\ETASManuals\ASCETx.y.

8.2 Service Libraries

When working with service libraries you will need the following:

• the ASCET library (as an .axl workspace file or .exp database export file accord-
ing to the data model format you are using for your ASCET model)

• one (or more) C header files that define the C interface to the library

• the library itself (either as a pre-compiled library compatible with your ECU or
source code)

To use the library you need to do the following steps:

1. Import the ASCET library into ASCET using File Ô Import....

2. #include the header file(s) for the service library in ASCET’s proj_def.h header
file in the targets\trg_eHooks\include directory.

3. Add the path(s) to the include directories and the names of the source files and/or
library files to the EHOOKS build (see Figure 7.5 in section 7.1).

8.2.1 Controlling Method Names in Generated Code

By default, ACSET generates method names of the following form in the C code2:

CLASSNAME_IMPLEMENTATIONNAME_MethodName

1 <install_dir> is the ASCET installation directory, e.g., C:\ETAS\ASCET6.3
2 Note that ASCET capitalizes the module and implementation names by default, so a module

with model name MyClass will become MYCLASS.

ASCET-SE V6.3 EHOOKS Target User Guide 71

ETAS Using Libraries

If you mark a method as being implemented as a service, then the service you provide
must have this name and use the same signature expected by ASCET.

If the service implementation does not follow the ASCET convention for method names,
you can configure ASCET to generate a compatible name by defining a "Symbol" for the
method as follows:

To define a symbol for a method:

• Open the component that contains the desired method in
the respective component editor.

• In the "Outline" tab of the component editor, right-click
the method and select Implementation from the context
menu.

The implementation editor for methods (see Figure 8.2 on
page 72) opens.

• Enter the required name in the "Symbol" field, then click
OK.

Figure 8.2: Re-defining the symbol name for a method

Figure 8.2 shows how a call to method MyMethod() can be modified to be a call to
UseThisNameInstead().

If the "Symbol" field is empty, then ASCET generates the default name. If the "Symbol"
field is not empty, then ASCET generates a call to the method using the name exactly
as written. Names must be valid C identifiers, but they can also use ASCET’s template
macros (e.g. %name%, %class%, %impl%). For further details, see the ASCET online help.

8.2.2 Optimizing Data Structure Accesses

ASCET-generated component type data structures normally contain a ROM-able part (for
constants) and a RAM part (for variables). The ROM part of the data includes a pointer to
the RAM part.

If the component only includes variables, then the ROM-able part can be elided in gen-
erated code. This removes the ROM structure itself and also removes the data structure
pointer indirection, optimizing both time and space. This means that an access of the
form:

self->RAM_part->element

ASCET-SE V6.3 EHOOKS Target User Guide 72

ETAS Using Libraries

becomes:

self->element

This optimization is controlled by the option optimizeCompTypeDescriptor in
codegen_ehooks.ini. It is enabled by default in the EHOOKS Target.

8.2.3 Using Services Routines on the ECU

Section 7.3 on page 65 explained how to make callbacks to arithmetic services and in-
terpolation routines that are already present in the ECU hex file.

You can also use the same technique to access service routines that already exist on the
ECU.

8.3 Working with Formulas

ASCET allows you to define named formulas that specify a fixed-point quantization as
shown in Figure 8.3 on page 73. Formulas are defined by projects, and module or class
implementations can optionally declare that they use a formula with a given name.

Figure 8.3: Formula definitions in a project

The problem with using formulas in this way is that the portability of those implementa-
tions can be broken: When the module or class is used in another project, the formula
may be undefined. ASCET will report an error at build time for all formulas that are used
by modules and/or classes, but are not defined in the project.

Missing formula definitions can be created in the "Formulas" tab of the project editor; see
the ASCET online help for details.

8.3.1 Using the Same Formulas as the ECU

Formula definitions have project scope, and projects are independent. This means that
formulas with identical names in different projects represent logically different formulas.

When you define missing formulas, it is not required that the fixed-point quantizations are
the same as found on the ECU. The EHOOKS Target will automatically convert between
ECU and model quantizations.

If you need to use the same quantizations for data as used by the ECU, then it is your
responsibility to enter the correct data. You can avoid errors by requesting that your ECU
supplier provides an ASCET-compatible formula definition file (for example, generated
from the COMPU-METHODS in the ECU’s A2L file) that you can import into ASCET.

ASCET-SE V6.3 EHOOKS Target User Guide 73

ETAS Using Libraries

The formula definition file is an XML file that satisfies the formulas.xsd XML schema
definition found in <install_dir>3\Schemas.

3 ASCET installation directory, e.g., C:\ETAS\ASCET6.3

ASCET-SE V6.3 EHOOKS Target User Guide 74

ETAS Using EHOOKS-DEV V3.0

9 Using EHOOKS-DEV V3.0

If you are using EHOOKS-DEV V3.0, there are differences to using EHOOKS-DEV V2.0.
These differences are described in this chapter.

• An additional code generator Object Based Controller Physical is avail-
able, which functions analog to Physical Experiment for the PC target.

• Local variables and parameters of modules in the Bypass project can be put in the

*.a2l file for later usage with INCA.

• Local variables or parameters of single instance classes of the Bypass project can
be put in the *.a2l file for later usage with INCA.

• The "Global Name Space Prefix" configured in project target settings is valid for
global and local generated data elements.

All other things described in the previous chapters for usage with EHOOKS-DEV V2.0 are
still valid for EHOOKS-DEV V3.0. For specific changes in options of EHOOKS-DEV3.0, you
can check [ETA13].

9.1 Updating Projects from EHOOKS-DEV V2.0 to EHOOKS-DEV V3.0

If you already have an EHOOKS configuration file (*.ehcfg) for your project and
EHOOKS-DEV 2.0, you can just use that file.

To adapt the *.ehcfg file to EHOOKS-DEV V3.0:

• Open the ASCET options window.

• In the ASCET options window, go to the "Targets\EHOOKS\
Build" node and select EHooks-DEV V3.0 as External Build
Tool.

Tip

This setting applies to all projects that use
the EHOOKS target.

• Close the ASCET options window.

• In the "EHOOKS" tab of the project editor, click the Start
EHOOKS button (see Figure 4.2 on page 15) to open
EHOOKS-DEV.

• If desired, modify your output locations for the *.hex and

*.a2l files in EHOOKS-DEV.

• Even if nothing needs to be modified, force EHOOKS to save
the EHOOKS configuration file (*.ehcfg).

You can do so, e.g., by adding or modifying the version in the
"Project Information" field shown in Figure 9.1 on page 76.

• Close EHOOKS-DEV and save the modified EHOOKS config-
uration file (*.ehcfg).

• In the project editor, select Build Ô Build All or Build Ô

Rebuild All to re-build the project with EHOOKS-DEV V3.0.

Alternatively, you can use the keyboard shortcuts <F7> to
build and <Shift> + <F7> to rebuild.

ASCET-SE V6.3 EHOOKS Target User Guide 75

ETAS Using EHOOKS-DEV V3.0

Figure 9.1: Configuring the Version information in the "Project Information" field (which
is not relevant for the EHOOKS-DEV Build)

If you do not have an EHOOKS configuration file (*.ehcfg) for your project, proceed as
described in chapter 4 "Getting Started with an EHOOKS Project" on page 13.

9.2 Using the Code Generator: Object Based Controller Physical

In the "Build" node of the "Project Properties" window, two Code Generators are available
for EHOOKS-DEV V3.0: Object Based Controller Physical and Object Based
Controller Implementation, see Figure 9.2 on page 77.

If Object Based Controller Physical is selected as code generator, the imple-
mentation information in the ASCET Bypass project is ignored, all ASCET udisc and sdisc
data type values are implemented as uint32 and sint32, and the ASCET log data type is
implemented as uint8. The ASCET generated code behaves like the generated code for
the physical PC target. When a variable is written to the ECU, the EHOOKS Target will
automatically limit the value to the min and max values defined by the ECU.

The min and max values of all Bypass elements in the generated ECU *.a2l file are
-9.9995e+36 and 9.9995e+36.

All cont values are implemented as real32 or real64 (single or double precision values),
depending on the setting of the "Cont Implementation Type" option in the ASCET options,
"Targets\EHOOKS\Build" node.

ASCET-SE V6.3 EHOOKS Target User Guide 76

ETAS Using EHOOKS-DEV V3.0

Figure 9.2: Choosing the Code Generator in the project properties, "Build" node

ASCET-SE V6.3 EHOOKS Target User Guide 77

ETAS Using EHOOKS-DEV V3.0

The following settings are available for "Cont Implementation Type" (see also Table 4.1
on page 18):

Phys. Single Precision - Generate all continuous elements as single precision floating
point values.

Phys. Double Precision - Generate all continuous elements as double precision float-
ing point values.

Tip

This setting applies to all projects that use the EHOOKS target.

9.2.1 Arithmetic Services

As for the Physical Experiment code generator and the PC target, arithmetic ser-
vices cannot be used for the Object Based Controller Physical code generator.

9.2.2 Interpolation Routines

Interpolation routines can be used with Object Based Controller Physical as de-
scribed in section 7.2 "Interpolation Routines" on page 59.

9.2.3 Interacting with EHOOKS Control Variables

For the Object Based Controller Physical code generator, the same methods
for interacting can be used as described in chapter 6 "Interacting with EHOOKS Control
Variables" on page 51. For the C code classes, you have to select Object Based
Controller Physical in the "Arithmetic" combo box (see Figure 6.2 on page 52).

9.3 Calibrating Bypass Functions

With EHOOKS-DEV 3.0, the usage of calibration elements has been extended from only
global elements as described in chapter 5 "Calibrating Bypass Functions" on page 48 to
local elements. Both can now be used as calibration elements. This includes:

• local elements of all modules in the Bypass project

• local elements of single-instance classes contained in the Bypass project

For local elements, the same ASCET types are supported for calibration as described for
global elements in chapter 5 on page 48.

Each global or local calibration element can be specified for calibration by using the
"Properties Editor" of the element. To do so, activate the Read and – for parameters
– Write options in the "Calibration Access" area of the properties editor, as shown in
Figure 5.1 on page 49.

Tip

If – for parameters – only the Read option is set in the "Calibration Ac-
cess" area, but the Write option is not, the element’s data location and the
extraction of addresses will not be generated in the updated ECU *.a2l file.

ASCET-SE V6.3 EHOOKS Target User Guide 78

ETAS Using EHOOKS-DEV V3.0

9.3.1 Global Name Space Prefix

The Global Name Space Prefix described in section 4.1.3 on page 16 is generated for
global and local elements. For local elements, the name consists of the prefix followed
by the element instance path. Therefore the module and class instance names are com-
bined like in the following example.

Example for variable generation with Prefix BP_:

• global variable:

BP_<varname>

• local variable in module:

BP_<varname>.<module_inst_name>.<project_name>

• local variable in single instance class in module:

BP_<varname>.<class_inst_name>.<module_inst_name>.<project_name>

For parameters, names are generated the same way. The element name and the element
display name in the *.a2l file are the same.

9.4 Building the ECU

ASCET generates all bypass functions in a single C source file called
asd_bypass_func.c. The file generated for EHOOKS-DEV 3.0 has only slightly
changed from the file which has been generated with EHOOKS-DEV 2.0 (see Listing 4.1
on page 47).

In EHOOKS-DEV 3.0, each generated bypass function has the structure shown in List-
ing 9.1. Instead of direct access to the EHOOKS variable structures, the methods
EH_ARG_PUT_<ECUVar> and EH_ARG_SET_<ECUVar> are generated for the access.

EH_USER_BYPASS_FUNC(<function_name>)
{
/* Perform RAM initialization. Use default number of bytes

** to initialize. The OTB function will return with failure

** until the RAM has been initialized.

*/
if (!EH_InitRam(0)) {
return 0;

}

/* *** Copy the EHOOKS input arguments to ASCET messages *** */
BP_<Message> = ASD_REAL32_TO_IMPL_<Message>(

EH_IMPL_TO_float_PHYS_<ECUVar>(
EH_ARG_GET_<ECUVar>(EH_context)));

...

/* *** Copy the EHOOKS output arguments to ASCET messages for
initialization, if not already done by EHOOKS input
arguments *** */

BP_<Message> = ASD_REAL32_TO_IMPL_<Message>(
EH_IMPL_TO_float_PHYS_<ECUVar>(
EH_ARG_GET_<ECUVar>(EH_context)));

ASCET-SE V6.3 EHOOKS Target User Guide 79

ETAS Using EHOOKS-DEV V3.0

/* ASD_CALC_SCALED_DT macro expects the dT value in
milliseconds */

ASD_CALC_SCALED_DT(ASD_DT_SCALED, 1000U);

/* *** Execute processes *** */
<Module>_<Implementation>_<Process>();
...

/* *** Copy ASCET output messages to EHOOKS output arguments

*** */
EH_ARG_PUT_<ECUVar>(EH_float_PHYS_TO_IMPL_<ECUVar>(

ASD_IMPL_TO_REAL32_<Message>(BP_<Message>)));
...

/* restore the original value of dT */
ASD_DT_SCALED = Saved_ASD_DT_SCALED;

return 1;
}

Listing 9.1: Example bypass function structure (EHOOKS-DEV 3.0)

Anything else regarding the build of the ECU stays the same as described in section 4.3
"Building the ECU Code".

ASCET-SE V6.3 EHOOKS Target User Guide 80

ETAS Using EHOOKS-DEV V3.1

10 Using EHOOKS-DEV V3.1

Using EHOOKS-DEV V3.1 is very similar to using EHOOKS-DEV V3.0. The new feature
relevant for EHOOKS Target in EHOOKS-DEV V3.1 is support of non-volatile RAM (NVRAM);
everything else works the same way as for EHOOKS-DEV V3.0; see chapter 9 on page 75.

In ASCET, parameters are automatically set to non-volatile; other elements can be placed
in the NVRAM memory via the Non-Volatile option in the element’s properties editor.

To assign the Non-Volatile Attribute to an element:

• Open the component that contains the desired element in a
component editor.

• In the "Outline" tab of the component editor, right-click the
element and select Properties from the context menu to
open the "Properties Editor".

• In the "Attributes" area, activate the Non-Volatile option
(see Figure 10.1 on page 81).

• Click OK to close the "Properties Editor".

Figure 10.1: Assigning the Non-Volatile attribute to an element

During the Build process, ASCET generates a *.six file in the SCOOP-IX V1.4 format,
which contains a new attribute nonVolatile for <dataElement>s; see Listing 10.1 on
page 82.

ASCET-SE V6.3 EHOOKS Target User Guide 81

ETAS Using EHOOKS-DEV V3.1

...
<dataElement>
...

<usage measurement="true"
virtual="false"
variant="false"
nonVolatile="false">

</usage>
...

<dataElement>
...

Listing 10.1: SCOOP-IX V1.4 extract with nonVolatile attribute

ASCET-SE V6.3 EHOOKS Target User Guide 82

ETAS Contacting ETAS

11 Contacting ETAS

11.1 Technical Support

Technical support is available to all ASCET-SEusers with a valid support contract. If you
do not have a valid support contract, please contact your regional sales office (see sec-
tion 11.2.2).

The best way to get technical support is by email. Any problems or questions about the
use of ASCET-SEshould be sent to:

ec.hotline.de@etas.com

If you prefer to discuss your problem with the technical support team, you call the ASCET-
SEsupport hotline on:

+49 711 3423-2311

The hotline is available during normal office hours.

In either case, it is helpful if you can provide technical support with the following infor-
mation:

• your support contract number

• the version of the ETAS tools you are using

• the version of 3rd party tools you are using, e.g. compiler tool, version management
system etc..

• your .exp, .axl or .amd configuration files

• a description of how to reproduce the error

• the error message you received (if any)

11.2 General Enquiries

11.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 14 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

11.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team (where avail-
able) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

ASCET-SE V6.3 EHOOKS Target User Guide 83

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

ETAS BIBLIOGRAPHY

Bibliography

[ETA11] ETAS GmbH. EHOOKS V2.0 User Guide, r2.0.0 en edition, 2011. 10, 51

[ETA12] ETAS GmbH. ASCET-SE V6.2 Users Guide, 6.2.1 edition, 2012. 50

[ETA13] ETAS GmbH. EHOOKS V3.0 User Guide, r3.0.0 en edition, 2013. 75

ASCET-SE V6.3 EHOOKS Target User Guide 84

ETAS Index

Index

Arithmetic services, 54

mix on-ECU/off-ECU, 68

Object Based Controller Physical, 78

on ECU, 65

prepare service set, 54

use on-ECU service, 68

use service set, 57

ASCET

automatic actions, 12

build log, 47

EHOOKS tab, 15

interpolation routines, 60

libraries, 70

ASCET model

bypass function, 10

ASCET/EHOOKS integration, 9–12

key features, 11

On-target bypass, 9

workflow, 9

asd_bypass_func.c, 46

Auto-mapping, 36

Auto-Mapping button, 38

Get ECU Labels and Map, 38

Basic EHOOKS configuration, 19

build, 46

Bypass

calibration, 78

function, see Bypass function

on-target, 9

Bypass function, 48

ASCET model, 10

associate with dispatch point, 42

create, 40

dT, 42

integrate, 20

map process, 40

Calibration, 48–50

supported elements, 48

Code generator

Object Based Controller
Implementation, 14

Object Based Controller Physical, 14,
76

connect message/ECU variable, 21

manually, 33, 34

Cont Implementation Type, 18

Control variable, 51

access via C code class, 51

Object Based Controller
Implementation, 51

Object Based Controller Physical, 78

Create bypass function, 40

create project, 13

Dispatch point, 10

associate with Bypass function, 42

dT, 42

ECU supplier, 9, 13, 73

ECU variable

backup copy, 30

export mapping, 45

export selected mapping, 44

import mapping, 45

map to message, 33

remove mapping, 34

select, 29

EHOOKS build options, 16

EHOOKS control variable, see Control
variable

EHOOKS Functionality

access dT, 42

key features, 11

EHOOKS project, 13–47

administration, 13

auto-map messages/ECU variables, 36

basic configuration, 19

build, 46

build log, 47

configuration file, 15

configure, 14

configure ASCET-EHOOKS interaction,
15

connect message/ECU variable, 21

create, 13

create ASCET project, 13

dT, 42

existing OS configuration, 41, 44

generate code, 46

input files, 19

integrate Bypass function, 20

mandatory items, 13

optional items, 13

output files, 19

prepare, 20

scheduling, 38

select target, 14

EHOOKS tab, 15

ASCET-SE V6.3 EHOOKS Target User Guide 85

ETAS Index

EHOOKS target, 14
build options, 16
Cont Implementation Type, 18
global name space prefix, 16
select, 14

EHOOKS-DEV tool
automatic actions, 12

EHOOKS-DEV V3.0, 75–80
Bypass calibration, 78
Object Based Controller Physical, 76
update from V2.0, 75

EHOOKS-DEV V3.1, 81–82
EHOOKS-PREP tool, 10

Formula, 73
same as on-ECU, 73

generate code, 46
Global Name Space Prefix, 16

Input tab, 21
auto-mapping, 38
export all mappings, 45
export selected mapping, 44
filter column, 35
import mapping, 45

installation, 8
Interpolation routines, 54, 59

create new, 63
definition file, 60
header file, 62
in ASCET, 60
library, 62
mapping file, 62
mix on-ECU/off-ECU, 68
modify existing, 63
Object Based Controller Physical, 78
on ECU, 65
use custom routine, 63
use on-ECU routine, 68

key features, 11

Libraries, 70–74
model, 70, 71
service, 70, 71

message
export mapping, 45
export selected mapping, 44
import mapping, 45

map to ECU variable, 33
remove mapping, 34

Model library, 71

Object Based Controller Implementation
code generator, 14

Object Based Controller Physical code
generator, 14, 76

arithmetic services, 78
EHOOKS control variable, 78
interpolation routines, 78

On-target bypass, 9
OS configuration

use existing, 41, 44
Output tab, 27

auto-mapping, 38
export all mappings, 45
export selected mapping, 44
filter column, 35
import mapping, 45

Process
map to bypass function, 40

project file
location, 15

Project properties
Build node, 14

resolve globals, 20

Scheduling tab, 39
export mappings, 45
import mapping, 45

select backup copy, 30
select ECU variable, 29
Service library, 71

control method name, 71
data structure access, 72
use, 71
use on-ECU routine, 73

Typical workflow, 9

User interface
EHOOKS Build options, 17
EHOOKS tab, 16
EHOOKS-DEV window, 19
Input tab, 21
Name Templates options, 17
Output tab, 27
Scheduling tab, 39

ASCET-SE V6.3 EHOOKS Target User Guide 86

	Introduction
	Safety Advice
	Correct Use
	Labeling of Safety Instructions
	Demands on the Technical State of the Product

	About You
	Document Conventions

	Installation
	Prerequisites
	Installation
	After Installation

	Understanding ASCET/EHOOKS Integration
	Typical Workflow
	On-Target Bypass Concepts
	ASCET Models as Bypass Functions

	Key Features of the EHOOKS Target
	Summary

	Getting Started with an EHOOKS Project
	Project Administration
	Creating an ASCET/EHOOKS Project
	Specifying the Configuration File Location
	Configuring ASCET-EHOOKS Interaction Settings
	EHOOKS Build Options
	Global Name Space Prefix
	Cont Implementation Type

	Basic EHOOKS Configuration

	Integrating Bypass Functions
	Preparing the Project
	Connecting Inputs and Outputs to ECU Variables
	"Input" Tab
	"Output" Tab
	Mapping Messages and ECU Variables
	Auto-Mapping

	Configuring the Scheduling
	"Scheduling" Tab
	Mapping Processes to Dispatch Points

	Exporting and Importing Mappings

	Building the ECU Code
	Generating ECU Code Only
	Viewing the ASCET Build Log

	Calibrating Bypass Functions
	Interacting with EHOOKS Control Variables
	Arithmetic Services and Interpolation Routines
	Arithmetic Services
	Preparing a Service Set
	Using a Service Set

	Interpolation Routines
	Understanding Interpolation Routine Use in ASCET
	Definition Files
	Mapping Files
	Header Files
	Library

	Using the Default Routines
	Using Custom Routines
	Modifying an Existing Interpolation Scheme
	Creating a New Interpolation Scheme

	Callbacks to Existing ECU Code
	Arithmetic Services
	Interpolation Routines
	Mixing Callbacks to Off-ECU and On-ECU Code

	Using Libraries
	Model Libraries
	Service Libraries
	Controlling Method Names in Generated Code
	Optimizing Data Structure Accesses
	Using Services Routines on the ECU

	Working with Formulas
	Using the Same Formulas as the ECU

	Using EHOOKS-DEV V3.0
	Updating Projects from EHOOKS-DEV V2.0 to EHOOKS-DEV V3.0
	Using the Code Generator: Object Based Controller Physical
	Arithmetic Services
	Interpolation Routines
	Interacting with EHOOKS Control Variables

	Calibrating Bypass Functions
	Global Name Space Prefix

	Building the ECU

	Using EHOOKS-DEV V3.1
	Contacting ETAS
	Technical Support
	General Enquiries
	ETAS Global Headquarters
	ETAS Local Sales & Support Offices

	Bibliography

