
ASCET V5.2
Reference Guide

2

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license.
Using and copying is only allowed in concurrence with the specifications stip-
ulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another lan-
guage without the express written permission of ETAS GmbH.

© Copyright 2007 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

The name INTECRIO is a registered trademark of ETAS GmbH.

Document EC010005 R5.2.2 EN

Contents

The Modeling Language

1 Projects . 13
1.1 The Task Schedule for the Operating System . 13

1.1.1 Scheduling . 15
1.1.2 Tasks . 17
1.1.3 Processes . 19
1.1.4 Application Modes . 19

1.2 Modules and Processes . 19
1.3 Interprocess Communication . 20

2 Components . 23
2.1 Modules vs. Classes . 24
2.2 Definition and Instantiation of Components . 25
2.3 The Interface of Components . 27

2.3.1 The Interface of Classes . 27
2.3.2 The Interface of Modules . 29

2.4 Reusing Components . 29
2.4.1 Hierarchical Class Structure. 31
2.4.2 Hierarchical Module Structure. 31

2.5 State Machines . 32
Contents 3

4

2.5.1 State Machine Components . 34
2.5.2 Semantics of State Machines . 47
2.5.3 Semantics: Simple State Machines . 48
2.5.4 Semantics: Junctions in State Machines 51
2.5.5 Semantics: Hierarchical State Machines. 57
2.5.6 Semantics: Summary . 68
2.5.7 Simple Code Example . 72
2.5.8 Optimizing the State Machine . 73
2.5.9 State Machines as Classes. 83

3 Types and Elements . 89
3.1 Basic Model Types . 90

3.1.1 Scalar Types . 90
3.1.2 Composite Types . 91
3.1.3 Real-time Language Constructs . 94
3.1.4 Special Types . 95

3.2 The Kind of Elements . 96
3.3 The Scope of Elements . 99
3.4 User-defined Model Types . 100

4 Data and Implementations . 101
4.1 Data . 101
4.2 Implementations . 103

4.2.1 Implementations for Scalar Types . 103
4.2.2 The Implementation of Composite Types 105
4.2.3 The Implementation of User-Defined Types 105
4.2.4 Implementation Casts. 106

4.3 Code Generation with Implementations . 108
4.3.1 Transformation of Data under Implementation 109
4.3.2 General Rules for the Implementation Transformation 109

4.4 The Implementation of Methods and Processes 110

5 Body Specification in ESDL . 111
5.1 ESDL as a Modelling Language . 111
5.2 Basic Elements . 112

5.2.1 Working with Methods and Processes 112
5.2.2 ESDL Syntax . 114
5.2.3 Variable Names. 114
5.2.4 Data Types . 115
5.2.5 Type Conversion . 115
5.2.6 Primitive Methods. 116

5.2.7 Literals and Constants . 116
5.2.8 Comments . 116
5.2.9 Operators . 117

5.3 Implementation Casts in ESDL . 119
5.4 Control Flow . 120

5.4.1 If…Else. 120
5.4.2 Switch…Case…Default . 121
5.4.3 While . 123
5.4.4 For . 123
5.4.5 Break . 124

5.5 Methods . 124
5.5.1 This . 126
5.5.2 Access Control . 126
5.5.3 Direct Access Methods . 127

5.6 Composite Data Types . 127
5.6.1 Arrays. 127
5.6.2 Matrices . 129
5.6.3 One-dimensional Tables . 129
5.6.4 Two-dimensional Tables . 131
5.6.5 Distributions and Group Tables . 133

5.7 Structures . 134
5.8 Messages . 135
5.9 Resources . 136
5.10 Mathematical Functions . 136
5.11 Accessing Block Diagrams from ESDL . 138
5.12 Using ESDL in State Machines . 139
5.13 Overview: ESDL Features Compared . 141

6 Body Specification with Block Diagrams . 143
6.1 Graphical Description of Elements . 143

6.1.1 Basic Elements . 144
6.1.2 Elements of User-defined Type . 149

6.2 Expressions . 149
6.2.1 Arithmetic Operators . 151
6.2.2 Comparison Operators . 151
6.2.3 Logical Operators . 151
6.2.4 Conditional Operators . 152
6.2.5 Other Operators . 153

6.3 Statements . 154
6.3.1 Assignment . 155
5

6

6.3.2 The Break Statement . 155
6.3.3 Method Call . 156
6.3.4 Control Flow . 156

6.4 The Semantics of Block Diagrams . 159
6.4.1 Graphical Hierarchies . 160

7 Body Specification in C . 161
7.1 Structure . 161

7.1.1 Methods and Processes . 162
7.1.2 Variables and Function Parameters . 163
7.1.3 Header . 169

7.2 External Source Code . 169
7.3 Programming Model Interface . 170
7.4 Access Macros . 170

8 Continuous Time Systems. 173
8.1 Structure of Continuous Time Models . 173

8.1.1 Modeling with Basic Blocks and Structure Blocks 174
8.1.2 Modeling with Graphical Hierarchies 175
8.1.3 Experiments . 176
8.1.4 Projects and Hybrid Projects . 176

8.2 Solving Differential Equations – Integration Algorithms 177
8.2.1 Integration Methods – Overview. 179

9 Continuous Time Basic Blocks. 183
9.1 Basics . 183
9.2 Available Elements and Methods . 183

9.2.1 Modeling With Continuous Time Basic Blocks. 184
9.3 Block Interfaces . 185
9.4 Block Methods . 186
9.5 Computing Sequence . 187
9.6 Modeling with ESDL . 191

9.6.1 Differential Equations in ESDL. 191
9.6.2 Semantic Checks in ESDL . 192
9.6.3 Additional Library Functions . 193

9.7 Modeling in C . 195
9.7.1 Differential Equations in C . 195
9.7.2 Additional C Routines. 196

10 Continuous Time Structure Blocks and Graphical Hierarchies 199
10.1 Reuse of Structure Blocks . 199
10.2 Elements of a Continuous Time Structure Block 199

10.3 Block Interfaces . 200
10.4 Operators . 200
10.5 Algebraic Loops . 201
10.6 Direct and Nondirect Output . 201
10.7 Difference Between Graphical Hierarchies and CT Structure Blocks 204
10.8 Computing Sequence of Methods Within a Structure 204

11 Projects and Hybrid Projects . 209
11.1 Combining Continuous Time Blocks With Modules 210

Reference Lists

12 The ASCET System Library . 215
12.1 Bit Operators . 215

12.1.1 and . 215
12.1.2 clearBit . 215
12.1.3 getBit . 216
12.1.4 or . 216
12.1.5 rotate . 217
12.1.6 setBit . 217
12.1.7 shiftLeft. 218
12.1.8 shiftRight. 218
12.1.9 toggleBit. 219
12.1.10 writeBit . 219
12.1.11 writeByte. 220
12.1.12 xor . 220

12.2 Comparators . 221
12.2.1 ClosedInterval. 221
12.2.2 LeftOpenInterval.. 221
12.2.3 OpenInterval. 222
12.2.4 RightOpenInterval. . 222
12.2.5 GreaterZero. 223

12.3 Counter & Timer . 223
12.3.1 CountDown. 223
12.3.2 CountDownEnabled.. 224
12.3.3 Counter. . 224
12.3.4 CounterEnabled. 225
12.3.5 StopWatch. 225
12.3.6 StopWatchEnabled.. 226
12.3.7 Timer.. 226
12.3.8 TimerEnabled. 227
7

8

12.3.9 TimerRetrigger. 227
12.3.10 TimerRetriggerEnabled. 228

12.4 Delay . 228
12.4.1 DelaySignal. 228
12.4.2 DelaySignalEnabled. . 229
12.4.3 DelayValue. 229
12.4.4 DelayValueEnabled. . 230
12.4.5 TurnOffDelay. 230
12.4.6 TurnOffDelayVariable. . 231
12.4.7 TurnOnDelay. 232
12.4.8 TurnOnDelayVariable. . 232

12.5 Memory . 233
12.5.1 Accumulator. 233
12.5.2 AccumulatorEnabled. . 234
12.5.3 AccumulatorLimited. . 235
12.5.4 RSFlipFlop. 235

12.6 Miscellaneous . 236
12.6.1 DeltaOneStep. 236
12.6.2 DifferenceQuotient. . 236
12.6.3 EdgeBi. . 237
12.6.4 EdgeFalling. 237
12.6.5 EdgeRising. 238
12.6.6 Mux1of4. . 238
12.6.7 Mux1of8. . 239

12.7 Nonlinears . 239
12.7.1 Hysteresis-Delta-RSP. . 239
12.7.2 Hysteresis-LSP-Delta. . 240
12.7.3 Hysteresis-LSP-RSP.. 240
12.7.4 Hysteresis-MSP-DeltaHalf. 241
12.7.5 Limiter. . 241
12.7.6 Signum. . 242

12.8 Transfer Function . 242
12.8.1 Control. 242
12.8.2 Integrators . 248
12.8.3 Lowpass . 252

13 Troubleshooting . 257
13.1 General Hints . 257
13.2 Problems with ASCET . 258

14 Code Generation Messages . 261
14.1 Components . 261

14.1.1 Error Messages . 261
14.1.2 Warnings . 264

14.2 Projects . 265
14.2.1 Error Messages . 265
14.2.2 Warnings . 266

14.3 Fixed Point Code Generation . 266
14.3.1 Error Messages . 266
14.3.2 Warnings . 267

Index . 269
9

10

ASCET V5.2
The Modeling Language

12

1 Projects

In ASCET, an embedded software system is defined in the context of a project.
A project contains at least the following:

• A collection of modules

• The task schedule for the real-time operating system

• The definition of the inter-process communication

The central part of a project is the definition of the operating system’s task
schedule. Here, the dynamic behavior of the system is described. Fig. 1-1 illus-
trates the structure of a project.

Fig. 1-1 The structure of a project

1.1 The Task Schedule for the Operating System

An essential part of an embedded control system is the underlying real-time
operating system that controls the execution of the various algorithms and
computations. In ASCET, the specification of the task schedule is supported by
a special editor, where all relevant data for the operating system scheduling
can be specified.

Project

Module A Module B

Process A1

Process A2

Process B1

Process B2

Operating System

Process A1

Process B1

Process B2

Process A2

Task 1 Task 2
Projects 13

14
The specification of the task schedule is based on the automotive real-time
operating system ERCOSEK. To serve the large number of parallel requests to
the embedded control system, e.g. camshaft interrupts or sampling at a fixed
rate, a priority-based cooperative and preemptive scheduling is the core of the
operating system. This scheduling controls the execution of tasks in a multi-
tasking environment. A task is defined as a list of processes to be executed in
a given order. A process is any portion of a control algorithm which has to be
executed at a given rate or as a reaction to an external interrupt.

Since a control system contains a number of algorithms, the number of pro-
cesses can be very large. At the same time, many of these processes have a
similar dynamic behavior. The collection of processes with the same dynamic
behavior into tasks therefore reduces the administrative overhead of the oper-
ating system and structures the dynamic behavior of the application. Processes
with the same dynamic behavior are therefore collected into one task.

The definition of a real-time task schedule consists of:

• Scheduling

• Tasks

• Processes

• Application modes
Projects

1.1.1 Scheduling

The operating system schedules the execution of processes defined in the
modules. The definition of the schedule consists of grouping processes into
sequences where each sequence defines a task in the operating system task
schedule. The tasks are activated by the operating system in different modes,
for instance periodically by timers, or by software or external events.

Fig. 1-2 Grouping processes into tasks

Fig. 1-2 shows two tasks with processes assigned to them. Task1 is activated
every 10ms, and has a higher priority than Task2, which is activated every
20ms. The running times of the processes are as follows: p1= 2ms, p2 = 1ms,
p3 = 2ms, p4 = 1ms, p5 = 1ms. The scheduling would then look like this:

Fig. 1-3 A simple task schedule

The operating system knows three kinds of scheduling. In cooperative sched-
uling, the current process is not interrupted if a task with a higher priority is
activated. A new task starts after the current process is finished. If the current
task (the one that gets interrupted) has more processes to execute, it pauses
until the interrupting task is completed. After the interrupting task is com-

Project

Task1 Task2

Process1

Process2

Process3

Process4

Process5

p4

p2

p1

p3

p5

P
ro

ce
ss

Task 1
Task 2

Task 1 Task 1
Task 2

0 10 20
Task1 Task2 Task1 Task1 Task2

Time (ms)
Projects 15

16
pleted, the interrupted task is continued. This type of scheduling is illustrated
in Fig. 1-4, where the running times of processes are p1= 2ms, p2 = 1ms, p3
= 5ms, p4 = 4ms, and p5 = 2ms.

Fig. 1-4 Resuming an interrupted task in cooperative scheduling

In preemptive scheduling the current process is directly interrupted, whenever
a task with a higher priority is activated. Since all cooperative tasks have lower
priorities than preemptive, or non-preemptable, tasks (see Fig. 1-7), preemp-
tive tasks cannot be interrupted by cooperative tasks. After the interrupting
task is completed, the process is resumed. Fig. 1-5 shows the same scenario as
above (i.e. the same process running times) with preemptive scheduling.

Fig. 1-5 Resuming an interrupted task in preemptive scheduling

Task 1
Task 2

Task1 Task2 Task1

...

0 20

Task 1
Task 2

T im e
(m s)Task1 Task2

P
ro

ce
ss

p5
p4
p3
p2
p1

10

Task 1

Task2
(contd .)

4

2

1

3

5

P
ro

ce
ss T a sk 1

T a sk 2
T a sk 1

0 10
T a sk1 T a sk2 T a sk1

T im e
(m s)

T a sk2
(p 4 co n td .)

2 0

T a sk 1
T a sk 2

T a sk1 T a sk2

...
Projects

In non-preemptable scheduling (micro-controller targets only), neither the cur-
rent process nor the current task are interrupted when a task with higher pri-
ority is activated. The new task is executed only after the non-preemptable task
is completed. Fig. 1-6 shows the same scenario as above (i.e. the same process
running times) with non-preemptable scheduling

Fig. 1-6 Task-schedule for a non-preemptable task

1.1.2 Tasks

A task contains a list of processes that are executed on activation of that task.
The execution order of the processes is fixed. The way a task is scheduled by
the scheduler of the operating system is defined by the task settings. There are
several different task modes:

• Alarm tasks are activated periodically. The activation rate is specified in
seconds.

• Timetable tasks (micro-controller targets only) are alarm tasks written
into a timetable. Thus, runtime can be saved (at the price of enhanced
memory requirement).

• Interrupt tasks are activated by an external event. For each processor,
different types of events are available. The appropriate event can be
chosen from a list of events.

• Software tasks are activated by calling an operating system routine, i.e.
they are activated directly through the software.

Note

Non-preemptable tasks were introduced in ERCOSEK to provide OSEK com-
patibility. Their use is explicitly not recommended, since most jobs can be
solved easier by exclusive use of cooperative and preemptive tasks, and the
configuration of non-preemptable tasks can be complicated due to several
boundary conditions.

p4

p2

p1

p3

p5

P
ro

ce
ss Task 1

Task 2
Task 1 Task 1

Task 2

0 10 20
Task1 Task2 Task1 Task2

...

Task1

Time
(ms)
Projects 17

18
• Init tasks are activated once before the start of the operation system.
Init tasks contain code for the initialization of the system.

Each task is furthermore assigned to one of the three scheduling groups, non-
preemptable, preemptive or cooperative, and inside each group to one of the
available priority levels. The number of priority levels for each scheduling group
can be defined by the user, and determines the memory demand of the sched-
uler tables. It should be optimized for the final system.

Tasks at a higher priority than the running task can interrupt the running task,
running tasks scheduled as non-preemptable excepted. If the interrupting task
belongs to the preemptive scheduling group, the running task is interrupted
immediately, otherwise the interrupt happens at the end of the current pro-
cess. Preemptive and non-preemptable tasks always have a higher priority than
cooperative tasks. Fig. 1-7 shows the priority scheme. The actually available
tasks depend on the selected target.

Fig. 1-7 Priority scheme

Each time a task is activated, the time elapsed since the previous activation is
stored in the global variable dT. This variable can be used in the definition of
algorithms to describe the control algorithms independent of their sample
rate.

Max. cooperative priority (0)

Min. preemptive priority 0

Min. interrupt priority

Max. priority (software/periodic)

Max. interrupt priority =
 Max. preemptive priority

C
ooperative

P
reem

ptive

Software and
periodic tasks

Software and
periodic tasks

Hardware tasks
(ISR) and

software/periodic
tasks

Hardware tasks
(ISR)

Max. cooperative priority

Priority
Projects

1.1.3 Processes

A task consists of a sequence of processes. Processes contain the execution
code of the program. The body of a process is executed sequentially. Since
tasks can be interrupted preemptively by tasks of a higher priority, processes
can be interrupted in the middle of their execution. Therefore, processes must
be designed so that they can be executed in parallel.

When working in a preemptive system, the main problem is data consistency.
The operating system has to guarantee, that the result of the computation in
a process depends on the value of the input variables alone, and not on the
order of execution in the system.

To solve this problem, the ERCOSEK concept of messages is supported in pro-
cesses. In the ERCOSEK operating system, messages are protected global vari-
ables. Protection is achieved by working on copies of the global variables. The
system analyses whether a copy is required and establishes an optimum data
consistency scheme without penalties for the run-time kernel.

1.1.4 Application Modes

Application Modes are a special feature of the operating system ERCOSEK. In
order to keep the run-time load of the processor low, the operating system can
be run in different modes. Typical modes are the normal mode, the EEPROM
programming mode etc. These modes are mutually exclusive, i.e. only one
mode is active at a given time. Therefore, in each mode, only the relevant tasks
have to be executed.

Each task is assigned an application mode which it runs in. Switches between
application modes are activated by the software. When entering a new appli-
cation mode, the init tasks assigned to that application mode are activated.

1.2 Modules and Processes

The processes assigned to tasks are defined in the context of modules. A mod-
ule encapsulates a number of related processes, e.g. processes that belong to
a lambda control function. The functionality described in a module can be split
into several processes, since different parts of a control algorithm may be com-
puted at different times. This greatly reduces the execution time for the control
algorithms, since only the most sensitive parts of the algorithms need to be

Note

Switches between application modes take place via an operating system ser-
vice call. Details can be found in the API description of the ERCOSEK manual.
Projects 19

20
computed at the highest frequency. At the same time the descriptions of the
algorithms are not distributed, which makes them easier to develop, maintain
and understand.

The functionality of a complex control task can be distributed over several
modules which can be modelled hierarchically. For further refinement classes
and state machines can be used for sub-algorithms or service routines (e.g.
accumulator, pi-control etc.)

Modules are exclusively used by projects and are the top level components
within a project. Usually, modules are used to describe a unique part of a
project, e.g. a lambda control. Therefore modules can have only one instance
inside a project, in contrast to other components, which can have any number
of instances (e.g accumulators).

Like all other components, modules have an interface. The interface of a mod-
ule consists of its processes and the messages which are used for data
exchange.

1.3 Interprocess Communication

The communication between processes is achieved via messages, which are
protected global variables in ERCOSEK. Data consistency is achieved by work-
ing on copies of the actual variable whenever a copy is required.

Fig. 1-8 shows how data inconsistency may occur in a preemptive system. To
avoid this conflict, the interprocess communication is modelled with messages.
At the beginning of a process, all input messages (those messages that are only
read) are received by the process. Upon receiving a message, an automatic
temporary copy of the message is produced, on which the process works. At
the end of the process, all messages that are written to are copied back to the
actual message. This mechanism guarantees that the values of the variables
are left unchanged within a process, unless the process itself changes its value.

The use of protected global variables for interprocess communication, i.e. the
use of state messages, is appropriate for embedded control systems. There is
no dependence between the sender and the receiver of a message, so that no
complicated and run time consuming synchronization scheme is required. Sec-
ondly, when using state messages there is no one-to-one relation between a
sender and the receiver. Therefore a message can be received by more than
one process.
Projects

Fig. 1-8 Data inconsistency in a preemptive system

The messages mechanism is based on the ERCOSEK message principle. The
ERCOSEK development environment contains an offline system optimization
feature, where message implementation can be optimized. Here copies are
only introduced, if data consistency is endangered, and copies are only pro-
duced at the beginning and the end of a task.

The interprocess communication is resolved by the project. Messages with the
same name are bound to each other and represent the same message. If, for
example, two processes use the message velocity, they communicate by
writing to and reading from this variable. The same name-based resolution
mechanism is performed on other global objects as well, e.g. global variables
or global parameters.

x=1

if (x>0)

x= -1

y=sqrt(x)
process1

process2

Data become inconsistent
because all processes work

on the same variable

x=1

t=x;
 if (t>0)

x= -1

y=sqrt(t)
process1

process2

Data stay consistent
because each process works

on its own copy

process2 interrupts
process1

process2 interrupts
process1
Projects 21

22
 Projects

2 Components

A project is at the top level of an embedded control system specification in
ASCET. Here the framework of an application is defined and its execution are
controlled. A project is the brain of an embedded control system.

Compared to this, components are the body. They are used to specify the
actual control algorithms and other various computation tasks to be per-
formed in the embedded control system.

Components have a clearly defined interface that describes how and when to
perform the algorithms described in the components, and also how data
exchange with other components is to be performed.

There are two types of components: modules and classes. A central aspect in
the design of both types is data encapsulation, where ASCET follows an
object-oriented approach. A component contains a number of elements that
can be used by all processes or methods defined in that module or class. The
scope of these elements can be restricted to be local. Even for messages, the
scope can be restricted to processes defined within that module only.

A component specification consists of:

• The content of the component, i.e. declarations of the variables,
parameters etc. the component uses.

• The interface of the component in the form of processes or methods.
This interface can be extended by allowing access to internal variables
(of classes) and messages (used in modules) directly.

• The algorithms themselves, which specify the computations within a
process or method.

Fig. 2-1 The elements of a component specification

In the following, modules and classes are discussed in general. Then the struc-
ture of the interface of a component is explained. The various ways in which
algorithms can be described (block diagrams, textual, C code) are discussed in
the subsequent chapters. The final sections of this chapter are about a special
type of classes: state machines. This special class type can only be described in
terms of block diagrams.

Component

Elements Interface Algorithms
Components 23

24
2.1 Modules vs. Classes

When specifying an embedded control system, the real-time requirements of
the system are crucial. In order to meet these requirements, special compo-
nents with a real-time capable interface, modules, can be used in ASCET.

A module defines a number of processes; in addition, methods can be defined.
A process contains a piece of code, that is executed sequentially. Processes are
activated by the operating system, no parameters can be passed. Instead,
modules use messages for data exchange, i.e. direct access to a global variable
space, which results in a highly efficient communication mechanism.

Unlike processes, which are activated only by the operating system, methods
are much more flecible. Each method can have an arbitrary (but fixed) number
of arguments and a single return value.

The behavior of modules is unique piece within an embedded control system
in the sense that they can be instantiated only once in the context of a project.
To avoid this limitation, classes can be used. Classes are object-oriented
abstract data types that encapsulate data and make available a well defined
interface. The interface is a collection of methods, which can be called from
anywhere inside the program. Unlike processes, which can only be activated by
the operating system, methods are much more flexible. Each method can have
an arbitrary (but fixed) number of arguments and a single return value.

Classes can be instantiated more than once, e.g. more than one accumulator
class can exist in a project. Each instance of a class has its own data space (its
own parameters and variables), but all instances share the same specification.
Global variables defined in classes are the same for all instances of a class (and,
in an object-oriented view, can be considered to be class variables), but they
can also be accessed by other components.

Classes, however, do not support real-time interprocess communication via
messages. This has two reasons. Firstly, classes can have multiple instances and
the data consistency scheme of ERCOSEK cannot manage multiple instantia-
tions. Secondly, processes are assigned statically to one fixed task. Whenever a
process runs, the operating system creates copies of all its messages. These
copies are accessible only to that instance of the process that created them.
Hence, if the same message is used by various processes, each process gets its
own copy of the message. This strategy is used by the real-time operating sys-
tem to ensure data consistency over multiple processes.

Methods, on the other hand, can be called arbitrarily from different points in
the program, for instance from different processes in different tasks. The
method does not "know" the calling task. Thus, it cannot be decided which
message copy is relevant for which method call.
Components

The properties of modules and classes are summarized in Tab. 2-1.

Tab. 2-1 The properties of modules and classes

State machines are a special type of class available in ASCET. Their semantic
behavior is the same as that of classes, but the notations are different. State
machines, for example, have special methods for computing the conditions of
a state transition.

When specifying components, modules as well as classes, the structure is often
hierarchical, since other previously defined classes or modules are to be reused.

2.2 Definition and Instantiation of Components

A component describes an abstract data type, it makes available an interface,
through which it interacts with its environment. When using a component in a
project, each element has to be created, i.e. for each element real memory cells
have to be allocated. The process of creating an object is also called instantia-
tion. Upon instantiation, the necessary data structure is built and initialized.

Property Module Class

Processes x

Methods x x

Argument passing x

Messages x

Multiple instances x

Hierarchical design x x
Components 25

26
Each instance of a component has its own set of elements, but inherits the
interface and the functional description from the component itself.

Fig. 2-2 Instantiation and inheritance in components

The definition of a component is therefore the definition of a template for the
instantiated components. The difference between template and instance is not
obvious for modules, since modules only have one occurrence in a project con-
text, i.e. modules are only instantiated once. There is a one-to-one relation
between the template and the instance for modules.

Fig. 2-3 Instantiation and inheritance in modules

Component

Elements Interface Algorithms

Instance A

Elements

Instance B

Elements

inherits

instantiates

contains

Component (Module)

Elements Interface Algorithms

Module A

Elements

inherits

instantiates

contains
Components

Classes, on the other hand, can have multiple instances. Here, the distinction
between definition and instantiation becomes more obvious, since there is no
simple one-to-one relation between template and instance. The relationship
can 1:n. The definition of a class is therefore the definition of a reusable, user-
defined model type.

The instantiation of a component only works in the context of a project. Thus,
when working with components only, a default project is automatically created
to provide the context for instantiating the components.

When using a class in another component (see following section), the class is
instantiated in the context of that component, when that component is instan-
tiated. In contrast to this, modules are always instantiated in a project.

2.3 The Interface of Components

The interface of a component consists of methods, processes, and the access
to global variables. Modules, for instance, have access to messages. Methods
and processes are structured in the same way. Their structure is independent of
the way the methods or processes are described.

Each method or process is assigned to a diagram, where each diagram can
either be public or private. Methods assigned to private diagrams are only vis-
ible inside the component and do not belong to the public interface of the
component, which is visible to other components. All methods assigned to one
diagram are described in this diagram (in the case of block diagrams, there is a
common block diagram for all these methods).

Fig. 2-4 The interface of components

2.3.1 The Interface of Classes

The interface of a class consists of a number of methods which are assigned to
one of the diagrams of the class. The interface of each methods, consists of its
arguments and a return value. Methods are similar to subroutines, that can be
called from any point in the software. However, the data encapsulation of a

Diagrampublic/private

methods/processes algorithms

modelled in
assigned to

adjoining
Components 27

28
class, i.e. the access to the same set of instance variables and parameters,
makes the concept of methods and classes far more pervasive than that of
subroutines. Methods have access to all the elements defined in their class.

The arguments and return value of a method can only be used in the body of
the associated method. In addition, each method has a number of method-
local variables. These variables are temporary and not static, and like argu-
ments, they can only be used in the body of the associated method.

Fig. 2-5 The interface of classes

Additional methods can be made available for direct access to the instance
variables of a class. This mechanism allows classes to be used as data contain-
ers (similar to records in C).

The interaction of a class with its environment consists of calling the methods
of the class. When a method is called, the instructions in the method body are
executed.

The methods of a class are categorized as either public or private by assigning
them to a public or private diagram. Public methods can be called from any
component, that uses that class. Private methods are hidden and can be called
only by methods of the same class. They can used as internal subroutines.

Method
(algorithm)

Method
(algorithm)

Referencing class or module

Referenced
class

Elements (encapsualted data)

Method
(algorithm)

Method
interface

Method
interface

Method
interface

Automatically generated
access methods

Global variables
Components

2.3.2 The Interface of Modules

The interface of a module consists of a number of processes and—optional—
methods, as well as the messages used in that module. Modules interact at
two different levels, since the activation of processes and the communication
via messages is separated. The activation of the process is under control of the
operating system (that is part of the project).

The communication between processes via messages is asynchronous to the
activation of the processes, i.e. the sending of a message and the receiving of
it in a process do not happen at the same time. This concept is different from
parameter passing between methods, which is synchronous to calling the
method.

Like methods, processes can have temporary process-local variables.

Fig. 2-6 Inter-process communication (grey parts are optional)

2.4 Reusing Components

When specifying components, previously defined classes or modules contain
functionality that can be reused. Reusing components leads to a hierarchical,
tree-like structure of a component. The leaves of this structure are classes or
modules that do not contain other classes or modules.

The structure of a component has to be tree-like, i.e. cyclic dependencies are
not allowed. This is because the usage relation is also a containment relation,
and a cyclic dependence would be unresolvable.

Operating
System

Process
(algorithm)

Process
(algorithm)

Process
(algorithm)

Module

Communication with other modules

Messages

optional:
Method

(Algorithm)

Method
Interface

Elements (encapsulated data)

automatically generated
access methods
Components 29

30
If a class is used in another component, the class will automatically be instan-
tiated and initialized when the containing component is initialized.

There is, however, an exception. When using a class that is imported, i.e the
class is instantiated in some other context, for instance in the project directly,
the usage relation is not a containment but a reference relation. Thus a cyclic
dependency does not lead to an unresolvable containment relation in this case.

Fig. 2-7 Containment relation and reference

Modules are the top level component. Therefore, modules may not be con-
tained in classes. Classes, however, may be contained in modules as well as in
other classes. The following relation holds:

Tab. 2-2 Typology of relations

Since the interfaces of modules and classes are different, the meaning of a
hierarchical module structure and a hierarchical class structure is also different.

Containment relations Class Module

Class x -

Module x x

Class A

Class B

us
es uses

Class A

Class B
(imported)

us
es uses

Class A

Class B

Class A

Class B

...

Class A

Class B

Class A

contains

references
Components

2.4.1 Hierarchical Class Structure

When using a class inside some other component, the methods of the class
can be used as subroutines in the component.

Fig. 2-8 Method invocation in a nested class

The methods are called as part of the execution of the component’s methods
or process, this point in the software can be determined by the component
itself. When calling a method, the component must supply the method with
actual parameters for the arguments of the method.

2.4.2 Hierarchical Module Structure

As mentioned before, modules are always instantiated in a project. That is, in
a hierarchical module structure, a module used in another module is not
instantiated within the containing module. As a consequence, all of the mod-
ules instantiated in a project are on the same level, independent of their posi-
tion in the hierarchical structure.

The hierarchical structuring of modules serves mainly two purposes. A hierar-
chical structure reflects the nature of a control system. In an engine control, for
instance, there may be separate modules for ignition, injection, and lambda
control.

Class

Module or class

Return valuesArguments Methods are
activated by the

referencing
component
Components 31

32
In addition, the communication structure in a hierarchical mode can be made
much more transparent, since the dataflow is directly visible in block diagrams.

Fig. 2-9 The communication structure in a hierarchical module

A further advantage of a hierarchical module structure becomes clear by this
example: easier maintenance. If, for instance, the name of a message is
changed, it must be changed in all modules that use that message. If a hierar-
chical module is used instead, the changes only affect one module, since the
name based binding is not explicitly used.

2.5 State Machines

A state machine is a special type of classes, an event-driven system where the
focus is not on computations but on control flow. Therefore the main level of
description of a state machine, the state diagram, does not describe how data,
but how control is passed. To model control flow, a state machine consists of
a finite number of states, and transitions between these. Besides, at least one
trigger must be included to control the state machine. At each trigger call, one
step of the state machine is executed.

For more information on the theory of finite state machines, see

• Harel, David: "Statecharts: A Visual Formalism for Complex Systems",
Science of Computer Programming 8, 1987, pp. 231-274

• Hatley, Derek J. & Imtiaz A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House Publishing Co., Inc., NY, 1988.

Class

Module

MessagesMessages Processes are
activated by the

operating system
Components

The following diagram shows the components of a state machine.

Fig. 2-10 State machine – scheme

Specifying a state machine consists of determining the states a system can be
in, defining the conditions that have to be fulfilled for changing from one state
to another, and determining the actions that are to be performed during these
transitions.

The state diagram is a special block diagram for defining a state machine. Each
state is displayed as a rectangle with rounded corners. One of the states always
has to be marked as the start state, this is the state the machine is in at the
beginning.

The transitions are targeted curves between the states. Each arc represents one
transition in a direction marked by an arrowhead at one end. Each end of a
transition is connected to a state. The state where the transition starts is the
source state, the one where it ends is the destination state. Two arcs are nec-
essary to model a bidirectional transition.

State Machine

Public Diagram

Public
Method

State Diagram

Transition

Action Condi-
tion

Trigger
Action

State

Transi-
tion

State Junction

Junction

ActionCondition
Diagram

Action Condi-
tion
Components 33

34
The sample diagram contains the relevant graphical components of a state
machine.

Fig. 2-11 Graphic Components

2.5.1 State Machine Components

States

A state describes one mode of an event-driven system. The activity or inactivity
of the states changes dynamically, based on trigger events and conditions.

Each state has a parent state (hierarchy state, see page 41). For states on the
highest level (State_A and State_B in Fig. 2-11), the state diagram itself is
the parent. You can place states within other higher-level states; State_A_1,
State_A_2 and State_A_3 are substates of State_A. States containing

Segment

Closed
hierarchy state
with history

Transition

simultaneously start state
Open hierarchy state, Condition

Transition action

Start state
within the
hierarchy

Transition priorities

Static
action

Entry action

Exit
action

with associated trigger

Conditions

Junction

Transition

with action
Components

no other states are called base states (State_A_1, State_A_2, State_B in
Fig. 2-11). A hierarchy state can have a history (see page 44). History provides
an efficient means of basing future activity on past activity.

The states are mutually exclusive, i.e. only one base state can be active at any
one time. If the active base state is the substate of a hierarchy, all hierarchy
states that contain the active state are active, too. If, for example, the
State_A_2 state in Fig. 2-11 is active, the hierarchy state State_A is active,
too. If one of the (invisible) substates of State_A_3 is active, State_A_3
and State_A are active, too.

Each state has a unique name. Identical names are forbidden within different
hierarchies. If you use an existing name a second time, _n is added to it. n is
the smallest unissued number for this name (States State_A_1 to
State_A_3 in Fig. 2-11). The following names are forbidden, too:

• names of methods, processes, elements etc. in the entire project

• names from the C language (e.g., static, define, etc.)

Such state names do not always result in an error message, but the
generated code is always wrong.

Besides the names, the state labels contain the various actions (see page 45).
These are processed successively according to their type. The following types
exist: entry action, static action and exit action. All actions are optional.

Transitions

A transition is a graphic object connecting two states. One end of the transi-
tion is attached to the source state where the transition begins. The other is
connected to the destination state where the transition ends. A transition may
be interrupted by one or more junctions (see page 38) and split into several
segments.

A priority is assigned to each transition. The higher the number, the higher the
priority. If more than one transition originate from the same state or junction,
they are evaluated in the order of their priorities. Two transitions from the
same state may not have the same priority.

A transition label describes the circumstances under which the system moves
from one state to another. A trigger event is necessary for a transition to occur.
The name of the trigger is the first part of the transition label. In Fig. 2-11, the
trigger trigger_100ms actuates the transition from State_A_1 to
State_A_2. Optionally, the transitions can also contain a condition (see
page 45) and an action (page 45), the transition action. These are named in
the second and third part of the label. In the state diagram, conditions are
Components 35

36
represented in square brackets, transition actions with a leading "/". How trig-
gers, conditions and actions are assigned to the segments of a transition with
junctions is described in "Junctions" on page 38.

A transition is valid when its source state is active and its condition—if speci-
fied—is true. There are several kinds of transitions:

1. Transitions between base states

The transition from state A to B is valid if A is active, the trigger event
trigger occurs, and the condition [switch_on] is true.

2. Transitions from and to hierarchy states

The transition from C to the hierarchy state (see page 41)
D_hierarchy is valid if C is active, the trigger event trigger occurs,
and the condition [switch_on] is true. It is an explicit transition to
the hierarchy state.

For a valid transition to a hierarchy state, you must implicitly define one
substate as the destination. Here, you do this by marking the substate
D1 as start state (see page 43). What is executed in fact is the transition
from C to D1.

The transition from D_hierarchy to C is valid if D_hierarchy is
active, the trigger event trigger occurred, and the condition
[switch_off] is true, regardless of which substate is active.
Components

3. Transitions between substates of different hierarchies

The transition from the substate E2 in the hierarchy state
E_hierarchy in the substate F1 in the hierarchy state
F_hierarchy is valid if E2 is active and the trigger event trigger
occurs. The transition defines an explicit exit from substate E2 and an
implicit exit from the hierarchy state E_hierarchy. It also implicitly
defines an entry into F_hierarchy and an entry into F1.

4. Loops

A loop is a transition from a state to itself. The transition in the above
figure is valid if either of the substates of G_hierarchy is active, the
trigger event trigger occurs and the condition [reset_state] is
true. The system leaves the active substate, it leaves the
G_hierarchy state, executes the transition action, re-enters
G_hierarchy, and finally enters the substate G1.
Components 37

38
5. Transitions with junctions

All types of transitions can contain junctions (see next section). Here,
just one of the many possible examples is shown.

If state H is active and the trigger event trigger occurs, the system
leaves state H. In the junction, the conditions to the leading transition
segments ([condition_1], [condition_2], [condition_3])
are tested in sequence for their priority. If, for example, the condition
[condition_2] is fulfilled, transition to state J occurs. If none of the
conditions are fulfilled, the system remains in the start state H.

Junctions

A junction is a graphic object which considerably improves the legibility of
state diagram and aids the generation of efficient code. Junctions form addi-
tional possibilities for representing the required system behavior.

Junctions are not states, they represent branching points in the state diagram.
Nodes interrupt a transition (see page 35) and split it into segments. One seg-
ment connects the source state with the junction, one or more segments con-
nect the interrupting junctions (if required), and the last segment connects the
last junction with the destination state. Thus, junctions aid the representation
of different transitions. At the same time, they allow reuse of transition seg-
ments.

Note the following when using junctions:
Components

• Transitions from a starting state to several destination states are clearly
represented.

You can achieve the same functionality modelled with a junction in Part
A of the diagram by direct transitions from the start state
source_state to the destination states (Part B of the diagram).
However, using the junction brings a runtime benefit, as the transition
segment between the start state and the junction is evaluated first. If
this is already invalid, no transition can take place and you need not
consider the segments leading away from the junction.

• Also, transitions from several starting states to a destination state are
clearly represented.

In this case too, both ways of writing have the same meaning. You can
(and should) assign an action shared by all three transitions to the seg-
ment leading away from the junction.

• If none of the transition segments leading away from the junction are
valid, then no transition occurs and the system remains in the starting
state.

A B

A B
Components 39

40
• Transition segments from a junction into a state can contain actions.

It is not possible to assign an action to a transition segment ending in a
junction. The complex semantics of such transition actions results in
inefficient coding.

• Each segment of a transition can have a condition.

• Transitions from one junction to another (cascading junctions) are
allowed, all kinds of loops are forbidden.
Components

• Only one segment of a transition has a trigger. Usually, a trigger is
assigned either to the segments leading towards the first junction of a
transition, or to the segments leading away from the last junction, but
not to all segments.

• If none of the segments leading to a possible destination state is valid,
no transition occurs. The state remains in the source state.

Triggers

Triggers activate the execution of the state machines: Each trigger call causes
the execution of one state machine step. They are public methods of the state
machine; you must define each trigger that affects the state diagram. A trigger
can have arguments for communication with other ASCET components (see
also the sections "State Machines as Classes" on page 83 and "The State
Machine Editor" in the ASCET user’s guide).

A state machine can have one or more triggers. Each transition is assigned to
one of the triggers of the state machine. By this assignment, it is possible to
define several substate machines that work on the same states. Each trigger
can be started independently. The state machine is activated whenever a trig-
ger is started: all transitions from the current state are checked in the order of
their priority, and a transition is executed if necessary.

Hierarchy

State machines often have a large number of states. The hierarchy allows the
organization of complex systems by defining higher or lower-level object struc-
tures. A hierarchical design usually reduces the number of transitions and pro-
duces structured and readable diagrams (see also section "Hierarchy States" in
the ASCET user’s guide).

Note

The assignment of triggers to more than one segment of the same tran-
sition is not deactivated. However, in such a case, ASCET outputs an error
message if different triggers are assigned to the segments.
You are therefore responsible for the assignment of triggers.

or
Components 41

42
ASCET supports the hierarchical organization of states in the form of open and
closed hierarchies (State_A and State_A_3, respectively, in Fig. 2-11). The
only difference between them is the graphical representation.

Each state can contain other states. Those states are called hierarchy states;
states containing no other states are called base states. A state contained in a
hierarchy state is called a substate of the hierarchy state. The system is always
in a base state, and together with that base state also in its associated hierar-
chy states.

The state diagram shown here has a hierarchy state that contains two sub-
states. (Some transitions are left out for clarity.)

The hierarchy state engaged contains the two substates first and second.
This makes engaged the parent state of first and second. When the trig-
ger event clutch_engaged occurs, the system transitions from the neu-
tral state to the hierarchy state engaged.
Components

Far more complicated structures are possible, too (see Fig. 2-11). The following
is an example of a hierarchical state machine with two hierarchical substates,
one of which contains a further hierarchy state. The lines between the states
symbolize a containment relation and should not be confused with transitions.

Fig. 2-12 Relationships within complex state machines

Within a hierarchy state, the substates form a state machine of their own. For
instance, state A1 and state A2 form a state machine of their own. States
inside a hierarchy state can have transitions to other states, which are not
located inside the same hierarchy state. The states are connected by transi-
tions; one of the states is marked as the start state in the hierarchy state. At the
beginning the hierarchical state machine is in the start state, and if this state is
hierarchical, too, it is in the start state of the hierarchical state and so on.

In the above example, the start state of the state machine is state B1b, since it
is the start state of state B1, which itself is the start state of B. B, in turn, is the
start state on the topmost level.

A transition from a hierarchy state automatically includes the exit from the
active substate. A transition from a substate can lead beyond the borders of
hierarchy states to another substate. If a substate is active, its parent hierarchy
state is active, too.

Start State

The start state specifies which state is to be activated when there are several
possibilities on the same hierarchy level. Thus, the start state of the entire state
machine, or that of a hierarchy level is determined.

State C

Statemachine

State A State B

State A1
State A2 State B1 State B2 State B3

State B1a State B1b

S

S

S

S

Components 43

44
A common error in the specification of state machines is the generation of
several states without marking one of them as start state. In that case, there is
no indication of which state becomes active by default. Therefore, on code
generation, ASCET outputs an appropriate error message.

The state neutral is the start state of the entire state diagram shown below,
first is the start state of the hierarchy state engaged.

With that, the state neutral becomes active when the state machine is first
activated. If you had not defined a start state, it would be unclear whether
neutral or engaged should be activated. When a transition from neutral
to engaged occurs, the substate first is activated inside the hierarchy state.

History

The history option provides the means to determine the destination substate
of a transition to a hierarchy state based on past activities. If a hierarchy state
has a history, the transition ends in the substate that was most recently active.

The history belongs to the hierarchy state in which the option was set. It takes
priority over the start state within the hierarchy.

The H in the diagram indicates that the hierarchy state engaged has a history.
Whether the first or second substate is activated upon a
transition from neutral to engaged is based on which of them was
most recently active.

The generated code contains a special variable for the history, the history vari-
able.
Components

Conditions

A condition is a Boolean expression specifying that a transition occurs, given
that the expression is true. Each transition and segment of a transition can
have a condition. In Fig. 2-11, the condition [condition_3] represents a
Boolean expression that must be true for the transition from State_A to
State_B to occur.

In the system shown here, the transition from first to second takes place
if the Boolean condition [speed > threshold] is true.

You can specify conditions as block diagrams (in separate diagrams) or in ESDL
(in separate diagrams or directly at the transition). For more information, see
section "Specifying Conditions and Actions" in the ASCET user’s guide.

Conditions can also have arguments for communication with other ASCET
components. You can find more on this in section "State Machines as Classes"
on page 83 and in the ASCET user’s guide, section "Communication with
Other Components".

Actions

Actions take place as part of the state machine execution. An action can be
executed either as part of a transition from one state to another (e.g.
/transition_action in Fig. 2-11), or based on the activity status of a
state (e.g. static_A2 or exit_A1 in Fig. 2-11).
Components 45

46
Transitions and transition segments leading away from a junction can have
transition actions. States can have entry, static and exit actions. All actions are
optional. In Fig. 2-11 on page 34, the State_A_1 state has all three action
types, whereas State_A_2 has neither entry nor exit action, only a static
action. The transition from State_A_1 to State_A_2 has no action.

When, in this example, the first state is active, and no transition occurs, the
static action accelerate is executed. At the transition from first to sec-
ond, the transition action switch_gear is executed.

The sections "Semantics: Simple State Machines", "Semantics: Junctions in
State Machines" and "Semantics: Hierarchical State Machines" describe in
detail which actions are executed when. You can specify actions as block dia-
grams (in separate diagrams) or in ESDL (in separate diagrams or directly at the
transition). For more information, see the ASCET user’s guide, section 4.2.3
"Specifying Conditions and Actions".

Actions can also have arguments for communication with other ASCET com-
ponents. You can find more on this in section "State Machines as Classes"
on page 83 and in the ASCET user’s guide, section "Communication with
Other Components".

Data

Data objects are used to store and process numerical values in the state dia-
gram. The following types are available:

• Variables, parameters, constants (see page 96)

• Enumerations (see page 96)

• Arrays, matrices (see page 91, 92)

• Literals (see page 96)

• Temporary variables (see page 98)

• Characteristic curves and maps (see page 92)

• Inputs for data from other ASCET components

• Outputs to other ASCET components
Components

• other classes (e.g., timers, counters, comparators)

The state variable sm of type unsigned discrete also belongs to the data.
The variable is created in every state machine.

This variable contains the number of the currently active state. You cannot edit
it in the state machine editor but you can measure it in an experiment. If an
ASAM-MCD-2CM file is generated for a project containing a state machine,
the sm parameter is also saved to the file.

2.5.2 Semantics of State Machines

A state machine consists of a finite number of states. Each state represents a
state a system can be in, for instance whether a door is locked, open, or closed.
Under certain circumstances the state of the system changes. These state
changes are modelled by transitions between the different states. For each
possible transition to take place, a condition has to be fulfilled.

An external event, the trigger event, activates a state machine. A trigger is a
public method of the state machine. A state machine always has to be in one
of its states. At the beginning, a state machine is in a special state, the start
state. If a trigger event occurs, the system reacts with the execution of actions
(e.g., creation of a signal, change of a variable, or transition to another state).

The entry action of a state is executed when a transition to that state occurs.
The state is activated before the execution of the entry action is started.

The static action of a state is executed if the state is active and a trigger event
occurs which does not result in a transition from the state. When a transition
between two substates of the same hierarchy state occurs, the hierarchy state
(which is not left) executes and completes its static action after the source state
was left, but before the transition action is executed.

Note

When a state machine is called for the first time, the entry action of the start
state is not executed.
Components 47

48
The exit action of a state is executed when a transition from that state occurs.
The state becomes inactive after the execution of the exit action is completed.

The transition action of a transition is executed after the source state has been
left and before the destination state is activated.

The semantics describe how a state diagram is interpreted and executed and
in which order the actions will be executed. Knowledge of the semantics of
state diagram is essential for the creation of suitable state machines and the
generation of efficient code. Different implementation options result in differ-
ent simulation behavior and in the executable code.

The semantics of state machines contain rules for the

• Processing of states,

• Selection of transitions,

• Processing of transitions.

The following sections describe the semantics of state machines using exam-
ples. These cover a wide range of possible implementations and combinations
of the different actions.

Refer to the section "Semantics: Summary" on page 68 for a summary of the
rules.

2.5.3 Semantics: Simple State Machines

Example 1: Transition between two states.

This simple state machine models a light switch. At the beginning, the lamp is
off, the state dark is active. The trigger event trigger occurs and initiates
the evaluation of the state machine. The light switch is pressed, so that the
condition switch_on is true. The following steps are executed:

1. The state diagram checks to see if there is a valid transition.

2. The dark state is active so that only the transition from dark to
bright has to be evaluated. The condition [switch_on] is fulfilled,
the transition is valid.

3. The dark state has no exit action that could be executed. It is deacti-
vated.
Components

4. The transition action is executed, the counter switch_count is
increased by 1.

5. The bright state is activated.

6. The lamp_on entry action is executed and completed. The lamp is
switched on.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Every state can have transitions to more than one other state. To make the
behavior of the state machine deterministic, each transition has to be assigned
a priority. The priority determines the order in which the conditions belonging
to the transitions are checked. Once a condition evaluates to true, the asso-
ciated transition takes place, and all other conditions belonging to transitions
with lower priorities are not tested. If no condition evaluates to "true", the
state remains unchanged and the static action is executed.

Example 2: Several possible transitions from one state

This state machine models a display. Outside temperature, speed, average
speed and distance covered can be displayed as required. There is also a key to
toggle the display. If the outside temperature falls below 1°C, a change to the
temperature display occurs, and a frost warning is shown.
Components 49

50
The state machine is in the speed state. A trigger event trigger_100ms
occurs; the temperature drops from 1.5 °C to 0.5 °C. The switch is not pressed.
The following steps are executed:

1. The system checks to see if there is a valid transition from speed.

2. The transition from speed to distance has the highest priority, and
is evaluated first. However, the [key_pressed] condition is not ful-
filled, the transition is invalid.

3. The transition from speed to temperature has the condition
[t_air < 1 && !frost_warning]. At first, the temperature was
above the threshold of 1 °C and no frost warning was required. Now,
it has dropped to 0.5 °C. Both parts of the condition are true, the tran-
sition is valid.

4. The speed state has no exit action. It is deactivated.

5. The /frost_warning = true transition action is executed, and the
frost warning appears.

6. The temperature state is activated.

7. Since that state has no entry action, the evaluation of the state
machine initiated by this trigger event is finished.

Example 3: Loop

The state machine is the same as in Example 2. However, the entry action
clear_display was added to the states. The state machine is in the tem-
perature state. Otherwise, the starting state is the same as in the previous
example. A trigger event trigger_100ms occurs and the switch is not
pressed. The following steps are executed:
Components

1. The system checks to see if there is a valid transition from tempera-
ture.

2. The transition from temperature to speed has a higher priority, but
the condition is not fulfilled. The transition is invalid.

3. The transition from temperature to itself has the condition
[t_air < 1 && !frost_warning]. This is fulfilled, the transition
is valid.

4. The temperature state has no exit action. It is deactivated.

5. The /frost_warning = true transition action is executed, and the
frost warning appears.

6. The temperature state is activated.

7. The entry action clear_display of the temperature substate is
executed and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

2.5.4 Semantics: Junctions in State Machines

Junctions (see page 38) aid the legibility of state diagrams. The functionality of
all the examples can also be described using direct transitions between the
states.

Example 4: If…Then…Else Construction
Components 51

52
This state machine models a simple drinks machine which offers four different
drinks. The state machine is in the waiting state. A trigger event
trigger_10ms occurs: someone wants Cola. This sets the select selection
to 2. The following steps are executed:

1. The system checks to see if there is a valid transition or a valid segment
from waiting.

The transition segment from waiting to the left-hand junction is
valid.

2. The transition segments leading away from the junction are examined
in order of their priority, starting with the segment of the junction to
state Orange.

The condition [select==1] is not fulfilled, the segment is invalid.

3. Next, the segment from the junction to state Cola is tested.

The condition [select==2] is fulfilled, the segment is valid. This
means that there is a fully-valid transition available from the state
waiting.

4. Only now does the transition occur. The state waiting has no exit
action and is deactivated.

5. The Cola state is activated.

6. The pour_Cola entry action is executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 5: No transition

The state machine is the same as in Example 4. The state machine is in the
speed state. A trigger event trigger_10ms occurs, the selection select is
set to 5 by mistake. The following steps are executed:

1. The system checks to see if there is a valid transition or a valid segment
from waiting.

The transition segment from waiting to the left-hand junction is
valid.

2. The transition segments leading away from the junction are examined
in the order of their priority.

As select was set to 5, none of the conditions are fulfilled, all the
segments are invalid.
Components

3. There is no valid transition from waiting. The system remains in the
state waiting. As the state has no static action, nothing happens.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 6: Loop construction

The state machine is the same as in Example 4. The addition is a transition
segment away from the junction back to the state waiting and the entry
action in waiting.

The state machine is in the state waiting; a trigger event trigger_10ms
occurs. By mistake the selection select is set to 5. The following steps are
executed:

1. The system checks to see if there is a valid transition or a valid segment
from waiting.

The transition segment from waiting to the left-hand junction is
valid.

2. The transition segments leading away from the junction are examined
in the order of their priorities, starting with the segment of the junction
back to the state waiting.

The condition [select<1 || select > 4] is fulfilled, the segment
is valid. This means that there is a complete, valid transition available
from the state waiting.
Components 53

54
3. The waiting state has no exit action. It is deactivated.

4. The transition from waiting to waiting has no transition action,
and therefore the state waiting is reactivated.

5. The entry action select=0; from waiting is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

This loop construction corresponds to a direct transition from a state to itself
from Example 3.

Example 7: Transitions from multiple start states to a destination state (one
trigger)

The state machine is the same as in Example 6. The state Cola is active, the
glass has been filled and the logical variable glass_full set to true. A
trigger event trigger_10ms occurs, and the following steps are performed:

1. The system checks to see if there is a valid transition or a valid segment
from Cola available.

The transition segment from Cola to the right-hand junction is valid.

2. The transition segment from the junction to the state waiting has the
condition [glass_full]. As glass_full was set to true, this
segment is also valid and the transition can take place.

3. The Cola state has no exit action. It is deactivated.
Components

4. The transition has no transition action and therefore the state wait-
ing is activated next.

5. The entry action select=0; from waiting is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 8: Transitions from a start state to different destination states (mul-
tiple triggers)

This state machine describes a drinks machine which offers different types of
sodas or beers. The actual choice takes place in the hierarchy states soda_on
and beer_on; it is irrelevant for the example. The section "Semantics: Hierar-
chical State Machines" describes the semantics of hierarchical state machines.

The state machine is in the starting state beverage_off. A trigger event
trigger_soda occurs and the machine is switched on (switch_on is
true). The following steps are executed:

1. The system checks to see if there is a valid transition or a segment from
beverage_off.

2. The transition segment from beverage_off to the junctions is valid,
as the condition [switch_on] is fulfilled. As the trigger event
trigger_soda has occurred, the segment from the junction in the
state soda_on is also valid; the transition can occur.

3. The beverage_off state has no exit action. It is deactivated.

4. The transition from beverage_off to soda_on has no transition
action. Therefore, the state soda_on is activated next.
Components 55

56
5. The entry action start_soda of soda_on is executed and com-
pleted.

6. The necessary steps in the hierarchy state are executed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 9: Transitions from different start states to the same destination
state (multiple triggers)

The state machine is the same as in Example 8. The system is in the state
soda_on (or in one of the substates of the hierarchy). A trigger event
trigger_soda occurs, the machine is switched off (switch_off is true).
The following steps are executed:

1. The system checks to see if there is a valid transition or a segment from
soda_on available.

2. The transition segment from soda_on to the junctions is valid, as the
condition [switch_off] is fulfilled. As the trigger event
trigger_soda has occurred, the segment from the junction in the
state beverage_off is also valid; the transition can occur.

3. The necessary steps in the hierarchy state are executed.

4. The exit action shut_down of the state soda_on is executed.

5. The transition from soda_on to beverage_off has no transition
action. Therefore, the state beverage_off is activated next.
Components

6. The entry action reset of beverage_off is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

2.5.5 Semantics: Hierarchical State Machines

Upon activation of the state machine, the conditions of the transitions are
checked. The hierarchical order determines the priority. The highest hierarchi-
cal level has the highest priority, i.e. the conditions on transitions on upper
hierarchy levels are checked first. When a hierarchy state is left, the current
substates are left as well. The innermost substate is left first, the outermost
hierarchy state is left last. When entering a hierarchy state, the order in which
the entry actions are executed is from the outermost hierarchy state to the
innermost (base) state, i.e. the outermost state is entered first, and the inner-
most is entered last. If no transition takes place, the static actions are executed
in an outward sequence, i.e. the static action of the innermost substate is exe-
cuted first, and the static action of the outermost hierarchy state is executed
last.

Example 10: Transition to a hierarchy state without history

On entry into a hierarchical level, there are two possibilities: either entry into
the start state of the hierarchy state (this example). In this case, the hierarchy
state has 'forgotten' the substate it has been in when it was left. Alternatively,
the last active substate is entered. In this case, the hierarchy state has a history
(Example 11).

For each hierarchy state it is possible to determine whether it has a history or
not. When entering a hierarchy state with history for the first time, the start
state of that hierarchy state is entered.

Note

The examples in this chapter assume no optimization of static actions in hier-
archy states. If this optimization is activated, the semantics change, see
"Optimized for Code Size" on page 76
Components 57

58
In the state display, this hierarchical state machine contains the display func-
tion from Example 3. display is a hierarchy state. As soon as a temperature
of 3 °C is exceeded, the frost warning is to be reset. The second state on the
highest hierarchy level, reset_frost_warning, is used for that purpose.
Every 10 seconds, a change from display to the reset_frost_warning
state can occur, where the frost warning is switched off.

After the frost warning was displayed (frost_warning = true), the dis-
tance display was selected so that the system was in the distance state. The
temperature rose to 5 °C, and the transit ion from display to
reset_frost_warning took place when the trigger event trigger_10s
occurred. The system is now in the reset_frost_warning state. A trigger
event trigger_100ms occurs, and the following steps are performed:

1. The system checks to see if there is a valid transition from
reset_frost_warning.

2. The transition from reset_frost_warning to display has no
condition; it is therefore valid at every trigger_100ms trigger event.

3. The reset_frost_warning state has no exit action. It is deacti-
vated.
Components

4. The transition from reset_frost_warning to display has no
transition action, and the display hierarchy state is activated next.

5. The reset_count entry action of the display hierarchy state is exe-
cuted and completed.

6. The temperature substate is the start state in the hierarchy. It is acti-
vated.

7. The entry action clear_display of the temperature substate is
executed and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

Example 11: Transition to a hierarchy state with history

The state machine is the same as in Example 10. Now it has a history. The
prehistory and the starting state are the same as in the previous example.

The system is now in the reset_frost_warning state. A trigger event
trigger_100ms occurs, and the following steps are performed:

1. The system checks to see if there is a valid transition from
reset_frost_warning.
Components 59

60
2. The transition from reset_frost_warning to display has no
condition; it is therefore valid at every trigger_100ms trigger event.

3. The reset_frost_warning state has no exit action. It is deacti-
vated.

4. The transition from reset_frost_warning to display has no
transition action, and the display hierarchy state is activated next.

5. The reset_count entry action of the display hierarchy state is exe-
cuted and completed.

6. Since display has a history ('H' in the above figure), the speed sub-
state is activated. That state was active when the hierarchy state was
left.

7. The entry action clear_display of the speed substate is executed
and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.
Components

Example 12: Transition within a hierarchy state

If a transition takes place inside a hierarchy state, the state machine remains in
that hierarchy state. Therefore, the static action of the hierarchy state is exe-
cuted, as well as the static actions of all hierarchy states that contain the state
in question. They are executed after all exit actions, and before the transition
action, from the innermost hierarchy state to the outermost one.

The state machine is the same as in Example 11. The state machine is in the
speed state. The temperature is still 5 °C, the frost warning is switched off
(frost_warning is false). A trigger event trigger_100ms occurs, the
switch is pressed (key_pressed is true). The following steps are executed:

1. The system checks to see if there is a valid transition.

2. The transition from the display hierarchy state to
reset_frost_warning is initiated by another trigger
(trigger_10s); it is of no importance here.

3. The transition from speed to the distance substate is evaluated.
The condition [key_pressed] is fulfilled, the transition is valid.

4. The speed state has no exit action. It is deactivated.

5. The display hierarchy state is not left. Therefore, its static action
count is executed and completed.
Components 61

62
6. The transition from speed to distance has no transition action, and
the distance substate is activated.

7. The entry action clear_display of the speed substate is executed
and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

Example 13: Transition between hierarchy states

This state machine acts as a data generator. When enable is set to true, a
signal is produced, either a ramp (state ramp, mode = 1) or a sine (state
sinus, mode = 2).

The down substate in the sinus hierarchy state is active. The signal mode
mode is set to 1, enable remains true. A trigger event occurs, and the fol-
lowing steps are performed:

1. The system checks to see if there is a valid transition. Since the transi-
tions from the sinus hierarchy state have higher priorities than those
from down, they are evaluated first.
Components

2. The transition from sinus to nothing has the highest priority. It is
invalid, though, because the condition [enable == false] is not
fulfilled.

3. The transition from sinus to ramp is evaluated next. The condition
[(enable ==true) && (mode == 1)] is true, the transition takes
place.

The transition from the down substate to the up substate has the low-
est priority and is not evaluated.

4. The down substate has no exit action, it is deactivated immediately.

5. The exit action stop_sinus of the sinus hierarchy state is executed
and completed.

6. The sinus hierarchy state is deactivated.

7. The transition from sinus to ramp has no transition action, therefore
the ramp hierarchy state is activated next.

8. The entry action start_ramp of ramp is executed and completed.

9. The calc substate is the start state within the hierarchy. It is activated.

10. The entry action value = PMn; output = value; of calc is
executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.
Components 63

64
Example 14: Loop

The source and destination states of a transition can be identical. Such loops
are frequently used to specify the reset function of a hierarchy state.

The ramp hierarchy state from the state machine in Example 13 has now a
reset function in the form of a loop, i.e. a transition from ramp to itself. The
rest of the state diagram is left out for clarity.

The recalc substate in the ramp hierarchy state is active. A trigger event
occurs, the reset button is pressed (reset_ramp = true). enable and
mode remain unchanged. The following steps are executed:

1. The system checks to see if there is a valid transition.

2. The loop has the highest priority. The condition [reset_ramp] is ful-
filled, the transition is valid.

Other transitions are not evaluated.

3. The recalc substate has no exit action, it is deactivated immediately.

4. The exit action stop_ramp of the ramp hierarchy state is executed
and completed.

5. The ramp hierarchy state is deactivated.

6. The loop's transition action /reset is executed and completed.

7. The ramp hierarchy state is re-activated.

8. The entry action start_ramp of ramp is executed and completed.
Components

9. The calc substate is the start state within the hierarchy. It is activated.

10. The entry action of calc is executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 15: Transition between substates of different hierarchies

Transitions can lead directly from the substate of one hierarchy state to the
substate of another hierarchy state.

This state machine is the same as the one in Example 13, only the transition
from the up substate in the sinus to the substate calc in ramp was added.

The up substate in the sinus hierarchy state is active. The value value is
lower than the maximum PMx. A trigger event occurs. mode remains 2, and
enable remains true, but the fast-switch is pressed (fast_switch =
true). The following steps are executed:

1. The system checks to see if there is a valid transition.

2. The transitions from sinus to nothing and from sinus to ramp are
evaluated first. They are both invalid because the associated conditions
are not fulfilled.

3. The transition from substate up to substate down is evaluated next. It
is invalid, too, because the condition [value >= PMx] is not fulfilled.
Components 65

66
4. The transition from up to the calc substate has the lowest priority and
is evaluated last. The condition [fast_switch] is true, the transition
takes place.

5. The up substate has no exit action; it is deactivated immediately.

6. The exit action stop_sinus of the sinus hierarchy state is executed
and completed.

7. The sinus hierarchy state is deactivated.

8. The transition action (/mode = 1; fast_switch = false;) is
executed and completed.

9. The ramp hierarchy state is activated.

10. The entry action of ramp is executed and completed.

11. The calc substate is activated.

12. The entry action of calc is executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 16: Transition from a substate to a hierarchy state

If the transition from a substate does not lead to another substate, but to the
hierarchy state, the procedure is almost the same. The substate is left, the hier-
archy state is left, too, and immediately re-entered. Depending on whether the
Components

hierarchy state has a history, either the most recently activated substate or the
start state of the hierarchy is entered. This is another way to realize, for exam-
ple, the frost warning.

The state machine is very similar to the Example 10 only here, the frost warning
is implemented using transitions in the hierarchy state. It is in the state dis-
tance. frost_warning is false. A trigger event trigger_100ms occurs;
the temperature drops to 0.5 °C. The switch is not pressed. The following steps
are executed:

1. The system checks to see if there is a valid transition from distance.

2. Another trigger initiates the transition from display to
reset_frost_warning; it is of no importance here.

3. The transition from distance to average_speed is evaluated. The
condition [key_pressed] is not fulfilled, the transition is invalid.

4. The transition from distance to display has the condition
[t_air < 1 && !frost_warning]. Both parts of the condition
are true, the transition is valid.

5. The distance state has no exit action. It is deactivated.

6. The display hierarchy state has no exit action. It is deactivated.

7. The display hierarchy state is activated again.
Components 67

68
8. The reset_count entry action of display is executed and completed.

9. The /frost_warning = true transition action is executed, and the
frost warning appears.

10. The temperature state is the start state in the hierarchy. It is acti-
vated as display does not have a history.

11. The entry action clear_display of the temperature substate is
executed and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

Example 17: No transition

The state machine is the same as in Example 16. The state machine is in the
temperature state. The temperature is unchanged. A trigger event
trigger_100ms occurs, the switch is not pressed (key_pressed is
false). The following steps are executed:

1. The system checks to see if there is a valid transition.

2. Another trigger initiates the transition from display to
reset_frost_warning; it is of no importance here.

3. The transition from temperature to speed is invalid because the
switch was not pressed.

4. The transition from temperature to display is invalid because
frost_warning = true and thus the condition is false.

There are no other possible transitions available.

5. The static action show_temperature in the temperature substate
is executed and completed.

6. The static action count in the hierarchy state display is executed
and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

2.5.6 Semantics: Summary

Initialization of the state diagram: The start state of the system is acti-
vated. If the start state is a hierarchy state, the start state within the hierarchy
is also activated. No entry action is executed.

Entering a state:

1. If the state has an inactive higher-level state, steps 1–4 are executed for
that state.
Components

2. The state is activated.

3. The entry action is executed.

4. Carry out implicit entry actions as necessary:

4.1 If the state contains a subordinate diagram with a history, and if
one of the substate was active after initialization, this substate is
activated and its entry action executed.

4.2 If the state contains a subordinate diagram with a history, and if
one of the substate was active after initialization, this substate is
activated and its entry action executed. Otherwise, proceed as
described in 4.1.

Executing a (basis) state:

1. The transitions leading away from the state and transitions leading out
of higher-level states are evaluated in order of their priority.

2. If a valid transition is found, it is executed. This ends the execution of
the state.

3. If no valid transition from the state is available, the static action is exe-
cuted.

4. If the state has higher-level states, their static actions are executed.

Leaving a state:

1. If the state contains active substates, their exit actions are executed.
The exit action of the innermost basis state is executed first.

2. The exit action of the state is executed.

3. The state is deactivated.

Executing a transition:

The transitions are evaluated in the order of their priority. Transitions from a
hierarchy state always have a higher priority than transitions from the sub-
states of this hierarchy state.

1. A transition or transition segment is tested.

2. If the transition/segment is invalid, the transition/segment with the
next-lowest priority is tested.

3. If the transition/segment is valid, the next step depends on where the
transition/segment ends.
Components 69

70
In a state:

3.1 No additional transitions or transition segments are tested. In the
case of a transition segment from a junction, the segment is
pulled in to the junction in question to obtain a complete transi-
tion.

3.2 The substates of the start state are left (see "Leaving a state").

3.3 The start state is left.

3.4 The transition action is executed.

3.5 The system enters the destination state (see "Entering a state").

In a junction:

3.1 The transition segments leading away from the junction are eval-
uated as described in steps 1 – 3.

4. If all the transition segments leading away from a junction are invalid,
the system returns to the start state from which the junction was
reached. As the segment in the junctions does not belong to any valid
transition, steps 1 – 4 are executed for the transition/segment with the
next-lowest priority.

5. If all of the transitions/segments leading away from a state are valid,
then no transition occurs and the system remains in the state.

The sequence is represented schematically in Fig. 2-13.
Components

Fig. 2-13 Evaluation of a state machine

check transitions
from all active states

top-down,
beginning at
the highest
hierarchy level

At least
one condition

true?

Yes No

execute exit actions,
beginning with the

innermost substate that
is left

execute static actions
from all higher

hierarchy states that
are not left

execute
transition action

execute entry actions,
beginning with the

outermost hierarchy
state to be entered

execute static actions,
beginning with the
innermost substate

bottom-up

top-down

bottom-up

measurement,
display

measure values

bottom-up
Components 71

72
2.5.7 Simple Code Example

Parts of the generated code are shown here for this simple state machine.

Entry action from
bright

#define statements for the states

Transition from
dark to bright

Transition action

Transition from
bright to
dark

Entry action from
dark

Public method for the output lamp

Static action from bright

Public method for the input switch_in

Exit action from
dark
Components

2.5.8 Optimizing the State Machine

Usually, there are several ways to specify the same functionality or to adjust the
code generation/build process settings.

When code is generated for a state machine, parts of actions and conditions
specified at the state or transition are either inserted on the spot (inlining) or—
on certain conditions—generated as separate methods (outlining). The prereq-
uisites for outlining are:

1. The state machine optimization option Outline Generated Methods
(may be changed locally) is activated in the "Project Properties" win-
dow, "Statemachine" node, of the project that contains the state
machine.

This options applies to all state machines contained in the project, and
to all experiments (physical, quantized, implemented).

2. The option Outline automatically generated methods for State
Machines is activated in the implementation editor of the state
machine.

If both prerequisites are met, code size with and without outlining is checked
during code generation. If code with outlining is smaller, outlining is done.

If actions and conditions (or parts thereof) are specified in separate diagrams,
the corresponding code is either generated in separate private methods (out-
lining), or it is inserted on the spot automatically during code generation (auto-
inlining).

The following prerequisites must be met so that auto-inlining can take place:

1. The state machine optimization option Auto-inline private methods
(Smaller code-size - may be changed locally) is activated in the
"Project Properties" window, "Statemachine" node, of the project that
contains the state machine.

This options applies to all state machines contained in the project, and
to all experiments (physical, quantized, implemented).

Note

When the first prerequisite is not met, outlining is not done for any state
machine in the project.
When the first prerequisite is met, but not the second, outlining is not
done for this particular state machine.
Components 73

74
2. The option Auto-inline private methods (Smaller code-size) is acti-
vated in the implementation editor of the state machine.

If both prerequisites are met, code size with and without auto-inlining is
checked during code generation. If code with auto-inlining is smaller, auto-
inlining is selected. This is usually the case for small private functions, or for
functions with only a few calls. Each function is checked separately, so that
only those functions are inlined whose inlining saves code size.

Depending on the possibilities you choose, you can optimize a state machine
under three aspects:

• Response time

• Runtime

• Code size

Optimized for Response Time

If response time is the most important criterion, take advantage of the hierar-
chical structure and the transition priorities. Speed-critical actions are best built
into the highest possible hierarchical level to produce efficient code and the
quickest possible reaction.

This is illustrated by an example:

Note

When the first prerequisite is not met, auto-inining is not done for any
state machine in the project.
When the first prerequisite is met, but not the second, auto-inining is
not done for this particular state machine.
Components

If the emergency stop button is pressed (emergency_stop = true), the
system should stop as fast as possible, i.e. reach the Stop state. By drawing
the associated transition from the Run hierarchy state to the Stop state, the
transition has the highest priority in the hierarchy and is evaluated first.

If any of the substates is active and the emergency button is pressed, the tran-
sition from Run to Stop is always evaluated and the transition occurs.

Direct transitions from each of the substates to Stop are as efficient regarding
time, but they require higher maintenance effort because four transitions are
specified instead of one.

A separate trigger for time-critical events (emergency_stop = true in the
example) also optimizes response time. The drawback is additional program
code for the separate trigger.

Optimized for Runtime

If the total runtime is the most important criterion, you can use several optimi-
zation possibilities, individually or in combination, to generate efficient code.

Actions/Conditions: If actions or conditions are specified with partly or
totally the same functionality, this can be done either runtime-optimized or
size-optimized. Runtime-optimized means that the code for each action and
condition is inserted on the spot during code generation. No additional func-
tion call is required. The disadvantage is the repeatedly generated code and
thus increased memory requirement.

This can be achieved by specifying the code explicitly at the state or condition
and deactivating the options Outline Generated Methods (may be
changed locally) and Outline automatically generated methods for
State Machines (see prerequisites for outlining on page 73).

The optimization becomes even more effective if auto-inlining (see page 73) is
activated. In that case, even actions/conditions specified in separate diagrams
are inserted on the spot, if applicable.
Components 75

76
With the Inline option in the implementation editor of an action/condition
specified in a separate diagram, you can enforce inlining.

Junctions: If several transitions with partially identical conditions lead away
from a state, the use of junctions can bring runtime savings. Identical sections
of the conditions are assigned to the transition segment from the start state in
the first junction. If these are not fulfilled, the other segments are not evalu-
ated.

Optimized for Code Size

Actions/Conditions: Optimizing actions or conditions for code size means
that identical parts of actions/conditions are generated as separate private
functions that are called at need.
Components

This can be achieved by specifying the repeatedly used parts as methods in a
separate diagram, which are then called from the actions (see figure).

As an alternative, you can enter the code directly at the state or transition and
use the outlining functionality.

For both alternatives, the code is generated only once. The price to be paid are
additional function calls.

In some cases (small private functions, few calls), it may be advantageous,
regarding code size, to insert the code on the spot. You can activate auto-
inlining (cf. page 73) with the Auto-inline private methods (Smaller code-
size - may be changed locally) and Auto-inline private methods (Smaller
code-size) options; with that, you have selected the most effective optimiza-
tion of actions and conditions for code size.

Static actions of hierarchy states: For static actions in hierarchy states, an
additional optimization option exists.

By default, code for the static action of a hierarchy state is generated for each
transition that does not lead out of the hierarchy, as well as once for each
substate of the hierarchy. In large hierarchies, this can result in a noticeable
part of the entire code.

When you activate the Optimize Static Actions (Restricted Modeling) code
optimization option in the project that contains the state machine, code for
the static action of a hierarchy state is generated only once for each substate.
Thus, code size can be reduced.
Components 77

78
A disadvantage of this optimization is that it does not work for some models.
If a state machine contains a substate with a direct transition out of it’s hierar-
chy state, this transition must have the highest priority of all transitions from
that substate. Otherwise, code generation aborts with the following error mes-
sage:

ERROR(YSm72): higher priority transitions do not exit
hierarchy state "HState", but this transition does.

The changes in code generation change the state machine semantics as fol-
lows:

• The static action of the hierarchy state is executed before the condi-
tions of the transitions from the substate are evaluated.

• If no transition occurs, the static action of the hierarchy state is exe-
cuted before the static action of the substate.

• If a transition occurs, the static action of the hierarchy state is executed
before the exit action of the substate.

Two examples illustrate the effect of this optimization. In both examples, the
state machine consists of the hierarchy state HState containing the substates
Start and InnerState1, and the base state OuterEnd. Two transitions
leave Start, one of them (Start → OuterEnd) also leaves the hierarchy
state HState.

In the first example, the transition from State to OuterEnd has a higher
priority than the transition from State to InnerState1. This means that
code can be generated both with activated and deactivated Optimize Static
Actions (Restricted Modeling) option.

Note

The changes can alter the behavior of the state machine. If you activate the
option for an existing state machine, check it’s behavior carefully.
Components

The following table shows the generated C code for both cases. Code for the
static action of HState is set in boldface.

Option deactivated Option activated

case Start :
{
if (x == 1.0)
{
x = x * 3.0;
sm = OuterEnd;
return;

}
if (x == 2.0)
{
x = x * 3.0;
x = x + 1.0;
sm = InnerState1;
return;

}
x = x * 2.0;
x = x + 1.0;
return;

}
case InnerState1 :
{
if (x == 3.0)
{
x = x + 1.0;
sm = Start;
return;

}
x = x + 1.0;
return;

}

case Start :
{
if (x == 1.0)
{
x = x * 3.0;
sm = OuterEnd;
return;

}
x = x + 1.0;
if (x == 2.0)
{
x = x * 3.0;
sm = InnerState1;
return;

}
x = x * 2.0;
return;

}
case InnerState1 :
{
x = x + 1.0;
if (x == 3.0)
{
sm = Start;
return;

}
return;

}

Components 79

80
In the second example, the transition from State to OuterEnd has a lower
priority. With activated Optimize Static Actions (Restricted Modeling)
option, code cannot be generated.

Option deactivated Option activated

case Start :
{
if (x == 2.0)
{
x = x * 3.0;
x = x + 1.0;
sm = InnerState1;
return;

}
if (x == 1.0)
{
x = x * 3.0;
sm = OuterEnd;
return;

}
x = x * 2.0;
x = x + 1.0;
return;

}
case InnerState1 :
{
if (x == 3.0)
{
x = x + 1.0;
sm = Start;
return;

}
x = x + 1.0;
return;

}

ERROR(YSm72): higher prio-
rity transitions do not exit
hierarchy state "HState",
but this transition does.
Components

Hierarchical Code Generation: Two possibilities exist to generate code for
a hierarchical state machine:

With flat code generation, the hierarchy is flattened, i.e. a single switch
statement is generated for all (basis) states and transitions.

With hierarchical code generation, several switch statements are generated,
nested according to the hierarchy. To activate this kind of code generation, the
following options must be activated:

1. project settings, "statemachine" node: Hierarchical Code Genera-
tion (may be changed locally)

2. implementation editor of the state machine, "Settings" tab:Hierarchi-
cal code generation for State Machines

When the first option is not activated, no hierarchical code generation is done.
When the first option is activated, the second option activates/deactivates hier-
archical code generation for a particular state machine.

With hierarchical code geenration, code for transitions from hierarchy states is
generated only once, instead of once for each affected basis state with flat
code generation. Thus, code size is reduced. The reduction can be considerable
(up to 30%). In the experiment, hierarchical and flat codegeneration behave
identcal for identical state machines.

An example illustrates the difference in the generated code.

Note

For hierarchy states without transitions and/or static actions, code size is not
reduced, but slightly (1–2%) increased.

Note

The reduced code size does not show in the generated C file, but in the
generated executable file.
Components 81

82
The transition from top_1 to top_2 is set in boldface.

hierarchical code generation flat code generation

switch (self-> ↵
_ASCET_smLevel_0->val)

{
case top_2 :
{
if (self->log_t->val)
{
self->x->val = 0.0;
self-> ↵

_ASCET_smLevel_0-> ↵
val = top_1;

self->sm->val = middle_1;
return;

}
return;

}
default:
case top_1 :
{
if (!self->log_t->val)
{

switch (self->sm->val)
{
default:
case middle_1 :
{
if (!self->log_t->val)
{
self->x->val = -1.0;
self->sm->val = top_2;
return;

}
if (self->log_m->val)
{
self->x->val = self-> ↵

x->val + 1.0;
self->y->val = -1.0;
self->sm->val = middle_2;
return;

}
self->y->val = self->y->↵

val + 1.0;

self->x->val = -1.0;
self-> ↵

_ASCET_smLevel_0->↵
val = top_2;

self->sm->val = top_2;
return;

}

self->x->val = self->x->↵
val + 1.0;

return;
}
case middle_2 :
{
if (!self->log_t->val)

switch (self->sm->val)
{
default:
case middle_1 :
{
if (self->log_m->val)
{

{
self->x->val = -1.0;
self->sm->val = top_2;
return;

}
if (!self->log_m->val)
{

self->x->val = self-> ↵
x->val + 1.0;

self->y->val = -1.0;
self->sm->val = ↵

middle_2;

self->x->val = self-> ↵
x->val + 1.0;

self->sm->val = middle_1;
return;

}

Components

Triggers and trigger arguments: If trigger arguments are used for com-
munication with other ASCET components, instead of inputs and outputs, the
static RAM requirements are reduced. You can find more information on this
in the next chapter.

2.5.9 State Machines as Classes

A state machine is a class with special description means. The trigger, condition
and actions are modelled as special methods:

• A trigger is a public method without a return value. The state machine
is executed whenever a trigger is started.

• A condition is a private method with a return value of type logical.

• An action is a private method. An action has, as standard, no argu-
ments and no return value.

If necessary, you can add arguments to any of these methods, for communica-
tion with other ASCET components.

return;
}
self->y->val = self-> ↵

y->val + 1.0;
self->x->val = self-> ↵

x->val + 1.0;
return;

}
case middle_2 :
{
if (!self->log_m->val)
{
self->x->val = self-> ↵

x->val + 1.0;
self->sm->val = ↵

middle_1;
return;

}
self->x->val = self-> ↵

x->val + 1.0;
return;

self->x->val = self->x->↵
val + 1.0;

return;
}
case top_2 :
{
if (self->log_t->val)
{
self->x->val = 0.0;
self->sm->val = middle_1;
return;

}
return;

}
}

}
}

}
}

Components 83

84
Inputs and outputs serve for the integration of the state machine with other
components. The input values are buffered to internal variables and can there-
fore be used in all computations of the state machine (in contrast to arguments
of a method, that can only be used in the method itself). The outputs are also
buffered, so they can be read without invoking the computation of the state
machine. Each input and output needs its own sequence call (see section 6.3).

This type of external communication is, however, memory intensive as a vari-
able must be reserved in the RAM for each input and output. To reduce the
static RAM requirement, you can add arguments to the triggers (and to argu-
ments and conditions, if these are specified in a separate diagram). You can
then use these for external communication. Stack variables which do not bur-
den the static RAM are created for the arguments of a C function. The dynamic
RAM area is burdened temporarily.

You should always keep the following points in mind:

• Triggers are public methods. Their arguments can be described outside
of the state machines. In the Layout Editor, the trigger arguments are
represented by black argument connections.
Components

• Arguments and conditions are private methods. Their arguments are
therefore not available outside the state machine. In the Layout Editor,
they are represented by white argument connections.

If a trigger argument is to be used in an action or condition specified as
a block diagram, an argument of the same type and the same name as
the trigger argument must be added to each corresponding method.

The arguments are depicted according to their name and their type. If,
in the trigger and the action/condition, there are arguments with the
same names but with different types, a warning is issued. If the argu-
ment is only defined in an action or a condition but not in the opening
trigger, an error message is output.

Also, there are the following rules for the use of trigger arguments in actions
and conditions:

• All trigger arguments which are to be used in the entry action of a state
must be defined in the action and in every trigger belonging to the
transition leading into the state, as it will be started by these triggers.

• All trigger arguments which are to be used in the exit action of a state
must be defined in the action and in every trigger belonging to the
transition leading out of the state, as it will be started by these triggers.

• All trigger arguments which are to be used in the static action of a state
must be defined in the action and in each trigger of the state machine.
Each trigger event which does not cause a transition from the active
state, starts the execution of its static action.

• You must define all trigger arguments which are to be used in the con-
dition or transition action of a transition, in the action/condition and in
the triggers belonging to the transition, as they will be started by this
trigger.

If one of these rules is violated, an error message is issued.

Trigger
arguments

Arguments from
actions/conditions
(t_air is used in
two methods)

Return values
from
conditions
Components 85

86
After the integration into another components, you can assign values to the
trigger arguments. In contrast to the inputs and outputs, only a sequence start
(see section 6.3) is required for all the arguments.

Additionally, 'normal' public methods can be defined for a state machine like
with all other classes. These public methods offer several additional possibili-
ties. They can be started from outside the state machine, e.g., as well as from
the states and transitions. Their arguments and return values can replace
inputs and outputs in the communication with other components. In this case
too, only a single sequence start is required for the complete method (this does
not, however, bring any runtime savings). You also have the option of prepar-
ing the input values, should they be needed in the state machine.

Further applications of public methods in state machines are, for example,
reset functions that can be started both from within and without the state
machine, or counters that have to register events inside and outside the state
machine. Parts of the state machine, integrated classes, can be calculated in a
Components

different time frame. You can integrate a second state machine into the first
and - without an additional trigger - computed in a different time frame, too,
by starting it via a public method.
Components 87

88
 Components

3 Types and Elements

Every algorithm in a component works on elements. An element contains a
piece of data, and makes available an interface for accessing its data or return-
ing the value of a computation (e.g. interpolation of a characteristic line). Ele-
ments are strongly typed, i.e. each element is of a fixed type. Since there can
be more than just a single element of a given type, an element is referred to as
an instance of a given type.

ASCET has a number of basic types, that can be used directly, such as discrete
or continuous variables, arrays, matrices or characteristic lines and fields. New,
user-defined types can be added to the system in the form of classes. Classes
are complex types, they have a complex structure, because they are usually
build up from other types (basic as well as other complex ones). The types can
be classified as in the following diagram:

Fig. 3-1 Classification of data types in ASCET

As the modelling in ASCET takes place on the physical level, the types are also
’physical’ types. Elements are committed to a specific data type (e.g.
unsigned int8) only during the implementation phase, which is indepen-
dent of the modelling phase.

The physical definition of an element must contain the following information:

• the name of the element

• the model type

• the element kind

• the scope of the element

The options that are available for each of the above categories are described in
detail in the following sections.

Types

Basic User defined

Scalar Composite

Reference types
Value types
Types and Elements 89

90
When defining an element, additional information on the physical unit and a
comment can be added to generate a meaningful documentation of the
model. This information has no impact on the physical model.

3.1 Basic Model Types

In ASCET there are two categories of basic model types: scalar types and com-
posite types.

3.1.1 Scalar Types

The most important of the basic model types are the scalar ones. ASCET sup-
ports four basic scalar types, which are represented in the various ASCET win-
dows by their respective symbols:

• Continuous is used for continuous physical values that can be infinitely
large and have an arbitrarily fine resolution. This type is suitable for
modelling variables like temperature, speed, etc.; it is referred to as
model type cont.

• Signed discrete is used to model integral numbers of arbitrary size; it is
referred to as model type sdisc.

• Unsigned discrete is used to model non-negative integral numbers of
any size. This type is suitable for modelling things like the number of
cylinders of an engine; it is referred to as model type udisc.

• Logical is used to model logical information, e.g. whether a particular
system is active or not; it is referred to as model type log.

The four basic scalar types are value types. Whenever an element of such a
type is used, not the element itself as an object, but its value is used. Automatic
typecasting between the arithmetic types cont, sdisc and udisc is per-
formed if necessary.

Like complex types (classes), each basic type has an interface, i.e. methods to
access it. For the basic model types these methods are fixed, the interface can-
not be modified.

Scalar types have two simple access methods for the value stored in an ele-
ment of the basic scalar type, i.e. for writing a new value to and reading the
current value from the element:

• set (type a): This method takes one value, e.g. the value a, and
overwrites the value of the element with that value. If the type of the
value does not fit to the type of the element, a type conversion is per-
formed automatically.

• get(): This method returns the current value of the element. The
value returned is of the same type as the element itself
Types and Elements

Accessory methods in basic types are invoked automatically, when an element
name is used in an expression or when an assignment is performed. They do
not have to be coded explicitly.

3.1.2 Composite Types

Composite types are basic types that are built up from basic scalar types. The
following composite types are available in ASCET:

• array ()

• matrix ()

• characteristic line ()

• characteristic map ()

• distribution ()

Composite types consist of basic scalar types. Arrays and matrices can consist
of all four scalar types, characteristic lines, maps, and distributions only of the
three arithmetic types. Unlike basic scalar types, composite types are reference
types. When assigning two variables of reference types to each other, not the
values are assigned (and copied), but the references to the variable.

All reference types have access methods for their elements:

• set (reference type a): This is an assignment of the reference
to reference type a. After such an assignment, both elements (the
assigned as well as the assigning) are the identical element!

• get: This returns a reference to the element of composite type.

Parameter passing in method calls works in the same manner as assignments.
A reference is passed to the element. As a consequence, a change to the
parameter, for instance by assigning a value to it, is also reflected outside the
method. This mechanism is equivalent to a "call by reference" in programming
languages like C.

Array

An array is a basic type, holding a number of scalar values of the same basic
scalar type, e.g. continuous or logical. The position of a scalar value
within an array is indicated by its associated index value which must be of the
model type unsigned discrete. The size of an array is limited to 2048,
and must be defined statically. The array index takes values between 0 and
size-1.

The interface of an array consists of the following methods:
Types and Elements 91

92
• void setAt(scalar type a, udisc i): The assignment of the
scalar value a to the position i in the array.

• scalar type getAt(udisc i): Returns the value at position i of the
array.

Arrays of non-scalar basic types or complex (user-defined) types are not avail-
able.

Matrix

A matrix is similar to an array. A matrix is two-dimensional, however, so it takes
two indices. The type of index is the same as that of an array (udisc). The size
for each dimension is limited to 63, i.e. the indices take values between 0 and
62.

The interface of an array consists of the following methods:

• void setAt(scalar type a, udsic i, udisc j): The
assignment of the scalar value a to the position (i,j) in the matrix.

• type getAt(udisc i, udisc j): Returns the value at position
(i,j) of the matrix.

Matrices of non-scalar basic types or user-defined types are not available.

Characteristic Tables

To support nonlinear control engineering, one-dimensional and two-dimen-
sional characteristic tables are available in ASCET. The former are called char-
acteristic lines, the latter are called characteristic maps. Characteristic tables
are used to describe a value in dependence of one or two other values, where
either the functional dependence is not known exactly or calculating the func-
tion would be computationally expensive.

An example for a characteristic line is the throughput of a diode in dependence
of the input voltage. This characteristic behavior is described by a curve. The
curve is represented as a table of sample points, each of which is associated
with a sample value. The sample points represent the x-axis of a function
graph, the sample values represent the curve being described.

Accordingly, a characteristic map is represented by a two-dimensional table of
sample points for pairs of input values, where a sample value is associated with
each pair of sample points. The size of characteristic tables is limited to 2048
Types and Elements

sample points for characteristic lines, or 63 sample points on each axis for char-
acteristic tables. Characteristic tables are always parameters, i.e. they can only
be read from within the model.

Each characteristic table is also associated a interpolation and extrapolation
routine. These routines determine, how the output value of a characteristic
curve is determined by the input value(s).

ASCET provides two different interpolation modes: with rounded interpolation
the value between two sample points is derived from the sample value at the
lower (left) sample point, with linear interpolation the value is derived from a
straight line between the sample values.

In controller applications interpolation is a very time consuming operation. It
consists of two operations: searching for the right interval of sample points
and calculating the interpolation factors, and secondly, calculating the output
value from the interpolation factors.

The computation of interpolation factors can be optimized using two special
types of characteristic tables in ASCET: group tables and fixed tables. Group
tables do not contain a sample point distribution, but reference a distribution
of sample points. Distributions can be shared by many group tables. The com-
putation of the interpolation factors is performed only once for the distribu-
tion, and only the computation of the output value is performed for each
group table separately.

A distribution is always a one-dimensional table of sample points. Two-dimen-
sional group tables therefore reference two distributions.

Fixed tables have a equidistant distribution, i.e. the sample points have a con-
stant distance from each other. This makes the computation of interpolation
factors much faster. The memory requirements are lower as well, since instead
of a list of sample points, only an offset and a distance have to be stored. There
is, however, no combination of fixed and group tables.

The interface of a characteristic table depends on its dimension and whether it
is a normal, fixed or group table. There are basically three methods:

• void search (arithmetic type a): This method applies to the distribu-
tion of a characteristic line. Here the correct supporting points are
searched, and the interpolation factors are computed. For two-dimen-
sional tables there are two parameters, i.e. void search (arithmetic
type a, arithmetic type b).

• arithmetic type interpolate(): This method interpolates the value of
the characteristic line or map from the interpolation factors and the
value points at the associated supporting points.
Types and Elements 93

94
• arithmetic type getAt (arithmetic type a) is the combination of the
search and interpolate method. For two-dimensional tables, there are
two parameters, i.e. void getAt (arithmetic type a, arithmetic type
b).

For one table, the parameter and the output value must be of the same arith-
metic type, e.g. there is no characteristic map where continuous and discrete
types can be mixed. The separation of the method getAt into the methods
search and interpolate only makes sense for group tables.

A distribution only has the method search. A group table only has the
method interpolate. A regular or fixed characteristic table has all three
methods.

3.1.3 Real-time Language Constructs

ASCET provides a number of language constructs for real-time applications in
the description of components.

Messages

Messages form the input and output variables of processes and are used for
interprocess communication in the same way as basic scalar types. Unlike glo-
bal variables, messages are protected variables in preemptive scheduling. If
two concurrent processes both access the same message, data consistency is
guaranteed, because each process works on its own copy. Messages are only
available in modules. Depending on their usage, there are three different types
of messages:

• Receive messages can only be read. Receive messages are used as
inputs to a module.

• Send messages can only be written to. They are used for the results of
the computations of a module.

• Send & Receive messages can be read from and written to.

Receive Message

Send & Receive Message

Send Message
Types and Elements

Resources

A resource (type symbol) represents a part of an application that can only
be used exclusively, e.g. timers or special devices. In order to access a resource,
there are two methods:

• void reserve(): the resource is reserved, that is the access to it is
blocked.

• void release(): the resource is released, that is access to it is
granted again.

By executing the reserve method, access to the resource is blocked and
exclusive access is guaranteed in a preemptive environment, i.e. if the current
process is de-scheduled and another process wants to use the resource, the
access is denied.

When access to the resource is no longer required, the resource can be
released by the release method. This makes the resource accessible to other
components again. To avoid deadlocks or priority inversions, the reservation of
a resource is linked to the priority ceiling of the corresponding process.
Resources are always global elements.

The dT Parameter

In control engineering applications the result of the calculations within a com-
ponent often depends on the value of the sampling rate. ASCET provides the
system parameter dT (type symbol) for uniformly describing the algo-
rithms for all sampling rates. The value of this parameter is provided by the
operating system and represents the time difference since the last activation of
the currently active task.

3.1.4 Special Types

Several other types exist besides those already described. They are discussed
here.

Note

The name dT is reserved for the system parameter. You can create no other
element with that name; since reserved keywords so not distinguish
between upper and lower case, DT, dt, and Dt are reserved, too.
Types and Elements 95

96
Enumeration

Enumerations (type symbol) are unique types with values taken from a
group of known constants called enumerators.

Literals

Literals are strings that represent a fixed value of a basic scalar type which can
be used in any expression. The value of a literal is either a number (discrete or
continuous), a character string, or one of the values true or false (logical).
In the block diagram editor the values string, true, false, 0.0, and 1.0
are predefined.

3.2 The Kind of Elements

Each element has a kind. The kind of an element describes how the element is
used, either as a variable, a parameter, a system constant or constant. Imple-
mentation-Casts are another kind.

• Variables store values that can be read and written from inside the
model, i.e. a read and a write operation can be performed on them.

In the ECU, they can be placed in the volatile or non-volatile memory.
For newly created variables, volatile is pre-selected.

• Parameters store values that can only be read from inside the model.
Parameters can also be calibrated, i.e. written to from outside the
model. In some cases, special prerequisites are required for that pur-
pose, e.g., the connection to a calibration tool.

Parameters (including characteristic lines/maps) are automatically set to
non-volatile; in the ECU, they are placed in the respective memory.

• Constants store values that can only be read from inside the model. In
contrast to parameters, constants cannot be changed from outside the
model but are fixed at specification time. Constants cannot be imple-
mented, either.
Constants are created as a define statement in the generated C code.
However, they are not necessarily explicitly visible in the generated
code. If, e.g., the constant is set against a requantization, the constant
does not explicitly appear.
Types and Elements

• System constants are used like constants, and also created as define
statements. Unlike constants, system constants can be implemented.
They are always explicitly visible in the generated code.

System constants can be converted into normal constants using
Extras → Convert System Constants to Constants in the Compo-
nent Manager.

Tab. 3-1 summarizes the differences in usage between variables,
parameters and constants.

• Implementation casts (see section 4.2.4) provide the user with the abil-
ity to specify the implementation in a targeted manner at any chosen
position of a calculation or a data stream. Unlike variables and param-
eters, implementation casts do not allocate any memory, and thus have
no storing effect in the model and cannot be calibrated.

Implementation casts do not have data; they are always of the cont
model type, always have a scalar dimension and a local range of validity
(see section 3.3). Unlike other elements, the properties of implementa-
tion casts cannot be edited.

Tab. 3-1 Synopsis: variable, parameter, system constant, constant, imple-
mentation cast

Model Experiment /
Calibration Tool

Implementation

variable r-w r-w yes

parameter r r-w yes

system constant r r yes

constant r r no

implementation cast — — yes
Types and Elements 97

98
The kinds of elements are marked by certain symbols in various ASCET win-
dows (e.g., field "3 Contents" of the Component Manager).

Tab. 3-2 Symbols for the various element kinds and scopes

Temporary Variables

To avoid multiple execution within the same method or process, temporary
variables can be specified for each operator or method call. With that, the
value of the expression is computed only once for each method or process it is
used in, and stored to a temporary variable. When the expression is used again
in that method, it is not re-evaluated but the temporary variable is reused.

Each specification editor can create a temporary variable. A temporary variable
does not have a start value; its value is determined only by the assignment of
an expression. ASCET internally manages the temporary variables and provides
a unique assignment (e.g. in the branches of an IF statement) so that no
undefined values turn up when the temporary variable is used later. The value
remains valid until a new assignment to the temporary variable occurs.

The example shows the temporary variable t which stores and reuses the value
of the addition a + b:

t = a + b;

c = t;

d = t;

Scope

imported exported local dependent virtual

variablesa b

messages

parametersc *d

(system) constants

implementation casts

dT

a: including arrays, matrices and enumerations
b: independent of scope; see page 99
c: including characteristic line/map, distribution
d: symbol is derived from other settings (scope, etc.)
Types and Elements

Virtual Variables/Parameters

Virtual variables/parameters are only available in the specification platform,
they bear no relevance for code generation. They are included for a better
understanding of the significance of model elements in the specification.

Virtual variables always depend on other virtual or non-virtual variables. Virtual
variables are merely aliases to non-virtual variables. No mathematical depen-
dencies such as formulae are allowed; thus the identity (var_virtual =
var_real) is predefined for editing the data of virtual variables.

On the other hand, parameters declared as virtual are not necessarily depen-
dent on other parameters.

Dependent Parameters

Model parameters can be connected to other system or model parameters via
a mathematical dependency. Calibrating parameters can therefore lead to
inconsistencies.

To avoid possible inconsistencies from parameter calibration, it is possible
within ASCET to specify the dependency of a parameter in the specification
editors. The dependency of a parameter is represented by a mathematical for-
mula.

3.3 The Scope of Elements

Some elements are used for exchanging data between different components.
To establish this, elements can be exported from one component (or from the
project) and can be imported in any other component. Here, the matching is
done via names. The scope of each element can be defined as one of the
following:

• Local elements can only be used within the component that defines
them, i.e. in all methods or processes of that component.

• Imported elements are defined in some other component or project,
but can be used in the component that imports them. The properties of
an imported element can be changed only in the context of the com-
ponent that defines and exports the element.

• Exported elements are defined in one component and can be accessed
by all other components by importing that element.

Note

Dependent variables do not exist.
Types and Elements 99

100
• Method/Process-local elements can only be used in the method/process
that define them. Method/Process-local elements are not static and do
not have a data set.

3.4 User-defined Model Types

Elements can also be user-defined model types, i.e. modules or classes. User-
defined model types are always reference types. The interface is defined by the
interface of this component.

The scope of a user-defined type can be the same as that of the basic types,
namely imported, exported, local and method-local. Like arguments,
method/process-local elements of a reference type are not instantiated, but a
reference to them is established. This means that, when using a method/pro-
cess-local element of a reference type, an assignment to this element must
precede any further use of that element.

The kind of an element is irrelevant for user-defined model types. User-defined
model types are always treated as variables, i.e. there is no restriction of the
interface from within the model.
Types and Elements

4 Data and Implementations

In the previous chapter the parts of a component were identified as the set of
elements, the interface of the component, and the functional description of
the methods or processes in the form of algorithms.

In this chapter two additional parts of a component specification are intro-
duced: data and implementation. Both data and implementation belong to the
elements in a component, i.e. both describe properties of the elements.

The approach of separate descriptions for data and implementations is not
usually found in standard programming languages, where the data assign-
ments of variables is part of the functional specification, i.e. the program code.

The data of a component describes the physical values with which the ele-
ments of the components are initialized. Data contain physical information and
are thus part of the physical specification of the component.

Also, standard programming languages do not usually separate between the
implementation of a functional specification and the functional specification
itself. The functional specification is usually identical to its implementation.

4.1 Data

The data of a component describes how the elements of a component are to
be initialized. Thus data refers to the elements of a component.

Fig. 4-1 A component with multiple data sets

The data is held separately from the elements because a component can have
multiple instances in a project, whereas the different instances access different
data sets for their elements. (The data sets are, however, not parts of the
respective instance.)

An example would be a p-control filter. Each instance of this p-control filter has
its own value for the p-factor. This is achieved by assigning different data sets
to the p-control.

DataData

Component

Elements Data
Data and Implementations 101

102
The specification of data is part of the specification of the component itself,
and not of the different instances. This may lead to a large number of different
data sets for a component, but if each instance would hold its own data, this
would result in the loss of a modular system design.

The organization of data for each element depends on whether it is a basic or
complex element. Since basic elements are always used within complex
objects, and are never considered separately from those, basic elements do not
have explicit data sets. The data for the basic elements are therefore part of the
data set of the complex element they are contained in.

Complex elements are the components specified by the user. Each complex
element has its own data set. If a complex element is used in a component, the
data set of the complex element is referenced by the component. Thus the
data of a component has the same hierarchical structure as the component
itself.

Data sets have an object ID, which is used to reference the data of a compo-
nent. Just like references to user defined types, this reference is not name-
based.

Consider the following example with the types A and C:

The type C has the following data sets:

A C

b:cont
c:C

d:cont
e:log

C

C1 C2

d:cont
e:log e true

d 5
e false
d 7
Data and Implementations

A data declaration for the type A using the data sets of C would have the
following results:

The data for the basic types can be specified directly. For the scalar types the
data consists of one value. For composite types, like arrays or characteristic
lines, the data consists of a table of values, or a table of sample points and
sample values.

4.2 Implementations

Implementations describe how the elements of a component are to be realized
in code. Here the same scheme as for data is followed:

Fig. 4-2 A component with multiple implementations

The same reference scheme applies to implementations as to basic and com-
plex types. The effect of implementations is much broader than that of data
sets. The implementation of an element, e.g. whether an element of type
cont is represented as a data type float or signed int, has direct influ-
ence on the code that is generated from the functional description for a
method or process.

4.2.1 Implementations for Scalar Types

The implementation describes how an element of a basic type is realized in the
generated C code. The implementation specification for elements of type log-
ical is very easy, since a logical element has only two values, either true or false.

A

b:cont
c:C

A 1 A 2

d:cont
e:log e true

d 5

b 3
C C1

e false
d 7

b 5
C C2

DataData

Component

Elements Implementation
Data and Implementations 103

104
The implementation specification consists only of the data type. For logical ele-
ments either byte, word, or long can be chosen.

The implementation specification for the arithmetic types is much more com-
plex. It describes, among other things, the implementation type, which can be
an integer type even for elements of type continuous. The implementation
specification therefore contains a complex transformation from the physical
domain to the implementation domain, which can be very different from each
other.

The differences between the physical domain (e.g. model type continuous)
and the implementation domain are the infinite range of the physical domain
from -infinity to +infinity, and its arbitrarily fine resolution. In the implementa-
tion domain, on the other hand, the range is limited by the word length, and
the resolution is not arbitrarily fine but fixed to 1.

In order to make a transformation between the physical domain and the imple-
mentation domain possible, the range of the physical domain has to be lim-
ited. Thus each element must be assigned an interval for the relevant physical
values. The resolution must also be restricted. Therefore, each element has to
be given a fixed resolution, the quantization.

For example, let A be a range of values in the physical domain, A = [-1, 0.5],
and assume a quantization of q = 0.2.

The result of the limitation of the range to an interval and of the quantization
is a restriction of the values of an element to a finite set of equidistant values.

Aq = {-1, -0,8, -0.6, -0.4, -0.2, 0, 0.2, 0.4}

This finite set of values can now be mapped to an integer range:

Aint = {-5, -4, -3, -2, -1, 0, 1, 2}

This corresponds to a linear conversion formula between the physical domain
to the implementation domain of the kind impl = 5 * phys. The data type
for the integer variable is automatically determined from the integer range. In
this example, the data type signed int8 would be chosen.

When the range of the physical element has an offset larger than zero, the
associated integer interval may only contain a few values, but a large data type
has to be used.

Consider for example the physical domain range A = [120, 130] and a quanti-
zation of q = 0.5. A linear conversion would result in an integer range Aint =
{240, … , 260}.

The type for the integer variable is unsigned int16 in this case, although
the number of values would also fit into a variable of type int8.
Data and Implementations

To implement this, a general linear conversion formula with an offset can be
specified. In the above example, a conversion formula of the type

impl = 2 * phys - 240

would lead to an integer interval of {0,…,20} and a variable of data type
unsigned int8 would be sufficient.

The conversion formulas are not specified in the context of a component, but
in the context of a project. This makes it easy for several components to use
the same conversion formulas. Furthermore, this complies with the ASAM-
MCD-2MC standard.

4.2.2 The Implementation of Composite Types

For composite types like arrays, matrices or characteristic tables, the implemen-
tation is specified for the interface elements of the composite types, which
themselves are of a scalar type.

For arrays, for instance, the implementation for the elements held in the array
must be given. This implementation is valid for both, the input and the output
of the array. The implementation for the index is fixed, since the index is a
discrete model type.

For characteristic tables, the implementation of the x-points and y-points and
the values of the table can be specified separately from each other.

4.2.3 The Implementation of User-Defined Types

The implementation of user-defined types consists of the implementations of
all elements used in that component.

In the case of classes, the arguments and return values also need to have an
implementation, since the value of an actual and formal argument have to be
adjusted correctly to each other. This is automatically done for arguments of a
scalar type.

This automatic adjustment does not work for arguments of composite or com-
plex types. If such arguments are used, the implementation of the formal argu-
ment and the actual argument must coincide. Here, no automatic adjustment
is possible, since these arguments are passed as references.

Temporary elements do not have an explicit implementation, but they are
automatically assigned an implementation by the code generation algorithm.
It is important that an assignment to this variable (e.g. an initialization) pre-
cedes any other use of it.

Method- and process-local elements can be implemented automatically, like
temporary elements, but they can be explicitly implemented, too (see ASCET
user’s guide, section "Implementations of Method- and Process-Local Vari-
ables"). The implementation is preserved within the method/process.
Data and Implementations 105

106
4.2.4 Implementation Casts

ASCET 5.0 introduced a new primitive element type – the implementation
cast. Implementation casts provide the user with the ability to influence the
implementation of intermediate results within arithmetic chains. This allow the
user to display knowledge regarding particular physical correlations (for exam-
ple, that a specific range of values is not exceeded at a defined point in the
model) in the model, without requiring the allocation of physical memory.

Below is a small example to illustrate this functionality.

In a simple arithmetic specification, two variables, a and b, are added, the
result of the addition is multiplied by the literal 2, and the result of the multi-
plication is assigned to variable c.

Fig. 4-3 Simple Calculation without an Implementation Cast

During implementation, variables a, b and c have been assigned the int16
type; all three variables exhaust the entire possible value range. Because of
this, the code generator in the example above would create a 32-bit-wide tem-
porary variable, and would requantize this before assigning it to c to a value
range that is applicative for int16 by executing a right shift.

Now, if the user knows that the sum of a and b can be no greater than a 16-
bit-wide result and thus exhausts only half of the possible value range (for
example, due to physical boundary conditions or because certain correlations
in the model compel this to be the case), he or she can define this as such
using an implementation cast (see Fig. 4-4).

Fig. 4-4 Simple Calculation with an Implementation Cast

Note

Implementation casts cannot be used in conjunction with logical elements.
Data and Implementations

In implementing the implementation cast with the int16 type and value
range [-16384..16383], while disabling both the Limit to maximum bit
length and Limit Assignments options, the user guarantees specific proper-
ties of the intermediate result for the code generator. This prevents the requan-
tization required in the example illustrated in Fig. 4-3.

Another application for implementation casts is the targeted allocation of
implementations to the inputs and outputs of operators. This function allows
you to select target arithmetic services (see section 4.14 "Arithmetic Services"
in the ASCET user’s guide) for specific operators. In this context, implementa-
tion casts replace the present operator implementations.

As the name implies, implementation casts only affect the implementation.
More accurately, this means that implementation casts are taken into account
for the code generation of experiments (see chapter 4.8.8 in the ASCET user’s
guide) of these types:

• implementation experiment and

• object based controller implementation

They are simply ignored for these types:

• physical experiment and

• quantized physical experiment

Depending on the code generation options (see "To adjust the project set-
tings:" in the ASCET user’s guide) for the implementation experiments, imple-
mentation casts have the following properties:

• If the maximum bit size that is defined for the project is smaller than
32 bits, the code generation for implementation casts allows the use of
a larger bit size. If, however a variable that exceeds the permitted bit
size is necessary in the code, an error message is displayed.

With this functionality, implementation casts can be applied within
arithmetic chains to specify intermediate results that are outside of the
controller's original maximum bit size.

• If an implementation cast is present at the numerator input of a division
operator, its implementation overwrites the Allow Double Bit Size
for Division Numerators option.

Another important property of the implementation cast is that it allocates for
its implementation during code generation neither permanent nor temporary
memory. This is because implementation casts are not created as global ele-
ments or as local function variables. For implementation casts that are applied
in combination with a value limitation, however, a local, temporary function
variable can be necessary to temporarily store the calculation result before area
check is carried out.
Data and Implementations 107

108
The use of implementation cast is limited to the block diagram editor and the
ESDL editor. Furthermore, these elements are only offered for modules and
classes (excluding, however, CT blocks, Boolean tables and condition tables)
and for specifying conditions and actions in state machines.

4.3 Code Generation with Implementations

When choosing an implementation, the code is generated in fixed point arith-
metic. This fixed-point arithmetic is based on integer arithmetics. The informa-
tion of the implementation applies to elements of a component. This
information together with the functional description, i.e the information how
the elements interact with each other, is the basis for integer code generation.

Fig. 4-5 Code generation with implementations

To make the principle of integer code generation more transparent a simple
example is given in the following.

An Example: Code Generation for an Addition

Imagine the following simple example

c = a + b;

where a, b, and c are model variables of type continuous.

The implementation transformation is linear without an offset. The following
quantizations are used: 0.01 for a, 0.04 for b and 0.05 for c. A, B, and C are
the corresponding implementation variables for the elements in the generated
C code.

When generating code for the above example, the quantizations must be
taken into account. For the values a = 1, b = 0.6, and consequently c = 1.6,
the result with the above quantizations would be A = 100, B = 15 and C =32.
A direct transformation of the model to the implementation level would lead
to a wrong result (A+B = 100 + 15 = 115 which is not equal to C = 32).

Component

Elements Implementation
of Elements

Body
Specification

Implementation (= code) of body
specification

specified by user

automatically generated
Data and Implementations

The reason is that the quantization is not taken into account. The above model
equation must be transformed to the implementation transformation. Here
the quantizations of A and B have to be adjusted before the addition takes
place, and the result of this addition has to be adjusted to the quantization of
C. This leads to the following piece of C code for the above model:

C = (A + 4 * B) / 5;

The multiplication of B by 4 corresponds to the adjustment of the quantization
0.04 to 0.01, and the division by 5 corresponds to the adjustment of the quan-
tization of 0.01 to 0.05.

4.3.1 Transformation of Data under Implementation

The data stored with an element always contains the "model data", i.e. the
physical values, but the implementation must also be reflected in the data. In
the above example, the physical (model) data for variable a was 1, the data for
the implementation variable A however was 100.

Fig. 4-6 Transformation of data

4.3.2 General Rules for the Implementation Transformation

The implementation transformation works on arithmetic values. The values are
adjusted in all arithmetic expressions, so the corresponding arithmetic opera-
tions can be executed:

Addition and Subtraction:

The arguments of these operations are adjusted to an quantization. This quan-
tization is determined by the internal code generation algorithms and mini-
mizes the number of re-quantizations. The constant offset is calculated for the
result from the quantizations and the offset of the arguments.

Multiplication and Division:

The arguments of these operations are first made offset free, before the mul-
tiplication or division can take place. The quantization must not be adapted,
but is determined from the result of the multiplication or division. However, to

Component

Elements Implementation
of Elements

Data for
Elements

Data (= values) for implementation
variables

specified by user

automatically generated
Data and Implementations 109

110
avoid overflow or a loss in precision, the quantization of the arguments may be
multiplied by a power of two (shift operations). This is also automatically deter-
mined by the internal code generation algorithm.

Comparison, Minimum and Maximum:

Similarly to addition, the arguments are adjusted to each other (as well in
quantization as in offset). The minimum and maximum operator work like the
addition operator.

Assignment:

The value that is assigned to a variable is re-quantized and the offset is cor-
rected before assignment is performed. This also applies to argument passing.

4.4 The Implementation of Methods and Processes

The facilities for using implementations (enhanced in ASCET 5.0) allow for
method implementations to be specified. Method and process implementa-
tions are available in both ESDL and block diagrams.

The implementation of a method or process contains information the memory
to be used for running a method or process and whether it should be fully
expanded during code generation.

In general, algorithms that should have a short response time or are used more
often, will be run in internal memory, whereas other algorithms that are not
used very often, such as initialization algorithms, will run in external memory.

In addition, method and process calls can either be represented as function
calls or fully expanded in generated code (inlining).
Data and Implementations

5 Body Specification in ESDL

This chapter describes the common features of ESDL that are used in the
description of classes and modules. The description is divided into three main
parts.

The first section contains a brief description of general ESDL characteristics. A
comprehensive description of both the syntax and elements of ESDL is pro-
vided in subsequent sections.

The differences between ESDL and block diagrams as well as those between
ESDL and the C and Java programming languages are summarized at the end
of this chapter.

Readers are assumed to be familiar with either the C or Java programming
language (or both). If you need further information on C or Java, you can use
any of the standard reference manuals for these languages.

The following is a list of some common reference manuals for Java and C:

• Arnold, Ken, Gosling, James, The Java Programming Language
(Reading, Mass.: Addison Wesley, 1996)

• Flanagan, David, Java in a Nutshell (Cambridge, Mass.: O’Reilly, 21997).

• Kernighan, Brian W., Ritchie, Dennis M., The C Programming Language
(Englewood Cliffs: Prentice-Hall, 21988).

5.1 ESDL as a Modelling Language

ESDL was designed specifically as a modelling language for the automotive
environment. In ASCET, it is used to specify the method or process bodies
within classes or modules. For simplicity, classes and modules are subsumed
under the term classes in this section.

In ESDL, both the syntax and elements are based on the Java programming
language to provide for a low learning curve. When working with ESDL, how-
ever, it is important to keep in mind that ESDL is radically different from other
languages.

The main characteristics, which in part distinguish ESDL from other languages,
are as follows:

• ESDL is a modelling language, not a programming language. It is a
modeling language that works on the same abstract, physical level of
description as the block diagrams commonly used in ASCET. Concepts
that are related to or dependent on implementation, such as pointers
or shift operators, are not available.
Body Specification in ESDL 111

112
• ESDL is used for systems that run in a real-time environment. Hence, it
must meet the requirements of real-time operation. As a consequence,
ESDL is as object-oriented as these parameters permit. The model struc-
ture can be mapped to classes and modules, but instantiation is static
and there is no inheritance.

• ESDL is used to build automotive software. While users can build com-
plex software models in ESDL, concepts that are currently not relevant
to embedded systems, such as string operations, are not implemented.

• ESDL ties in seamlessly with the ASCET development environment. The
language is used at the same level as block diagrams, that is, for
describing the functions contained in method or process bodies. Import
of elements and variable declaration are performed using the corre-
sponding tools in the ESDL editor.

These four main characteristics of ESDL determine the scope and usage of the
language. Otherwise ESDL can—more or less—be seen as a highly specialized
variant of the Java programming language.

5.2 Basic Elements

5.2.1 Working with Methods and Processes

The basic elements of a functional description in ESDL are methods and pro-
cesses. A method consists of a method header, which servers as an identifier,
and the method body which describes the operations to be performed.
Body Specification in ESDL

The method header consists of the method name, a list of arguments and a
return value. Method names are assigned when adding a new item to the
methods list ("Diagrams" pane) of the ESDL Editor. They can be modified by
renaming the list item.

Method names must be unique in ESDL. Method overloading is not supported,
i.e. it is not possible for two methods to differ from each other only in the
number of parameters and/or parameter types.

The arguments and the return value are optional elements of the method
interface. The method header and interface can be modified using the Inter-
face Editor on the ESDL Editor window. The Interface Editor is used to add or
modify parameters and the return value as needed.

The functional description of a model is contained in the method body which
can be edited in the text pane of the ESDL Editor.
Body Specification in ESDL 113

114
5.2.2 ESDL Syntax

ESDL syntax is entirely the same as that of the Java programming language.
Every statement in ESDL is terminated by a semicolon (;).

Timer.calculate();
x = a + b;
tmp = Timer.out();

Compound statements or blocks are contained in curly braces { … }.

if (x > 0) {
y = f(x);
z =1; }

Method parameters and expressions are contained in parentheses (…).

while (z > 4) {
z--;}

Integrator.reset(15);
Limiter.out(0, 15, 100);

The equals sign (=) is used for assignments.

low = -1;
xVar = a * (b-5);
tmp = xVar.max(15);

5.2.3 Variable Names

In ESDL, variables names are made up of letters and digits. The first element of
a variable name must be a letter. The underscore character counts as a letter.
Variable names must not contain spaces.

The following are valid ESDL variable names:

i, j2a, aVar, a_Var

The names of all variables must be unique within the scope of the current
element. This limitation is important when working with imported classes or
modules. ESDL does not, at this stage, resolve name conflicts.

Reserved Keywords:

The following keywords are reserved and may not be used as variable names.

auto, break, case, char, cond, const, continue,
default, df, do, double, dt, else, enum, exit, extern,
false, float, for, get, getat, getatat, goto, header,
if, inactive, int, interpolate, long, monitorprocess,
normal, null, receive, register, return, search,
Body Specification in ESDL

self, send, set, setat, setatat, short, signed,
sizeof, static, struct, switch, true, typedef, undef,
union, unsigned, void, volatile, while.

Since upper and lower case are not distinguished, any spelling of the above
names is reserved.

5.2.4 Data Types

ESDL is strongly typed and variables must be declared. The procedure here is
the same as when editing block diagrams. Variables are added to the elements
list and can then be edited as needed.

There are four data types available in ESDL, namely udisc, sdisc, cont
and log. They can be added to a class or module by selecting the correspond-
ing element from the editor toolbar.

The ESDL method or process body itself does not contain variable declarations.
Only if a variable is local to the current method/process can it be declared and
initialized in the method body using a statement like the following:

cont set = 12.34;
cont temp = 0.78e4;
udisc i = 3, j, k;
sdisc aVar = -12;
log trigger = true;

5.2.5 Type Conversion

Whenever a basic arithmetic operator like +, -, *, / has operands of
different types, the result is automatically converted to that of the strongest
type used in the expression.

The order of types is (from weak to strong): sdisc, udisc, cont.

cont result = varUdisc + varCont;

When assigning a value to a variable the data types must match. There is no
explicit type casting. Only for the basic arithmetic types signed discrete,
unsigned discrete and continuous does ESDL perform an implicit conversion.

cont tmp = 2;

A conversion of boolean and arithmetic types is not possible.
Body Specification in ESDL 115

116
5.2.6 Primitive Methods

Every arithmetic type has a predefined interface which covers a set of basic
math functions. The following messages are available for all arithmetic types:

Tab. 5-1 Primitive methods for arithmetic types

The var.between(val1, val2) method corresponds to the
between:And: element in block diagrams.

5.2.7 Literals and Constants

Literals are values like 12, 6.1e4 or true. Every primitive type (boolean and
arithmetic), can occur as a literal in an ESDL method. The data type of literals
is implicit.

Constants are named values, such as g = 9.81. They are added to a class
and declared in the same manner as variables. The Element Editor can be used
to assign a value and flag a variable as a constant.

Some examples:

• x = g.abs();

The absolute value of the constant g is assigned to the variable x.

• out1 = myvar.max(g); or out1 = g.max(myvar);

The larger of the values myvar (a variable) and g is assigned to the
variable out1.

• out2 = myvar.min(.04); or out2 = (.04).min(myvar);

The smaller of the values myvar and 0.04 is assigned to the variable
out2.

5.2.8 Comments

A comment explains the purpose of a particular piece of ESDL code. There are
two types of comments, commonly referred to as single- and multi-line com-
ment.

Method Receiver Returns Usage

val.abs() arithmetic arithmetic absolute value of val

val1.max(val2) arithmetic arithmetic the greater of two values

val1.min(val2) arithmetic arithmetic the smaller of two values

var.between(val1,
val2)

arithmetic log var between val1 and val2
Body Specification in ESDL

Single-line comments are preceded by a double slash (//). The text that fol-
lows is ignored up to the end of the current line. Multi-line comments are
delimited by /* and */.

The comments used in an ESDL description are not transferred to the C code
that is generated from that description.

5.2.9 Operators

In EDSL, method calls take precedence over all other operators. The order of
precedence can be manipulated by adding parentheses to an expression.

Unary Operators:

The unary operators are +, - and ! (not); the latter is used for boolean types.
In addition, the increment and decrement operators ++ and -- are available.
They can be used as prefix or postfix operators.

Unary operators take precedence over all other operators. They associate right
to left.

Arithmetic Operators:

The four arithmetic operators +, -, * and / can be used in ESDL. The mod-
ulus operator %, which calculates the remainder of an integer division, is also
available.

The *, / and % operators take precedence over the binary + and - operators.
Arithmetic operators associate left to right.

Comparison and Equality Operators:

The comparison operators are >, >=, < and <=. They are applied to arith-
metic types and take precedence in this group.

The equality operators == and !=, which can be applied to both value and
reference types, range next in the order of precedence.

Comparison and equality operators are binary. They associate left to right.

Logical Operators:

The logical operators && and || (AND and OR) follow next in the order of
precedence with the AND operator taking precedence over an OR.

Logical expressions are evaluated only until the truth or falsehood of the entire
expression is determined. If, for example, the expression a && b is evaluated
and a evaluates to false, it is redundant to evaluate the remainder of the
expression. The evaluation of b has no impact on the result.

Logical operators are binary. They associate left to right.
Body Specification in ESDL 117

118
Conditional Operator (MUX):

The conditional operator ?: corresponds to the MUX operator in the block
diagram editor. The operator has the general form (a ? n : m) where a is
a boolean, n and m must be of the same type. They can be any primitive type,
boolean or arithmetic.

The value of a conditional expression depends on the value of a. If a is true
in the above example, the value of the expression is n otherwise it is m.

The conditional operator is ternary. It ranges behind all binary operators in pre-
cedence. Association is from right to left.

Shorthand Assignment Operators:

In ESDL common shorthand assignments, such as += or *= can be used. The
a += 4 operation is a shorthand for the a = a + 4 assignment operation.
Shorthand notation is available for the following operators:

*=, /=, %=, +=, -=.

Shorthand operators have lowest precedence. They associate from right to left.

Summary: Operator Precedence and Associativity:

The following table summarizes the precedence and associativity of operators
in ESDL as described in the previous section.

Tab. 5-2 Operator precedence and associativity

Operator Associativity

++ -- right to left

+ - (unary) right to left

! right to left

* / % left to right

+ - (binary) left to right

< <= left to right

> >= left to right

== left to right

!= left to right

&& left to right

|| left to right

?: right to left

= right to left

*= /= %= += -= right to left
Body Specification in ESDL

5.3 Implementation Casts in ESDL

Implementation casts (see chapter 4.2.4) are available in ESDL for modules and
classes (except CT blocks).

In the specification of an operation in ESDL, implementation casts must be
represented by their names. An addition with implementation casts that
appears as follows in BDE:

is represented as a function in ESDL as such:

Here it is important that an implementation cast is written like a method call:
it is always placed before the element to which it refers; the element is
enclosed in parentheses, like a method argument. If the implementation cast
is to be applied to the result of an operation, the entire operation must be
enclosed in parentheses.

In the example above, cast_1 refers to variable a, cast_2 to b and cast_3
to the result of the operation a + b.

If intermediate results of arithmetic operations are to be manipulated using an
implementation cast, the corresponding intermediate results have to be
enclosed in parentheses.

Thus, in this statement:

x = cast_1 ((cast_2 ((a + b) * c - d)) / e);

cast_2 refers to the intermediate result of the operation,

(a + b) * c - d

while cast_1 changes the overall result of the operation:
Body Specification in ESDL 119

120
((a + b) * c - d) / e

It is important to note here, that the use of the syntax as described above is
limited to implementation casts. The parentheses must contain an existing
implementation cast; if you specify a standard type, such as uint8 (a), an
error message is displayed.

When using implementation casts, remember that they are not available for
use with logical variables. If an implementation cast is applied to a logical vari-
able, the code generator generates an error message.

5.4 Control Flow

The control flow elements can be used to determine the order of and condi-
tions under which an ESDL function or statement is executed. The most com-
mon types are conditional structures and loops.

There are two types of condit ional statements, if…else and
switch…case…default, and two types of loop statements, while and
for.

In addition, a break statement is available.

The control flow constructions in ESDL are described in more detail in the fol-
lowing subsections.

5.4.1 If…Else

The if…else statement can be used for simple conditional constructions. It
has the general form

if (expressionLog){

statementTrue;}
else {

statementFalse;}

The else block can be omitted. When expressionLog is evaluated, the
program decides whether to execute the statementTrue block. If not, the
program either executes an existing statementFalse block or it continues
without doing anything.

The expressionLog that controls the decision must be explicitly of type
log. An arithmetic with a value of one or zero is not accepted.

Note

An implementation cast in ESDL always refers to the value in the code that
immediately follows the implementation cast.
Body Specification in ESDL

When the desicion that the expression is always true can be made directly at
the if statement, the construction is optimized in the generated C code. An
example:

if (true || testlog_a) {

cont=1; }

else {

cont=0; }

is reduced to:

cont=1;

When an optimization is performed, an information is given in the ASCET
monitor window.

 In the generated C code, however, no hint is given.

5.4.2 Switch…Case…Default

The switch…case…default statement or, for short, the switch state-
ment, can be used for more complex conditional constructions. It has the gen-
eral form

switch (expressionsDisc) {
case sDiscM: {

statementM }

…

Note

The decision whether optimization is performed is made locally at the if
statement. If previous program parts would have to be considered to make
the decision, no optimization takes place.
Body Specification in ESDL 121

122
case sDiscN: {
statementN }

default: {

statementDefault }
}

The switch statement is a multi-way decision that tests whether the argu-
ment expressionsDisc matches one of the constant values sDiscM
through sDiscN and branches accordingly.

Each case is labelled with a constant expression that must be of type sdisc.
The corresponding block is executed if the expressionsDisc matches the
value of the constant expression. The (optional) case default is executed if
no other match can be found.

If the default case is not available and no match is found, the switch state-
ment does nothing and control returns to the remainder of the software
model.

The example below sets the value of a variable scont depending on the value
of the argSdisc.

switch(sdiscArg) {
case 1 : {

scont = 1.123;
break; }

case -1: {
scont = 0;
break; }

default: {
scont = -1; }

}

In this example, every block is terminated with a break statement. This causes
the switch statement to be finished immediately after the block has been
executed.

If the case blocks were not terminated explicitly, execution would continue
immediately after a match has been found. In the above example, this means
that for sdisc=-1 the value of scont would first be set to 0 by the corre-
sponding block and then set to -1 by the default block if the break state-
ment was missing.

This phenomenon is commonly referred to as fall through. The remainder of a
switch statement is always executed if a block is not terminated. Although
this can be useful for multi-layered filtering it is generally regarded as poor style
and should be avoided by terminating every case statement with a break.
Body Specification in ESDL

5.4.3 While

The while loop is used to model a simple loop. It has the general form:

while (expressionLog) {
loopStatement; }

The loop condition expressionLog is evaluated. If it is true, the
loopStatement block is executed and expressionLog is evaluated again.
The loop exits when expressionLog evaluates to false.

In ESDL, the loop condition expressionLog must be of type logical.

5.4.4 For

The for loop stands out as one of the modelling features that are available in
ESDL only. There is no equivalent in block diagrams.

The for loop has the general form

for (initExpression; expressionLog; incrExpression)
{

loopStatement; }

This is equivalent to

initExpression;
while (expressionLog) {

loopStatement;
incrExpression; }

In the for loop, every component of the loop head, initExpression,
expressionLog, and incrExpression, is optional. The loop condition
expressionLog must be of type logical. It is set to true if omitted which
results in an infinite loop.

The following example is a simple combination of an if…else statement and
a for loop:

if (log) {
for (index=0; index < array.length(); index++) {

array[index] = index * index; }
}

else {

Note

In ESDL, the components of the loop head must be simple expressions,
comma-separated lists of expressions, such as i=0, j=1; or i++, j--;,
are not accepted. In other words, it is not possible to use more than a single
statement in either the initExpression or the incrExpression.
Body Specification in ESDL 123

124
for (index=0; index < array.length(); index++) {
array[index] = index; }

}

The example writes values to an array. The log condition in the if…else
statement determines which of the two loops is used to write values to the
array.

Each of the loops iterates over the entire array and assigns a value to each
cell. The value is either the result of index * index or the value of index.

5.4.5 Break

The break statement can be used to exit immediately from each of the con-
trol elements listed above and return to another enclosing statement or to the
remainder of the model.

Since ESDL does not support labels in the model description, there is no labeled
break statement that returns control to a label.

5.5 Methods

The functional description of a software model in ESDL is contained in meth-
ods. The methods perform calculations and manipulate data. They are invoked
(or called) as operations on objects.

A method call has the general form

receiverClassName.doSomething(parameterList)

where receiverClassName is the name of the receiver object, which ’exe-
cutes’ the doSomething method. Parameters can be passed on as either a
comma-separated list or a single parameter in the parameterList. Any
expression can be a parameter, including method calls.

The following are valid method calls in ESDL:

loader.resolve(false, 1.76);
//do not use characteristic, calculate value for 1.76

numbers.setAt(10*index, index);
//set array numbers to 10*index at index

(12.4)between(valA, valB);
//check if 12 is between valA and valB
Body Specification in ESDL

array.length();
//return array length

A method call can return a value, which can in turn be assigned to a variable
in the method call. The variable must be of the same type as the return value.

aNumber = anArray.getAt(index);
//assign value from index position

anOffset = loader.resolve(true, 2.14);
//assign value for 2.14, calculate using characteris-
tic

If a method has a return value, the method body must be terminated with a
return statement. The return statement can be followed by any expression
that evaluates to the return type of the method.

return in.between(ub, lb);
// returns a logical value

return intVar;
//returns the value of intVar

A method call can return only a single value. If more than one value is to be
passed on between modules or objects, an object can be used to hold these
values (see section "Structures" on page 134).

Method calls cannot be nested in ESDL. The following statement is illegal:

loader.resolve(true, 2.14).sqrt();

It must be replaced with the following, legal statement:

aNumber = loader.resolve(true, 2.14);

aNumber.sqrt();

Only if direct access methods are enabled for access to an object’s variable, can
a method call be nested. Hence, the following nested statement is legal if aa
is a variable defined in anObject:

anObject.aa().sqrt()

Note

If a method has no parameters, the parentheses at the end of the method
name still have to be supplied for the statement to be interpreted as a
method call.
Body Specification in ESDL 125

126
5.5.1 This

The pseudo-identifier this can be used in ESDL to call a method at the current
component. If, for example, you want to call the private method
initCounter at the current object, you can use the following statement:

this.initCounter();

If the initCounter method has a return value, you can assign it as follows:

aValue = this.initCounter();

The reference to the current object using the this identifier is optional in both
these cases because it is implicit in the context. Hence, the above statements
can be written as follows:

initCounter;
aValue = initCounter();

Only if the current object is to be passed on as a parameter to another method,
is the reference using this needed.

OtherObject.evaluate(this);

Here, the identifier this passes on a reference to the current object.

5.5.2 Access Control

In ESDL, both the methods and variables of a class can be declared as either
public or private to control access to these elements and hide their implemen-
tation from other objects.

Private methods can be called and private variables manipulated only from
within the current object. By contrast, public methods can be called and public
variables accessed from both within and outside the current object.

Methods are declared public or private by assigning them to a corresponding
diagram in the ESDL Editor. The default for new objects is to have a single
public diagram Main which contains the calc method.

Users can create additional public methods in the same diagram or add a new
diagram. Private methods must be created as part of a private diagram. The
access rights to a method can be changed by moving it from one diagram to
another.

Note

While ESDL accepts both the self and the this identifier, it is recom-
mended to use this to ensure compatibility with Java syntax.
Body Specification in ESDL

An object Caller can access the public interface of another object
Receiver if the latter has been imported by adding it to the Elements list for
Caller.

New variables are created as private when they are added to the Elements list
in the ESDL editor. They cannot be accessed from outside the current object.
The status of a variable can be modified only in the element editor for that
object (see ASCET user’s guide, section "Editing Element Properties").

5.5.3 Direct Access Methods

Every public variable automatically adds two methods to the current object’s
interface, which are referred to as direct access methods. A direct access
method can be called to access the data in a public variable. It can be used for
both read and write access to that variable.

In the following example, suppose that the VisibleObject has two public
variables named free and all respectively. Method calls from outside can be
as follows:

sdisc tmp = VisibleObject.all();

VisibleObject.free(120);

Direct access methods are generated automatically and added to the public
interface of an object whenever a variable is declared public. These methods
do not have to be coded explicitly.

5.6 Composite Data Types

ESDL provides two groups of composite data types. The first group of compos-
ite types comprises common arrays and matrices, the second group, which
contains one-dimensional tables, two-dimensional tables and distributions, is
used for characteristic lines and fields.

Composite data types are explained in the following subsections, with arrays
and matrices first and tables and distributions to follow suit.

5.6.1 Arrays

An array is a one-dimensional, indexed set of variables which have the same
data type. In ESDL, arrays are available for all basic data types. The variables are
accessed through the array index, the first index position is 0.

An array can be added to a module by adding it to the "Elements" list in the
ESDL Editor. The array type can be specified in the element editor as any
primitive type.
Body Specification in ESDL 127

128
The array size and its data can be edited using the Table Editor dialog which is
automatically opened when the data of an array are to be edited. You can
specify both the current and maximum size of the array in the table editor.

The array size cannot be modified at runtime. The maximum size for arrays is
1024 elements.

The array data can either be edited in the table editor or filed in from a tab-
delimited ASCII file (seeASCET user’s guide, chapter "Editing Data", section
"Array Editor").

In ESDL, elements of an array can be read and written to using the following
syntax:

val = myArray[index];

myArray[index] = val;

The first statement reads the value of the array element at position index
and assigns it to the variable val, which must be the same type as the array.
Since the array index count starts from 0, myArray[3] returns the fourth
element of an array.

The second statement sets the value of the array element at position index
to val, which must be the same data type as the array.

Public Interface:

Tab. 5-3 summarizes the public methods available of arrays.

Tab. 5-3 The public interface of arrays

Method Returns Usage

length() udisc get number of array elements

getAt(index) type of array get array element at position index

setAt(val, index) void set value of array element to val
Body Specification in ESDL

5.6.2 Matrices

A matrix is a two-dimensional, indexed set of variables which have the same
data type. In ESDL, matrices are available for all basic data types. The variables
are accessed through the array indices x and y, the first index position is 0.

A matrix can be added and manipulated in the ESDL Editor in exactly the same
manner as an array. The matrix size cannot be modified at runtime. The maxi-
mum size of matrices is 64 elements per dimension.

The elements of a matrix can be read and written to in ESDL using the follow-
ing syntax:

val = matrix[indX][indY];

matrix[indX][indY] = val;

The first statement assigns the value of the matrix element at position
column indX and row indY to the variable val, which must be the same
type as the matrix. Since the index count starts from 0, myMatrix[2,3]
returns the third element in the fourth row of a matrix.

The second statement sets the value of the matrix element at position col-
umn indX and row indY to val, which must be the same data type as the
matrix.

Public Interface:

Tab. 5-4 summarizes the public methods available for matrices.

Tab. 5-4 The public interface of matrices

5.6.3 One-dimensional Tables

A one-dimensional table is used to model characteristic lines which describe
parameter values in dependence of a given set of sample points rather than
using an algorithm.

Method Returns Usage

xLength() udisc get number of columns in matrix

yLength() udisc get number of rows in matrix

getAt(indX, indY) type of matrix get matrix element at
position indX, indY

setAt(val, indX, indY) void set matrix element at
position indX, indY to val
Body Specification in ESDL 129

130
For each sample point xn in the table, there exists a parameter value yn which
can be retrieved from the one-dimensional table. In addition, the table can
cover the entire range of values between sample points using either linear or
rounded interpolation.

An one-dimensional table can be added to a module by adding it to the
Elements list in the ESDL Editor. The data type can be specified in the Element
Editor as any arithmetic type.

The maximum size for one-dimensional tables is 1024 sample point : value
pairs. Unlike arrays and matrices, tables are used as parameters in ASCET, that
is, the sample points and values cannot be written to from within the model.

The table data can either be edited in the table editor or filed in from a tab-
delimited ASCII file (see ASCET user’s guide, chapter "Editing Data", section
"The 1-D Table Editor").

The interpolation mode for sample points can also be specified in the table
editor as rounded or linear. Rounded interpolation uses the value from the
lower (left) sample point for a given point, whereas linear interpolation derives
it from a straight line between sample values.

Public Interface:

In ESDL, tables can only be accessed using their public interface. Tab. 5-5 sum-
marizes the public methods available for one-dimensional tables.

Tab. 5-5 The public interface of one-dimensional tables

Linear Interpolation:

The following example illustrates linear interpolation in one-dimensional
tables. It uses a table LLpr that has the following values:

In general, the method getAt(index) is sufficient for the evaluation of
characteristic lines. Linear interpolation for this example works as follows:

Method Returns Usage

search(index) void set the sample point of the table to index or
calculate interpolation factor for index

interpolate() type of table get the value for the current sample point or
interpolate it from the table

getAt(index) type of table set the sample point to index and get the cor-
responding value or calculate interpolation
factor for index and interpolate the value

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0

0.0 0.8 1.1 1.5 1.8 2.0 2.2
Body Specification in ESDL

tmpVal = LLpr.getAt(3000);
// assigns 1.5 to tmpVal

tmpVal = LLpr.getAt(2280);
// calculates interpolation factor for 2280
// interpolates value for 2280 as 1.212 and
// assigns it to tmpVal

tmpVal = LLrp.getAt(9000);
// calculates interpolation factor for 9000
// interpolates value for 9000 as 2.2 and
// assigns it to tmpVal

In some cases, though, separating the search and interpolate steps in tables
can be more efficient, e.g. when generating code for experimental targets. In
that case, linear interpolation is performed as follows:

LLpr.search(1000);
// sets sample point to 1000

tmpVal = LLpr.interpolate();
// assigns 0.8 to tmpVal

LLpr.search(2780);
// calculates interpolation factor for 2780

tmpVal = LLrp.interpolate()
// interpolates value for 2780 as 1.412 and
// assigns it to tmpVal

5.6.4 Two-dimensional Tables

A two-dimensional table is used to model characteristic maps which describe
parameter values in dependence of a given set of pairs of sample points rather
than using an algorithm.

For each pair of sample points (xn : yn) in the table, there exists a parameter
value zn which can be retrieved from the two-dimensional table. In addition,
the table can cover the entire range of values between sample points using
either linear or rounded interpolation.

A two-dimensional table can be added and manipulated in the ESDL Editor in
the same manner as a one-dimensional table. The maximum size for two-
dimensional tables is 64 pairs of sample points and corresponding values.
Body Specification in ESDL 131

132
Public Interface:

In ESDL, tables can only be accessed using their public interface. Tab. 5-6 sum-
marizes the public methods available for two-dimensional tables.

Tab. 5-6 The public interface of two-dimensional tables

Linear Interpolation:

The following example illustrates linear interpolation in two-dimensional
tables. It uses a table LLpr1 that has the following values:

As with characteristic lines, the method getAt(indX,indY) contains every-
thing that is needed for the evaluation of characteristic maps. Linear interpola-
tion for this example works as follows:

tmpVal = LLpr2.getAt(8,5);
// assigns 4.0 to tmpVal

tmpVal = LLpr2.getAt(0.5,1.5);
// calculates interpolation factor for
// x=0.5 and y=1.5
// interpolates value for (0.5,1.5) as -2.875 and
// assigns it to tmpVal

tmpVal = LLrp2.getAt(20,10);
// calculates extrapolation factor for x=20, y=10
// extrapolates value for (20,10) as 5.0 and
// assigns it to tmpVal

Method Returns Usage

search(indX, indY) void set the sample points of the table to
indX and indY or calculate interpola-
tion factor for indX and indY

interpolate() type of table get the value for the current sample point
or interpolate it from the table

getAt(indX, indY) type of table set the sample point to indX and indY
and get the corresponding value or calcu-
late interpolation factor for indX and
indY and interpolate the value from the
table

y \ x 0.0 1.0 8.0 15.0

1.0 -5.0 -3.0 0.0 1.0

3.0 0.0 1.0 4.0 6.0

5.0 8.0 5.0 4.0 4.0
Body Specification in ESDL

With characteristic maps, too, separating the search and interpolate steps in
tables can be more efficient. In that case, linear interpolation is performed as
follows:

LLpr2.search(1,3);
// sets x sample point to 1 and y sample point to 3

tmpVal = LLpr2.interpolate();
// assigns 1.0 to tmpVal

LLpr2.search(4,4);
// calculates interpolation factor for x=4, y=4

tmpVal = LLrp2.interpolate()
// interpolates value for (4,4) as 3.143 and
// assigns it to tmpVal

5.6.5 Distributions and Group Tables

Characteristic lines and fields can be related to each other by using the same
set of sample points. In ASCET, such a shared set of sample point is modelled
as a distribution, tables that use the sample points in a distribution are referred
to as group tables.

A distribution is an array of sample points. The sequence must be strictly
monotone increasing. Distributions can be used for both types of tables (one-
and two-dimensional). Two-dimensional tables require a distribution for each
dimension.

Using distributions and group tables can significantly reduce the time and
memory required for computations since interpolation factors are computed
only once and can be reused over a set of tables.

Adding a group table in the ESDL Editor consists of first adding a distribution
and then a group table. When the group table is added, the system prompts
for the corresponding distribution. Since the ESDL Editor cannot be used to
reassign distributions to existing group tables, distributions should always be
created before adding the tables.

The Table Editor can be used to edit the data of both distributions and tables.
It does not accept distributions which violate strict monotony. Data can also be
filed in from tab-delimited ASCII files.

Public Interface:

Unlike plain tables, group tables do not have a getAt method. Instead, the
public interface is "split" between the distribution, which has a search
method, and the group table, which has an interpolate method.

A two-dimensional table requires sample points to be set for both distributions
before the corresponding value can be interpolated.
Body Specification in ESDL 133

134
Tab. 5-7 shows the public interface of distributions in ESDL.

Tab. 5-7 The public interface of distributions

Tab. 5-8 shows the public interface of group tables in ESDL.

Tab. 5-8 The public interface of group tables

5.7 Structures

In ESDL, structures (or records) are modelled using classes. A class can be used
as a complex container element which holds any number of variables. If a vari-
ables in a class is public, it can be read and written to from ESDL using direct
access methods.

Classes that are used as container elements are accessed in the same manner
as other classes in ESDL. The first step is always to add the class to the Elements
list of the ESDL Editor to make it available in the context of the current class.
Variables can be declared public in the Layout Editor for the parent object.

The variables can then be accessed from within ESDL using the simple direct
access method syntax:

theVar = VisibleObject.aVar()
VisibleObject.aVar(5.12);
// read/write access to primitive variable

theVar = VisibleObject.anArray().getAt(2)
VisibleObject.anArray().setAt(2.14, 3);
// read/write access to array variables

For group tables and distributions, this procedure does not work.

Method Returns Usage

search(index) void set the sample points of the distribution
to index or calculate the interpolation
factor for index

Method Returns Usage

interpolate() type of table get the value for the current sample
point or interpolate it from the table
Body Specification in ESDL

In ESDL, classes can be nested to model self-referential structures.

5.8 Messages

In ASCET, an additional concept of messages as real-time language constructs
is used for interprocess communication. Messages, in this sense, are used as
protected global variables in the real-time environment.

Messages are available only in modules. From within a module, a message is
merely a variable that can be read, written to or both. Whenever a process
runs, the operating system creates copies of all its messages. These copies are
accessible only to that instance of the process that created them.

Hence, if the same message is used by various processes, each process gets its
own copy of the message. This strategy is used by the real-time operating sys-
tem to ensure data consistency over multiple processes.

Messages are fully supported in ESDL, they can be used in all modules. A mes-
sage is added like all other elements in the Elements list by selecting the corre-
sponding icon from the ESDL Editor toolbar. Messages can be added as

• send messages—the current module can write to this variable,

• receive messages—the current module can read this variable, or

• send and receive messages—the current module can read and write
to this variable.

In ESDL, messages are accessed through assignment statements:

theVar = receiveMsg + 1.24;
sendMsg = 12;
theMessage = 3 * tmpVar;

Public Interface:

Tab. 5-9 summarizes the public methods available for messages.

Tab. 5-9 The public interface of messages

Note

A complex assignment such as VisibleObject.anArray(myArray) is
not legal in ESDL, it does not assign the values in the myArray parameter to
the anArray element. Complex statements can, however, be used to pass
on a reference to another object.

Method Returns Usage

receive() void read message

send() void write message
Body Specification in ESDL 135

136
5.9 Resources

Similar to messages, resources are available only in modules. As desrcibed in
section 3.1.3, they have two access methods, reserve and release. In
ESDL, these methods can be used as shown in the following example:

resource1.reserve();

do_something();

resource1.release();

Tab. 5-10 summarizes the public methods available for messages.

Tab. 5-10 The public interface of resources

5.10 Mathematical Functions

ASCET comes with a comprehensive library of pre-defined elements. They can
be used as building block for new modules and classes.

For model descriptions in ESDL, additional mathematical functions are pro-
vided in the system library. The mathematical functions are defined in the class
Etas_Systemlib_CT\Classes\MathFcn and can be accessed after this
class has been added to the Elements list of the ESDL Editor.

The following examples show how to access mathematical functions from an
ESDL model description.

// calculate sine of x
x = x + MathFcn.pi()/2;
y = MathFcn.sin(x);

// calculate square root of arg
if (arg > 0) return MathFcn.sqrt(arg);

// typecast continuous arg to logical
return (MathFcn.Sign(arg) = 0 ? false : true);

// fill array at x-1 with x1/x

udisc x
cont tmp, y;
for (x = 1; x < array.length() + 1; x++) {

tmp = x;
array[x-1] = MathFcn.pow(tmp, 1/tmp); }

Method Returns Usage

reserve() void reserve a resource

release() void release a resource
Body Specification in ESDL

The following table summarizes the functions available in the MathFcn class.
The return and parameter types are the same for all mathematical functions,
they accept variables of type continuous as parameters, the return type is con-
tinuous, too.

Tab. 5-11 Mathematical functions in ESDL

Method Operation

pi() returns 3.141592654

sin(x) sine of x

cos(x) cosine of x

tan(x) tangent of x

asin(x) sin-1(x) (arc sine)

acos(x) cos-1(x) (arc cosine)

atan(x) tan-1(x) (arc tangent)

sinh(x) hyperbolic sine of x

cosh(x) hyperbolic cosine of x

tanh(x) hyperbolic tangent of x

sch(x) hyperbolic secant of x

csch(x) hyperbolic cosecant of x

coth(x) hyperbolic cotangent of x

exp(x) exponential function ex

log(x) natural logarithm loge(x), x > 0

log10(x) base 10 logarithm log10(x), x > 0

pow(x, y) xy

sqrt(x) square root of x

abs(x) absolute value |x|

sign(x) sign function returns: -1 if x < 0; 0 if x = 0; 1 if x > 0

limit(m, x, n) limiter returns: m if x <= m; x if m < x < n; n if x => n

max(x, y) returns the greater value of x and y

min(x, y) returns the smaller value of x and y

fmod(x, y) floating point remainder of x/y, same sign as x

ceil(x) returns smallest integer value not smaller than x

floor(x) returns largest integer value not larger than x
Body Specification in ESDL 137

138
5.11 Accessing Block Diagrams from ESDL

This section guides you through building a simple limited integrator in ESDL.
The integrator uses a limiter element from the Systemlib_ETAS folder to
determine the bandwidth of the outgoing signal.

The limiter element has a single method out with three parameters mn, x, mx.
The out method either returns mn if x < mn, x if mn <= x <= mx, or mx if
x > mx.

The block diagram for the limiter element is displayed below.

To build the integrator element

• In the Component Manager, create a new
ESDL module and rename it to Integrator-
Limit.

• Open an ESDL Editor for Integrator-
Limit.

• In the "Elements" list, add a continuous vari-
able named mem. The integrator’s memory
stores the value of the outgoing signal.

• In the "Elements" list add the limiter module
from the following folder:
Systemlib_ETAS\
Nonlinears\Limiter.

• In the Methods list, add the methods out,
reset and compute.

You can either rename the default method
calc to compute or delete it.
Body Specification in ESDL

• Use the Interface Editor to edit the corre-
sponding method interfaces as follows:

• Enter the ESDL code for each method and
save the method. The ESDL code for each
method is listed below.

reset(initVal)
mem = initVal;

cont out()
return mem;

compute(mn, in, mx)
mem = mem + K * in * dT;
mem = Limiter.out(mn, mem, mx);

The example shows how to use an existing module as a building block for a
new one. The second statement in the compute method limits the integrator
signal. The limiter’s out method returns the signal value or the lower or upper
bound, which is assigned to the integrator’s memory.

5.12 Using ESDL in State Machines

When modelling state machines in ASCET, the description in ESDL is often
more compact than block diagrams. ESDL can be used to describe both states
and transitions between states.

Typically, a state can have three up to three different actions, which are labelled
entry, static and exit. They are performed when the state is entered, while it is
active, and when the state is terminated.

Method Arguments Returns

compute cont mx
cont in
cont mn

void

out void cont

reset cont initVal void
Body Specification in ESDL 139

140
The actions in a state can be edited in the State Editor. They can be specified in
ESDL if the <ESDL> option for the corresponding action is selected. This acti-
vates the text field for the action which is a simple ESDL editor. From this editor
the output and input variables of the state machine and all other items in the
Elements list of the state machine can be accessed.

A transition between states usually has a condition that triggers the transition
to another state; it can have an action as well, which is executed when the
transition is performed.

The transitions between states can be edited in the Transition Editor. Again,
conditions and actions can be specified in the text field in ESDL after the
<ESDL> option has been activated and all items in the elements list can be
accessed.
Body Specification in ESDL

In all text fields of both editors, standard ESDL code is used as in the examples
above. The one important point to remember in ESDL syntax is that the expres-
sion entered in the "Condition" tab returns a boolean and is not terminated
by a semicolon. You find more about editing actions and conditions in ESDL in
the ASCET user’s guide, chapter 4.2, section "Conditions and Actions in the
State Diagram".

5.13 Overview: ESDL Features Compared

ESDL vs. Block Diagrams

The following table presents an overview of differences in model descriptions
using ESDL and block diagrams.

Tab. 5-12 Synopsis: ESDL vs. block diagrams

Reference: ESDL vs. ANSI C

The following table presents an overview of the main differences between the
ESDL modelling language and the ANSI C programming language.

Tab. 5-13 Synopsis: ESDL vs. ANSI C

ESDL Block Diagrams

this x o

self x x

% operator x o

++, -- operator x o

for statement x o

atomic sequences o x

ESDL ANSI C

bit data type, shift operations o x

string data type, string operations o x

continue statement o x

pointer arithmetic o x

preprocessing o x
Body Specification in ESDL 141

142
Reference: ESDL vs. Java

The following table presents an overview of the main differences between the
ESDL modelling language and the Java programming language.

Tab. 5-14 Synopsis: ESDL vs. Java

ESDL Java

inheritance o x

dynamic instantiation o x

polymorphism o x

method overloading o x

explicit type casting o x

error handling o x

garbage collection o x
Body Specification in ESDL

6 Body Specification with Block Diagrams

With the block-oriented description language of ASCET embedded control sys-
tems can be specified graphically. It is the graphical equivalent of the ESDL
language used for specifying control systems textually.

This section describes how to specify software modes using block diagrams in
ASCET. The following section starts with a brief introduction to the graphical
description of components, which is followed by an overview of the graphic
modelling language.

The overview section presents linguistic means available in block diagrams:

• Elements

• Expressions

• Statements

Block diagrams and ESDL are, for the most part, functionally equivalent in
ASCET. The differences between block diagrams and ESDL are summarized in
section "ESDL vs. Block Diagrams" on page 141.

6.1 Graphical Description of Elements

Every element and operator used in a component is graphically represented by
a diagram item in the form of a rectangle. The interaction between these ele-
ments is represented by lines connecting the corresponding diagram items.

The interface of an element is represented graphically by pins (Fig. 6-1). Each
argument of a method is represented by an argument pin (with a little arrow
head pointing towards the block) at the block frame. The return values are
represented by a return pin. The call to a method is associated with its return
pin. Methods without arguments or return values are represented by a method
pin.

Fig. 6-1 The representation of pins in graphical blocks

Method Pin

Argument Pin

Return Pin
Body Specification with Block Diagrams 143

144
The name of the element is placed underneath the rectangle. An icon can be
used to illustrate the functionality of an element. The position of the pins can
be changed by the user

Fig. 6-2 The graphical block for a complex element.

The example in Fig. 6-2 shows a complex element with three methods.
Method m1 has one argument and a return value. Method m2 has no return
value and is represented by its arguments, method m3 has neither arguments
nor a return value and is represented by a method pin.

6.1.1 Basic Elements

Elements are represented as rectangular blocks with the arguments and return
values represented as pins. Each element has a name that is placed underneath
the block by default, but this position can be changed.

All basic types have a fixed interface and their graphical representation is also
fixed.

Argument Pin

Argument Name

Sequence Call for Method m3Sequence Call for Method m2

Pin for Return Value of Method m1

Name of Method

Method Pin

Icon
Body Specification with Block Diagrams

Basic Scalar Elements

Fig. 6-3 The graphical representation of basic elements

Basic scalar elements have one argument pin for setting a new value (if their
value can be set), and one return pin for reading the current value. The icon
inside the block represents the kind of the element. The scope of an element
is also indicated by the icon: a solid red square represents an imported
element, a solid circle an exported one. If the kind of the basic scalar element
does not permit writing to it (e.g. parameters) the corresponding pin is miss-
ing. Elements that can be calibrated have a small black box on the left side.

Messages

Messages are the input and output variables of processes. Depending on the
message type, they are displayed with one or two pins. The figure shows mes-
sages with the attributes Calibration and volatile; changing one or both
attributes makes the display change as shown for variables in Fig. 6-3.
Body Specification with Block Diagrams 145

146
Literals

Literals are represented by small blocks, with the value of the literal inside the
block:

Arrays and Matrices

An array or matrix has two methods, one for setting the content of a specific
element and one for retrieving it. The read and write operations can occur
independently of each other. The value to be written to the array is represented
by the left (argument) pin, the corresponding index by the bottom left pin. The
result of reading from the array is represented by the return pin and the index
by the bottom right argument pin.

Matrices are represented similarly, but each method takes two index argu-
ments. The x-index is represented by the bottom left pin, like the index of an
array. The y-index is represented by the pin at the top of the block with the top
left pin being the index for writing to the matrix, and the top right pin the
index when reading from it.
Body Specification with Block Diagrams

When arrays or matrices are to be passed as method arguments, or returned
as return values, this is done with the help of Get and Set ports. These are
made available via the Get/Set Ports pop-up menu function in the drawing
area.

Fig. 6-4 Get and Set ports for arrays and matrices

The Get port provides a pointer to the entire data content of the respective
element; by the Set port directs the element to access a certain memory area.

An example: In Fig. 6-4, array reads from the memory area used by
arg_array, while matrix reads from the memory area used by
arg_matrix. The pointers to the respective memory areas are passed via the
Get and Set ports. It is important that writing to the Set port is performed as
the first step of the method; otherwise, inconsistencies arise.

Note

The same mechanism is used to pass classes, too.

Get PortSet Port
Body Specification with Block Diagrams 147

148
Characteristic Tables

Depending on the dimension, characteristic tables, including fixed tables, have
one or two argument pins on the left side where the sample values are sup-
plied, and one return pin where the value of the interpolation is given.

The above representation corresponds to using the getAt method in ESDL.
(cf. the respective sections on page 129 and page 131).

As with ESDL, the search and interpolate steps in tables can be separated in the
block diagram editor. To do so, the extended table interface has to be made
available via the Extended Interface pop-up menu function in the drawing
area.

A distribution has one argument pin for the sample value on the left side of the
distribution. A group table has one return pin on the right side. It contains no
own sample point distribution, but references one or two distributions instead.
Group tables and distributions do not have an extended interface.
Body Specification with Block Diagrams

As with arrays and matrices, Get and Set ports can be made available via the
Get/Set Ports pop-up menu function.

Resources

Resources are represented by a block with the two methods reserve and
release at the top. Both methods have no arguments or return values and
are represented as method pins:

Implementation Casts

Implementation casts are represented by a small diamond with two pins.

6.1.2 Elements of User-defined Type

The methods, arguments and return values of elements of user-defined type
are represented by argument or return pins at the graphical block. The user
can define the layout of the representation for each user defined type. Get and
Set ports can be made available for these elements, too.

6.2 Expressions

Expressions are formed in block diagrams by connecting elements or other
expressions with operators. Like in ESDL, expressions are built up recursively, as
follows:

• An element is an expression.

• The result of an operator is an expression (the operands itself are
expressions).

Note

If you want to pass characteristic tables as method arguments, you have to
embed them in classes, and pass the class via the Get port.
Body Specification with Block Diagrams 149

150
• The return value of a method call is an expression. If arguments are
supplied to the method, these arguments also belong to the expres-
sion.

The range of an expression is therefore limited by the base expressions in that
expression, which are either elements or return values of methods without
arguments.

Expressions are built graphically by connecting the return pins of elements or
operators with the argument pins of methods or other operators.

There are no precedence rules for operators in the BDE, since the expressions
are “bracketed” by the way the lines and operators are connected. The follow-
ing example shows the difference between the expressions (a*b)+c and
a*(b+c) in the graphical representation.

The evaluation order of the arguments of operators is sometimes very impor-
tant. In the graphical representation this sequence is always from top to bot-
tom, except for the four basic arithmetic operators with at most three inputs.
The order of evaluation is illustrated in the following diagram:

In block diagrams the number of arguments to the operators is often limited
to a maximum of 10 or 20 inputs. The evaluation order of method arguments
depends on the order in which they are defined. Since the layout of an element
can be changed, the order in the layout must not coincide with that in the
definition.

a + b a + (b + c) a + (b + (c + d))
Body Specification with Block Diagrams

6.2.1 Arithmetic Operators

The meaning of the operators is the same as in ESDL. The following operators
are available: Addition, Subtraction, Multiplication, Division, Modulo. The
addition and multiplication operators can have between 2 and 10 arguments.
The subtraction and division operators have only two arguments.

6.2.2 Comparison Operators

The comparison operators are identical to their counterparts in the textual rep-
resentation with ESDL. The following comparison operators are available:

• Greater Than

• Less Than

• Less or Equal

• Greater or Equal

• Equal

• Not Equal

The Equal and Not Equal operators can also be applied to non-arithmetic ele-
ments.

6.2.3 Logical Operators

The meaning of the logical operators And, Or and Not is identical to their
meaning in ESDL. The And and Or operators can be applied to more than two
operands.
Body Specification with Block Diagrams 151

152
6.2.4 Conditional Operators

Multiplex Operator

The conditional operator (? :) is named Multiplex operator (for short:
Mux) in the graphical representation. The graphical representation of (condi-
tion ? trueValue : falseValue) is as follows:

The multiplex operator can also be used directly with several arguments (left
image); the right image shows the identical functionality built as a cascade of
several Mux operators:

The above example is equivalent to (condition1 ? (true1Value :
condition2 ? (false1true2Value : false1false2Value))),
i.e., the first argument has priority over the others. A cascaded Mux operator
with n logical condition arguments can select between n+1 arguments
between which it switches. The type of the arguments is arbitrary, but all argu-
ments must be of a compatible type.
Body Specification with Block Diagrams

Case Operator

The case operator is a special case of the conditional operator. It does not take
a logical value but a switch value of type unsigned discrete. The Case operator
selects one of the arguments depending on the switch value. If the switch
value is 1, the first argument is selected, if it is 2 the second is returned and so
on. If the switch value falls outside the range, the last argument is selected.

The above example is equivalent to ((a=1) ? b1 : ((a=2) ? b2 : b3)).

6.2.5 Other Operators

Besides the operators described so far, the following operators are also avail-
able:

• Max and Min

• Between

• Abs

• Negation

Max and Min Operators

The Max and Min operators return the maximum or minimum of the argu-
ments. Both operators can have 2 to 20 arguments; they can be applied only
to arithmetic elements.
Body Specification with Block Diagrams 153

154
Between Operator

The Between operator checks if the argument value lies between the limiters
min and max. If this is the case, the logical return value out_log is true,
otherwise it is set to false.

The graphical representation is equivalent to out_log = ((value >=
min) && (value <= max)). The argument and both limiters have to
be either cont or discrete.

Abs Operator

This operator returns the absolute value of the argument. Argument and
return value have to be both either cont or discrete.

Negation Operator

The Negation operator returns the negative value of the argument. Argument
and return value can be cont or discrete; if the argument is cont, the type
of the return value should be the same.

6.3 Statements

Graphical specifications of components can be hierarchically distributed over
several diagrams. In a diagram one or more methods or processes can be
described which can be executed independently of each other. The order in
which calculations are executed, as well as the particular method or process a
calculation belongs to is determined by sequence calls.
Body Specification with Block Diagrams

For each statement of a block diagram, there is a sequence call that assigns it
to a process or method. The order within a process or method is determined
by the sequence number that is part of the sequence call. A sequence call is
represented graphically as follows:

With the sequence numbers the order of the operations belonging to one
method or process can be determined by the user. A built-in sequencing algo-
rithm can be used to assign sequence numbers that correspond to the evalua-
tion order of standard block diagrams.

A sequence call generally consists of three fields:

• The name of the method called.

• The name of the method or process calling.

• The sequence number determining the position of the called method in
the calling method or process.

In the case of scalar elements, the name of the method called is left blank as
this is always the assignment of a new value.

There are three kinds of statements:

• Assignment statements

• Method calls

• Control Flow Statements, e.g. if…then…else, while

6.3.1 Assignment

An assignment statement is the assignment of the value of an expression to an
element. In case of an assignment to a complex element, only an element of
the same type can be assigned. The assignment is then not the assignment of
a value but of a reference.

A special case is that of assigning a value to the return value of a method. The
associated sequence call must be the last sequence call of that method.

6.3.2 The Break Statement

The return from a method or process can also be established by the break
statement. This statement does not have to be the last of a method or process.

Method Called

Sequence Number/Method Calling
Body Specification with Block Diagrams 155

156
6.3.3 Method Call

An assignment is a special case of a method call. When calling a method in a
block diagram, the corresponding sequence call has to be filled in properly and
the arguments to the method have to be supplied.

6.3.4 Control Flow

The following control flow statements are available in block diagrams:

• If…Then

• If…Then…Else

• Switch

• While

All control flow statements evaluate a logical expression and, depending on
the result, activate a control flow branch which may contain several state-
ments. The statements represented by sequence calls are connected to the
control flow by connectors.

The sequence number of the sequence call determines the order of the state-
ments connected to the activated control flow branch.

If...Then

The If…Then statement evaluates a logical expression and activates a control
flow branch if the result is True. The control flow output is connected to one
or more sequence calls which are triggered whenever the control flow branch
is activated. Whenever the input expression evaluates to True, the connected
sequence calls are executed.

The example above is equivalent to

if (l) {
c = b

};
Body Specification with Block Diagrams

If...Then...Else

If…Then…Else is similar to If…Then, but has two control flow branches.
Depending on the value of the logical expression, the left or right branch is
executed, the right branch is executed if the value is True, the left one if it is
False.

The example above is equivalent to

if (l) {
d = b}

else {
c = b

};

As for the if…else statement in ESDL, the generated code is optimized when
the expression for If…Then or If…Then…Else is always true. Section
"If…Else" on page 120 describes how the optimization works.

Switch

The Switch construct is similar to the Case Operator. A Switch evaluates a
signed discrete or unsigned discrete value and, depending on that
value, activates different control flow branches. These branches are separated
from each other, so that a “fall through” like in the switch construct in C is
not possible.
Body Specification with Block Diagrams 157

158
For each alternative the value for the branch can be defined by the user. The
last branch at the bottom is the default branch that is executed if the input
value does not equal any of the values at the branches.

The example above is equivalent to

switch (a) {

 case 0: c = b; break;

 case 5: d = b; break;

 default: break;

};

While

The only loop construct available in block diagrams is the While loop. Care
has to be taken to avoid infinite loops or loops unsuitable for real-time appli-
cations.

Similarly to the If…Then statement, the control flow is activated when the
value of the logical expression is True. The operation is executed as long as
the value of the logical input remains True. Therefore, the value of the logical
expression should be manipulated in the while loop. In order to avoid infinite
loops, the number of maximal loop iterations can be limited to a fixed, user
definable number.
Body Specification with Block Diagrams

The example above is equivalent to

while (i<10) {
c = b * c;
i = 1 + i;

};

6.4 The Semantics of Block Diagrams

Each part of a block diagram is assigned to a process or method. The execution
order is determined by the sequence numbers in the sequence calls. When a
process or method is activated, all statements whose sequence calls are
attached to that process or method are executed in the order given by the
sequence numbers.

In contrast to standard block diagrams, an operation is executed only on
demand, i.e. when its sequence call is activated. The order of execution is sim-
ilar to the left-to-right principle of standard block diagrams: before an opera-
tion, for example an addition, can be performed, the values for all its
arguments have to be computed.

The order of evaluation of the arguments of methods of user-defined compo-
nents is given by the order of their declaration. This order, however, may not
coincide with the order implied by the diagram, as the argument pins can be
arranged arbitrarily at the block frame.

The evaluation of operands etc. is directly associated with the statements that
use the results. This may result in multiple evaluations of an expression.
Body Specification with Block Diagrams 159

160
In this example, the addition is executed three times, for each of the assign-
ments to the variables c, d, and e. The addition is used in assignments in two
different processes. Without multiple execution, it would not be clear in which
of the processes the addition should be executed. The expression a + b is
evaluated twice in the process 10ms.

6.4.1 Graphical Hierarchies

In order to structure a graphical specification, graphical hierarchies can be
used. Graphical hierarchies do not influence the semantics of a block diagram
but are used for structuring only. A hierarchy contains a part of the block dia-
gram. The lines that cross the border of the hierarchy, i.e. that connect ele-
ments inside the hierarchy with those outside, are represented by pins. In
ASCET 5.2, an icon can be assigned to hierarchies in the block diagram editor.
Body Specification with Block Diagrams

7 Body Specification in C

The specification of the body of methods and processes can be implemented
in C code as well as in the form of block diagrams and ESDL. As with the other
specification methods, only the body of a method or process has to be speci-
fied. The method declaration, the function head and frame, and the data
instantiation and initialization are generated automatically.

In contrast to specifications in either ESDL or with block diagrams, components
in C code are specified on the implementation level, rather than on the model
level.

Fig. 7-1 From physical model to implementation

This has several important consequences:

• There is no transformation from the model to the implementation level.

• For each code variant (different target, different specification level, dif-
ferent implementations) the C code can be different. As a conse-
quence, the code must be specified separately for each variant.

• The C code has to be adapted to the software architecture of the code
generated by ASCET when user-defined types are used. This is because
the interface is generated and the exact naming convention for the
generated C functions depends on the expander and may not be trans-
parent to the user. In the present expander, the identity tag of the class
is used in the name for the generated functions in order to guarantee
a unique name space.

7.1 Structure

A component described with C code has the same structure as if it was
described with ESDL or as a block diagram. The C code describes the body of
methods or processes. Each code variant is stored separately.

ESDL

C-Code

BDE/State
Machine

Generated
C-Code

Implementation Transformation

Expansion

Physical Model Level
(Independent of Software

Architecture)

Implementation Level
(Independent of Software

Architetcure)

Implementation Level
(Depending on Software

Architetcure)
Body Specification in C 161

162
The specification of a component in C code depends on:

• The target, e.g. whether the C code is for the PC, PPC or for a specific
controller CPU. Here the code can vary, since, for instance, a controller
CPU has special registers that have to be addressed directly, or the
endian format is different.

• The specification level. The C code can be intended to represent the
physical level. In that case the implementation level coincides with the
physical level as far as possible, e.g. the type continuous is repre-
sented as a 64-bit float. Alternatively the C code can be on the imple-
mentation level of fixed point arithmetic.

• The chosen implementation, if the C code is on the implementation
level, since the C code depends on the implementations of the vari-
ables, particularly on their quantizations.

7.1.1 Methods and Processes

For each method or process a C function is generated. The function head is
generated automatically, the C code is only used in the function body itself.

Example:

The body of the method calc()

a = b + d;

c = a * c;

could result in the following generated code (including function head),
depending on the software architecture required for the experimental target:

void QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_calc (struct
QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_Obj *self) {

...

/* BEGIN handwritten code */

/* calc 1 */a = b + d;

/* calc 2 */c = a * c;

/* END handwritten code */

...

}

The names of the functions generated for the methods and processes of com-
ponents depend on the code expander and the software architecture of the
generated code. The user has no influence on these names. Depending on the
code expander a unique name space is achieved, i.e. methods at different
classes can have the same name without any naming conflicts. In the above
Body Specification in C

example the identity tag for the component is used to generate the unique
name QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_calc for the method
calc.

7.1.2 Variables and Function Parameters

The variables of a component are held in a data structure that, like the function
heads, is automatically generated. The user has no influence on this data struc-
ture. A part of this data structure consists of the instance variables of the com-
ponent, which can be used in any method. Therefore they have to be passed
to all generated functions. This data structure also depends on the code
expander and the exact naming is therefore hidden from the user.

In the above example, the component has a data structure of its own that is
passed to the generated function for the method calc. The data structure could
look like this:

struct QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_Obj {

ASDObjectHeader objectHeader;

real64_Obj *a;

real64_Obj *b;

real64_Obj *c;

real64_Obj *d;

};

The element names must be valid ANSI C identifiers. In addition to the reserved
keywords of C, the names self and this are reserved.

Accessing Elements:

To allow easy access to the elements of the component, a macro is defined
automatically for each element. Each element can then be accessed simply by
its element name.

The public elements defined in other components can be accessed from within
C functions using the notation DefiningObject.PublicElement.
Access is restricted to basic elements, arrays and matrices. The public interface
of complex elements defined in other components, e.g. using the getAt,
setAt or search and intepolate methods as in ESDL, cannot be accessed
from C functions.

Note

When specifying components in C code, the user must ensure that the
names of functions called in the method body do not collide with the names
of variables defined in the interface.of that same component.
Body Specification in C 163

164
Automatically Generated define Statements for Instance Variables:

#define a self->a->val

#define b self->b->val

#define d self->d->val

#define c self->c->val

/* BEGIN handwritten code */

/* calc 1 */a = b + d;

/* calc 2 */c = a * c;

/* END handwritten code */

#undef a

#undef b

#undef d

#undef c

Working with Basic Elements :

For basic types, the method names of these types can be used, as explained in
chapter 3 "Types and Elements" on page 89. When accessing arrays or matri-
ces, the index operator ’[]’ can be used in a C-like manner.

Since the method names of a user-defined type depend on the expander, the
method of user-defined types can only be called with the knowledge of the
exact generated function name for that method. In the above example the
function name QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_calc is gener-
ated for the method calc.

When using elements defined in ASCET, these elements are of a model type
(either basic or user-defined). Basic types have the following default implemen-
tation, which is taken on the physical level:

• continuous = real64

• udisc = unsigned int32

• sdisc = signed int32

• log = int16.

Note

Elements of type logical should not be used as numbers in the C code,
since this depends on the default implementation, which is subject to
change in further releases of ASCET.
Body Specification in C

The default implementation is replaced by the user-defined implementation
when switching the specification level (e.g. fixed point code). Elements of
model type logical can be represented for instance as a bit, and can there-
fore not be used as a number in the C code.

Messages:

Messages are part of an intra-task (intra-process) communication concept used
within ASCET models (see chapter 1.3). To achieve data consistency, the
ASCET code generation has to create additional message copies.

If messages are used within the functional code (read/write access), additional
code is required to ensure safe copying of the current values from message
originals to the local copies. Within the process body, only these local copies
are used. At the end, all local copies which could change their value within the
process body must be written back to the message originals.

In ESDL and block diagram components, ASCET generally detects very well,
which messages are changed within a process. However, this functionality is of
limited availability when using C code for the body specification. Here, the user
has to take care of data consistency on his own.

In general, ASCET is not able to detect where and when a variable is written in
user-specified C code. ASCET recognizes only a few special cases where, e.g.,
the variable name is followed by a =, or where assignment operators like ++
are used. If a variable is changed within a macro, an extern function, or via
adress operators and pointer arithmedic, ASCET does not detect the change.

When messages are used, this behavior results in message copies being cre-
ated at the beginning of the process, but—under certain circumstances—not
written back at the end.

A simple example shall illustrate this. The module shown below contains the
messages b2, c, and d. The messages c and d are directly written, b2 is used
within a macro.
Body Specification in C 165

166
In the generated code, copies are initially created for all three messages (1).
However, since only c and d are accessed in a way ASCET can recognize, only
these two message copies are written back at the end (2). The change of mes-
sage b2 that occurs in the macro, is not recognized and gets lost.

Arguments:

Arguments of methods are mapped to function parameters in the parameter
list of the function generated for the method. These are also accessed by the
name of the argument.

Local variables:

Following the general C rules, function local variables can be declared in the
method body. Here only variables of a C data type can be declared, not how-
ever of an ASCET model type. In particular, no local variables of a user-defined
type can be used in components within body specifications in C.

real64 i;

for (i=0; i < 10; i++)

} (1)

} (2)
Body Specification in C

{

 sum = sum + a[i];

}

Since there is a code variant for each implementation variant, the user can
define the local variables and their data types with respect to the implementa-
tion variant.

Characteristic lines and maps:

Characteristic lines and maps defined in the component are evaluated via three
subroutines each (as in ESDL).

Table LLpr from section "One-dimensional Tables" on page 129 is again used
as an example for a characteristic line.

The CharTable1_getAt_real64_real64(charline, index) sub-
routine is usually sufficient for the evaluation of characteristic lines. Linear
interpolation for this example works as follows:

tmpVal = CharTable1_getAt_real64_real64(LLpr,3000);
// assigns 1.5 to tmpVal

tmpVal = CharTable1_getAt_real64_real64(LLpr,2280);
// calculates interpolation factor for 2280
// interpolates value for 2280 as 1.212 and
// assigns it to tmpVal

tmpVal = CharTable1_getAt_real64_real64(LLpr,9000);
// calculates interpolation factor for 9000
// interpolates value for 9000 as 2.2 and
// assigns it to tmpVal

In some special cases, though, separating the search and interpolate steps in
tab les can be more eff ic ient . In these cases , the subrout ines
CharTable1_search_real64(charline, index) and
CharTable1_interpol_real64_real64(charline) are used.

CharTable1_search_real64(LLpr, 1000);
// sets sample point to 1000

tmpVal = CharTable1_interpol_real64_real64(LLpr);
// assigns 0.8 to tmpVal

CharTable1_search_real64(LLpr, 2780);
// calculates interpolation factor for 2780

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0

0.0 0.8 1.1 1.5 1.8 2.0 2.2
Body Specification in C 167

168
tmpVal = CharTable1_interpol_real64_real64(LLpr);
// interpolates value for 2780 as 1.412 and
// assigns it to tmpVal

Table LLpr2 from section "Two-dimensional Tables" on page 131 is again
used as an example for a characteristic map:

The CharTable2_search_real64_real64(charline, indX,indY)
subroutine is usually sufficient for the evaluation of characteristic lines. Linear
interpolation for this example works as follows:

tmpVal =
CharTable2_getAt_real64_real64_real64(LLpr2,8,5);

// assigns 4.0 to tmpVal

tmpVal =
CharTable2_getAt_real64_real64_real64(LLpr2,2,2);

// calculates interpolation factor for x=2 and y=2
// interpolates value for (2,2) as -0.571 and
// assigns it to tmpVal

tmpVal =
CharTable2_getAt_real64_real64_real64(LLpr2,20,9);

// calculates extrapolation factor for x=20, y=10
// extrapolates value for (20,10) as 5.0 and
// assigns it to tmpVal

In some special cases, though, separating the search and interpolate steps in
tab les can be more eff ic ient . In these cases , the subrout ines
CharTable2_search_real64_real64(charmap, indX,indY) and
CharTable2_interpol_real64_real64_real64(charmap) are
used.

CharTable2_search_real64_real64(LLpr2, 1, 3);
// sets x sample point to 1 and y sample point to 3

tmpVal =
CharTable2_interpol_real64_real64_real64(LLpr2);

// assigns 1.0 to tmpVal

CharTable2_search_real64_real64(LLpr2,4,4);
// calculates interpolation factor for x=4, y=4

y \ x 0.0 1.0 8.0 15.0

1.0 -5.0 -3.0 0.0 1.0

3.0 0.0 1.0 4.0 6.0

5.0 8.0 5.0 4.0 4.0
Body Specification in C

tmpVal =
CharTable2_interpol_real64_real64_real64(LLpr2);

// interpolates value for (4,4) as 3.143 and
// assigns it to tmpVal

7.1.3 Header

Besides the description of the methods in the form of C code, a header can be
defined for macros and for included files. This header has a local range
restricted to the component. Therefore, no extra header file is generated, but
the definitions are copied into the generated C code file.

7.2 External Source Code

Existing C code can be integrated by importing external C code source files.
For this purpose, one C code file with a corresponding header file can be
attached to each code variant of a component. The C code file contains stan-
dard C function definitions, the header file contains the corresponding func-
tion declarations and structure definitions. The defined functions can be called
through the standard C conventions. It is possible to pass pointers and share
defined structures between methods or processes of the component and the
functions in the attached C code.

As an alternative to using a C code file, an object file with a corresponding
header file can be attached to a component. Like the header files of the com-
ponent itself, the range of the header files of the attached sources is local, i.e.
they are copied into the generated C code.

The attached C file is compiled separately and linked to the other (generated
and compiled) C source files. As a consequence, this compiled unit exists only
once within any given context. If the code and the included data is shared
between multiple instances of the same component, all instances share the
same compiled unit.

Additionally it is possible to have include statements in the C code. The
include files however are not stored in the database, but a stored on the file
system. The include statement must contain the file path to these include

Note

The data in an attached C file is shared between multiple instances of the
component, and not instantiated for each of the instances.
Body Specification in C 169

170
files. The C code therefore depends not only on items in the database but also
on the file structure of the current installation. Therefore care has to be taken
when exchanging data, since these files are not known to the ASCET system.

Fig. 7-2 Using external source code

7.3 Programming Model Interface

In earlier ASCET versions, the names of classes and methods could only be
used in C code, if they were labeled with an escape symbol ("@"). By means
of this mechanism, the so called Programming Model Interface (PMI) was acti-
vated. In ASCET 4.x and 5.x, class and method names are recognized automat-
ically, i.e. no escape symbol is necessary and the PMI is used by default (see
description of code generation options in the ASCET manual for details).
Therefore, the escape symbol is obsolete and should not be used any longer
when modelling in C code. For backward compatibility, however, the escape
symbol can still be used when modifying the respective code generation
option.

7.4 Access Macros

Similar to access methods in ESDL, ASCET offers access macros for the usage
with C code components. For the following operations, special macros are
defined. By means of these macros, the user can apply pre-defined operations
in the C code. The macros are described in the following sections.

Note

When using include files the user must take care of the correct references
to these files on their own.

C-Code
Component
(Instance1)

C-Code
Component
(Instance2)

Attached
C-Source Code
or Object Code

Include Files

Multiple
Instances

Single
 Instance
Body Specification in C

Direct Acess

Elements of classes embeded into C code components can be accessed directly
using the macros

ASD_GET(receiver, variable);

and

ASD_SET(receiver, variable, value);

Example:

Length of Arrays

The current length of an array can be determined using the macro

ASD_LENGTH (receiver);

Example:

z = ASD_LENGTH(array);

Resource Access

Resources can be reserved and released using the macros

ASD_RESERVE(resource);

and

ASD_RELEASE(resource);

Acess to Private Methods

Private methods can be acessed using

self.

Example:

y = self.method_private(x);

Making Arrays Avaiable for Usage in External C-Code

Using the macro
Body Specification in C 171

172
ASD_USE_ARRAY_EXTERNAL(array)

array acess can be converted from the ASCET internal representation to the
standard C code representation. The macro is a synonym for:

&array[0]

Example:

y = c_function(ASD_USE_ARRAY_EXTERNAL(array));
Body Specification in C

8 Continuous Time Systems

The comprehensive capabilities of ASCET are utilized to model discrete systems
for the functional development of controller software and for the simulation of
control units. In contrast, the control system associated with the control unit
represents a continuous time physical system that is described by differential
equations.

Examples for continuous time systems are the drive train or the wheel suspen-
sion of vehicles (mechanical system), the combustion process in the cylinder
chamber (thermodynamic system), the brake circuit of a vehicle (hydraulic or
pneumatic system), and the vehicle battery (electric or electrochemical system).
In addition, there are increasingly also mechatronic systems in which, e.g., the
mechanics of an actuator is connected with a local electronic control, or an
intelligent sensor processes the physical signal electronically.

ASCET supports the model design and simulation of such continuous time sys-
tems by means of so-called CT blocks. CT stands for Continuous Time and
refers to elements that are modeled or calculated in quasi-continuous time
increments. The continuous time modeling in ASCET is based on state space
representation, the standard description form in the design of continuous time
systems. This representation allows the description of CT basic blocks by non-
linear ordinary first-order differential equations and nonlinear output equa-
tions. ASCET provides several real-time integration methods to solve these
differential equations efficiently.

The continuous time model can be structured in modular and hierarchical
blocks. Continuous time models can be combined by ASCET controller specifi-
cations to create combined models, so-called hybrid projects. These hybrid
projects can be used to test a controller specification against a model of the
actual technical processes that need to be controlled.

The model and the simulation experiment are strictly separate; a model con-
tains the modular and hierarchical system description while an experiment
contains the selected data set, the integration algorithm, and the selected visu-
alization configuration including an input method for parameters. The results
are accurate, reusable models and high flexibility. At the experiment level, each
model variable can be flexibly altered and measured. The chosen integration
step size and the integration algorithm can be changed during the simulation,
without any time-consuming recompilation of the model or the current exper-
iment.

8.1 Structure of Continuous Time Models

The following sections describe the various structuring options for a model
with basic blocks, structure blocks, and graphical hierarchies.
Continuous Time Systems 173

174
8.1.1 Modeling with Basic Blocks and Structure Blocks

Models of continuous time systems can be structured in modules and hierar-
chies. The fundamental element is the continuous time basic block, or CT basic
block, in which the partial model is described in the form of differential equa-
tions, algebraic equations, formulas and assignments using the high-level lan-
guages ESDL or C.1

Continuous time blocks (CT blocks) consist of inputs, outputs, parameters, and
discrete and continuous states with several dimensions, scopes and data types.
In addition, continuous time and discrete equations and output equations as
well as an initialization and termination sequence are also supported. State
events, software and hardware events (interrupts) can also be handled.

More complex continuous time models can be assembled to CT structure
blocks using the Block Diagram Editor (BDE). Using the Block Diagram Editor,
several CT basic blocks and/or CT structure blocks can be assembled and com-
bined. Fig. 8-1 shows a simple CT structure block composed of two CT basic
blocks.

Fig. 8-1 CT structure block composed of two CT basic blocks

1. C should be used in imperative, exceptional cases only because ASCET provides
automatic verification functions (semantic checks, computing sequence) only for
ESDL.

F
y

yu+F

-

y

ydd

yd

basic block

structure block

inputs: u;
outputs: y;
states: x1, x2;
parameters: Td, Ti;
variables: delta := 0.0;

state_equations:

state_equations:

inputs: F;
outputs: y, yd, ydd;
states: xm, xd_m;
parameters: c, d, reib;
variables: Fr := 0.0;
Continuous Time Systems

Several CT structure blocks and CT basic blocks can in turn be combined to one
new CT structure block. Fig. 8-2 shows the possible structuring options with
CT structures.

Fig. 8-2 Modeling with CT structure blocks

The correct computing sequence of the CT blocks is determined automatically.
CT basic blocks and/or CT structure blocks can be combined together with
Standard ASCET structures to build hybrid projects.

CT basic blocks are used to describe small physical components such as brakes,
wheels, etc. CT structure blocks serve to describe more complex entities such
as a power train facility or a complete vehicle model. CT basic blocks and CT
structure blocks are each stored in the database and are available for other
models. In this way, it is possible to easily build a model library. Modifications
to blocks or structures are automatically distributed to all models within one
database. This has the advantage that basic elements have to be maintained at
one place only while corrections are automatically adopted by all models
included in the same database. On the other hand, it must of course be
ensured that the basic elements remain compatible.

8.1.2 Modeling with Graphical Hierarchies

A CT structure block composed of many CT basic blocks and/or CT structure
blocks can be designed more clearly by combining several related CT blocks in
a graphical hierarchy (refer to Fig. 8-3). Graphical hierarchies and CT structures
can be combined into new hierarchies-the processing sequence is not affected
by these graphical hierarchies. In the Block Diagram Editor, graphical hierar-
chies are indicated by a double-line frame.

CT structure block

CT basic block

CT basic block

CT structure block

CT basic block
CT structure

block

CT basic block

CT Structure Block
Continuous Time Systems 175

176
Graphical hierarchies are especially used when the individual CT blocks have
strong cohesion and require a fixed computing sequence within an integration
step. By using graphical hierarchies, algebraic loops (refer to section "Algebraic
Loops" on page 201 and section "Difference Between Graphical Hierarchies
and CT Structure Blocks" on page 204) that may be caused by CT structure
blocks can be avoided. The correct computing sequence is ensured by auto-
matic sequencing. Graphical hierarchies cannot be stored individually but only
together with the corresponding structure block.

Fig. 8-3 Graphical hierarchy

8.1.3 Experiments

Basic and structure blocks can be evaluated in a simulation experiment. In the
experiment, the integration method, the model stimulation, and the visualiza-
tion of results are selected and specified. Several experiment settings can be
stored for a (partial) model.

8.1.4 Projects and Hybrid Projects

The real-time experiment is defined in a project. Both basic blocks and struc-
ture blocks can be used in a project. Furthermore, it is only in the project where
individual integration methods and their step size can be assigned to each inte-
grated basic block or structure block. This allows allocating more CPU time to
the model part with high dynamics than to other, less dynamic model parts, if
the processor capacity is limited.

Graphical Hierarchy

graphical
hierarchy

CT basic
block

CT basic
block

CT basic
block

CT structure
block

CT structure
block

CT basic
block

CT Structure Block
Continuous Time Systems

For a model in which the controller and control system models are to be com-
bined, a hybrid project can be defined, i.e., a project that contains both CT
blocks and standard ASCET components. A hybrid project thus allows the sim-
ulation of the control system and the control unit in one model (hybrid simula-
tion).

Fig. 8-4 Project

The communication between individual CT blocks and individual controller
modules is performed by explicitly connecting inputs and outputs in the Block
Diagram Editor (for details on projects, refer to chapter "Projects"
on page 13).

The experiment can be conducted on-line on the real-time simulation hard-
ware or off-line on the PC (unless special hardware has to be available or inte-
grated for the experiment).

8.2 Solving Differential Equations – Integration Algorithms

Due to the complexity of the equations in continuous time models and fre-
quent non-linearities, it is generally not possible to solve them by analytic
methods. It is therefore necessary to solve the differential equation system
using a numeric integration algorithm.

If only CT blocks are simulated in a CT structure, ASCET uses a global integra-
tion algorithm. The combination with discrete controller models is possible at
the project level only (combined modeling in a hybrid project). Projects also
support modeling with several CT structures using different integration meth-
ods.

Euler h=0.00005 sec
n=1
dT=0.002 sec

CT structure block CT1

Project

CT structure block CT2

Discrete standard block

Adams-Moulton h=0.002 sec
n=2
dT=0.002 sec

ECU simulation

dT=0.01 sec
Continuous Time Systems 177

178
To ensure high flexibility and short iteration cycles for modeling and simula-
tions, the configuration of the integration method, i.e., the actual integration
method and its integration step size, can be selected and modified interactively
during the experiment.

There is no ideal integration method that fits all types of models. The speed
and accuracy of the individual algorithms varies for different model character-
istics such as non-linearities, discontinuities, and dynamic behavior. A general
statement regarding the speed of each method cannot be given, as the step
size is adapted to suit the model and integration method best. However, some
guidelines for selecting a suitable integration method are given below.
Detailed information can be found in the literature, e.g.,

Addison, C. A.; Enright, W. H.; et al., A Decision Tree for the Numerical
Solution of Initial Value Ordinary Differential Equations. ACM Transi-
tions on Mathematical Software 17, 1, March 1991, Chapter "Contin-
uous Time Integration Algorithms".

ASCET provides the following integration methods:

• Euler

• Mulstep 2

• Heun

• Adams-Moulton 2

• Runge-Kutta 4

To solve more complex or stiff differential equations that need more precise
calculation, ASCET provides the following variable-step iterative integration
methods:

• Dormand/Prince RK5

• Calvo 6(5)

• Dormand/Prince RK8

• Implicit RK2

• Implicit RK4

• Implicit Gear 1

• Implicit Gear 2

During calculation, these integration methods adapt the step width used iter-
atively in order to achieve a certain given precision. Therefore, they cannot be
used for real-time calculations.
Continuous Time Systems

Due to technical reasons, the implicit integration methods can only be used
with newer Borland and Microsoft compilers. They cannot be used with the
Borland C 4.5 compiler shipped with ASCET. These methods are taken from
the GNU Scientific Library. The integration method Gear 4 provided in previous
versions of ASCET is not available anymore.

8.2.1 Integration Methods – Overview

It is assumed that the differential equation exists in its state form:

x’(t) = f(x,t); with x(t=0) = x0

The table below lists some characteristics of the implemented integration
methods:

• The global error order p of the discretion error that is proportional with
hp, where h is the integration step size.

• The number of function evaluations per integration step. Each time,
the local variables are reset and the nondirectOutputs,
directOutputs, derivatives methods are executed. This, com-
bined with the integration step size, can be used to estimate the speed
of the method.

• Single-step/multi-step methods (SSM/MSM): Single-step methods only
use the last estimated value for the next step, whereas multi-step
methods take the last n estimates into account.

• A predictor-corrector method (P-C) first uses an integration method to
calculate an estimate which is then corrected using a second method.

• Fixed or variable step size.

The table below contains a summary of these characteristics for inbtegration
methods with fixed step size (for MSM, the time when the function is com-
puted or when the break points are taken into account is indicated in paren-
theses).

Integration
Method

Error
Order

Function
Evaluations/
Step

SSM/MSM P-K Step
Size

Euler 1 1 (t) SSM no fixed

Mulstep 2 2 1 (t) MSM (t-h, t) no fixed

Heun 2 2 (t, t+h) SSM yes fixed

Adams-Moulton 2 2 (t, t+h) MSM(t-h, t) yes fixed

Runge-Kutta 4 4 4 (t, t+h/2,
t+h/2, t+h)

SSM no fixed
Continuous Time Systems 179

180
To ensure that the integration methods can be applied in real-time, each
method is implemented using relatively few function evaluations per integra-
tion step and a correspondingly low error order.

Euler

The Euler integration method is the simplest integration method available. A
single-step method with only one function evaluation per integration step, its
cycle time is the smallest, making it relatively fast and especially suitable for
real-time simulations.

Its stability range is high, however, at the trade-off of a higher discretion error
that, at the same step size, is typically higher than with the other methods
(lowest order).

Mulstep

The Mulstep integration method is a multi-step method which is used for mod-
els without heavily varying eigenvalues. The cycle time of one integration step
is only slightly higher than for the Euler method since only one function evalu-
ation is performed per integration step. However, the error order is 2.

Heun

The Heun integration method is used for models without heavily varying eigen-
values. The cycle time is twice as long as with the Euler method.

Mathematical Formula

x(t+h)=x(t)+h*f(x,t)

Mathematical Formula

x(t+h)=x(t)+h(3/2*f(x,t)-1/2f(x,t-h))

Mathematical Formula

Predictor: x(t+h)=x(t)+h*f(x,t) (Euler)
Corrector: x(t+h)=x(t)+h/2*(f(x,t)+f(x,t+h))
Continuous Time Systems

Adams-Moulton

The Adams-Moulton integration method is also suitable for models without
heavily varying eigenvalues. In contrast to the previous algorithms, the model
should exhibit a smooth behavior. The cycle times for the Adams-Moulton and
Heun algorithms are almost the same.

Runge-Kutta 4

The Runge-Kutta integration method is best suited for models without heavily
varying eigenvalues. This integration method is very robust for this type of
model. It is the slowest, but also the most accurate method at comparable step
sizes. It is therefore possible to increase the step size considerably.

Integration Methods With Variable Step Width

For experiments that need very precise calculation, the step width usually has
to be reduced. This can increase the time used for calculation significantly.
Models employing stiff differential equations often render the calculation
using fixed-step integration methods infeasible. Adaptive integration methods
are controlled by a target error margin. The step width is only reduced for
those parts of the model where it is needed. Because the step width (and
therefore the time needed for calculation) varies, these integration methods
are not real-time capable.

If the desired precision cannot be reached due to the parameter settings, the
experiment issues a warning in the ASCET monitor window. This happens
when the maximum iteration depth is set too low or the minimal step width is
set too high.

Mathematical Formula

Predictor: x(t+h)=x(t)+h/2(3f(x,t)-f(x,t-h)) (Adams-Bashforth)
Corrector: x(t+h)=x(t)+h/2(f(x,t)+f(x,t+h))

Mathematical Formula

x(t+h)=x(t)+h/6(K1+2K2+2K3+K4)
where
K1 = f(x,t)
K2 = f(x + K1*h/2, t + h/2)
K3 = f(x + K2*h/2, t + h/2)
K4 = f(x + K3*h, t + h)
Continuous Time Systems 181

182
 Continuous Time Systems

9 Continuous Time Basic Blocks

Continuous time basic blocks (CT basic blocks) are generally used to describe
small, independent physical components that can be used in various model
scenarios. Basic blocks can be specified using the CT block editor. The block
interface is specified interactively and the dynamics of the physical component
are described by differential and algebraic equations.

9.1 Basics

Continuous time basic blocks are specified either in C code editor or in the
ESDL editor. The two editors are slightly different for the specification of CT
blocks. The internals of the blocks, i.e., the differential and algebraic equations
as well as the control structures, are described within pre-defined methods.
The proper computing sequence required for correct, continuous time model-
ing is derived automatically (sequencing). The pre-defined method structure
cannot be modified by the user.

Basic blocks are used to describe models by means of nonlinear ordinary first-
order differential equations (ODE) and nonlinear output equations. To describe
a system of higher order, it has to be converted into several differential equa-
tions of first order. The table below illustrates the transformation of a second-
order system into its representation in the state space.

Tab. 9-1 Resolution of a second-order differential equation

The equations can be written in ESDL or C. The use of ESDL ensures a target-
independent specification and advanced semantic checks. When using C, the
entire functionality of the C programming language is available. The drawback
of C is that it is not possible to perform a semantic analysis. The use of ANSI C
enables largely target-independent modeling, however, this is not the case if
special language dialects such as for special hardware optimization is used.
Furthermore in C, the block's behavior has to be specified as direct or nondi-
rect.

9.2 Available Elements and Methods

Continuous time basic blocks differ in some elements from discrete modules or
classes. The following elements exist:

• Inputs

One 2nd-order differential equa-
tion

Two 1st-order differential equa-
tions

T2*x’’ + 2.0*d*T*x’ + x = K*in; x’ = xp;

xp’ = (K*in - (2.0*d*T*xp) - x) / T2;
Continuous Time Basic Blocks 183

184
• Outputs

• Continuous state

• Discrete state

• Steplocal variables

• Parameters

• Dependent parameters

• Constants

• OneD / TwoD table parameters

Each element type can have different dimensions, scopes, and data types (refer
to section "Block Interfaces" on page 185). The figure shows the various data
types (and their associated icon) and the available methods for working with
these data.

Fig. 9-1 Different data types and methods

9.2.1 Modeling With Continuous Time Basic Blocks

Within a continuous time basic block, the internals of the system to be mod-
eled can be described using the ESDL model description language or directly in
C. The target-independent ESDL modeling language provides advanced
semantic verification ensuring a correct model. Modeling directly in C, there-
fore, should be confined to target-dependent real-time blocks only. In general,
the use of ESDL is recommended.

Input

Dependent Parameter

Constant

Steplocal Variable

Discrete State

Continuous State

Parameter

Output

Data Methods

Events()

DependentParameters()

StateEvents()

NondirectOutputs()

DirectOutputs()

Update()

Derivatives()

Terminate()

Init()
Continuous Time Basic Blocks

The behavior of the block is described within a fixed framework, i.e., with a
fixed number of methods. Each method has a specific purpose, e.g., the calcu-
lation of derivations or outputs. In contrast to standard ASCET models, the exe-
cution sequence is fixed (refer to section "Computing Sequence"
on page 187), and the methods are scheduled automatically.

9.3 Block Interfaces

The elements (interfaces, storage elements) for modeling continuous time
basic blocks are slightly different from those used for discrete modules or
classes. The following describes the available element types.

Inputs: Block inputs have to be described using Inputs. At each evaluation
step, all input variables are read.

Outputs: Block outputs have to be described using Outputs. At each evalu-
ation step, all output variables are updated.

Continuous State: The description of ordinary differential equations
requires state variables. Each state variable functions as a "storage element";
an example is the distance and velocity of a moving mass point. Continuous
state variables are only used by the differential operator ddt.

Discrete State: A discrete state variable is a storage element. It can be used
to keep a variable value from one calculation step to the next, e.g., the value
of a counter. Discrete state variables are equivalent to the variables in discrete
classes or modules. Discrete state variables cannot be used by the differential
operator ddt.

Steplocal Variables: Steplocal variables are used to store intermediate val-
ues during the calculation of an evaluation step. These variables are visible in
all block methods. The value of a steplocal variable is valid only in one evalua-
tion cycle; the variable is reinitialized at the beginning of each iteration step. If
the value must be evaluated in a different method, the execution sequence of
the methods has to be considered (ensure writing before reading).

Parameters: Parameters are used to create a physical model. Normally, a
parameter corresponds to a characteristic property of a real system, such as
mass, length, or attenuation constant. A generic model library can be system-
atically built by means of efficient parameterization. Parameters can be varied
during the simulation in the experiment environment (using the Calibration
Editor).

Dependent Parameters: If one parameter depends on another parameter,
e.g., parameters described in different coordinate systems, it should be recal-
culated only if the other, affecting, parameter has changed. This type of
Continuous Time Basic Blocks 185

186
parameter behavior can be described by dependent parameters. They are cal-
culated only in case of changes asynchronously in the dependentParameters
method.

For example: m_vehicle = m_empty + m_payload.

If the payload changes in the experiment, the vehicle mass is recalculated in
the dependentParameters method.

Constants: Constants describe system-wide values that do not change dur-
ing an experiment, e.g., the gravitation constant.

Dimensions, Scopes, and Data Types: For each element type available,
there are various dimensions, scopes, and data types. The possible combina-
tions are listed below.

Fig. 9-2 Dimensions, Scopes, and Data Types

9.4 Block Methods

The methods (type and number) available in CT basic blocks are pre-defined
and cannot be modified by the user. Each method has a specific purpose, e.g.,
the calculation of derivations or outputs. The execution sequence of the meth-
ods is fixed; the methods are executed automatically. It is not necessary to use
each method in a CT basic block.

The following methods are available in CT basic blocks:

init(): The init() method is called only at the beginning or restart of
an experiment. The init() method can be used to specify code for initializ-
ing the block, e.g., to model the start-up behavior of a model or to initialize
state variables (e.g., resetContinuousState(x,5.3)). Initialization val-
ues derived from calculation statements have to be explicitly assigned using
the init() method.

input
output
discrete state
continuous state
steplocal variable
parameter
dependent parameter
constant

x x x x x x x x
x x x x x x x x
x x x x x x x
x x x x
x x x x x x x
x x x x x x x x
x x x x x x x
x x x x x x x x

sc
al

ar

ar
ra

y
re

co
rd

lo
ca

l
gl

ob
al

lo
gi

c
sd

is
c

ud
is

c
co

nt

dimension scope data type

elements

combinations
Continuous Time Basic Blocks

terminate(): The terminate() method is executed at the end of the
experiment. The terminate() method can be used to specify code for fin-
ishing a block, e.g., to model the shutdown behavior of the system.

derivatives(): Ordinary differential equations (ODE) have to be speci-
fied in the derivatives() method. If the model structure changes during
the simulation (e.g., in a model with moving masses that simulates static and
dynamic friction), the structure change can be controlled with the usual con-
trol structures (if(...) then... else...).

update(): update() is executed in the granularity of the external com-
munication interval dT. Values required only at this granularity (also communi-
cation with the experiment environment) can be calculated using this method.

directOutputs(): The directOutputs() method includes all output
equations with direct pass-through that directly depend on inputs. As they
directly depend on inputs that in turn may depend on nondirectOut-
puts(), this method is executed after nondirectOutputs().

nondirectOutputs(): The nondirectOutputs() method includes
all output equations with nondirect pass-through (i.e., those not directly
depending on inputs).

dependentParameters(): Within the dependentParameters
method, equations are specified for parameters that depend on other param-
eters. This method is only executed if a parameter has been changed during
the simulation experiment (asynchronous execution when changed). This
reduces the calculation time.

For example: m_vehicle = m_empty + m_payload.

The vehicle mass is recalculated in the dependentParameters method only
if the payload changes in the experiment.

stateEvents(): Within the stateEvents() method, it is possible to
model state- and time-dependent discontinuities. This method is evaluated at
the end of each consistent integration step. Discrete state equations must be
specified in the stateEvents() method.

events(): The events() method can be used to process asynchronous
software and hardware interrupts. This method is not executed time-synchro-
nously but asynchronously when the corresponding event occurs.

9.5 Computing Sequence

During the execution of a simulation, the methods contained in a CT block are
triggered in different cycles. There are three general cycle intervals:

• the external communication interval dT

• the integration step size h
Continuous Time Basic Blocks 187

188
• The step size h/n depending on the internal integration method

External Communication Interval dT

The communication interval is not part of the model but is chosen only at run-
time of the simulation. The following communication occurs during the dT
cycle:

• communication between CT blocks and the experiment environment,
e.g., stimulation and visualization

• communication between CT blocks and controller modules within a
hybrid project

• communication between several CT (structure) blocks within a hybrid
project if several integration methods are used

• calling the update() method

Integration Step Size h

The integration step size is not part of the model but chosen only at run-time
of the simulation. During the h cycle, communication takes place between sev-
eral continuous time blocks within a continuous time structural block. After
the integrat ion step has been executed across a l l b locks, the
stateEvents() method is executed.

Each value transferred is numerically acknowledged and depends on the
selected integration method. When simulating a highly dynamic model for
which h has to be very small, the speed can be considerably increased by
selecting a much higher value for dT than for h.

Step Size Depending on the Internal Integration Method: h/n

Other than the h cycle, the h/n cycle depends on the selected integration
method; e.g., the Euler integration method uses the cycle time h/l while the
Heun integration method uses h/2.

During the h/n cycle, the intermediate steps of the integration are calculated.
As for the h cycle, communication takes place between the continuous time
blocks of a continuous time structure block. The intermediate steps of the inte-
gration cannot be communicated to the outside.

Numerically, no discontinuities can be handled during this cycle since the
stateEvents() method is not called during this cycle.

There is the following relationship between the different step sizes:

dT >= h >= h/n
Continuous Time Basic Blocks

The entire cycle of the various method calls is depicted in Fig. 9-3:

Fig. 9-3 Cycle of method calls in a continuous time block

The events() and dependentParameters() methods are only called
when an explicit, asynchronous event occurs, and especially not during a dT
cycle.

derivatives

update

directOutputs

nondirectOutputs

stateEvents

events
dependentParam.

Reading Inputs

t

C
om

pu
tin

g
Se

qu
en

ce

t0 + h/nt0 t0 + h t0 + dT
Asynchronous
Event (Interrupt)
Continuous Time Basic Blocks 189

190
Fig. 9-4 shows the execution sequence of all methods from the start to the end
of the simulation.

Fig. 9-4 Execution sequence of methods in the CT block

The sequence in which the methods of a basic block are executed is illustrated
by means of the following examples.

The evaluation sequence for synchronous calls, e.g, if n = 1 (Euler) and h =
dT, is:

Init

 Tr = relative time for sequencing
 i = 1...n; n depends on integration algorithm
dT = k*h; with communication interval dT,
 k = 1, 2, ... and integration step width h

h
C

yc
le

NondirectOutputs

StateEvents

DirectOutputs

Read Inputs

Terminate

Update

Derivatives

Start

End

i = n

Tr = dT

Stop

Asynchronous
Event

Processing

No

Yes

No

No

Yes

Yes

dT
 C

yc
le

h
/n

 C
yc

le

DependentParameters

Events

i =
 i+

1

Tr = 0; i = 1

Tr = Tr+h

i =
 1

i =
 1

; T
r =

 0

Reset steplocal variables
Continuous Time Basic Blocks

• at time t = dT: nondirectOutputs - (reading inputs) - directOut-
puts - derivatives

• at time t = dT: stateEvents

• at time t = dT: update

For a more complex integration method, e.g., if n = 2 (Adams-Moulton) and h
= dT, the sequence is:

• at time t = dT/2: nondirectOutputs - (reading inputs) -
directOutputs - derivatives

• at time t = dT: nondirectOutputs - (reading inputs) - directOut-
puts - derivatives

• at time t = dT: stateEvents

• at time t = dT: update

The evaluation sequence for n = 1 and h = dT/2 is:

• at time t = dT/2: nondirectOutputs - (reading inputs) -
directOutputs - derivatives

• at time t = dT/2: stateEvents

• at time t = dT: nondirectOutputs - (reading inputs) - directOut-
puts - derivatives

• at time t = dT: stateEvents

• at time t = dT: update

Understanding the computing sequence and thus the behavior of continuous
time basic blocks is absolutely mandatory for a correct use of these blocks.
Using ESDL as the modeling language gives the additional advantage of pro-
viding an automatic analysis phase that ensures consistent modeling when
connecting several CT blocks. The computing sequence is especially important
for blocks with direct outputs (directOutputs), because current values from the
same iteration cycle have to be applied to the corresponding inputs.

9.6 Modeling with ESDL

The entire language scope of ESDL is available for the specification of continu-
ous time basic blocks. In addition, a semantic check and a number of addi-
tional library functions for describing differential equations are provided. These
are described in the following sections.

9.6.1 Differential Equations in ESDL

In ESDL, each continuous state variable supports the derivation operator ddt.
Differential equations can be described with the ddt operator.
Continuous Time Basic Blocks 191

192
An example may be a PT2 system with the continuous state variables x and xp,
the input in, and the parameters d, T, K. The mathematical description of the
system is:

x’ = xp;

xp’ = (K*in - (2.0*d*T*xp) - x) / (T*T);

When modeling this PT2 system with ESDL, the derivations are specified by
means of the ddt method:

x.ddt(xp);

xp.ddt((K*in - (2.0*d*T*x.ddt()) - x) / (T*T));

The derivatives on the left side of a differential equation (i.e., in the argument
of a derivation method) cannot be accessed. If such an access is required, the
system needs to be reformulated.

The ddt operator can only be used in the derivatives() method.

9.6.2 Semantic Checks in ESDL

Semantic checks can be performed when using ESDL within a continuous time
method. The verification items ensure that the model matches the fundamen-
tal continuous time simulation framework. For example, it is not permitted to
change the value of a state variable directly (instead, the resetContinu-
ousState() function has to be used to internally reset the integration
algorithm). Fig. 9-5 provides an overview of the access rights to those ele-
ments. The semantic check traps any violation of these rights.
Continuous Time Basic Blocks

Fig. 9-5 Access Rights to Elements

The derivation operator ddt supports only the first derivative. The output
equations of the nondirectOutputs() method are analyzed to detect a
direct dependency on an input. If such a case is found, a warning is issued.

9.6.3 Additional Library Functions

For advanced continuous time modeling with ESDL, the system library provides
a number of additional library functions:

• getTime()

• getdT()

• getIntegrationStepsize()

• resetContinuousState()

• resetCTSolver()

The following describes the use of each library function in detail. Access to
these functions in each method is shown in Fig. 9-6.

init

derivatives

update

directOutputs

nondirectOutputs

terminate

events

dependentParameters

stateEvents

in
pu

t

ou
tp

ut

di
sc

re
te

 s
ta

te

dd
t-o

pe
ra

to
r

st
ep

lo
ca

l v
ar

ia
bl

e

lo
ca

l v
ar

ia
bl

e

pa
ra

m
et

er

de
pe

nd
en

t p
ar

am
et

er

co
ns

ta
nt

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

r -

rw

rw r -

r -

r -

r -

r -

r -

r -

r -

rw

rw rw

rw rw

rw rw

rw rw

rw rw

rw rw

- - rw

rw

rw

rw

r -

r -

rwrw

-w

-w

-w

- - r -

- -

-w

- - - - - - - - - -

- -

- -

- -- -

rw

- -

- -

- -

r - r - r -rw rwr - - - rw r - - -

method

el
em

en
t

co
nt

in
uo

us
 s

ta
te

r = read
w = write
Continuous Time Basic Blocks 193

194
Fig. 9-6 Access to functions in the methods of a continuous time block

getTime(): In some cases, the current simulation time is of importance.
For on-line experiments, this is the actually elapsed time. This value can be
obtained using the getTime library function:

t = getTime ();

The getTime function can be used in any method.

getdT(): The getdT library function provides the current step size for
external communication:

step = getdT ();

getIntegrationStepsize(): The getIntegrationStepsize()
library function returns the current integration step size:

h = getIntegrationStepsize ();

resetContinuousState(state, new value): Modeling time- or
state-dependent discontinuities often requires resetting the continuous state
variable. To ensure a correct numeric evaluation, the integration method needs
to be reinitialized internally. This is done using the resetContinuousState
function:

resetContinuousState (x, 0.0);

init

derivatives

update

directOutputs

nondirectOutputs

terminate

events

dependentParameters

stateEvents

getTim
e

getdT

getIntegrationStepsize

resetC
ontinuousState

resetC
TSolver

+

+

+

+

+

+

+

+

-

-

-

-

-

+

+

+

+

++

+

+

+

+ +

+

+

+ + + - -

-

-

++

+

-

-

+ + + + +

method

+ available

- not available

+

-

additional library
functions
Continuous Time Basic Blocks

In this case, the state x is set to 0.0 and, if necessary, the integration method
is reinitialized. Use of the resetContinuousState library function is per-
mitted only in the init, and stateEvents methods. Use of the function is
also allowed in the method update, but it is useless because that method has
no write access to continuous states. it is useless. resetContinu-
ousState(x,y) is followed automatically by resetCTSolver().

resetCTSolver(): With resetCTSolver, the integration method
can be reset explicitly:

resetCTSolver ();

Use of the resetCTSolver library function is permitted only in the init,
update, and stateEvents methods. resetContinuousState(x,y) is
followed automatically by resetCTSolver().

9.7 Modeling in C

Modeling in C offers the capabilities of the C language but no semantic
checks. Continuous time basic blocks specified in C may be hardware-depen-
dent. If programming is done in ANSI-C, it is possible to create hardware-inde-
pendent models even in C. This is necessary if pointers or C subroutines are to
be used. C basic blocks can be used to model hardware-dependent blocks and
in the same way as ESDL basic blocks. C basic blocks require an explicit speci-
fication whether they have a direct pass-through (output depends directly from
the input) or an indirect pass-through by selecting direct or nondirect in
the "Block Behavior" combo box. This affects the automatic determination of
the execution sequence.

9.7.1 Differential Equations in C

In C, an internal derivation variable is created for each continuous state vari-
able. The name of this variable is composed of the name of the state variable
and the prefix ddt.

Examples are the continuous state variables x and xp; the automatically cre-
ated derivation variables are ddtx and ddtxp. They are visible in all methods.

A complete example is a PT2 system with the continuous state variables x and
xp, the input in, and the parameters d, T, K.

Note

When modeling in C, there are no semantic checks ensuring consistent mod-
eling (as in ESDL). Consistency has to be ensured by the user.
It is recommended to use C for modeling continuous time systems only if
absolutely necessary, e.g., for modeling controller-dependent system por-
tions or if C pointers or C subroutines have to be used.
Continuous Time Basic Blocks 195

196
x’ = xp;

xp’ = (K*in - (2.0*d*T*xp) - x) / (T*T);

The PT2 system above can be expressed as C code in the CT block as follows:

ddtx = xp;

ddtxp = (K*in - (2.0*d*T*ddtx) - x) / (T*T);

9.7.2 Additional C Routines

Additional C routines are available for modeling in C. For generic use of these
routines, the internal data structure of the current block must be specified in
the routine's interface. The CTBlock and self methods are visible in each
method.

The following routines are provided:

• getTime

• getdT

• getIntegrationStepsize

• resetCTSolver

• sizeU

• sizeY

• sizeV

• sizeX

• sizeXK

The get and reset routines provide additional ESDL library routines; the
size routine allows a generic model design if the number or array size of
instance variables has to be changed.

The following describes the use of the additional C routines in more detail.
There are no semantic checks and usage restrictions provided with these rou-
tines. It is the user's responsibility to ensure they are used correctly.

real64 getTime(CTSimExperiment *):

The getTime function returns the current simulation time:

t = getTime (CTBlock);

real64 getdT ():

The getdT function returns the current interval for external communication:

step = getdT ();
Continuous Time Basic Blocks

real64 getIntegrationStepsize(CTSimExperiment *):

The getIntegrationStepsize function returns the current integration
step size:

h = getIntegrationStepsize (CTBlock);

void resetCTSolver(CTSimExperiment *):

The integration algorithm can be reset explicitly with the resetCTSolver
routine. An example for its use is resetting a continuous time state:

x = 0.0;

resetCTSolver (CTBlock);

Whenever one or more continuous time states have been set explicitly, the
internal structures need to be reset when finished. Note that the resetCT-
Solver command should always be issued after a value has been assigned to
a continuous time state.

int_32 sizeU (CTSimExperiment *):

The sizeU function returns the number of block inputs:

sizeU = sizeU (CTBlock);

If some of the inputs are arrays, the total number of the scalar elements is
returned. More complex inputs, such as records, structures or classes, are
counted as one element.

int_32 sizeY (CTSimExperiment *):

The sizeY function returns the number of block outputs:

sizeY = sizeY (CTBlock);

If some of the outputs are arrays, the total number of the scalar elements is
returned. More complex outputs, such as records, structures or classes, are
counted as one element.

int_32 sizeV (CTSimExperiment *):

The sizeV function returns the number of block parameters (parameters and
dependent parameters):

sizeV = sizeV (CTBlock);

If some of the parameter states are arrays, the total number of the scalar ele-
ments is returned.

int_32 sizeX (CTSimExperiment *):

The sizeX function returns the number of continuous states:

sizeX = sizeX (CTBlock);
Continuous Time Basic Blocks 197

198
If some of the continuous states are arrays, the total number of the scalar
elements is returned.

int_32 sizeXK (CTSimExperiment *):

The sizeXK function returns the number of discrete states:

nofX = sizeXK (CTBlock);

If some of the discrete states are arrays, the total number of the scalar ele-
ments is returned.
Continuous Time Basic Blocks

10 Continuous Time Structure Blocks and Graphical Hier-
archies

Continuous time structure blocks (CT structure blocks) can be used to build
complex models by combining and linking other CT structure and CT basic
blocks in a graphical block diagram. A slightly modified Block Diagram Editor
(BDE) is provided for the specification of continuous time structure blocks (refer
also to Fig. 8-2 on page 175). The corresponding inputs and outputs are
graphically connected with each other in the BDE.

A continuous time structure block is modeled as a block diagram with a fixed
number of methods. In principle, the methods of the CT basic blocks are auto-
matically applied and cannot be modified in the BDE. The functional descrip-
tion is tied to a single diagram. The correct computing sequence is also
determined automatically and cannot be influenced directly.

For a simple example illustrating the use of CT basic blocks, their methods, and
CT structure blocks up to the simulation in the experiment environment, refer
to the tutorial (volume "Getting Started", chapter "Modeling a Continuous
Time System").

10.1 Reuse of Structure Blocks

CT structure blocks are stored in the database, the same as CT basic blocks,
and are available for other CT structure blocks. This allows building a model
library for a modular and hierarchical model structure. If a CT basic block or CT
structure block is changed in the database, the change is automatically applied
to all models in the database. Maintenance of the CT blocks is thus required at
one place only.

Finished models whose CT blocks may not be replaced with newer versions,
must therefore be stored in a different database.

10.2 Elements of a Continuous Time Structure Block

Not all variables that are used in basic blocks are required in continuous time
structure blocks. The following elements are available:

• Inputs

• Outputs

• Global parameters

• Constants

• OneD and TwoD table parameters

For each element type, there are different dimensions, scopes, and data types.
Continuous Time Structure Blocks and Graphical Hierarchies 199

200
Addition and subtraction operators are provided for which the number of
inputs can be selected individually.

10.3 Block Interfaces

The following sections describe the elements available in continuous time
structure blocks.

Inputs: Block entries are described by inputs. During each evaluation step, all
input variables are read.

Outputs: Block exits are described by outputs. During each evaluation step,
all output variables are updated.

Global Parameters: Global parameters are used to describe parameters
that are visible in the entire model. A global parameter usually corresponds to
a global characteristic property of the real system. An efficient use of global
parameters can reduce the complexity and facilitate the maintenance of the
model.

Constants: Constants are used for values that do not change during an
experiment, such as the gravitation constant.

Dimensions, Scopes, and Data Types: Each type of element has a certain
dimension, a scope of validity, and a type. The possible combinations are illus-
trated in the table below.

Fig. 10-1 Dimension, scope, and data type of elements

10.4 Operators

According to the systems theory, only linear operators are required for the
description of structure blocks. Nonlinear elements are encapsulated in basic
blocks. Therefore, only addition and subtraction operators are provided.

input
output
global parameter
constant

x x x x x x x x
x x x x x x x x
x x x x x x x
x x x x x x x x

sc
al

ar

ar
ra

y

re
co

rd

lo
ca

l

gl
ob

al

lo
gi

c

sd
is

c

ud
is

c

co
nt

dimension scope data type

elements

combinations
Continuous Time Structure Blocks and Graphical Hierarchies

10.5 Algebraic Loops

In the following equation system

x = f1(z)
y = f2(x)
z = f3(input a) (input a assumed valid)

each equation, with the exception of f3, depends on another equation. In
order to allow the system to be computed from top to bottom correctly, the
equations have to be rearranged as follows:

z = f3(input a)
x = f1(z)
y = f2(x)

In this sequence, the system can be easily computed, even by conventional PC
programs.

An algebraic loop exists if:

y=f1(x);
x=f2(y);

i.e., if two functions directly depend on each other. y is needed to calculate x,
and x is needed to calculate y.

10.6 Direct and Nondirect Output

ASCET sorts CT blocks or methods in connected CT blocks directly depending
on each other automatically in the correct order (automatic sequencing). If an
algebraic loop exists in the model, ASCET terminates with an appropriate error
message when determining the computing sequence. This occurs, for exam-
ple, if two or more CT blocks with direct outputs form a feedback loop.

To enable the automatic determination and control of the computing
sequence, the output property has to be specified. Outputs that directly
depend on inputs have to be specified or described in the directOutputs
method. Such a CT basic block is said to have a direct output or a direct pass-
through. Outputs that do not directly depend on inputs are specified in the
nondirectOutputs method. Such a CT basic block is said to have a nondi-
rect output or a nondirect pass-through.

Wrongly declared outputs (e.g., direct output in the nondirectOutputs
method) are detected if the ESDL modeling language is used. In CT blocks
written in the C programming language, the nondirect or direct property is
determined by the model designer.
Continuous Time Structure Blocks and Graphical Hierarchies 201

202
The nondirectOutputs and directOutputs methods essentially deter-
mine the behavior of the CT basic blocks and the computing sequence in a CT
structure block. This is illustrated again in the following example.

Fig. 10-2 Example: Direct and nondirect output

In general, an output has a direct pass-through behavior if it directly depends
on one of the inputs. For example, an amplifier block (p behavior) is described
by the function:

out = K * in

The output directly depends on the input. Consequently, the inputs have to be
read first before the output can be calculated. The function must be written
using the directOutputs method.

If the output does not depend on one of the inputs, for example, if the output
depends on a continuous state or a parameter condition, it does not have
direct pass-through behavior. Nondirect outputs are calculated from the values
of the previous step. A CT block having a direct output terminates an existing
loop. An example is the so-called PT1 behavior:

x’ = ((K*in - x)/T);

out = x;

The differential equation is solved using an integration method that requires
the last output value and the input value in to calculate the current output
va lue x . The ass ignment out=x has to be wr i t ten us ing the
nondirectOutputs method (the differential equation is discussed in the
derivatives method).

Two simple examples illustrate a correct and an incorrect coupling of two CT
basic blocks with direct and nondirect output within a CT structure block. It is
essential to understand that a direct output requires the input data of the cur-
rent time step. A nondirect output can be calculated and sent without the
input information of the current time step. Therefore, the direct outputs are
calculated after the nondirect outputs.

in

out_direct

out_nondirect

out_direct = K * in;

x' = ((K*in - x)/T;
out_nondirect = x;
Continuous Time Structure Blocks and Graphical Hierarchies

Fig. 10-3 shows a combination of two CT blocks with direct and nondirect
pass-through behavior that does not cause an algebraic loop.

Fig. 10-3 Circuit of CT blocks with direct and nondirect outputs

The P block requires a valid input value for its calculation. Consequently, the
nondirectOutputs method in the PT1 block has to be calculated first and
then the directOutputs method in the P block.

Fig. 10-4 Algebraic loop

In Fig. 10-4, two CT blocks with direct outputs are connected in series. This
results in an algebraic loop. Each block requires the current output value of the
other block. ASCET reports this error.

Direct pass-through circuits must be avoided. However, it is not possible to
resolve algebraic loops automatically and implicitly because an implicit resolu-
tion of algebraic loops requires an iterative method, which is not acceptable
under real-time conditions.

An advantage over the automatic resolution of an algebraic loop is that the
user, knowing his model, can insert a block without a direct output at the most
appropriate position so the subsequent blocks can be computed in the next
iteration step.

In principle, there are two alternatives to avoid algebraic loops:

1. Inserting a block without a direct output. As this corresponds to a stor-
age element, the integration step size may have to be decreased to
avoid that the dynamics of the model is impaired.

2. Modifying the model structure to eliminate the algebraic loop. Refor-
mulating the equations in the CT basic blocks, modifying the structure.

P PT1

-
directOutput directOutput

nondirectOutput nondirectOutput

in out

P P

-
directOutput directOutput

nondirectOutput nondirectOutput

in out
Continuous Time Structure Blocks and Graphical Hierarchies 203

204
10.7 Difference Between Graphical Hierarchies and CT Structure Blocks

Externally, CT structure blocks behave like CT basic blocks regarding their com-
puting sequence. The computing sequence is determined in the CT structure
block. The structure behaves like a block with direct or nondirect output
depending on whether the outputs of the structure block depend on the
inputs directly or nondirectly.

Hierarchies, however, have a purely symbolic nature used to layout a CT struc-
ture block more clearly. They do not affect the simulation. Fig. 10-5 (left part)
shows an example in which a CT structure block has a direct output to a CT
basic block which in turn has a direct output to the same CT structure block.
This causes an algebraic loop as the two blocks within the structure block are
computed directly succeeding each other (virtually simultaneously). However,
the second CT block within the structure block requires a current output of the
external CT block.

Fig. 10-5 Structuring with CT structure blocks or graphical hierarchies

The algebraic loop can be avoided by resolving the structure block and replac-
ing it with a graphical hierarchy (Fig. 10-5, right-hand part) that combines
model parts obviously related with each other. A drawback of hierarchies is
that they cannot be stored separately but only together with the structure
block in which they are contained.

10.8 Computing Sequence of Methods Within a Structure

The computing sequence in a CT structure block is essentially determined by
the computing sequence of the methods within a CT basic block that was
described in chapter 9.5 (refer to Fig. 9-4 on page 190). It depends mainly on
the integration method and the selected time or communication intervals.

CT Structure Block

CT basic
block

CT basic
block

CT basic
block

Graphical
Hierarchy

CT basic
block

CT basic
block

CT basic
block
Continuous Time Structure Blocks and Graphical Hierarchies

In principle, the methods in the structure block are computed in the same
sequence as in the basic block (init, nondirectOutputs, directOut-
puts,...), with the same method being executed first in all basic blocks of the
structure block before switching to the next method. This means that the
init method is first executed in all blocks before starting the nondi-
rectOutputs method in any basic block.

As long as the directOutputs method is not used in any CT basic block, the
sequence is exclusively determined by the CT basic blocks. The order in which
the same method is executed in the individual CT basic blocks is not important.
This means that first all init methods are computed, then all nondi-
rectOutputs methods, etc., each method in any arbitrary order of blocks.

If the directOutputs method is used in more than one block, the comput-
ing sequence becomes important, because some of the inputs of the
directOutputs methods require current values from other outputs. If the
input is connected to an output of the nondirectOutputs method, there is
always a current value, because this method is first computed in all CT blocks
before starting the directOutputs method. However, if the input depends
on the output of another directOutputs method, this method must be
computed first.

Example: Computing Sequence

Fig. 10-6 shows the computing sequence in a small CT structure block with
coupled CT basic blocks. readInputs is not a method in its own right but
belongs to directOutputs; it is shown to emphasize that current values
have to be read first in order to compute the directOutputs method. The
computing sequence is determined by the automatic sequencing algorithm.
The numbers indicate the order of processing. Identical numbers mean that
the execution sequence is arbitrary.

Fig. 10-6 Computing sequence of methods for coupled CT blocks

 1 1

 2 2

 1

 2

 1

 2

 410 8

 5 3 9 7

 6

11 11 11 11

12 121212

CT Block 1

derivatives

d irectO utput

read Inputs

nond irectO utput

in it

stateEvents

CT Block 2

derivatives

d irectO utput

read Inputs

nond irectO utput

in it

stateEvents

CT Block 3

derivatives

d irectO utput

readInputs

nondirectO utput

in it

stateEvents

CT Block 4

derivatives

d irectO utput

readInputs

nond irectO utput

in it

stateEvents
Continuous Time Structure Blocks and Graphical Hierarchies 205

206
The computing sequence is especially important for CT blocks with direct out-
puts (directOutputs method), because current values from the same itera-
tion cycle have to be applied to the corresponding inputs (shaded sections in
Fig. 10-6).

The CT blocks are processed from top to bottom. Furthermore, each method is
executed sequentially one after the other. init is executed only once at the
start of the simulation.

Within the integration loop (nondirectOutputs up to derivatives
methods), all nondirectOutputs are always computed. Their sequence is
not fixed. As the directOutputs method directly depends on the corre-
sponding input, ASCET searches all directOutputs methods until the cor-
responding readInputs no longer depends on another directOutputs
method (shaded section in Fig. 10-6). In Fig. 10-6, this is the case in CT basic
block 3. This results in the following sequence for reading the inputs and exe-
cuting the directOutputs method:

1. readInputs (CT block 3), directOutputs (CT block 3)

2. readInputs (CT block 4), directOutputs (CT block 4)

3. readInputs (CT block 1), directOutputs (CT block 1)

4. readInputs (CT block 2), directOutputs (CT block 2)

Only then the derivatives methods 1-4 are executed in arbitrary order. In
case of a single-stage integration method, now follow the stateEvents
methods for the CT blocks 1-4 in arbitrary order. Then again back to nondi-
rectOutputs.

In case of n-stage integration methods, nondirectOutputs - directOut-
puts (as described above, in the correct order) and derivatives of CT
blocks 1-4 are executed n times, before stateEvents is executed (also refer
to Fig. 9-4 on page 190).

This means that the communication for combined CT basic blocks and/or CT
structure blocks within one structure also occurs during the intermediate steps
of the integration method. Each time, the nondirectOutputs up to
derivatives methods are executed (single line frame).

The update method is executed after stateEvents only at the granularity
of the communication interval dT and terminate only at the end of the sim-
ulation. For each, the computing sequence within the structure block is arbi-
trary.

There are therefore typically several equivalent computing sequences to solve
a structure block. The sequencing algorithm of ASCET automatically selects
one of the possible sequences.
Continuous Time Structure Blocks and Graphical Hierarchies

Example: Execution Not Possible

If there is an algebraic loop, the computing sequence cannot be determined
automatically. This situation is shown in Fig. 10-7. Each input of a
directOutputs method depends on another directOutputs, closing
the loop from CT block 4 to CT block 1. This results in an appropriate error
message.

Fig. 10-7 Algebraic loop

CT Block 1

derivatives

directOutput

readInputs

nondirectOutput

init

stateEvents

CT Block 2

derivatives

directOutput

readInputs

nondirectOutput

init

stateEvents

CT Block 3

derivatives

directOutput

readInputs

nondirectOutput

init

stateEvents

CT Block 4

derivatives

directOutput

readInputs

nondirectOutput

init

stateEvents
Continuous Time Structure Blocks and Graphical Hierarchies 207

208
 Continuous Time Structure Blocks and Graphical Hierarchies

11 Projects and Hybrid Projects

Projects are used for:

• Online simulation (hardware-in-the-loop) of CT blocks and Standard
ASCET blocks

• Continuous time modeling of several CT structures with different inte-
gration algorithms and step sizes in a project

• Simulation of CT blocks in real-time

A project can consist of standard or/and continuous time modules or struc-
tures. A hybrid project is a project that contains both standard ASCET blocks
and continuous time components. For example, in the hardware-in-the-loop
simulation, the sending, receiving, and processing of signals from the real pro-
cess (that is simulated by continuous time structures) are usually processed by
standard modules.

When modeling and simulating systems with very fast and very slow compo-
nents, e.g., hydraulic and mechanical components, the computing time can be
reduced by using different integration methods or different integration steps.
For this purpose, the respective model parts have to be located in a CT basic
block or CT structure block, as appropriate.

The various CT model parts are loaded into a project and connected with each
other in the Block Diagram Editor. In a project, each CT model part (CT basic
block or CT structure block) can be computed as an independent process using
a separate integration method and integration step size. It should be noted,
however, that the individual blocks are linked to different tasks that communi-
cate with each other only in fixed, selectable time intervals dT.

There is no exchange of values for intermediate steps of the integration
method as is the case for coupling CT blocks with CT structures. There is also
no automatic semantic verification as for CT structures that determines the
computing sequence for the integration. The above applies only to CT
blocks/structure at the project level. CT blocks and CT structures within the CT
structures communicate at the granularity of the integration step size, of
course, also within projects.

To ensure numeric stability, strongly cohesive systems should, therefore, not be
coupled at the project level but within CT structures. Systems with weak cohe-
sion can, however, be structured in projects. The advantage for weakly cohe-
sive systems with highly disparate dynamic properties is that the integration
method and integration step size can be selected individually to achieve an
optimal computing time.
Projects and Hybrid Projects 209

210
Fig. 11-1 schematically shows a project composed of one discrete standard
block and two different CT structure blocks.

Fig. 11-1 Project with two continuous time blocks and one discrete block

A hybrid project (e.g., for the ECU test automation) combines a controller
model (Standard ASCET block) with a control system model (continuous CT
structure blocks). The continuous time model part is itself composed of two CT
structure blocks with different integration methods and different step sizes.
The communication between the CT blocks takes place at 2 msec intervals
while the CT blocks communicate with the discrete standard block every 10
msec.

11.1 Combining Continuous Time Blocks With Modules

Discrete modules in a project communicate via messages (global variables in
ASCET blocks). There are no explicit connections (connecting lines) between
Send and Receive messages; they are assigned to each other by their names.

Euler h=0.00005 sec
n=1
dT=0.002 sec

CT structure block CT1

Project

CT structure block CT2

Discrete standard block

Adams-Moulton h=0.002 sec
n=2
dT=0.002 sec

ECU simulation

dT=0.01 sec
Projects and Hybrid Projects

Continuous time blocks, on the other hand, communicate among themselves
and with modules via connections that have been specified graphically. The
connections are built using the same method as in block diagrams.

Fig. 11-2 Combining continuous time blocks with modules

For discrete modules, the user has to explicitly define the tasks and to assign
the processes defined in the module editor to the appropriate tasks.

CT blocks do not require an explicit definition of tasks, because these are
defined automatically when needed. A simulate task and an event task are
generated for each CT block. In addition, a common init task and a common
terminate task are generated for all CT blocks in a project. For the example
above, the following tasks are generated automatically:

• simulate_CT1 (plant_1)

• simulate_CT2 (plant_2)

• event_CT1 (plant_1)

• event_CT2 (plant_2)

• initialize_CT (plant_1 ... plant_n)

• terminate_CT (plant_1 ... plant_n)

These predefined tasks are static. They are all defined as cooperative tasks. The
following sections describe the meaning of these tasks in more detail.

controller_1

module

plant_1

A

B

C

D

CT
block

E G

H

B

F

J

H

C

L

B

M

implicit connection between modules :
controller_1 - B and controller_2 - B
 controller_1 - C and controller_2 - C

no implicit connection between modules
and CT blocks

CT
block

plant_2

controller_2

module

no implicit connection between CT blocks
Projects and Hybrid Projects 211

212
simulate_CTn Tasks:

For the simulate_CTn tasks, one simulation step is computed; the step size
is dT. The step size can be specified for each simulate_CTn task individually;
this allows for having several integration methods for different CT structure
blocks within a project. The integration step size can be set during an experi-
ment interactively. A simulation task normally uses the Timer trigger mode.

event_CTn Tasks:

When calling the event_CTn task, the event methods of the underlying CT
blocks are executed. Because event methods are usually called asynchro-
nously, the trigger mode of the event_CTn task should either be Software or
Event.

initialize_CT Task:

When calling the initialize_CT task, the init methods of the underlying
CT blocks are executed. As init methods are usually computed at the begin-
ning of a simulation, the trigger mode of the initialize_CTn task should
be Init.

terminate_CT Task:

When calling the terminate_CT task, the terminate methods of the
underlying CT blocks are executed. The terminate task is automatically exe-
cuted when the experiment finishes.
Projects and Hybrid Projects

ASCET V5.2
Reference Lists

214

12 The ASCET System Library

12.1 Bit Operators

12.1.1 and

and returns the binary AND conjunction of the two arguments..

On activation of method

and: The result of the binary AND conjunction of
bitArray1 and bitArray2 is returned.

12.1.2 clearBit

clearBit resets the bit at the specified position of the argument. The posi-
tion of the LSB1 is 0.

On activation of method

clearBit: The argument bitArray is returned with a zero-
bit at position position.

Methods Arguments Return Value

and bitArray1::
unsigned discrete

unsigned discrete

bitArray2::
unsigned discrete

Methods Arguments Return Value

clearBit bitArray::
unsigned discrete

unsigned discrete

position::
unsigned discrete

1. Least Significant Bit
The ASCET System Library 215

216
12.1.3 getBit

getBit returns the value of the bit at the specified position of the argument
as a logical value.

On activation of method

getBit: TRUE is returned, if the bit at position position
is equal to 1, otherwise FALSE is returned.

12.1.4 or

or returns the binary OR conjunction of the two arguments.

On activation of method

or: The result of the binary OR conjunction of
bitArray1 and bitArray2 is returned.

Methods Arguments Return Value

getBit bitArray::
unsigned discrete

logical

position::
unsigned discrete

Methods Arguments Return Value

or bitArray1::
unsigned discrete

unsigned discrete

bitArray2::
unsigned discrete
The ASCET System Library

12.1.5 rotate

rotate rotates the bits of the argument to the left by a specified number of
positions.

On activation of method

rotate: The result of the left-rotation of bitArray by k
positions is returned.

12.1.6 setBit

setBit sets the bit at the specified position of the argument. The position of
the LSB is 0.

On activation of method

setBit: The argument bitArray is returned with a one-
bit at position position.

Methods Arguments Return Value

rotate bitArray::
unsigned discrete

unsigned discrete

k::
unsigned discrete

Methods Arguments Return Value

setBit bitArray::
unsigned discrete

unsigned discrete

position::
unsigned discrete
The ASCET System Library 217

218
12.1.7 shiftLeft

shiftLeft shifts all bits of the argument to the left. The right bits are filled
with zeros.

On activation of method

shiftLeft: The result of the left-shift by k positions is returned.
For k=1 the result corresponds to the multiplication
by two.

12.1.8 shiftRight

shiftRight shifts all bits of the argument to the right. The left bits are filled
with zeros.

On activation of method

shiftRight: The result of the right-shift by k positions is
returned.

Methods Arguments Return Value

shiftLeft bitArray::
unsigned discrete

unsigned discrete

k::
unsigned discrete

Methods Arguments Return Value

shiftRight bitArray::
unsigned discrete

unsigned discrete

k::
unsigned discrete
The ASCET System Library

12.1.9 toggleBit

toggleBit inverts the bit at the specified position of the argument.

On activation of method

toggleBit: The argument bitArray is returned with the bit
at position k toggled.

12.1.10 writeBit

writeBit writes the value of the logical argument to the specified position
of the unsigned discrete argument.

On activation of method

writeBit For aBool = FALSE the argument is returned
with a zero-bit at position position , for aBool
= TRUE the argument is returned with a one-bit at
position position.

Methods Arguments Return Value

toggleBit bitArray::
unsigned discrete

unsigned discrete

position::
unsigned discrete

Methods Arguments Return Value

writeBit bitArray::
unsigned discrete

unsigned discrete

aBool::logical

position::
unsigned discrete
The ASCET System Library 219

220
12.1.11 writeByte

writeByte writes the values of eight logical inputs to the eight least signifi-
cant bits of the argument.

On activation of method

writeByte: The argument is returned with the values of b0 to
b7 written to the bit positions 0 to 7. 0 is the posi-
tion of the LSB and the logical values TRUE and
FALSE are mapped to 1 and 0 respectively.

12.1.12 xor

xor returns the binary exclusive OR conjunction of the two arguments.

On activation of method

xor: The result of the binary exclusive OR conjunction of
bitArray1 and bitArray2 is returned.

Methods Arguments Return Value

writeByte bitArray::
unsigned discrete

unsigned discrete

b0::logical

b1::logical

b2::logical

b3::logical

b4::logical

b5::logical

b6::logical

b7::logical

Methods Arguments Return Value

xor bitArray1::
unsigned discrete

unsigned discrete

bitArray2::
unsigned discrete
The ASCET System Library

12.2 Comparators

12.2.1 ClosedInterval.

ClosedInterval returns TRUE if the value x is in the closed interval
defined by A and B.

On activation of method

out: TRUE is returned, if A <= x <= B. Other-
wise FALSE is returned.

12.2.2 LeftOpenInterval.

LeftOpenInterval returns TRUE if the value x is in the left open interval
defined by A and B.

On activation of method

out: TRUE is returned, if A < x <= B. Otherwise
FALSE is returned.

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous
The ASCET System Library 221

222
12.2.3 OpenInterval.

OpenInterval returns TRUE if the value x is in the open interval defined
by A and B.

On activation of method

out: TRUE is returned, if A < x < B. Otherwise
FALSE is returned.

12.2.4 RightOpenInterval.

RightOpenInterval returns TRUE if the value x is in the right open inter-
val defined by A and B.

On activation of method

out: TRUE is returned, if A <= x < B. Otherwise
FALSE is returned.

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous
The ASCET System Library

12.2.5 GreaterZero.

GreaterZero returns TRUE if the value x is greater than zero.

On activation of method

out: TRUE is returned, if x > 0.0. Otherwise
FALSE is returned.

12.3 Counter & Timer

12.3.1 CountDown.

CountDown decrements the counter and signals when the counter has
reached zero.

On activation of method

start: The counter is set to the start value.

compute: The counter is decremented by one.

out: TRUE is returned if the counter is greater than
zero. Otherwise, FALSE is returned.

Methods Arguments Return Value

out x::continuous logical

Methods Arguments Return Value

start startValue::
unsigned discrete

none

compute none none

out none logical
The ASCET System Library 223

224
12.3.2 CountDownEnabled.

CountDownEnabled decrements the counter and signals when the counter
has reached zero. This counter must be enabled explicitly.

On activation of method

start: The counter is set to the start value.

compute: If enable is TRUE, the counter is decrement by
one.

out: TRUE is returned if the counter is greater zero.
Otherwise, FALSE is returned.

12.3.3 Counter.

Counter increments the counter by one.

On activation of method

reset: The counter is set to zero.

compute: The counter is increment by one.

out: The counter value is returned.

Methods Arguments Return Value

start startValue::
unsigned discrete

none

compute enable::logical none

out none logical

Methods Arguments Return Value

reset none none

compute none none

out none unsigned discrete
The ASCET System Library

12.3.4 CounterEnabled.

Counter increments the counter by one. This counter must be enabled
explicitly.

On activation of method

reset: If initEnable is TRUE, the counter is set to
zero.

compute: If enable is TRUE, the counter is incre-
mented by one.

out: The counter value is returned.

12.3.5 StopWatch.

StopWatch increments the time counter by one dT.

On activation of method

reset: The time counter is set to zero.

compute: The time counter is increment by dT.

out: The time counter value, i.e. the time elapsed
since the last start, is returned.

Methods Arguments Return Value

reset initEnable::
logical

none

compute enable::logical none

out none unsigned discrete

Methods Arguments Return Value

reset none none

compute none none

out none continuous
The ASCET System Library 225

226
12.3.6 StopWatchEnabled.

StopWatchEnabled increments the time counter by one dT. This timer
must be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, the time internal
counter is set to zero.

compute: If enable is TRUE, the time counter is incre-
ment by dT.

out: The time counter value, i.e. the time elapsed
since the last start and while enabled was
TRUE is returned.

12.3.7 Timer.

Timer decrements the time counter by dT and signals when the time counter
has reached zero. It is not retriggerable.

On activation of method

start: The time counter is set to startTime if the
time counter value was previously less than or
equal to zero.

compute: The time counter is decremented by dT.

Methods Arguments Return Value

reset initEnable::
logical

none

compute enable::logical none

out none continuous

Methods Arguments Return Value

start startTime::
continuous

none

compute none none

out none logical
The ASCET System Library

out: TRUE is returned, if the time counter value is
greater than zero. Otherwise, FALSE is
returned.

12.3.8 TimerEnabled.

TimerEnabled decrements the time counter by dT and signals when the
time counter has reached zero. It is must be enabled explicitly.

On activation of method

compute: If enable is TRUE, in has a rising edge and
the time counter value is less or equal to zero,
the timer is started,i.e. its counter value is set to
the start time. Otherwise, the time counter is
decremented by dT. If enable is FALSE,
nothing happens.

out: TRUE is returned, if the time counter is greater
than zero.Otherwise, FALSE is returned.

12.3.9 TimerRetrigger.

TimerRetrigger decrements the time counter by dT and signals when the
time counter has reached zero. It can be retriggered.

On activation of method

Methods Arguments Return Value

compute enable::logical
in::logical
startTime::
continuous

none

out none logical

Methods Arguments Return Value

start startTime::
continuous

none

compute none none

out none logical
The ASCET System Library 227

228
start: The time counter is set to the start value.

compute: The time counter is decremented by dT.

out: TRUE is returned, if the time counter value is
greater than zero. Otherwise, FALSE is
returned.

12.3.10 TimerRetriggerEnabled.

TimerRetriggerEnabled decrements the time counter by dT and sig-
nals when the time counter has reached zero. It can be retriggered and must
be enabled explicitly.

On activation of method

compute: If enable is TRUE and in has a rising edge,
the timer is started, i.e. its counter value is set
to the start value. Otherwise, the time counter
is decremented by dT (the time frame). If
enable is FALSE, nothing happens.

out: TRUE is returned, if the time counter value is
greater than zero. Otherwise, FALSE is
returned.

12.4 Delay

12.4.1 DelaySignal.

DelaySignal delays its input signal by one evaluation step.

Methods Arguments Return Value

compute enable::logical
in::logical
startValue::
continuous

none

out none logical

Methods Arguments Return Value

compute signal::logical none

out none logical
The ASCET System Library

On activation of method

compute: The input signal is buffered.

out: The buffered signal is returned, thus the input
signal is delayed by one step.

12.4.2 DelaySignalEnabled.

DelaySignalEnabled delays its input signal by one evaluation step. It
must be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, initValue is
buffered.

compute: If enable is TRUE, the input signal is buff-
ered.

out: The buffered signal is returned, thus the input
signal is delayed by one step.

12.4.3 DelayValue.

DelayValue delays its input value by one evaluation step.

Methods Arguments Return Value

reset initEnable::
logical
initValue::logi-
cal

none

compute signal::logical
enable::logical

none

out none logical

Methods Arguments Return Value

compute value::continuous none

out none continuous
The ASCET System Library 229

230
On activation of method

compute: The input value is buffered.

out: The buffered value is returned, thus the input
value is delayed by one step.

12.4.4 DelayValueEnabled.

DelayValueEnabled delays its input value by one evaluation step. It must
be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, initValue is
buffered.

compute: If enable is TRUE, the input value is buff-
ered.

out: The buffered value is returned, thus the input
value is delayed by one step.

12.4.5 TurnOffDelay.

TurnOffDelay delays a falling edge of the input signal.

Methods Arguments Return Value

reset initEnable::
logical
initValue::
continuous

none

compute value::continuous
enable::logical

none

out none logical

Methods Arguments Return Value

compute signal::logical
delayTime::
continuous

none

out none logical
The ASCET System Library

On activation of method

compute: A falling edge of the input signal is delayed. If
the signal flips from TRUE to FALSE, a timer
is started. On being FALSE the timer is incre-
mented by dT and is compared to
delayTime. If the input signal is TRUE, the
timer is reset.

out: TRUE is returned if the input signal is TRUE or
the timer has not exceeded delayTime.
Otherwise, FALSE is returned.

12.4.6 TurnOffDelayVariable.

TurnOffDelay delays a falling edge of the input signal. The duration of the
delay can be modified at runtime via the Time variable.

On activation of method

compute: A falling edge of the input signal is delayed. If
the signal flips from TRUE to FALSE, a timer
is started. On being FALSE the timer is incre-
mented by dT and is compared to
delayTime. If the input signal is TRUE, the
timer is reset.

out: TRUE is returned if the input signal is TRUE or
the timer has not exceeded delayTime.
Otherwise, FALSE is returned.

Methods Arguments Return Value

compute signal::logical
delayTime::
continuous

none

out none logical
The ASCET System Library 231

232
12.4.7 TurnOnDelay.

TurnOnDelay delays a rising edge of the input signal.

On activation of method

compute: A rising edge of the input signal is delayed. If
the signal flips from FALSE to TRUE, a timer
is started. On being TRUE the timer is incre-
mented by dT and is compared to
delayTime. If the input signal is FALSE,
the timer is reset.

out: FALSE is returned if the input signal is
FALSE, or the timer has not exceeded
delayTime. Otherwise, TRUE is returned.

12.4.8 TurnOnDelayVariable.

TurnOnDelayVariable delays a rising edge of the input signal. The dura-
tion of the delay can be modified at runtime via the Time variable.

On activation of method

compute: A rising edge of the input signal is delayed. If
the signal flips from FALSE to TRUE, a timer
is started. On being TRUE the timer is incre-

Methods Arguments Return Value

compute signal::logical
delayTime::
continuous

none

out none logical

Methods Arguments Return Value

compute signal::logical
delayTime::
continuous

none

out none logical
The ASCET System Library

mented by dT and is compared to
delayTime. If the input signal is FALSE,
the timer is reset.

out: FALSE is returned if the input signal is
FALSE, or the timer has not exceeded
delayTime. Otherwise, TRUE is returned.

12.5 Memory

12.5.1 Accumulator.

Accumulator adds up its input value.

On activation of method

reset: The accumulator value is set to initValue.

compute: The accumulator is incremented by the input
value, i.e.accumulator (new) =
accumulator (old) + input
value.

out: The accumulator value is returned.

Methods Arguments Return Value

reset initValue::
continuous

none

compute value::continuous none

out none continuous
The ASCET System Library 233

234
12.5.2 AccumulatorEnabled.

AccumulatorEnabled adds up its input value. It must be enabled explic-
itly and its accumulator value can be limited.

On activation of method

reset: If initEnable is TRUE, the accumulator
value is set to initValue.

compute: If enable is TRUE, the accumulator is incre-
mented by the input value, i.e.
accumulator(new) =
accumulator(old) + input value.
Additionally, the accumulator value is limited by
mn and mx.

out: The accumulator value is returned.

Methods Arguments Return Value

reset initValue::
continuous
initEnable::
logical

none

compute value::continuous
mn::continuous
mx::continuous
enable::logical

none

out none continuous
The ASCET System Library

12.5.3 AccumulatorLimited.

AccumulatorLimited adds up its input value. Its accumulator value can
be limited.

On activation of method

reset: The accumulator value is set to initValue.

compute: The accumulator is incremented by the input
value, i.e. accumulator(new) =
accumulator(old) + input value.
Additionally, the accumulator value is limited by
mn and mx.

out: The accumulator value is returned.

12.5.4 RSFlipFlop.

RSFlipFlop is a flip flop with a reset and a set input, where the reset input
dominates the set input.

Methods Arguments Return Value

reset initValue::
continuous

none

compute value::continuous
mn::continuous
mx::continuous

none

out none continuous

Methods Arguments Return Value

compute r::logical
s::logical

none

q none logical

nq none logical
The ASCET System Library 235

236
On activation of method

compute: If r is TRUE, the state of the flip flop is set to
FALSE. Otherwise, if s is TRUE, the state is
set to TRUE. If both r and s are FALSE, the
state is left unchanged.

q: The state of the flip flop is returned.

nq: The negated value of the state is returned.

12.6 Miscellaneous

12.6.1 DeltaOneStep.

DeltaOneStep returns the difference of the current input value and the last
input value.

On activation of method

compute: The previous input value is subtracted from the
input value.

out: The difference is returned.

12.6.2 DifferenceQuotient.

DifferenceQuotient computes the difference quotient of the input
value.

On activation of method

compute: The difference quotient (value - previ-
ous value)/dT is computed.

out: The difference quotient is returned.

Methods Arguments Return Value

compute value::continuous none

out none continuous

Methods Arguments Return Value

compute value::continuous none

out none continuous
The ASCET System Library

12.6.3 EdgeBi.

EdgeBi detects a bidirectional edge of the logical input signal.

On activation of method

compute: The input signal is compared to the previous
input signal.

out: TRUE is returned, if the input signal and the
previous input signal differ. Otherwise, FALSE
is returned.

12.6.4 EdgeFalling.

EdgeFalling detects a falling edge of the logical input signal.

On activation of method

compute: The input signal is compared to the previous
input signal.

out: TRUE is returned, if the input signal is low and
the previous input signal was high. Otherwise,
FALSE is returned.

Methods Arguments Return Value

compute signal::logical none

out none logical

Methods Arguments Return Value

compute signal::logical none

out none logical
The ASCET System Library 237

238
12.6.5 EdgeRising.

EdgeRising detects a rising edge of the logical input signal.

On activation of method

compute: The input signal is compared to the previous
input signal.

out: TRUE is returned, if the input signal is high and
the previous input signal was low. Otherwise,
FALSE is returned.

12.6.6 Mux1of4.

Mux1of4 switches between the four inputs values s0,...,s3 on the
binary representation of their index.

On activation of method

out: The input value si (index i) is returned
with i = b0 + 2*b1, interpreting FALSE
as 0 and TRUE as 1.

Methods Arguments Return Value

compute signal::logical none

out none logical

Methods Arguments Return Value

out b0::logical
b1::logical
s0::continuous
s1::continuous
s2::continuous
s3::continuous

continuous
The ASCET System Library

12.6.7 Mux1of8.

Mux1of8 switches between the eight inputs values s0,...,s7 on the
binary representation of their index.

On activation of method

out: The input value si(index i) is returned
with i = b0 + 2*b1+ 4*b2, interpreting
FALSE as 0 and TRUE as 1.

12.7 Nonlinears

12.7.1 Hysteresis-Delta-RSP.

Hysteresis-Delta-RSP is a hysteresis with a right switching point and a
delta offset

Methods Arguments Return Value

out b0::logical
b1::logical
b2::logical
s0::continuous
s1::continuous
s2::continuous
s3::continuous
s4::continuous
s5::continuous
s6::continuous
s7::continuous

continuous

Methods Arguments Return Value

out x::continuous
delta::continuous
rsp::continuous

logical
The ASCET System Library 239

240
On activation of method

out: TRUE is returned, if x > rsp. FALSE is
returned, if x < (rsp - delta). The
return value is unchanged, if x lies within the
open interval](rsp - delta), rsp[.

12.7.2 Hysteresis-LSP-Delta.

Hysteresis-LSP-Delta is a hysteresis with a left switching point and a
delta offset.

On activation of method

out: TRUE is returned, if x > (lsp + delta).
FALSE is returned, if x < lsp. The return
value is unchanged, if x lies within the open
interval]lsp, (lsp + delta)[.

12.7.3 Hysteresis-LSP-RSP.

Hysteresis-LSP-RSP is a hysteresis with both a left and a right switching
point.

On activation of method

out: TRUE is returned, if x > rsp. FALSE is
returned, if x < lsp. The return value is
unchanged, if x lies within the open interval
]lsp, rsp[.

Methods Arguments Return Value

out x::continuous
lsp::continuous
delta::continuous

logical

Methods Arguments Return Value

out x::continuous
lsp::continuous
rsp::continuous

logical
The ASCET System Library

12.7.4 Hysteresis-MSP-DeltaHalf.

Hysteresis-MSP-DeltaHalf is a hysteresis with a middle switching
point and a delta/2 offset.

On activation of method

out: TRUE is returned, if x > (msp +
deltahalf). FALSE is returned, if x <
(msp - deltahalf). The return value is
unchanged, if input x is in the open interval
](msp - deltahalf), (msp +
deltahalf)[.

12.7.5 Limiter.

Limiter returns the input x limited by mn and mx.

On activation of method

out: The input x is limited by mn and mx and is
returned, i.e max(min(x, mx), mn).
There is no check if mn <= mx.

Methods Arguments Return Value

out x::continuous
msp::continuous
deltahalf::
continuous

logical

Methods Arguments Return Value

out x::continuous
mn::continuous
mx::continuous

continuous
The ASCET System Library 241

242
12.7.6 Signum.

Signum returns the sign of the input.

On activation of method

out: 1.0 is returned if x > 0.0, 0.0 is returned
if x = 0.0, and -1.0 is returned if x < 0.0.

12.8 Transfer Function

12.8.1 Control

dT1.

dT1 is a time discrete differentiation transfer function with time constant T
and gain constant K.

On activation of method

compute: The differentiation value is computed via a P-
function and an I-function which is backcou-
pled.

out: The differentiation value is returned.

Methods Arguments Return Value

out x::continuous continuous

Methods Arguments Return Value

compute in::continuous
T::continuous
K::continuous

none

out none continuous
The ASCET System Library

P.

P is a time discrete proportional transfer function with gain constant K

On activation of method

 out: The return value out = in * K is computed.

PI.

PI is a time discrete proportional integrator with time constant T and gain
constant K.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PI-function is computed as the
sum of a P-function and an I-function.

out: The value of the PI-function is returned.

Methods Arguments Return Value

out in::continuous
K::continuous

continuous

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
T::continuous
K::continuous

none

out none continuous
The ASCET System Library 243

244
PID.

PID is a time discrete proportional integrator with differential part with time
constants Tv and Tn and gain constant K.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PID-function is computed as a
sum of a P-function, a D-function and an I-
function.

out: The value of the PID-function is returned.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
Tv::continuous
Tn::continuous
K::continuous

none

out none continuous
The ASCET System Library

PIDLimited.

PIDLimited is a time discrete proportional integrator with differential part
with time constants Tv and Tn and gain constant K. The value of the integra-
tor is limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PID-function is computed as a
sum of a P-function, a D-function and an I-
function, where the integrator value of the I-
function is limited by mn and mx.

out: The value of the PID-function is returned.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
Tv::continuous
Tn::continuous
K::continuous
mn::continuous
mx::continuous

none

out none continuous
The ASCET System Library 245

246
PILimited.

PILimited is a time discrete proportional integrator with time constant T
and gain constant K. The value of the integrator is limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PI-function is computed as the
sum of a P-function and an I-function, where
the integrator value of the I-function is limited
by mn and mx.

out: The value of the PI-function is returned.

PT1.

PT1 is a time discrete low pass with time constant T and gain constant K.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
T::continuous
K::continuous
mn::continuous
mx::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
T::continuous
K::continuous

none

out none continuous
The ASCET System Library

On activation of method

reset: The value of the integrator is set to
initValue.

compute: The value of the PT1-function is computed via
an I-function and a P-function which is back-
coupled.

out: The value of the PT1-function is returned.

PT2.

PT2 is a time discrete delay function with time constant T, gain constant K,
and damping d.

On activation of method

reset: The two integrator values are set to
initValue.

compute: The value of the PT2-function is computed via
two I-functions in row, which are backcoupled
by a cascade of two P-functions.

out: the value of the PT2-function is returned.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
T::continuous
K::continuous
d::continuous

none

out none continuous
The ASCET System Library 247

248
12.8.2 Integrators

IntegratorK.

IntegratorK is a time discrete integrator with gain constant K.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via inte-
grator (new) = integrator (old) +
in * dT* K.

out: The integrator value is returned.

IntegratorKEnabled.

IntegratorKEnabled is a time discrete integrator with gain constant K. It
must be enabled explicitly and its integrator value can be limited.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
K::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue::
continuous
initEnable::
logical

none

compute in::continuous
K::continuous
mn::continuous
mx::continuous
enable::logical

none

out none continuous
The ASCET System Library

On activation of method

reset: If initEnable is TRUE, the integrator value
is set to initValue.

compute: If enable is TRUE, the integrator value is
computed via integrator(new) = inte-
grator(old) + in * dT * K (limited by
mn and mx).

out: The integrator value is returned.

IntegratorKLimited.

IntegratorKLimited is a time discrete integrator with gain constant K. Its
integrator value can be limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via inte-
grator (new) = integrator (old) +
in * dT * K (limited by mn and mx).

out: The integrator value is returned.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
K::continuous
mn::continuous
mx::continuous

none

out none continuous
The ASCET System Library 249

250
IntegratorT.

IntegratorT is a time discrete integrator with time constant T.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via
integrator(new) = integrator(old)
+ in * dT / T.

out: The integrator value is returned.

IntegratorTEnabled.

IntegratorTEnabled is a time discrete integrator with time constant T. It
must be enabled explicitly and its integrator value can be limited.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
T::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue::
continuous
initEnable::
logical

none

compute in::continuous
T::continuous
mn::continuous
mx::continuous
enable::logical

none

out none continuous
The ASCET System Library

On activation of method

reset: If initEnable is TRUE, the integrator value
is set to initValue.

compute: If enable is TRUE, the integrator value is
computed via integrator(new) =
integrator(old) + in * dT / T (lim-
ited by mn and mx).

out: The integrator value is returned.

IntegratorTLimited.

IntegratorTLimited is a time discrete integrator with time constant T. Its
integrator value can be limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via
integrator(new) = integrator(old)
+ in * dT / T (limited by mn and mx).

out: The integrator value is returned.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
T::continuous
mn::continuous
mx::continuous

none

out none continuous
The ASCET System Library 251

252
12.8.3 Lowpass

DigitalLowpass.

DigitalLowpass recursively computes the mean value of the input value.

On activation of method

reset: The mean value is set to initValue.

compute: The mean value is computed via mean value
(new) = mean value (old) + m *(in
-mean value (old)).

out: The mean value is returned.

LowpassK.

LowpassK is a simplified PT1-function with gain constant K (low pass filter).

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
m::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
K::continuous

none

out none continuous
The ASCET System Library

On activation of method

reset: The lowpass value is set to initValue.

compute: The lowpass is computed via lowpass (new)
= lowpass (old)+ (in - lowpass
(old)) * dT* K.

out: The lowpass value is returned.

LowpassKEnabled.

LowpassKEnabled is a simplified PT1-function with gain constant K (low
pass filter). It must be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, the lowpass value is
set to initValue.

compute: If enable is TRUE, the lowpass is computed
via lowpass (new) = lowpass (old)+
(in - lowpass (old)) * dT* K.

out: The lowpass value is returned.

Methods Arguments Return Value

reset initValue::
continuous
initEnable::
logical

none

compute in::continu-
ousK::continu-
ousenable::logica
l

none

out none continuous
The ASCET System Library 253

254
LowpassT.

LowpassT is a simplified PT1-function with time constant T (low pass filter).

On activation of method

reset: The lowpass value is set to initValue.

compute: The lowpass is computed via lowpass (new)
= lowpass (old)+ (in - lowpass
(old)) * dT/ T.

out: The lowpass value is returned.

LowpassTEnabled.

LowpassTEnabled is a simplified PT1-function with time constant T (low
pass filter). It must be enabled explicitly.

Methods Arguments Return Value

reset initValue::
continuous

none

compute in::continuous
T::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue::
continuous
initEnable::
logical

none

compute in::continuous
T::continuous
enable::logical

none

out none continuous
The ASCET System Library

On activation of method

reset: If initEnable is TRUE, the lowpass value is
set to initValue.

compute: If enable is TRUE, the lowpass is computed
via lowpass (new) = lowpass (old)+
(in - lowpass (old)) * dT / T.

out: The lowpass value is returned.
The ASCET System Library 255

256
 The ASCET System Library

13 Troubleshooting

In this chapter potential problems when working with ASCET are discussed
and hints for solving these problems are given. If you have any problems that
are not included in this chapter, please inform ETAS, so that this section can be
enhanced.

In general, any system error indicated by ASCET may be a serious error, i.e. it is
advisable to store all data to the database after a system error. If the system
behavior is unexpected after a system error, the system error has caused an
inconsistency in the running system. In this case you should leave ASCET and
reboot Windows.

13.1 General Hints

Limit of the size of a database: The size of an ASCET database is limited
to 4 GByte, the size of a single object to 128 MBytes. Be careful not to reach
this limit when working with a large database, because when the limit is
exceeded the database will be destroyed. Use the database tools to compact
your database when necessary.

Conversion of databases: Databases that have been developed with the
predecessor versions ASCET-SD V4.1 or V4.2 or ASCET V5.0 are automatically
converted to ASCET 5.2. Note that the converted database cannot be used
with older versions of ASCET. A backup copy of the old database is created
automatically during conversion.

Databases created with ASCET-SD 4.0 or even earlier versions cannot be
opened with ASCET 5.2.

ASCET supports only ANSI C compliant names. To ensure compatibility, you
have to adjust the names of all items in the database using the built-in conver-
sion tool. Choose Tools → Database → Convert → All Names To ANSI C in
the Component Manager to convert the names of all items.

Problems with Graphics Cards: When problems with the displaying of
ASCET windows appear, there is probably an incompatibility between ASCET,
the graphics card and the graphics cards driver. When such problems occur,
either try the most recent driver for your graphics card (which is usually avail-
able on the Internet from the card manufacturer) or try another resolution of
your card. All standard VGA and SVGA modi should generally work.

The offline experiment runs out of time. The time (dT) for offline exper-
iments has a limitation of approx. 3 days (in units of dT), i.e. if the dT is set very
high (for instance 1000 seconds), the offline experiment will crash after a few
minutes.
Troubleshooting 257

258
Unpredictable effects when using complex assignments: Unpred i c t -
able effects with the measuring of complex elements occur when complex
assignments are executed in the model. A complex assignment is represented
by an assignment of the respective pointers of the complex elements, that is,
both objects are identical afterwards and one object is ’lost’. E.g. in the assign-
ment A=B, the element A becomes the element B. The measurement and cal-
ibration system however still refers to both as separate objects. You can
measure and calibrate the ’lost’ object (here object A) but this has no effect
and does not take into account the object that represents the complex element
after the assignments (i.e. object B).

The fonts are not displayed properly: The Arial font family is not dis-
played properly under Win97/WinNT, so that some entries are hardly visible.
Use the Microsoft SansSerif Font of size 10 instead. With this font, there are no
display problems.

Problems with the external experimental targets: A potential source of
errors when using the Centronics link cable is that the speed of the parallel
port may be too fast for the Centronics link cable (esp. when using a Pentium
200 or higher). Here it is advisable to reconfigure the parallel port in the setup
of the computer BIOS.

Busy ASCET: While ASCET is busy (e.g. generating code, committing to the
database), do not try to invoke other functions in ASCET, but wait until the
current action of ASCET is finished. Otherwise, the system behavior of ASCET
may lead to unexpected errors (e.g. system errors).

13.2 Problems with ASCET

Some ASCET experiments do not end or do not run properly: Here
the problem often lies with the C code that has been integrated into an ASCET
model. Potential errors are wrong passing of parameters (when converting the
ASCET type continuous the C type double float should be chosen), and
infinite loops in the C code. Infinite loops may also occur in recursive object
structures. A possible way to find the error here, is to exclude the C code com-
ponents.

The generated code may not run in the scheduled time frame, i.e. its execution
time is too long. Here either the specification must be changed, or a time
frame with a longer interval should be assigned.

Another source of errors in this field is that sequence calls are not set properly
or are simply forgotten.
Troubleshooting

The compilation returns unexplainable error messages or does not
end: If you click into another window during compilation the priority for the
DOS-box where the compilation takes place is decreased dramatically, so that
the compilation comes to an almost complete stop. in that case you can acti-
vate the DOS-box by double clicking on its icon.

Additionally you should avoid the following keywords, which are used by the
error management system to trace back compiler errors to the ASCET model:
Error, ERROR, Serious, Fatal, illegal, Failed, failed, warning, known format.

ASCET does not compute correctly when using temporary variables:
Automatic temporary variables can be used when the result of an expression is
to be used in several different branches. These temporary variables are only
computed once (upon evaluation of the first branch). When the branches
using the temporary variable are only computed conditionally (e.g. as they are
input to a switch or a MUX operator), the value of that temporary variable may
not be computed correctly. Therefore automatic temporary variables should
not be used, if the branches leading from a temporary variable are fed into a
conditional operator.

L1-Communication Errors often occur during online experiments: I n
this case the priority of the communication process is too low. The priority of
this process can be raised for the target in the file es1130cp.inv,
es1130cp_gnu.inv or es1135cp_gnu.inv in the respective target
directory. The file you have to edit depends on your target/compiler combina-
tion.

This file is used in the configuration of the compiler. Here you can modify the
priority of the communication process by setting the parameter __L1_Prio
= to the desired priority (by default it has the lowest priority, i.e. 0).

The documentation generation in .rtf format does not work prop-
erly. When displaying .rtf files, Word for Windows may not display the
integrated bitmap image files. You may have to update all links to (external)
*.gif files to view the images.
Troubleshooting 259

260
 Troubleshooting

14 Code Generation Messages

This chapter contains the warnings and error messages that may appear during
ASCET code generation, together with hints and explanations on how to cor-
rect the mistakes that led to the error. Error messages point to serious faults in
the specification that lead to the code generation process to be terminated.
Warnings point to less serious faults. The code generation process may be suc-
cessful, but the resulting code may not work as desired.

14.1 Components

14.1.1 Error Messages

method <method_name> must be defined; need a return value

Description:

A method with return value has been declared in the component, but the
return value does not have a sequence call attached to it. This is required,
because the method might be called by other components.

Solution:

Edit the sequence call and select the method the return value belongs to as the
sequence name. The sequence number must be the highest number attached
to that method.

<method_name> has no argument <argument_name>

Description:

An operation attached to the method method_name uses an argument
belonging to another method. A method may only use the local and global
elements and its arguments, but not the arguments of other methods.

Solution:

Change the sequence call or replace the argument with another element.

missing argument connection for method <method_name> at
block <block_name>

Description:

At the block block_name the method method_name is called, but not all
arguments are connected, i.e. one of the arguments is missing. In the case of
an operator, the method name is left blank.

Solution:

Connect the missing arguments, or in the case of an operator, choose an oper-
ator with the appropriate number of arguments.
Code Generation Messages 261

262
double sequence number <sequence_number> for <name>

Description:

The process, method, action, or condition name has two sequence calls
attached to it with the same sequence number sequence_number.

Solution:

Change one of the sequence numbers to a sequence number not yet used in
name.

return value does not belong to <name>

Description:

A return value of some method or condition is assigned a sequence call
belonging to a method or action name, which has no return value. The
sequence call of a return value must always be assigned to the method or
condition defining that return value.

Solution:

Change the sequence name of the sequence call of the return value to the
name of the condition or method the return value belongs to.

delay-free loop detected at <block_name> block

Description:

A loop is created without any operation in that loop, e.g. the return value of
an operator is directly fed in as an input to that operator.

Solution:

Insert an element into the loop.

type mismatch: expected <type_A>, got <type_B>

Description:

An argument of type_B is used where an argument of type_A is required,
and the type_B can not be cast to type_A. E.g. an argument of type cont
is fed into a logical operator. Presumably the connection is wrong.

Solution:

Supply an argument of the correct type.

type mismatch: expected <type_A> [<name_A>}, got <type_B>
[<name_B>]

Description:

An element with name name_B of type_B is assigned to a variable with
name name_A of type type_A where type_B can not be cast to type_A.
E.g. an element of type cont is assigned a variable of type logical. Presum-
ably the connection is wrong.
Code Generation Messages

Solution:

Change the type of the element or make a correct connection.

return must be the last operation of <name>

Description:

A method with a return value or condition name has a return statement whose
sequence call does not have the highest sequence number in sequence calls
attached to the method or condition.

Solution:

Change the sequence number in the sequence call to the highest number in all
sequence calls belonging to the method or condition name.

<then> part of IF block must be specified

Description:

An IF block is used where THEN part is not used.

Solution:

Specify the THEN part. There must be at least one sequence call with a connec-
tor attached to the THEN part.

state machine needs start state

Description:

The state machine has no start state.

Solution:

Specify one of the states of the state machine as its start state.

multiple prio <priority_number> for trigger <trigger_name>
in state <state_name>

Description:

The state machine contains two transitions leading from state state_name
attached to the same trigger trigger_name with the same priority
priority_number. This is not allowed, since the transition is not unique.

Solution:

Change one of the priorities, such that all priorities leading from the same
state and assigned to the same trigger are different.

unbalanced number of start/stop atomic in <name>

Description:

The method, process, condition or action name has sequence calls with
attached atomic marks. However, there is an unbalanced number of start and
stop marks.
Code Generation Messages 263

264
Solution:

Insert or delete some of the start or stop marks, such that their number and
appearance is balanced.

Expected consistent datamodel for <element_name> in
<Class_name>. Element needs GET/SET direct access - ple-
ase change attributes OR restore diagram

or—for ESDL/C code

method "<Element_name>"/"<function_name>" not defined
as public in class "<Class_name>"

Description:

The element / function in the class <Class_name> has not been set for direct
access/ made public.

Solution:

Enable direct access (Set/Get functionality) for the element or make the func-
tion public.

14.1.2 Warnings

<name> not defined

Description:

The method, process, or action has been declared, but was not defined. There
is no sequence call with sequence name name. This only relates to methods
without return values.

Solution:

Define the method, process or action or delete its declaration from the compo-
nent interface.

type mismatch with casting from <type_B> [<name_B>], got
<type_A> [<name_A>]

Description:

An element with name name_B of type type_B is assigned to a variable with
name name_A of type type_A where a type cast is made from type_B to
type_A. E.g. an element of type cont is assigned a variable of type sdisc.

Solution:

Change the type of the element or make a correct connection.
Code Generation Messages

argument <argument_name> of method <method_name> not used

Description:

In the def in i t ion of the method method_name the argument
argument_name of the method is not used.

Solution:

Use the argument argument_name in the definition of the method or delete
it from the method definition.

unreachable state <state_name>

Description:

The state machine contains a state with name state_name that can not be
reached from the start state, i.e. no transition leads to that state.

Solution:

Delete the state or make the state reachable from the start state.

literal value <value> does not fit type <type> - limited
to <range_value>

Description:

The value of the literal is to large for the variable of type type, it is assigned
to. The value of the literal for this assignment is automatically limited to the
value range_value. This does not apply to expressions consisting of literals
only. The type type is either udisc or sdisc which have a range of a 32 bit
integer (unsigned or signed).

14.2 Projects

14.2.1 Error Messages

need binding for imported element <element_name>

Description:

The imported element or message element_name is not bound to a global
element or message.

Solution:

Adjust the binding (either automatically or manually).

application modes missing for task <task_name>

Description:

The task task_name has no application mode assigned to it.
Code Generation Messages 265

266
Solution:

Assign an application mode, or delete the task task_name. To exclude certain
tasks from execution, simply specify an additional application mode with name
unused and assign it to the tasks that are to be excluded.

14.2.2 Warnings

no start application mode specified - using <opmode_name>

Description:

None of the application modes is defined as the start mode. The application
mode opmode_name is automatically defined as the start mode.

Solution:

Define one of the modes as the start mode, unless the right mode has been
picked as the default.

missing trigger event

Description:

One of the event tasks specified in the operating system has no trigger event
assigned to it.

Solution:

Change the mode of that task or assign one of the trigger events to that task.

14.3 Fixed Point Code Generation

14.3.1 Error Messages

Integer interval [a,b] of variable <name> too large for
implementation type

Description:

The integer interval [a,b] derived from the model interval is to large for the
chosen implementation type. Presumably, the implementation for this element
has not been edited or the implementation type is not set to an integer type.

Solution:

Edit the implementation for the element name.

Cannot generate fixed point code for the non-linear for-
mula <formula_name> of variable <name>

Description:

The non-linear formula formula_name is assigned to name. The fixed point
code generation only supports linear formulae.
Code Generation Messages

Solution:

Change the formula ass igned to name or change the formula
formula_name, so that it is a linear formula.

Physical interval [a,b] of divisor contains zero

Description:

Fixed point code can not be generated, because a division by zero could occur.
This would result in an implementation interval of infinite size.

Solution:

Insert a variable for the divisor and specify a meaningful implementation for it
(the physical interval should not contain zero).

14.3.2 Warnings

formula in implementation for <name> not known in current
project - using default

Description:

In the implementation for the element name the formula is not known in the
context of the current project. Presumably, no formula has been assigned. The
identity formula is used instead.

Solution:

Use a valid formula from the context of the current project for the implemen-
tation for the element name.

Interval mismatch in assignment of <variable_name>: [a,b]
:= [c,d] (will be limited)

Description:

The fixed point code generator has found, that in the assignment of variable
variable_name there is a possible conflict. The value of the expression that
is assigned to the variable lies within the interval [c,d]. This interval is com-
puted via interval arithmetics from the intervals specified for the elements in
that expression. The interval [a,b] for the variable variable_name does not,
however, include the interval [c,d], so that an overflow might occur. To avoid
this overflow, the value of the expression is automatically limited to the value
interval of variable variable_name before the assignment is carried out.
Note, that this warning cannot be avoided when there are arithmetic loops.
Code Generation Messages 267

268
 Code Generation Messages

Index

Symbols
! 117
- 117
-- 117
!= 117
% 117
%= 118
&& 117
* 117
*= 118
+ 117
++ 117
+= 118
/ 117
/* comments */ 117
// comments 117
/= 118
< 117
<= 117
-= 118
== 117
> 117
>= 117
? : 118

|| 117

A
Abs operator 154
abs() 116, 137
access macros 170

acess to private methods 171
array length 171
arrays in external C code 171
ASD_GET 171
ASD_LENGTH 171
ASD_RELEASE 171
ASD_RESERVE 171
ASD_SET 171
ASD_USE_ARRAY_EXTERNAL 171
direct acess 171
resource access 171
self 171

accessing objects 124
access control 126
block diagrams 138
C code access macros 170
269

270
accessing objects
direct access methods 127
library functions 136
this 126

acos() 137
Action 45

see also state machine
Adams-Moulton 181
AND 151

see logical operators
application mode 19
argument 113, 166
arithmetic operator 117, 151
arrays 91, 127, 146

access in ESDL 128
Get/Set Port 147
maximum size of ~ 128
public interface 128
Table Editor 128

asin() 137
assignment 114

shorthand assignment operator 118
atan() 137
atomic sequences 141
auto-inlining 73

B
basic language elements 112
basic types 89
Between operator 154
between() 116
block diagram

~ vs. ESDL 141
access ~ in ESDL 138
semantics 159

block statements 114
branching

see control flow
break 155
break 122, 124

C
C code

access macros 170
argument 166
charachteristic lines/maps 167
direct access methods 171

external ~ 169
function parameters 163
header 169
local variables 166
message 165
method 162
process 162
specification 161
variables 163

C programming language
see programming languages

case operator 153
ceil() 137
characteristic line 92

see also one-dimensional table
characteristic map 92

see also two-dimensional table
characteristic table 92, 148
class 24

hierarchical structure 31
interface 27
state machine 83
vs. module 24

comment 116
~ in generated code 117

communication
between processes 20
message 20

comparison operator 151
complex element 100
component 23

definition 25
instantiation 25
interface 27
reusing 29
specification 23

composite data types 127–134
array 127
data structures 134
distributions 133
group tables 133
matrix 129
one-dimensional table 129
two-dimensional tables 131

compound statements 114
Condition 45
conditional construction

see control flow

conditional operator 118, 152
constant 96, 116

system ~ 97
cont 115
Continuous Time block

see CT block
Continuous time models

structure 173
control flow 32, 120–124

break 122, 124
for 123
if…else 120
return 125
switch…case…default 121
while 123

conventions
method names 112
variable names 114

conversion
of data types 115

cooperative scheduling 15
cos() 137
cosh() 137
coth() 137
csh() 137
CT basic block 174, 183–198

interfaces 185
methods 186

CT block 173–181
computing sequence 187
direct output 201
input 174
modeling in C 195
nondirect output 201
output 174
parameter 174
predefined tasks 211
state 174
structure 199

CT structure block 174, 199–207

D
data 101

transformation 109
data set 101
data structures

modelling ~ in ESDL 134

data types
array 127, 146
basic ~ 115–116
composite ~ 127–134
continuous 115
conversion 115
data structures 134
distributions 133
group tables 133
logical 115
matrix 129, 146
messages 135
one-dimensional table 129
signed discrete 115
strings 112
two-dimensional tables 131
unsigned discrete 115

diagram
item 143
line 143
pin 143

diagram item 143
differential equation 177

in C 195
direct access methods

C code 171
ESDL 127

distributions 133
assigning to group tables 133
monotone sequencing in ~ 133

dT parameter 95
dynamic instantiation 112

E
editor

ESDL ~ 113
element 89

basic 144
graphical representation 143, 145
scalar 145
scope 99, 145

Entry action 47
entry action

in state machines 139
enumeration 96
equality operator 117
ERCOSEK 14, 20, 21
271

272
ESDL
access block diagram 138
basic elements 112
description 111
direct access methods 127
feature list 111
general features 111
implementation cast 119
instantiation 112
Java syntax in ~ 111
syntax 114

ESDL editor 113
Euler 180
exit action 48

in state machines 139
exp() 137
expression 114
external event 15
external source code 169

F
floor() 137
fmod() 137
for 123

G
Get/Set ports 147
getAt()

array elements 128
matrix elements 129
table elements 130
two-dimensional table elements 132

graphical representation
element 145
expression 145
operators 151
statement 154

group tables 133
assigning distributions 133
public interface 133

H
Heun 180
hierarchy 41

of classes 31
of modules 31
of state machines 57

History
state machine 44, 57

hybrid project 173

I
if...then statement 156
if...then...else operator 157
if…else 120
If…Then 156
If…Then…Else 157
implementation 103

code generation 108
composite types 105
implementation cast 106
scalar types 103
transformation 109
user defined types 105

implementation cast 97, 106–108, 149
ESDL 119

inheritance 112
instantiation 25
integration method

Adams-Moulton 181
Euler 180
fixed step size 178
Heun 180
Mulstep 180
Runge-Kutta 181
variable step size 178

Integration step size 188
interface

of a class 27
of a component 27
of a module 29

Interface Editor 113
interpolate() 130, 132, 134
interpolation

linear 130
rounded 130

interpolation mode
~ of tables 130
linear 130, 132

interprocess communication 20

J
Java programming language

see programming languages

Junction 38
state machine 51

K
keywords

reserved ~ in ESDL 114
kind 96

L
length() 128
library functions

accessing ~ 136
limit() 137
linear interpolation 130, 132
Literal 146
literal 96, 116
local variable

C code 166
log 115
log() 137
log10() 137
logical operator 117, 151
loops

see control flow

M
mathematical functions

accesing library functions 136
primitive methods 116

MathFcn 136
matrix 92, 129, 146

access in ESDL 129
Get/Set Port 147
maximum size of ~ 129
public interface 129

Max operator 153
max() 116, 137
message 20, 94, 165

~ in processes 135
accessing ~ in ESDL 135

methods
arguments 113
editing method bodies 112
header 112
interface 112
method calls 124

naming conventions 112
nesting method calls 124
overloading 113
precedence of method calls 117
primitive methods 116
private 126
public 126
return value 113, 124

Min operator 153
min() 116, 137
model type

continuous 90
logical 90
signed discrete 90
unsigned discrete 90

module 19, 24
hierarchical structure 31
interface 29
vs. class 24

Mulstep 180
multi-tasking 15
Mutiplex operator 152
MUX 118, 152

see conditional operator

N
Negation operator 154
non-preemptable scheduling 17
Not 151

O
object

access control 126
object reference

this in method calls 126
object-oriented concepts 112
Of state machines 41
one-dimensional table 92, 129

C code interpolation 167
interpolation mode 130
linear interpolation 130
maximum size 130
public interface 130

operating system
real time ~ 13
273

274
operator 117–118
Abs 154
arithmetic 151
arithmetic ~ 117
associativity of ~ 118
Between 154
case 153
comparison 151
comparison and equality ~ 117
conditional ~ 118, 152
logical 117, 151
Max 153
Min 153
Multiplex 152
Negation 154
order of evaluation 150
precedence levels 118
shorthand assignment ~ 118
unary ~ 117

OR 151
see logical operators

overloading 113

P
parameter 96

dependent ~ 99
see also arguments
virtual ~ 99

pi() 137
PMI 170
pointers 111
pow() 137
precedence

~ of operators 117–118
pre-emptive scheduling 16
priority

task 16
private

see accessing objects
process 15, 19

using messages 135
see also methods 112

programming languages
C 161
C vs. ESDL 111, 141
Java vs. ESDL 112, 142

Programming Model Interface 170

project 13
hybrid 209
module 20
process 20

public
see accessing objects

R
real time operating system 13
real-time

dT parameter 95
language construct 94
message 94
resource 95

records
see data structures

relational operator 117
reserved keywords 114
resource 95, 149
return 125
return value 113, 124
reusing components 29
rounded interpolation 130
Runge-Kutta 181

S
sch() 137
scheduling 15

cooperative 15
non-preemptible 17
pre-emptive 16

scope 99
sdisc 115
search() 130, 132, 134
self

see this
Semantics

hierarchical state machine 57
simple state machines 48
state machine with junction 51
state machines 47–71

sequence call 155
sequence number 155
sequences

atomic ~ 141
sequencing 159

setAt()
array elements 128
matrix elements 129

shift operators 111
shorthand assignment operator 118
sign() 137
sin() 137
sinh() 137
software event 15
specification

component 23
in C code 161

sqrt() 137
Start state 43
State 34

entry action 47
exit action 48
static action 47

State diagram 33
State editor 140
State machine 32–87

action 45
class 83
condition 45
ESDL in ~ 139
function 47
hierarchy 41, 57
history 44, 57
inlining 73
junction 38, 51
optimize (actions) 75, 76
optimize (conditions) 75, 76
optimize (hierarchical code genera-

tion) 81
optimize (junctions) 76
optimize (static action of hierarchy

state) 77
optimized for code size 76
optimized for response time 74
optimized for runtime 75
outlining 73
semantics 47–71
start state 43
transition 33, 35
trigger 41

statements 114
block statements 114

static action 47
in state machines 139

strings 112
Switch 157
switch…case…default 121

fall through 122
syntax

ESDL 114
method calls 124

system constant 97
System Library

Bit Operators 215
Comparators 221
Control 242
Counter 223
Delay 228
Integrators 248
Lowpass 252
Memory 233
Miscellaneous 236
Nonlinears 239
Timer 223

T
table 129–134

group ~ 133
interpolation mode 130
linear interpolation 130, 132
one-dimensional 129
two-dimensional 131

Table Editor 128
tan() 137
tanh() 137
task 15, 17

priority 16
this 126
timer 15
transformation 109
Transition 33, 35

action 48
in state machines 140
priority 35

Transition action 48
Transition editor 140
Trigger 41
275

276
two-dimensional table 92
C code interpolation 167
linear interpolation 132
maximum size 131
public interface 132
see also table

type
basic 89, 90
composite 91
scalar 90
user defined 89, 100

type casting
see conversion

U
udisc 115
unary operators 117

V
variable

local 166
variables 96

declaration of ~ 115
direct access methods 127
naming conventions 114
public and private ~ 126
reserved keywords 114
temporary ~ 98
virtual ~ 99

W
while 123
While loop 158

X
xLength() 129

Y
yLength() 129

	The Modeling Language
	1 Projects
	1.1 The Task Schedule for the Operating System
	1.1.1 Scheduling
	1.1.2 Tasks
	1.1.3 Processes
	1.1.4 Application Modes

	1.2 Modules and Processes
	1.3 Interprocess Communication

	2 Components
	2.1 Modules vs. Classes
	2.2 Definition and Instantiation of Components
	2.3 The Interface of Components
	2.3.1 The Interface of Classes
	2.3.2 The Interface of Modules

	2.4 Reusing Components
	2.4.1 Hierarchical Class Structure
	2.4.2 Hierarchical Module Structure

	2.5 State Machines
	2.5.1 State Machine Components
	States
	Transitions
	Junctions
	Triggers
	Hierarchy
	Start State
	History
	Conditions
	Actions
	Data

	2.5.2 Semantics of State Machines
	2.5.3 Semantics: Simple State Machines
	2.5.4 Semantics: Junctions in State Machines
	2.5.5 Semantics: Hierarchical State Machines
	2.5.6 Semantics: Summary
	2.5.7 Simple Code Example
	2.5.8 Optimizing the State Machine
	Optimized for Response Time
	Optimized for Runtime
	Optimized for Code Size

	2.5.9 State Machines as Classes

	3 Types and Elements
	3.1 Basic Model Types
	3.1.1 Scalar Types
	3.1.2 Composite Types
	Array
	Matrix
	Characteristic Tables

	3.1.3 Real-time Language Constructs
	Messages
	Resources
	The dT Parameter

	3.1.4 Special Types
	Enumeration
	Literals

	3.2 The Kind of Elements
	Temporary Variables
	Virtual Variables/Parameters
	Dependent Parameters

	3.3 The Scope of Elements
	3.4 User-defined Model Types

	4 Data and Implementations
	4.1 Data
	4.2 Implementations
	4.2.1 Implementations for Scalar Types
	4.2.2 The Implementation of Composite Types
	4.2.3 The Implementation of User-Defined Types
	4.2.4 Implementation Casts

	4.3 Code Generation with Implementations
	An Example: Code Generation for an Addition
	4.3.1 Transformation of Data under Implementation
	4.3.2 General Rules for the Implementation Transformation

	4.4 The Implementation of Methods and Processes

	5 Body Specification in ESDL
	5.1 ESDL as a Modelling Language
	5.2 Basic Elements
	5.2.1 Working with Methods and Processes
	5.2.2 ESDL Syntax
	5.2.3 Variable Names
	5.2.4 Data Types
	5.2.5 Type Conversion
	5.2.6 Primitive Methods
	5.2.7 Literals and Constants
	5.2.8 Comments
	5.2.9 Operators

	5.3 Implementation Casts in ESDL
	5.4 Control Flow
	5.4.1 If…Else
	5.4.2 Switch…Case…Default
	5.4.3 While
	5.4.4 For
	5.4.5 Break

	5.5 Methods
	5.5.1 This
	5.5.2 Access Control
	5.5.3 Direct Access Methods

	5.6 Composite Data Types
	5.6.1 Arrays
	5.6.2 Matrices
	5.6.3 One-dimensional Tables
	5.6.4 Two-dimensional Tables
	5.6.5 Distributions and Group Tables

	5.7 Structures
	5.8 Messages
	5.9 Resources
	5.10 Mathematical Functions
	5.11 Accessing Block Diagrams from ESDL
	5.12 Using ESDL in State Machines
	5.13 Overview: ESDL Features Compared
	ESDL vs. Block Diagrams
	Reference: ESDL vs. ANSI C
	Reference: ESDL vs. Java

	6 Body Specification with Block Diagrams
	6.1 Graphical Description of Elements
	6.1.1 Basic Elements
	Basic Scalar Elements
	Messages
	Literals
	Arrays and Matrices
	Characteristic Tables
	Resources
	Implementation Casts

	6.1.2 Elements of User-defined Type

	6.2 Expressions
	6.2.1 Arithmetic Operators
	6.2.2 Comparison Operators
	6.2.3 Logical Operators
	6.2.4 Conditional Operators
	Multiplex Operator
	Case Operator

	6.2.5 Other Operators
	Max and Min Operators
	Between Operator
	Abs Operator
	Negation Operator

	6.3 Statements
	6.3.1 Assignment
	6.3.2 The Break Statement
	6.3.3 Method Call
	6.3.4 Control Flow
	If...Then
	If...Then...Else
	Switch
	While

	6.4 The Semantics of Block Diagrams
	6.4.1 Graphical Hierarchies

	7 Body Specification in C
	7.1 Structure
	7.1.1 Methods and Processes
	7.1.2 Variables and Function Parameters
	7.1.3 Header

	7.2 External Source Code
	7.3 Programming Model Interface
	7.4 Access Macros
	Direct Acess
	Length of Arrays
	Resource Access
	Acess to Private Methods
	Making Arrays Avaiable for Usage in External C-Code

	8 Continuous Time Systems
	8.1 Structure of Continuous Time Models
	8.1.1 Modeling with Basic Blocks and Structure Blocks
	8.1.2 Modeling with Graphical Hierarchies
	8.1.3 Experiments
	8.1.4 Projects and Hybrid Projects

	8.2 Solving Differential Equations - Integration Algorithms
	8.2.1 Integration Methods - Overview
	Euler
	Mulstep
	Heun
	Adams-Moulton
	Runge-Kutta 4
	Integration Methods With Variable Step Width

	9 Continuous Time Basic Blocks
	9.1 Basics
	9.2 Available Elements and Methods
	9.2.1 Modeling With Continuous Time Basic Blocks

	9.3 Block Interfaces
	9.4 Block Methods
	9.5 Computing Sequence
	External Communication Interval dT
	Integration Step Size h
	Step Size Depending on the Internal Integration Method: h/n

	9.6 Modeling with ESDL
	9.6.1 Differential Equations in ESDL
	9.6.2 Semantic Checks in ESDL
	9.6.3 Additional Library Functions

	9.7 Modeling in C
	9.7.1 Differential Equations in C
	9.7.2 Additional C Routines

	10 Continuous Time Structure Blocks and Graphical Hier archies
	10.1 Reuse of Structure Blocks
	10.2 Elements of a Continuous Time Structure Block
	10.3 Block Interfaces
	10.4 Operators
	10.5 Algebraic Loops
	10.6 Direct and Nondirect Output
	10.7 Difference Between Graphical Hierarchies and CT Structure Blocks
	10.8 Computing Sequence of Methods Within a Structure
	Example: Computing Sequence
	Example: Execution Not Possible

	11 Projects and Hybrid Projects
	11.1 Combining Continuous Time Blocks With Modules

	Reference Lists
	12 The ASCET System Library
	12.1 Bit Operators
	12.1.1 and
	12.1.2 clearBit
	12.1.3 getBit
	12.1.4 or
	12.1.5 rotate
	12.1.6 setBit
	12.1.7 shiftLeft
	12.1.8 shiftRight
	12.1.9 toggleBit
	12.1.10 writeBit
	12.1.11 writeByte
	12.1.12 xor

	12.2 Comparators
	12.2.1 ClosedInterval.
	12.2.2 LeftOpenInterval.
	12.2.3 OpenInterval.
	12.2.4 RightOpenInterval.
	12.2.5 GreaterZero.

	12.3 Counter & Timer
	12.3.1 CountDown.
	12.3.2 CountDownEnabled.
	12.3.3 Counter.
	12.3.4 CounterEnabled.
	12.3.5 StopWatch.
	12.3.6 StopWatchEnabled.
	12.3.7 Timer.
	12.3.8 TimerEnabled.
	12.3.9 TimerRetrigger.
	12.3.10 TimerRetriggerEnabled.

	12.4 Delay
	12.4.1 DelaySignal.
	12.4.2 DelaySignalEnabled.
	12.4.3 DelayValue.
	12.4.4 DelayValueEnabled.
	12.4.5 TurnOffDelay.
	12.4.6 TurnOffDelayVariable.
	12.4.7 TurnOnDelay.
	12.4.8 TurnOnDelayVariable.

	12.5 Memory
	12.5.1 Accumulator.
	12.5.2 AccumulatorEnabled.
	12.5.3 AccumulatorLimited.
	12.5.4 RSFlipFlop.

	12.6 Miscellaneous
	12.6.1 DeltaOneStep.
	12.6.2 DifferenceQuotient.
	12.6.3 EdgeBi.
	12.6.4 EdgeFalling.
	12.6.5 EdgeRising.
	12.6.6 Mux1of4.
	12.6.7 Mux1of8.

	12.7 Nonlinears
	12.7.1 Hysteresis-Delta-RSP.
	12.7.2 Hysteresis-LSP-Delta.
	12.7.3 Hysteresis-LSP-RSP.
	12.7.4 Hysteresis-MSP-DeltaHalf.
	12.7.5 Limiter.
	12.7.6 Signum.

	12.8 Transfer Function
	12.8.1 Control
	dT1.
	P.
	PI.
	PID.
	PIDLimited.
	PILimited.
	PT1.
	PT2.

	12.8.2 Integrators
	IntegratorK.
	IntegratorKEnabled.
	IntegratorKLimited.
	IntegratorT.
	IntegratorTEnabled.
	IntegratorTLimited.

	12.8.3 Lowpass
	DigitalLowpass.
	LowpassK.
	LowpassKEnabled.
	LowpassT.
	LowpassTEnabled.

	13 Troubleshooting
	13.1 General Hints
	13.2 Problems with ASCET

	14 Code Generation Messages
	14.1 Components
	14.1.1 Error Messages
	14.1.2 Warnings

	14.2 Projects
	14.2.1 Error Messages
	14.2.2 Warnings

	14.3 Fixed Point Code Generation
	14.3.1 Error Messages
	14.3.2 Warnings

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

