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1 Projects

In ASCET, an embedded software system is defined in the context of a project. 
A project contains at least the following:

• A collection of modules

• The task schedule for the real-time operating system

• The definition of the inter-process communication

The central part of a project is the definition of the operating system’s task 
schedule. Here, the dynamic behavior of the system is described. Fig. 1-1 illus-
trates the structure of a project. 

Fig. 1-1 The structure of a project

1.1 The Task Schedule for the Operating System

An essential part of an embedded control system is the underlying real-time 
operating system that controls the execution of the various algorithms and 
computations. In ASCET, the specification of the task schedule is supported by 
a special editor, where all relevant data for the operating system scheduling 
can be specified.
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The specification of the task schedule is based on the automotive real-time 
operating system ERCOSEK. To serve the large number of parallel requests to 
the embedded control system, e.g. camshaft interrupts or sampling at a fixed 
rate, a priority-based cooperative and preemptive scheduling is the core of the 
operating system. This scheduling controls the execution of tasks in a multi-
tasking environment. A task is defined as a list of processes to be executed in 
a given order. A process is any portion of a control algorithm which has to be 
executed at a given rate or as a reaction to an external interrupt. 

Since a control system contains a number of algorithms, the number of pro-
cesses can be very large. At the same time, many of these processes have a 
similar dynamic behavior. The collection of processes with the same dynamic 
behavior into tasks therefore reduces the administrative overhead of the oper-
ating system and structures the dynamic behavior of the application. Processes 
with the same dynamic behavior are therefore collected into one task.

The definition of a real-time task schedule consists of:

• Scheduling

• Tasks

• Processes

• Application modes
Projects



1.1.1 Scheduling

The operating system schedules the execution of processes defined in the 
modules. The definition of the schedule consists of grouping processes into 
sequences where each sequence defines a task in the operating system task 
schedule. The tasks are activated by the operating system in different modes, 
for instance periodically by timers, or by software or external events.

Fig. 1-2 Grouping processes into tasks

Fig. 1-2 shows two tasks with processes assigned to them. Task1 is activated 
every 10ms, and has a higher priority than Task2, which is activated every 
20ms. The running times of the processes are as follows: p1= 2ms, p2 = 1ms, 
p3 = 2ms, p4 = 1ms, p5 = 1ms. The scheduling would then look like this:

Fig. 1-3 A simple task schedule

The operating system knows three kinds of scheduling. In cooperative sched-
uling, the current process is not interrupted if a task with a higher priority is 
activated. A new task starts after the current process is finished. If the current 
task (the one that gets interrupted) has more processes to execute, it pauses 
until the interrupting task is completed. After the interrupting task is com-
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pleted, the interrupted task is continued. This type of scheduling is illustrated 
in Fig. 1-4, where the running times of processes are p1= 2ms, p2 = 1ms, p3
= 5ms, p4 = 4ms, and p5 = 2ms.

Fig. 1-4 Resuming an interrupted task in cooperative scheduling

In preemptive scheduling the current process is directly interrupted, whenever 
a task with a higher priority is activated. Since all cooperative tasks have lower 
priorities than preemptive, or non-preemptable, tasks (see Fig. 1-7), preemp-
tive tasks cannot be interrupted by cooperative tasks. After the interrupting 
task is completed, the process is resumed. Fig. 1-5 shows the same scenario as 
above (i.e. the same process running times) with preemptive scheduling.

Fig. 1-5 Resuming an interrupted task in preemptive scheduling
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In non-preemptable scheduling (micro-controller targets only), neither the cur-
rent process nor the current task are interrupted when a task with higher pri-
ority is activated. The new task is executed only after the non-preemptable task 
is completed. Fig. 1-6 shows the same scenario as above (i.e. the same process 
running times) with non-preemptable scheduling

Fig. 1-6 Task-schedule for a non-preemptable task

1.1.2 Tasks

A task contains a list of processes that are executed on activation of that task. 
The execution order of the processes is fixed. The way a task is scheduled by 
the scheduler of the operating system is defined by the task settings. There are 
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• Alarm tasks are activated periodically. The activation rate is specified in 
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• Timetable tasks (micro-controller targets only) are alarm tasks written 
into a timetable. Thus, runtime can be saved (at the price of enhanced 
memory requirement). 

• Interrupt tasks are activated by an external event. For each processor, 
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• Software tasks are activated by calling an operating system routine, i.e. 
they are activated directly through the software.
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• Init tasks are activated once before the start of the operation system. 
Init tasks contain code for the initialization of the system.

Each task is furthermore assigned to one of the three scheduling groups, non-
preemptable, preemptive or cooperative, and inside each group to one of the 
available priority levels. The number of priority levels for each scheduling group 
can be defined by the user, and determines the memory demand of the sched-
uler tables. It should be optimized for the final system.

Tasks at a higher priority than the running task can interrupt the running task, 
running tasks scheduled as non-preemptable excepted. If the interrupting task 
belongs to the preemptive scheduling group, the running task is interrupted 
immediately, otherwise the interrupt happens at the end of the current pro-
cess. Preemptive and non-preemptable tasks always have a higher priority than 
cooperative tasks. Fig. 1-7 shows the priority scheme. The actually available 
tasks depend on the selected target.

Fig. 1-7 Priority scheme

Each time a task is activated, the time elapsed since the previous activation is 
stored in the global variable dT. This variable can be used in the definition of 
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1.1.3 Processes

A task consists of a sequence of processes. Processes contain the execution 
code of the program. The body of a process is executed sequentially. Since 
tasks can be interrupted preemptively by tasks of a higher priority, processes 
can be interrupted in the middle of their execution. Therefore, processes must 
be designed so that they can be executed in parallel.

When working in a preemptive system, the main problem is data consistency. 
The operating system has to guarantee, that the result of the computation in 
a process depends on the value of the input variables alone, and not on the 
order of execution in the system.

To solve this problem, the ERCOSEK concept of messages is supported in pro-
cesses. In the ERCOSEK operating system, messages are protected global vari-
ables. Protection is achieved by working on copies of the global variables. The 
system analyses whether a copy is required and establishes an optimum data 
consistency scheme without penalties for the run-time kernel.

1.1.4 Application Modes

Application Modes are a special feature of the operating system ERCOSEK. In 
order to keep the run-time load of the processor low, the operating system can 
be run in different modes. Typical modes are the normal mode, the EEPROM 
programming mode etc. These modes are mutually exclusive, i.e. only one 
mode is active at a given time. Therefore, in each mode, only the relevant tasks 
have to be executed.

Each task is assigned an application mode which it runs in. Switches between 
application modes are activated by the software. When entering a new appli-
cation mode, the init tasks assigned to that application mode are activated. 

1.2 Modules and Processes

The processes assigned to tasks are defined in the context of modules. A mod-
ule encapsulates a number of related processes, e.g. processes that belong to 
a lambda control function. The functionality described in a module can be split 
into several processes, since different parts of a control algorithm may be com-
puted at different times. This greatly reduces the execution time for the control 
algorithms, since only the most sensitive parts of the algorithms need to be 

Note

Switches between application modes take place via an operating system ser-
vice call. Details can be found in the API description of the ERCOSEK manual.
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computed at the highest frequency. At the same time the descriptions of the 
algorithms are not distributed, which makes them easier to develop, maintain 
and understand.

The functionality of a complex control task can be distributed over several 
modules which can be modelled hierarchically. For further refinement classes 
and state machines can be used for sub-algorithms or service routines (e.g. 
accumulator, pi-control etc.)

Modules are exclusively used by projects and are the top level components 
within a project. Usually, modules are used to describe a unique part of a 
project, e.g. a lambda control. Therefore modules can have only one instance 
inside a project, in contrast to other components, which can have any number 
of instances (e.g accumulators).

Like all other components, modules have an interface. The interface of a mod-
ule consists of its processes and the messages which are used for data 
exchange.

1.3 Interprocess Communication

The communication between processes is achieved via messages, which are 
protected global variables in ERCOSEK. Data consistency is achieved by work-
ing on copies of the actual variable whenever a copy is required.

Fig. 1-8 shows how data inconsistency may occur in a preemptive system. To 
avoid this conflict, the interprocess communication is modelled with messages. 
At the beginning of a process, all input messages (those messages that are only 
read) are received by the process. Upon receiving a message, an automatic 
temporary copy of the message is produced, on which the process works. At 
the end of the process, all messages that are written to are copied back to the 
actual message. This mechanism guarantees that the values of the variables 
are left unchanged within a process, unless the process itself changes its value.

The use of protected global variables for interprocess communication, i.e. the 
use of state messages, is appropriate for embedded control systems. There is 
no dependence between the sender and the receiver of a message, so that no 
complicated and run time consuming synchronization scheme is required. Sec-
ondly, when using state messages there is no one-to-one relation between a 
sender and the receiver. Therefore a message can be received by more than 
one process.
Projects



Fig. 1-8 Data inconsistency in a preemptive system

The messages mechanism is based on the ERCOSEK message principle. The 
ERCOSEK development environment contains an offline system optimization 
feature, where message implementation can be optimized. Here copies are 
only introduced, if data consistency is endangered, and copies are only pro-
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2 Components

A project is at the top level of an embedded control system specification in 
ASCET. Here the framework of an application is defined and its execution are 
controlled. A project is the brain of an embedded control system.

Compared to this, components are the body. They are used to specify the 
actual control algorithms and other various computation tasks to be per-
formed in the embedded control system.

Components have a clearly defined interface that describes how and when to 
perform the algorithms described in the components, and also how data 
exchange with other components is to be performed.

There are two types of components: modules and classes. A central aspect in 
the design of both types is data encapsulation, where ASCET follows an 
object-oriented approach. A component contains a number of elements that 
can be used by all processes or methods defined in that module or class. The 
scope of these elements can be restricted to be local. Even for messages, the 
scope can be restricted to processes defined within that module only.

A component specification consists of:

• The content of the component, i.e. declarations of the variables, 
parameters etc. the component uses.

• The interface of the component in the form of processes or methods. 
This interface can be extended by allowing access to internal variables 
(of classes) and messages (used in modules) directly.

• The algorithms themselves, which specify the computations within a 
process or method.

Fig. 2-1 The elements of a component specification

In the following, modules and classes are discussed in general. Then the struc-
ture of the interface of a component is explained. The various ways in which 
algorithms can be described (block diagrams, textual, C code) are discussed in 
the subsequent chapters. The final sections of this chapter are about a special 
type of classes: state machines. This special class type can only be described in 
terms of block diagrams.

Component
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2.1 Modules vs. Classes

When specifying an embedded control system, the real-time requirements of 
the system are crucial. In order to meet these requirements, special compo-
nents with a real-time capable interface, modules, can be used in ASCET.

A module defines a number of processes; in addition, methods can be defined.
A process contains a piece of code, that is executed sequentially. Processes are 
activated by the operating system, no parameters can be passed. Instead, 
modules use messages for data exchange, i.e. direct access to a global variable 
space, which results in a highly efficient communication mechanism.

Unlike processes, which are activated only by the operating system, methods 
are much more flecible. Each method can have an arbitrary (but fixed) number 
of arguments and a single return value.

The behavior of modules is unique piece within an embedded control system 
in the sense that they can be instantiated only once in the context of a project. 
To avoid this limitation, classes can be used. Classes are object-oriented 
abstract data types that encapsulate data and make available a well defined 
interface. The interface is a collection of methods, which can be called from 
anywhere inside the program. Unlike processes, which can only be activated by 
the operating system, methods are much more flexible. Each method can have 
an arbitrary (but fixed) number of arguments and a single return value.

Classes can be instantiated more than once, e.g. more than one accumulator 
class can exist in a project. Each instance of a class has its own data space (its 
own parameters and variables), but all instances share the same specification. 
Global variables defined in classes are the same for all instances of a class (and, 
in an object-oriented view, can be considered to be class variables), but they 
can also be accessed by other components.

Classes, however, do not support real-time interprocess communication via 
messages. This has two reasons. Firstly, classes can have multiple instances and 
the data consistency scheme of ERCOSEK cannot manage multiple instantia-
tions. Secondly, processes are assigned statically to one fixed task. Whenever a 
process runs, the operating system creates copies of all its messages. These 
copies are accessible only to that instance of the process that created them. 
Hence, if the same message is used by various processes, each process gets its 
own copy of the message. This strategy is used by the real-time operating sys-
tem to ensure data consistency over multiple processes.

Methods, on the other hand, can be called arbitrarily from different points in 
the program, for instance from different processes in different tasks. The 
method does not "know" the calling task. Thus, it cannot be decided which 
message copy is relevant for which method call.
Components



The properties of modules and classes are summarized in Tab. 2-1.

Tab. 2-1 The properties of modules and classes

State machines are a special type of class available in ASCET. Their semantic 
behavior is the same as that of classes, but the notations are different. State 
machines, for example, have special methods for computing the conditions of 
a state transition.

When specifying components, modules as well as classes, the structure is often 
hierarchical, since other previously defined classes or modules are to be reused.

2.2 Definition and Instantiation of Components

A component describes an abstract data type, it makes available an interface, 
through which it interacts with its environment. When using a component in a 
project, each element has to be created, i.e. for each element real memory cells 
have to be allocated. The process of creating an object is also called instantia-
tion. Upon instantiation, the necessary data structure is built and initialized.

Property Module Class

Processes x

Methods x x

Argument passing x

Messages x

Multiple instances x

Hierarchical design x x
Components 25
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Each instance of a component has its own set of elements, but inherits the 
interface and the functional description from the component itself.

Fig. 2-2 Instantiation and inheritance in components

The definition of a component is therefore the definition of a template for the 
instantiated components. The difference between template and instance is not 
obvious for modules, since modules only have one occurrence in a project con-
text, i.e. modules are only instantiated once. There is a one-to-one relation 
between the template and the instance for modules.

Fig. 2-3 Instantiation and inheritance in modules
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Classes, on the other hand, can have multiple instances. Here, the distinction 
between definition and instantiation becomes more obvious, since there is no 
simple one-to-one relation between template and instance. The relationship 
can 1:n. The definition of a class is therefore the definition of a reusable, user-
defined model type.

The instantiation of a component only works in the context of a project. Thus, 
when working with components only, a default project is automatically created 
to provide the context for instantiating the components.

When using a class in another component (see following section), the class is 
instantiated in the context of that component, when that component is instan-
tiated. In contrast to this, modules are always instantiated in a project.

2.3 The Interface of Components

The interface of a component consists of methods, processes, and the access 
to global variables. Modules, for instance, have access to messages. Methods 
and processes are structured in the same way. Their structure is independent of 
the way the methods or processes are described.

Each method or process is assigned to a diagram, where each diagram can 
either be public or private. Methods assigned to private diagrams are only vis-
ible inside the component and do not belong to the public interface of the 
component, which is visible to other components. All methods assigned to one 
diagram are described in this diagram (in the case of block diagrams, there is a 
common block diagram for all these methods).

Fig. 2-4 The interface of components
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The interface of a class consists of a number of methods which are assigned to 
one of the diagrams of the class. The interface of each methods, consists of its 
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class, i.e. the access to the same set of instance variables and parameters, 
makes the concept of methods and classes far more pervasive than that of 
subroutines. Methods have access to all the elements defined in their class.

The arguments and return value of a method can only be used in the body of 
the associated method. In addition, each method has a number of method-
local variables. These variables are temporary and not static, and like argu-
ments, they can only be used in the body of the associated method.

Fig. 2-5 The interface of classes
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of the class. When a method is called, the instructions in the method body are 
executed.

The methods of a class are categorized as either public or private by assigning 
them to a public or private diagram. Public methods can be called from any 
component, that uses that class. Private methods are hidden and can be called 
only by methods of the same class. They can used as internal subroutines.
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2.3.2 The Interface of Modules

The interface of a module consists of a number of processes and—optional—
methods, as well as the messages used in that module. Modules interact at 
two different levels, since the activation of processes and the communication 
via messages is separated. The activation of the process is under control of the 
operating system (that is part of the project).

The communication between processes via messages is asynchronous to the 
activation of the processes, i.e. the sending of a message and the receiving of 
it in a process do not happen at the same time. This concept is different from 
parameter passing between methods, which is synchronous to calling the 
method.

Like methods, processes can have temporary process-local variables.

Fig. 2-6 Inter-process communication (grey parts are optional)

2.4 Reusing Components

When specifying components, previously defined classes or modules contain 
functionality that can be reused. Reusing components leads to a hierarchical, 
tree-like structure of a component. The leaves of this structure are classes or 
modules that do not contain other classes or modules.

The structure of a component has to be tree-like, i.e. cyclic dependencies are 
not allowed. This is because the usage relation is also a containment relation, 
and a cyclic dependence would be unresolvable.
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If a class is used in another component, the class will automatically be instan-
tiated and initialized when the containing component is initialized.

There is, however, an exception. When using a class that is imported, i.e the 
class is instantiated in some other context, for instance in the project directly, 
the usage relation is not a containment but a reference relation. Thus a cyclic 
dependency does not lead to an unresolvable containment relation in this case.

Fig. 2-7 Containment relation and reference

Modules are the top level component. Therefore, modules may not be con-
tained in classes. Classes, however, may be contained in modules as well as in 
other classes. The following relation holds:

Tab. 2-2 Typology of relations

Since the interfaces of modules and classes are different, the meaning of a 
hierarchical module structure and a hierarchical class structure is also different.
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2.4.1 Hierarchical Class Structure

When using a class inside some other component, the methods of the class 
can be used as subroutines in the component.

Fig. 2-8 Method invocation in a nested class

The methods are called as part of the execution of the component’s methods 
or process, this point in the software can be determined by the component 
itself. When calling a method, the component must supply the method with 
actual parameters for the arguments of the method.

2.4.2 Hierarchical Module Structure

As mentioned before, modules are always instantiated in a project. That is, in 
a hierarchical module structure, a module used in another module is not 
instantiated within the containing module. As a consequence, all of the mod-
ules instantiated in a project are on the same level, independent of their posi-
tion in the hierarchical structure.

The hierarchical structuring of modules serves mainly two purposes. A hierar-
chical structure reflects the nature of a control system. In an engine control, for 
instance, there may be separate modules for ignition, injection, and lambda 
control.
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In addition, the communication structure in a hierarchical mode can be made 
much more transparent, since the dataflow is directly visible in block diagrams.

Fig. 2-9 The communication structure in a hierarchical module

A further advantage of a hierarchical module structure becomes clear by this 
example: easier maintenance. If, for instance, the name of a message is 
changed, it must be changed in all modules that use that message. If a hierar-
chical module is used instead, the changes only affect one module, since the 
name based binding is not explicitly used.

2.5 State Machines

A state machine is a special type of classes, an event-driven system where the 
focus is not on computations but on control flow. Therefore the main level of 
description of a state machine, the state diagram, does not describe how data, 
but how control is passed. To model control flow, a state machine consists of 
a finite number of states, and transitions between these. Besides, at least one 
trigger must be included to control the state machine. At each trigger call, one 
step of the state machine is executed.

For more information on the theory of finite state machines, see

• Harel, David: "Statecharts: A Visual Formalism for Complex Systems", 
Science of Computer Programming 8, 1987, pp. 231-274

• Hatley, Derek J. & Imtiaz A. Pirbhai, Strategies for Real-Time System 
Specification, Dorset House Publishing Co., Inc., NY, 1988.
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The following diagram shows the components of a state machine.

Fig. 2-10 State machine – scheme

Specifying a state machine consists of determining the states a system can be 
in, defining the conditions that have to be fulfilled for changing from one state 
to another, and determining the actions that are to be performed during these 
transitions. 

The state diagram is a special block diagram for defining a state machine. Each 
state is displayed as a rectangle with rounded corners. One of the states always 
has to be marked as the start state, this is the state the machine is in at the 
beginning.

The transitions are targeted curves between the states. Each arc represents one 
transition in a direction marked by an arrowhead at one end. Each end of a 
transition is connected to a state. The state where the transition starts is the 
source state, the one where it ends is the destination state. Two arcs are nec-
essary to model a bidirectional transition. 
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The sample diagram contains the relevant graphical components of a state 
machine.

Fig. 2-11 Graphic Components

2.5.1 State Machine Components

States

A state describes one mode of an event-driven system. The activity or inactivity 
of the states changes dynamically, based on trigger events and conditions.

Each state has a parent state (hierarchy state, see page 41). For states on the 
highest level (State_A and State_B in Fig. 2-11), the state diagram itself is 
the parent. You can place states within other higher-level states; State_A_1, 
State_A_2 and State_A_3 are substates of State_A. States containing 
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no other states are called base states (State_A_1, State_A_2, State_B in 
Fig. 2-11). A hierarchy state can have a history (see page 44). History provides 
an efficient means of basing future activity on past activity.

The states are mutually exclusive, i.e. only one base state can be active at any 
one time. If the active base state is the substate of a hierarchy, all hierarchy 
states that contain the active state are active, too. If, for example, the 
State_A_2 state in Fig. 2-11 is active, the hierarchy state State_A is active, 
too. If one of the (invisible) substates of State_A_3 is active, State_A_3
and State_A are active, too. 

Each state has a unique name. Identical names are forbidden within different 
hierarchies. If you use an existing name a second time, _n is added to it. n is 
the smallest unissued number for this name (States State_A_1 to 
State_A_3 in Fig. 2-11). The following names are forbidden, too:

• names of methods, processes, elements etc. in the entire project

• names from the C language (e.g., static, define, etc.)

Such state names do not always result in an error message, but the 
generated code is always wrong.

Besides the names, the state labels contain the various actions (see page 45). 
These are processed successively according to their type. The following types 
exist: entry action, static action and exit action. All actions are optional.

Transitions

A transition is a graphic object connecting two states. One end of the transi-
tion is attached to the source state where the transition begins. The other is 
connected to the destination state where the transition ends. A transition may 
be interrupted by one or more junctions (see page 38) and split into several 
segments.

A priority is assigned to each transition. The higher the number, the higher the 
priority. If more than one transition originate from the same state or junction, 
they are evaluated in the order of their priorities. Two transitions from the 
same state may not have the same priority.

A transition label describes the circumstances under which the system moves 
from one state to another. A trigger event is necessary for a transition to occur. 
The name of the trigger is the first part of the transition label. In Fig. 2-11, the 
trigger trigger_100ms actuates the transition from State_A_1 to 
State_A_2. Optionally, the transitions can also contain a condition (see 
page 45) and an action (page 45), the transition action. These are named in 
the second and third part of the label. In the state diagram, conditions are 
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represented in square brackets, transition actions with a leading "/". How trig-
gers, conditions and actions are assigned to the segments of a transition with 
junctions is described in "Junctions" on page 38. 

A transition is valid when its source state is active and its condition—if speci-
fied—is true. There are several kinds of transitions:

1. Transitions between base states

The transition from state A to B is valid if A is active, the trigger event 
trigger occurs, and the condition [switch_on] is true.

2. Transitions from and to hierarchy states

The transition from C to the hierarchy state (see page 41) 
D_hierarchy is valid if C is active, the trigger event trigger occurs, 
and the condition [switch_on] is true. It is an explicit transition to 
the hierarchy state.

For a valid transition to a hierarchy state, you must implicitly define one 
substate as the destination. Here, you do this by marking the substate 
D1 as start state (see page 43). What is executed in fact is the transition 
from C to D1.

The transition from D_hierarchy to C is valid if D_hierarchy is 
active, the trigger event trigger occurred, and the condition 
[switch_off] is true, regardless of which substate is active. 
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3. Transitions between substates of different hierarchies

The transition from the substate E2 in the hierarchy state 
E_hierarchy in the substate F1 in the hierarchy state 
F_hierarchy is valid if E2 is active and the trigger event trigger 
occurs. The transition defines an explicit exit from substate E2 and an 
implicit exit from the hierarchy state E_hierarchy. It also implicitly 
defines an entry into F_hierarchy and an entry into F1.

4. Loops

A loop is a transition from a state to itself. The transition in the above 
figure is valid if either of the substates of G_hierarchy is active, the 
trigger event trigger occurs and the condition [reset_state] is 
true. The system leaves the active substate, it leaves the 
G_hierarchy state, executes the transition action, re-enters 
G_hierarchy, and finally enters the substate G1.
Components 37



38
5. Transitions with junctions

All types of transitions can contain junctions (see next section). Here, 
just one of the many possible examples is shown.

If state H is active and the trigger event trigger occurs, the system 
leaves state H. In the junction, the conditions to the leading transition 
segments ([condition_1], [condition_2], [condition_3]) 
are tested in sequence for their priority. If, for example, the condition 
[condition_2] is fulfilled, transition to state J occurs. If none of the 
conditions are fulfilled, the system remains in the start state H.

Junctions

A junction is a graphic object which considerably improves the legibility of 
state diagram and aids the generation of efficient code. Junctions form addi-
tional possibilities for representing the required system behavior. 

Junctions are not states, they represent branching points in the state diagram. 
Nodes interrupt a transition (see page 35) and split it into segments. One seg-
ment connects the source state with the junction, one or more segments con-
nect the interrupting junctions (if required), and the last segment connects the 
last junction with the destination state. Thus, junctions aid the representation 
of different transitions. At the same time, they allow reuse of transition seg-
ments.

Note the following when using junctions:
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• Transitions from a starting state to several destination states are clearly 
represented.

You can achieve the same functionality modelled with a junction in Part 
A of the diagram by direct transitions from the start state 
source_state to the destination states (Part B of the diagram). 
However, using the junction brings a runtime benefit, as the transition 
segment between the start state and the junction is evaluated first. If 
this is already invalid, no transition can take place and you need not 
consider the segments leading away from the junction.

• Also, transitions from several starting states to a destination state are 
clearly represented.

In this case too, both ways of writing have the same meaning. You can 
(and should) assign an action shared by all three transitions to the seg-
ment leading away from the junction.

• If none of the transition segments leading away from the junction are 
valid, then no transition occurs and the system remains in the starting 
state. 

A B

A B
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• Transition segments from a junction into a state can contain actions.

It is not possible to assign an action to a transition segment ending in a 
junction. The complex semantics of such transition actions results in 
inefficient coding.

• Each segment of a transition can have a condition.

• Transitions from one junction to another (cascading junctions) are 
allowed, all kinds of loops are forbidden.
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• Only one segment of a transition has a trigger. Usually, a trigger is 
assigned either to the segments leading towards the first junction of a 
transition, or to the segments leading away from the last junction, but 
not to all segments.

• If none of the segments leading to a possible destination state is valid, 
no transition occurs. The state remains in the source state.

Triggers

Triggers activate the execution of the state machines: Each trigger call causes 
the execution of one state machine step. They are public methods of the state 
machine; you must define each trigger that affects the state diagram. A trigger 
can have arguments for communication with other ASCET components (see 
also the sections "State Machines as Classes" on page 83 and "The State 
Machine Editor" in the ASCET user’s guide).

A state machine can have one or more triggers. Each transition is assigned to 
one of the triggers of the state machine. By this assignment, it is possible to 
define several substate machines that work on the same states. Each trigger 
can be started independently. The state machine is activated whenever a trig-
ger is started: all transitions from the current state are checked in the order of 
their priority, and a transition is executed if necessary.

Hierarchy

State machines often have a large number of states. The hierarchy allows the 
organization of complex systems by defining higher or lower-level object struc-
tures. A hierarchical design usually reduces the number of transitions and pro-
duces structured and readable diagrams (see also section "Hierarchy States" in 
the ASCET user’s guide). 

Note

The assignment of triggers to more than one segment of the same tran-
sition is not deactivated. However, in such a case, ASCET outputs an error 
message if different triggers are assigned to the segments.  
You are therefore responsible for the assignment of triggers. 

or
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ASCET supports the hierarchical organization of states in the form of open and 
closed hierarchies (State_A and State_A_3, respectively, in Fig. 2-11). The 
only difference between them is the graphical representation. 

Each state can contain other states. Those states are called hierarchy states; 
states containing no other states are called base states. A state contained in a 
hierarchy state is called a substate of the hierarchy state. The system is always 
in a base state, and together with that base state also in its associated hierar-
chy states.

The state diagram shown here has a hierarchy state that contains two sub-
states. (Some transitions are left out for clarity.)

The hierarchy state engaged contains the two substates first and second. 
This makes engaged the parent state of first and second. When the trig-
ger event clutch_engaged occurs, the system transitions from the neu-
tral state to the hierarchy state engaged. 
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Far more complicated structures are possible, too (see Fig. 2-11). The following 
is an example of a hierarchical state machine with two hierarchical substates, 
one of which contains a further hierarchy state. The lines between the states 
symbolize a containment relation and should not be confused with transitions.

Fig. 2-12 Relationships within complex state machines

Within a hierarchy state, the substates form a state machine of their own. For 
instance, state A1 and state A2 form a state machine of their own. States 
inside a hierarchy state can have transitions to other states, which are not 
located inside the same hierarchy state. The states are connected by transi-
tions; one of the states is marked as the start state in the hierarchy state. At the 
beginning the hierarchical state machine is in the start state, and if this state is 
hierarchical, too, it is in the start state of the hierarchical state and so on.

In the above example, the start state of the state machine is state B1b, since it 
is the start state of state B1, which itself is the start state of B. B, in turn, is the 
start state on the topmost level.

A transition from a hierarchy state automatically includes the exit from the 
active substate. A transition from a substate can lead beyond the borders of 
hierarchy states to another substate. If a substate is active, its parent hierarchy 
state is active, too.

Start State

The start state specifies which state is to be activated when there are several 
possibilities on the same hierarchy level. Thus, the start state of the entire state 
machine, or that of a hierarchy level is determined.
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A common error in the specification of state machines is the generation of 
several states without marking one of them as start state. In that case, there is 
no indication of which state becomes active by default. Therefore, on code 
generation, ASCET outputs an appropriate error message.

The state neutral is the start state of the entire state diagram shown below, 
first is the start state of the hierarchy state engaged.

With that, the state neutral becomes active when the state machine is first 
activated. If you had not defined a start state, it would be unclear whether 
neutral or engaged should be activated. When a transition from neutral
to engaged occurs, the substate first is activated inside the hierarchy state. 

History

The history option provides the means to determine the destination substate 
of a transition to a hierarchy state based on past activities. If a hierarchy state 
has a history, the transition ends in the substate that was most recently active.

The history belongs to the hierarchy state in which the option was set. It takes 
priority over the start state within the hierarchy. 

The H in the diagram indicates that the hierarchy state engaged has a history. 
Whether the first or second substate is activated upon a 
transition from neutral to engaged is based on which of them was 
most recently active.

The generated code contains a special variable for the history, the history vari-
able.
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Conditions

A condition is a Boolean expression specifying that a transition occurs, given 
that the expression is true. Each transition and segment of a transition can 
have a condition. In Fig. 2-11, the condition [condition_3] represents a 
Boolean expression that must be true for the transition from State_A to 
State_B to occur.

In the system shown here, the transition from first to second takes place 
if the Boolean condition [speed > threshold] is true.

You can specify conditions as block diagrams (in separate diagrams) or in ESDL 
(in separate diagrams or directly at the transition). For more information, see 
section "Specifying Conditions and Actions" in the ASCET user’s guide. 

Conditions can also have arguments for communication with other ASCET
components. You can find more on this in section "State Machines as Classes" 
on page 83 and in the ASCET user’s guide, section "Communication with 
Other Components".

Actions

Actions take place as part of the state machine execution. An action can be 
executed either as part of a transition from one state to another (e.g. 
/transition_action in Fig. 2-11), or based on the activity status of a 
state (e.g. static_A2 or exit_A1 in Fig. 2-11). 
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Transitions and transition segments leading away from a junction can have 
transition actions. States can have entry, static and exit actions. All actions are 
optional. In Fig. 2-11 on page 34, the State_A_1 state has all three action 
types, whereas State_A_2 has neither entry nor exit action, only a static 
action. The transition from State_A_1 to State_A_2 has no action.

When, in this example, the first state is active, and no transition occurs, the 
static action accelerate is executed. At the transition from first to sec-
ond, the transition action switch_gear is executed.

The sections "Semantics: Simple State Machines", "Semantics: Junctions in 
State Machines" and "Semantics: Hierarchical State Machines" describe in 
detail which actions are executed when. You can specify actions as block dia-
grams (in separate diagrams) or in ESDL (in separate diagrams or directly at the 
transition). For more information, see the ASCET user’s guide, section 4.2.3 
"Specifying Conditions and Actions".

Actions can also have arguments for communication with other ASCET com-
ponents. You can find more on this in section "State Machines as Classes" 
on page 83 and in the ASCET user’s guide, section "Communication with 
Other Components".

Data

Data objects are used to store and process numerical values in the state dia-
gram. The following types are available:

• Variables, parameters, constants (see page 96)

• Enumerations (see page 96)

• Arrays, matrices (see page 91, 92)

• Literals (see page 96)

• Temporary variables (see page 98)

• Characteristic curves and maps (see page 92) 

• Inputs for data from other ASCET components

• Outputs to other ASCET components
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• other classes (e.g., timers, counters, comparators)

The state variable sm of type unsigned discrete also belongs to the data. 
The variable is created in every state machine. 

This variable contains the number of the currently active state. You cannot edit 
it in the state machine editor but you can measure it in an experiment. If an 
ASAM-MCD-2CM file is generated for a project containing a state machine, 
the sm parameter is also saved to the file.

2.5.2 Semantics of State Machines

A state machine consists of a finite number of states. Each state represents a 
state a system can be in, for instance whether a door is locked, open, or closed. 
Under certain circumstances the state of the system changes. These state 
changes are modelled by transitions between the different states. For each 
possible transition to take place, a condition has to be fulfilled.

An external event, the trigger event, activates a state machine. A trigger is a 
public method of the state machine. A state machine always has to be in one 
of its states. At the beginning, a state machine is in a special state, the start 
state. If a trigger event occurs, the system reacts with the execution of actions 
(e.g., creation of a signal, change of a variable, or transition to another state). 

The entry action of a state is executed when a transition to that state occurs. 
The state is activated before the execution of the entry action is started.

The static action of a state is executed if the state is active and a trigger event 
occurs which does not result in a transition from the state. When a transition 
between two substates of the same hierarchy state occurs, the hierarchy state 
(which is not left) executes and completes its static action after the source state 
was left, but before the transition action is executed.

Note

When a state machine is called for the first time, the entry action of the start 
state is not executed.
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The exit action of a state is executed when a transition from that state occurs. 
The state becomes inactive after the execution of the exit action is completed.

The transition action of a transition is executed after the source state has been 
left and before the destination state is activated.

The semantics describe how a state diagram is interpreted and executed and 
in which order the actions will be executed. Knowledge of the semantics of 
state diagram is essential for the creation of suitable state machines and the 
generation of efficient code. Different implementation options result in differ-
ent simulation behavior and in the executable code. 

The semantics of state machines contain rules for the

• Processing of states,

• Selection of transitions,

• Processing of transitions.

The following sections describe the semantics of state machines using exam-
ples. These cover a wide range of possible implementations and combinations 
of the different actions.

Refer to the section "Semantics: Summary" on page 68 for a summary of the 
rules.

2.5.3 Semantics: Simple State Machines

Example 1: Transition between two states.

This simple state machine models a light switch. At the beginning, the lamp is 
off, the state dark is active. The trigger event trigger occurs and initiates 
the evaluation of the state machine. The light switch is pressed, so that the 
condition switch_on is true. The following steps are executed:

1. The state diagram checks to see if there is a valid transition. 

2. The dark state is active so that only the transition from dark to 
bright has to be evaluated. The condition [switch_on] is fulfilled, 
the transition is valid.

3. The dark state has no exit action that could be executed. It is deacti-
vated.
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4. The transition action is executed, the counter switch_count is 
increased by 1.

5. The bright state is activated.

6. The lamp_on entry action is executed and completed. The lamp is 
switched on.

With that, the evaluation of the state machine initiated by this trigger 
event is finished. 

Every state can have transitions to more than one other state. To make the 
behavior of the state machine deterministic, each transition has to be assigned 
a priority. The priority determines the order in which the conditions belonging 
to the transitions are checked. Once a condition evaluates to true, the asso-
ciated transition takes place, and all other conditions belonging to transitions 
with lower priorities are not tested. If no condition evaluates to "true", the 
state remains unchanged and the static action is executed.

Example 2: Several possible transitions from one state

This state machine models a display. Outside temperature, speed, average 
speed and distance covered can be displayed as required. There is also a key to 
toggle the display. If the outside temperature falls below 1°C, a change to the 
temperature display occurs, and a frost warning is shown. 
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The state machine is in the speed state. A trigger event trigger_100ms
occurs; the temperature drops from 1.5 °C to 0.5 °C. The switch is not pressed. 
The following steps are executed:

1. The system checks to see if there is a valid transition from speed. 

2. The transition from speed to distance has the highest priority, and 
is evaluated first. However, the [key_pressed] condition is not ful-
filled, the transition is invalid.

3. The transition from speed to temperature has the condition 
[t_air < 1 && !frost_warning]. At first, the temperature was 
above the threshold of 1 °C and no frost warning was required. Now, 
it has dropped to 0.5 °C. Both parts of the condition are true, the tran-
sition is valid.

4. The speed state has no exit action. It is deactivated.

5. The /frost_warning = true transition action is executed, and the 
frost warning appears. 

6. The temperature state is activated.

7. Since that state has no entry action, the evaluation of the state 
machine initiated by this trigger event is finished. 

Example 3: Loop

The state machine is the same as in Example 2. However, the entry action 
clear_display was added to the states. The state machine is in the tem-
perature state. Otherwise, the starting state is the same as in the previous 
example. A trigger event trigger_100ms occurs and the switch is not 
pressed. The following steps are executed:
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1. The system checks to see if there is a valid transition from tempera-
ture. 

2. The transition from temperature to speed has a higher priority, but 
the condition is not fulfilled. The transition is invalid.

3. The transition from temperature to itself has the condition 
[t_air < 1 && !frost_warning]. This is fulfilled, the transition 
is valid.

4. The temperature state has no exit action. It is deactivated.

5. The /frost_warning = true transition action is executed, and the 
frost warning appears. 

6. The temperature state is activated.

7. The entry action clear_display of the temperature substate is 
executed and completed.

With that, the evaluation of the state machine initiated by the 
trigger_100ms trigger event is finished. 

2.5.4 Semantics: Junctions in State Machines

Junctions (see page 38) aid the legibility of state diagrams. The functionality of 
all the examples can also be described using direct transitions between the 
states. 

Example 4: If…Then…Else Construction
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This state machine models a simple drinks machine which offers four different 
drinks. The state machine is in the waiting state. A trigger event 
trigger_10ms occurs: someone wants Cola. This sets the select selection 
to 2. The following steps are executed:

1. The system checks to see if there is a valid transition or a valid segment 
from waiting.

The transition segment from waiting to the left-hand junction is 
valid.

2. The transition segments leading away from the junction are examined 
in order of their priority, starting with the segment of the junction to 
state Orange.

The condition [select==1] is not fulfilled, the segment is invalid.

3. Next, the segment from the junction to state Cola is tested.

The condition [select==2] is fulfilled, the segment is valid. This 
means that there is a fully-valid transition available from the state 
waiting.

4. Only now does the transition occur. The state waiting has no exit 
action and is deactivated.

5. The Cola state is activated.

6. The pour_Cola entry action is executed and completed.

With that, the evaluation of the state machine initiated by this trigger 
event is finished. 

Example 5: No transition

The state machine is the same as in Example 4. The state machine is in the 
speed state. A trigger event trigger_10ms occurs, the selection select is 
set to 5 by mistake. The following steps are executed:

1. The system checks to see if there is a valid transition or a valid segment 
from waiting.

The transition segment from waiting to the left-hand junction is 
valid.

2. The transition segments leading away from the junction are examined 
in the order of their priority.

As select was set to 5, none of the conditions are fulfilled, all the 
segments are invalid.
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3. There is no valid transition from waiting. The system remains in the 
state waiting. As the state has no static action, nothing happens.

With that, the evaluation of the state machine initiated by this trigger 
event is finished. 

Example 6: Loop construction

The state machine is the same as in Example 4. The addition is a transition 
segment away from the junction back to the state waiting and the entry 
action in waiting.

The state machine is in the state waiting; a trigger event trigger_10ms
occurs. By mistake the selection select is set to 5. The following steps are 
executed:

1. The system checks to see if there is a valid transition or a valid segment 
from waiting. 

The transition segment from waiting to the left-hand junction is 
valid.

2. The transition segments leading away from the junction are examined 
in the order of their priorities, starting with the segment of the junction 
back to the state waiting.

The condition [select<1 || select > 4] is fulfilled, the segment 
is valid. This means that there is a complete, valid transition available 
from the state waiting.
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3. The waiting state has no exit action. It is deactivated.

4. The transition from waiting to waiting has no transition action, 
and therefore the state waiting is reactivated.

5. The entry action select=0; from waiting is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger 
event is finished.

This loop construction corresponds to a direct transition from a state to itself 
from Example 3.

Example 7: Transitions from multiple start states to a destination state (one 
trigger)

The state machine is the same as in Example 6. The state Cola is active, the 
glass has been filled and the logical variable glass_full set to true. A 
trigger event trigger_10ms occurs, and the following steps are performed:

1. The system checks to see if there is a valid transition or a valid segment 
from Cola available.

The transition segment from Cola to the right-hand junction is valid.

2. The transition segment from the junction to the state waiting has the 
condition [glass_full]. As glass_full was set to true, this 
segment is also valid and the transition can take place.

3. The Cola state has no exit action. It is deactivated.
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4. The transition has no transition action and therefore the state wait-
ing is activated next.

5. The entry action select=0; from waiting is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger 
event is finished.  

Example 8: Transitions from a start state to different destination states (mul-
tiple triggers)

This state machine describes a drinks machine which offers different types of 
sodas or beers. The actual choice takes place in the hierarchy states soda_on
and beer_on; it is irrelevant for the example. The section "Semantics: Hierar-
chical State Machines" describes the semantics of hierarchical state machines. 

The state machine is in the starting state beverage_off. A trigger event 
trigger_soda occurs and the machine is switched on (switch_on is 
true). The following steps are executed:

1. The system checks to see if there is a valid transition or a segment from 
beverage_off.

2. The transition segment from beverage_off to the junctions is valid, 
as the condition [switch_on] is fulfilled. As the trigger event 
trigger_soda has occurred, the segment from the junction in the 
state soda_on is also valid; the transition can occur.

3. The beverage_off state has no exit action. It is deactivated.

4. The transition from beverage_off to soda_on has no transition 
action. Therefore, the state soda_on is activated next.
Components 55



56
5. The entry action start_soda of soda_on is executed and com-
pleted.

6. The necessary steps in the hierarchy state are executed.

With that, the evaluation of the state machine initiated by this trigger 
event is finished.  

Example 9: Transitions from different start states to the same destination 
state (multiple triggers)

The state machine is the same as in Example 8. The system is in the state 
soda_on (or in one of the substates of the hierarchy). A trigger event 
trigger_soda occurs, the machine is switched off (switch_off is true). 
The following steps are executed:

1. The system checks to see if there is a valid transition or a segment from 
soda_on available.

2. The transition segment from soda_on to the junctions is valid, as the 
condition [switch_off] is fulfilled. As the trigger event 
trigger_soda has occurred, the segment from the junction in the 
state beverage_off is also valid; the transition can occur.

3. The necessary steps in the hierarchy state are executed.

4. The exit action shut_down of the state soda_on is executed.

5. The transition from soda_on to beverage_off has no transition 
action. Therefore, the state beverage_off is activated next.
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6. The entry action reset of beverage_off is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger 
event is finished.

2.5.5 Semantics: Hierarchical State Machines

Upon activation of the state machine, the conditions of the transitions are 
checked. The hierarchical order determines the priority. The highest hierarchi-
cal level has the highest priority, i.e. the conditions on transitions on upper 
hierarchy levels are checked first. When a hierarchy state is left, the current 
substates are left as well. The innermost substate is left first, the outermost 
hierarchy state is left last. When entering a hierarchy state, the order in which 
the entry actions are executed is from the outermost hierarchy state to the 
innermost (base) state, i.e. the outermost state is entered first, and the inner-
most is entered last. If no transition takes place, the static actions are executed 
in an outward sequence, i.e. the static action of the innermost substate is exe-
cuted first, and the static action of the outermost hierarchy state is executed 
last.

Example 10: Transition to a hierarchy state without history

On entry into a hierarchical level, there are two possibilities: either entry into 
the start state of the hierarchy state (this example). In this case, the hierarchy 
state has 'forgotten' the substate it has been in when it was left. Alternatively, 
the last active substate is entered. In this case, the hierarchy state has a history 
(Example 11). 

For each hierarchy state it is possible to determine whether it has a history or 
not. When entering a hierarchy state with history for the first time, the start 
state of that hierarchy state is entered.

Note

The examples in this chapter assume no optimization of static actions in hier-
archy states. If this optimization is activated, the semantics change, see 
"Optimized for Code Size" on page 76
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In the state display, this hierarchical state machine contains the display func-
tion from Example 3. display is a hierarchy state. As soon as a temperature 
of 3 °C is exceeded, the frost warning is to be reset. The second state on the 
highest hierarchy level, reset_frost_warning, is used for that purpose. 
Every 10 seconds, a change from display to the reset_frost_warning
state can occur, where the frost warning is switched off. 

After the frost warning was displayed (frost_warning = true), the dis-
tance display was selected so that the system was in the distance state. The 
temperature rose to 5 °C, and the transit ion from display to 
reset_frost_warning took place when the trigger event trigger_10s
occurred. The system is now in the reset_frost_warning state. A trigger 
event trigger_100ms occurs, and the following steps are performed:

1. The system checks to see if there is a valid transition from 
reset_frost_warning. 

2. The transition from reset_frost_warning to display has no 
condition; it is therefore valid at every trigger_100ms trigger event.

3. The reset_frost_warning state has no exit action. It is deacti-
vated.
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4. The transition from reset_frost_warning to display has no 
transition action, and the display hierarchy state is activated next. 

5. The reset_count entry action of the display hierarchy state is exe-
cuted and completed.

6. The temperature substate is the start state in the hierarchy. It is acti-
vated.

7. The entry action clear_display of the temperature substate is 
executed and completed.

With that, the evaluation of the state machine initiated by the 
trigger_100ms trigger event is finished.

Example 11: Transition to a hierarchy state with history

The state machine is the same as in Example 10. Now it has a history. The 
prehistory and the starting state are the same as in the previous example. 

The system is now in the reset_frost_warning state. A trigger event 
trigger_100ms occurs, and the following steps are performed:

1. The system checks to see if there is a valid transition from 
reset_frost_warning. 
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2. The transition from reset_frost_warning to display has no 
condition; it is therefore valid at every trigger_100ms trigger event.

3. The reset_frost_warning state has no exit action. It is deacti-
vated.

4. The transition from reset_frost_warning to display has no 
transition action, and the display hierarchy state is activated next. 

5. The reset_count entry action of the display hierarchy state is exe-
cuted and completed.

6. Since display has a history ('H' in the above figure), the speed sub-
state is activated. That state was active when the hierarchy state was 
left.

7. The entry action clear_display of the speed substate is executed 
and completed.

With that, the evaluation of the state machine initiated by the 
trigger_100ms trigger event is finished. 
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Example 12: Transition within a hierarchy state

If a transition takes place inside a hierarchy state, the state machine remains in 
that hierarchy state. Therefore, the static action of the hierarchy state is exe-
cuted, as well as the static actions of all hierarchy states that contain the state 
in question. They are executed after all exit actions, and before the transition 
action, from the innermost hierarchy state to the outermost one.

The state machine is the same as in Example 11. The state machine is in the 
speed state. The temperature is still 5 °C, the frost warning is switched off 
(frost_warning is false). A trigger event trigger_100ms occurs, the 
switch is pressed (key_pressed is true). The following steps are executed:

1. The system checks to see if there is a valid transition. 

2. The transition from the display hierarchy state to 
reset_frost_warning is initiated by another trigger 
(trigger_10s); it is of no importance here.

3. The transition from speed to the distance substate is evaluated. 
The condition [key_pressed] is fulfilled, the transition is valid.

4. The speed state has no exit action. It is deactivated.

5. The display hierarchy state is not left. Therefore, its static action 
count is executed and completed.
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6. The transition from speed to distance has no transition action, and 
the distance substate is activated. 

7. The entry action clear_display of the speed substate is executed 
and completed.

With that, the evaluation of the state machine initiated by the 
trigger_100ms trigger event is finished. 

Example 13: Transition between hierarchy states

This state machine acts as a data generator. When enable is set to true, a 
signal is produced, either a ramp (state ramp, mode = 1) or a sine (state 
sinus, mode = 2).

The down substate in the sinus hierarchy state is active. The signal mode 
mode is set to 1, enable remains true. A trigger event occurs, and the fol-
lowing steps are performed:

1. The system checks to see if there is a valid transition. Since the transi-
tions from the sinus hierarchy state have higher priorities than those 
from down, they are evaluated first.
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2. The transition from sinus to nothing has the highest priority. It is 
invalid, though, because the condition [enable == false] is not 
fulfilled.

3. The transition from sinus to ramp is evaluated next. The condition 
[(enable ==true) && (mode == 1)] is true, the transition takes 
place.

The transition from the down substate to the up substate has the low-
est priority and is not evaluated. 

4. The down substate has no exit action, it is deactivated immediately.

5. The exit action stop_sinus of the sinus hierarchy state is executed 
and completed.

6. The sinus hierarchy state is deactivated.

7. The transition from sinus to ramp has no transition action, therefore 
the ramp hierarchy state is activated next. 

8. The entry action start_ramp of ramp is executed and completed.

9. The calc substate is the start state within the hierarchy. It is activated.

10. The entry action value = PMn; output = value; of calc is 
executed and completed.

With that, the evaluation of the state machine initiated by this trigger 
event is finished. 
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Example 14: Loop

The source and destination states of a transition can be identical. Such loops 
are frequently used to specify the reset function of a hierarchy state.

The ramp hierarchy state from the state machine in Example 13 has now a 
reset function in the form of a loop, i.e. a transition from ramp to itself. The 
rest of the state diagram is left out for clarity.

The recalc substate in the ramp hierarchy state is active. A trigger event 
occurs, the reset button is pressed (reset_ramp = true). enable and 
mode remain unchanged. The following steps are executed:

1. The system checks to see if there is a valid transition. 

2. The loop has the highest priority. The condition [reset_ramp] is ful-
filled, the transition is valid.

Other transitions are not evaluated. 

3. The recalc substate has no exit action, it is deactivated immediately.

4. The exit action stop_ramp of the ramp hierarchy state is executed 
and completed.

5. The ramp hierarchy state is deactivated.

6. The loop's transition action /reset is executed and completed.

7. The ramp hierarchy state is re-activated. 

8. The entry action start_ramp of ramp is executed and completed.
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9. The calc substate is the start state within the hierarchy. It is activated.

10. The entry action of calc is executed and completed.

With that, the evaluation of the state machine initiated by this trigger 
event is finished. 

Example 15: Transition between substates of different hierarchies

Transitions can lead directly from the substate of one hierarchy state to the 
substate of another hierarchy state.

This state machine is the same as the one in Example 13, only the transition 
from the up substate in the sinus to the substate calc in ramp was added.

The up substate in the sinus hierarchy state is active. The value value is 
lower than the maximum PMx. A trigger event occurs. mode remains 2, and 
enable remains true, but the fast-switch is pressed (fast_switch = 
true). The following steps are executed:

1. The system checks to see if there is a valid transition. 

2. The transitions from sinus to nothing and from sinus to ramp are 
evaluated first. They are both invalid because the associated conditions 
are not fulfilled.

3. The transition from substate up to substate down is evaluated next. It 
is invalid, too, because the condition [value >= PMx] is not fulfilled.
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4. The transition from up to the calc substate has the lowest priority and 
is evaluated last. The condition [fast_switch] is true, the transition 
takes place.

5. The up substate has no exit action; it is deactivated immediately.

6. The exit action stop_sinus of the sinus hierarchy state is executed 
and completed.

7. The sinus hierarchy state is deactivated.

8. The transition action (/mode = 1; fast_switch = false;) is 
executed and completed.

9. The ramp hierarchy state is activated. 

10. The entry action of ramp is executed and completed.

11. The calc substate is activated.

12. The entry action of calc is executed and completed.

With that, the evaluation of the state machine initiated by this trigger 
event is finished. 

Example 16: Transition from a substate to a hierarchy state

If the transition from a substate does not lead to another substate, but to the 
hierarchy state, the procedure is almost the same. The substate is left, the hier-
archy state is left, too, and immediately re-entered. Depending on whether the 
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hierarchy state has a history, either the most recently activated substate or the 
start state of the hierarchy is entered. This is another way to realize, for exam-
ple, the frost warning.

The state machine is very similar to the Example 10 only here, the frost warning 
is implemented using transitions in the hierarchy state. It is in the state dis-
tance. frost_warning is false. A trigger event trigger_100ms occurs; 
the temperature drops to 0.5 °C. The switch is not pressed. The following steps 
are executed:

1. The system checks to see if there is a valid transition from distance. 

2. Another trigger initiates the transition from display to 
reset_frost_warning; it is of no importance here.

3. The transition from distance to average_speed is evaluated. The 
condition [key_pressed] is not fulfilled, the transition is invalid.

4. The transition from distance to display has the condition 
[t_air < 1 && !frost_warning]. Both parts of the condition 
are true, the transition is valid.

5. The distance state has no exit action. It is deactivated.

6. The display hierarchy state has no exit action. It is deactivated.

7. The display hierarchy state is activated again.
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8. The reset_count entry action of display is executed and completed.

9. The /frost_warning = true transition action is executed, and the 
frost warning appears. 

10. The temperature state is the start state in the hierarchy. It is acti-
vated as display does not have a history. 

11. The entry action clear_display of the temperature substate is 
executed and completed.

With that, the evaluation of the state machine initiated by the 
trigger_100ms trigger event is finished. 

Example 17: No transition

The state machine is the same as in Example 16. The state machine is in the 
temperature state. The temperature is unchanged. A trigger event 
trigger_100ms occurs, the switch is not pressed (key_pressed is 
false). The following steps are executed:

1. The system checks to see if there is a valid transition. 

2. Another trigger initiates the transition from display to 
reset_frost_warning; it is of no importance here.

3. The transition from temperature to speed is invalid because the 
switch was not pressed. 

4. The transition from temperature to display is invalid because 
frost_warning = true and thus the condition is false. 

There are no other possible transitions available.

5. The static action show_temperature in the temperature substate 
is executed and completed.

6. The static action count in the hierarchy state display is executed 
and completed.

With that, the evaluation of the state machine initiated by the 
trigger_100ms trigger event is finished.

2.5.6 Semantics: Summary

Initialization of the state diagram: The start state of the system is acti-
vated. If the start state is a hierarchy state, the start state within the hierarchy
is also activated. No entry action is executed.

Entering a state: 

1. If the state has an inactive higher-level state, steps 1–4 are executed for 
that state.
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2. The state is activated.

3. The entry action is executed.

4. Carry out implicit entry actions as necessary:

4.1 If the state contains a subordinate diagram with a history, and if 
one of the substate was active after initialization, this substate is 
activated and its entry action executed. 

4.2 If the state contains a subordinate diagram with a history, and if 
one of the substate was active after initialization, this substate is 
activated and its entry action executed. Otherwise, proceed as 
described in 4.1.

Executing a (basis) state: 

1. The transitions leading away from the state and transitions leading out 
of higher-level states are evaluated in order of their priority. 

2. If a valid transition is found, it is executed. This ends the execution of 
the state.

3. If no valid transition from the state is available, the static action is exe-
cuted. 

4. If the state has higher-level states, their static actions are executed. 

Leaving a state: 

1. If the state contains active substates, their exit actions are executed. 
The exit action of the innermost basis state is executed first.

2. The exit action of the state is executed. 

3. The state is deactivated.

Executing a transition: 

The transitions are evaluated in the order of their priority. Transitions from a 
hierarchy state always have a higher priority than transitions from the sub-
states of this hierarchy state.

1. A transition or transition segment is tested. 

2. If the transition/segment is invalid, the transition/segment with the 
next-lowest priority is tested. 

3. If the transition/segment is valid, the next step depends on where the 
transition/segment ends.
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In a state:

3.1 No additional transitions or transition segments are tested. In the 
case of a transition segment from a junction, the segment is 
pulled in to the junction in question to obtain a complete transi-
tion.

3.2 The substates of the start state are left (see "Leaving a state").

3.3 The start state is left.

3.4 The transition action is executed.

3.5 The system enters the destination state (see "Entering a state").

In a junction:

3.1 The transition segments leading away from the junction are eval-
uated as described in steps 1 – 3.

4. If all the transition segments leading away from a junction are invalid, 
the system returns to the start state from which the junction was 
reached. As the segment in the junctions does not belong to any valid 
transition, steps 1 – 4 are executed for the transition/segment with the 
next-lowest priority.

5. If all of the transitions/segments leading away from a state are valid, 
then no transition occurs and the system remains in the state.

The sequence is represented schematically in Fig. 2-13.
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Fig. 2-13 Evaluation of a state machine
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2.5.7 Simple Code Example

Parts of the generated code are shown here for this simple state machine. 

Entry action from 
bright

#define statements for the states

Transition from 
dark to bright

Transition action

Transition from
bright to 
dark

Entry action from 
dark

Public method for the output lamp

Static action from bright

Public method for the input switch_in

Exit action from
dark
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2.5.8 Optimizing the State Machine

Usually, there are several ways to specify the same functionality or to adjust the 
code generation/build process settings. 

When code is generated for a state machine, parts of actions and conditions 
specified at the state or transition are either inserted on the spot (inlining) or—
on certain conditions—generated as separate methods (outlining). The prereq-
uisites for outlining are:

1. The state machine optimization option Outline Generated Methods 
(may be changed locally) is activated in the "Project Properties" win-
dow, "Statemachine" node, of the project that contains the state 
machine.

This options applies to all state machines contained in the project, and 
to all experiments (physical, quantized, implemented).

2. The option Outline automatically generated methods for State 
Machines is activated in the implementation editor of the state 
machine.

If both prerequisites are met, code size with and without outlining is checked 
during code generation. If code with outlining is smaller, outlining is done.

If actions and conditions (or parts thereof) are specified in separate diagrams, 
the corresponding code is either generated in separate private methods (out-
lining), or it is inserted on the spot automatically during code generation (auto-
inlining).

The following prerequisites must be met so that auto-inlining can take place:

1. The state machine optimization option Auto-inline private methods 
(Smaller code-size - may be changed locally) is activated in the 
"Project Properties" window, "Statemachine" node, of the project that 
contains the state machine.

This options applies to all state machines contained in the project, and 
to all experiments (physical, quantized, implemented).

Note

When the first prerequisite is not met, outlining is not done for any state 
machine in the project. 
When the first prerequisite is met, but not the second, outlining is not 
done for this particular state machine.
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2. The option Auto-inline private methods (Smaller code-size) is acti-
vated in the implementation editor of the state machine.

If both prerequisites are met, code size with and without auto-inlining is 
checked during code generation. If code with auto-inlining is smaller, auto-
inlining is selected. This is usually the case for small private functions, or for 
functions with only a few calls. Each function is checked separately, so that 
only those functions are inlined whose inlining saves code size.

Depending on the possibilities you choose, you can optimize a state machine 
under three aspects:

• Response time

• Runtime

• Code size

Optimized for Response Time

If response time is the most important criterion, take advantage of the hierar-
chical structure and the transition priorities. Speed-critical actions are best built 
into the highest possible hierarchical level to produce efficient code and the 
quickest possible reaction.

This is illustrated by an example:

Note

When the first prerequisite is not met, auto-inining is not done for any 
state machine in the project. 
When the first prerequisite is met, but not the second, auto-inining is 
not done for this particular state machine.
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If the emergency stop button is pressed (emergency_stop = true), the 
system should stop as fast as possible, i.e. reach the Stop state. By drawing 
the associated transition from the Run hierarchy state to the Stop state, the 
transition has the highest priority in the hierarchy and is evaluated first.

If any of the substates is active and the emergency button is pressed, the tran-
sition from Run to Stop is always evaluated and the transition occurs. 

Direct transitions from each of the substates to Stop are as efficient regarding 
time, but they require higher maintenance effort because four transitions are 
specified instead of one.

A separate trigger for time-critical events (emergency_stop = true in the 
example) also optimizes response time. The drawback is additional program 
code for the separate trigger.

Optimized for Runtime

If the total runtime is the most important criterion, you can use several optimi-
zation possibilities, individually or in combination, to generate efficient code.

Actions/Conditions: If actions or conditions are specified with partly or 
totally the same functionality, this can be done either runtime-optimized or 
size-optimized. Runtime-optimized means that the code for each action and 
condition is inserted on the spot during code generation. No additional func-
tion call is required. The disadvantage is the repeatedly generated code and 
thus increased memory requirement.

This can be achieved by specifying the code explicitly at the state or condition 
and deactivating the options Outline Generated Methods (may be 
changed locally) and Outline automatically generated methods for 
State Machines (see prerequisites for outlining on page 73). 

The optimization becomes even more effective if auto-inlining (see page 73) is 
activated. In that case, even actions/conditions specified in separate diagrams 
are inserted on the spot, if applicable.
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With the Inline option in the implementation editor of an action/condition 
specified in a separate diagram, you can enforce inlining.

Junctions: If several transitions with partially identical conditions lead away 
from a state, the use of junctions can bring runtime savings. Identical sections 
of the conditions are assigned to the transition segment from the start state in 
the first junction. If these are not fulfilled, the other segments are not evalu-
ated.

Optimized for Code Size

Actions/Conditions: Optimizing actions or conditions for code size means 
that identical parts of actions/conditions are generated as separate private 
functions that are called at need.
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This can be achieved by specifying the repeatedly used parts as methods in a 
separate diagram, which are then called from the actions (see figure). 

As an alternative, you can enter the code directly at the state or transition and 
use the outlining functionality.

For both alternatives, the code is generated only once. The price to be paid are 
additional function calls.

In some cases (small private functions, few calls), it may be advantageous, 
regarding code size, to insert the code on the spot. You can activate auto-
inlining (cf. page 73) with the Auto-inline private methods (Smaller code-
size - may be changed locally) and Auto-inline private methods (Smaller 
code-size) options; with that, you have selected the most effective optimiza-
tion of actions and conditions for code size.

Static actions of hierarchy states: For static actions in hierarchy states, an 
additional optimization option exists.

By default, code for the static action of a hierarchy state is generated for each 
transition that does not lead out of the hierarchy, as well as once for each 
substate of the hierarchy. In large hierarchies, this can result in a noticeable 
part of the entire code.

When you activate the Optimize Static Actions (Restricted Modeling) code 
optimization option in the project that contains the state machine, code for 
the static action of a hierarchy state is generated only once for each substate. 
Thus, code size can be reduced. 
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A disadvantage of this optimization is that it does not work for some models. 
If a state machine contains a substate with a direct transition out of it’s hierar-
chy state, this transition must have the highest priority of all transitions from 
that substate. Otherwise, code generation aborts with the following error mes-
sage:

ERROR(YSm72): higher priority transitions do not exit 
hierarchy state "HState", but this transition does.

The changes in code generation change the state machine semantics as fol-
lows:

• The static action of the hierarchy state is executed before the condi-
tions of the transitions from the substate are evaluated.

• If no transition occurs, the static action of the hierarchy state is exe-
cuted before the static action of the substate.

• If a transition occurs, the static action of the hierarchy state is executed 
before the exit action of the substate.

Two examples illustrate the effect of this optimization. In both examples, the 
state machine consists of the hierarchy state HState containing the substates 
Start and InnerState1, and the base state OuterEnd. Two transitions 
leave Start, one of them (Start → OuterEnd) also leaves the hierarchy 
state HState.

In the first example, the transition from State to OuterEnd has a higher 
priority than the transition from State to InnerState1. This means that 
code can be generated both with activated and deactivated Optimize Static 
Actions (Restricted Modeling) option.

Note

The changes can alter the behavior of the state machine. If you activate the 
option for an existing state machine, check it’s behavior carefully.
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The following table shows the generated C code for both cases. Code for the 
static action of HState is set in boldface.

Option deactivated Option activated

case Start :
{
if (x == 1.0)
{
x = x * 3.0;
sm = OuterEnd;
return;

}
if (x == 2.0)
{
x = x * 3.0;
x = x + 1.0;
sm = InnerState1;
return;

}
x = x * 2.0;
x = x + 1.0;
return;

}
case InnerState1 :
{
if (x == 3.0)
{
x = x + 1.0;
sm = Start;
return;

}
x = x + 1.0;
return;

}

case Start :
{
if (x == 1.0)
{
x = x * 3.0;
sm = OuterEnd;
return;

}
x = x + 1.0;
if (x == 2.0)
{
x = x * 3.0;
sm = InnerState1;
return;

}
x = x * 2.0;
return;

}
case InnerState1 :
{
x = x + 1.0;
if (x == 3.0)
{
sm = Start;
return;

}
return;

}
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In the second example, the transition from State to OuterEnd has a lower 
priority. With activated Optimize Static Actions (Restricted Modeling)
option, code cannot be generated.

Option deactivated Option activated

case Start :
{
if (x == 2.0)
{
x = x * 3.0;
x = x + 1.0;
sm = InnerState1;
return;

}
if (x == 1.0)
{
x = x * 3.0;
sm = OuterEnd;
return;

}
x = x * 2.0;
x = x + 1.0;
return;

}
case InnerState1 :
{
if (x == 3.0)
{
x = x + 1.0;
sm = Start;
return;

}
x = x + 1.0;
return;

}

ERROR(YSm72): higher prio-
rity transitions do not exit 
hierarchy state "HState", 
but this transition does.
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Hierarchical Code Generation: Two possibilities exist to generate code for 
a hierarchical state machine:

With flat code generation, the hierarchy is flattened, i.e. a single switch
statement is generated for all (basis) states and transitions.

With hierarchical code generation, several switch statements are generated, 
nested according to the hierarchy. To activate this kind of code generation, the 
following options must be activated:

1. project settings, "statemachine" node: Hierarchical Code Genera-
tion (may be changed locally) 

2. implementation editor of the state machine, "Settings" tab:Hierarchi-
cal code generation for State Machines 

When the first option is not activated, no hierarchical code generation is done. 
When the first option is activated, the second option activates/deactivates hier-
archical code generation for a particular state machine. 

With hierarchical code geenration, code for transitions from hierarchy states is 
generated only once, instead of once for each affected basis state with flat 
code generation. Thus, code size is reduced. The reduction can be considerable 
(up to 30%). In the experiment, hierarchical and flat codegeneration behave 
identcal for identical state machines.

An example illustrates the difference in the generated code. 

Note

For hierarchy states without transitions and/or static actions, code size is not 
reduced, but slightly (1–2%) increased.

Note

The reduced code size does not show in the generated C file, but in the 
generated executable file.
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The transition from top_1 to top_2 is set in boldface.

hierarchical code generation flat code generation

switch (self-> ↵ 
_ASCET_smLevel_0->val)

{ 
case top_2 :
{ 
if (self->log_t->val)
{ 
self->x->val = 0.0;
self-> ↵ 

_ASCET_smLevel_0-> ↵ 
val = top_1;

self->sm->val = middle_1;
return;

}
return;

}
default:
case top_1 :
{ 
if (!self->log_t->val)
{ 

switch (self->sm->val)
{ 
default:
case middle_1 :
{ 
if (!self->log_t->val)
{ 
self->x->val = -1.0;
self->sm->val = top_2;
return;

}
if (self->log_m->val)
{ 
self->x->val = self-> ↵ 

x->val + 1.0;
self->y->val = -1.0;
self->sm->val = middle_2;
return;

}
self->y->val = self->y->↵ 

val + 1.0;

self->x->val = -1.0;
self-> ↵ 

_ASCET_smLevel_0->↵ 
val = top_2;

self->sm->val = top_2;
return;

}

self->x->val = self->x->↵ 
val + 1.0;

return;
}
case middle_2 :
{ 
if (!self->log_t->val)

switch (self->sm->val)
{ 
default:
case middle_1 :
{ 
if (self->log_m->val)
{ 

{ 
self->x->val = -1.0;
self->sm->val = top_2;
return;

}
if (!self->log_m->val)
{ 

self->x->val = self-> ↵ 
x->val + 1.0;

self->y->val = -1.0;
self->sm->val = ↵ 

middle_2;

self->x->val = self-> ↵ 
x->val + 1.0;

self->sm->val = middle_1;
return;

}
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Triggers and trigger arguments: If trigger arguments are used for com-
munication with other ASCET components, instead of inputs and outputs, the 
static RAM requirements are reduced. You can find more information on this 
in the next chapter.

2.5.9 State Machines as Classes

A state machine is a class with special description means. The trigger, condition 
and actions are modelled as special methods:

• A trigger is a public method without a return value. The state machine 
is executed whenever a trigger is started.

• A condition is a private method with a return value of type logical.

• An action is a private method. An action has, as standard, no argu-
ments and no return value.

If necessary, you can add arguments to any of these methods, for communica-
tion with other ASCET components.

return;
}
self->y->val = self-> ↵ 

y->val + 1.0;
self->x->val = self-> ↵ 

x->val + 1.0;
return;

}
case middle_2 :
{ 
if (!self->log_m->val)
{ 
self->x->val = self-> ↵ 

x->val + 1.0;
self->sm->val = ↵ 

middle_1;
return;

}
self->x->val = self-> ↵ 

x->val + 1.0;
return;

self->x->val = self->x->↵ 
val + 1.0;

return;
}
case top_2 :
{ 
if (self->log_t->val)
{ 
self->x->val = 0.0;
self->sm->val = middle_1;
return;

}
return;

}
}

}
}

}
}

Components 83



84
Inputs and outputs serve for the integration of the state machine with other 
components. The input values are buffered to internal variables and can there-
fore be used in all computations of the state machine (in contrast to arguments 
of a method, that can only be used in the method itself). The outputs are also 
buffered, so they can be read without invoking the computation of the state 
machine. Each input and output needs its own sequence call (see section 6.3).

This type of external communication is, however, memory intensive as a vari-
able must be reserved in the RAM for each input and output. To reduce the 
static RAM requirement, you can add arguments to the triggers (and to argu-
ments and conditions, if these are specified in a separate diagram). You can 
then use these for external communication. Stack variables which do not bur-
den the static RAM are created for the arguments of a C function. The dynamic 
RAM area is burdened temporarily.

You should always keep the following points in mind:

• Triggers are public methods. Their arguments can be described outside 
of the state machines. In the Layout Editor, the trigger arguments are 
represented by black argument connections. 
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• Arguments and conditions are private methods. Their arguments are 
therefore not available outside the state machine. In the Layout Editor, 
they are represented by white argument connections.

If a trigger argument is to be used in an action or condition specified as 
a block diagram, an argument of the same type and the same name as 
the trigger argument must be added to each corresponding method. 

The arguments are depicted according to their name and their type. If, 
in the trigger and the action/condition, there are arguments with the 
same names but with different types, a warning is issued. If the argu-
ment is only defined in an action or a condition but not in the opening 
trigger, an error message is output. 

Also, there are the following rules for the use of trigger arguments in actions 
and conditions:

• All trigger arguments which are to be used in the entry action of a state 
must be defined in the action and in every trigger belonging to the 
transition leading into the state, as it will be started by these triggers.

• All trigger arguments which are to be used in the exit action of a state 
must be defined in the action and in every trigger belonging to the 
transition leading out of the state, as it will be started by these triggers.

• All trigger arguments which are to be used in the static action of a state 
must be defined in the action and in each trigger of the state machine. 
Each trigger event which does not cause a transition from the active 
state, starts the execution of its static action.

• You must define all trigger arguments which are to be used in the con-
dition or transition action of a transition, in the action/condition and in 
the triggers belonging to the transition, as they will be started by this 
trigger.

If one of these rules is violated, an error message is issued.

Trigger
arguments

Arguments from 
actions/conditions 
(t_air is used in 
two methods)

Return values
from
conditions
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After the integration into another components, you can assign values to the 
trigger arguments. In contrast to the inputs and outputs, only a sequence start 
(see section 6.3) is required for all the arguments.

Additionally, 'normal' public methods can be defined for a state machine like 
with all other classes. These public methods offer several additional possibili-
ties. They can be started from outside the state machine, e.g., as well as from 
the states and transitions. Their arguments and return values can replace 
inputs and outputs in the communication with other components. In this case 
too, only a single sequence start is required for the complete method (this does 
not, however, bring any runtime savings). You also have the option of prepar-
ing the input values, should they be needed in the state machine.

Further applications of public methods in state machines are, for example, 
reset functions that can be started both from within and without the state 
machine, or counters that have to register events inside and outside the state 
machine. Parts of the state machine, integrated classes, can be calculated in a 
Components



different time frame. You can integrate a second state machine into the first 
and - without an additional trigger - computed in a different time frame, too, 
by starting it via a public method.
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3 Types and Elements

Every algorithm in a component works on elements. An element contains a 
piece of data, and makes available an interface for accessing its data or return-
ing the value of a computation (e.g. interpolation of a characteristic line). Ele-
ments are strongly typed, i.e. each element is of a fixed type. Since there can 
be more than just a single element of a given type, an element is referred to as 
an instance of a given type.

ASCET has a number of basic types, that can be used directly, such as discrete 
or continuous variables, arrays, matrices or characteristic lines and fields. New, 
user-defined types can be added to the system in the form of classes. Classes 
are complex types, they have a complex structure, because they are usually 
build up from other types (basic as well as other complex ones). The types can 
be classified as in the following diagram:

Fig. 3-1 Classification of data types in ASCET

As the modelling in ASCET takes place on the physical level, the types are also 
’physical’ types. Elements are committed to a specific data type (e.g. 
unsigned int8) only during the implementation phase, which is indepen-
dent of the modelling phase.

The physical definition of an element must contain the following information: 

• the name of the element

• the model type

• the element kind

• the scope of the element

The options that are available for each of the above categories are described in 
detail in the following sections.

Types

Basic User defined

Scalar Composite

Reference types
Value types
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When defining an element, additional information on the physical unit and a 
comment can be added to generate a meaningful documentation of the 
model. This information has no impact on the physical model.

3.1 Basic Model Types

In ASCET there are two categories of basic model types: scalar types and com-
posite types. 

3.1.1 Scalar Types

The most important of the basic model types are the scalar ones. ASCET sup-
ports four basic scalar types, which are represented in the various ASCET win-
dows by their respective symbols:

• Continuous is used for continuous physical values that can be infinitely 
large and have an arbitrarily fine resolution. This type is suitable for 
modelling variables like temperature, speed, etc.; it is referred to as 
model type cont.

• Signed discrete is used to model integral numbers of arbitrary size; it is 
referred to as model type sdisc.

• Unsigned discrete is used to model non-negative integral numbers of 
any size. This type is suitable for modelling things like the number of 
cylinders of an engine; it is referred to as model type udisc.

• Logical is used to model logical information, e.g. whether a particular 
system is active or not; it is referred to as model type log.

The four basic scalar types are value types. Whenever an element of such a 
type is used, not the element itself as an object, but its value is used. Automatic 
typecasting between the arithmetic types cont, sdisc and udisc is per-
formed if necessary.

Like complex types (classes), each basic type has an interface, i.e. methods to 
access it. For the basic model types these methods are fixed, the interface can-
not be modified.

Scalar types have two simple access methods for the value stored in an ele-
ment of the basic scalar type, i.e. for writing a new value to and reading the 
current value from the element:

• set (type a): This method takes one value, e.g. the value a, and 
overwrites the value of the element with that value. If the type of the 
value does not fit to the type of the element, a type conversion is per-
formed automatically.

• get(): This method returns the current value of the element. The 
value returned is of the same type as the element itself
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Accessory methods in basic types are invoked automatically, when an element 
name is used in an expression or when an assignment is performed. They do 
not have to be coded explicitly.

3.1.2 Composite Types

Composite types are basic types that are built up from basic scalar types. The 
following composite types are available in ASCET:

• array ( )

• matrix ( )

• characteristic line ( )

• characteristic map ( )

• distribution ( )

Composite types consist of basic scalar types. Arrays and matrices can consist 
of all four scalar types, characteristic lines, maps, and distributions only of the 
three arithmetic types. Unlike basic scalar types, composite types are reference 
types. When assigning two variables of reference types to each other, not the 
values are assigned (and copied), but the references to the variable.

All reference types have access methods for their elements:

• set (reference type a): This is an assignment of the reference 
to reference type a. After such an assignment, both elements (the 
assigned as well as the assigning) are the identical element!

• get: This returns a reference to the element of composite type.

Parameter passing in method calls works in the same manner as assignments. 
A reference is passed to the element. As a consequence, a change to the 
parameter, for instance by assigning a value to it, is also reflected outside the 
method. This mechanism is equivalent to a "call by reference" in programming 
languages like C.

Array

An array is a basic type, holding a number of scalar values of the same basic 
scalar type, e.g. continuous or logical. The position of a scalar value 
within an array is indicated by its associated index value which must be of the 
model type unsigned discrete. The size of an array is limited to 2048, 
and must be defined statically. The array index takes values between 0 and 
size-1. 

The interface of an array consists of the following methods:
Types and Elements 91



92
• void setAt(scalar type a, udisc i): The assignment of the 
scalar value a to the position i in the array.

• scalar type getAt(udisc i): Returns the value at position i of the 
array.

Arrays of non-scalar basic types or complex (user-defined) types are not avail-
able.

Matrix

A matrix is similar to an array. A matrix is two-dimensional, however, so it takes 
two indices. The type of index is the same as that of an array (udisc). The size 
for each dimension is limited to 63, i.e. the indices take values between 0 and 
62.

The interface of an array consists of the following methods:

• void setAt(scalar type a, udsic i, udisc j): The 
assignment of the scalar value a to the position (i,j) in the matrix.

• type getAt(udisc i, udisc j): Returns the value at position 
(i,j) of the matrix.

Matrices of non-scalar basic types or user-defined types are not available.

Characteristic Tables

To support nonlinear control engineering, one-dimensional and two-dimen-
sional characteristic tables are available in ASCET. The former are called char-
acteristic lines, the latter are called characteristic maps. Characteristic tables 
are used to describe a value in dependence of one or two other values, where 
either the functional dependence is not known exactly or calculating the func-
tion would be computationally expensive. 

An example for a characteristic line is the throughput of a diode in dependence 
of the input voltage. This characteristic behavior is described by a curve. The 
curve is represented as a table of sample points, each of which is associated 
with a sample value. The sample points represent the x-axis of a function 
graph, the sample values represent the curve being described.

Accordingly, a characteristic map is represented by a two-dimensional table of 
sample points for pairs of input values, where a sample value is associated with 
each pair of sample points. The size of characteristic tables is limited to 2048 
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sample points for characteristic lines, or 63 sample points on each axis for char-
acteristic tables. Characteristic tables are always parameters, i.e. they can only 
be read from within the model.

Each characteristic table is also associated a interpolation and extrapolation 
routine. These routines determine, how the output value of a characteristic 
curve is determined by the input value(s).

ASCET provides two different interpolation modes: with rounded interpolation 
the value between two sample points is derived from the sample value at the 
lower (left) sample point, with linear interpolation the value is derived from a 
straight line between the sample values.

In controller applications interpolation is a very time consuming operation. It 
consists of two operations: searching for the right interval of sample points 
and calculating the interpolation factors, and secondly, calculating the output 
value from the interpolation factors. 

The computation of interpolation factors can be optimized using two special 
types of characteristic tables in ASCET: group tables and fixed tables. Group 
tables do not contain a sample point distribution, but reference a distribution 
of sample points. Distributions can be shared by many group tables. The com-
putation of the interpolation factors is performed only once for the distribu-
tion, and only the computation of the output value is performed for each 
group table separately.

A distribution is always a one-dimensional table of sample points. Two-dimen-
sional group tables therefore reference two distributions.

Fixed tables have a equidistant distribution, i.e. the sample points have a con-
stant distance from each other. This makes the computation of interpolation 
factors much faster. The memory requirements are lower as well, since instead 
of a list of sample points, only an offset and a distance have to be stored. There 
is, however, no combination of fixed and group tables. 

The interface of a characteristic table depends on its dimension and whether it 
is a normal, fixed or group table. There are basically three methods:

• void search (arithmetic type a): This method applies to the distribu-
tion of a characteristic line. Here the correct supporting points are 
searched, and the interpolation factors are computed. For two-dimen-
sional tables there are two parameters, i.e. void search (arithmetic 
type a, arithmetic type b).

• arithmetic type interpolate(): This method interpolates the value of 
the characteristic line or map from the interpolation factors and the 
value points at the associated supporting points.
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• arithmetic type getAt (arithmetic type a) is the combination of the 
search and interpolate method. For two-dimensional tables, there are 
two parameters, i.e. void getAt (arithmetic type a, arithmetic type 
b).

For one table, the parameter and the output value must be of the same arith-
metic type, e.g. there is no characteristic map where continuous and discrete 
types can be mixed. The separation of the method getAt into the methods 
search and interpolate only makes sense for group tables.

A distribution only has the method search. A group table only has the 
method interpolate. A regular or fixed characteristic table has all three 
methods.

3.1.3 Real-time Language Constructs

ASCET provides a number of language constructs for real-time applications in 
the description of components. 

Messages

Messages form the input and output variables of processes and are used for 
interprocess communication in the same way as basic scalar types. Unlike glo-
bal variables, messages are protected variables in preemptive scheduling. If 
two concurrent processes both access the same message, data consistency is 
guaranteed, because each process works on its own copy. Messages are only 
available in modules. Depending on their usage, there are three different types 
of messages:

• Receive messages can only be read. Receive messages are used as 
inputs to a module.

• Send messages can only be written to. They are used for the results of 
the computations of a module.

• Send & Receive messages can be read from and written to.  

Receive Message

Send & Receive Message

Send Message
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Resources

A resource (type symbol ) represents a part of an application that can only 
be used exclusively, e.g. timers or special devices. In order to access a resource, 
there are two methods: 

• void reserve(): the resource is reserved, that is the access to it is 
blocked. 

• void release(): the resource is released, that is access to it is 
granted again. 

By executing the reserve method, access to the resource is blocked and 
exclusive access is guaranteed in a preemptive environment, i.e. if the current 
process is de-scheduled and another process wants to use the resource, the 
access is denied. 

When access to the resource is no longer required, the resource can be 
released by the release method. This makes the resource accessible to other 
components again. To avoid deadlocks or priority inversions, the reservation of 
a resource is linked to the priority ceiling of the corresponding process. 
Resources are always global elements.

The dT Parameter

In control engineering applications the result of the calculations within a com-
ponent often depends on the value of the sampling rate. ASCET provides the 
system parameter dT (type symbol ) for uniformly describing the algo-
rithms for all sampling rates. The value of this parameter is provided by the 
operating system and represents the time difference since the last activation of 
the currently active task.

3.1.4 Special Types

Several other types exist besides those already described. They are discussed 
here.

Note

The name dT is reserved for the system parameter. You can create no other 
element with that name; since reserved keywords so not distinguish 
between upper and lower case, DT, dt, and Dt are reserved, too.
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Enumeration

Enumerations (type symbol ) are unique types with values taken from a 
group of known constants called enumerators.

Literals

Literals are strings that represent a fixed value of a basic scalar type which can 
be used in any expression. The value of a literal is either a number (discrete or 
continuous), a character string, or one of the values true or false (logical). 
In the block diagram editor the values string, true, false, 0.0, and 1.0
are predefined.

3.2 The Kind of Elements

Each element has a kind. The kind of an element describes how the element is 
used, either as a variable, a parameter, a system constant or constant. Imple-
mentation-Casts are another kind.

• Variables store values that can be read and written from inside the 
model, i.e. a read and a write operation can be performed on them.

In the ECU, they can be placed in the volatile or non-volatile memory. 
For newly created variables, volatile is pre-selected.

• Parameters store values that can only be read from inside the model. 
Parameters can also be calibrated, i.e. written to from outside the 
model. In some cases, special prerequisites are required for that pur-
pose, e.g., the connection to a calibration tool.

Parameters (including characteristic lines/maps) are automatically set to 
non-volatile; in the ECU, they are placed in the respective memory.

• Constants store values that can only be read from inside the model. In 
contrast to parameters, constants cannot be changed from outside the 
model but are fixed at specification time. Constants cannot be imple-
mented, either. 
Constants are created as a define statement in the generated C code. 
However, they are not necessarily explicitly visible in the generated 
code. If, e.g., the constant is set against a requantization, the constant 
does not explicitly appear.
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• System constants are used like constants, and also created as define 
statements. Unlike constants, system constants can be implemented. 
They are always explicitly visible in the generated code.

System constants can be converted into normal constants using 
Extras → Convert System Constants to Constants in the Compo-
nent Manager.

Tab. 3-1 summarizes the differences in usage between variables, 
parameters and constants.

• Implementation casts (see section 4.2.4) provide the user with the abil-
ity to specify the implementation in a targeted manner at any chosen 
position of a calculation or a data stream. Unlike variables and param-
eters, implementation casts do not allocate any memory, and thus have 
no storing effect in the model and cannot be calibrated.

Implementation casts do not have data; they are always of the cont 
model type, always have a scalar dimension and a local range of validity 
(see section 3.3). Unlike other elements, the properties of implementa-
tion casts cannot be edited.

Tab. 3-1 Synopsis: variable, parameter, system constant, constant, imple-
mentation cast

Model Experiment /
Calibration Tool

Implementation

variable r-w r-w yes

parameter r r-w yes

system constant r r yes

constant r r no

implementation cast — — yes
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The kinds of elements are marked by certain symbols in various ASCET win-
dows (e.g., field "3 Contents" of the Component Manager).

Tab. 3-2 Symbols for the various element kinds and scopes

Temporary Variables

To avoid multiple execution within the same method or process, temporary 
variables can be specified for each operator or method call. With that, the 
value of the expression is computed only once for each method or process it is 
used in, and stored to a temporary variable. When the expression is used again 
in that method, it is not re-evaluated but the temporary variable is reused.

Each specification editor can create a temporary variable. A temporary variable 
does not have a start value; its value is determined only by the assignment of 
an expression. ASCET internally manages the temporary variables and provides 
a unique assignment (e.g. in the branches of an IF statement) so that no 
undefined values turn up when the temporary variable is used later. The value 
remains valid until a new assignment to the temporary variable occurs.

The example shows the temporary variable t which stores and reuses the value 
of the addition a + b:

t = a + b;

c = t;

d = t;

Scope

imported exported local dependent virtual

variablesa b

messages

parametersc *d

(system) constants

implementation casts

dT

a: including arrays, matrices and enumerations
b: independent of scope; see page 99
c: including characteristic line/map, distribution
d: symbol is derived from other settings (scope, etc.)
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Virtual Variables/Parameters

Virtual variables/parameters are only available in the specification platform, 
they bear no relevance for code generation. They are included for a better 
understanding of the significance of model elements in the specification.

Virtual variables always depend on other virtual or non-virtual variables. Virtual 
variables are merely aliases to non-virtual variables. No mathematical depen-
dencies such as formulae are allowed; thus the identity (var_virtual = 
var_real) is predefined for editing the data of virtual variables. 

On the other hand, parameters declared as virtual are not necessarily depen-
dent on other parameters.

Dependent Parameters

Model parameters can be connected to other system or model parameters via 
a mathematical dependency. Calibrating parameters can therefore lead to 
inconsistencies.

To avoid possible inconsistencies from parameter calibration, it is possible 
within ASCET to specify the dependency of a parameter in the specification 
editors. The dependency of a parameter is represented by a mathematical for-
mula.

3.3 The Scope of Elements

Some elements are used for exchanging data between different components. 
To establish this, elements can be exported from one component (or from the 
project) and can be imported in any other component. Here, the matching is 
done via names. The scope of each element can be defined as one of the 
following:

• Local elements can only be used within the component that defines 
them, i.e. in all methods or processes of that component.

• Imported elements are defined in some other component or project, 
but can be used in the component that imports them. The properties of 
an imported element can be changed only in the context of the com-
ponent that defines and exports the element.

• Exported elements are defined in one component and can be accessed 
by all other components by importing that element.

Note

Dependent variables do not exist.
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• Method/Process-local elements can only be used in the method/process 
that define them. Method/Process-local elements are not static and do 
not have a data set.

3.4 User-defined Model Types

Elements can also be user-defined model types, i.e. modules or classes. User-
defined model types are always reference types. The interface is defined by the 
interface of this component.

The scope of a user-defined type can be the same as that of the basic types, 
namely imported, exported, local and method-local. Like arguments, 
method/process-local elements of a reference type are not instantiated, but a 
reference to them is established. This means that, when using a method/pro-
cess-local element of a reference type, an assignment to this element must 
precede any further use of that element.

The kind of an element is irrelevant for user-defined model types. User-defined 
model types are always treated as variables, i.e. there is no restriction of the 
interface from within the model.
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4 Data and Implementations

In the previous chapter the parts of a component were identified as the set of 
elements, the interface of the component, and the functional description of 
the methods or processes in the form of algorithms.

In this chapter two additional parts of a component specification are intro-
duced: data and implementation. Both data and implementation belong to the 
elements in a component, i.e. both describe properties of the elements.

The approach of separate descriptions for data and implementations is not 
usually found in standard programming languages, where the data assign-
ments of variables is part of the functional specification, i.e. the program code.

The data of a component describes the physical values with which the ele-
ments of the components are initialized. Data contain physical information and 
are thus part of the physical specification of the component.

Also, standard programming languages do not usually separate between the 
implementation of a functional specification and the functional specification 
itself. The functional specification is usually identical to its implementation.

4.1 Data

The data of a component describes how the elements of a component are to 
be initialized. Thus data refers to the elements of a component.

Fig. 4-1 A component with multiple data sets

The data is held separately from the elements because a component can have 
multiple instances in a project, whereas the different instances access different 
data sets for their elements. (The data sets are, however, not parts of the 
respective instance.)

An example would be a p-control filter. Each instance of this p-control filter has 
its own value for the p-factor. This is achieved by assigning different data sets 
to the p-control.

DataData

Component

Elements Data
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The specification of data is part of the specification of the component itself, 
and not of the different instances. This may lead to a large number of different 
data sets for a component, but if each instance would hold its own data, this 
would result in the loss of a modular system design.

The organization of data for each element depends on whether it is a basic or 
complex element. Since basic elements are always used within complex 
objects, and are never considered separately from those, basic elements do not 
have explicit data sets. The data for the basic elements are therefore part of the 
data set of the complex element they are contained in.

Complex elements are the components specified by the user. Each complex 
element has its own data set. If a complex element is used in a component, the 
data set of the complex element is referenced by the component. Thus the 
data of a component has the same hierarchical structure as the component 
itself.

Data sets have an object ID, which is used to reference the data of a compo-
nent. Just like references to user defined types, this reference is not name-
based.

Consider the following example with the types A and C:

The type C has the following data sets:

A C

b:cont
c:C

d:cont
e:log

C

C1 C2

d:cont
e:log e           true

d           5
e          false
d           7
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A data declaration for the type A using the data sets of C would have the 
following results:

The data for the basic types can be specified directly. For the scalar types the 
data consists of one value. For composite types, like arrays or characteristic 
lines, the data consists of a table of values, or a table of sample points and 
sample values.

4.2 Implementations

Implementations describe how the elements of a component are to be realized 
in code. Here the same scheme as for data is followed:

Fig. 4-2 A component with multiple implementations

The same reference scheme applies to implementations as to basic and com-
plex types. The effect of implementations is much broader than that of data 
sets. The implementation of an element, e.g. whether an element of type 
cont is represented as a data type float or signed int, has direct influ-
ence on the code that is generated from the functional description for a 
method or process.

4.2.1 Implementations for Scalar Types

The implementation describes how an element of a basic type is realized in the 
generated C code. The implementation specification for elements of type log-
ical is very easy, since a logical element has only two values, either true or false. 

A

b:cont
c:C

A 1 A 2

d:cont
e:log e           true

d           5

b           3
C           C1

e          false
d           7

b           5
C           C2

DataData

Component

Elements Implementation
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The implementation specification consists only of the data type. For logical ele-
ments either byte, word, or long can be chosen.

The implementation specification for the arithmetic types is much more com-
plex. It describes, among other things, the implementation type, which can be 
an integer type even for elements of type continuous. The implementation 
specification therefore contains a complex transformation from the physical 
domain to the implementation domain, which can be very different from each 
other.

The differences between the physical domain (e.g. model type continuous) 
and the implementation domain are the infinite range of the physical domain 
from -infinity to +infinity, and its arbitrarily fine resolution. In the implementa-
tion domain, on the other hand, the range is limited by the word length, and 
the resolution is not arbitrarily fine but fixed to 1.

In order to make a transformation between the physical domain and the imple-
mentation domain possible, the range of the physical domain has to be lim-
ited. Thus each element must be assigned an interval for the relevant physical 
values. The resolution must also be restricted. Therefore, each element has to 
be given a fixed resolution, the quantization.

For example, let A be a range of values in the physical domain, A = [-1, 0.5], 
and assume a quantization of q = 0.2.

The result of the limitation of the range to an interval and of the quantization 
is a restriction of the values of an element to a finite set of equidistant values.

Aq = {-1, -0,8, -0.6, -0.4, -0.2, 0, 0.2, 0.4}

This finite set of values can now be mapped to an integer range:

Aint = {-5, -4, -3, -2, -1, 0, 1, 2}

This corresponds to a linear conversion formula between the physical domain 
to the implementation domain of the kind impl = 5 * phys. The data type 
for the integer variable is automatically determined from the integer range. In 
this example, the data type signed int8 would be chosen.

When the range of the physical element has an offset larger than zero, the 
associated integer interval may only contain a few values, but a large data type 
has to be used.

Consider for example the physical domain range A = [120, 130] and a quanti-
zation of q = 0.5. A linear conversion would result in an integer range Aint = 
{240, … , 260}.

The type for the integer variable is unsigned int16 in this case, although 
the number of values would also fit into a variable of type int8.
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To implement this, a general linear conversion formula with an offset can be 
specified. In the above example, a conversion formula of the type 

impl = 2 * phys - 240 

would lead to an integer interval of {0,…,20} and a variable of data type 
unsigned int8 would be sufficient.

The conversion formulas are not specified in the context of a component, but 
in the context of a project. This makes it easy for several components to use 
the same conversion formulas. Furthermore, this complies with the ASAM-
MCD-2MC standard.

4.2.2 The Implementation of Composite Types

For composite types like arrays, matrices or characteristic tables, the implemen-
tation is specified for the interface elements of the composite types, which 
themselves are of a scalar type.

For arrays, for instance, the implementation for the elements held in the array 
must be given. This implementation is valid for both, the input and the output 
of the array. The implementation for the index is fixed, since the index is a 
discrete model type.

For characteristic tables, the implementation of the x-points and y-points and 
the values of the table can be specified separately from each other. 

4.2.3 The Implementation of User-Defined Types

The implementation of user-defined types consists of the implementations of 
all elements used in that component.

In the case of classes, the arguments and return values also need to have an 
implementation, since the value of an actual and formal argument have to be 
adjusted correctly to each other. This is automatically done for arguments of a 
scalar type.

This automatic adjustment does not work for arguments of composite or com-
plex types. If such arguments are used, the implementation of the formal argu-
ment and the actual argument must coincide. Here, no automatic adjustment 
is possible, since these arguments are passed as references.

Temporary elements do not have an explicit implementation, but they are 
automatically assigned an implementation by the code generation algorithm. 
It is important that an assignment to this variable (e.g. an initialization) pre-
cedes any other use of it.

Method- and process-local elements can be implemented automatically, like 
temporary elements, but they can be explicitly implemented, too (see ASCET
user’s guide, section "Implementations of Method- and Process-Local Vari-
ables"). The implementation is preserved within the method/process.
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4.2.4 Implementation Casts

ASCET 5.0 introduced a new primitive element type – the implementation 
cast. Implementation casts provide the user with the ability to influence the 
implementation of intermediate results within arithmetic chains. This allow the 
user to display knowledge regarding particular physical correlations (for exam-
ple, that a specific range of values is not exceeded at a defined point in the 
model) in the model, without requiring the allocation of physical memory.

Below is a small example to illustrate this functionality.

In a simple arithmetic specification, two variables, a and b, are added, the 
result of the addition is multiplied by the literal 2, and the result of the multi-
plication is assigned to variable c.

Fig. 4-3 Simple Calculation without an Implementation Cast

During implementation, variables a, b and c have been assigned the int16
type; all three variables exhaust the entire possible value range. Because of 
this, the code generator in the example above would create a 32-bit-wide tem-
porary variable, and would requantize this before assigning it to c to a value 
range that is applicative for int16 by executing a right shift.

Now, if the user knows that the sum of a and b can be no greater than a 16-
bit-wide result and thus exhausts only half of the possible value range (for 
example, due to physical boundary conditions or because certain correlations 
in the model compel this to be the case), he or she can define this as such 
using an implementation cast (see Fig. 4-4).

Fig. 4-4 Simple Calculation with an Implementation Cast

Note

Implementation casts cannot be used in conjunction with logical elements.
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In implementing the implementation cast with the int16 type and value 
range [-16384..16383], while disabling both the Limit to maximum bit 
length and Limit Assignments options, the user guarantees specific proper-
ties of the intermediate result for the code generator. This prevents the requan-
tization required in the example illustrated in Fig. 4-3.

Another application for implementation casts is the targeted allocation of 
implementations to the inputs and outputs of operators. This function allows 
you to select target arithmetic services (see section 4.14 "Arithmetic Services"
in the ASCET user’s guide) for specific operators. In this context, implementa-
tion casts replace the present operator implementations.

As the name implies, implementation casts only affect the implementation. 
More accurately, this means that implementation casts are taken into account 
for the code generation of experiments (see chapter 4.8.8 in the ASCET user’s 
guide) of these types:

• implementation experiment and

• object based controller implementation

They are simply ignored for these types:

• physical experiment and

• quantized physical experiment

Depending on the code generation options (see "To adjust the project set-
tings:" in the ASCET user’s guide) for the implementation experiments, imple-
mentation casts have the following properties:

• If the maximum bit size that is defined for the project is smaller than 
32 bits, the code generation for implementation casts allows the use of 
a larger bit size. If, however a variable that exceeds the permitted bit 
size is necessary in the code, an error message is displayed.

With this functionality, implementation casts can be applied within 
arithmetic chains to specify intermediate results that are outside of the 
controller's original maximum bit size.

• If an implementation cast is present at the numerator input of a division 
operator, its implementation overwrites the Allow Double Bit Size 
for Division Numerators option.

Another important property of the implementation cast is that it allocates for 
its implementation during code generation neither permanent nor temporary 
memory. This is because implementation casts are not created as global ele-
ments or as local function variables. For implementation casts that are applied 
in combination with a value limitation, however, a local, temporary function 
variable can be necessary to temporarily store the calculation result before area 
check is carried out.
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The use of implementation cast is limited to the block diagram editor and the 
ESDL editor. Furthermore, these elements are only offered for modules and 
classes (excluding, however, CT blocks, Boolean tables and condition tables) 
and for specifying conditions and actions in state machines. 

4.3 Code Generation with Implementations

When choosing an implementation, the code is generated in fixed point arith-
metic. This fixed-point arithmetic is based on integer arithmetics. The informa-
tion of the implementation applies to elements of a component. This 
information together with the functional description, i.e the information how 
the elements interact with each other, is the basis for integer code generation.

Fig. 4-5 Code generation with implementations

To make the principle of integer code generation more transparent a simple 
example is given in the following.

An Example: Code Generation for an Addition

Imagine the following simple example

c = a + b;

where a, b, and c are model variables of type continuous.

The implementation transformation is linear without an offset. The following 
quantizations are used: 0.01 for a, 0.04 for b and 0.05 for c. A, B, and C are 
the corresponding implementation variables for the elements in the generated 
C code.

When generating code for the above example, the quantizations must be 
taken into account. For the values a = 1, b = 0.6, and consequently c = 1.6, 
the result with the above quantizations would be A = 100, B = 15 and C =32. 
A direct transformation of the model to the implementation level would lead 
to a wrong result (A+B = 100 + 15 = 115 which is not equal to C = 32).
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of Elements
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Implementation (= code) of body
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specified by user

automatically generated
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The reason is that the quantization is not taken into account. The above model 
equation must be transformed to the implementation transformation. Here 
the quantizations of A and B have to be adjusted before the addition takes 
place, and the result of this addition has to be adjusted to the quantization of 
C. This leads to the following piece of C code for the above model:

C = (A + 4 * B) / 5;

The multiplication of B by 4 corresponds to the adjustment of the quantization 
0.04 to 0.01, and the division by 5 corresponds to the adjustment of the quan-
tization of 0.01 to 0.05.

4.3.1 Transformation of Data under Implementation

The data stored with an element always contains the "model data", i.e. the 
physical values, but the implementation must also be reflected in the data. In 
the above example, the physical (model) data for variable a was 1, the data for 
the implementation variable A however was 100.

Fig. 4-6 Transformation of data

4.3.2 General Rules for the Implementation Transformation

The implementation transformation works on arithmetic values. The values are 
adjusted in all arithmetic expressions, so the corresponding arithmetic opera-
tions can be executed:

Addition and Subtraction: 

The arguments of these operations are adjusted to an quantization. This quan-
tization is determined by the internal code generation algorithms and mini-
mizes the number of re-quantizations. The constant offset is calculated for the 
result from the quantizations and the offset of the arguments.

Multiplication and Division: 

The arguments of these operations are first made offset free, before the mul-
tiplication or division can take place. The quantization must not be adapted, 
but is determined from the result of the multiplication or division. However, to 
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avoid overflow or a loss in precision, the quantization of the arguments may be 
multiplied by a power of two (shift operations). This is also automatically deter-
mined by the internal code generation algorithm.

Comparison, Minimum and Maximum: 

Similarly to addition, the arguments are adjusted to each other (as well in 
quantization as in offset). The minimum and maximum operator work like the 
addition operator.

Assignment: 

The value that is assigned to a variable is re-quantized and the offset is cor-
rected before assignment is performed. This also applies to argument passing.

4.4 The Implementation of Methods and Processes

The facilities for using implementations (enhanced in ASCET 5.0) allow for 
method implementations to be specified. Method and process implementa-
tions are available in both ESDL and block diagrams.

The implementation of a method or process contains information the memory 
to be used for running a method or process and whether it should be fully 
expanded during code generation.

In general, algorithms that should have a short response time or are used more 
often, will be run in internal memory, whereas other algorithms that are not 
used very often, such as initialization algorithms, will run in external memory.

In addition, method and process calls can either be represented as function 
calls or fully expanded in generated code (inlining).
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5 Body Specification in ESDL

This chapter describes the common features of ESDL that are used in the 
description of classes and modules. The description is divided into three main 
parts.

The first section contains a brief description of general ESDL characteristics. A 
comprehensive description of both the syntax and elements of ESDL is pro-
vided in subsequent sections.

The differences between ESDL and block diagrams as well as those between 
ESDL and the C and Java programming languages are summarized at the end 
of this chapter.

Readers are assumed to be familiar with either the C or Java programming 
language (or both). If you need further information on C or Java, you can use 
any of the standard reference manuals for these languages.

The following is a list of some common reference manuals for Java and C:

• Arnold, Ken, Gosling, James, The Java Programming Language 
(Reading, Mass.: Addison Wesley, 1996)

• Flanagan, David, Java in a Nutshell (Cambridge, Mass.: O’Reilly, 21997).

• Kernighan, Brian W., Ritchie, Dennis M., The C Programming Language 
(Englewood Cliffs: Prentice-Hall, 21988).

5.1 ESDL as a Modelling Language

ESDL was designed specifically as a modelling language for the automotive 
environment. In ASCET, it is used to specify the method or process bodies 
within classes or modules. For simplicity, classes and modules are subsumed 
under the term classes in this section.

In ESDL, both the syntax and elements are based on the Java programming 
language to provide for a low learning curve. When working with ESDL, how-
ever, it is important to keep in mind that ESDL is radically different from other 
languages. 

The main characteristics, which in part distinguish ESDL from other languages, 
are as follows:

• ESDL is a modelling language, not a programming language. It is a 
modeling language that works on the same abstract, physical level of 
description as the block diagrams commonly used in ASCET. Concepts 
that are related to or dependent on implementation, such as pointers 
or shift operators, are not available.
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• ESDL is used for systems that run in a real-time environment. Hence, it 
must meet the requirements of real-time operation. As a consequence, 
ESDL is as object-oriented as these parameters permit. The model struc-
ture can be mapped to classes and modules, but instantiation is static 
and there is no inheritance.

• ESDL is used to build automotive software. While users can build com-
plex software models in ESDL, concepts that are currently not relevant 
to embedded systems, such as string operations, are not implemented.

• ESDL ties in seamlessly with the ASCET development environment. The 
language is used at the same level as block diagrams, that is, for 
describing the functions contained in method or process bodies. Import 
of elements and variable declaration are performed using the corre-
sponding tools in the ESDL editor.

These four main characteristics of ESDL determine the scope and usage of the 
language. Otherwise ESDL can—more or less—be seen as a highly specialized 
variant of the Java programming language.

5.2 Basic Elements

5.2.1 Working with Methods and Processes

The basic elements of a functional description in ESDL are methods and pro-
cesses. A method consists of a method header, which servers as an identifier, 
and the method body which describes the operations to be performed.
Body Specification in ESDL



The method header consists of the method name, a list of arguments and a 
return value. Method names are assigned when adding a new item to the 
methods list ("Diagrams" pane) of the ESDL Editor. They can be modified by 
renaming the list item.

Method names must be unique in ESDL. Method overloading is not supported, 
i.e. it is not possible for two methods to differ from each other only in the 
number of parameters and/or parameter types.

The arguments and the return value are optional elements of the method 
interface. The method header and interface can be modified using the Inter-
face Editor on the ESDL Editor window. The Interface Editor is used to add or 
modify parameters and the return value as needed.

The functional description of a model is contained in the method body which 
can be edited in the text pane of the ESDL Editor.
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5.2.2 ESDL Syntax

ESDL syntax is entirely the same as that of the Java programming language. 
Every statement in ESDL is terminated by a semicolon (;). 

Timer.calculate(); 
x = a + b; 
tmp = Timer.out();

Compound statements or blocks are contained in curly braces { … }. 

if (x > 0) { 
y = f(x); 
z =1; }

Method parameters and expressions are contained in parentheses ( … ).

while (z > 4) { 
z--;}

Integrator.reset(15); 
Limiter.out(0, 15, 100);

The equals sign (=) is used for assignments.

low = -1; 
xVar = a * (b-5); 
tmp = xVar.max(15);

5.2.3 Variable Names

In ESDL, variables names are made up of letters and digits. The first element of 
a variable name must be a letter. The underscore character counts as a letter. 
Variable names must not contain spaces. 

The following are valid ESDL variable names:

i, j2a, aVar, a_Var

The names of all variables must be unique within the scope of the current 
element. This limitation is important when working with imported classes or 
modules. ESDL does not, at this stage, resolve name conflicts.

Reserved Keywords: 

The following keywords are reserved and may not be used as variable names.

auto, break, case, char, cond, const, continue, 
default, df, do, double, dt, else, enum, exit, extern, 
false, float, for, get, getat, getatat, goto, header, 
if, inactive, int, interpolate, long, monitorprocess, 
normal, null, receive, register, return, search, 
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self, send, set, setat, setatat, short, signed, 
sizeof, static, struct, switch, true, typedef, undef, 
union, unsigned, void, volatile, while.

Since upper and lower case are not distinguished, any spelling of the above 
names is reserved.

5.2.4 Data Types

ESDL is strongly typed and variables must be declared. The procedure here is 
the same as when editing block diagrams. Variables are added to the elements 
list and can then be edited as needed. 

There are four data types available in ESDL, namely udisc, sdisc, cont
and log. They can be added to a class or module by selecting the correspond-
ing element from the editor toolbar.

The ESDL method or process body itself does not contain variable declarations. 
Only if a variable is local to the current method/process can it be declared and 
initialized in the method body using a statement like the following:

cont set = 12.34; 
cont temp = 0.78e4; 
udisc i = 3, j, k; 
sdisc aVar = -12; 
log trigger = true;

5.2.5 Type Conversion

Whenever a basic arithmetic operator like +, -, *, / has operands of 
different types, the result is automatically converted to that of the strongest 
type used in the expression.

The order of types is (from weak to strong): sdisc, udisc, cont.

cont result = varUdisc + varCont;

When assigning a value to a variable the data types must match. There is no 
explicit type casting. Only for the basic arithmetic types signed discrete, 
unsigned discrete and continuous does ESDL perform an implicit conversion.

cont tmp = 2;

A conversion of boolean and arithmetic types is not possible.
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5.2.6 Primitive Methods

Every arithmetic type has a predefined interface which covers a set of basic 
math functions. The following messages are available for all arithmetic types:

Tab. 5-1 Primitive methods for arithmetic types

The var.between(val1, val2)  method corresponds to the 
between:And: element in block diagrams.

5.2.7 Literals and Constants

Literals are values like 12, 6.1e4 or true. Every primitive type (boolean and 
arithmetic), can occur as a literal in an ESDL method. The data type of literals 
is implicit.

Constants are named values, such as g = 9.81. They are added to a class 
and declared in the same manner as variables. The Element Editor can be used 
to assign a value and flag a variable as a constant.

Some examples:

• x = g.abs();

The absolute value of the constant g is assigned to the variable x.

• out1 = myvar.max(g); or out1 = g.max(myvar);

The larger of the values myvar (a variable) and g is assigned to the 
variable out1.

• out2 = myvar.min(.04); or out2 = (.04).min(myvar);

The smaller of the values myvar and 0.04 is assigned to the variable 
out2.

5.2.8 Comments

A comment explains the purpose of a particular piece of ESDL code. There are 
two types of comments, commonly referred to as single- and multi-line com-
ment.

Method Receiver Returns Usage

val.abs() arithmetic arithmetic absolute value of val

val1.max(val2) arithmetic arithmetic the greater of two values

val1.min(val2) arithmetic arithmetic the smaller of two values

var.between(val1, 
val2)

arithmetic log var between val1 and val2
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Single-line comments are preceded by a double slash (//). The text that fol-
lows is ignored up to the end of the current line. Multi-line comments are 
delimited by /* and */.

The comments used in an ESDL description are not transferred to the C code 
that is generated from that description. 

5.2.9 Operators

In EDSL, method calls take precedence over all other operators. The order of 
precedence can be manipulated by adding parentheses to an expression.

Unary Operators: 

The unary operators are +, - and ! (not); the latter is used for boolean types. 
In addition, the increment and decrement operators ++ and -- are available. 
They can be used as prefix or postfix operators.

Unary operators take precedence over all other operators. They associate right 
to left.

Arithmetic Operators: 

The four arithmetic operators +, -, * and / can be used in ESDL. The mod-
ulus operator %, which calculates the remainder of an integer division, is also 
available. 

The *, / and % operators take precedence over the binary + and - operators. 
Arithmetic operators associate left to right.

Comparison and Equality Operators: 

The comparison operators are >, >=, < and <=. They are applied to arith-
metic types and take precedence in this group.

The equality operators == and !=, which can be applied to both value and 
reference types, range next in the order of precedence.

Comparison and equality operators are binary. They associate left to right.

Logical Operators: 

The logical operators && and || (AND and OR) follow next in the order of 
precedence with the AND operator taking precedence over an OR. 

Logical expressions are evaluated only until the truth or falsehood of the entire 
expression is determined. If, for example, the expression a && b is evaluated 
and a evaluates to false, it is redundant to evaluate the remainder of the 
expression. The evaluation of b has no impact on the result.

Logical operators are binary. They associate left to right.
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Conditional Operator (MUX): 

The conditional operator ?: corresponds to the MUX operator in the block 
diagram editor. The operator has the general form (a ? n : m) where a is 
a boolean, n and m must be of the same type. They can be any primitive type, 
boolean or arithmetic.

The value of a conditional expression depends on the value of a. If a is true
in the above example, the value of the expression is n otherwise it is m.

The conditional operator is ternary. It ranges behind all binary operators in pre-
cedence. Association is from right to left.

Shorthand Assignment Operators: 

In ESDL common shorthand assignments, such as += or *= can be used. The 
a += 4 operation is a shorthand for the a = a + 4 assignment operation. 
Shorthand notation is available for the following operators:

*=, /=, %=, +=, -=.

Shorthand operators have lowest precedence. They associate from right to left.

Summary: Operator Precedence and Associativity: 

The following table summarizes the precedence and associativity of operators 
in ESDL as described in the previous section.

Tab. 5-2 Operator precedence and associativity

Operator Associativity

++ -- right to left

+ - (unary) right to left

! right to left

* / % left to right

+ - (binary) left to right

< <= left to right

> >= left to right

== left to right

!= left to right

&& left to right

|| left to right

?: right to left

= right to left

*= /= %= += -= right to left
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5.3 Implementation Casts in ESDL

Implementation casts (see chapter 4.2.4) are available in ESDL for modules and 
classes (except CT blocks). 

In the specification of an operation in ESDL, implementation casts must be 
represented by their names. An addition with implementation casts that 
appears as follows in BDE:

is represented as a function in ESDL as such:

Here it is important that an implementation cast is written like a method call: 
it is always placed before the element to which it refers; the element is 
enclosed in parentheses, like a method argument. If the implementation cast 
is to be applied to the result of an operation, the entire operation must be 
enclosed in parentheses.

In the example above, cast_1 refers to variable a, cast_2 to b and cast_3
to the result of the operation a + b.

If intermediate results of arithmetic operations are to be manipulated using an 
implementation cast, the corresponding intermediate results have to be 
enclosed in parentheses.

Thus, in this statement:

x = cast_1 ( (cast_2 ( (a + b) * c - d ) ) / e );

cast_2 refers to the intermediate result of the operation,

(a + b) * c - d

while cast_1 changes the overall result of the operation:
Body Specification in ESDL 119



120
((a + b) * c - d) / e

It is important to note here, that the use of the syntax as described above is 
limited to implementation casts. The parentheses must contain an existing 
implementation cast; if you specify a standard type, such as uint8 (a), an 
error message is displayed.

When using implementation casts, remember that they are not available for 
use with logical variables. If an implementation cast is applied to a logical vari-
able, the code generator generates an error message.

5.4 Control Flow

The control flow elements can be used to determine the order of and condi-
tions under which an ESDL function or statement is executed. The most com-
mon types are conditional structures and loops.

There are two types of condit ional  statements,  if…else  and 
switch…case…default, and two types of loop statements, while and 
for. 

In addition, a break statement is available. 

The control flow constructions in ESDL are described in more detail in the fol-
lowing subsections.

5.4.1 If…Else

The if…else statement can be used for simple conditional constructions. It 
has the general form

if (expressionLog){

statementTrue;} 
else {

statementFalse;}

The else block can be omitted. When expressionLog is evaluated, the 
program decides whether to execute the statementTrue block. If not, the 
program either executes an existing statementFalse block or it continues 
without doing anything.

The expressionLog that controls the decision must be explicitly of type 
log. An arithmetic with a value of one or zero is not accepted.

Note

An implementation cast in ESDL always refers to the value in the code that 
immediately follows the implementation cast. 
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When the desicion that the expression is always true can be made directly at 
the if statement, the construction is optimized in the generated C code. An 
example:

if (true || testlog_a) {

cont=1; }

else {

cont=0; }

is reduced to:

cont=1; 

When an optimization is performed, an information is given in the ASCET
monitor window.

 In the generated C code, however, no hint is given.

5.4.2 Switch…Case…Default

The switch…case…default statement or, for short, the switch state-
ment, can be used for more complex conditional constructions. It has the gen-
eral form

switch (expressionsDisc) { 
case sDiscM: {  

statementM }

…

Note

The decision whether optimization is performed is made locally at the if 
statement. If previous program parts would have to be considered to make 
the decision, no optimization takes place.
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case sDiscN: { 
statementN } 

default: {

statementDefault } 
}

The switch statement is a multi-way decision that tests whether the argu-
ment expressionsDisc matches one of the constant values sDiscM
through sDiscN and branches accordingly.

Each case is labelled with a constant expression that must be of type sdisc. 
The corresponding block is executed if the expressionsDisc matches the 
value of the constant expression. The (optional) case default is executed if 
no other match can be found.

If the default case is not available and no match is found, the switch state-
ment does nothing and control returns to the remainder of the software 
model.

The example below sets the value of a variable scont depending on the value 
of the argSdisc.

switch(sdiscArg) { 
case 1 : { 

scont = 1.123; 
break; } 

case -1: { 
scont = 0; 
break; } 

default: { 
scont = -1; } 

}

In this example, every block is terminated with a break statement. This causes 
the switch statement to be finished immediately after the block has been 
executed. 

If the case blocks were not terminated explicitly, execution would continue 
immediately after a match has been found. In the above example, this means 
that for sdisc=-1 the value of scont would first be set to 0 by the corre-
sponding block and then set to -1 by the default block if the break state-
ment was missing. 

This phenomenon is commonly referred to as fall through. The remainder of a 
switch statement is always executed if a block is not terminated. Although 
this can be useful for multi-layered filtering it is generally regarded as poor style 
and should be avoided by terminating every case statement with a break.
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5.4.3 While

The while loop is used to model a simple loop. It has the general form:

while (expressionLog) { 
loopStatement; }

The loop condition expressionLog is evaluated. If it is true, the 
loopStatement block is executed and expressionLog is evaluated again. 
The loop exits when expressionLog evaluates to false.

In ESDL, the loop condition expressionLog must be of type logical.

5.4.4 For

The for loop stands out as one of the modelling features that are available in 
ESDL only. There is no equivalent in block diagrams.

The for loop has the general form

for ( initExpression; expressionLog; incrExpression ) 
{ 

loopStatement; }

This is equivalent to

initExpression; 
while (expressionLog) { 

loopStatement; 
incrExpression; }

In the for loop, every component of the loop head, initExpression, 
expressionLog, and incrExpression, is optional. The loop condition 
expressionLog must be of type logical. It is set to true if omitted which 
results in an infinite loop.

The following example is a simple combination of an if…else statement and 
a for loop:

if (log) { 
for (index=0; index < array.length(); index++) { 

array[index] = index * index; } 
} 

else { 

Note

In ESDL, the components of the loop head must be simple expressions, 
comma-separated lists of expressions, such as i=0, j=1; or i++, j--;, 
are not accepted. In other words, it is not possible to use more than a single 
statement in either the initExpression or the incrExpression.
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for (index=0; index < array.length(); index++) { 
array[index] = index; } 

}

The example writes values to an array. The log condition in the if…else
statement determines which of the two loops is used to write values to the 
array.

Each of the loops iterates over the entire array and assigns a value to each 
cell. The value is either the result of index * index or the value of index.

5.4.5 Break

The break statement can be used to exit immediately from each of the con-
trol elements listed above and return to another enclosing statement or to the 
remainder of the model.

Since ESDL does not support labels in the model description, there is no labeled 
break statement that returns control to a label.

5.5 Methods

The functional description of a software model in ESDL is contained in meth-
ods. The methods perform calculations and manipulate data. They are invoked 
(or called) as operations on objects.

A method call has the general form

receiverClassName.doSomething(parameterList)

where receiverClassName is the name of the receiver object, which ’exe-
cutes’ the doSomething method. Parameters can be passed on as either a 
comma-separated list or a single parameter in the parameterList. Any 
expression can be a parameter, including method calls. 

The following are valid method calls in ESDL:

loader.resolve(false, 1.76); 
//do not use characteristic, calculate value for 1.76 

numbers.setAt(10*index, index); 
//set array numbers to 10*index at index 

(12.4)between(valA, valB); 
//check if 12 is between valA and valB 
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array.length(); 
//return array length

A method call can return a value, which can in turn be assigned to a variable 
in the method call. The variable must be of the same type as the return value.

aNumber = anArray.getAt(index); 
//assign value from index position

anOffset = loader.resolve(true, 2.14); 
//assign value for 2.14, calculate using characteris-
tic

If a method has a return value, the method body must be terminated with a 
return statement. The return statement can be followed by any expression 
that evaluates to the return type of the method.

return in.between(ub, lb); 
// returns a logical value

 
return intVar; 
//returns the value of intVar

A method call can return only a single value. If more than one value is to be 
passed on between modules or objects, an object can be used to hold these 
values (see section "Structures" on page 134).

Method calls cannot be nested in ESDL. The following statement is illegal:

loader.resolve(true, 2.14).sqrt();

It must be replaced with the following, legal statement:

aNumber = loader.resolve(true, 2.14);

aNumber.sqrt();

Only if direct access methods are enabled for access to an object’s variable, can 
a method call be nested. Hence, the following nested statement is legal if aa
is a variable defined in anObject:

anObject.aa().sqrt()

Note

If a method has no parameters, the parentheses at the end of the method 
name still have to be supplied for the statement to be interpreted as a 
method call.
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5.5.1 This

The pseudo-identifier this can be used in ESDL to call a method at the current 
component. If, for example, you want to call the private method 
initCounter at the current object, you can use the following statement:

this.initCounter();

If the initCounter method has a return value, you can assign it as follows:

aValue = this.initCounter();

The reference to the current object using the this identifier is optional in both 
these cases because it is implicit in the context. Hence, the above statements 
can be written as follows:

initCounter; 
aValue = initCounter();

Only if the current object is to be passed on as a parameter to another method, 
is the reference using this needed.

OtherObject.evaluate(this);

Here, the identifier this passes on a reference to the current object.

5.5.2 Access Control

In ESDL, both the methods and variables of a class can be declared as either 
public or private to control access to these elements and hide their implemen-
tation from other objects. 

Private methods can be called and private variables manipulated only from 
within the current object. By contrast, public methods can be called and public 
variables accessed from both within and outside the current object.

Methods are declared public or private by assigning them to a corresponding 
diagram in the ESDL Editor. The default for new objects is to have a single 
public diagram Main which contains the calc method. 

Users can create additional public methods in the same diagram or add a new 
diagram. Private methods must be created as part of a private diagram. The 
access rights to a method can be changed by moving it from one diagram to 
another.

Note

While ESDL accepts both the self and the this identifier, it is recom-
mended to use this to ensure compatibility with Java syntax.
Body Specification in ESDL



An object Caller can access the public interface of another object 
Receiver if the latter has been imported by adding it to the Elements list for 
Caller.

New variables are created as private when they are added to the Elements list 
in the ESDL editor. They cannot be accessed from outside the current object. 
The status of a variable can be modified only in the element editor for that 
object (see ASCET user’s guide, section "Editing Element Properties").

5.5.3 Direct Access Methods

Every public variable automatically adds two methods to the current object’s 
interface, which are referred to as direct access methods. A direct access 
method can be called to access the data in a public variable. It can be used for 
both read and write access to that variable.

In the following example, suppose that the VisibleObject has two public 
variables named free and all respectively. Method calls from outside can be 
as follows:

sdisc tmp = VisibleObject.all();

VisibleObject.free(120);

Direct access methods are generated automatically and added to the public 
interface of an object whenever a variable is declared public. These methods 
do not have to be coded explicitly.

5.6 Composite Data Types

ESDL provides two groups of composite data types. The first group of compos-
ite types comprises common arrays and matrices, the second group, which 
contains one-dimensional tables, two-dimensional tables and distributions, is 
used for characteristic lines and fields.

Composite data types are explained in the following subsections, with arrays 
and matrices first and tables and distributions to follow suit.

5.6.1 Arrays

An array is a one-dimensional, indexed set of variables which have the same 
data type. In ESDL, arrays are available for all basic data types. The variables are 
accessed through the array index, the first index position is 0.

An array can be added to a module by adding it to the "Elements" list in the 
ESDL Editor. The array type can be specified in the element editor as any 
primitive type.
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The array size and its data can be edited using the Table Editor dialog which is 
automatically opened when the data of an array are to be edited. You can 
specify both the current and maximum size of the array in the table editor. 

The array size cannot be modified at runtime. The maximum size for arrays is 
1024 elements.

The array data can either be edited in the table editor or filed in from a tab-
delimited ASCII file (seeASCET user’s guide, chapter "Editing Data", section 
"Array Editor").

In ESDL, elements of an array can be read and written to using the following 
syntax:

val = myArray[index];

myArray[index] = val;

The first statement reads the value of the array element at position index
and assigns it to the variable val, which must be the same type as the array. 
Since the array index count starts from 0, myArray[3] returns the fourth 
element of an array.

The second statement sets the value of the array element at position index 
to val, which must be the same data type as the array.

Public Interface: 

Tab. 5-3 summarizes the public methods available of arrays.

Tab. 5-3 The public interface of arrays

Method Returns Usage

length() udisc get number of array elements

getAt(index) type of array get array element at position index

setAt(val, index) void set value of array element to val
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5.6.2 Matrices

A matrix is a two-dimensional, indexed set of variables which have the same 
data type. In ESDL, matrices are available for all basic data types. The variables 
are accessed through the array indices x and y, the first index position is 0.

A matrix can be added and manipulated in the ESDL Editor in exactly the same 
manner as an array. The matrix size cannot be modified at runtime. The maxi-
mum size of matrices is 64 elements per dimension.

The elements of a matrix can be read and written to in ESDL using the follow-
ing syntax:

val = matrix[indX][indY];

matrix[indX][indY] = val;

The first statement assigns the value of the matrix element at position 
column indX and row indY to the variable val, which must be the same 
type as the matrix. Since the index count starts from 0, myMatrix[2,3]
returns the third element in the fourth row of a matrix.

The second statement sets the value of the matrix element at position col-
umn indX and row indY to val, which must be the same data type as the 
matrix.

Public Interface: 

Tab. 5-4 summarizes the public methods available for matrices.

Tab. 5-4 The public interface of matrices

5.6.3 One-dimensional Tables

A one-dimensional table is used to model characteristic lines which describe 
parameter values in dependence of a given set of sample points rather than 
using an algorithm.

Method Returns Usage

xLength() udisc get number of columns in matrix

yLength() udisc get number of rows in matrix

getAt(indX, indY) type of matrix get matrix element at 
position indX, indY

setAt(val, indX, indY) void set matrix element at 
position indX, indY to val
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For each sample point xn in the table, there exists a parameter value yn which 
can be retrieved from the one-dimensional table. In addition, the table can 
cover the entire range of values between sample points using either linear or 
rounded interpolation.

An one-dimensional table can be added to a module by adding it to the 
Elements list in the ESDL Editor. The data type can be specified in the Element 
Editor as any arithmetic type.

The maximum size for one-dimensional tables is 1024 sample point : value 
pairs. Unlike arrays and matrices, tables are used as parameters in ASCET, that 
is, the sample points and values cannot be written to from within the model.

The table data can either be edited in the table editor or filed in from a tab-
delimited ASCII file (see ASCET user’s guide, chapter "Editing Data", section 
"The 1-D Table Editor").

The interpolation mode for sample points can also be specified in the table 
editor as rounded or linear. Rounded interpolation uses the value from the 
lower (left) sample point for a given point, whereas linear interpolation derives 
it from a straight line between sample values.

Public Interface: 

In ESDL, tables can only be accessed using their public interface. Tab. 5-5 sum-
marizes the public methods available for one-dimensional tables.

Tab. 5-5 The public interface of one-dimensional tables

Linear Interpolation: 

The following example illustrates linear interpolation in one-dimensional 
tables. It uses a table LLpr that has the following values:

In general, the method getAt(index) is sufficient for the evaluation of 
characteristic lines. Linear interpolation for this example works as follows:

Method Returns Usage

search(index) void set the sample point of the table to index or 
calculate interpolation factor for index

interpolate() type of table get the value for the current sample point or 
interpolate it from the table

getAt(index) type of table set the sample point to index and get the cor-
responding value or calculate interpolation 
factor for index and interpolate the value

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0

0.0 0.8 1.1 1.5 1.8 2.0 2.2
Body Specification in ESDL



tmpVal = LLpr.getAt(3000); 
// assigns 1.5 to tmpVal

tmpVal = LLpr.getAt(2280); 
// calculates interpolation factor for 2280 
// interpolates value for 2280 as 1.212 and 
// assigns it to tmpVal

tmpVal = LLrp.getAt(9000); 
// calculates interpolation factor for 9000 
// interpolates value for 9000 as 2.2 and 
// assigns it to tmpVal

In some cases, though, separating the search and interpolate steps in tables 
can be more efficient, e.g. when generating code for experimental targets. In 
that case, linear interpolation is performed as follows:

LLpr.search(1000); 
// sets sample point to 1000

tmpVal = LLpr.interpolate(); 
// assigns 0.8 to tmpVal

LLpr.search(2780); 
// calculates interpolation factor for 2780

tmpVal = LLrp.interpolate() 
// interpolates value for 2780 as 1.412 and 
// assigns it to tmpVal

5.6.4 Two-dimensional Tables

A two-dimensional table is used to model characteristic maps which describe 
parameter values in dependence of a given set of pairs of sample points rather 
than using an algorithm.

For each pair of sample points (xn : yn) in the table, there exists a parameter 
value zn which can be retrieved from the two-dimensional table. In addition, 
the table can cover the entire range of values between sample points using 
either linear or rounded interpolation.

A two-dimensional table can be added and manipulated in the ESDL Editor in 
the same manner as a one-dimensional table. The maximum size for two-
dimensional tables is 64 pairs of sample points and corresponding values.
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Public Interface: 

In ESDL, tables can only be accessed using their public interface. Tab. 5-6 sum-
marizes the public methods available for two-dimensional tables.

Tab. 5-6 The public interface of two-dimensional tables

Linear Interpolation: 

The following example illustrates linear interpolation in two-dimensional 
tables. It uses a table LLpr1 that has the following values:

As with characteristic lines, the method getAt(indX,indY) contains every-
thing that is needed for the evaluation of characteristic maps. Linear interpola-
tion for this example works as follows:

tmpVal = LLpr2.getAt(8,5); 
// assigns 4.0 to tmpVal

tmpVal = LLpr2.getAt(0.5,1.5); 
// calculates interpolation factor for  
// x=0.5 and y=1.5 
// interpolates value for (0.5,1.5) as -2.875 and 
// assigns it to tmpVal

tmpVal = LLrp2.getAt(20,10); 
// calculates extrapolation factor for x=20, y=10 
// extrapolates value for (20,10) as 5.0 and 
// assigns it to tmpVal

Method Returns Usage

search(indX, indY) void set the sample points of the table to 
indX and indY or calculate interpola-
tion factor for indX and indY

interpolate() type of table get the value for the current sample point 
or interpolate it from the table

getAt(indX, indY) type of table set the sample point to indX and indY 
and get the corresponding value or calcu-
late interpolation factor for indX and 
indY and interpolate the value from the 
table

y \ x 0.0 1.0 8.0 15.0

1.0 -5.0 -3.0 0.0 1.0

3.0 0.0 1.0 4.0 6.0

5.0 8.0 5.0 4.0 4.0
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With characteristic maps, too, separating the search and interpolate steps in 
tables can be more efficient. In that case, linear interpolation is performed as 
follows:

LLpr2.search(1,3); 
// sets x sample point to 1 and y sample point to 3

tmpVal = LLpr2.interpolate(); 
// assigns 1.0 to tmpVal

LLpr2.search(4,4); 
// calculates interpolation factor for x=4, y=4

tmpVal = LLrp2.interpolate() 
// interpolates value for (4,4) as 3.143 and 
// assigns it to tmpVal

5.6.5 Distributions and Group Tables

Characteristic lines and fields can be related to each other by using the same 
set of sample points. In ASCET, such a shared set of sample point is modelled 
as a distribution, tables that use the sample points in a distribution are referred 
to as group tables.

A distribution is an array of sample points. The sequence must be strictly 
monotone increasing. Distributions can be used for both types of tables (one- 
and two-dimensional). Two-dimensional tables require a distribution for each 
dimension.

Using distributions and group tables can significantly reduce the time and 
memory required for computations since interpolation factors are computed 
only once and can be reused over a set of tables.

Adding a group table in the ESDL Editor consists of first adding a distribution 
and then a group table. When the group table is added, the system prompts 
for the corresponding distribution. Since the ESDL Editor cannot be used to 
reassign distributions to existing group tables, distributions should always be 
created before adding the tables. 

The Table Editor can be used to edit the data of both distributions and tables. 
It does not accept distributions which violate strict monotony. Data can also be 
filed in from tab-delimited ASCII files.

Public Interface: 

Unlike plain tables, group tables do not have a getAt method. Instead, the 
public interface is "split" between the distribution, which has a search
method, and the group table, which has an interpolate method.

A two-dimensional table requires sample points to be set for both distributions 
before the corresponding value can be interpolated.
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Tab. 5-7 shows the public interface of distributions in ESDL.

Tab. 5-7 The public interface of distributions

Tab. 5-8 shows the public interface of group tables in ESDL.

Tab. 5-8 The public interface of group tables

5.7 Structures

In ESDL, structures (or records) are modelled using classes. A class can be used 
as a complex container element which holds any number of variables. If a vari-
ables in a class is public, it can be read and written to from ESDL using direct 
access methods.

Classes that are used as container elements are accessed in the same manner 
as other classes in ESDL. The first step is always to add the class to the Elements 
list of the ESDL Editor to make it available in the context of the current class. 
Variables can be declared public in the Layout Editor for the parent object.

The variables can then be accessed from within ESDL using the simple direct 
access method syntax:

theVar = VisibleObject.aVar() 
VisibleObject.aVar(5.12); 
// read/write access to primitive variable 

theVar = VisibleObject.anArray().getAt(2) 
VisibleObject.anArray().setAt(2.14, 3); 
// read/write access to array variables

For group tables and distributions, this procedure does not work.

Method Returns Usage

search(index) void set the sample points of the distribution 
to index or calculate the interpolation 
factor for index

Method Returns Usage

interpolate() type of table get the value for the current sample 
point or interpolate it from the table
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In ESDL, classes can be nested to model self-referential structures.

5.8 Messages

In ASCET, an additional concept of messages as real-time language constructs 
is used for interprocess communication. Messages, in this sense, are used as 
protected global variables in the real-time environment. 

Messages are available only in modules. From within a module, a message is 
merely a variable that can be read, written to or both. Whenever a process 
runs, the operating system creates copies of all its messages. These copies are 
accessible only to that instance of the process that created them. 

Hence, if the same message is used by various processes, each process gets its 
own copy of the message. This strategy is used by the real-time operating sys-
tem to ensure data consistency over multiple processes.

Messages are fully supported in ESDL, they can be used in all modules. A mes-
sage is added like all other elements in the Elements list by selecting the corre-
sponding icon from the ESDL Editor toolbar. Messages can be added as 

• send messages—the current module can write to this variable,

• receive messages—the current module can read this variable, or 

• send and receive messages—the current module can read and write  
to this variable.

In ESDL, messages are accessed through assignment statements:

theVar = receiveMsg + 1.24; 
sendMsg = 12; 
theMessage = 3 * tmpVar;

Public Interface: 

Tab. 5-9 summarizes the public methods available for messages.

Tab. 5-9 The public interface of messages

Note

A complex assignment such as VisibleObject.anArray(myArray) is 
not legal in ESDL, it does not assign the values in the myArray parameter to 
the anArray element. Complex statements can, however, be used to pass 
on a reference to another object.

Method Returns Usage

receive() void read message

send() void write message
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5.9 Resources

Similar to messages, resources are available only in modules. As desrcibed in 
section 3.1.3, they have two access methods, reserve and release. In 
ESDL, these methods can be used as shown in the following example:

resource1.reserve();

do_something();

resource1.release();

Tab. 5-10 summarizes the public methods available for messages.

Tab. 5-10 The public interface of resources

5.10 Mathematical Functions

ASCET comes with a comprehensive library of pre-defined elements. They can 
be used as building block for new modules and classes.

For model descriptions in ESDL, additional mathematical functions are pro-
vided in the system library. The mathematical functions are defined in the class 
Etas_Systemlib_CT\Classes\MathFcn and can be accessed after this 
class has been added to the Elements list of the ESDL Editor.

The following examples show how to access mathematical functions from an 
ESDL model description.

// calculate sine of x 
x = x + MathFcn.pi()/2; 
y = MathFcn.sin(x);

// calculate square root of arg 
if (arg > 0) return MathFcn.sqrt(arg);

// typecast continuous arg to logical 
return (MathFcn.Sign(arg) = 0 ? false : true);

// fill array at x-1 with x1/x 

udisc x 
cont tmp, y; 
for (x = 1; x < array.length() + 1; x++) { 

tmp = x; 
array[x-1] = MathFcn.pow(tmp, 1/tmp); }

Method Returns Usage

reserve() void reserve a resource

release() void release a resource
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The following table summarizes the functions available in the MathFcn class. 
The return and parameter types are the same for all mathematical functions, 
they accept variables of type continuous as parameters, the return type is con-
tinuous, too.

Tab. 5-11 Mathematical functions in ESDL

Method Operation

pi() returns 3.141592654

sin(x) sine of x

cos(x) cosine of x

tan(x) tangent of x

asin(x) sin-1(x)  (arc sine)

acos(x) cos-1(x)  (arc cosine)

atan(x) tan-1(x)  (arc tangent)

sinh(x) hyperbolic sine of x

cosh(x) hyperbolic cosine of x

tanh(x) hyperbolic tangent of x

sch(x) hyperbolic secant of x

csch(x) hyperbolic cosecant of x

coth(x) hyperbolic cotangent of x

exp(x) exponential function ex

log(x) natural logarithm loge(x), x > 0

log10(x) base 10 logarithm log10(x), x > 0

pow(x, y) xy 

sqrt(x) square root of x

abs(x) absolute value |x|

sign(x) sign function returns: -1 if x < 0; 0 if x = 0; 1 if x > 0

limit(m, x, n) limiter returns: m if x <= m; x if m < x < n; n if x => n

max(x, y) returns the greater value of x and y

min(x, y) returns the smaller value of x and y

fmod(x, y) floating point remainder of x/y, same sign as x

ceil(x) returns smallest integer value not smaller than x

floor(x) returns largest integer value not larger than x
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5.11 Accessing Block Diagrams from ESDL

This section guides you through building a simple limited integrator in ESDL. 
The integrator uses a limiter element from the Systemlib_ETAS folder to 
determine the bandwidth of the outgoing signal.

The limiter element has a single method out with three parameters mn, x, mx. 
The out method either returns mn if x < mn, x if mn <= x <= mx, or mx if 
x > mx.

The block diagram for the limiter element is displayed below.

To build the integrator element

• In the Component Manager, create a new 
ESDL module and rename it to Integrator-
Limit.

• Open an ESDL Editor for Integrator-
Limit.

• In the "Elements" list, add a continuous vari-
able named mem. The integrator’s memory 
stores the value of the outgoing signal.

• In the "Elements" list add the limiter module 
from the following folder: 
Systemlib_ETAS\ 
Nonlinears\Limiter.

• In the Methods list, add the methods out, 
reset and compute.

You can either rename the default method 
calc to compute or delete it.
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• Use the Interface Editor to edit the corre-
sponding method interfaces as follows:

• Enter the ESDL code for each method and 
save the method. The ESDL code for each 
method is listed below.

reset(initVal) 
mem = initVal;

cont out() 
return mem;

compute(mn, in, mx) 
mem = mem + K * in * dT; 
mem = Limiter.out(mn, mem, mx);

The example shows how to use an existing module as a building block for a 
new one. The second statement in the compute method limits the integrator 
signal. The limiter’s out method returns the signal value or the lower or upper 
bound, which is assigned to the integrator’s memory.

5.12 Using ESDL in State Machines

When modelling state machines in ASCET, the description in ESDL is often 
more compact than block diagrams. ESDL can be used to describe both states 
and transitions between states.

Typically, a state can have three up to three different actions, which are labelled 
entry, static and exit. They are performed when the state is entered, while it is 
active, and when the state is terminated.

Method Arguments Returns

compute cont mx 
cont in 
cont mn

void

out void cont

reset cont initVal void
Body Specification in ESDL 139



140
The actions in a state can be edited in the State Editor. They can be specified in 
ESDL if the <ESDL> option for the corresponding action is selected. This acti-
vates the text field for the action which is a simple ESDL editor. From this editor 
the output and input variables of the state machine and all other items in the 
Elements list of the state machine can be accessed.

A transition between states usually has a condition that triggers the transition 
to another state; it can have an action as well, which is executed when the 
transition is performed.

The transitions between states can be edited in the Transition Editor. Again, 
conditions and actions can be specified in the text field in ESDL after the 
<ESDL> option has been activated and all items in the elements list can be 
accessed.
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In all text fields of both editors, standard ESDL code is used as in the examples 
above. The one important point to remember in ESDL syntax is that the expres-
sion entered in the "Condition" tab returns a boolean and is not terminated 
by a semicolon. You find more about editing actions and conditions in ESDL in 
the ASCET user’s guide, chapter 4.2, section "Conditions and Actions in the 
State Diagram".

5.13 Overview: ESDL Features Compared

ESDL vs. Block Diagrams

The following table presents an overview of differences in model descriptions 
using ESDL and block diagrams.

Tab. 5-12 Synopsis: ESDL vs. block diagrams

Reference: ESDL vs. ANSI C

The following table presents an overview of the main differences between the 
ESDL modelling language and the ANSI C programming language.

Tab. 5-13 Synopsis: ESDL vs. ANSI C

ESDL Block Diagrams

this x o

self x x

% operator x o

++, -- operator x o

for statement x o

atomic sequences o x

ESDL ANSI C

bit data type, shift operations o x

string data type, string operations o x

continue statement o x

pointer arithmetic o x

preprocessing o x
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Reference: ESDL vs. Java

The following table presents an overview of the main differences between the 
ESDL modelling language and the Java programming language.

Tab. 5-14 Synopsis: ESDL vs. Java

ESDL Java

inheritance o x

dynamic instantiation o x

polymorphism o x

method overloading o x

explicit type casting o x

error handling o x

garbage collection o x
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6 Body Specification with Block Diagrams

With the block-oriented description language of ASCET embedded control sys-
tems can be specified graphically. It is the graphical equivalent of the ESDL 
language used for specifying control systems textually.

This section describes how to specify software modes using block diagrams in 
ASCET. The following section starts with a brief introduction to the graphical 
description of components, which is followed by an overview of the graphic 
modelling language. 

The overview section presents linguistic means available in block diagrams:

• Elements

• Expressions

• Statements

Block diagrams and ESDL are, for the most part, functionally equivalent in 
ASCET. The differences between block diagrams and ESDL are summarized in 
section "ESDL vs. Block Diagrams" on page 141.

6.1 Graphical Description of Elements

Every element and operator used in a component is graphically represented by 
a diagram item in the form of a rectangle. The interaction between these ele-
ments is represented by lines connecting the corresponding diagram items.

The interface of an element is represented graphically by pins (Fig. 6-1). Each 
argument of a method is represented by an argument pin (with a little arrow 
head pointing towards the block) at the block frame. The return values are 
represented by a return pin. The call to a method is associated with its return 
pin. Methods without arguments or return values are represented by a method 
pin.

Fig. 6-1 The representation of pins in graphical blocks

Method Pin

Argument Pin

Return Pin
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The name of the element is placed underneath the rectangle. An icon can be 
used to illustrate the functionality of an element. The position of the pins can 
be changed by the user

Fig. 6-2 The graphical block for a complex element.

The example in Fig. 6-2 shows a complex element with three methods. 
Method m1 has one argument and a return value. Method m2 has no return 
value and is represented by its arguments, method m3 has neither arguments 
nor a return value and is represented by a method pin.

6.1.1 Basic Elements

Elements are represented as rectangular blocks with the arguments and return 
values represented as pins. Each element has a name that is placed underneath 
the block by default, but this position can be changed.

All basic types have a fixed interface and their graphical representation is also 
fixed.

Argument Pin

Argument Name

Sequence Call for Method m3Sequence Call for Method m2

Pin for Return Value of Method m1

Name of Method

Method Pin

Icon
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Basic Scalar Elements

Fig. 6-3 The graphical representation of basic elements

Basic scalar elements have one argument pin for setting a new value (if their 
value can be set), and one return pin for reading the current value. The icon 
inside the block represents the kind of the element. The scope of an element 
is also indicated by the icon: a solid red square represents an imported 
element, a solid circle an exported one. If the kind of the basic scalar element 
does not permit writing to it (e.g. parameters) the corresponding pin is miss-
ing. Elements that can be calibrated have a small black box on the left side.

Messages

Messages are the input and output variables of processes. Depending on the 
message type, they are displayed with one or two pins. The figure shows mes-
sages with the attributes Calibration and volatile; changing one or both 
attributes makes the display change as shown for variables in Fig. 6-3.
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Literals

Literals are represented by small blocks, with the value of the literal inside the 
block:

Arrays and Matrices

An array or matrix has two methods, one for setting the content of a specific 
element and one for retrieving it. The read and write operations can occur 
independently of each other. The value to be written to the array is represented 
by the left (argument) pin, the corresponding index by the bottom left pin. The 
result of reading from the array is represented by the return pin and the index 
by the bottom right argument pin.

Matrices are represented similarly, but each method takes two index argu-
ments. The x-index is represented by the bottom left pin, like the index of an 
array. The y-index is represented by the pin at the top of the block with the top 
left pin being the index for writing to the matrix, and the top right pin the 
index when reading from it.
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When arrays or matrices are to be passed as method arguments, or returned 
as return values, this is done with the help of Get and Set ports. These are 
made available via the Get/Set Ports pop-up menu function in the drawing 
area.

Fig. 6-4 Get and Set ports for arrays and matrices

The Get port provides a pointer to the entire data content of the respective 
element; by the Set port directs the element to access a certain memory area.

An example: In Fig. 6-4, array reads from the memory area used by 
arg_array, while matrix reads from the memory area used by 
arg_matrix. The pointers to the respective memory areas are passed via the 
Get and Set ports. It is important that writing to the Set port is performed as 
the first step of the method; otherwise, inconsistencies arise.

Note

The same mechanism is used to pass classes, too.

Get PortSet Port
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Characteristic Tables

Depending on the dimension, characteristic tables, including fixed tables, have 
one or two argument pins on the left side where the sample values are sup-
plied, and one return pin where the value of the interpolation is given.

The above representation corresponds to using the getAt method in ESDL. 
(cf. the respective sections on page 129 and page 131). 

As with ESDL, the search and interpolate steps in tables can be separated in the 
block diagram editor. To do so, the extended table interface has to be made 
available via the Extended Interface pop-up menu function in the drawing 
area.

A distribution has one argument pin for the sample value on the left side of the 
distribution. A group table has one return pin on the right side. It contains no 
own sample point distribution, but references one or two distributions instead. 
Group tables and distributions do not have an extended interface.
Body Specification with Block Diagrams



As with arrays and matrices, Get and Set ports can be made available via the 
Get/Set Ports pop-up menu function.

Resources

Resources are represented by a block with the two methods reserve and 
release at the top. Both methods have no arguments or return values and 
are represented as method pins:

Implementation Casts

Implementation casts are represented by a small diamond with two pins.

6.1.2 Elements of User-defined Type

The methods, arguments and return values of elements of user-defined type 
are represented by argument or return pins at the graphical block. The user 
can define the layout of the representation for each user defined type. Get and 
Set ports can be made available for these elements, too.

6.2 Expressions

Expressions are formed in block diagrams by connecting elements or other 
expressions with operators. Like in ESDL, expressions are built up recursively, as 
follows:

• An element is an expression.

• The result of an operator is an expression (the operands itself are 
expressions).

Note

If you want to pass characteristic tables as method arguments, you have to 
embed them in classes, and pass the class via the Get port.
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• The return value of a method call is an expression. If arguments are 
supplied to the method, these arguments also belong to the expres-
sion.

The range of an expression is therefore limited by the base expressions in that 
expression, which are either elements or return values of methods without 
arguments.

Expressions are built graphically by connecting the return pins of elements or 
operators with the argument pins of methods or other operators.

There are no precedence rules for operators in the BDE, since the expressions 
are “bracketed” by the way the lines and operators are connected. The follow-
ing example shows the difference between the expressions (a*b)+c and 
a*(b+c) in the graphical representation.

The evaluation order of the arguments of operators is sometimes very impor-
tant. In the graphical representation this sequence is always from top to bot-
tom, except for the four basic arithmetic operators with at most three inputs. 
The order of evaluation is illustrated in the following diagram: 

In block diagrams the number of arguments to the operators is often limited 
to a maximum of 10 or 20 inputs. The evaluation order of method arguments 
depends on the order in which they are defined. Since the layout of an element 
can be changed, the order in the layout must not coincide with that in the 
definition.

a + b a + (b + c) a + (b + (c + d))
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6.2.1 Arithmetic Operators

The meaning of the operators is the same as in ESDL. The following operators 
are available: Addition, Subtraction, Multiplication, Division, Modulo. The 
addition and multiplication operators can have between 2 and 10 arguments. 
The subtraction and division operators have only two arguments.

6.2.2 Comparison Operators

The comparison operators are identical to their counterparts in the textual rep-
resentation with ESDL. The following comparison operators are available:

• Greater Than 

• Less Than

• Less or Equal 

• Greater or Equal 

• Equal 

• Not Equal

The Equal and Not Equal operators can also be applied to non-arithmetic ele-
ments.

6.2.3 Logical Operators

The meaning of the logical operators And, Or and Not is identical to their 
meaning in ESDL. The And and Or operators can be applied to more than two 
operands.
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6.2.4 Conditional Operators

Multiplex Operator

The conditional operator ( ? : ) is named Multiplex operator (for short: 
Mux) in the graphical representation. The graphical representation of (condi-
tion ? trueValue : falseValue) is as follows:

The multiplex operator can also be used directly with several arguments (left 
image); the right image shows the identical functionality built as a cascade of 
several Mux operators:

The above example is equivalent to (condition1 ? (true1Value : 
condition2 ? ( false1true2Value : false1false2Value))), 
i.e., the first argument has priority over the others. A cascaded Mux operator 
with n logical condition arguments can select between n+1 arguments 
between which it switches. The type of the arguments is arbitrary, but all argu-
ments must be of a compatible type.
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Case Operator

The case operator is a special case of the conditional operator. It does not take 
a logical value but a switch value of type unsigned discrete. The Case operator 
selects one of the arguments depending on the switch value. If the switch 
value is 1, the first argument is selected, if it is 2 the second is returned and so 
on. If the switch value falls outside the range, the last argument is selected.

The above example is equivalent to ((a=1) ? b1 : ((a=2) ? b2 : b3)).

6.2.5 Other Operators

Besides the operators described so far, the following operators are also avail-
able:

• Max and Min

• Between

• Abs

• Negation

Max and Min Operators

The Max and Min operators return the maximum or minimum of the argu-
ments. Both operators can have 2 to 20 arguments; they can be applied only 
to arithmetic elements.
Body Specification with Block Diagrams 153



154
Between Operator

The Between operator checks if the argument value lies between the limiters 
min and max. If this is the case, the logical return value out_log is true, 
otherwise it is set to false.

The graphical representation is equivalent to out_log = (( value >= 
min ) && ( value <= max )). The argument and both limiters have to 
be either cont or discrete.

Abs Operator

This operator returns the absolute value of the argument. Argument and 
return value have to be both either cont or discrete.

Negation Operator

The Negation operator returns the negative value of the argument. Argument 
and return value can be cont or discrete; if the argument is cont, the type 
of the return value should be the same.

6.3 Statements

Graphical specifications of components can be hierarchically distributed over 
several diagrams. In a diagram one or more methods or processes can be 
described which can be executed independently of each other. The order in 
which calculations are executed, as well as the particular method or process a 
calculation belongs to is determined by sequence calls.
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For each statement of a block diagram, there is a sequence call that assigns it 
to a process or method. The order within a process or method is determined 
by the sequence number that is part of the sequence call. A sequence call is 
represented graphically as follows:

With the sequence numbers the order of the operations belonging to one 
method or process can be determined by the user. A built-in sequencing algo-
rithm can be used to assign sequence numbers that correspond to the evalua-
tion order of standard block diagrams. 

A sequence call generally consists of three fields:

• The name of the method called.

• The name of the method or process calling.

• The sequence number determining the position of the called method in 
the calling method or process.

In the case of scalar elements, the name of the method called is left blank as 
this is always the assignment of a new value. 

There are three kinds of statements:

• Assignment statements

• Method calls

• Control Flow Statements, e.g. if…then…else, while 

6.3.1 Assignment

An assignment statement is the assignment of the value of an expression to an 
element. In case of an assignment to a complex element, only an element of 
the same type can be assigned. The assignment is then not the assignment of 
a value but of a reference.

A special case is that of assigning a value to the return value of a method. The 
associated sequence call must be the last sequence call of that method.

6.3.2 The Break Statement

The return from a method or process can also be established by the break 
statement. This statement does not have to be the last of a method or process.

Method Called

Sequence Number/Method Calling
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6.3.3 Method Call

An assignment is a special case of a method call. When calling a method in a 
block diagram, the corresponding sequence call has to be filled in properly and 
the arguments to the method have to be supplied.

6.3.4 Control Flow

The following control flow statements are available in block diagrams:

• If…Then

• If…Then…Else

• Switch

• While

All control flow statements evaluate a logical expression and, depending on 
the result, activate a control flow branch which may contain several state-
ments. The statements represented by sequence calls are connected to the 
control flow by connectors.

The sequence number of the sequence call determines the order of the state-
ments connected to the activated control flow branch.

If...Then

The If…Then statement evaluates a logical expression and activates a control 
flow branch if the result is True. The control flow output is connected to one 
or more sequence calls which are triggered whenever the control flow branch 
is activated. Whenever the input expression evaluates to True, the connected 
sequence calls are executed.

The example above is equivalent to

if (l) { 
c = b 

};
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If...Then...Else

If…Then…Else is similar to If…Then, but has two control flow branches. 
Depending on the value of the logical expression, the left or right branch is 
executed, the right branch is executed if the value is True, the left one if it is 
False.

The example above is equivalent to

if (l) { 
d = b} 

else { 
c = b 

};

As for the if…else statement in ESDL, the generated code is optimized when 
the expression for If…Then or If…Then…Else is always true. Section 
"If…Else" on page 120 describes how the optimization works.

Switch

The Switch construct is similar to the Case Operator. A Switch evaluates a
signed discrete or unsigned discrete value and, depending on that 
value, activates different control flow branches. These branches are separated 
from each other, so that a “fall through” like in the switch construct in C is 
not possible.
Body Specification with Block Diagrams 157



158
For each alternative the value for the branch can be defined by the user. The 
last branch at the bottom is the default branch that is executed if the input 
value does not equal any of the values at the branches.

The example above is equivalent to

switch (a) {

  case 0: c = b; break;

  case 5: d = b; break;

  default: break;

};

While

The only loop construct available in block diagrams is the While loop. Care 
has to be taken to avoid infinite loops or loops unsuitable for real-time appli-
cations.

Similarly to the If…Then statement, the control flow is activated when the 
value of the logical expression is True. The operation is executed as long as 
the value of the logical input remains True. Therefore, the value of the logical 
expression should be manipulated in the while loop. In order to avoid infinite 
loops, the number of maximal loop iterations can be limited to a fixed, user 
definable number.
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The example above is equivalent to

while (i<10) { 
c = b * c; 
i = 1 + i; 

};

6.4 The Semantics of Block Diagrams

Each part of a block diagram is assigned to a process or method. The execution 
order is determined by the sequence numbers in the sequence calls. When a 
process or method is activated, all statements whose sequence calls are 
attached to that process or method are executed in the order given by the 
sequence numbers.

In contrast to standard block diagrams, an operation is executed only on 
demand, i.e. when its sequence call is activated. The order of execution is sim-
ilar to the left-to-right principle of standard block diagrams: before an opera-
tion, for example an addition, can be performed, the values for all its 
arguments have to be computed.

The order of evaluation of the arguments of methods of user-defined compo-
nents is given by the order of their declaration. This order, however, may not 
coincide with the order implied by the diagram, as the argument pins can be 
arranged arbitrarily at the block frame.

The evaluation of operands etc. is directly associated with the statements that 
use the results. This may result in multiple evaluations of an expression. 
Body Specification with Block Diagrams 159



160
In this example, the addition is executed three times, for each of the assign-
ments to the variables c, d, and e. The addition is used in assignments in two 
different processes. Without multiple execution, it would not be clear in which 
of the processes the addition should be executed. The expression a + b is 
evaluated twice in the process 10ms.

6.4.1 Graphical Hierarchies

In order to structure a graphical specification, graphical hierarchies can be 
used. Graphical hierarchies do not influence the semantics of a block diagram 
but are used for structuring only. A hierarchy contains a part of the block dia-
gram. The lines that cross the border of the hierarchy, i.e. that connect ele-
ments inside the hierarchy with those outside, are represented by pins. In 
ASCET 5.2, an icon can be assigned to hierarchies in the block diagram editor.
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7 Body Specification in C

The specification of the body of methods and processes can be implemented 
in C code as well as in the form of block diagrams and ESDL. As with the other 
specification methods, only the body of a method or process has to be speci-
fied. The method declaration, the function head and frame, and the data 
instantiation and initialization are generated automatically.

In contrast to specifications in either ESDL or with block diagrams, components 
in C code are specified on the implementation level, rather than on the model 
level. 

Fig. 7-1 From physical model to implementation

This has several important consequences:

• There is no transformation from the model to the implementation level.

• For each code variant (different target, different specification level, dif-
ferent implementations) the C code can be different. As a conse-
quence, the code must be specified separately for each variant.

• The C code has to be adapted to the software architecture of the code 
generated by ASCET when user-defined types are used. This is because 
the interface is generated and the exact naming convention for the 
generated C functions depends on the expander and may not be trans-
parent to the user. In the present expander, the identity tag of the class 
is used in the name for the generated functions in order to guarantee 
a unique name space. 

7.1 Structure

A component described with C code has the same structure as if it was 
described with ESDL or as a block diagram. The C code describes the body of 
methods or processes. Each code variant is stored separately.

ESDL

C-Code

BDE/State
Machine

Generated
C-Code

Implementation Transformation

Expansion

Physical Model Level
(Independent of Software

Architecture)

Implementation Level
(Independent of Software

Architetcure)

Implementation Level
(Depending on Software

Architetcure)
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The specification of a component in C code depends on:

• The target, e.g. whether the C code is for the PC, PPC or for a specific 
controller CPU. Here the code can vary, since, for instance, a controller 
CPU has special registers that have to be addressed directly, or the 
endian format is different.

• The specification level. The C code can be intended to represent the 
physical level. In that case the implementation level coincides with the 
physical level as far as possible, e.g. the type continuous is repre-
sented as a 64-bit float. Alternatively the C code can be on the imple-
mentation level of fixed point arithmetic.

• The chosen implementation, if the C code is on the implementation 
level, since the C code depends on the implementations of the vari-
ables, particularly on their quantizations.

7.1.1 Methods and Processes

For each method or process a C function is generated. The function head is 
generated automatically, the C code is only used in the function body itself.

Example:

The body of the method calc()

a = b + d;

c = a * c;

could result in the following generated code (including function head), 
depending on the software architecture required for the experimental target:

void QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_calc (struct 
QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_Obj *self) {

...

/* BEGIN handwritten code */

/* calc 1  */a = b + d;

/* calc 2  */c = a * c;

/*  END  handwritten code */

...

}

The names of the functions generated for the methods and processes of com-
ponents depend on the code expander and the software architecture of the 
generated code. The user has no influence on these names. Depending on the 
code expander a unique name space is achieved, i.e. methods at different 
classes can have the same name without any naming conflicts. In the above 
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example the identity tag for the component is used to generate the unique 
name QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_calc for the method 
calc.

7.1.2 Variables and Function Parameters

The variables of a component are held in a data structure that, like the function 
heads, is automatically generated. The user has no influence on this data struc-
ture. A part of this data structure consists of the instance variables of the com-
ponent, which can be used in any method. Therefore they have to be passed 
to all generated functions. This data structure also depends on the code 
expander and the exact naming is therefore hidden from the user.

In the above example, the component has a data structure of its own that is 
passed to the generated function for the method calc. The data structure could 
look like this:

struct QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_Obj  {

ASDObjectHeader objectHeader;

real64_Obj *a;

real64_Obj *b;

real64_Obj *c;

real64_Obj *d;

};

The element names must be valid ANSI C identifiers. In addition to the reserved 
keywords of C, the names self and this are reserved.

Accessing Elements: 

To allow easy access to the elements of the component, a macro is defined 
automatically for each element. Each element can then be accessed simply by 
its element name.

The public elements defined in other components can be accessed from within 
C functions using the notation DefiningObject.PublicElement. 
Access is restricted to basic elements, arrays and matrices. The public interface 
of complex elements defined in other components, e.g. using the getAt, 
setAt or search and intepolate methods as in ESDL, cannot be accessed 
from C functions.

Note

When specifying components in C code, the user must ensure that the 
names of functions called in the method body do not collide with the names 
of variables defined in the interface.of that same component.
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Automatically Generated define Statements for Instance Variables: 

#define a self->a->val 

#define b self->b->val

#define d self->d->val

#define c self->c->val

/* BEGIN handwritten code */

/* calc 1  */a = b + d;

/* calc 2  */c = a * c;

/*  END  handwritten code */

#undef a

#undef b

#undef d

#undef c

Working with Basic Elements : 

For basic types, the method names of these types can be used, as explained in 
chapter 3 "Types and Elements" on page 89. When accessing arrays or matri-
ces, the index operator ’[]’ can be used in a C-like manner.

Since the method names of a user-defined type depend on the expander, the 
method of user-defined types can only be called with the knowledge of the 
exact generated function name for that method. In the above example the 
function name QX040H28HJ8HAMDJ870S4G7MDIBQQLSM_calc is gener-
ated for the method calc.

When using elements defined in ASCET, these elements are of a model type 
(either basic or user-defined). Basic types have the following default implemen-
tation, which is taken on the physical level:

• continuous = real64

• udisc = unsigned int32

• sdisc = signed int32

• log = int16.

Note

Elements of type logical should not be used as numbers in the C code, 
since this depends on the default implementation, which is subject to 
change in further releases of ASCET.
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The default implementation is replaced by the user-defined implementation 
when switching the specification level (e.g. fixed point code). Elements of 
model type logical can be represented for instance as a bit, and can there-
fore not be used as a number in the C code.

Messages: 

Messages are part of an intra-task (intra-process) communication concept used 
within ASCET models (see chapter 1.3). To achieve data consistency, the 
ASCET code generation has to create additional message copies.

If messages are used within the functional code (read/write access), additional 
code is required to ensure safe copying of the current values from message 
originals to the local copies. Within the process body, only these local copies 
are used. At the end, all local copies which could change their value within the 
process body must be written back to the message originals. 

In ESDL and block diagram components, ASCET generally detects very well, 
which messages are changed within a process. However, this functionality is of 
limited availability when using C code for the body specification. Here, the user 
has to take care of data consistency on his own.

In general, ASCET is not able to detect where and when a variable is written in 
user-specified C code. ASCET recognizes only a few special cases where, e.g., 
the variable name is followed by a =, or where assignment operators like ++ 
are used. If a variable is changed within a macro, an extern function, or via 
adress operators and pointer arithmedic, ASCET does not detect the change.

When messages are used, this behavior results in message copies being cre-
ated at the beginning of the process, but—under certain circumstances—not 
written back at the end.

A simple example shall illustrate this. The module shown below contains the 
messages b2, c, and d. The messages c and d are directly written, b2 is used 
within a macro.
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In the generated code, copies are initially created for all three messages (1). 
However, since only c and d are accessed in a way ASCET can recognize, only 
these two message copies are written back at the end (2). The change of mes-
sage b2 that occurs in the macro, is not recognized and gets lost.

Arguments: 

Arguments of methods are mapped to function parameters in the parameter 
list of the function generated for the method. These are also accessed by the 
name of the argument.

Local variables: 

Following the general C rules, function local variables can be declared in the 
method body. Here only variables of a C data type can be declared, not how-
ever of an ASCET model type. In particular, no local variables of a user-defined 
type can be used in components within body specifications in C.

real64 i;

for (i=0; i < 10; i++)

} (1)

} (2)
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{

   sum = sum + a[i];

} 

Since there is a code variant for each implementation variant, the user can 
define the local variables and their data types with respect to the implementa-
tion variant.

Characteristic lines and maps: 

Characteristic lines and maps defined in the component are evaluated via three 
subroutines each (as in ESDL).

Table LLpr from section "One-dimensional Tables" on page 129 is again used 
as an example for a characteristic line.

The CharTable1_getAt_real64_real64(charline, index) sub-
routine is usually sufficient for the evaluation of characteristic lines. Linear 
interpolation for this example works as follows:

tmpVal = CharTable1_getAt_real64_real64(LLpr,3000); 
// assigns 1.5 to tmpVal

tmpVal = CharTable1_getAt_real64_real64(LLpr,2280); 
// calculates interpolation factor for 2280 
// interpolates value for 2280 as 1.212 and 
// assigns it to tmpVal

tmpVal = CharTable1_getAt_real64_real64(LLpr,9000); 
// calculates interpolation factor for 9000 
// interpolates value for 9000 as 2.2 and 
// assigns it to tmpVal

In some special cases, though, separating the search and interpolate steps in 
tab les  can be more eff ic ient .  In  these cases ,  the subrout ines  
CharTable1_search_real64(charline, index)  and  
CharTable1_interpol_real64_real64(charline) are used.

CharTable1_search_real64(LLpr, 1000); 
// sets sample point to 1000

tmpVal = CharTable1_interpol_real64_real64(LLpr); 
// assigns 0.8 to tmpVal

CharTable1_search_real64(LLpr, 2780); 
// calculates interpolation factor for 2780

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0

0.0 0.8 1.1 1.5 1.8 2.0 2.2
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tmpVal = CharTable1_interpol_real64_real64(LLpr); 
// interpolates value for 2780 as 1.412 and 
// assigns it to tmpVal

Table LLpr2 from section "Two-dimensional Tables" on page 131 is again 
used as an example for a characteristic map:

The CharTable2_search_real64_real64(charline, indX,indY)
subroutine is usually sufficient for the evaluation of characteristic lines. Linear 
interpolation for this example works as follows:

tmpVal = 
CharTable2_getAt_real64_real64_real64(LLpr2,8,5); 

// assigns 4.0 to tmpVal

tmpVal =  
CharTable2_getAt_real64_real64_real64(LLpr2,2,2); 

// calculates interpolation factor for x=2 and y=2 
// interpolates value for (2,2) as -0.571 and 
// assigns it to tmpVal

tmpVal =  
CharTable2_getAt_real64_real64_real64(LLpr2,20,9); 

// calculates extrapolation factor for x=20, y=10 
// extrapolates value for (20,10) as 5.0 and 
// assigns it to tmpVal

In some special cases, though, separating the search and interpolate steps in 
tab les  can be more eff ic ient .  In  these cases ,  the subrout ines  
CharTable2_search_real64_real64(charmap, indX,indY) and 
CharTable2_interpol_real64_real64_real64(charmap) are 
used.

CharTable2_search_real64_real64(LLpr2, 1, 3); 
// sets x sample point to 1 and y sample point to 3

tmpVal =  
CharTable2_interpol_real64_real64_real64(LLpr2); 

// assigns 1.0 to tmpVal

CharTable2_search_real64_real64(LLpr2,4,4); 
// calculates interpolation factor for x=4, y=4

y \ x 0.0 1.0 8.0 15.0

1.0 -5.0 -3.0 0.0 1.0

3.0 0.0 1.0 4.0 6.0

5.0 8.0 5.0 4.0 4.0
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tmpVal =  
CharTable2_interpol_real64_real64_real64(LLpr2); 

// interpolates value for (4,4) as 3.143 and 
// assigns it to tmpVal

7.1.3 Header

Besides the description of the methods in the form of C code, a header can be 
defined for macros and for included files. This header has a local range 
restricted to the component. Therefore, no extra header file is generated, but 
the definitions are copied into the generated C code file.

7.2 External Source Code

Existing C code can be integrated by importing external C code source files. 
For this purpose, one C code file with a corresponding header file can be 
attached to each code variant of a component. The C code file contains stan-
dard C function definitions, the header file contains the corresponding func-
tion declarations and structure definitions. The defined functions can be called 
through the standard C conventions. It is possible to pass pointers and share 
defined structures between methods or processes of the component and the 
functions in the attached C code.

As an alternative to using a C code file, an object file with a corresponding 
header file can be attached to a component. Like the header files of the com-
ponent itself, the range of the header files of the attached sources is local, i.e. 
they are copied into the generated C code.

The attached C file is compiled separately and linked to the other (generated 
and compiled) C source files. As a consequence, this compiled unit exists only 
once within any given context. If the code and the included data is shared 
between multiple instances of the same component, all instances share the 
same compiled unit.

Additionally it is possible to have include statements in the C code. The 
include files however are not stored in the database, but a stored on the file 
system. The include statement must contain the file path to these include

Note

The data in an attached C file is shared between multiple instances of the 
component, and not instantiated for each of the instances. 
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files. The C code therefore depends not only on items in the database but also 
on the file structure of the current installation. Therefore care has to be taken 
when exchanging data, since these files are not known to the ASCET system.

Fig. 7-2 Using external source code

7.3 Programming Model Interface

In earlier ASCET versions, the names of classes and methods could only be 
used in C code, if they were labeled with an escape symbol ("@"). By means 
of this mechanism, the so called Programming Model Interface (PMI) was acti-
vated. In ASCET 4.x and 5.x, class and method names are recognized automat-
ically, i.e. no escape symbol is necessary and the PMI is used by default (see 
description of code generation options in the ASCET manual for details). 
Therefore, the escape symbol is obsolete and should not be used any longer 
when modelling in C code. For backward compatibility, however, the escape 
symbol can still be used when modifying the respective code generation 
option.

7.4 Access Macros

Similar to access methods in ESDL, ASCET offers access macros for the usage 
with C code components. For the following operations, special macros are 
defined. By means of these macros, the user can apply pre-defined operations 
in the C code. The macros are described in the following sections.

Note

When using include files the user must take care of the correct references 
to these files on their own.

C-Code
Component
(Instance1)

C-Code
Component
(Instance2)

Attached
C-Source Code
or Object Code

Include Files

Multiple
Instances

Single
 Instance
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Direct Acess 

Elements of classes embeded into C code components can be accessed directly 
using the macros

ASD_GET(receiver, variable);

and

ASD_SET(receiver, variable, value);

Example:

Length of Arrays

The current length of an array can be determined using the macro 

ASD_LENGTH (receiver);

Example:

z = ASD_LENGTH(array);

Resource Access

Resources can be reserved and released using the macros

ASD_RESERVE(resource);

and

ASD_RELEASE(resource);

Acess to Private Methods

Private methods can be acessed using 

self.

Example:

y = self.method_private(x);

Making Arrays Avaiable for Usage in External C-Code

Using the macro
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ASD_USE_ARRAY_EXTERNAL(array)

array acess can be converted from the ASCET internal representation to the 
standard C code representation. The macro is a synonym for:

&array[0]

Example: 

y = c_function(ASD_USE_ARRAY_EXTERNAL(array)); 
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8 Continuous Time Systems

The comprehensive capabilities of ASCET are utilized to model discrete systems 
for the functional development of controller software and for the simulation of 
control units. In contrast, the control system associated with the control unit 
represents a continuous time physical system that is described by differential 
equations.

Examples for continuous time systems are the drive train or the wheel suspen-
sion of vehicles (mechanical system), the combustion process in the cylinder 
chamber (thermodynamic system), the brake circuit of a vehicle (hydraulic or 
pneumatic system), and the vehicle battery (electric or electrochemical system). 
In addition, there are increasingly also mechatronic systems in which, e.g., the 
mechanics of an actuator is connected with a local electronic control, or an 
intelligent sensor processes the physical signal electronically.

ASCET supports the model design and simulation of such continuous time sys-
tems by means of so-called CT blocks. CT stands for Continuous Time and 
refers to elements that are modeled or calculated in quasi-continuous time 
increments. The continuous time modeling in ASCET is based on state space 
representation, the standard description form in the design of continuous time 
systems. This representation allows the description of CT basic blocks by non-
linear ordinary first-order differential equations and nonlinear output equa-
tions. ASCET provides several real-time integration methods to solve these 
differential equations efficiently.

The continuous time model can be structured in modular and hierarchical 
blocks. Continuous time models can be combined by ASCET controller specifi-
cations to create combined models, so-called hybrid projects. These hybrid 
projects can be used to test a controller specification against a model of the 
actual technical processes that need to be controlled.

The model and the simulation experiment are strictly separate; a model con-
tains the modular and hierarchical system description while an experiment 
contains the selected data set, the integration algorithm, and the selected visu-
alization configuration including an input method for parameters. The results 
are accurate, reusable models and high flexibility. At the experiment level, each 
model variable can be flexibly altered and measured. The chosen integration 
step size and the integration algorithm can be changed during the simulation, 
without any time-consuming recompilation of the model or the current exper-
iment.

8.1 Structure of Continuous Time Models

The following sections describe the various structuring options for a model 
with basic blocks, structure blocks, and graphical hierarchies.
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8.1.1 Modeling with Basic Blocks and Structure Blocks

Models of continuous time systems can be structured in modules and hierar-
chies. The fundamental element is the continuous time basic block, or CT basic 
block, in which the partial model is described in the form of differential equa-
tions, algebraic equations, formulas and assignments using the high-level lan-
guages ESDL or C.1 

Continuous time blocks (CT blocks) consist of inputs, outputs, parameters, and 
discrete and continuous states with several dimensions, scopes and data types. 
In addition, continuous time and discrete equations and output equations as 
well as an initialization and termination sequence are also supported. State 
events, software and hardware events (interrupts) can also be handled.

More complex continuous time models can be assembled to CT structure 
blocks using the Block Diagram Editor (BDE). Using the Block Diagram Editor, 
several CT basic blocks and/or CT structure blocks can be assembled and com-
bined. Fig. 8-1 shows a simple CT structure block composed of two CT basic 
blocks.

Fig. 8-1 CT structure block composed of two CT basic blocks

1. C should be used in imperative, exceptional cases only because ASCET provides 
automatic verification functions (semantic checks, computing sequence) only for 
ESDL.

F
y

yu+F

-

y

ydd

yd

basic block

structure block

inputs: u;
outputs: y;
states: x1, x2;
parameters: Td, Ti;
variables: delta := 0.0;

state_equations:
  .  .  .  .  .   .  .  .  .  .

state_equations:

inputs: F;
outputs: y, yd, ydd;
states: xm, xd_m;
parameters: c, d, reib;
variables: Fr := 0.0;
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Several CT structure blocks and CT basic blocks can in turn be combined to one 
new CT structure block. Fig. 8-2 shows the possible structuring options with 
CT structures.

Fig. 8-2 Modeling with CT structure blocks

The correct computing sequence of the CT blocks is determined automatically. 
CT basic blocks and/or CT structure blocks can be combined together with 
Standard ASCET structures to build hybrid projects. 

CT basic blocks are used to describe small physical components such as brakes, 
wheels, etc. CT structure blocks serve to describe more complex entities such 
as a power train facility or a complete vehicle model. CT basic blocks and CT 
structure blocks are each stored in the database and are available for other 
models. In this way, it is possible to easily build a model library. Modifications 
to blocks or structures are automatically distributed to all models within one 
database. This has the advantage that basic elements have to be maintained at 
one place only while corrections are automatically adopted by all models 
included in the same database. On the other hand, it must of course be 
ensured that the basic elements remain compatible. 

8.1.2 Modeling with Graphical Hierarchies

A CT structure block composed of many CT basic blocks and/or CT structure 
blocks can be designed more clearly by combining several related CT blocks in 
a graphical hierarchy (refer to Fig. 8-3). Graphical hierarchies and CT structures 
can be combined into new hierarchies-the processing sequence is not affected 
by these graphical hierarchies. In the Block Diagram Editor, graphical hierar-
chies are indicated by a double-line frame.

CT structure block

CT basic block

CT basic block

CT structure block

CT basic block
CT structure

block

CT basic block

CT Structure Block
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Graphical hierarchies are especially used when the individual CT blocks have 
strong cohesion and require a fixed computing sequence within an integration 
step. By using graphical hierarchies, algebraic loops (refer to section "Algebraic 
Loops" on page 201 and section "Difference Between Graphical Hierarchies 
and CT Structure Blocks" on page 204) that may be caused by CT structure 
blocks can be avoided. The correct computing sequence is ensured by auto-
matic sequencing. Graphical hierarchies cannot be stored individually but only 
together with the corresponding structure block.

Fig. 8-3 Graphical hierarchy

8.1.3 Experiments

Basic and structure blocks can be evaluated in a simulation experiment. In the 
experiment, the integration method, the model stimulation, and the visualiza-
tion of results are selected and specified. Several experiment settings can be 
stored for a (partial) model.

8.1.4 Projects and Hybrid Projects

The real-time experiment is defined in a project. Both basic blocks and struc-
ture blocks can be used in a project. Furthermore, it is only in the project where 
individual integration methods and their step size can be assigned to each inte-
grated basic block or structure block. This allows allocating more CPU time to 
the model part with high dynamics than to other, less dynamic model parts, if 
the processor capacity is limited. 

Graphical Hierarchy

graphical
hierarchy

CT basic
block

CT basic
block

CT basic
block

CT structure
block

CT structure
block

CT basic
block

CT Structure Block
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For a model in which the controller and control system models are to be com-
bined, a hybrid project can be defined, i.e., a project that contains both CT 
blocks and standard ASCET components. A hybrid project thus allows the sim-
ulation of the control system and the control unit in one model (hybrid simula-
tion).

Fig. 8-4 Project

The communication between individual CT blocks and individual controller 
modules is performed by explicitly connecting inputs and outputs in the Block 
Diagram Editor (for details on projects, refer to chapter "Projects" 
on page 13).

The experiment can be conducted on-line on the real-time simulation hard-
ware or off-line on the PC (unless special hardware has to be available or inte-
grated for the experiment).

8.2 Solving Differential Equations – Integration Algorithms

Due to the complexity of the equations in continuous time models and fre-
quent non-linearities, it is generally not possible to solve them by analytic 
methods. It is therefore necessary to solve the differential equation system 
using a numeric integration algorithm.

If only CT blocks are simulated in a CT structure, ASCET uses a global integra-
tion algorithm. The combination with discrete controller models is possible at 
the project level only (combined modeling in a hybrid project). Projects also 
support modeling with several CT structures using different integration meth-
ods. 

Euler h=0.00005 sec
n=1
dT=0.002 sec

CT structure block CT1

Project

CT structure block CT2

Discrete standard block

Adams-Moulton  h=0.002 sec
n=2
dT=0.002 sec

ECU simulation

dT=0.01 sec
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To ensure high flexibility and short iteration cycles for modeling and simula-
tions, the configuration of the integration method, i.e., the actual integration 
method and its integration step size, can be selected and modified interactively 
during the experiment.

There is no ideal integration method that fits all types of models. The speed 
and accuracy of the individual algorithms varies for different model character-
istics such as non-linearities, discontinuities, and dynamic behavior. A general 
statement regarding the speed of each method cannot be given, as the step 
size is adapted to suit the model and integration method best. However, some 
guidelines for selecting a suitable integration method are given below. 
Detailed information can be found in the literature, e.g.,

Addison, C. A.; Enright, W. H.; et al., A Decision Tree for the Numerical 
Solution of Initial Value Ordinary Differential Equations. ACM Transi-
tions on Mathematical Software 17, 1, March 1991, Chapter "Contin-
uous Time Integration Algorithms".

ASCET provides the following integration methods:

• Euler

• Mulstep 2

• Heun

• Adams-Moulton 2

• Runge-Kutta 4

To solve more complex or stiff differential equations that need more precise 
calculation, ASCET provides the following variable-step iterative integration 
methods:

• Dormand/Prince RK5

• Calvo 6(5)

• Dormand/Prince RK8

• Implicit RK2

• Implicit RK4

• Implicit Gear 1

• Implicit Gear 2

During calculation, these integration methods adapt the step width used iter-
atively in order to achieve a certain given precision. Therefore, they cannot be 
used for real-time calculations.
Continuous Time Systems



Due to technical reasons, the implicit integration methods can only be used 
with newer Borland and Microsoft compilers. They cannot be used with the 
Borland C 4.5 compiler shipped with ASCET. These methods are taken from 
the GNU Scientific Library. The integration method Gear 4 provided in previous 
versions of ASCET is not available anymore. 

8.2.1 Integration Methods – Overview

It is assumed that the differential equation exists in its state form:

x’(t) = f(x,t); with x(t=0) = x0  

The table below lists some characteristics of the implemented integration 
methods: 

• The global error order p of the discretion error that is proportional with 
hp, where h is the integration step size.

• The number of function evaluations per integration step. Each time, 
the local variables are reset and the nondirectOutputs, 
directOutputs, derivatives methods are executed. This, com-
bined with the integration step size, can be used to estimate the speed 
of the method. 

• Single-step/multi-step methods (SSM/MSM): Single-step methods only 
use the last estimated value for the next step, whereas multi-step 
methods take the last n estimates into account.

• A predictor-corrector method (P-C) first uses an integration method to 
calculate an estimate which is then corrected using a second method.

• Fixed or variable step size.

The table below contains a summary of these characteristics for inbtegration 
methods with fixed step size (for MSM, the time when the function is com-
puted or when the break points are taken into account is indicated in paren-
theses).

Integration 
Method

Error 
Order

Function 
Evaluations/ 
Step

SSM/MSM P-K Step 
Size

Euler 1 1 (t) SSM no fixed

Mulstep 2 2 1 (t) MSM (t-h, t) no fixed

Heun 2 2 (t, t+h) SSM yes fixed

Adams-Moulton 2 2 (t, t+h) MSM(t-h, t) yes fixed

Runge-Kutta 4 4 4 (t, t+h/2, 
t+h/2, t+h)

SSM no fixed
Continuous Time Systems 179



180
To ensure that the integration methods can be applied in real-time, each 
method is implemented using relatively few function evaluations per integra-
tion step and a correspondingly low error order.

Euler

The Euler integration method is the simplest integration method available. A 
single-step method with only one function evaluation per integration step, its 
cycle time is the smallest, making it relatively fast and especially suitable for 
real-time simulations. 

Its stability range is high, however, at the trade-off of a higher discretion error 
that, at the same step size, is typically higher than with the other methods 
(lowest order).

Mulstep 

The Mulstep integration method is a multi-step method which is used for mod-
els without heavily varying eigenvalues. The cycle time of one integration step 
is only slightly higher than for the Euler method since only one function evalu-
ation is performed per integration step. However, the error order is 2.

Heun

The Heun integration method is used for models without heavily varying eigen-
values. The cycle time is twice as long as with the Euler method. 

Mathematical Formula

x(t+h)=x(t)+h*f(x,t)

Mathematical Formula

x(t+h)=x(t)+h(3/2*f(x,t)-1/2f(x,t-h))

Mathematical Formula

Predictor: x(t+h)=x(t)+h*f(x,t) (Euler)
Corrector: x(t+h)=x(t)+h/2*(f(x,t)+f(x,t+h))
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Adams-Moulton

The Adams-Moulton integration method is also suitable for models without 
heavily varying eigenvalues. In contrast to the previous algorithms, the model 
should exhibit a smooth behavior. The cycle times for the Adams-Moulton and 
Heun algorithms are almost the same.

Runge-Kutta 4

The Runge-Kutta integration method is best suited for models without heavily 
varying eigenvalues. This integration method is very robust for this type of 
model. It is the slowest, but also the most accurate method at comparable step 
sizes. It is therefore possible to increase the step size considerably.

Integration Methods With Variable Step Width

For experiments that need very precise calculation, the step width usually has 
to be reduced. This can increase  the time used for calculation significantly. 
Models employing stiff differential equations often render the calculation 
using fixed-step integration methods infeasible. Adaptive integration methods 
are controlled by a target error margin. The step width is only reduced for 
those parts of the model where it is needed. Because the step width (and 
therefore the time needed for calculation) varies, these integration methods 
are not real-time capable.

If the desired precision cannot be reached due to the parameter settings, the 
experiment issues a warning in the ASCET monitor window. This happens 
when the maximum iteration depth is set too low or the minimal step width is 
set too high.

Mathematical Formula

Predictor: x(t+h)=x(t)+h/2(3f(x,t)-f(x,t-h)) (Adams-Bashforth)
Corrector: x(t+h)=x(t)+h/2(f(x,t)+f(x,t+h)) 

Mathematical Formula

x(t+h)=x(t)+h/6(K1+2K2+2K3+K4)
where
K1 = f(x,t)
K2 = f(x + K1*h/2, t + h/2)
K3 = f(x + K2*h/2, t + h/2)
K4 = f(x + K3*h, t + h)
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9 Continuous Time Basic Blocks

Continuous time basic blocks (CT basic blocks) are generally used to describe 
small, independent physical components that can be used in various model 
scenarios. Basic blocks can be specified using the CT block editor. The block 
interface is specified interactively and the dynamics of the physical component 
are described by differential and algebraic equations.

9.1 Basics

Continuous time basic blocks are specified either in C code editor or in the 
ESDL editor. The two editors are slightly different for the specification of CT 
blocks. The internals of the blocks, i.e., the differential and algebraic equations 
as well as the control structures, are described within pre-defined methods. 
The proper computing sequence required for correct, continuous time model-
ing is derived automatically (sequencing). The pre-defined method structure 
cannot be modified by the user.

Basic blocks are used to describe models by means of nonlinear ordinary first-
order differential equations (ODE) and nonlinear output equations. To describe 
a system of higher order, it has to be converted into several differential equa-
tions of first order. The table below illustrates the transformation of a second-
order system into its representation in the state space.

Tab. 9-1 Resolution of a second-order differential equation

The equations can be written in ESDL or C. The use of ESDL ensures a target-
independent specification and advanced semantic checks. When using C, the 
entire functionality of the C programming language is available. The drawback 
of C is that it is not possible to perform a semantic analysis. The use of ANSI C 
enables largely target-independent modeling, however, this is not the case if 
special language dialects such as for special hardware optimization is used. 
Furthermore in C, the block's behavior has to be specified as direct or nondi-
rect. 

9.2 Available Elements and Methods

Continuous time basic blocks differ in some elements from discrete modules or 
classes. The following elements exist:

• Inputs

One 2nd-order differential equa-
tion

Two 1st-order differential equa-
tions

T2*x’’ +  2.0*d*T*x’ + x = K*in; x’ = xp;

xp’ = (K*in - (2.0*d*T*xp) - x) / T2;
Continuous Time Basic Blocks 183



184
• Outputs

• Continuous state

• Discrete state

• Steplocal variables

• Parameters

• Dependent parameters

• Constants

• OneD / TwoD table parameters

Each element type can have different dimensions, scopes, and data types (refer 
to section "Block Interfaces" on page 185). The figure shows the various data 
types (and their associated icon) and the available methods for working with 
these data.

Fig. 9-1 Different data types and methods

9.2.1 Modeling With Continuous Time Basic Blocks

Within a continuous time basic block, the internals of the system to be mod-
eled can be described using the ESDL model description language or directly in 
C. The target-independent ESDL modeling language provides advanced 
semantic verification ensuring a correct model. Modeling directly in C, there-
fore, should be confined to target-dependent real-time blocks only. In general, 
the use of ESDL is recommended.
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The behavior of the block is described within a fixed framework, i.e., with a 
fixed number of methods. Each method has a specific purpose, e.g., the calcu-
lation of derivations or outputs. In contrast to standard ASCET models, the exe-
cution sequence is fixed (refer to section "Computing Sequence" 
on page 187), and the methods are scheduled automatically.

9.3 Block Interfaces

The elements (interfaces, storage elements) for modeling continuous time 
basic blocks are slightly different from those used for discrete modules or 
classes. The following describes the available element types.

Inputs: Block inputs have to be described using Inputs. At each evaluation 
step, all input variables are read.

Outputs: Block outputs have to be described using Outputs. At each evalu-
ation step, all output variables are updated.

Continuous State: The description of ordinary differential equations 
requires state variables. Each state variable functions as a "storage element"; 
an example is the distance and velocity of a moving mass point. Continuous 
state variables are only used by the differential operator ddt.

Discrete State: A discrete state variable is a storage element. It can be used 
to keep a variable value from one calculation step to the next, e.g., the value 
of a counter. Discrete state variables are equivalent to the variables in discrete 
classes or modules. Discrete state variables cannot be used by the differential 
operator ddt.

Steplocal Variables: Steplocal variables are used to store intermediate val-
ues during the calculation of an evaluation step. These variables are visible in 
all block methods. The value of a steplocal variable is valid only in one evalua-
tion cycle; the variable is reinitialized at the beginning of each iteration step. If 
the value must be evaluated in a different method, the execution sequence of 
the methods has to be considered (ensure writing before reading). 

Parameters: Parameters are used to create a physical model. Normally, a 
parameter corresponds to a characteristic property of a real system, such as 
mass, length, or attenuation constant. A generic model library can be system-
atically built by means of efficient parameterization. Parameters can be varied 
during the simulation in the experiment environment (using the Calibration 
Editor).

Dependent Parameters: If one parameter depends on another parameter, 
e.g., parameters described in different coordinate systems, it should be recal-
culated only if the other, affecting, parameter has changed. This type of 
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parameter behavior can be described by dependent parameters. They are cal-
culated only in case of changes asynchronously in the dependentParameters
method. 

For example: m_vehicle = m_empty + m_payload.

If the payload changes in the experiment, the vehicle mass is recalculated in 
the dependentParameters method.

Constants: Constants describe system-wide values that do not change dur-
ing an experiment, e.g., the gravitation constant.

Dimensions, Scopes, and Data Types: For each element type available, 
there are various dimensions, scopes, and data types. The possible combina-
tions are listed below.

Fig. 9-2 Dimensions, Scopes, and Data Types

9.4 Block Methods

The methods (type and number) available in CT basic blocks are pre-defined 
and cannot be modified by the user. Each method has a specific purpose, e.g., 
the calculation of derivations or outputs. The execution sequence of the meth-
ods is fixed; the methods are executed automatically. It is not necessary to use 
each method in a CT basic block. 

The following methods are available in CT basic blocks:

init(): The init() method is called only at the beginning or restart of 
an experiment. The init() method can be used to specify code for initializ-
ing the block, e.g., to model the start-up behavior of a model or to initialize 
state variables (e.g., resetContinuousState(x,5.3)). Initialization val-
ues derived from calculation statements have to be explicitly assigned using 
the init() method.
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terminate(): The terminate() method is executed at the end of the 
experiment. The terminate() method can be used to specify code for fin-
ishing a block, e.g., to model the shutdown behavior of the system.

derivatives(): Ordinary differential equations (ODE) have to be speci-
fied in the derivatives() method. If the model structure changes during 
the simulation (e.g., in a model with moving masses that simulates static and 
dynamic friction), the structure change can be controlled with the usual con-
trol structures (if(...) then... else...).

update(): update() is executed in the granularity of the external com-
munication interval dT. Values required only at this granularity (also communi-
cation with the experiment environment) can be calculated using this method. 

directOutputs(): The directOutputs() method includes all output 
equations with direct pass-through that directly depend on inputs. As they 
directly depend on inputs that in turn may depend on nondirectOut-
puts(), this method is executed after nondirectOutputs().

nondirectOutputs(): The nondirectOutputs() method includes 
all output equations with nondirect pass-through (i.e., those not directly 
depending on inputs).

dependentParameters(): Within the dependentParameters
method, equations are specified for parameters that depend on other param-
eters. This method is only executed if a parameter has been changed during 
the simulation experiment (asynchronous execution when changed). This 
reduces the calculation time.

For example: m_vehicle = m_empty + m_payload.

The vehicle mass is recalculated in the dependentParameters method only 
if the payload changes in the experiment.

stateEvents(): Within the stateEvents() method, it is possible to 
model state- and time-dependent discontinuities. This method is evaluated at 
the end of each consistent integration step. Discrete state equations must be 
specified in the stateEvents() method.

events(): The events() method can be used to process asynchronous 
software and hardware interrupts. This method is not executed time-synchro-
nously but asynchronously when the corresponding event occurs.

9.5 Computing Sequence

During the execution of a simulation, the methods contained in a CT block are 
triggered in different cycles. There are three general cycle intervals:

• the external communication interval dT

• the integration step size h
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• The step size h/n depending on the internal integration method

External Communication Interval dT

The communication interval is not part of the model but is chosen only at run-
time of the simulation. The following communication occurs during the dT 
cycle:

• communication between CT blocks and the experiment environment, 
e.g., stimulation and visualization

• communication between CT blocks and controller modules within a 
hybrid project

• communication between several CT (structure) blocks within a hybrid 
project if several integration methods are used

• calling the update() method

Integration Step Size h

The integration step size is not part of the model but chosen only at run-time 
of the simulation. During the h cycle, communication takes place between sev-
eral continuous time blocks within a continuous time structural block. After 
the integrat ion step has been executed across  a l l  b locks,  the 
stateEvents() method is executed.

Each value transferred is numerically acknowledged and depends on the 
selected integration method. When simulating a highly dynamic model for 
which h has to be very small, the speed can be considerably increased by 
selecting a much higher value for dT than for h.

Step Size Depending on the Internal Integration Method: h/n 

Other than the h cycle, the h/n cycle depends on the selected integration 
method; e.g., the Euler integration method uses the cycle time h/l while the 
Heun integration method uses h/2.

During the h/n cycle, the intermediate steps of the integration are calculated. 
As for the h cycle, communication takes place between the continuous time 
blocks of a continuous time structure block. The intermediate steps of the inte-
gration cannot be communicated to the outside. 

Numerically, no discontinuities can be handled during this cycle since the 
stateEvents() method is not called during this cycle.

There is the following relationship between the different step sizes:

dT >= h >= h/n
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The entire cycle of the various method calls is depicted in Fig. 9-3:

Fig. 9-3 Cycle of method calls in a continuous time block

The events() and dependentParameters() methods are only called 
when an explicit, asynchronous event occurs, and especially not during a dT 
cycle.
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Fig. 9-4 shows the execution sequence of all methods from the start to the end 
of the simulation.

Fig. 9-4 Execution sequence of methods in the CT block

The sequence in which the methods of a basic block are executed is illustrated 
by means of the following examples.

The evaluation sequence for synchronous calls, e.g, if n = 1 (Euler) and h = 
dT, is:
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• at time t = dT: nondirectOutputs - (reading inputs) - directOut-
puts - derivatives

• at time t = dT: stateEvents

• at time t = dT: update

For a more complex integration method, e.g., if n = 2 (Adams-Moulton) and h
= dT, the sequence is:

• at time t = dT/2: nondirectOutputs - (reading inputs) - 
directOutputs - derivatives

• at time t = dT: nondirectOutputs - (reading inputs) - directOut-
puts - derivatives

• at time t = dT: stateEvents

• at time t = dT: update

The evaluation sequence for n = 1 and h = dT/2 is:

• at time t = dT/2: nondirectOutputs - (reading inputs) - 
directOutputs - derivatives

• at time t = dT/2: stateEvents

• at time t = dT: nondirectOutputs - (reading inputs) - directOut-
puts - derivatives

• at time t = dT: stateEvents

• at time t = dT: update

Understanding the computing sequence and thus the behavior of continuous 
time basic blocks is absolutely mandatory for a correct use of these blocks. 
Using ESDL as the modeling language gives the additional advantage of pro-
viding an automatic analysis phase that ensures consistent modeling when 
connecting several CT blocks. The computing sequence is especially important 
for blocks with direct outputs (directOutputs), because current values from the 
same iteration cycle have to be applied to the corresponding inputs. 

9.6 Modeling with ESDL

The entire language scope of ESDL is available for the specification of continu-
ous time basic blocks. In addition, a semantic check and a number of addi-
tional library functions for describing differential equations are provided. These 
are described in the following sections.

9.6.1 Differential Equations in ESDL

In ESDL, each continuous state variable supports the derivation operator ddt. 
Differential equations can be described with the ddt operator.
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An example may be a PT2 system with the continuous state variables x and xp, 
the input in, and the parameters d, T, K. The mathematical description of the 
system is:

x’ = xp;

xp’ = (K*in - (2.0*d*T*xp) - x) / (T*T);

When modeling this PT2 system with ESDL, the derivations are specified by 
means of the ddt method:

x.ddt(xp);

xp.ddt( (K*in - (2.0*d*T*x.ddt()) - x) / (T*T) );

The derivatives on the left side of a differential equation (i.e., in the argument 
of a derivation method) cannot be accessed. If such an access is required, the 
system needs to be reformulated.

The ddt operator can only be used in the derivatives() method.

9.6.2 Semantic Checks in ESDL

Semantic checks can be performed when using ESDL within a continuous time 
method. The verification items ensure that the model matches the fundamen-
tal continuous time simulation framework. For example, it is not permitted to 
change the value of a state variable directly (instead, the resetContinu-
ousState() function has to be used to internally reset the integration 
algorithm). Fig. 9-5 provides an overview of the access rights to those ele-
ments. The semantic check traps any violation of these rights.
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Fig. 9-5 Access Rights to Elements

The derivation operator ddt supports only the first derivative. The output 
equations of the nondirectOutputs() method are analyzed to detect a 
direct dependency on an input. If such a case is found, a warning is issued.

9.6.3 Additional Library Functions

For advanced continuous time modeling with ESDL, the system library provides 
a number of additional library functions:

• getTime()

• getdT()

• getIntegrationStepsize()

• resetContinuousState()

• resetCTSolver()

The following describes the use of each library function in detail. Access to 
these functions in each method is shown in Fig. 9-6.
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Fig. 9-6 Access to functions in the methods of a continuous time block

getTime( ): In some cases, the current simulation time is of importance. 
For on-line experiments, this is the actually elapsed time. This value can be 
obtained using the getTime library function:

t = getTime ( );

The getTime function can be used in any method.

getdT( ): The getdT library function provides the current step size for 
external communication:

step = getdT ( );

getIntegrationStepsize( ): The getIntegrationStepsize()
library function returns the current integration step size:

h = getIntegrationStepsize ( );

resetContinuousState( state, new value): Modeling time- or 
state-dependent discontinuities often requires resetting the continuous state 
variable. To ensure a correct numeric evaluation, the integration method needs 
to be reinitialized internally. This is done using the resetContinuousState
function:

resetContinuousState (x, 0.0 );
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In this case, the state x is set to 0.0 and, if necessary, the integration method 
is reinitialized. Use of the resetContinuousState library function is per-
mitted only in the init, and stateEvents methods. Use of the function is 
also allowed in the method update, but it is useless because that method has 
no write access to continuous states. it is useless. resetContinu-
ousState(x,y) is followed automatically by resetCTSolver(). 

resetCTSolver( ): With resetCTSolver, the integration method 
can be reset explicitly:

resetCTSolver ( );

Use of the resetCTSolver library function is permitted only in the init, 
update, and stateEvents methods. resetContinuousState(x,y) is 
followed automatically by resetCTSolver().

9.7 Modeling in C

Modeling in C offers the capabilities of the C language but no semantic 
checks. Continuous time basic blocks specified in C may be hardware-depen-
dent. If programming is done in ANSI-C, it is possible to create hardware-inde-
pendent models even in C. This is necessary if pointers or C subroutines are to 
be used. C basic blocks can be used to model hardware-dependent blocks and 
in the same way as ESDL basic blocks. C basic blocks require an explicit speci-
fication whether they have a direct pass-through (output depends directly from 
the input) or an indirect pass-through by selecting direct or nondirect in 
the "Block Behavior" combo box. This affects the automatic determination of 
the execution sequence. 

9.7.1 Differential Equations in C

In C, an internal derivation variable is created for each continuous state vari-
able. The name of this variable is composed of the name of the state variable 
and the prefix ddt.

Examples are the continuous state variables x and xp; the automatically cre-
ated derivation variables are ddtx and ddtxp. They are visible in all methods.

A complete example is a PT2 system with the continuous state variables x and 
xp, the input in, and the parameters d, T, K.

Note

When modeling in C, there are no semantic checks ensuring consistent mod-
eling (as in ESDL). Consistency has to be ensured by the user.  
It is recommended to use C for modeling continuous time systems only if 
absolutely necessary, e.g., for modeling controller-dependent system por-
tions or if C pointers or C subroutines have to be used.
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x’ = xp;

xp’ = (K*in - (2.0*d*T*xp) - x) / (T*T);

The PT2 system above can be expressed as C code in the CT block as follows:

ddtx = xp;

ddtxp = (K*in - (2.0*d*T*ddtx) - x) / (T*T);

9.7.2 Additional C Routines

Additional C routines are available for modeling in C. For generic use of these 
routines, the internal data structure of the current block must be specified in 
the routine's interface. The CTBlock and self methods are visible in each 
method.

The following routines are provided:

• getTime

• getdT

• getIntegrationStepsize

• resetCTSolver

• sizeU

• sizeY

• sizeV

• sizeX

• sizeXK

The get and reset routines provide additional ESDL library routines; the 
size routine allows a generic model design if the number or array size of 
instance variables has to be changed.

The following describes the use of the additional C routines in more detail. 
There are no semantic checks and usage restrictions provided with these rou-
tines. It is the user's responsibility to ensure they are used correctly.

real64 getTime(CTSimExperiment *): 

The getTime function returns the current simulation time:

t = getTime (CTBlock);

real64 getdT (): 

The getdT function returns the current interval for external communication:

step = getdT ();
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real64 getIntegrationStepsize(CTSimExperiment *): 

The getIntegrationStepsize function returns the current integration 
step size:

h = getIntegrationStepsize (CTBlock);

void resetCTSolver(CTSimExperiment *): 

The integration algorithm can be reset explicitly with the resetCTSolver
routine. An example for its use is resetting a continuous time state:

x = 0.0;

resetCTSolver (CTBlock);

Whenever one or more continuous time states have been set explicitly, the 
internal structures need to be reset when finished. Note that the resetCT-
Solver command should always be issued after a value has been assigned to 
a continuous time state.

int_32 sizeU (CTSimExperiment *): 

The sizeU function returns the number of block inputs:

sizeU = sizeU (CTBlock);

If some of the inputs are arrays, the total number of the scalar elements is 
returned. More complex inputs, such as records, structures or classes, are 
counted as one element.

int_32 sizeY (CTSimExperiment *): 

The sizeY function returns the number of block outputs:

sizeY = sizeY (CTBlock);

If some of the outputs are arrays, the total number of the scalar elements is 
returned. More complex outputs, such as records, structures or classes, are 
counted as one element.

int_32 sizeV (CTSimExperiment *): 

The sizeV function returns the number of block parameters (parameters and 
dependent parameters):

sizeV = sizeV (CTBlock);

If some of the parameter states are arrays, the total number of the scalar ele-
ments is returned.

int_32 sizeX (CTSimExperiment *): 

The sizeX function returns the number of continuous states:

sizeX = sizeX (CTBlock);
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If some of the continuous states are arrays, the total number of the scalar 
elements is returned.

int_32 sizeXK (CTSimExperiment *): 

The sizeXK function returns the number of discrete states:

nofX = sizeXK (CTBlock);

If some of the discrete states are arrays, the total number of the scalar ele-
ments is returned.
Continuous Time Basic Blocks



10 Continuous Time Structure Blocks and Graphical Hier-
archies

Continuous time structure blocks (CT structure blocks) can be used to build 
complex models by combining and linking other CT structure and CT basic 
blocks in a graphical block diagram. A slightly modified Block Diagram Editor 
(BDE) is provided for the specification of continuous time structure blocks (refer 
also to Fig. 8-2 on page 175). The corresponding inputs and outputs are 
graphically connected with each other in the BDE. 

A continuous time structure block is modeled as a block diagram with a fixed 
number of methods. In principle, the methods of the CT basic blocks are auto-
matically applied and cannot be modified in the BDE. The functional descrip-
tion is tied to a single diagram. The correct computing sequence is also 
determined automatically and cannot be influenced directly.

For a simple example illustrating the use of CT basic blocks, their methods, and 
CT structure blocks up to the simulation in the experiment environment, refer 
to the tutorial (volume "Getting Started", chapter "Modeling a Continuous 
Time System").

10.1 Reuse of Structure Blocks

CT structure blocks are stored in the database, the same as CT basic blocks, 
and are available for other CT structure blocks. This allows building a model 
library for a modular and hierarchical model structure. If a CT basic block or CT 
structure block is changed in the database, the change is automatically applied 
to all models in the database. Maintenance of the CT blocks is thus required at 
one place only.

Finished models whose CT blocks may not be replaced with newer versions, 
must therefore be stored in a different database.

10.2 Elements of a Continuous Time Structure Block

Not all variables that are used in basic blocks are required in continuous time 
structure blocks. The following elements are available:

• Inputs

• Outputs

• Global parameters

• Constants

• OneD and TwoD table parameters

For each element type, there are different dimensions, scopes, and data types. 
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Addition and subtraction operators are provided for which the number of 
inputs can be selected individually.

10.3 Block Interfaces

The following sections describe the elements available in continuous time 
structure blocks.

Inputs: Block entries are described by inputs. During each evaluation step, all 
input variables are read.

Outputs: Block exits are described by outputs. During each evaluation step, 
all output variables are updated.

Global Parameters: Global parameters are used to describe parameters 
that are visible in the entire model. A global parameter usually corresponds to 
a global characteristic property of the real system. An efficient use of global 
parameters can reduce the complexity and facilitate the maintenance of the 
model.

Constants: Constants are used for values that do not change during an 
experiment, such as the gravitation constant.

Dimensions, Scopes, and Data Types: Each type of element has a certain 
dimension, a scope of validity, and a type. The possible combinations are illus-
trated in the table below.

Fig. 10-1 Dimension, scope, and data type of elements

10.4 Operators

According to the systems theory, only linear operators are required for the 
description of structure blocks. Nonlinear elements are encapsulated in basic 
blocks. Therefore, only addition and subtraction operators are provided.
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10.5 Algebraic Loops

In the following equation system

x = f1(z) 
y = f2(x) 
z = f3(input a) (input a assumed valid)

each equation, with the exception of f3, depends on another equation. In 
order to allow the system to be computed from top to bottom correctly, the 
equations have to be rearranged as follows: 

z = f3(input a) 
x = f1(z) 
y = f2(x)

In this sequence, the system can be easily computed, even by conventional PC 
programs.

An algebraic loop exists if:

y=f1(x); 
x=f2(y);

i.e., if two functions directly depend on each other. y is needed to calculate x, 
and x is needed to calculate y. 

10.6 Direct and Nondirect Output

ASCET sorts CT blocks or methods in connected CT blocks directly depending 
on each other automatically in the correct order (automatic sequencing). If an 
algebraic loop exists in the model, ASCET terminates with an appropriate error 
message when determining the computing sequence. This occurs, for exam-
ple, if two or more CT blocks with direct outputs form a feedback loop. 

To enable the automatic determination and control of the computing 
sequence, the output property has to be specified. Outputs that directly 
depend on inputs have to be specified or described in the directOutputs
method. Such a CT basic block is said to have a direct output or a direct pass-
through. Outputs that do not directly depend on inputs are specified in the 
nondirectOutputs method. Such a CT basic block is said to have a nondi-
rect output or a nondirect pass-through. 

Wrongly declared outputs (e.g., direct output in the nondirectOutputs
method) are detected if the ESDL modeling language is used. In CT blocks 
written in the C programming language, the nondirect or direct property is 
determined by the model designer.
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The nondirectOutputs and directOutputs methods essentially deter-
mine the behavior of the CT basic blocks and the computing sequence in a CT 
structure block. This is illustrated again in the following example.

Fig. 10-2 Example: Direct and nondirect output

In general, an output has a direct pass-through behavior if it directly depends 
on one of the inputs. For example, an amplifier block (p behavior) is described 
by the function:

out = K * in

The output directly depends on the input. Consequently, the inputs have to be 
read first before the output can be calculated. The function must be written 
using the directOutputs method.

If the output does not depend on one of the inputs, for example, if the output 
depends on a continuous state or a parameter condition, it does not have 
direct pass-through behavior. Nondirect outputs are calculated from the values 
of the previous step. A CT block having a direct output terminates an existing 
loop. An example is the so-called PT1 behavior:

x’ = ((K*in - x)/T);

out = x;

The differential equation is solved using an integration method that requires 
the last output value and the input value in to calculate the current output 
va lue x .  The ass ignment out=x has to be wr i t ten us ing the 
nondirectOutputs method (the differential equation is discussed in the 
derivatives method).

Two simple examples illustrate a correct and an incorrect coupling of two CT 
basic blocks with direct and nondirect output within a CT structure block. It is 
essential to understand that a direct output requires the input data of the cur-
rent time step. A nondirect output can be calculated and sent without the 
input information of the current time step. Therefore, the direct outputs are 
calculated after the nondirect outputs.

in

out_direct

out_nondirect

out_direct  = K * in;

x' = ((K*in - x)/T;
out_nondirect = x;
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Fig. 10-3 shows a combination of two CT blocks with direct and nondirect 
pass-through behavior that does not cause an algebraic loop.

Fig. 10-3 Circuit of CT blocks with direct and nondirect outputs

The P block requires a valid input value for its calculation. Consequently, the 
nondirectOutputs method in the PT1 block has to be calculated first and 
then the directOutputs method in the P block.

Fig. 10-4 Algebraic loop

In Fig. 10-4, two CT blocks with direct outputs are connected in series. This 
results in an algebraic loop. Each block requires the current output value of the 
other block. ASCET reports this error.

Direct pass-through circuits must be avoided. However, it is not possible to 
resolve algebraic loops automatically and implicitly because an implicit resolu-
tion of algebraic loops requires an iterative method, which is not acceptable 
under real-time conditions.

An advantage over the automatic resolution of an algebraic loop is that the 
user, knowing his model, can insert a block without a direct output at the most 
appropriate position so the subsequent blocks can be computed in the next 
iteration step. 

In principle, there are two alternatives to avoid algebraic loops:

1. Inserting a block without a direct output. As this corresponds to a stor-
age element, the integration step size may have to be decreased to 
avoid that the dynamics of the model is impaired.

2. Modifying the model structure to eliminate the algebraic loop. Refor-
mulating the equations in the CT basic blocks, modifying the structure.

P PT1

-
directOutput directOutput

nondirectOutput nondirectOutput

in out

P P

-
directOutput directOutput

nondirectOutput nondirectOutput

in out
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10.7 Difference Between Graphical Hierarchies and CT Structure Blocks

Externally, CT structure blocks behave like CT basic blocks regarding their com-
puting sequence. The computing sequence is determined in the CT structure 
block. The structure behaves like a block with direct or nondirect output 
depending on whether the outputs of the structure block depend on the 
inputs directly or nondirectly.

Hierarchies, however, have a purely symbolic nature used to layout a CT struc-
ture block more clearly. They do not affect the simulation. Fig. 10-5 (left part) 
shows an example in which a CT structure block has a direct output to a CT 
basic block which in turn has a direct output to the same CT structure block. 
This causes an algebraic loop as the two blocks within the structure block are 
computed directly succeeding each other (virtually simultaneously). However, 
the second CT block within the structure block requires a current output of the 
external CT block. 

Fig. 10-5 Structuring with CT structure blocks or graphical hierarchies

The algebraic loop can be avoided by resolving the structure block and replac-
ing it with a graphical hierarchy (Fig. 10-5, right-hand part) that combines 
model parts obviously related with each other. A drawback of hierarchies is 
that they cannot be stored separately but only together with the structure 
block in which they are contained.

10.8 Computing Sequence of Methods Within a Structure

The computing sequence in a CT structure block is essentially determined by 
the computing sequence of the methods within a CT basic block that was 
described in chapter 9.5 (refer to Fig. 9-4 on page 190). It depends mainly on 
the integration method and the selected time or communication intervals.

CT Structure Block

CT basic
block

CT basic
block

CT basic
block

Graphical
Hierarchy

CT basic
block

CT basic
block

CT basic
block
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In principle, the methods in the structure block are computed in the same 
sequence as in the basic block (init, nondirectOutputs, directOut-
puts,...), with the same method being executed first in all basic blocks of the 
structure block before switching to the next method. This means that the 
init method is first executed in all blocks before starting the nondi-
rectOutputs method in any basic block. 

As long as the directOutputs method is not used in any CT basic block, the 
sequence is exclusively determined by the CT basic blocks. The order in which 
the same method is executed in the individual CT basic blocks is not important. 
This means that first all init methods are computed, then all nondi-
rectOutputs methods, etc., each method in any arbitrary order of blocks. 

If the directOutputs method is used in more than one block, the comput-
ing sequence becomes important, because some of the inputs of the 
directOutputs methods require current values from other outputs. If the 
input is connected to an output of the nondirectOutputs method, there is 
always a current value, because this method is first computed in all CT blocks 
before starting the directOutputs method. However, if the input depends 
on the output of another directOutputs method, this method must be 
computed first. 

Example: Computing Sequence

Fig. 10-6 shows the computing sequence in a small CT structure block with 
coupled CT basic blocks. readInputs is not a method in its own right but 
belongs to directOutputs; it is shown to emphasize that current values 
have to be read first in order to compute the directOutputs method. The 
computing sequence is determined by the automatic sequencing algorithm. 
The numbers indicate the order of processing. Identical numbers mean that 
the execution sequence is arbitrary.

Fig. 10-6 Computing sequence of methods for coupled CT blocks

 1  1

 2  2

 1

 2

 1

 2

 410 8

 5 3 9 7
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11 11 11 11
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nond irectO utput

in it

stateEvents

CT Block 2

derivatives

d irectO utput

read Inputs

nond irectO utput

in it

stateEvents

CT Block 3

derivatives

d irectO utput

readInputs

nondirectO utput

in it

stateEvents

CT Block 4

derivatives

d irectO utput
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The computing sequence is especially important for CT blocks with direct out-
puts (directOutputs method), because current values from the same itera-
tion cycle have to be applied to the corresponding inputs (shaded sections in 
Fig. 10-6). 

The CT blocks are processed from top to bottom. Furthermore, each method is 
executed sequentially one after the other. init is executed only once at the 
start of the simulation.

Within the integration loop (nondirectOutputs up to derivatives
methods), all nondirectOutputs are always computed. Their sequence is 
not fixed. As the directOutputs method directly depends on the corre-
sponding input, ASCET searches all directOutputs methods until the cor-
responding readInputs no longer depends on another directOutputs
method (shaded section in Fig. 10-6). In Fig. 10-6, this is the case in CT basic 
block 3. This results in the following sequence for reading the inputs and exe-
cuting the directOutputs method: 

1. readInputs (CT block 3), directOutputs (CT block 3)

2. readInputs (CT block 4), directOutputs (CT block 4)

3. readInputs (CT block 1), directOutputs (CT block 1)

4. readInputs (CT block 2), directOutputs (CT block 2)

Only then the derivatives methods 1-4 are executed in arbitrary order. In 
case of a single-stage integration method, now follow the stateEvents
methods for the CT blocks 1-4 in arbitrary order. Then again back to nondi-
rectOutputs.

In case of n-stage integration methods, nondirectOutputs - directOut-
puts (as described above, in the correct order) and derivatives of CT 
blocks 1-4 are executed n times, before stateEvents is executed (also refer 
to Fig. 9-4 on page 190). 

This means that the communication for combined CT basic blocks and/or CT 
structure blocks within one structure also occurs during the intermediate steps 
of the integration method. Each time, the nondirectOutputs up to 
derivatives methods are executed (single line frame).

The update method is executed after stateEvents only at the granularity 
of the communication interval dT and terminate only at the end of the sim-
ulation. For each, the computing sequence within the structure block is arbi-
trary.

There are therefore typically several equivalent computing sequences to solve 
a structure block. The sequencing algorithm of ASCET automatically selects 
one of the possible sequences.
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Example: Execution Not Possible

If there is an algebraic loop, the computing sequence cannot be determined 
automatically. This situation is shown in Fig. 10-7. Each input of a 
directOutputs method depends on another directOutputs, closing 
the loop from CT block 4 to CT block 1. This results in an appropriate error 
message. 

Fig. 10-7 Algebraic loop
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Continuous Time Structure Blocks and Graphical Hierarchies 207



208
 Continuous Time Structure Blocks and Graphical Hierarchies



11 Projects and Hybrid Projects

Projects are used for:

• Online simulation (hardware-in-the-loop) of CT blocks and Standard 
ASCET blocks

• Continuous time modeling of several CT structures with different inte-
gration algorithms and step sizes in a project

• Simulation of CT blocks in real-time

A project can consist of standard or/and continuous time modules or struc-
tures. A hybrid project is a project that contains both standard ASCET blocks
and continuous time components. For example, in the hardware-in-the-loop 
simulation, the sending, receiving, and processing of signals from the real pro-
cess (that is simulated by continuous time structures) are usually processed by 
standard modules. 

When modeling and simulating systems with very fast and very slow compo-
nents, e.g., hydraulic and mechanical components, the computing time can be 
reduced by using different integration methods or different integration steps. 
For this purpose, the respective model parts have to be located in a CT basic 
block or CT structure block, as appropriate.

The various CT model parts are loaded into a project and connected with each 
other in the Block Diagram Editor. In a project, each CT model part (CT basic 
block or CT structure block) can be computed as an independent process using 
a separate integration method and integration step size. It should be noted, 
however, that the individual blocks are linked to different tasks that communi-
cate with each other only in fixed, selectable time intervals dT.

There is no exchange of values for intermediate steps of the integration 
method as is the case for coupling CT blocks with CT structures. There is also 
no automatic semantic verification as for CT structures that determines the 
computing sequence for the integration. The above applies only to CT 
blocks/structure at the project level. CT blocks and CT structures within the CT 
structures communicate at the granularity of the integration step size, of 
course, also within projects.

To ensure numeric stability, strongly cohesive systems should, therefore, not be 
coupled at the project level but within CT structures. Systems with weak cohe-
sion can, however, be structured in projects. The advantage for weakly cohe-
sive systems with highly disparate dynamic properties is that the integration 
method and integration step size can be selected individually to achieve an 
optimal computing time. 
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Fig. 11-1 schematically shows a project composed of one discrete standard 
block and two different CT structure blocks. 

Fig. 11-1 Project with two continuous time blocks and one discrete block

A hybrid project (e.g., for the ECU test automation) combines a controller 
model (Standard ASCET block) with a control system model (continuous CT 
structure blocks). The continuous time model part is itself composed of two CT 
structure blocks with different integration methods and different step sizes. 
The communication between the CT blocks takes place at 2 msec intervals 
while the CT blocks communicate with the discrete standard block every 10 
msec.

11.1 Combining Continuous Time Blocks With Modules

Discrete modules in a project communicate via messages (global variables in 
ASCET blocks). There are no explicit connections (connecting lines) between 
Send and Receive messages; they are assigned to each other by their names.

Euler h=0.00005 sec
n=1
dT=0.002 sec

CT structure block CT1

Project

CT structure block CT2

Discrete standard block

Adams-Moulton  h=0.002 sec
n=2
dT=0.002 sec

ECU simulation

dT=0.01 sec
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Continuous time blocks, on the other hand, communicate among themselves 
and with modules via connections that have been specified graphically. The 
connections are built using the same method as in block diagrams.

Fig. 11-2 Combining continuous time blocks with modules

For discrete modules, the user has to explicitly define the tasks and to assign 
the processes defined in the module editor to the appropriate tasks.

CT blocks do not require an explicit definition of tasks, because these are 
defined automatically when needed. A simulate task and an event task are 
generated for each CT block. In addition, a common init task and a common 
terminate task are generated for all CT blocks in a project. For the example 
above, the following tasks are generated automatically:

• simulate_CT1 (plant_1)

• simulate_CT2 (plant_2)

• event_CT1 (plant_1)

• event_CT2 (plant_2)

• initialize_CT (plant_1 ... plant_n)

• terminate_CT (plant_1 ... plant_n)

These predefined tasks are static. They are all defined as cooperative tasks. The 
following sections describe the meaning of these tasks in more detail.
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simulate_CTn Tasks: 

For the simulate_CTn tasks, one simulation step is computed; the step size 
is dT. The step size can be specified for each simulate_CTn task individually; 
this allows for having several integration methods for different CT structure 
blocks within a project. The integration step size can be set during an experi-
ment interactively. A simulation task normally uses the Timer trigger mode.

event_CTn Tasks: 

When calling the event_CTn task, the event methods of the underlying CT 
blocks are executed. Because event methods are usually called asynchro-
nously, the trigger mode of the event_CTn task should either be Software or 
Event.

initialize_CT Task: 

When calling the initialize_CT task, the init methods of the underlying 
CT blocks are executed. As init methods are usually computed at the begin-
ning of a simulation, the trigger mode of the initialize_CTn task should 
be Init.

terminate_CT Task: 

When calling the terminate_CT task, the terminate methods of the 
underlying CT blocks are executed. The terminate task is automatically exe-
cuted when the experiment finishes.
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12 The ASCET System Library

12.1 Bit Operators

12.1.1 and

and returns the binary AND conjunction of the two arguments..

On activation of method

and: The result of the binary AND conjunction of 
bitArray1 and bitArray2 is returned.

12.1.2 clearBit

clearBit resets the bit at the specified position of the argument. The posi-
tion of the LSB1 is 0.

On activation of method

clearBit: The argument bitArray is returned with a zero-
bit at position position.

Methods Arguments Return Value

and bitArray1:: 
unsigned discrete

unsigned discrete

bitArray2:: 
unsigned discrete

Methods Arguments Return Value

clearBit bitArray:: 
unsigned discrete

unsigned discrete

position:: 
unsigned discrete

1. Least Significant Bit
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12.1.3 getBit

getBit returns the value of the bit at the specified position of the argument 
as a logical value.

On activation of method

getBit: TRUE is returned, if the bit at position position 
is equal to 1, otherwise FALSE is returned.

12.1.4 or

or returns the binary OR conjunction of the two arguments.

On activation of method

or: The result of the binary OR conjunction of 
bitArray1 and bitArray2 is returned.

Methods Arguments Return Value

getBit bitArray:: 
unsigned discrete

logical

position:: 
unsigned discrete

Methods Arguments Return Value

or bitArray1:: 
unsigned discrete

unsigned discrete

bitArray2:: 
unsigned discrete
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12.1.5 rotate

rotate rotates the bits of the argument to the left by a specified number of 
positions.

On activation of method

rotate: The result of the left-rotation of bitArray by k 
positions is returned.

12.1.6 setBit

setBit sets the bit at the specified position of the argument. The position of 
the LSB is 0.

On activation of method

setBit: The argument bitArray is returned with a one-
bit at position position.

Methods Arguments Return Value

rotate bitArray:: 
unsigned discrete

unsigned discrete

k:: 
unsigned discrete

Methods Arguments Return Value

setBit bitArray:: 
unsigned discrete

unsigned discrete

position:: 
unsigned discrete
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12.1.7 shiftLeft

shiftLeft shifts all bits of the argument to the left. The right bits are filled 
with zeros.

On activation of method

shiftLeft: The result of the left-shift by k positions is returned. 
For k=1 the result corresponds to the multiplication 
by two.

12.1.8 shiftRight

shiftRight shifts all bits of the argument to the right. The left bits are filled 
with zeros.

On activation of method

shiftRight: The result of the right-shift by k positions is 
returned. 

Methods Arguments Return Value

shiftLeft bitArray:: 
unsigned discrete

unsigned discrete

k:: 
unsigned discrete

Methods Arguments Return Value

shiftRight bitArray:: 
unsigned discrete

unsigned discrete

k:: 
unsigned discrete
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12.1.9 toggleBit

toggleBit inverts the bit at the specified position of the argument.

On activation of method

toggleBit: The argument bitArray is returned with the bit 
at position k toggled.

12.1.10 writeBit

writeBit writes the value of the logical argument to the specified position 
of the unsigned discrete argument.

On activation of method

writeBit For aBool = FALSE the argument is returned 
with a zero-bit at position position , for aBool 
= TRUE the argument is returned with a one-bit at 
position position.

Methods Arguments Return Value

toggleBit bitArray:: 
unsigned discrete

unsigned discrete

position:: 
unsigned discrete

Methods Arguments Return Value

writeBit bitArray:: 
unsigned discrete

unsigned discrete

aBool::logical

position:: 
unsigned discrete
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12.1.11 writeByte

writeByte writes the values of eight logical inputs to the eight least signifi-
cant bits of the argument.

On activation of method

writeByte: The argument is returned with the values of b0 to 
b7 written to the bit positions 0 to 7. 0 is the posi-
tion of the LSB and the logical values TRUE and 
FALSE are mapped to 1 and 0 respectively.

12.1.12 xor

xor returns the binary exclusive OR conjunction of the two arguments.

On activation of method

xor: The result of the binary exclusive OR conjunction of 
bitArray1 and bitArray2 is returned.

Methods Arguments Return Value

writeByte bitArray:: 
unsigned discrete

unsigned discrete

b0::logical

b1::logical

b2::logical

b3::logical

b4::logical

b5::logical

b6::logical

b7::logical

Methods Arguments Return Value

xor bitArray1:: 
unsigned discrete

unsigned discrete

bitArray2:: 
unsigned discrete
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12.2 Comparators

12.2.1 ClosedInterval.

ClosedInterval returns TRUE if the value x is in the closed interval 
defined by A and B.

On activation of method

out: TRUE is returned, if A <= x <= B. Other-
wise FALSE is returned.

12.2.2 LeftOpenInterval.

LeftOpenInterval returns TRUE if the value x is in the left open interval 
defined by A and B.

On activation of method

out:  TRUE is returned, if A < x <= B. Otherwise 
FALSE is returned.

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous
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12.2.3 OpenInterval.

OpenInterval returns TRUE if the value x is in the open interval defined 
by A and B.

On activation of method

out: TRUE is returned, if A < x < B. Otherwise 
FALSE is returned.

12.2.4 RightOpenInterval.

RightOpenInterval returns TRUE if the value x is in the right open inter-
val defined by A and B.

On activation of method

out: TRUE is returned, if A <= x < B. Otherwise 
FALSE is returned.

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous

Methods Arguments Return Value

out x::continuous logical

A::continuous

B::continuous
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12.2.5 GreaterZero.

GreaterZero returns TRUE if the value x is greater than zero.

On activation of method

out: TRUE is returned, if x > 0.0. Otherwise 
FALSE is returned.

12.3 Counter & Timer

12.3.1 CountDown.

CountDown decrements the counter and signals when the counter has 
reached zero.

On activation of method

start: The counter is set to the start value.

compute: The counter is decremented by one.

out: TRUE is returned if the counter is greater than 
zero. Otherwise, FALSE is returned.

Methods Arguments Return Value

out x::continuous logical

Methods Arguments Return Value

start startValue:: 
unsigned discrete

none

compute none none

out none logical
The ASCET System Library 223



224
12.3.2 CountDownEnabled.

CountDownEnabled decrements the counter and signals when the counter 
has reached zero. This counter must be enabled explicitly.

On activation of method

start: The counter is set to the start value.

compute: If enable is TRUE, the counter is decrement by 
one.

out: TRUE is returned if the counter is greater zero. 
Otherwise, FALSE is returned.

12.3.3 Counter.

Counter increments the counter by one.

On activation of method

reset: The counter is set to zero.

compute: The counter is increment by one.

out: The counter value is returned.

Methods Arguments Return Value

start startValue:: 
unsigned discrete

none

compute enable::logical none

out none logical

Methods Arguments Return Value

reset none none

compute none none

out none unsigned discrete
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12.3.4 CounterEnabled.

Counter increments the counter by one. This counter must be enabled 
explicitly.

On activation of method

reset: If initEnable is TRUE, the counter is set to 
zero.

compute: If enable is TRUE, the counter is incre-
mented by one.

out: The counter value is returned.

12.3.5 StopWatch.

StopWatch increments the time counter by one dT.

On activation of method

reset: The time counter is set to zero.

compute: The time counter is increment by dT.

out: The time counter value, i.e. the time elapsed 
since the last start, is returned.

Methods Arguments Return Value

reset initEnable:: 
logical

none

compute enable::logical none

out none unsigned discrete

Methods Arguments Return Value

reset none none

compute none none

out none continuous
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12.3.6 StopWatchEnabled.

StopWatchEnabled increments the time counter by one dT. This timer 
must be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, the time internal 
counter is set to zero.

compute: If enable is TRUE, the time counter is incre-
ment by dT.

out: The time counter value, i.e. the time elapsed 
since the last start and while enabled was 
TRUE is returned.

12.3.7 Timer.

Timer decrements the time counter by dT and signals when the time counter 
has reached zero. It is not retriggerable.

On activation of method

start: The time counter is set to startTime if the 
time counter value was previously less than or 
equal to zero.

compute: The time counter is decremented by dT.

Methods Arguments Return Value

reset initEnable:: 
logical

none

compute enable::logical none

out none continuous

Methods Arguments Return Value

start startTime:: 
continuous

none

compute none none

out none logical
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out: TRUE is returned, if the time counter value is 
greater than zero. Otherwise, FALSE is 
returned.

12.3.8 TimerEnabled.

TimerEnabled decrements the time counter by dT and signals when the 
time counter has reached zero. It is must be enabled explicitly.

On activation of method

compute: If enable is TRUE, in has a rising edge and 
the time counter value is less or equal to zero, 
the timer is started,i.e. its counter value is set to 
the start time. Otherwise, the time counter is 
decremented by dT. If enable is FALSE, 
nothing happens.

out: TRUE is returned, if the time counter is greater 
than zero.Otherwise, FALSE is returned.

12.3.9 TimerRetrigger.

TimerRetrigger decrements the time counter by dT and signals when the 
time counter has reached zero. It can be retriggered.

On activation of method

Methods Arguments Return Value

compute enable::logical 
in::logical 
startTime:: 
continuous

none

out none logical

Methods Arguments Return Value

start startTime:: 
continuous

none

compute none none

out none logical
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start: The time counter is set to the start value.

compute: The time counter is decremented by dT.

out: TRUE is returned, if the time counter value is 
greater than zero. Otherwise, FALSE is 
returned.

12.3.10 TimerRetriggerEnabled.

TimerRetriggerEnabled decrements the time counter by dT and sig-
nals when the time counter has reached zero. It can be retriggered and must 
be enabled explicitly.

On activation of method

compute: If enable is TRUE and in has a rising edge, 
the timer is started, i.e. its counter value is set 
to the start value. Otherwise, the time counter 
is decremented by dT (the time frame). If 
enable is FALSE, nothing happens.

out: TRUE is returned, if the time counter value is 
greater than zero. Otherwise, FALSE is 
returned.

12.4 Delay

12.4.1 DelaySignal.

DelaySignal delays its input signal by one evaluation step.

Methods Arguments Return Value

compute enable::logical 
in::logical 
startValue:: 
continuous

none

out none logical

Methods Arguments Return Value

compute signal::logical none

out none logical
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On activation of method

compute: The input signal is buffered.

out: The buffered signal is returned, thus the input 
signal is delayed by one step.

12.4.2 DelaySignalEnabled.

DelaySignalEnabled delays its input signal by one evaluation step. It 
must be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, initValue is 
buffered.

compute: If enable is TRUE, the input signal is buff-
ered.

out: The buffered signal is returned, thus the input 
signal is delayed by one step.

12.4.3 DelayValue.

DelayValue delays its input value by one evaluation step.

Methods Arguments Return Value

reset initEnable:: 
logical 
initValue::logi-
cal

none

compute signal::logical 
enable::logical

none

out none logical

Methods Arguments Return Value

compute value::continuous none

out none continuous
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On activation of method

compute: The input value is buffered.

out: The buffered value is returned, thus the input 
value is delayed by one step.

12.4.4 DelayValueEnabled.

DelayValueEnabled delays its input value by one evaluation step. It must 
be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, initValue is 
buffered.

compute: If enable is TRUE, the input value is buff-
ered.

out: The buffered value is returned, thus the input 
value is delayed by one step.

12.4.5 TurnOffDelay.

TurnOffDelay delays a falling edge of the input signal.

Methods Arguments Return Value

reset initEnable:: 
logical 
initValue:: 
continuous

none

compute value::continuous 
enable::logical

none

out none logical

Methods Arguments Return Value

compute signal::logical 
delayTime:: 
continuous

none

out none logical
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On activation of method

compute: A falling edge of the input signal is delayed. If 
the signal flips from TRUE to FALSE, a timer 
is started. On being FALSE the timer is incre-
mented by dT and is compared to 
delayTime. If the input signal is TRUE, the 
timer is reset.

out: TRUE is returned if the input signal is TRUE or 
the timer has not exceeded delayTime. 
Otherwise, FALSE is returned.

12.4.6 TurnOffDelayVariable.

TurnOffDelay delays a falling edge of the input signal. The duration of the 
delay can be modified at runtime via the Time variable.

On activation of method

compute: A falling edge of the input signal is delayed. If 
the signal flips from TRUE to FALSE, a timer 
is started. On being FALSE the timer is incre-
mented by dT and is compared to 
delayTime. If the input signal is TRUE, the 
timer is reset.

out: TRUE is returned if the input signal is TRUE or 
the timer has not exceeded delayTime. 
Otherwise, FALSE is returned.

Methods Arguments Return Value

compute signal::logical 
delayTime:: 
continuous

none

out none logical
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12.4.7 TurnOnDelay.

TurnOnDelay delays a rising edge of the input signal.

On activation of method

compute: A rising edge of the input signal is delayed. If 
the signal flips from FALSE to TRUE, a timer 
is started. On being TRUE the timer is incre-
mented by dT and is compared to 
delayTime. If the input signal is FALSE, 
the timer is reset.

out: FALSE is returned if the input signal is 
FALSE, or the timer has not exceeded 
delayTime. Otherwise, TRUE is returned.

12.4.8 TurnOnDelayVariable.

TurnOnDelayVariable delays a rising edge of the input signal. The dura-
tion of the delay can be modified at runtime via the Time variable.

On activation of method

compute: A rising edge of the input signal is delayed. If 
the signal flips from FALSE to TRUE, a timer 
is started. On being TRUE the timer is incre-

Methods Arguments Return Value

compute signal::logical 
delayTime:: 
continuous

none

out none logical

Methods Arguments Return Value

compute signal::logical 
delayTime:: 
continuous

none

out none logical
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mented by dT and is compared to 
delayTime. If the input signal is FALSE, 
the timer is reset.

out: FALSE is returned if the input signal is 
FALSE, or the timer has not exceeded 
delayTime. Otherwise, TRUE is returned.

12.5 Memory

12.5.1 Accumulator.

Accumulator adds up its input value.

On activation of method

reset: The accumulator value is set to initValue.

compute: The accumulator is incremented by the input 
value, i.e.accumulator (new) = 
accumulator (old) + input 
value.

out: The accumulator value is returned.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute value::continuous none

out none continuous
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12.5.2 AccumulatorEnabled.

AccumulatorEnabled adds up its input value. It must be enabled explic-
itly and its accumulator value can be limited.

On activation of method

reset: If initEnable is TRUE, the accumulator 
value is set to initValue.

compute: If enable is TRUE, the accumulator is incre-
mented by the input value, i.e. 
accumulator(new) = 
accumulator(old) + input value. 
Additionally, the accumulator value is limited by 
mn and mx.

out: The accumulator value is returned.

Methods Arguments Return Value

reset initValue:: 
continuous 
initEnable:: 
logical

none

compute value::continuous 
mn::continuous 
mx::continuous 
enable::logical

none

out none continuous
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12.5.3 AccumulatorLimited.

AccumulatorLimited adds up its input value. Its accumulator value can 
be limited.

On activation of method

reset: The accumulator value is set to initValue.

compute: The accumulator is incremented by the input 
value, i.e. accumulator(new) = 
accumulator(old) + input value. 
Additionally, the accumulator value is limited by 
mn and mx.

out: The accumulator value is returned.

12.5.4 RSFlipFlop.

RSFlipFlop is a flip flop with a reset and a set input, where the reset input 
dominates the set input.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute value::continuous 
mn::continuous 
mx::continuous

none

out none continuous

Methods Arguments Return Value

compute r::logical 
s::logical

none

q none logical

nq none logical
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On activation of method

compute: If r is TRUE, the state of the flip flop is set to 
FALSE. Otherwise, if s is TRUE, the state is 
set to TRUE. If both r and s are FALSE, the 
state is left unchanged.

q: The state of the flip flop is returned.

nq: The negated value of the state is returned.

12.6 Miscellaneous

12.6.1 DeltaOneStep.

DeltaOneStep returns the difference of the current input value and the last 
input value.

On activation of method

compute: The previous input value is subtracted from the 
input value.

out: The difference is returned.

12.6.2 DifferenceQuotient.

DifferenceQuotient computes the difference quotient of the input 
value.

On activation of method

compute: The difference quotient (value - previ-
ous value)/dT is computed.

out: The difference quotient is returned.

Methods Arguments Return Value

compute value::continuous none

out none continuous

Methods Arguments Return Value

compute value::continuous none

out none continuous
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12.6.3 EdgeBi.

EdgeBi detects a bidirectional edge of the logical input signal.

On activation of method

compute: The input signal is compared to the previous 
input signal.

out: TRUE is returned, if the input signal and the 
previous input signal differ. Otherwise, FALSE 
is returned.

12.6.4 EdgeFalling.

EdgeFalling detects a falling edge of the logical input signal.

On activation of method

compute: The input signal is compared to the previous 
input signal.

out: TRUE is returned, if the input signal is low and 
the previous input signal was high. Otherwise, 
FALSE is returned.

Methods Arguments Return Value

compute signal::logical none

out none logical

Methods Arguments Return Value

compute signal::logical none

out none logical
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12.6.5 EdgeRising.

EdgeRising detects a rising edge of the logical input signal.

On activation of method

compute: The input signal is compared to the previous 
input signal.

out: TRUE is returned, if the input signal is high and 
the previous input signal was low. Otherwise, 
FALSE is returned.

12.6.6 Mux1of4.

Mux1of4 switches between the four inputs values s0,...,s3 on the 
binary representation of their index.

On activation of method

out: The input value si (index i) is returned 
with i = b0 + 2*b1, interpreting FALSE 
as 0 and TRUE as 1.

Methods Arguments Return Value

compute signal::logical none

out none logical

Methods Arguments Return Value

out b0::logical 
b1::logical 
s0::continuous 
s1::continuous 
s2::continuous 
s3::continuous

continuous
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12.6.7 Mux1of8.

Mux1of8 switches between the eight inputs values s0,...,s7 on the 
binary representation of their index.

On activation of method

out: The input value si(index i) is returned 
with i = b0 + 2*b1+ 4*b2, interpreting 
FALSE as 0 and TRUE as 1.

12.7 Nonlinears

12.7.1 Hysteresis-Delta-RSP.

Hysteresis-Delta-RSP is a hysteresis with a right switching point and a 
delta offset

Methods Arguments Return Value

out b0::logical 
b1::logical 
b2::logical 
s0::continuous 
s1::continuous 
s2::continuous 
s3::continuous 
s4::continuous 
s5::continuous 
s6::continuous 
s7::continuous

continuous

Methods Arguments Return Value

out x::continuous 
delta::continuous 
rsp::continuous

logical
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On activation of method

out: TRUE is returned, if x > rsp. FALSE is 
returned, if x < (rsp - delta). The 
return value is unchanged, if x lies within the 
open interval ](rsp - delta), rsp[.

12.7.2 Hysteresis-LSP-Delta.

Hysteresis-LSP-Delta is a hysteresis with a left switching point and a 
delta offset.

On activation of method

out: TRUE is returned, if x > (lsp + delta). 
FALSE is returned, if x < lsp. The return 
value is unchanged, if x lies within the open 
interval ]lsp, (lsp + delta)[.

12.7.3 Hysteresis-LSP-RSP.

Hysteresis-LSP-RSP is a hysteresis with both a left and a right switching 
point.

On activation of method

out: TRUE is returned, if x > rsp. FALSE is 
returned, if x < lsp. The return value is 
unchanged, if x lies within the open interval 
]lsp, rsp[.

Methods Arguments Return Value

out x::continuous 
lsp::continuous 
delta::continuous

logical

Methods Arguments Return Value

out x::continuous 
lsp::continuous 
rsp::continuous

logical
The ASCET System Library



12.7.4 Hysteresis-MSP-DeltaHalf.

Hysteresis-MSP-DeltaHalf is a hysteresis with a middle switching 
point and a delta/2 offset.

On activation of method

out: TRUE is returned, if x > (msp + 
deltahalf). FALSE is returned, if x < 
(msp - deltahalf). The return value is 
unchanged, if input x is in the open interval 
](msp - deltahalf), (msp + 
deltahalf)[.

12.7.5 Limiter.

Limiter returns the input x limited by mn and mx.

On activation of method

out: The input x is limited by mn and mx and is 
returned, i.e max( min(x, mx), mn). 
There is no check if mn <= mx.

Methods Arguments Return Value

out x::continuous 
msp::continuous 
deltahalf:: 
continuous

logical

Methods Arguments Return Value

out x::continuous 
mn::continuous 
mx::continuous

continuous
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12.7.6 Signum.

Signum returns the sign of the input.

On activation of method

out: 1.0 is returned if x > 0.0, 0.0 is returned 
if x = 0.0, and -1.0 is returned if x < 0.0.

12.8 Transfer Function

12.8.1 Control

dT1.

dT1 is a time discrete differentiation transfer function with time constant T 
and gain constant K.

On activation of method

compute: The differentiation value is computed via a P-
function and an I-function which is backcou-
pled.

out: The differentiation value is returned.

Methods Arguments Return Value

out x::continuous continuous

Methods Arguments Return Value

compute in::continuous
T::continuous
K::continuous

none

out none continuous
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P.

P is a time discrete proportional transfer function with gain constant K

On activation of method

 out: The return value out = in * K is computed.

PI.

PI is a time discrete proportional integrator with time constant T and gain 
constant K.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PI-function is computed as the 
sum of a P-function and an I-function.

out: The value of the PI-function is returned.

Methods Arguments Return Value

out in::continuous
K::continuous

continuous

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
T::continuous 
K::continuous

none

out none continuous
The ASCET System Library 243



244
PID.

PID is a time discrete proportional integrator with differential part with time 
constants Tv and Tn and gain constant K.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PID-function is computed as a 
sum of a P-function, a D-function and an I-
function.

out: The value of the PID-function is returned.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
Tv::continuous 
Tn::continuous 
K::continuous

none

out none continuous
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PIDLimited.

PIDLimited is a time discrete proportional integrator with differential part 
with time constants Tv and Tn and gain constant K. The value of the integra-
tor is limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PID-function is computed as a 
sum of a P-function, a D-function and an I-
function, where the integrator value of the I-
function is limited by mn and mx.

out: The value of the PID-function is returned.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
Tv::continuous 
Tn::continuous 
K::continuous 
mn::continuous 
mx::continuous

none

out none continuous
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PILimited.

PILimited is a time discrete proportional integrator with time constant T
and gain constant K. The value of the integrator is limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The value of the PI-function is computed as the 
sum of a P-function and an I-function, where 
the integrator value of the I-function is limited 
by mn and mx.

out: The value of the PI-function is returned.

PT1.

PT1 is a time discrete low pass with time constant T and gain constant K.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
T::continuous 
K::continuous 
mn::continuous 
mx::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
T::continuous 
K::continuous

none

out none continuous
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On activation of method

reset: The value of the integrator is set to 
initValue.

compute: The value of the PT1-function is computed via 
an I-function and a P-function which is back-
coupled.

out: The value of the PT1-function is returned.

PT2.

PT2 is a time discrete delay function with time constant T, gain constant K, 
and damping d.

On activation of method

reset: The two integrator values are set to 
initValue.

compute: The value of the PT2-function is computed via 
two I-functions in row, which are backcoupled 
by a cascade of two P-functions.

out:  the value of the PT2-function is returned.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous
T::continuous
K::continuous
d::continuous

none

out none continuous
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12.8.2 Integrators

IntegratorK.

IntegratorK is a time discrete integrator with gain constant K.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via inte-
grator (new) = integrator (old) + 
in * dT* K.

out: The integrator value is returned.

IntegratorKEnabled.

IntegratorKEnabled is a time discrete integrator with gain constant K. It 
must be enabled explicitly and its integrator value can be limited.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
K::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue:: 
continuous 
initEnable:: 
logical

none

compute in::continuous 
K::continuous
mn::continuous 
mx::continuous 
enable::logical

none

out none continuous
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On activation of method

reset: If initEnable is TRUE, the integrator value 
is set to initValue.

compute: If enable is TRUE, the integrator value is 
computed via integrator(new) = inte-
grator(old) + in * dT * K (limited by 
mn and mx).

out: The integrator value is returned.

IntegratorKLimited.

IntegratorKLimited is a time discrete integrator with gain constant K. Its 
integrator value can be limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via inte-
grator (new) = integrator (old) + 
in * dT * K (limited by mn and mx).

out: The integrator value is returned.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
K::continuous 
mn::continuous 
mx::continuous

none

out none continuous
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IntegratorT.

IntegratorT is a time discrete integrator with time constant T.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via 
integrator(new) = integrator(old) 
+ in * dT / T.

out: The integrator value is returned.

IntegratorTEnabled.

IntegratorTEnabled is a time discrete integrator with time constant T. It 
must be enabled explicitly and its integrator value can be limited.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
T::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue:: 
continuous 
initEnable:: 
logical

none

compute in::continuous 
T::continuous
mn::continuous 
mx::continuous 
enable::logical

none

out none continuous
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On activation of method

reset: If initEnable is TRUE, the integrator value 
is set to initValue.

compute: If enable is TRUE, the integrator value is 
computed via integrator(new) = 
integrator(old) + in * dT / T (lim-
ited by mn and mx).

out: The integrator value is returned.

IntegratorTLimited.

IntegratorTLimited is a time discrete integrator with time constant T. Its 
integrator value can be limited.

On activation of method

reset: The integrator value is set to initValue.

compute: The integrator value is computed via 
integrator(new) = integrator(old) 
+ in * dT / T (limited by mn and mx).

out: The integrator value is returned.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
T::continuous 
mn::continuous 
mx::continuous

none

out none continuous
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12.8.3 Lowpass

DigitalLowpass.

DigitalLowpass recursively computes the mean value of the input value.

On activation of method

reset: The mean value is set to initValue.

compute: The mean value is computed via mean value 
(new) = mean value (old) + m *(in 
-mean value (old) ).

out: The mean value is returned.

LowpassK.

LowpassK is a simplified PT1-function with gain constant K (low pass filter).

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
m::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
K::continuous

none

out none continuous
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On activation of method

reset: The lowpass value is set to initValue.

compute: The lowpass is computed via lowpass (new) 
= lowpass (old)+ (in - lowpass 
(old) ) * dT* K.

out: The lowpass value is returned.

LowpassKEnabled.

LowpassKEnabled is a simplified PT1-function with gain constant K (low 
pass filter). It must be enabled explicitly.

On activation of method

reset: If initEnable is TRUE, the lowpass value is 
set to initValue.

compute: If enable is TRUE, the lowpass is computed 
via lowpass (new) = lowpass (old)+ 
(in - lowpass (old) ) * dT* K.

out: The lowpass value is returned.

Methods Arguments Return Value

reset initValue:: 
continuous
initEnable:: 
logical

none

compute in::continu-
ousK::continu-
ousenable::logica
l

none

out none continuous
The ASCET System Library 253



254
LowpassT.

LowpassT is a simplified PT1-function with time constant T (low pass filter).

On activation of method

reset: The lowpass value is set to initValue.

compute: The lowpass is computed via lowpass (new) 
= lowpass (old)+ (in - lowpass 
(old) ) * dT/ T.

out: The lowpass value is returned.

LowpassTEnabled.

LowpassTEnabled is a simplified PT1-function with time constant T (low 
pass filter). It must be enabled explicitly.

Methods Arguments Return Value

reset initValue:: 
continuous

none

compute in::continuous 
T::continuous

none

out none continuous

Methods Arguments Return Value

reset initValue:: 
continuous 
initEnable:: 
logical

none

compute in::continuous 
T::continuous 
enable::logical

none

out none continuous
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On activation of method

reset: If initEnable is TRUE, the lowpass value is 
set to initValue.

compute: If enable is TRUE, the lowpass is computed 
via lowpass (new) = lowpass (old)+ 
(in - lowpass (old) ) * dT / T.

out: The lowpass value is returned.
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13 Troubleshooting

In this chapter potential problems when working with ASCET are discussed 
and hints for solving these problems are given. If you have any problems that 
are not included in this chapter, please inform ETAS, so that this section can be 
enhanced.

In general, any system error indicated by ASCET may be a serious error, i.e. it is 
advisable to store all data to the database after a system error. If the system 
behavior is unexpected after a system error, the system error has caused an 
inconsistency in the running system. In this case you should leave ASCET and 
reboot Windows.

13.1 General Hints

Limit of the size of a database: The size of an ASCET database is limited 
to 4 GByte, the size of a single object to 128 MBytes. Be careful not to reach 
this limit when working with a large database, because when the limit is 
exceeded the database will be destroyed. Use the database tools to compact 
your database when necessary.

Conversion of databases: Databases that have been developed with the 
predecessor versions ASCET-SD V4.1 or V4.2 or ASCET V5.0 are automatically 
converted to ASCET 5.2. Note that the converted database cannot be used 
with older versions of ASCET. A backup copy of the old database is created 
automatically during conversion.

Databases created with ASCET-SD 4.0 or even earlier versions cannot be 
opened with ASCET 5.2.

ASCET supports only ANSI C compliant names. To ensure compatibility, you 
have to adjust the names of all items in the database using the built-in conver-
sion tool. Choose Tools → Database → Convert → All Names To ANSI C in 
the Component Manager to convert the names of all items.

Problems with Graphics Cards: When problems with the displaying of 
ASCET windows appear, there is probably an incompatibility between ASCET, 
the graphics card and the graphics cards driver. When such problems occur, 
either try the most recent driver for your graphics card (which is usually avail-
able on the Internet from the card manufacturer) or try another resolution of 
your card. All standard VGA and SVGA modi should generally work.

The offline experiment runs out of time. The time (dT) for offline exper-
iments has a limitation of approx. 3 days (in units of dT), i.e. if the dT is set very 
high (for instance 1000 seconds), the offline experiment will crash after a few 
minutes.
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Unpredictable effects when using complex assignments: Unpred i c t -
able effects with the measuring of complex elements occur when complex 
assignments are executed in the model. A complex assignment is represented 
by an assignment of the respective pointers of the complex elements, that is, 
both objects are identical afterwards and one object is ’lost’. E.g. in the assign-
ment A=B, the element A becomes the element B. The measurement and cal-
ibration system however still refers to both as separate objects. You can 
measure and calibrate the ’lost’ object (here object A) but this has no effect 
and does not take into account the object that represents the complex element 
after the assignments (i.e. object B).

The fonts are not displayed properly: The Arial font family is not dis-
played properly under Win97/WinNT, so that some entries are hardly visible. 
Use the Microsoft SansSerif Font of size 10 instead. With this font, there are no 
display problems.

Problems with the external experimental targets: A potential source of 
errors when using the Centronics link cable is that the speed of the parallel 
port may be too fast for the Centronics link cable (esp. when using a Pentium 
200 or higher). Here it is advisable to reconfigure the parallel port in the setup 
of the computer BIOS.

Busy ASCET: While ASCET is busy (e.g. generating code, committing to the 
database), do not try to invoke other functions in ASCET, but wait until the 
current action of ASCET is finished. Otherwise, the system behavior of ASCET
may lead to unexpected errors (e.g. system errors).

13.2 Problems with ASCET

Some ASCET experiments do not end or do not run properly: Here  
the problem often lies with the C code that has been integrated into an ASCET
model. Potential errors are wrong passing of parameters (when converting the 
ASCET type continuous the C type double float should be chosen), and 
infinite loops in the C code. Infinite loops may also occur in recursive object 
structures. A possible way to find the error here, is to exclude the C code com-
ponents.

The generated code may not run in the scheduled time frame, i.e. its execution 
time is too long. Here either the specification must be changed, or a time 
frame with a longer interval should be assigned.

Another source of errors in this field is that sequence calls are not set properly 
or are simply forgotten.
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The compilation returns unexplainable error messages or does not 
end: If you click into another window during compilation the priority for the 
DOS-box where the compilation takes place is decreased dramatically, so that 
the compilation comes to an almost complete stop. in that case you can acti-
vate the DOS-box by double clicking on its icon.

Additionally you should avoid the following keywords, which are used by the 
error management system to trace back compiler errors to the ASCET model: 
Error, ERROR, Serious, Fatal, illegal, Failed, failed, warning, known format.

ASCET does not compute correctly when using temporary variables: 
Automatic temporary variables can be used when the result of an expression is 
to be used in several different branches. These temporary variables are only 
computed once (upon evaluation of the first branch). When the branches 
using the temporary variable are only computed conditionally (e.g. as they are 
input to a switch or a MUX operator), the value of that temporary variable may 
not be computed correctly. Therefore automatic temporary variables should 
not be used, if the branches leading from a temporary variable are fed into a 
conditional operator.

L1-Communication Errors often occur during online experiments: I n  
this case the priority of the communication process is too low. The priority of 
this process can be raised for the target in the file es1130cp.inv, 
es1130cp_gnu.inv or es1135cp_gnu.inv in the respective target 
directory. The file you have to edit depends on your target/compiler combina-
tion.

This file is used in the configuration of the compiler. Here you can modify the 
priority of the communication process by setting the parameter __L1_Prio 
= to the desired priority (by default it has the lowest priority, i.e. 0).

The documentation generation in .rtf format does not work prop-
erly. When displaying .rtf files, Word for Windows may not display the 
integrated bitmap image files. You may have to update all links to (external) 
*.gif files to view the images.
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14 Code Generation Messages

This chapter contains the warnings and error messages that may appear during 
ASCET code generation, together with hints and explanations on how to cor-
rect the mistakes that led to the error. Error messages point to serious faults in 
the specification that lead to the code generation process to be terminated. 
Warnings point to less serious faults. The code generation process may be suc-
cessful, but the resulting code may not work as desired.

14.1 Components

14.1.1 Error Messages

method <method_name> must be defined; need a return value

Description:

A method with return value has been declared in the component, but the 
return value does not have a sequence call attached to it. This is required, 
because the method might be called by other components.

Solution:

Edit the sequence call and select the method the return value belongs to as the 
sequence name. The sequence number must be the highest number attached 
to that method.

<method_name> has no argument <argument_name>

Description:

An operation attached to the method method_name uses an argument 
belonging to another method. A method may only use the local and global 
elements and its arguments, but not the arguments of other methods.

Solution:

Change the sequence call or replace the argument with another element.

missing argument connection for method <method_name> at 
block <block_name>

Description:

At the block block_name the method method_name is called, but not all 
arguments are connected, i.e. one of the arguments is missing. In the case of 
an operator, the method name is left blank.

Solution:

Connect the missing arguments, or in the case of an operator, choose an oper-
ator with the appropriate number of arguments.
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double sequence number <sequence_number> for <name>

Description:

The process, method, action, or condition name has two sequence calls 
attached to it with the same sequence number sequence_number.

Solution:

Change one of the sequence numbers to a sequence number not yet used in 
name.

return value does not belong to <name> 

Description:

A return value of some method or condition is assigned a sequence call 
belonging to a method or action name, which has no return value. The 
sequence call of a return value must always be assigned to the method or 
condition defining that return value. 

Solution:

Change the sequence name of the sequence call of the return value to the 
name of the condition or method the return value belongs to.

delay-free loop detected at <block_name> block

Description:

A loop is created without any operation in that loop, e.g. the return value of 
an operator is directly fed in as an input to that operator.

Solution:

Insert an element into the loop.

type mismatch: expected <type_A>, got <type_B>

Description:

An argument of type_B is used where an argument of type_A is required, 
and the type_B can not be cast to type_A. E.g. an argument of type cont
is fed into a logical operator. Presumably the connection is wrong.

Solution:

Supply an argument of the correct type. 

type mismatch: expected <type_A> [<name_A>}, got <type_B> 
[<name_B>]

Description:

An element with name name_B of type_B is assigned to a variable with 
name name_A of type type_A where type_B can not be cast to type_A. 
E.g. an element of type cont is assigned a variable of type logical. Presum-
ably the connection is wrong.
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Solution:

Change the type of the element or make a correct connection.

return must be the last operation of <name>

Description:

A method with a return value or condition name has a return statement whose 
sequence call does not have the highest sequence number in sequence calls 
attached to the method or condition.

Solution:

Change the sequence number in the sequence call to the highest number in all 
sequence calls belonging to the method or condition name.

<then> part of IF block must be specified

Description:

An IF block is used where THEN part is not used. 

Solution:

Specify the THEN part. There must be at least one sequence call with a connec-
tor attached to the THEN part.

state machine needs start state

Description:

The state machine has no start state.

Solution:

Specify one of the states of the state machine as its start state.

multiple prio <priority_number> for trigger <trigger_name>
in state <state_name>

Description:

The state machine contains two transitions leading from state state_name
attached to the same trigger trigger_name with the same priority 
priority_number. This is not allowed, since the transition is not unique.

Solution:

Change one of the priorities, such that all priorities leading from the same 
state and assigned to the same trigger are different.

unbalanced number of start/stop atomic in <name>

Description:

The method, process, condition or action name has sequence calls with 
attached atomic marks. However, there is an unbalanced number of start and 
stop marks.
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Solution:

Insert or delete some of the start or stop marks, such that their number and 
appearance is balanced.

Expected consistent datamodel for <element_name> in 
<Class_name>. Element needs GET/SET direct access - ple-
ase change attributes OR restore diagram

or—for ESDL/C code

method "<Element_name>"/"<function_name>" not defined 
as public in class "<Class_name>"

Description: 

The element / function in the class <Class_name> has not been set for direct 
access/ made public.

Solution:

Enable direct access (Set/Get functionality) for the element or make the func-
tion public.

14.1.2 Warnings

<name> not defined

Description:

The method, process, or action has been declared, but was not defined. There 
is no sequence call with sequence name name. This only relates to methods 
without return values.

Solution:

Define the method, process or action or delete its declaration from the compo-
nent interface. 

type mismatch with casting from <type_B> [<name_B>], got
<type_A> [<name_A>]

Description:

An element with name name_B of type type_B is assigned to a variable with 
name name_A of type type_A where a type cast is made from type_B to 
type_A. E.g. an element of type cont is assigned a variable of type sdisc. 

Solution:

Change the type of the element or make a correct connection. 
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argument <argument_name> of method <method_name> not used

Description:

In the def in i t ion of  the method method_name  the argument 
argument_name of the method is not used.

Solution:

Use the argument argument_name in the definition of the method or delete 
it from the method definition. 

unreachable state <state_name>

Description:

The state machine contains a state with name state_name that can not be 
reached from the start state, i.e. no transition leads to that state.

Solution:

Delete the state or make the state reachable from the start state.

literal value <value> does not fit type <type> - limited 
to <range_value>

Description:

The value of the literal is to large for the variable of type type, it is assigned 
to. The value of the literal for this assignment is automatically limited to the 
value range_value. This does not apply to expressions consisting of literals 
only. The type type is either udisc or sdisc which have a range of a 32 bit 
integer (unsigned or signed).

14.2 Projects

14.2.1 Error Messages

need binding for imported element <element_name>

Description:

The imported element or message element_name is not bound to a global 
element or message.

Solution:

Adjust the binding (either automatically or manually).

application modes missing for task <task_name>

Description:

The task task_name has no application mode assigned to it.
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Solution:

Assign an application mode, or delete the task task_name. To exclude certain 
tasks from execution, simply specify an additional application mode with name 
unused and assign it to the tasks that are to be excluded.

14.2.2 Warnings

no start application mode specified - using <opmode_name>

Description:

None of the application modes is defined as the start mode. The application 
mode opmode_name is automatically defined as the start mode.

Solution:

Define one of the modes as the start mode, unless the right mode has been 
picked as the default.

missing trigger event

Description:

One of the event tasks specified in the operating system has no trigger event 
assigned to it.

Solution:

Change the mode of that task or assign one of the trigger events to that task.

14.3 Fixed Point Code Generation

14.3.1 Error Messages

Integer interval [a,b] of variable <name> too large for 
implementation type

Description:

The integer interval [a,b] derived from the model interval is to large for the 
chosen implementation type. Presumably, the implementation for this element 
has not been edited or the implementation type is not set to an integer type.

Solution:

Edit the implementation for the element name. 

Cannot generate fixed point code for the non-linear for-
mula <formula_name> of variable <name>

Description:

The non-linear formula formula_name is assigned to name. The fixed point 
code generation only supports linear formulae.
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Solution:

Change the formula ass igned to name  or  change the formula 
formula_name, so that it is a linear formula.

Physical interval [a,b] of divisor contains zero

Description:

Fixed point code can not be generated, because a division by zero could occur. 
This would result in an implementation interval of infinite size.

Solution:

Insert a variable for the divisor and specify a meaningful implementation for it 
(the physical interval should not contain zero). 

14.3.2 Warnings

formula in implementation for <name> not known in current 
project - using default

Description:

In the implementation for the element name the formula is not known in the 
context of the current project. Presumably, no formula has been assigned. The 
identity formula is used instead.

Solution:

Use a valid formula from the context of the current project for the implemen-
tation for the element name. 

Interval mismatch in assignment of <variable_name>: [a,b] 
:= [c,d] (will be limited)

Description:

The fixed point code generator has found, that in the assignment of variable 
variable_name there is a possible conflict. The value of the expression that 
is assigned to the variable lies within the interval [c,d]. This interval is com-
puted via interval arithmetics from the intervals specified for the elements in 
that expression. The interval [a,b] for the variable variable_name does not, 
however, include the interval [c,d], so that an overflow might occur. To avoid 
this overflow, the value of the expression is automatically limited to the value 
interval of variable variable_name before the assignment is carried out. 
Note, that this warning cannot be avoided when there are arithmetic loops.
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library functions 136
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see also state machine
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argument 113, 166
arithmetic operator 117, 151
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Get/Set Port 147
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B
basic language elements 112
basic types 89
Between operator 154
between() 116
block diagram

~ vs. ESDL 141
access ~ in ESDL 138
semantics 159

block statements 114
branching

see control flow
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C
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access macros 170
argument 166
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header 169
local variables 166
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method 162
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C programming language
see programming languages
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class 24

hierarchical structure 31
interface 27
state machine 83
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comment 116
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between processes 20
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definition 25
instantiation 25
interface 27
reusing 29
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array 127
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matrix 129
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compound statements 114
Condition 45
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see control flow



conditional operator 118, 152
constant 96, 116

system ~ 97
cont 115
Continuous Time block

see CT block
Continuous time models

structure 173
control flow 32, 120–124

break 122, 124
for 123
if…else 120
return 125
switch…case…default 121
while 123

conventions
method names 112
variable names 114

conversion
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cooperative scheduling 15
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input 174
modeling in C 195
nondirect output 201
output 174
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D
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transformation 109
data set 101
data structures

modelling ~ in ESDL 134

data types
array 127, 146
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strings 112
two-dimensional tables 131
unsigned discrete 115
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pin 143
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dT parameter 95
dynamic instantiation 112

E
editor

ESDL ~ 113
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basic 144
graphical representation 143, 145
scalar 145
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Entry action 47
entry action

in state machines 139
enumeration 96
equality operator 117
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feature list 111
general features 111
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Java syntax in ~ 111
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ESDL editor 113
Euler 180
exit action 48
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exp() 137
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external event 15
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fmod() 137
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G
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hierarchy 41
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of modules 31
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History
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hybrid project 173

I
if...then statement 156
if...then...else operator 157
if…else 120
If…Then 156
If…Then…Else 157
implementation 103

code generation 108
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scalar types 103
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user defined types 105
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instantiation 25
integration method

Adams-Moulton 181
Euler 180
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Runge-Kutta 181
variable step size 178

Integration step size 188
interface
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of a component 27
of a module 29
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interpolation
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interpolation mode
~ of tables 130
linear 130, 132
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J
Java programming language
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state machine 51

K
keywords

reserved ~ in ESDL 114
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L
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accessing ~ 136
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literal 96, 116
local variable

C code 166
log 115
log() 137
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logical operator 117, 151
loops

see control flow

M
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MathFcn 136
matrix 92, 129, 146

access in ESDL 129
Get/Set Port 147
maximum size of ~ 129
public interface 129
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message 20, 94, 165
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methods
arguments 113
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interface 112
method calls 124
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operating system
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OR 151
see logical operators

overloading 113

P
parameter 96
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sch() 137
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sdisc 115
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sin() 137
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Start state 43
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entry action 47
exit action 48
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optimize (hierarchical code genera-
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Switch 157
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System Library
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two-dimensional table 92
C code interpolation 167
linear interpolation 132
maximum size 131
public interface 132
see also table
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composite 91
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user defined 89, 100

type casting
see conversion
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udisc 115
unary operators 117

V
variable

local 166
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while 123
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