
ASCET V6.2
Getting Started

2

Copyright

The data in this document may not be altered or amended without special noti-
fication from ETAS GmbH. ETAS GmbH undertakes no further obligation in rela-
tion to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license. Using
and copying is only allowed in concurrence with the specifications stipulated in
the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2013 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

The name INTECRIO is a registered trademark of ETAS GmbH.

Document EC010010 V6.2 R01 EN - 05.2013

Contents

ETAS Contents
1 Introduction . 7
1.1 Safety Advice . 7

1.1.1 Correct Use . 7
1.1.2 Labeling of Safety Instructions . 7
1.1.3 Demands on the Technical State of the Product. 7

1.2 System Information . 8
1.3 User Information . 8

1.3.1 User Profile . 8
1.3.2 Documentation Structure . 9
1.3.3 How to Use this Manual . 10

1.4 Supporting Functions . 11
1.4.1 Monitor Window. 11
1.4.2 Keyboard Assignment . 11
1.4.3 Manuals and Online Help . 12

2 Overview . 13
2.1 Features at a Glance . 13

2.1.1 ASCET-MD . 13
2.1.2 ASCET-RP . 14
2.1.3 ASCET-SE . 14
2.1.4 ASCET-SCM . 14
2.1.5 ASCET-DIFF . 14

3 Embedded Automotive Control Software Development with ASCET 15
3.1 Model-Based Design . 16

3.1.1 Control Algorithm Development . 16
3.1.2 Rapid Prototyping . 20
3.1.3 Implementation and ECU Integration of Control Algorithms 22
3.1.4 Reuse of the Control Algorithm in Different Kinds of Projects 25
ASCET V6.2 - Getting Started 3

4

Contents ETAS
3.1.5 Testing the Technical System Architecture in the Lab 27
3.1.6 Testing and Honing of the Technical System Architecture in the

Vehicle . 27
3.2 Using ASCET in a Production Environment . 28

3.2.1 Model Conversion . 29
3.3 Summary . 30

4 Tutorial . 31
4.1 A Simple Block Diagram . 31

4.1.1 Preparatory Steps . 31
4.1.2 Specifying a Class . 34
4.1.3 Summary. 42

4.2 Experimenting with Components . 42
4.2.1 Starting the Experimentation Environment. 42
4.2.2 Setting up the Experimentation Environment 43
4.2.3 Using the Experimentation Environment . 46
4.2.4 Summary. 48

4.3 To Specify a Reusable Component . 49
4.3.1 Creating the Diagram . 49
4.3.2 Experimenting with the Integrator . 55
4.3.3 Summary. 58

4.4 A Practical Example: Controller . 58
4.4.1 Specifying the Controller . 58
4.4.2 Experimenting with the Controller . 61
4.4.3 A Project . 62
4.4.4 To Set Up the Project. 62
4.4.5 Experimenting with the Project . 65
4.4.6 Summary. 66

4.5 Extending the Project . 66
4.5.1 Specifying the Signal Converter . 66
4.5.2 Experimenting with the Signal Converter . 69
4.5.3 Integrating the Signal Converter into the Project 70
4.5.4 Summary. 73

4.6 Modeling a Continuous Time System . 73
4.6.1 Motion Equation . 74
4.6.2 Model Design . 75
4.6.3 Summary. 79

4.7 A Process Model . 79
4.7.1 Specifying the Process Model. 80
4.7.2 Integrating the Process Model . 83
4.7.3 Summary. 87

4.8 State Machines . 87
4.8.1 Specifying the State Machine. 87
4.8.2 How a State Machine Works . 92
4.8.3 Experimenting with the State Machine . 93
4.8.4 Integrating the State Machine in the Controller 95
4.8.5 Summary. 96

4.9 Hierarchical State Machines . 96
4.9.1 Specifying the State Machine. 96
ASCET V6.2 - Getting Started

ETAS Contents
4.9.2 Experimenting with the Hierarchical State Machine 101
4.9.3 How Hierarchical State Machines Work . 102
4.9.4 Summary. 102

5 Glossary . 103
5.1 Abbreviations . 103
5.2 Terms . 104

6 Appendix A: Troubleshooting ASCET Problems . 113
6.1 Support Function for Feedback to ETAS in Case of Errors 113
6.2 Black Icons in ASCET . 114

7 Appendix B: Troubleshooting General Problems . 115
7.1 Problems and Solutions . 115

7.1.1 Network Adapter cannot be selected via Network Manager. 115
7.1.2 Search for Ethernet Hardware fails. 116
7.1.3 Personal Firewall blocks Communication 118

8 Appendix C: Tool Classification for ISO26262 . 123

9 ETAS Contact Addresses . 127

Index . 129
ASCET V6.2 - Getting Started 5

6

Contents ETAS
ASCET V6.2 - Getting Started

ETAS Introduction
1 Introduction

ASCET provides an innovative solution for the functional and software develop-
ment of modern embedded software systems. ASCET supports every step of the
development process with a new approach to modeling, code generation and
simulation, thus making higher quality, shorter innovation cycles and cost reduc-
tions a reality.

This manual supports the reader in getting to know ASCET, and quickly achiev-
ing results. It provides a step-by-step introduction to the system, while at the
same time making all information easily accessible for reference.

1.1 Safety Advice

Please adhere to the Product Liability Disclaimer (ETAS Safety Advice) and to the
following safety instructions to avoid injury to yourself and others as well as dam-
age to the device.

1.1.1 Correct Use

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety instructions.

1.1.2 Labeling of Safety Instructions

The safety instructions contained in this manual are shown with the standard
danger symbol shown below:

The following safety instructions are used. They provide extremely important
information. Read this information carefully.

1.1.3 Demands on the Technical State of the Product

The following special requirements are made to ensure safe operation:

• Take all information on environmental conditions into consideration
before setup and operation (see the documentation of your computer,
hardware, etc.).

WARNING!

Indicates a possible medium-risk danger which could lead to serious
or even fatal injuries if not avoided.

CAUTION!

Indicates a low-risk danger which could result in minor or less serious
injury or damage if not avoided.

NOTICE

Indicates behavior which could result in damage to property.
ASCET V6.2 - Getting Started 7

8

Introduction ETAS
Further safety advice is given in the ASCET V6.2 safety manual (ASCET Safety
Manual.pdf) available on your installation disk, in the ETASManuals\ASCET
V6.2 folder on your computer or in the download center of the ETAS web site.

1.2 System Information

The ASCET product family consists of a number of products that provide inter-
faces to simulation processors, third-party software packages and for remote
access to ASCET. The following products are available for the current version of
ASCET:

• ASCET-MD—support for the development and simulation of models.

• ASCET-RP—support for experimental targets to allow hardware-in-the-
loop simulation and rapid prototyping applications. A toolbox for running
ETK Bypass experiments is also integrated. ASCET-RP provides the connec-
tion to INTECRIO.

• ASCET-SE—support for various microcontroller targets. Generation of
optimized executable code, including operating system configuration and
integration, for various microcontrollers and two real-time operating sys-
tems. Generation of AUTOSAR XML code.

Various kinds of additional modules are optional:

• ASCET-DIFF—A comparison tool for ASCET models.

• ASCET-SCM—offers interfaces to configuration and version management
tools.

Various additional customer-specific products can be integrated in ASCET. More
detailed information is available upon request.

1.3 User Information

1.3.1 User Profile

This manual addresses qualified personnel working in the fields of automobile
control unit development and calibration. Specialized knowledge in the areas of
measurement and control unit technology is required.

WARNING!

Wrongly initialized NVRAM variables can lead to unpredictable
behavior of a vehicle or a test bench, and thus to safety-critical
situations.

ASCET projects that use the NVRAM possibilities of ASCET-RP targets
expect a user-defined INIT process that checks whether all NV vari-
ables are valid for the current project, both individually and in combi-
nation with other NV variables. If this is not the case, all NV variables
have to be initialized with their (reasonable) default values.

Due to the NVRAM saving concept, this is absolutely necessary
when projects are used in environments where any harm to people
and equipment can happen when unsuitable initialization values are
used (e.g. in-vehicle-use or at test benches).
ASCET V6.2 - Getting Started

ETAS Introduction
ASCET users should be familiar with the Microsoft Windows Vista, or Windows
7 operating system. All users should be able to execute menu commands, enable
buttons, etc. Furthermore, the users should be familiar with the Windows file
storage system, especially the connections between files and directories. The
users have to know how to use the basic functions of the Windows File Manager
and Program Manager or the Windows Explorer, respectively, and they should be
familiar with the "drag-and-drop" functionality.

Any user who is not familiar with the basic techniques found in Microsoft Win-
dows should learn them before using ASCET. For more information on the Win-
dows operating system, please refer to the manuals published by Microsoft
Corporation.

Knowledge of a programming language, preferably ANSI C or Java, can be help-
ful for advanced users.

1.3.2 Documentation Structure

The ASCET "Getting Started" manual contains the following chapters:

• "Introduction" (this chapter)

This chapter provides an outline of the possible applications of ASCET.
Furthermore, it contains general information such as innovations in ASCET
V6.2, user and system information.

• "Overview"

This chapter provides a brief overview of the features the ASCET product
family provides.

• "Embedded Automotive Control Software Development with
ASCET"

This chapter provides a detailed overview of the ASCET product family and
the development process supported by it. This chapter should be read first
by all users new to ASCET.

• "Tutorial"

The Tutorial mainly addresses users who are new to ASCET. It describes
the use of ASCET via practice-oriented examples. The entire tutorial con-
tents are subdivided into short individual components based on each
other. Before you start working on the tutorial, you should have read
chapter 3 "Embedded Automotive Control Software Development with
ASCET".

• "Glossary"

This chapter explains all technical terms used in the manual. The terms are
listed in alphabetic order.

• "Appendix A: Troubleshooting ASCET Problems"

This chapter contains information on troubleshooting for ASCET-specific
problems.

Note

ETAS offers efficient training in the use of ASCET in order to provide an
even more thorough knowledge of ASCET, especially if the user has to gain
a comprehensive insight in the functionality of ASCET in a very short period
of time.
ASCET V6.2 - Getting Started 9

10

Introduction ETAS
• "Appendix B: Troubleshooting General Problems"

This chapter gives some information of what you can do when problems
arise that are not specific to an individual ETAS software or hardware
product.

• "Appendix C: Tool Classification for ISO26262"

This chapter gives information on requirements due to the ISO26262
norm and their fulfilment in the ASCET product family.

The installation procedure is described in a separate document, the ASCET instal-
lation guide (file ASCET V6.2 Installation.pdf).

Information on the cooperation of ASCET and AUTOSAR is given in the ASCET
AUTOSAR User’s Guide (file ASCET V6.2 AUTOSAR_UG.pdf) and in the
AUTOSAR to ASCET Importer user’s guide (file AUTOSAR To ASCET Con-
verter User Guide.pdf).

In the ASCET online help, you can find further detailed information. Information
on using the online help can be found in section 1.4.3 "Manuals and Online
Help" on page 12.

1.3.3 How to Use this Manual

Documentation Conventions

All actions to be performed by the user are presented in a a task-oriented format
as illustrated in the following example. A task in this manual is a sequence of
actions that have to be performed in order to achieve a certain goal. The title of
a task description usually introduces the result of the actions, e.g. "To create a
new component", or "To rename an element". Task descriptions often contain
illustrations of the particular ASCET window or dialog box the task relates to.

To achieve a goal:

Any preliminary information...

• Step 1

Explanations are given underneath an action.

• Step 2

Any explanation for Step 2...

• Step 3

Any explanation for Step 3...

Any concluding remarks...

Typographic Conventions

The following typographic conventions are used in this manual:

Select File Open. Menu commands are shown in blue bold-
face.

Click OK. Buttons are shown in blue boldface.

Press <ENTER>. Keyboard commands are shown in angled
brackets and CAPITALS.

The "Open File" dialog window
opens.

Names of program windows, dialog windows,
fields, etc. are shown in quotation marks.
ASCET V6.2 - Getting Started

ETAS Introduction
Important notes for the users are presented as follows:

1.4 Supporting Functions

1.4.1 Monitor Window

The monitor window (see the ASCET online help) is used to log the working steps
performed by ASCET. All actions, including errors and notifications, are logged.
As soon as an event is logged, the monitor window is displayed in the fore-
ground.

In addition to displaying information, the monitor window also provides the
functionality of an editor.

• The display field in the "Monitor" tab of the monitor window can be
freely edited. This way, your own notes and comments can be added to
the ASCET messages.

• The ASCET messages can be saved as text files along with your comments.

• Other ASCET text files already stored can be loaded so that you can com-
pare specific working steps.

1.4.2 Keyboard Assignment

You can display an overview of the keyboard commands currently used at any
time by pressing <CTRL> + <F1>.

For more details, see the ASCET online help, section "Operation Hints".

Select the file setup.exe. Text in drop-down lists on the screen, pro-
gram code, as well as path- and file names are
shown in the Courier font.

A distribution is always a one-
dimensional table of sample
points.

General emphasis and new terms are set in
italics.

The OSEK group (see
http://www.osekvdx.org/) has
developed certain standards.

Links to internet documents are set in blue,
underlined font.

Note

Important note for users.
ASCET V6.2 - Getting Started 11

12

Introduction ETAS
1.4.3 Manuals and Online Help

If not specified otherwise during installation, the following PDF manuals are
available in the ETAS\ETASManuals folder.

Using the index, full text search, and hypertext links, you can find references fast
and conveniently.

The online help can be accessed via the <F1> key. The help files (*.chm) are
stored in the ETAS\ASCET6.2\Help folder.

ASCET Getting Started manual ASCET V6.2 Getting Started.pdf

ASCET installation guide ASCET V6.2 Installation.pdf

ASCET AUTOSAR user’s guide ASCET V6.2 AUTOSAR_UG.pdf

AUTOSAR to ASCET Importer user’s
guide

AUTOSAR To ASCET Converter
User Guide.pdf

ASCET safety manual ASCET Safety Manual.pdf
ASCET V6.2 - Getting Started

ETAS Overview
2 Overview

The ASCET tools support model-based software development. In model-based
development, you construct an executable specification – the model – of your
system and establish its properties through simulation and testing in early stages
of development. When you are satisfied that the model behaves as required, it
can be converted automatically to production quality code.

The key advantage of model-based development is that the software system can
be designed by domain experts, using domain-specific notions, independently
from knowing any details how it will be realized by an implementation. You can
learn more about model-based design in section 3.1.

ASCET provides a multi-paradigm modeling framework, providing integrated
support for a number of different modeling notations, each providing support
for a different type of modeling need:

• Block diagrams (occasionally abbreviated to BD) – to model continuous
control systems

• State machines (occasionally abbreviated to SM) – to model event-trig-
gered systems

• Conditional and Boolean tables – to model complex mathematical expres-
sions

• Embedded Software Description Language (ESDL) – a textual modeling
language

The modeling languages abstract from low-level details, separating the concerns
of what the system software must do from how it is realized in code executing in
the ECU. ASCET can also interface directly with C code as a "low-level" specifi-
cation language.

ASCET provides a systematic way to augment the high-level specification
(referred to as the "physical model" in ASCET) with the necessary information
for target implementation (referred to as the "implementation model" in
ASCET). The implementation model covers the low-level details required to make
the model run on target hardware, including conversion between real-number
arithmetic on the model and fixed-point arithmetic on the target, interfacing to
interpolation routines for maps and curves, integration of optimized arithmetic
service implementations, integration with a real-time operating system for run-
time scheduling, memory mapping for embedded devices etc.

The physical and implementation models are clearly separated in ASCET so that
the design specification is not corrupted with implementation details that may
change from project to project. Maintaining this separation also allows ASCET to
support multiple implementation models, each containing different implementa-
tion characteristics, for a single physical model, keeping the number of model
variants low during the overall life cycle of a software function.

2.1 Features at a Glance

2.1.1 ASCET-MD

• Model-based development of automotive software, including AUTOSAR
software components

• Hierarchical, object-based modeling architecture
ASCET V6.2 - Getting Started 13

14

Overview ETAS
• Support for systematic conversion from real-number to fixed-point arith-
metic

• Creation of custom block set libraries

• Import and export of AUTOSAR software component descriptions

• Import of Simulink® and UML models

• Support for calibration parameters, including maps and curves

• Automatic documentation generation for archiving the design model

• PC-hosted, offline simulation of application software

2.1.2 ASCET-RP

• Hardware configuration for support for experimental targets (i.e. ES910,
ES1000, RTPRO-PC)

• Support for hardware-in-the loop simulation and rapid prototyping appli-
cations

2.1.3 ASCET-SE

• Automatic generation of fully modular, high-performance, low-overhead,
production-ready MISRA-C:2004 compliant C code that is easily traceable
to the parent model

• Integration of 3rd party interpolation and arithmetic service routines.

• Configuration of memory sections and systematic application of compiler
intrinsic in generated code to support embedded microcontrollers

• Platform integration configuration to interface ASCET code with OSEK
operating systems (e.g. RTA-OSEK) or with an AUTOSAR RTE (e.g. RTA-
RTE) and ensure correct use of platform concurrency control mechanisms

• "Additional programmer" mode to generate source code and data for
integration with a 3rd party build environment

• "Integration platform" mode to provide "one-click-build" of an ECU exe-
cutable image for a wide range of compilers and microcontrollers, with
full user-side customization

• Generation of ASAM-MCD-2MC data description files for calibration tools
(e.g. INCA)

• Generation of AUTOSAR XML code

2.1.4 ASCET-SCM

• Interaction with 3rd party version management tools from within ASCET

2.1.5 ASCET-DIFF

• Graphical and textual comparison of ASCET models
ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
3 Embedded Automotive Control Software Development
with ASCET

Embedded automotive software development is an interdisciplinary task requir-
ing cooperation between the different vehicle domains (infotainment, chassis,
body, powertrain) as well as between different companies, i.e. the vehicle man-
ufacturer and the supplier. Furthermore, embedded automotive software is an
integral part of a mechanical subsystem which means that it

• implements control algorithms which read data from sensors, and calcu-
late control values which are sent to an actuator.

• runs typically in so-called electronic control units (ECUs for short), employ-
ing one or more microcontrollers and additional electrics and electronics.

• will normally not be changed during the lifetime of a vehicle.

• has to obey all requirements with respect to safety and reliability of the
mechanical subsystems.

As a result, creating a common understanding of the functionality which has to
be implemented in software is the basis for a seamless integration and non-func-
tional optimizations, e.g. resource consumption. The latter point becomes appar-
ent if one keeps in mind that ECUs are produced in large quantity. Small cost
reduction of a single ECU may hence result in significant savings of the series’
overall cost. For example, saving of memory resulting in a cheaper derivate of a
microcontroller will lessen the overall cost even though the cost for a single ECU
changes only marginally.

A graphical model of the function frequently serves as the basis for the common
understanding described above. On the one hand, the graphical model is more
abstract than embedded C code, while on the other it is formal, i.e. unambigu-
ous without leeway for interpretations compared to a non-formal textual speci-
fication. It can be executed on a computer in a simulation. It can be experienced
in a vehicle at an early point in time by means of rapid prototyping. For short, a
graphical model of a function serves as digital specification.

Using automatic code generation, graphical functional models can be trans-
formed to embedded automotive software. To accomplish this, functional mod-
els must be enhanced by adding dedicated design information that includes non-
functional product properties like safety and resource consumption measures.

The operating environment of ECUs can be simulated by means of hardware-in-
the-loop test systems (HiL for short) which facilitate early testing of ECUs in the
laboratory. HiL-testing of ECUs offers a greater flexibility in generating test-cases
than in-vehicle tests typically provide.

The calibration of embedded automotive software often can be finalized only at
some point toward the end of the development process. In many cases, this pro-
cedure is carried out in the vehicle with all systems (i.e. mechanical systems
embedding automotive software of all domains) running, and requires support
of dedicated tools and methods, which have also to be considered during the
generation of the software.

Section 3.1 describes in detail the stages of model-based design and explains the
abstraction mechanisms employed in ASCET to create a graphical model of a
function. Section 3.2 shows how ASCET models can be used in an ECU produc-
tion development environment while section 3.3 summarizes the major topics.
ASCET V6.2 - Getting Started 15

16

Embedded Automotive Control Software Development with ASCET ETAS
3.1 Model-Based Design

The development of embedded automotive control software is characterized by
several development steps which can be summarized by using the V-model. One
starts with the analysis and design of the logical system architecture, i.e. defines
the control functions, proceeds with defining the technical architecture, which is
a set of networked ECUs, and then proceeds with software implementation on
an ECU. The software components will be integrated and tested, then the ECU
is integrated in the vehicle network and, last but not least, the system running
the implemented functions is fine-tuned by means of calibration. However, this
is not a top-down process, but requires early feedback by means of simulation
and rapid-prototyping.

Fig. 3-1 Model-Based Development of a Software Function

3.1.1 Control Algorithm Development

At first, control algorithms are developed. This is mainly a control-engineering
task. It starts with the dynamic analysis of the system to be controlled, i.e. the
plant. A plant-model is a model of the vehicle (including the sensors and actua-

3

5

1

2

4

Model of Software Functions Model of Driver, Vehicle, Environment

Driver, Vehicle, EnvironmentImplementation of Software Functions

f1 f2

f3 f4

Bus

SG 1

SG 3

SG 2

Logical
System
Architecture

Technical
System
Architecture

Methods of a Model-Based Development of Software Functions

1. Modeling and simulation of software functions as well as of the vehicle, the driver and
the environment

2. Rapid prototyping of software functions in the real vehicle

3. Design and implementation of software functions
4. Integration and test of software functions with lab vehicles and test benches

5. Test and calibration of sftware functions in the vehicle
ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
tors), its environment (e.g. the road conditions), and the driver. Typically, only
subsystems of the vehicle are considered in special scenarios like the engine with
the powertrain and the driver, or the chassis with the road-conditions. These
models can be either analytical, such as an analytically solved differential equa-
tion, or a simulation model, i.e. a differential equation to be solved numerically.
In practice, a plant-model is often a mixture of both.

Then, according to some quality criteria, the control law is applied. Control laws
compensate the dynamics of a plant. There are a lot of rules to find good control
laws. Automotive control algorithms very often combine closed-loop control
laws with open-loop control strategies. The latter are often automatons or
switching constructs. This means that control algorithms are hybrid systems from
a system-theory point of view. Typically, the control law consists of set-point
generating function with controlling and monitoring functions, all realized by
software (see section "Software Realization of Control Algorithms").

The first step is to design a control algorithm for a vehicle subsystem which is
represented as a simulation model. Both the control algorithm and the plant
model are running on a computer. The plant is typically realized as a quasi-con-
tinuous-time model while the control algorithm is modelled in discrete-time. The
value range of both models is continuous, i.e. the state variables and parameters
of the control algorithm and the plant are realized as floating-point variables in
the simulation code. This model is depicted in the upper part of Fig. 3-1 on
page 16. The logical system architecture represents the control algorithm which
is coupled to a model of the driver, the vehicle & the environment. The arrow
labeled 1 represents the control algorithm design step. Control algorithm mod-
eling is based on the use of shared signals. This means that one component
shares the signal in a provide role while other components share the signal in a
require role.

Software Realization of Control Algorithms

Control algorithms are hybrid systems, i.e. a mixture of open- and closed-loop
systems where the open-loop parts are quite often non-linear, discrete systems,
for example finite-state-machines. If the control algorithms run on a microcon-
troller, they have to be transformed in a sequential programming language, e.g.
C. The easiest way for a realization of the control algorithm is to construct a
main-loop, which is triggered by an interrupt, and to call several subroutines,
which contain the sequential program. Data exchange between the subroutines
is performed by global variables. Triggering the main-loop by interrupts realizes
a reoccurring execution of the sequential-program. If the interrupt is a timing
interrupt, the main-loop realizes a sampled system.

This kind of straight-forward realization of control algorithms in software runs
into its limits if multi-rate systems are considered, i.e. systems having different
sample rates, which are realized by several tasks instead of one main-loop. These
multi-tasking systems require a proper exchange of signal data between the
tasks. Furthermore, it is quite difficult on C code level to distinguish between
state variables, parameters, input and output signals. Realization of control algo-
rithms in ASCET closes the gap between the control-engineering view and the
implementation view of the control algorithm. Instead of simply using variables
and subroutines, ASCET provides the following control algorithm modeling con-
structs:

• Modules
ASCET V6.2 - Getting Started 17

18

Embedded Automotive Control Software Development with ASCET ETAS
• Classes

• Projects

Combinations of these constructs allow the construction and execution of com-
plex control algorithms on several targets. Targets are a PC, a rapid-prototyping
system or a microcontroller. Execution is performed by first transforming the
ASCET model to C code and afterwards transform the C code to executable
code on the respective target. All modeling constructs are maintained in a data-
base or workspace.

Modules

Modules provide means for sequential statements, for (state) variables, parame-
ters, input and output signals. Sequential statements are realized in a block dia-
gram editor (BDE) by variables with sequence calls. These sequence calls assign
the result of an expression to the variable. An alternative to the BDE in ASCET to
realize statements is the ESDL programming language. Sequential statements
can be grouped to processes. Processes represent subroutines.

Input signals are modelled as so-called receive messages. Expressions can read
from receive messages and use the actual value of that message for further cal-
culations. Output signals are modelled as so-called send messages. The result of
an expression can be assigned (written) to a send message. In the block diagram
editor, the assignment to a message is realized by a sequence call similar to vari-
ables.

Parameters have an own representation. Their value can only be read by an
expression, but assignments are not allowed.

To summarize, a module consists of send and receive messages for data
exchange with other modules. It has several processes which cluster sequential
statements. Besides messages, a module contains variables and parameters.
Receive-message reading can be shared by the processes of the modules, while
message-writing requires disjoint access by the processes. There might be mes-
sages which are only exchanged between processes within a module. These ded-
icated messages are called send-receive messages.

Classes

If a process is running, it might want to store data to process internal variables,
e.g. the state of a control algorithm. From a computer science point of view,
internal variables are typed. Clustering types results in compound types. Further-
more, statements can be defined on the elements of a compound type. These
operations can themselves be clustered in sub-functions, or methods. In particu-
lar, methods can have arguments which decouple the access to the data ele-
ments of a compound type from the actual data manipulation. A compound type
with methods is called a class. Since a class is a type, it can be instantiated like
the definition of a variable. In ASCET, variables and instances of classes can be
defined in classes or modules.

If a class is defined as instance in the scope of another, i.e. outer class, the meth-
ods of the instantiated class can be called by the methods of the outer class. If an
"instantiated method" realizes a calculation, e.g. a filtering algorithm, its results
can be used in the calculations of the calling methods. Using this mechanism,
one can represent control algorithms as a typed object hierarchy. Calling a
method of the top-level class, i.e. the outermost class which is not instantiated in
another class, will result in the deliverable of the output value(s) of a method. For
ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
the calculation of the result, methods of embedded instances will be called
sequentially and yield their results which will be used by other calculations. From
this point of view, the execution of a top-level method is equal to the sequential
execution of an object-oriented program.

Parameters

From a computer-scientist point of view, parameters are a special kind of internal
variables because they can only be read while writing is forbidden. From the
control-engineering point of view, parameters are used to trim the control algo-
rithm to a dedicated vehicle. Parameters are set before the start of the control
algorithm execution and remain fixed1 during the run-time of the control algo-
rithm. Because parameters are a special kind of variables, they can be grouped in
a similar way as variables.

Classes might contain parameters (they can be seen as elements of a compound
type). Since classes can be instantiated several times, these parameters will exist
several times, too. However, as a rule, parameters are not initialized by dedicated
methods (e.g. constructors) in a start-up phase, but typically exist in read-only
memory. This means that an initial set of values has to be provided before run-
time, e.g. at design time. This set of values is called data set. If the allocation of
parameter values to instances of behavioral classes is done at design time, a data
set has to be associated to a particular instance. In ASCET, at design time of the
class, the data sets for tentative instances have to be defined, too, while the
association to a particular instance is done when the instance is created.

Employing Classes in Modules

As written above, the sequential execution of a control algorithm starts with call-
ing the method of a top-level class. This method call is initiated by the execution
of a process. The arguments of a method are typically fed by the receive mes-
sages of the process, while the return value of the method will be fed to a send-
message (Of course, these methods might also be fed by internal variables of a
module).

From a real-time perspective, the process calling a method of a top-level class
generates a sequential call stack of methods which belong to encapsulated
instances. Even the methods of leave instances are executed in the context of the
task the process is mapped to. Making the call stack of methods deep might
compromise reactivity to events. Therefore, when designing classes and employ-
ing them into real-time components, one has to find an appropriate balance
between object-oriented reusability and reactiveness in a task-schedule.

Continuous Time Blocks for Plant Modeling

ASCET provides dedicated blocks for the modeling of continuous time systems.
These continuous-time blocks (CT blocks) have two flavors:

• Structure blocks which group elementary blocks, and

• Basic blocks which describe the dynamics of elementary systems

1. Adaptive parameters are not considered here.
ASCET V6.2 - Getting Started 19

20

Embedded Automotive Control Software Development with ASCET ETAS
Basic blocks assume a non-linear system in normal form of

and specify the dynamic behavior in an object-oriented manner. There is an ini-
tialization and termination method, input, update and derivative methods to
realize f as well as direct and non-direct output methods to realize g. Further-
more, there is a state-event detection method as well as an event method
describing what to do in case of a state-event. Last but not least there is a
method to resolve dependent parameters. The expressions can either be
expressed by using the ESDL or C syntax.

Projects for Closed-Loop Simulations

An ECU composition is a set of communicating modules and an operating sys-
tem. The operating system configuration defines the tasks and their schedule,
while the operating system itself realizes the tasks as well as the messages. The
task-schedule contains the assignment of processes to tasks. To perform closed-
loop simulations on a PC, CT blocks (cf. section "Continuous Time Blocks for
Plant Modeling" on page 19) are attached to the real-time components of the
control algorithm. Binding between the messages of the real-time components
and the CT blocks has to be done explicitly, i.e. by connecting ports graphically
and not by name-matching. The methods of a CT block are called from the
numerical integration algorithms. The integration algorithms will be executed as
separate task in the resulting operating system configuration.

After mapping the processes to tasks and creating the appropriate CT block
tasks, the OS configuration will be translated to executable code. In case of a
closed-loop simulation on a PC, a simulation environment with appropriate event
queues and numerical solvers will be generated. The simulation environment is
no real-time execution environment.

3.1.2 Rapid Prototyping

Unfortunately, the employed plant models are typically not detailed enough to
serve as a unique reference throughout the design process. Therefore, the con-
trol algorithm has to be checked in a real vehicle. This is the first time the control
algorithm will run in real-time. The execution entry points of the software com-
ponents are mapped to operating system tasks while dedicated software compo-
nents for hardware access have to be created and connected with the software
components of the control algorithm. This step is shown in Fig. 3-1 on page 16
in linking the logical system architecture to the real vehicle which is driven by a
driver in a real environment, represented by the arrow labeled 2. There are many
ways to realize this step. First of all, one can use a dedicated rapid prototyping
system with dedicated I/O boards to interface with the vehicle. The rapid proto-
typing systems (RP system) consist of a powerful processor board and I/O boards.
The boards are connected via an internal bus system, e.g. VME. Compared to a
production ECU, these processor boards are in general more powerful; they have
floating-point arithmetic units, and provide more ROM and RAM. Interfacing
with sensors and actuators via bus-connected boards provides flexibility in differ-
ent use cases. For short, priority is on rapid prototyping of control algorithms and
not on production cost of ECUs.

),(

),(

uxgy

uxfx

ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
The interfacing needs of the rapid prototyping systems often result in dedicated
electrics on the boards. This limits flexibility, and an alternative is therefore to
interface to sensors and actuators using a conventional ECU with its microcon-
troller peripherals and ECU electronics. A positive side-effect is that the software
components of the I/O-hardware abstraction layer can be reused for series pro-
duction later on. Fig. 3-2 shows that the control and monitoring functions run on
a bypass system, which is connected to the vehicle via sensors and actuators.

Fig. 3-2 A typical rapid prototyping system

For rapid prototyping in bypass configuration, as shown in Fig. 3-2, the ECU’s
microcontroller-peripherals are used to drive the sensors and actuators. This
means that the control algorithm still runs in the rapid prototyping hardware
whereas the I/O-drivers are running on the production ECU.

The signals W, R, and U are digital values representing the set-point, the sampled
reaction of the plant and the digital actuator signal. The actuator signal is trans-
formed to an electrical or mechanical signal Y driving the vehicle in the state
prescribed the driver’s wish W*. W is the corresponding sampled digital signal.
The actual state of the vehicle in terms of mechanical or electrical signals X is
sampled and fed to the control algorithm as digital signal R. Furthermore, there
are noise signals Z like the road conditions which are not directly taken into
account by the control algorithm as measured input signal, but also influence the
behavior of the vehicle.

Provided no other vehicle signals are used directly, the RP system uses only a
dedicated communication board in addition to the processor board. The sensor
values R, the set-point values W, and actuator values U are transmitted over the
high-speed link. In most cases, the ECU hardware is modified with dedicated
facilities to accommodate the high-speed communication link.

From the software development point of view, structured interfaces of the soft-
ware running on the production ECU as well as in the control algorithm develop-
ment improves the efficiency of rapid prototyping considerably.

Environment

Z

W

R

W

Vehicle

R
Sensors

XControlled
System

Y
Actuators

UController/
Monitor

WSet Point
Generator

R

W*

Driver

Electronic
Control Unit Experimental System
ASCET V6.2 - Getting Started 21

22

Embedded Automotive Control Software Development with ASCET ETAS
Realtime-I/O Module

For rapid prototyping experiments, dedicated hardware will be used. Besides a
high-performance microprocessor, there are means available for communication
and I/O. For example, in the ETAS ES1000 family the above mentioned means are
available as VME boards and communication is done via a VME bus.

From a certain point of view, a rapid prototyping system represents a reconfig-
urable embedded system. In particular, the communication and I/O hardware
facilities need basic software modules as glue between the hardware and the
control algorithm. These basic software modules are configurable. In ASCET, all
basic software modules for the communication and I/O are represented in a
hardware configuration component or a dedicated ASCET module, the so-called
realtime-I/O module (see the ASCET-RP user’s guide for further information). For
example, there will be a process reading signals from the CAN buffer and provid-
ing the signals as send messages. This process will be scheduled in an operating
system task. The signal name as well as the CAN-frame ID can be configured in
an editor before.

If a control algorithm shall be tested on an ETAS rapid prototyping system, the
realtime-I/O code has to be generated from the configuration parameters. It is
represented as hardware configuration component or a generic ASCET
C module and has to be attached to the other real-time components, i.e. ASCET
modules, to form a running rapid prototyping control algorithm.

Projects for Rapid Prototyping

A project for rapid prototyping does not contain a plant-model represented by
continuous time blocks. Instead, it contains a real-time I/O configuration in the
shape of a dedicated hardware configuration component or a real-time I/O mod-
ule. This real-time I/O configuration is configured for the rapid prototyping
project. On the model level, the real-time I/O configuration communicates with
the control algorithm modules via messages. Depending on the real-time I/O
configuration, there are several processes to be hooked to an operating system
task.

3.1.3 Implementation and ECU Integration of Control Algorithms

After the rapid-prototyping step, the control algorithm is valid for use in the vehi-
cle. The code that was generated for rapid prototyping systems relied on the
special features of the processing board, such as RAM resources and the floating
point unit. To make the control algorithm executable under limited memory and
computational resources, the model of the control algorithm has to be re-engi-
neered. For example, computation formulas are transformed from floating point
to fixed point control algorithms, and efficiency, scalability, modularity and other
concerns are addressed. The adapted design can be automatically transformed
to production code in a code generation step.

Floating-Point to Fixed-Point Conversion

A physical plant, e.g. a vehicle, deals with physical quantities, like vehicle-speed
and acceleration, coolant temperature, yaw-rate, battery voltage, etc. In simula-
tion models, these physical quantities are realized by variables of type float,
either in 64 or 32 bit guise. The simulation models represent a closed-loop con-
trol system, which means that both the vehicle model and the model of the con-
trol algorithm are represented in floating point. However, floating-point units are
ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
expensive and their use in automotive microcontrollers is not common. This
means, implementation of a control algorithm on an automotive microcontroller
involves a floating-point to fixed point conversion.

Example: The coolant temperature might range from -50° Celsius to
150° Celsius. Fitting these values to an 16-bit integer straight forward would be
quite inefficient. Only 0.3% of the available bits would be used as shown in
Fig. 3-3(a), and the resolution of the temperature would only be 1° Celsius per
Bit, resulting in a measured temperature of 83.4° Celsius represented as
80° Celsius in the control software.

This can be changed by multiplying every temperature value by 217.78 thus hav-
ing a resolution of approximately 0.0046° Celsius per Bit, as shown in Fig. 3-3(b).
Unfortunately, this adaptation will end up in a floating-point multiplication itself
and is therefore not desirable.

An alternative would be to limit the resolution to 0.0078125° Celsius per bit.
Now the multiplication operation can be expressed by a 7bit left-shift operation.
Applying this operation to the temperature range yields bit-patterns from -6400
to 19200, thus using a 16 bit integer variable by 39%. This scaling is shown in
Fig. 3-3(c).

An even better utilization can be achieved by using an unsigned 16-bit integer
value and a resolution of 0.00390625° Celsius per bit with an offset. This offset
is set to -12800. The temperature range can now be used from -12800 to
38400, thus using a range from 51200 values and hence provides a utilization of
more than 78%, as shown in Fig. 3-3(d). However, the offset requires an addi-
tional subtraction.

Fig. 3-3 Unscaled Mapping (a), Arbitrary Mapping (b), 27 Scaling (c), 28 Scal-
ing with Offset (d)

The relationship can be expressed by the linear relationship:

150

0

150

Physical Value Domain Integer Domain (int16)

150

0

150

Physical Value Domain Integer Domain (int16)

150

0

150

Physical Value Domain

150

0

Integer Domain (uint16)

150

(a)

(c) (d)

Integer Domain (int16) Physical Value Domain

(b)

- 150---

- 50---

-50--- 50---

- 50

-50

- 150

- 50 - 50

32767

0

- 32768---

- 50---

32767

0

19200

-32768

-19200---

32767

0

-32768---

-10889

65536

0

51200
ASCET V6.2 - Getting Started 23

24

Embedded Automotive Control Software Development with ASCET ETAS
Impl_value = f_impl(phys_value) = phys_value*256+12800

or, more generally, by

impl = scal * phys_value + x

where scal is the scaling factor and x the offset. The resolution is the reciprocal
scaling factor, which means that the physical value is represented by an imple-
mentation value of

phys_value = impl_value / scal - ofs

Arithmetic with Fixed-Point Values

Associating an implementation formula to every variable has a heavy impact on
the statements, i.e. expressions and assignments, of methods or processes. Even
the simple assignment of two variables representing physical values

a = b

is not a trivial operation if the implementations, i.e. the associated implementa-
tion formulas, are different. Let a and b be implemented by the following imple-
mentation formulas as unsigned 8 bit variables (range from 0 to 255):

a = 2 * a_impl, b = 3 * b_impl

meaning that the physical value of a has a resolution of 2 while the physical
value of b has a resolution of 3. Representing the assignment a=b in implemen-
tation terms yields:

2* a_impl = 3* b_impl

This is followed by a simple substitution:

a_impl = (3 / 2)* b_impl

Compared to the original statement a = b, we have now an adapted statement
a_impl = (3/2) * b_impl. With respect to implementation formulas1, the
adaptations are merely arithmetic operations with constants. However, care
must be taken with the series of adaptive operations in order to consider the
requirement for maximum precision. If one, as shown above, first performs the
division, the various conversion equations would be ineffective due to the integer
computation, and the results would be about 50% incorrect. A better way to
express the adapted statement would be:

a_impl = 3 * b_impl / 2

As a result, statements of physical variables adapted by implementation opera-
tions often take into account more than just a simple operation.

The question of overflow must be taken into account. This means that if one first
multiplies by 3, there is an overflow as soon as b_impl becomes greater than
255 / 3 = 85. Similarly, one must always be careful of underflows and rounding
errors. If one first divides by 2, this is equivalent to a right shift operation, i.e. the
last bit is dropped. No distinction can then be made whether b_impl has the
value 1 or 0. In both cases, the result for a_impl and thus also for a is the value
0. In fact, the assignment a = b only makes sense if the physical ranges are
identical (here max. 0 to 510). b_impl can therefore assume the maximum
value 510 / 3 = 170. An overflow can occur here and must be avoided at all cost.
One might think of making a case distinction in the code generation, i.e. first
multiply for values from b_impl to 170 and first divide for values from b_impl

1. At least the formulas ASCET supports
ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
greater than 170. But this leads to a requirement for more code. So here, one
must accept a negligible error in precision of max. 1.5. within the entire value
range. It is clear that the situation itself can become more difficult with regular
arithmetic operations with few operands, not to mention complex links and
expressions.

C Code Classes and Modules

For the migration of legacy code or for microcontroller peripheral access, one
might define classes with the internal behavior of the method specified in C code
as well as modules with the internal behavior of processes specified in C. Both
C code classes and C code modules already represent implemented code. This
code will be integrated verbatim into the executable for the target. Therefore,
C code classes and modules are target-dependent. If one changes the target of
a project, one has to provide the C code for the actual target, too.

Projects for Embedded Microcontrollers

As written above, C code classes and modules can be used to access the periph-
erals of a microcontroller. The ASCET project editors allow to fully configure and
generate an operating system. Together with the modules representing the con-
trol algorithms, projects for embedded microcontrollers can be used as integra-
tion platform. In this case, the code generator will examine the OS schedule and
the message communication between the modules and generate the tasks, the
messages and the access code1 of processes to messages. The resulting C code
for the project and all its contained modules can be transformed to a *.hex file
and flashed onto the microcontroller. Needless to say that an ASAM-MCD-2MC
file will be generated, too, containing all variables to be measured as well as all
parameters to be calibrated.

However, there are many cases where a build environment and dedicated basic
software modules are used for a series production ECU. In this case, typically only
the application software, i.e. the control algorithm, is modelled in ASCET2. The
messages are generated—including the access code of processes—as well as so-
called task bodies, i.e. a sequence of processes as specified in the OS editor. This
task body can then be copied to an appropriate OS configuration editor (external
to ASCET).

3.1.4 Reuse of the Control Algorithm in Different Kinds of Projects

As written above, all ASCET modeling elements are maintained in a database or
workspace. Furthermore, projects for different targets differ in the number and
kind of modules for the same control algorithm.

• Project for closed-loop simulation:

This project references the modules for the control algorithm as well as
CT blocks.

• Project for rapid prototyping:

This project references the modules for the control algorithm (which are
the same modules as for the closed-loop simulation) and the hardware
configuration component or realtime-I/O module. The configuration data
for the realtime-I/O module is kept at the project.

1. Typically realized as macro
2. This use case is often called additional programmer
ASCET V6.2 - Getting Started 25

26

Embedded Automotive Control Software Development with ASCET ETAS
• Project for embedded microcontroller:

This project references the modules for the control algorithm as well as
the (C code) modules for the peripheral access. If one wants to obtain
fixed-point code, one has to attach implementation formulas to modules,
classes and projects. Before generating code, one has to the select the
appropriate implementation for the project.

ASCET projects can be executed on different execution targets, which might be
a PC, a rapid prototyping system, or a production ECU1. To run experiments,
ASCET provides an integrated experiment environment (or EE for short) if the
project runs on a PC or rapid-prototyping system. For ECU experiments, an EE is
integrated in the measurement and calibration system INCA2 because ECU
experiments are to some extent similar to the fine-tuning3 of a control algorithm
in the vehicle.

From a software perspective, there are four kinds of experiments:

1. Physical Experiment

2. Quantized Experiment

3. Implementation Experiment

4. Object-Based Controller Implementation Experiment

Only the physical experiment does not need any implementation information.
The quantized experiment needs the quantization, the implementation and
object-based implementation experiments need additionally the limits and, more
important, an integer base type.

ASCET control algorithm models are composed of statements whose generated
code looks differently depending on the type of the target and the selected
experiment.

In physical experiments, the physical statements will be resolved to real64 vari-
ables with no quantization effects.

The quantized experiment uses also real64 variables as basis, but coerces the
physical statements in a way that quantization effects will become visible.

The implementation experiment uses the full implementation information and is
based on integer types. This means that the types of the variables in the gener-
ated code are the chosen base-types of the implementation and the operators in
the physical statements have been transformed to implementation statements.

The object-based controller implementation experiment uses the types and
implementation statements of the implementation experiment, but the structure
of the modules and classes is resolved in a different way. For example, it is possi-
ble for every variable in ASCET not only to attach base types, limits and imple-
mentation formulas, but also memory classes. The memory classes reflect the
memory layout of the employed microcontroller. However, as written above, the
object-based controller implementation experiment can only be chosen for pro-
duction ECUs, and online experimentation can only performed by INCA or any
other measurement & calibration tool.

1. or an evaluation board
2. If the ASCET project consists of CT blocks only and the project runs on a PC or

rapid prototyping hardware, the EE is integrated into LABCAR operator.
3. Because of the limited ECU resources for experimenting, dedicated means are

necessary which are not in the scope of this section.
ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
When working with a PC or rapid-prototyping target, and all the implementation
information regarding base type, limit, offset and quantization has been
attached to all elements, one can study the effects of implementation formulas
or integer base types with respect to the physical environment by just switching
the experiment type.

3.1.5 Testing the Technical System Architecture in the Lab

The result of the implementation and integration phase is the technical system
architecture, i.e. networked ECUs. These ECUs are tested against plant-models in
real-time. The plant models themselves are augmented by models of the sensors
and actuators and dedicated boards being able to simulate the electrical signals
as they are expected by the ECU electronics. These kind of systems are called
Hardware-in-the-Loop systems (or HiL systems for short) and consist of process-
ing and I/O boards. The plant model is initialized with different values simulating
typical driving maneuvers. Then, the driving maneuver is simulated on the HiL
and providing ECU sensor data as output and accepting ECU actuator data as
input. This way it can be checked whether the ECU integration was successful.
HiL testing is represented by the arrow labeled 4 in Fig. 3-1 on page 16.

3.1.6 Testing and Honing of the Technical System Architecture in the Vehicle

As written above, there are many use cases where plant models are not detailed
enough to represent the vehicle’s dynamics. Though a lot of calibration activities
can nowadays be done by means of HiL systems, final honing of a vehicle’s con-
trol algorithm still needs to be done with the production software in a produc-
tion ECU in a real vehicle. This requires that the technical system architecture is
built into a vehicle and tests are done on a proving ground. This kind of fine-
tuning only concerns the parameter setting of the control algorithm.
ASCET V6.2 - Getting Started 27

28

Embedded Automotive Control Software Development with ASCET ETAS
3.2 Using ASCET in a Production Environment

Fig. 3-4 Advanced Software Production Environment

In a manual coding environment, there are typically several software developers
providing the C code for the control algorithm as well as for the basic software
modules, including the operating system. Then there is an ECU integrator collect-
ing all necessary source code files and starting the so-called make toolchain,
which starts the compiler and linker. The C code is transferred between the soft-
ware developers by using the file system on the one hand and a source-code
management (SCM) system1 on the other. The latter is a database holding differ-
ent versions of the source code files but also allowing the creation and mainte-
nance of configurations. The latter are used as a baseline to generate/integrate
ECU software. To see differences between two versions of a C code file, differ-
ence browsers highlighting the changes in the program text are used. In the last
decade, intensive use of SCM systems and difference browsing contributed con-
siderably to the enhanced quality of embedded automotive software.

In advanced software production environments, some of the C files for control
algorithms are generated from control algorithm models, e.g. an implemented
ASCET model, while a lot of C files for basic-software modules, e.g. OS and
COM stack, are generated by so-called configurators. Leaving the ASAM-MCD-
2MC file generation aside, such an advanced production environment is shown
in Fig. 3-4 on page 28. It shows the C code-generating entities, the SCM data-

1. Typical SCM systems are CVS and SubVersion

Manual C Code
(Control Algorithm/

BSW)

Graphical
Modeling Tools

BSW
Configurators

.c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.c, .h

SCM
Repository

.c, .h.c, .h.c, .h.c, .h

Make System

.hex
ASCET V6.2 - Getting Started

ETAS Embedded Automotive Control Software Development with ASCET
base as well as the make system. Looking deeper in such an advanced produc-
tion environment, and focussing on the model-based generation of C code for
control algorithms with ASCET, one will realize that the models, which are the
basis for the source code, will evolve in the course of the control algorithm devel-
opment, e.g. incorporating the results of rapid prototyping. Hence, the models
have to be maintained in the SCM database too.

ASCET components are stored in a local database or workspace. The local data-
base/workspace holds exactly one version of the model. The ASCET-SCM inter-
face establishes a link from the local database/workspace to the SCM repository
and enables the model exchange. This model exchange is shown in part (a) of
Fig. 3-5. Since, in source-code development, difference-browsing between dif-
ferent versions is indispensable, a similar feature is highly desirable in model-
based development, too. The ASCET-SCM interface can be enhanced by
ASCET-DIFF (a model difference browser), thus highlighting, e.g., an additional
message in the block diagram editor of a module.

Fig. 3-5 ASCET-SCM interface with (b) and without (a) ASCET-DIFF

3.2.1 Model Conversion

As written above, the development of embedded real-time software is driven
both by control engineers and computer scientists. Sometimes, there are devel-
opment processes which start control software development either from a totally
behavior-driven point of view or a totally structure-driven point of view, and
sometimes even from both views independent of each other. While ASCET (and
AUTOSAR) integrates both approaches with its orthogonal approach, one might
want to take over models stemming from a pure behavioral or structural
approach.

In the behavioral domain, MATLAB®/Simulink® is a quite popular approach to
model closed-loop control algorithms without bothering, at least for
PC simulation, with too many structuring details. After having performed the

(b)

SCM
Repository

ASCET
Database /
Workspace

.c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.xml

ASCET
ASCET-DIFF

(model difference
browser)

(a)

SCM
Repository

ASCET
Database /
Workspace

.c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.xml

ASCET
ASCET V6.2 - Getting Started 29

30

Embedded Automotive Control Software Development with ASCET ETAS
PC simulation, the control algorithm parts might be taken over to an ASCET
module or class as block diagram specification, while the plant parts might be
represented as ASCET CT blocks.

The model-to-model converter (or M2M for short), a tool provided by the ETAS
partner Aquintos, provides an easy way to convert MATLAB/Simulink models to
ASCET models.

3.3 Summary

Model-based design and implementation of control algorithms is supported by
ASCET for several development stages. The employed abstraction means allow
to use the physical control algorithm model as backbone for all subsequent
implementation annotations throughout the course of development. In particu-
lar, no blocks need to be replaced when changing the target. Employing the
SCM interface with difference browsing, ASCET can be seamlessly integrated in
an ECU production development environment.
ASCET V6.2 - Getting Started

ETAS Tutorial
4 Tutorial

The tutorial mainly addresses users who are new to ASCET. It describes the use
of ASCET using practice-oriented examples. The entire tutorial contents are sub-
divided into short individual components based on each other. Before you start
working on the tutorial, you should have read chapter "Embedded Automotive
Control Software Development with ASCET" on page 15.

4.1 A Simple Block Diagram

In ASCET you use components, such as classes and modules, as the main build-
ing blocks of your applications. You can either use predefined components,
which come with ASCET or have been developed earlier, or create your own,
which is what you will be doing in this tutorial.

In ASCET components are usually specified graphically. Once all the components
have been specified, they are assembled into a project, which forms the basis of
an ASCET software system. A software system consists of C code that has been
generated from the graphical model description, and which can be run on a
microcontroller or experimental target computer.

4.1.1 Preparatory Steps

Before you can start, you have to open a database or workspace to work in. All
the components of this tutorial will be stored in this database/workspace, so you
will only have to do this once.

All components and projects for this tutorial can be found in the folder called
ETAS_Tutorial_Solutions in the database Tutorial1. It is therefore not
necessary to specify all the components described here yourself.

It is, however, advisable to specify at least the components of lessons one, three
and four, to get some practice using ASCET.

At the start of ASCET, the Component Manager opens, loading the database/
workspace that was last opened. If you open ASCET for the first time, the
Tutorial1a database opens.

It is recommended that you use a separate database/workspace—either a newly
created one or the Tutorial1a database shipped with ASCET—for the tutorial
to keep the data transparent.

1. Available
a) in the database directory of your ASCET installation (e.g. D:\ETASData\
ASCET6.2\database\Tutorial) or
b) in the export files Tutorial.exp and Tutorial.axl in the Export
directory of your ASCET installation (e.g. C:\etas\ASCET6.2\export).
Importing a file is described on page 96.
ASCET V6.2 - Getting Started 31

32

Tutorial ETAS
To create a new database:

• In the Component Manager, select File New
Database.

The "New database" window opens.

• Enter the name Tutorial.

• Click on OK.

The new database, containing only the database
name, opens.
ASCET V6.2 - Getting Started

ETAS Tutorial
To open a database:

When the Tutorial database already exists, proceed as follows:

• In the Component Manager, select File Open.

The "Select database or workspace" dialog window
opens. It shows the current database path and the
databases found in that path.

• Select the Tutorial database and click on OK.

The Tutorial database opens in the Component
Manager.

The first step in creating your own components is to create a new top level folder
named Tutorial and a subfolder named LessonN for each lesson.

To create a new folder:

• In the "1 Database" pane, select the database
name.

• Select the menu item Insert Folder

or

• click on the Insert Folder button

or

• press <INSERT>.

A new top-level folder named Root appears in the
"1 Database" pane.

• Change the name of the top-level folder to Tuto-
rial.

You can type over the highlighted name and then
press <ENTER>.

• Select the folder Tutorial.

• Add a subfolder named Lesson1 to Tutorial.
ASCET V6.2 - Getting Started 33

34

Tutorial ETAS
All components you create in this tutorial will be stored in a LessonN folder.
You should create a new folder for every lesson.

You can proceed by creating your first component in the Lesson1 folder.

To create a component:

• In the "1 Database" pane, click on the folder
Lesson1.

• Select Insert Class Block Diagram.

A new component named Class_Block-
diagram appears in the "1 Database" pane under
the Lesson1 folder. This component is of type
class, which is frequently used in ASCET.

• Change the component name to Addition.

4.1.2 Specifying a Class

After you have created a new component in the Tutorial/Lesson1 folder,
you can specify its functionality. First define the interface for the component, i.e.
its methods, arguments and return values. Then draw a block diagram that spec-
ifies what the component does.

To specify the functionality of a component:

• In the "1 Database" pane, select the component
Addition.

• To open the component, select Edit Open Com-
ponent.

The block diagram editor opens. This is the main
window for specifying component functionality.

Note

All folder and item names and the names of variables and methods they con-
tain must comply with the ANSI C standard.
ASCET V6.2 - Getting Started

ETAS Tutorial
• In the "Outline" tab, select the method calc.

This method is created by default.

• Select Edit Rename.

The name of the method calc is highlighted.

• Change the name of the method to DoAddition.

• Double-click on the method name.

The signature editor for the method opens.

Drawing Area

"Tree" pane
with

"Outline" tab

Palettes
ASCET V6.2 - Getting Started 35

36

Tutorial ETAS
Every class needs at least one method. Methods in ASCET are similar to methods
in object-oriented programming, or functions in procedural programming lan-
guages. A method can have several arguments and one return value (these are
all optional). Arguments are used to transmit data to a component. Return values
are used to return results of calculations within the component to the "outside".

To specify the method signature, you will add two arguments of type contin-
uous and a return value using the signature editor.

To specify the method signature:

• In the signature editor, select Argument Add.

A new argument called arg is created.

• Change the name of the argument to input1.

• Add another argument called input2.

By default, the data type of the arguments is set to
continuous (or cont for short), which is what you
need in the example.

• Activate the "Return" tab of the signature editor.

• Activate the Return Value option.

The type of the return value is also set to cont by
default.

• Click on OK to close the signature editor.

The names of the arguments and the return value for the method DoAddition
appear below the method in the "Outline" tab on the left of the block diagram
editor. Now you can specify the functionality of the component by drawing a
block diagram.

To specify the functionality of the component Addition:

• Drag the first argument from the "Outline" tab and
drop it onto the drawing area of the block diagram
editor.

The symbol for the argument appears in the draw-
ing area.

• Now add the other argument and the return value
to the diagram.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Click on the Addition button in the "Basic Blocks"
palette.

The mouse is loaded with an addition operator.

• Click inside the drawing area, between the symbols
for the argument and for the return value.

An addition symbol is displayed. By default it has
two input pins (indicated by arrows) and one out-
put pin. The output pin is located on the right.

You can now arrange the elements and the operator by dragging them to their
places on the drawing area. Next, you need to connect the elements to specify
the flow of information.

To connect the diagram elements:

• Click on the Connect button in the "General" tool-
bar.

Alternatively, you can right-click in the drawing area
(but not on an element).

The cursor changes to a crosshair when it is inside
the drawing area.

• Click on the output pin of the first argument symbol
to begin a connection.

Now, as you move the mouse cursor, a line is drawn
after it. Every time you click inside the drawing area,
the line remains fixed up to that point. That way
you can determine the path of the connection line

• Click on the left input of the addition symbol.

The argument symbol is now connected to the
input of the addition symbol.

• Connect the second argument symbol with the
other input of the addition symbol.
ASCET V6.2 - Getting Started 37

38

Tutorial ETAS
• Connect the return value symbol with the output of
the addition symbol.

The connection between the addition operator and
the return value is displayed as a green line to indi-
cate that the sequencing for this operation needs to
be determined.

• Double-click the empty sequence call /0/DoAddi-
tion to determine the addition sequence automat-
ically.

The connection between the addition operator and
the return value is displayed as a black line.

Component specification is now complete. The last step in editing your compo-
nent is to specify its layout, i.e., the way it is displayed when used within other
components.

To edit the layout of a component:

There are two ways to edit a layout:

• Use the Browse tab to go to the "Browse" view.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Double-click in the "Layout" tab to open the Layout
Editor.

• Alternatively, select Edit Component Lay-
out.

The Layout Editor opens.

• Resize the block by clicking on it and then dragging
the handles to the size you want.

• Drag the pins of the arguments and the return value
to create a symmetrical design.

• Click on OK.

Now that you have finished your component, the last step in this lesson is to save
the component in the database.

To save the component Addition:

• Select File Save.

• Close the block diagram editor with File Close.

When you select Save in the block diagram editor,
the changes are only stored in the cache memory. It
is therefore advisable to click Save in the Compo-
nent Manager regularly as work progresses.
ASCET V6.2 - Getting Started 39

40

Tutorial ETAS
• In the Component Manager, click on the Save but-
ton.

Your work is not written to disk until you perform
this operation.

You can have your changes saved automatically by
activating the appropriate user options (see the
ASCET online help) for your ASCET session.

As an optional exercise, you could now model the same functionality in ESDL
(ESDL: Embedded Software Description Language). If you continue with this
exercise, you will familiarize yourself with the ESDL editor and will learn how to
use the external source code editor.

The first step is to copy the module interface to a new module with type ESDL
and rename it. Then create the functionality you want either directly in the
ASCET ESDL editor or use the external text editor.

To copy and specify the component Addition:

• In the "1 Database" pane of the Component Man-
ager, right-click the component Addition and
select Reproduce As ESDL from the context
menu.

A copy of the component is created; it is named
Addition1.

• Name the new component AdditionESDL.

• In the "1 Database" list, double-click on the name
of the new component.

The ESDL editor for AdditionESDL opens, mak-
ing various functionalities available for editing.

• Now enter this functionality in the "Edit" pane of
the internal text editor:

return input1 + input2;

"Edit" pane
(internal text editor)

palettes
ASCET V6.2 - Getting Started

ETAS Tutorial
• Use the Activate External Editor button to switch
to external editor mode.

You are asked if you want to save your changes.

• Confirm with Yes.

The changes are saved, and the ESDL editor
switches to "external editor" mode. The editor
looks different in "external editor" mode.

• In the process/method pane, select the method or
process you want to specify.

The functionality entered previously appears in the
specification field, and the Start Edit button is acti-
vated.

• Activate the external editor with Start Edit.

• Edit the functionality in the external editor.

• Save the functionality in the external editor.

With that, your changes are transferred to the ESDL
editor. You do not have to close the external editor
to continue working in ASCET.

• Click on Activate External Editor a second time
to end the "external editor" mode.

A message window opens. Read the text carefully.

• Click OK to continue.

Note

When the external editor starts up, the application associated with the file end-
ings *.c and *.h in the operating system register database is called. Data
transfer is done via temporary files; this is why you have to save the files before
you close the external editor or end the "external editor" mode of the ESDL
editor.

process/method

display for process and
method specification

pane
ASCET V6.2 - Getting Started 41

42

Tutorial ETAS
• Select Build Analyze Diagram to check the
code you entered.

Errors are listed in the ASCET monitor window.

4.1.3 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• Opening a database

• Creating and naming a folder

• Creating and naming a component

• Defining the interface for a method

• Placing diagram elements on the drawing area

• Connecting diagram elements

• Editing the layout of a component

• Switching between Specification and Browser views

• Saving a component

• Copying a component interface

• Using the ESDL editor

• Using the external editor

4.2 Experimenting with Components

Having created the Addition or AdditionESDL components, you can now
experiment with them. Experimentation allows you to see how the component
works, just as it would in a real application. The experimentation environment
provides a variety of tools that can show the values of inputs, outputs, parame-
ters and variables within a component.

4.2.1 Starting the Experimentation Environment

The experimentation environment is called from the block diagram or the ESDL
editor. First open it with the component you want to experiment with.

To start the experimentation environment:

• From the ASCET Component Manager, open the
block diagram editor for the class Addition.

• In the block diagram editor, select Build Exper-
iment.

The code for the experiment is generated. ASCET
analyses the model in your specification and gener-
ates C code that implements the model. It is possi-
ble to generate specific code for different
platforms.
ASCET V6.2 - Getting Started

ETAS Tutorial
In your example, you simply use the default settings
to generate code for the PC.

After the code has been generated and compiled,
the experimentation environment opens.

4.2.2 Setting up the Experimentation Environment

Before you can start experimenting, you have to set up the environment, which
means determining the input values generated for the experiment and how you
want to view the results. You have to carry out three steps. First, you set up the
event generator, then the data generator, and finally the measurement system.

To set up the Event Generator:

• Click on the Open Event Generator button.

The "Event Generator" window opens. You need
to create an event for each method to be simulated,
and also a generateData event. The events sim-
ulate the scheduling performed by the operating
system of a real application.

• Select the event DoAddtion.

• Select Channels Enable.

• Select the event DoAddtion again.
ASCET V6.2 - Getting Started 43

44

Tutorial ETAS
• Select Channels Edit.

The "Event" dialog window opens.

• Set the dT value to 0.001.

• Click on OK.

• In the event generator, select the generateData
event and set its dT value to 0.001.

• Close the "Event Generator" window.

To set up the Data Generator:

• Click on the Open Data Generator button.

The "Data Generator" window opens.

• Select Channels Create.

The "Create Data Generator Channel" dialog win-
dow opens.

• Select the entries input1/DoAddition and
input2/DoAddition from the list.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Click on OK.

Now both inputs are listed in the "Data Elements"
pane of the "Data Generator" window.

• Select input1/DoAddition in the "Data Ele-
ments" pane.

• Select Channels Edit.

The "Stimulus" dialog window opens.

• Set the values as follows.

• Click on OK to close the "Stimulus" dialog win-
dow.

• Set the values for input2 as follows:

• Close the "Data Generator" window.

With these settings you get two sine waves with different frequencies and differ-
ent amplitudes. The Addition component adds the two waves and displays the
resulting curve.

In order to see the three curves displayed on an oscilloscope, you will now set up
a measurement system.

Mode: sine

Frequency: 1.0 Hz

Phase: 0.0 s

Offset: 0.0

Amplitude: 1.0

Mode: sine

Frequency: 2.0 Hz

Phase: 0.0 s

Offset: 0.0

Amplitude: 2.0
ASCET V6.2 - Getting Started 45

46

Tutorial ETAS
To set up the measurement system:

• In the "Physical Experiment" window, select
<2. New Oscilloscope> as data display type
from the "Measure View" combo box.

• In the "Outline" tab, expand the elements list.

• Select input1/DoAddition.

• Select Extras Measure.

An oscilloscope window opens with input1 as
measurement channel. The "Measure view" list in
the experimentation environment is updated to dis-
play the title of the measurement window.

• Add input2/DoAddition and return/doAd-
dition to the same oscilloscope.

• In the experimentation environment, select File
Save Environment.

Now the experimentation environment is set up, and you are ready to start the
experiment. Since you have saved the experiment, it is automatically reloaded
next time you start the experimentation environment for this component.

4.2.3 Using the Experimentation Environment

The experimentation environment provides a set of tools that allow you to view
the values of all the variables in your component and also change the setup while
the experiment is running. You can also adjust the way the values are displayed
and choose from several ways of displaying them.
ASCET V6.2 - Getting Started

ETAS Tutorial
To start the experiment:

• In the "Physical Experiment" window, click on the
Start Offline Experiment button.

The experiment starts running and the results are
displayed in the oscilloscope.

• Click the Stop Offline Experiment button to stop
the experiment.

You will only see a small portion of the curves on the oscilloscope. To display the
curves on the oscilloscope, you need to alter the scale on the value axis.

To change the scale on the oscilloscope:

• Select all three channels from the "Measure Chan-
nels" list in the oscilloscope window.

Hold the <CTRL> key while clicking on individual
channels to select multiple items.

Now all the data elements are highlighted, so the
changes you make will affect all three of them.

• Select Extras Setup.

The "Display Setup" dialog window opens.

• Set the "Value Axis" to a range of -3 to 3.

• Set the "Time Axis Extent" to 3.

• Select a background color in the "Background
color" list.
ASCET V6.2 - Getting Started 47

48

Tutorial ETAS
• Press <ENTER>.

The oscilloscope now shows the values with the appropriate scaling on the value
axis. You will see the two input sine waves, together with the wave resulting
from their addition. You can now adjust the input values to see how the output
is affected.

To change the input values for experimentation:

• In the "Physical Experiment" window, select
Tools Data Generator to open the "Data Gen-
erator" window.

• In the data generator, select the variable you want
to change.

• Select Channels Edit.

The "Stimulus" dialog window opens.

• Adjust the values you want to change.

• Click Apply.

The curves in the oscilloscope change according to the new settings. You can
change all the settings in the experimentation environment while the experiment
is running.

4.2.4 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• To call the experimentation environment

• Setting up the event generator

• Setting up the data generator

• Setting up the measuring system

• Starting and stopping the experiment

• Saving the experiment

• Changing stimuli while the experiment is running
ASCET V6.2 - Getting Started

ETAS Tutorial
4.3 To Specify a Reusable Component

In this lesson you will create a class that implements an integrator, a standard
piece of functionality that is often used in microcontroller software. While this is
a slightly more complex diagram, the techniques for creating and experimenting
with it are the same ones you have learned already.

In this example, you specify an integrator that calculates the distance covered
where time and speed are known. The input value will be given in meters per
second, and at each interval multiplied with a dT in seconds. The value for each
time slice is added up in an accumulator. The accumulator stores the distance in
meters that has been covered after a certain length of time.

In ASCET, a standard block, such as an accumulator, can be realized with a sim-
ple diagram.

4.3.1 Creating the Diagram

Before you start working on the diagram, you need to perform the same steps as
for the Addition component. First create a new folder in the Tutorial
folder, then add a new class. Finally, you can specify the interface of the meth-
ods, then the block diagram and the layout.

You will start by creating the folder and the new class.

To create the integrator class:

• In the Component Manager, open the Tutorial
folder.

• Create a new folder and call it Lesson3.

• In the Lesson3 folder, create a new class and call
it Integrator.

To define the integrator interface:

• In the "1 Database" pane, double-click on the ele-
ment Integrator.

The block diagram editor opens.

• Rename the method calc to integrate.

• Edit the method integrate and add one argu-
ment (type cont) and a return value (type cont).

• Place the argument and return value from inte-
grate on the drawing area.

The integrator uses two new types of elements: a variable and a parameter.
ASCET V6.2 - Getting Started 49

50

Tutorial ETAS
Variables are used in the same way as they are used in programming languages;
you can store values in them and read the values for further calculations. In con-
trast, parameters are read-only. They can only be changed from outside, e.g.
they can be calibrated in the experimentation environment, but they cannot be
overwritten by any of the calculations within the component itself.

In addition, we want to specify a dependent parameter in this example. How-
ever, it is irrelevant for the functionality of the integrator. A dependent parame-
ter is dependent on one or several parameters, i.e. its value is calculated based
on a change in another one. The calculation or dependency is only carried out on
specification, calibration or application. A dependent parameter behaves in
exactly the same way in the target code as a normal parameter.

To create a variable:

• Click on the Continuous Variable button in the
"Elements" palette.

The properties editor opens.

• In the "Name" field, enter the name buffer.

• Click OK.

The variable is now named buffer. The cursor
shape changes to a crosshair. It is loaded with the
continuous variable.

• Click inside the drawing area to place the variable.

The variable is placed in the drawing area. Its name
is highlighted in the "Outline" tab.
ASCET V6.2 - Getting Started

ETAS Tutorial
When the properties editor does not open automatically, place the variable in the
drawing area. Afterwards, double-click on the variable in the "Outline" tab to
open the properties editor manually. Make the required settings and activate the
Always show dialog for new elements option. The next time you create an
element, the properties editor opens automatically.

To create a parameter:

• Click on the Continuous Parameter button.

The properties editor opens.

• In the "Name" field, enter the name Ki.

• Click OK.

• Click inside the drawing area to place the parame-
ter.

• In the "Outline" tab, right-click on the parameter
and select Data from the context menu.

A data configuration window (numeric editor)
opens.

• Set the value in the window to 4.0 and click OK.

This value becomes the default value for the param-
eter. You can assign default values to all parameters
or variables in a diagram.

To create a dependent parameter:

• Click on the Continuous Parameter button.

The properties editor opens.

• Name the parameter sqrt_Ki.

• In the "Attributes" field, activate the option
Dependent.
ASCET V6.2 - Getting Started 51

52

Tutorial ETAS
• Open the formula editor using the Formula button.

The "Formula" field is used to specify the formula
for a dependent parameter. A formula consists of
functions, operators, and formal parameters.

• In the "Formula" field, specify the calculation rule.

You can select different operators and functions
from the "Operator" and "Function" combo boxes.

For the example here, select the root calculation of
the formal parameter.

Formal Parameter: x
Formula: sqrt(x)

• Exit with OK, and close the properties editor, too.

The cursor shape changes to a crosshair.

• Click into the drawing area to place the parameter.

• In the block diagram editor, right-click on the
sqrt_Ki parameter in the "Outline" tab, and
select Data from the context menu.
ASCET V6.2 - Getting Started

ETAS Tutorial
• In the "Edit Dependency" window, assign a model
parameter from the combo box to the formal
parameter (in this example Ki).

• Complete data entry with OK.

You have now specified a parameter dependent on
the parameter Ki which on calibration will auto-
matically be calculated based on Ki. Later on in the
experiment, you can check the dependency or the
calculation.

Now that you have added all the elements, you need to specify an integrator.
You can proceed by creating the remainder of the diagram.

To create the diagram:

• In the "No. of arguments" combo box in the "Basic
Blocks" palette, set the current value to 3 to specify
the number of input values for the multiplication
operator.

• Create a multiplication operator and place it on the
drawing area.

• Click on the dT button to create a dT element.

The properties editor opens. All setting options are
deactivated.

• Close the properties editor with OK.

• Place the dT element inside the drawing area.
ASCET V6.2 - Getting Started 53

54

Tutorial ETAS
• Create an addition operator with two inputs and
place it on the drawing area.

Be sure to set the argument size back to two before
you create the operator.

• Connect the elements as shown below.

The input lines for both the buffer and the return
value are displayed in green.

Now all the elements of the diagram are in place. Next, you need to determine
the sequence of calculation by specifying the sequence calls.

To assign a value to a sequence call:

• Right-click on the sequence call above the variable
buffer.

• Select Edit from the context menu.

The sequence editor opens.

• Click on OK to accept the default settings.

The assignment comes first in the algorithm for
your integrator.

Sequence calls
ASCET V6.2 - Getting Started

ETAS Tutorial
To adjust the sequence number in a sequence call:

• Right-click on the sequence call above the return
value for integrate.

• Select Edit from the context menu.

• In the sequence editor, set the value for "Sequence
Number" to 2.

• Click on OK.

The return value is assigned only after the variable
buffer has been updated.

To adjust the layout:

• Select Edit Component Layout.

The layout editor opens.

• Drag the argument to the middle of the left-hand
side of the block.

• Drag the return value to the middle of the right-
hand side of the block.

• Click on OK.

The diagram for the integrator class is now complete. Now save the changes to
the diagram by selecting File Save in the block diagram editor. Changes that
do not affect the diagram itself are stored automatically. Next, save the changes
to the database by selecting File Save in the Component Manager window.

4.3.2 Experimenting with the Integrator

Again, first set up the event generator, then the data generator and finally the
measurement system.

To set up the experimentation environment for the integrator:

• Start the experimentation environment by selecting
Build Experiment.

• In the "Physical Experiment" window, click the
Event Generator button.
ASCET V6.2 - Getting Started 55

56

Tutorial ETAS
• Activate the event integrate using the default
dT value of 0.01.

• Close the "Event generator" window.

• Click on the Data Generator button.

• Create a data channel for the integrate method
by selecting Channels Create and selecting the
argument from integrate.

• Set the values as follows:

• Close the Data Generator.

• Open an oscilloscope window with the arg and
return values from the integrate method.

• Set the value axis to a range from -10 to 10 and the
time axis extent to 10 seconds.

• Click on Start Offline Experiment to start the
experiment.

The output value of the integrate method increases when the argument is
positive, and decreases when it is negative. Because the positive and negative
parts of the input curve are equal, the output remains within stable boundaries.

Mode: pulse

Frequency: 0.2 Hz

Phase: 0.0 s

Offset: -1.0

Amplitude: 2.0
ASCET V6.2 - Getting Started

ETAS Tutorial
To reset an experiment:

If you stop an experiment, the current values of variables and parameters are
stored; they are used again when the experiment is restarted. It may be desirable
to reset all variables or parameters to their initial values.

• In the "Physical Experiment" window, select
Extras Reinitialize Variables or Parame-
ters or Both.

Depending on your selection, either all variables or
all parameters, or both, are reset to their initializa-
tion values.

Next, you should experiment with various settings to illustrate the function of the
integrator. You can adjust the Ki parameter and change the input.

To experiment with the integrator:

• In the "Outline" tab, expand the Integrator ele-
ment.

• Select the parameter Ki.

• Select Extras Calibrate.

A numerical editor opens for the parameter.

• Set the value to 5.

The output curve on the oscilloscope becomes
steeper.

• Set the value to 3.

The output curve now becomes flatter again.

• Set the parameter back to 4 and close the numeri-
cal editor.

• Open the "Data Generator" window.

• Set the offset of the input pulse to -0.5.

• Click on OK.

Now the positive part is greater, so the output will start to increase. At some
point it will exceed the oscilloscope limits. You can adjust the scale of the oscil-
loscope for each value individually by selecting only that value when you make
changes. You can also open a numerical display window to see the output value.

To display a value numerically:

• Select <1.New Numeric Display> in the
"Measure View" combo box in the experimentation
environment.

• In the "Outline" tab, select the return value
return from the integrate method.

• Select Extras Measure.

A "Numeric display" window shows the current
return value.
ASCET V6.2 - Getting Started 57

58

Tutorial ETAS
• Also display the dependent parameter sqrt_Ki.

• Change Ki and watch sqrt_Ki changing auto-
matically.

4.3.3 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• Creating a parameter

• Creating and specifying a dependent parameter

• Creating a variable:

• Creating an operator with multiple inputs

• Setting the sequence number of a sequence call

• Assigning a default value

• Calibrating a value during experimentation

• Displaying values in a "Numeric display" window

4.4 A Practical Example: Controller

In this lesson you will create a controller based on a slightly enhanced standard
PI filter. The controller will be used to keep the rotational speed of an idling car
engine constant.

When controlling the idling speed of an engine, you have to make sure that the
actual number of revolutions n stays close to the nominal value for idling
n_nominal. The value n is subtracted from n_nominal to determine the devi-
ation that is to be controlled.

The deviation in the actual number of revolution forms the basis for calculating
the value of air_nominal, which determines the throttle position, i.e. the
amount of air the engine gets.

4.4.1 Specifying the Controller

The steps in creating the diagram for your controller are the same as earlier:

• adding a new folder and creating the component in the Component Man-
ager,

• defining the interface and drawing the block diagram.
ASCET V6.2 - Getting Started

ETAS Tutorial
The major difference is that you will implement the controller as a module. Mod-
ules are used as the top-level components in projects. They define the processes
that make up a project.

To create the controller component:

• In the Component Manager, add a new subfolder
to the Tutorial folder and rename it Lesson4.

• Select the Lesson4 folder and select Insert
Module Block diagram to add a new module.

• Rename the new module IdleCon and open the
block diagram editor.

• In the "Outline" tab, rename the diagram
process to p_idle.

The functionality of modules is specified in processes, which correspond to the
methods in classes. Unlike methods, processes do not have arguments or return
values. Data exchange (communication) between processes is based on directed
messages, which are referred to as Receive messages (inputs) and Send messages
(outputs) in ASCET.

In your controller, you will use a receive message to process the actual number
of revolutions n and a send message to adjust the throttle position to
air_nominal.

To specify the interface of the controller:

• Create a receive message by clicking on the
Receive Message button, and name it n.

• In the properties editor for the message n, activate
the Set() Method option.

• Click on the Send Message button to create a
send message.

• Rename it air_nominal.

• In the properties editor for the message
air_nominal, activate the Get() Method option.

• Place both messages in the drawing area.

The controller element uses the integrator you created in Lesson 3.
ASCET V6.2 - Getting Started 59

60

Tutorial ETAS
To add the Integrator to the controller:

• Select Insert Component to open the
"Select item" dialog window.

• In the "1 Database" pane, select the item Inte-
grator from the Tutorial\Lesson3 folder
and click OK.

The integrator is included in the component
IdleCon. A component is included by reference,
i.e., if you change the original specification of the
integrator, that change will be reflected in the
included component.

In addition to the elements you have added so far, you need to add the following
elements to your controller:

• two continuous variables, named ndiff and pi_value

• three continuous parameters named n_nominal, Kp, and air_low

To specify the remainder of the controller:

• Create the operators and the other elements
needed, then connect them as shown in the block
diagram below.

• In the "Outline" tab, select the n_nominal
parameter, then select Edit Data.

• Set the value for n_nominal to 900.

• Set the value for Kp to 0.5.

• Save your specification in the diagram and apply the
changes to the database.
ASCET V6.2 - Getting Started

ETAS Tutorial
4.4.2 Experimenting with the Controller

Experimentation with modules works like experimentation with other compo-
nents. First the data and event generators and then the measurement system are
set up.

To set up the experimentation environment:

• Select Build Experiment to start the experimen-
tation environment.

• Open the "Event Generator" window and enable
the event for the process p_idle using the default
value of 0.01 for dT.

An event for a process works the same as an event
for a method.

• Open the "Data generator" window and set up the
channel for the receive message n with the follow-
ing values:

• Set up an oscilloscope with the variables ndiff
and air_nominal.

• In the oscilloscope, set the value axis to -500 to 500
and the time axis extent to 2.

• Click on the Save Environment button.

The experiment is now set up to display the relationship between the deviation
in the number of revolutions and the throttle position.

Mode: pulse

Frequency: 1.0 Hz

Phase: 0.0

Offset: 800.0

Amplitude: 200.0
ASCET V6.2 - Getting Started 61

62

Tutorial ETAS
To experiment with the controller:

• Start the experiment by clicking the Start Offline
Experiment button.

• Open a calibration window for the variables Ki and
Kp. From here, you can adjust the values Ki and Kp
and observe their effect on the output.

From time to time, you may need to reinitialize the
model in order to get back to meaningful values.

4.4.3 A Project

A project is the main unit of ASCET software representing a complete software
system. This software system can be executed on experimental or microcontroller
targets in real-time with an online experiment. Individual components can only
be tested in the offline experimentation environment.

Every experiment runs in the context of a project. Whenever code is generated
for a project, the operating system code is also generated. The operating system
specification is required to run an ASCET software system in real-time. Running
a software system in real-time is called Online experimentation. So far, you have
experimented offline only, i.e. not in real-time.

4.4.4 To Set Up the Project

The project is created in the Component Manager. You can add it to the same
folder as the IdleCon module.

To create a project:

• In the Component Manager, select Insert
Project or click on Insert Project to add a new
project.

• Name the project ControllerTest.

• Double-click the project.

The project editor opens for the project.

Note

All ASCET experiments—both online and offline—run within the context of a
project. This is clearly seen with offline experiments, which use an (otherwise
invisible) default project. Creating and setting up a project for the express pur-
pose of specifying an operating system is only required for online experiments.
However, you also have the option of configuring the default project for your
own application.
ASCET V6.2 - Getting Started

ETAS Tutorial
The next step is to add the IdleCon controller to the project.

To include components in a project:

• In the project editor, select Insert Component
to open the "Select item" dialog window.

• From the "1 Database" list, select the component
IdleCon in the Tutorial\Lesson4 folder.

• Click on OK to add the component.

The name of the component is shown in the "Out-
line" tab of the project editor.

Components are included by reference, i.e. if you change the diagram of an
included component, that change will also be effective in the project.

The operating system schedules the tasks and processes of a project. Before you
can generate code for the project, you have to create the necessary tasks and
assign the processes to them.

The operating system schedule is specified in the "OS" tab of the project editor.
You will now specify the operating system schedule to have the p_idle process
activated every 10 ms.
ASCET V6.2 - Getting Started 63

64

Tutorial ETAS
To set up the operating system schedule for the project:

• Click on the "OS" tab.

• Select Task Add to create a new task.

• Name it Task10ms.

Newly created tasks are by default alarm tasks, i.e.
they are periodically activated by the operating sys-
tem.

• Assign the task a period of 0.01 seconds in the
"Period" field.

The period determines how often the task is acti-
vated, which is every 10 ms in this case.

• In the "Processes" list, expand the IdleCon item.

• Select the process p_idle and select Process
Assign.

The process is assigned to the Task10ms task. It is
displayed beneath the task name in the "Tasks" list.

In projects, imported and exported elements are used for inter-process commu-
nication. They are global elements that correspond to the send and receive mes-
sages in the modules. Global elements must be declared in the project and linked
to their respective counterparts in the modules included in the project.

To define global elements:

• In the project editor, select Extras Resolve Glo-
bals.

The necessary global elements are created and
automatically linked to their counterparts. Elements
with the same name are automatically linked to
each other.
ASCET V6.2 - Getting Started

ETAS Tutorial
4.4.5 Experimenting with the Project

You will now run an offline experiment with this project. Offline experimentation
can be performed on the PC without the connection of any additional hardware.
Projects run on the PC by default. Therefore you do not have to adjust any set-
tings. Offline experimentation with projects works like offline experimentation
with components.

To set up the experimentation environment:

• In the Component Manager, select File Save.

It is always a good idea to apply your changes to the
database before you start the experimentation envi-
ronment.

• In the project editor, select Build Experiment.

Code for the project is generated and the offline
experimentation environment opens.

• Click on the Open Event Generator button.

In the event generator you see an event for each
task you can use in the experiment, rather than for
each method or process, as in experimentation with
components.

• Enable the task generateData from the event
generator and use the default dT value of
0.01 seconds.

The task Task10ms is already enabled by default,
and both events now have 0.01 seconds as their dT
value; therefore you do not need to make any fur-
ther adjustments.

• Close the event generator.

• Set up the data generator and measurement system
with the same values as in the previous experiment
(cf. "Experimenting with the Controller" on
page 61).
ASCET V6.2 - Getting Started 65

66

Tutorial ETAS
• Save the environment by selecting File Save
Environment.

To run the experiment:

• Click on the Start Offline Experiment button.

• Adjust the Ki and Kp parameters as in the previous
section to see the effect of your changes in the out-
put.

4.4.6 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• Creating modules

• Creating messages in modules

• Using components from the Component Manager in a block diagram.

• Creating a project

• Including components in projects.

• Creating tasks and assigning processes to them

• Experimenting with projects

4.5 Extending the Project

In this lesson you will add some refinements to make your controller more realis-
tic. You will create a signal converter that converts sensor readings into actual
values. Many sensors, used for instance in automotive applications, return a volt-
age that corresponds to a particular measurement value, such as temperature,
position or number of revolutions per minute. The relationship between the volt-
age and the measured value is not always linear. ASCET provides characteristic
tables to model this kind of behavior efficiently.

4.5.1 Specifying the Signal Converter

The first step in modeling the signal converter is to create a folder and a module
that specifies the functionality. The signal converter uses two characteristic lines
to map its input values to the corresponding outputs.

To create the module:

• In the Component Manager, create a new folder
Tutorial\Lesson5.

• Create a new module and name it SignalConv.

• Double-click SignalConv to open the block dia-
gram editor.

• In the block diagram editor, select Insert Pro-
cess to create a second process.

• Name the processes n_sampling and
t_sampling.

• Create two receive messages U_n and U_t and
two send messages t and n.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Create a characteristic line by clicking on the
OneD Table button.

The properties editor opens.

• Call the table t_sensor.

• In the "x" part of the "Dimension" field, enter the
value 13.

The characteristic field can now span a maximum of
13 columns.
As you have created a (one-dimensional) character-
istic line, the "y" part of the "Dimension" field is
inactive.

• In the "Interpolation" combo box, select Linear
interpolation.

• Click OK to close the properties editor.

• Then click in the drawing area to place the table.

The table is added to the "Outline" tab.

• Create a second table named n_sensor with max-
imal 2 columns and linear interpolation.

• Connect the elements as shown and edit the
sequencing to assign the corresponding processes.

The next step is to edit the data for the two characteristic lines. ASCET provides
a table editor for editing arrays, matrices and characteristic lines/maps.

To edit the tables:

• Right-click on the table t_sensor and select Data
from the context menu.

The table editor opens.

• Adjust the size of the table as follows:

The table is extended to 13 columns with all z-val-
ues set to 0 by default.
ASCET V6.2 - Getting Started 67

68

Tutorial ETAS
• Enter the values listed in the following table. The
top row corresponds to the X row, the bottom row
to the Z row.

You should edit the table by entering the sample
points (X values) first, starting from left to right.

• Click on an X value and then enter the new one in
the dialog box.

The new X value must be between the limits set by
the adjacent sample points.

• Then enter the output values by clicking on a value
and typing over the highlighted value.

• Edit the second table in the same way using the fol-
lowing data:

• In the block diagram editor, select File Save.

• In the Component Manager, click on the Save but-
ton to store your changes.

In this example, the second table represents a linear relationship between input
and output, therefore it needs only two sample points. This works because you
have specified the interpolation mode between values as linear.

In linear interpolation, for an input value between two sample points the output
value is determined from a straight line. In this case, an input of 0 returns 0 and
an input of 10 returns 6000. If the input value is 5, the return value is interpo-
lated accordingly as 3000.

0.00 0.08 0.30 0.67 1.17 2.5 5.00 7.50 8.83 9.33 9.70 9.92 10.00

-40.0 -26.0 -13.0 0.0 13.0 40.0 80.0 120.0 146.0 160.0 173.0 186.0 200.0

0.0 10.0

0.0 6000.0
ASCET V6.2 - Getting Started

ETAS Tutorial
4.5.2 Experimenting with the Signal Converter

You can now experiment with the new component to observe the behavior of
the tables. Since the two tables have different value ranges, you will set up a
separate oscilloscope window for each of them.

To set up the experimentation environment:

• Select Build Experiment to open the experi-
mentation environment.

• Create an event for each process in the component
(n_sampling, t_sampling, generate-
Data) and assign a dT value of 4 ms to each event.

• In the data generator, create a channel for the mes-
sage U_n and one for U_t and set up both chan-
nels with the following values:

• Create an oscilloscope window with the messages
n and U_n and a second oscilloscope with the mes-
sages t and U_t.

Before you create the second oscilloscope, be sure
to activate the <2. New Oscilloscope> entry
in the "Select Measure View" combo box.

The resolution of the sampling points and their corresponding interpolation val-
ues differs so much that you should configure each channel in the two oscillo-
scopes individually in order to optimize the way the behavior of the two tables is
displayed.

Mode: sine

Frequency: 2.0 Hz

Phase: 0.0

Offset: 5.0

Amplitude: 5.0
ASCET V6.2 - Getting Started 69

70

Tutorial ETAS
To set up the oscilloscopes for measuring:

• In the oscilloscope for the process n_sampling
(channels U_n and n), select the message n and
select Extras Setup.

The "Display Setup" dialog window for the mes-
sage n is displayed.

• Set the range of the value axis to 0 to 6000 and the
time axis to 0.5

• Open the "Display Setup" dialog window for the
message U_n.

• Set its value axis to a range from -1 to 11.

The time axis must be the same for all variables in
an oscilloscope window, so you do not have to
change that.

• Set up the channels in the oscilloscope for the pro-
cess t_sampling as follows:

• Select File Save Environment to save the
experimentation environment.

You are now ready to run the experiment and see how your signal converter
works. Observe the differences between the two conversion modes.

To run the experiment:

• Click on the Start Offline Experiment button.

In the n_sensor table, only the amplitude of the
input sine wave changes. The input here is a voltage
signal ranging from 0 to 10 volts, this is mapped to
the rotational speed, ranging from 0 to 6000 revo-
lutions per minute.

The table t_sensor does not represent a linear
relationship between the input voltage and the out-
put temperature. It matches the characteristic
behavior of temperature sensors commonly used in
the automotive industry.

• Change the data generator channels to different
wave-forms and observe the effect on both output
curves.

4.5.3 Integrating the Signal Converter into the Project

After you have specified the signal converter, you can integrate it in the project
you created in Lesson 4. The output signal for the signal converter is used as the
input signal for the motor controller.

U_t t

Min -1 -40

Max 11 200

Extent 0.5 0.5
ASCET V6.2 - Getting Started

ETAS Tutorial
To integrate the signal converter in the project, you will set up another task in the
operating system schedule for the new processes and declare and link the global
elements necessary for the processes to communicate.

To add the signal converter to the project:

• Open the project editor for the project
ControllerTest.

• Drag the module SignalConv from the
"1 Database" list of the Component Manager to
the "Outline" tab of the project.

• Click on the "OS" tab to activate the operating sys-
tem editor.

• Create a new task n_sampling.

• Set the period for the new task to 0.004 seconds.

• Assign the process n_sampling to the task
n_sampling.

The project now has two tasks. The first task is activated every 10 milliseconds,
the second one every 4 milliseconds. All the processes assigned to a given task
are executed at the interval specified. In the example, each task has only one
process, but it is possible to have any number of processes per task.

The next step in integrating the signal converter is to resolve communication
between the modules. Communication between the processes works through
global elements. All global elements used within a project have to be defined as
messages in the corresponding modules.
ASCET V6.2 - Getting Started 71

72

Tutorial ETAS
By default, send messages are defined in a module while receive messages are
normally only imported into a module so they have to be defined now within the
context of the project.

Each global element must be defined only once in the project context. Multiple
definitions cause code generation errors.

To set up the global elements:

• Select Extras Resolve Globals to set up auto-
matic links.

All necessary global elements are created and linked
automatically to the corresponding elements with a
matching name. The global message U_n, for
instance, is automatically linked to the message
U_n in SignalConv.

• Delete the message n from the project.

This message was defined in lesson 4 in the project.
Now, it is defined in the module SignalConv, and
it is now used for communication between the pro-
cesses of the modules. The definition in the project
is no longer needed.

• The project may contain unused global elements.
To search and delete them, proceed as follows.

– Select Extras Show Unused Elements.

The "Search Results" view opens below the
tabs. (See the online help for details.) This view
lists all unused elements at the project level. It
does not list unused elements in the modules.

– In the "Elements" tab of the "Search Results"
view, select all elements you want to delete and
press .

To experiment with the project:

• Select Build Experiment to open the experi-
mentation environment.

• Open the event generator and enable the task
n_sampling.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Set the dT value for the task to 4 milliseconds.

During offline experimentation with projects, the
event generator simulates the scheduling that is
performed by the operating system during online
experimentation.

• Open the data generator and delete the existing
data channel.

• Then set up a new channel for the message U_n.

• Set up the channel U_n as follows:

• Now activate U_n, the output voltage of the rota-
tional speed sensor.

The signal converter converts the voltage value into
the actual value for n using the characteristic table
n_sensor.

The values given above produce an output range
for n that matches the range from the previous
experiment (without signal processing).

• Click on the Save Environment button.

• Start the experiment.

The output curves should be the same as in the example without signal process-
ing. The stimulus created by the data generator is different, but is then processed
in the table so that it looks the same as before.

4.5.4 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• Creating and using characteristic fields

• Adding components to a project

• Defining the communication between different components in a project

4.6 Modeling a Continuous Time System

The realistic modeling of physical, mechanical, electrical, and mechatronical pro-
cesses, often described by differential equations, requires continuous time meth-
ods. Before integrating a method like this in the project created in the previous
chapters, this chapter covers modeling a continuous time system using a detailed
example.

ASCET supports the modeling and simulation of continuous time systems by
means of so-called CT blocks. CT stands for "Continuous Time" and refers to
items that are modeled or calculated in quasi-continuous time intervals. The con-

Mode: pulse

Frequency: 1.0 Hz

Phase: 0.0

Offset: 1.333333

Amplitude: 0.333333
ASCET V6.2 - Getting Started 73

74

Tutorial ETAS
tinuous time modeling in ASCET is based on state space representation, the stan-
dard description form used in the design of continuous time systems. This
representation allows the description of CT basic blocks by nonlinear ordinary
first-order differential equations and nonlinear output equations. ASCET pro-
vides several real-time integration methods to find optimal solutions to these
differential equations (refer to the ASCET online help for more information).

The procedure for modeling a continuous time system will now be explained
using the example of a mass-spring pendulum with attenuation by the earth's
gravity.

4.6.1 Motion Equation

The mass m shown in the following illustration is subject to the following forces:

• gravity: Fg = -mg
(g = gravitational acceleration)

• Spring force: FF = - c (x + l0)
(c = spring rate, l0 = length of spring at rest, and x = position of mass m)

• Attenuation FD = - d x’
(d = attenuation constant and x’ = velocity of mass)

This gives the motion equation as follows:

mx’’ = -mg + F or x’’ = -g + F/m (with F = FF + FD)

Breaking the second-order differential equation into two first-order differential
equations (x = x, v = x’) results in:

x’ = v

v’ = -g + F/m

These differential equations will be used in the following model design.

x

m

d

c

ASCET V6.2 - Getting Started

ETAS Tutorial
4.6.2 Model Design

For simplicity, the model of the mass-spring pendulum can be designed using a
single CT block. However, to illustrate the "direct pass-through" or "non-direct
pass-through" properties and to demonstrate how to avoid an algebraic loop by
skillful setting of these properties, we will design this model using two blocks.

• The Force block calculates spring force F from the position of the pen-
dulum’s mass m and the friction force from the velocity x’.

• From the spring force F the Mass block calculates the acceleration x’’
from the integration of which the velocity x’ and the position x result.

At first sight, this system looks like an algebraic loop: each block expects an input
value from the other block in order to calculate an output value required by the
other block.

This algebraic loop can be avoided by clever setting of the direct pass-through or
non-direct pass-through properties:

• In the Force block, the output variable F via the equation

F = -c(x + l0) - dx’

is directly dependent on the input variables x and x’. This block is thus
defined as having a direct pass-through.

• In the Mass block however, the output variables x and x’ do not depend
directly on the input variable F, but on the internal state variables of the
block. These, at least at the start, have initial values from which the output
variables x and x’ can be calculated, when the input variable F is
unknown. Otherwise the output variables are calculated using the follow-
ing differential equations:

x’ = v
v’ = -g + F/m

This block is thus defined as having a non-direct pass-through.

Model Creation:

• In the Component Manager, create a folder and call
it Lesson6.

• In this folder, use Insert Continuous Time
Block ESDL to create a block Force and a block
Mass.

• Double-click the Force block to open the ESDL edi-
tor.

• Click on the Input button to create two inputs x
and v (type continuous).

• Click on the Output button to create an output F
(type continuous).

Force Mass
F

x, x’
ASCET V6.2 - Getting Started 75

76

Tutorial ETAS
• Click on the Parameter button to create the con-
stants c (spring rate), d (attenuation constant) and
l0 (length of the spring at rest).

The methods in the "Outline" tab are fixed by
default.

• Right-click on each constant in the "Outline" tab in
turn and select Data from the context menu.

The "Numeric Editor" dialog window opens.

• Assign realistic values to the constants (e.g., 5.0 to
the spring rate c, 1.0 to the attenuation constant d,
and 2.0 to the length of the spring at rest l0).

• In the "Outline" tab, click on the method
directOutputs().

• In the edit field, specify the formula used to calcu-
late the force:

F = -c * (x + l0) - d*v;

• Click on the Generate Code button.

The CT block Force is compiled.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Double-click the Mass block to open the ESDL edi-
tor.

• As above, create an input F, two outputs x and v,
one parameter m (mass), and one parameter or con-
stant g (gravitational acceleration).

• Assign values to g and m as described above (9.81
to g and, e.g., 2.0 to the mass m).

• Click on the Continuous State button to create
state variables x_local and v_local for the
internal calculation of the outputs.

• For the derivatives() method, specify the dif-
ferential equations required for the calculation:

x_local.ddt(v_local);

v_local.ddt(-g + F/m);

• In nondirectOutputs() pass the state variables
x_local and v_local to the outputs x and v:

x=x_local;

v=v_local;

• In the init() method, you can provide the system
with realistic initial values for x and v using the
resetContinuousState() function.

resetContinuousState(x_local,0.0);

resetContinuousState(v_local,0.0);

• Click on the Generate Code button.

The CT block Mass is compiled.

• Adjust the layout of both blocks.

The combination of the two basic CT blocks into one CT structure block is done
using the block diagram editor (BDE).

To combine the two basic CT blocks.

• In the Component Manager, Lesson6 folder,
select Insert Continuous Time Block Block
Diagram to create a new block Mass_Spring.

• Double-click the new block to open it in the block
diagram editor.
ASCET V6.2 - Getting Started 77

78

Tutorial ETAS
• Drag the Mass and Force blocks from the Com-
ponent Manager and drop them in the "Outline"
tab of the BDE window to insert them.

• Connect the corresponding inputs and outputs
with each other.

• Select Build Experiment.

The CT block is now compiled, and the experiment
is started.

Note

Double-clicking one of the CT basic blocks opens it in the respective editor.
Note, however, that any modification to the blocks affects the entire library,
i.e., all structure blocks that use these basic blocks.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Create the experimentation environment required
with numeric editors for the parameters and graph-
ical displays.

• Scale the channels in the oscilloscope separately,
from -10 to 0 for x, from -8 to +8 for v.

• Set the extent of the time axis to 25 s.

4.6.3 Summary

After finishing this lesson, you should be able to carry out the following tasks in
ASCET:

• Creating a model to simulate a process

• Using the ESDL editor to create CT blocks with direct and non-direct pass-
through

• Using the block diagram editor to combine CT blocks

• Performing the physical experiment

4.7 A Process Model

Following the introduction of CT blocks in the last lesson, you will now use a
CT block for testing your controller. In ASCET you can develop a model of the
technical process to be controlled, and then experiment with a closed control
loop. This means that way the controller can be thoroughly tested before it is
used in a real vehicle.
ASCET V6.2 - Getting Started 79

80

Tutorial ETAS
In our example here, the motor is the technical process. It returns a value U_n
which is a sensor reading of the rotational speed of the engine. This value is
processed by the controller, which returns a value air_nominal. The controller
output value determines the throttle- position of the engine, and thus in turn
influences the rotational speed.

Fig. 4-1 A closed-loop experiment

You will use a CT block for this process model. This type of component is partic-
ularly suitable for process models. The model is based on the following differen-
tial equation, which models a PT2 system:

T2 s’’ + 2DTs’ + s = Ku

Equ. 4-1 A PT2 - system

The parameters T, D and K have to be set up with appropriate values.

4.7.1 Specifying the Process Model

Creating continuous time components is different from creating other compo-
nents. They have inputs and outputs, which are the equivalent of arguments and
return values. The main difference is that a continuous time block can have mul-
tiple inputs and outputs, which are not tied to a particular method. There is a
fixed set of methods defined in each continuous time block, that cannot be mod-
ified by the user.

You will use ESDL Code for the example here. The syntax of the ESDL code is
similar to C++ or Java. An object method is called with the name of the object,
a dot, the name of the method and the arguments in brackets followed by a
semicolon. The method used for deriving is called ddt(). For example, the
equation is equivalent to the ESDL statement s.ddt(sp);.

To create a continuous time component:

• In the Component Manager create the folder
Tutorial\Lesson7.

• To add a continuous time block, select Insert
Continuous Time Block ESDL.

• Name the new component ProcModel.

• Select Edit Open Component to open the ESDL
editor.

You can, of course, also use the external text editor.
There are instructions for this in the first part of the
tutorial.

Controller

Technical
Process

U
_
n

a
i
r
_
n
o
m
i
n
a
l

sp s·
ASCET V6.2 - Getting Started

ETAS Tutorial
To edit the process model, first add the elements required and then edit the
methods derivatives and non directOutput.

To edit the process model:

• In the ESDL editor, use the Continuous State but-
ton to create two continuous states.

• Name the states s and sp.

• Create an input u and an output y.

Both elements are of type cont.

• Create the parameters D, K and T.

The "Outline" tab for the process model should
look like this:

• Adjust the parameters as follows:

D = 0.4

K = 0.002

T = 0.05

• In the "Outline" tab, select the derivatives
method and edit the code as follows:

s.ddt(sp);

sp.ddt((K*u-2*D*T*sp-s)/(T*T));

• Select the nondirectOutputs method and type
in the following text.

y = s;

• Adjust the layout in the layout editor.

Note that in a process model it is preferable to put
the outputs on the left and the inputs on the right.

Note

See the ASCET online help for specifying CT blocks
for information on how to resolve a differential equa-
tion.
ASCET V6.2 - Getting Started 81

82

Tutorial ETAS
• Select Edit Save.

• In the Component Manager, click on the Save but-
ton to save the process model.

You can now start experimenting with the new model.

To experiment with the model:

• In the ESDL editor, select Build Experiment to
open the experimentation environment.

• Click on the Open CT Solver button to open the
"Solver Configuration" dialog pane.

The configuration is displayed as follows:

• Click OK to accept the default configuration.

• Open the data generator and create a channel for
the input u.

• Set up the channel u with the following values:

• Open an oscilloscope window with the channels u
and y.

• Set the measure channels for the oscilloscope as fol-
lows:

• Click on the Save Environment button.

Mode: pulse

Frequency: 0.5 Hz

Phase: 0.0 s

Offset: -0.5

Amplitude: 1.0

u y

Min -1 -0.002

Max 2 0.004

Extent 3.0 3.0
ASCET V6.2 - Getting Started

ETAS Tutorial
• Start the experiment.

The output should look like this:

4.7.2 Integrating the Process Model

To create a closed control loop, we will now integrate the process model into the
controller project we created earlier. The steps required are the same as before:
including the module, setting up the operating system and linking the global
elements.

To include the process model:

• From the Component Manager, open the project
editor for ControllerTest.

• In the project editor, add the component
ProcModel to the "Outline" tab.

• Activate the "OS" tab of the project editor to spec-
ify the scheduling for the CT tasks.

• Select the task simulate_CT1 and set the value
in the "Period" field to 0.01 s.

The controller and the process model both run in
the same time interval.

Linking the continuous time blocks and the modules cannot be done automati-
cally. They have to be connected explicitly in a block diagram.

To adjust the linking between modules and CT block:

• Click the "Graphics" tab.

• From the "Outline" tab, drag the three components
and drop them into the drawing area.

Note

The process model is added to the same project for simplicity. This is often
useful in the early stages of testing closed loop simulation. In regular projects,
the process model would be distributed over a network in another project since
they are not part of the same embedded system.
ASCET V6.2 - Getting Started 83

84

Tutorial ETAS
• Connect the messages of the modules with the cor-
responding input and output of the CT block.

To construct the example, connect the output y of
ProcModel with the global message U_n and
connect the input u of ProcModel with the global
message air_nominal.

• Right-click on each component and select Ports
Unconnected Ports to remove these ports from
the diagram.

Linking the messages for communicating between modules is done automati-
cally. Messages that have the same name are linked with each other.

The project is now complete and ready for experimentation. You will now exper-
iment online, which requires an ASCET-RP installation and a real-time target (e.g.
ES1000). If you do not have both, you will have to continue by experimenting
offline as before.

To set up the project for online experimentation:

• Click on the Project Properties button.

Note

If you continue by experimenting offline, be sure to remove the global message
U_n from the data generator.
ASCET V6.2 - Getting Started

ETAS Tutorial
• In the "Project Properties" dialog window, "Build"
node, select the following options:

Target: ES1130 or ES1135
Compiler: GNU-C V3.4.4 (Power-PC)
Operating System: ERCOSEK 4.3

These options specify the hardware and the corre-
sponding compiler for code generation.

• Click OK to close the "Project Properties" dialog
window.

The buttons Reconnect to Experiment of
selected Experiment Target and Select Hard-
ware are now available.

• Click on the "OS" tab to activate the operating sys-
tem editor.

• Set the number of preemptive levels to 8.

• To copy the schedule you created earlier, select
Operating System Copy From Target.

• From the "Selection Required" dialog, select
PC-->GENERIC and click OK.

The project for the new target now has the same
scheduling as that specified before for the offline
PC simulation.

There are several differences from the offline experiment. In the online experi-
ment, there is no event or data generator. The event generator serves to simulate
the scheduling of the operating system tasks generated for online experiments.
ASCET V6.2 - Getting Started 85

86

Tutorial ETAS
In the online experiment the experimentation code and the measurements are
started separately, and have separate buttons in the toolbar. This is because the
measurements may influence the real-time behavior of the experiment, so it may
sometimes be necessary to switch them off.

To experiment with the project online:

• Select Online (RP) from the "Experiment Tar-
get" combo box.

Offline (RP) is intended for offline experiments
on the target.

• Select Build Experiment.

The code for the experiment is generated and the
experiment opens with the same environment as
defined previously.

If your project contains several tasks, you could well
be prompted to select one acquisition task for each
measure value.

• In the "Selection Required" window, select the #3
simulate_CT1 task and click OK.

• Include n and n_nominal in the existing oscillo-
scope and set their value range from 0 to 2000.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Open numeric editors for the variables
n_nominal, Ki and Kp.

• Click on the Start Measurement button and then
click on the Start OS button.

The experiment starts and the results are displayed
on the oscilloscope. The value for n should quickly
approach n_nominal and stay there.

• Modify n_nominal in the numeric editor.

The value n should change in line with the changes
to n_nominal.

• You can optimize the behavior of the control loop
by adjusting the Ki and Kp parameters.

4.7.3 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• Creating and specifying continuous time blocks

• Experimenting with continuous time blocks

• Integrating continuous time blocks in a project

• Creating variable links

• Switching between different targets

• Experimenting online with a project

4.8 State Machines

State machines are useful for modeling systems that move between a limited
number of distinct states. ASCET provides a powerful mechanism for specifying
components as state machines. In this lesson we will specify and test a simple
state machine that implements a temperature dependent change in the nominal
number of revolutions of an idling engine. That state machine will then be inte-
grated into our project. In the next chapter we will then construct hierarchical
state machines.

If the engine is cold, it has to idle at a higher speed to keep it turning over. Once
the engine has warmed up, the rotational speed for idling can be decreased to
reduce fuel consumption. Our state machine thus has two states: one when the
engine is cold, and one when it is warm. It represents a two- phase control.

4.8.1 Specifying the State Machine

A state machine consists of the state graph itself and a number of specifications
of actions and conditions. The actions and conditions can be specified using
either block diagrams or ESDL code. They determine what happens in the various
states and during the transitions between states.

The diagrams for actions and conditions are specified in the block diagram editor
or ESDL editor. Another possibility is to write ESDL code directly in a text editor
which can be opened for every state and every transition (i.e., without opening
the ESDL editor). State machines have inputs and outputs for data transfer with
other components.

Start OS

Start Measurement
ASCET V6.2 - Getting Started 87

88

Tutorial ETAS
To create a state machine:

• In the Component Manager, create the folder
Tutorial\Lesson8.

• Click on the Statemachine button to create a new
state machine.

• Name it WarmUp.

• In the "1 Database" list, double-click on the name
of the state machine to open the state machine edi-
tor.

When you create a state machine, you specify the state diagram first and then
define the various actions and conditions associated with states and state transi-
tions.

The state machine controlling your motor has two states: one for when the
motor is cold and one for when the motor is warm.

To specify the state diagram:

• Click on the State button to load the cursor with a
state item.

• Click inside the drawing area, where you want to
place the state.

A state symbol is drawn where you clicked.

• Create a second state and place it below the first
one in the drawing area.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Right-click on the first state and select Edit State
from the context menu to open the State Editor.

• In the "State" field, enter the name coldEngine.

• Activate the Start State option to determine the
state the machine is in when it is first started.

Each state machine must have one start state.

• Click on OK to close the State Editor.

The name is displayed in the state symbol.

• Name the second state symbol warmEngine.

• Right-click in the drawing area, outside any symbol,
to activate the connection mode.

• Click in the right half of the coldEngine state
symbol to begin a connection, then click in the right
half of the warmEngine state symbol to connect
the two states.

A line is drawn between the two state symbols. It
has an arrow at one end, pointing from the top to
the bottom symbol. The lines represent possible
transitions between states.

• Create another transition from warmEngine to
coldEngine.

• Select File Save to store the diagram.

• In the Component Manager, select File Save to
save the database.
ASCET V6.2 - Getting Started 89

90

Tutorial ETAS
The next step in building the state machine is to specify its interface. You need
an input for the temperature value and an output for the number of revolutions.
In addition, parameters are required that specify high and low temperature and
number of revolutions per minute.

To specify the interface of the state machine:

• Create an input t and an output n_nominal.

• Use the Continuous Parameter button to create
four parameters.

• Name the parameters and set their values as
follows:

t_up = 70

t_down = 60

n_cold = 900

n_warm = 600

You can now proceed by specifying the actions and conditions for both the
states and the transitions between states. You can specify three actions for each
state:

• The entry action is executed each time the state is entered.

Exception: Upon first activation of the state machine, the entry action of
the start state is not executed.

• The exit action is executed each time the state is left.

• The static action is executed while the state machine remains stationary.

Similarly, a trigger event, a condition, a priority and an action can be specified for
each transition. The name of the trigger and of the condition appear next to the
transition. One trigger is automatically created when the state machine is cre-
ated.

The actions and conditions are specified in ordinary diagrams or in ESDL code. In
this example you will use ESDL code.

To specify the trigger actions and conditions:

• Right-click on the transition from the coldEngine
state to warmEngine.

• From the context menu, select Edit Transition to
open the Transition Editor.

The condition for a transition from cold to warm is
that the actual temperature value t is greater than
t_up.

• On the "Condition" tab, select <ESDL> from the
combo box.

Note that you can influence the predefined choice
of options in this combo box via the "Defaults"
node in the ASCET options window.
ASCET V6.2 - Getting Started

ETAS Tutorial
• Enter the code shown below in the code pane of
the condition:

The first line is a comment, the second line is the
condition.

If the condition evaluates to true, the idle speed of
the engine is set to n_warm.

Note that this code is displayed in the state machine
diagram. In this example, an alias name is created
for the transition condition and shown in the dia-
gram.

• Select <ESDL> for the action, too, and enter the
following code:

n_nominal = n_warm;

• Click OK to close the Transition Editor.

• Look at the diagram. Note that the condition and
the action of the transition can be seen.

• Open another editor for the transition from
warmEngine to coldEngine.

• Select <ESDL> for the condition and enter the fol-
lowing code:

t < t_down

Note that this time the complete code is shown in
the diagram as no alias was assigned (in a com-
ment).

• Select <ESDL> for the action, too, and enter the
following code:

n_nominal = n_cold;

• Close the transition editor and select File Save.

Note

In the Transition Editor, the condition is not termi-
nated with a semicolon. This is also true for regular
ESDL code where conditions appear in parentheses.
ASCET V6.2 - Getting Started 91

92

Tutorial ETAS
You can also specify the actions and conditions as block diagrams instead of
ESDL code. See the ASCET online help for details.

The initial value for the output n_nominal is still missing. Unlike the parameter
values, this cannot be set. Instead, you need to specify an action for the cold-
Engine start state. Since the entry action of the start state is not executed at the
fist activation of a state machine, you have to specify the initial value in the static
action.

To specify a static action:

• Open the coldEngine state in the State Editor.

• Select <ESDL> from the combo box on the "Static"
tab to specify the static action.

Note that you can influence the predefined choice
in this combo box via the "Defaults" node in the
ASCET options window.

• Enter n_nominal = n_cold; in the code pane
to set the initial value of n_nominal to 900.

• Click on OK to close the state editor.

That completes the specification of your state machine. Before you start experi-
menting with it, you should understand the way it works.

4.8.2 How a State Machine Works

While it is usually easy to understand what a standard component does from its
graphical specification, the function of a state machine may, at first, be less obvi-
ous. This section explains the principles of state machines using the example
from the previous section. A detailed description of state machines and their
functionality is given in the ASCET online help for the state machine editor.

Each state of a state machine has a name, an entry action, a static action and an
exit action. It has transitions to and from other states. Each transition has a pri-
ority, a trigger, an action and a condition. All actions are optional.

Each state machine needs a start state. When the state machine is first called up,
it is in the start state. It then checks the conditions in all the transitions pointing
away from it. In our example there is just one such transition with the condition
ASCET V6.2 - Getting Started

ETAS Tutorial
t > t_up. This condition checks whether the input value exceeds the value of
the t_up parameter. If that is the case, the condition is true, and a transition
takes place.

The parameters t_up and t_down determine the temperature that the engine
has to reach, before the nominal rotational speed can be changed. In our exam-
ple, if the engine temperature rises above 70 degrees, the speed can be reduced
to 600 revolutions per minute. If it then falls below 60 degrees, the nominal
speed must be reset to 900 revolutions per minute.

Whenever a transition takes place, the transition action specified for the transi-
tion is executed. In this example the transition action n_nominal = n_warm,
which is executed when a transition from coldEngine to warmEngine takes
place, sets the variable n_nominal to 600. The transition action n_nominal =
n_cold sets it to 900 in the reverse case. When a transition occurs, the state
machine also executes the exit action of the state it leaves, and the entry action
of the state it enters. In our example, these are empty and nothing happens.

Once the state machine has entered the second state, it stays in that state until
the condition in the transition from the second to the first state is fulfilled. While
the state machine stays in one state, the static action is executed every time the
state machine is triggered. Triggering is always an outside event which starts one
pass through the state machine.

A pass through a state machine consists of first testing all the conditions on
transitions leading away from the current state. Transitions and their conditions
are tested in order of their priorities. If a condition is true, the corresponding
transition is performed and the exit, transition and entry actions are executed.
Once the first condition checks out true, any other transitions leading from the
same state but having lower priorities are not tested. If no condition is true, the
machine remains in the current state and performs the static action once for
each pass.

Once the condition in the second transition of our state machine is true, i.e. if the
input value falls below the threshold, the state machine returns to the first state.
The machine then remains in that state until the input value grows larger than
the threshold again.

4.8.3 Experimenting with the State Machine

The experimentation environment works the same for state machines as for
other types of components. One extra feature for experimenting with state
machines is their animation, i.e. the current state is highlighted in the state
machine diagram while the experiment is running.
ASCET V6.2 - Getting Started 93

94

Tutorial ETAS
To experiment with the state machine:

• In the state machine editor, select Build Exper-
iment to open the experimentation environment.

• Right-click on one of the states and select Animate
States from the context menu.

• Enable the trigger event.

• In the data generator, create a channel for the vari-
able t.

• Assign a sine wave with frequency 1 Hz, offset 70,
and amplitude 20 to the channel.

• Open an oscilloscope window for t and
n_nominal.

• Click on the Start Offline Experiment button to
experiment with the state machine.

• Change the colors of the individual states to
improve clarity.

• To do this, use the Exit to Component button to
leave the experimentation environment, and call
the state editor.

• Select the color in the "Color" combo box.

• Start the experiment anew.
ASCET V6.2 - Getting Started

ETAS Tutorial
The value of n_nominal changes according to whether the sine-wave exceeds
or falls below the corresponding temperature threshold value. You can change
the threshold using the calibration system to observe the effect of different val-
ues on the output. Also, in the state diagram the current state is highlighted.

4.8.4 Integrating the State Machine in the Controller

Like other components in ASCET, a state machine can be used as a building
block within another component of any type. You can now integrate the state
machine into your controller module to adjust the rotational speed to the engine
temperature.

To integrate the state machine:

• From the Component Manager, open the module
Lesson4\IdleCon in a block diagram editor.

• Remove the parameter n_nominal from the dia-
gram and then from the "Outline" tab.

You will replace the parameter with the state
machine in the block diagram.

• Select Insert Component and add the state
machine to the "Outline" tab of the controller.

• Create a receive message and name it t.

• Connect the output of the WarmUp component
with the subtraction operator in place of the
deleted parameter, and connect the input of
WarmUp with the receive message t.

• Adjust the diagram as shown below. Be sure to
adjust the sequencing in the diagram to include all
items in the correct order.

• Save the diagram and click on the Save button in
the Component Manager.

In order to make the modified controller work with our project, we have to make
some adjustments to the project. At this point we will also integrate the temper-
ature sensor, which has been left unused so far.

To modify the project:

• Open the project editor for the project Control-
lerTest.

• Switch to the "OS" tab.
ASCET V6.2 - Getting Started 95

96

Tutorial ETAS
• Assign the process t_sampling to the task
Task10ms.

• Use the command Task Move Up to make the
process t_sampling the first in that task.

• Select Build Experiment.

• Open an additional scalar calibration window for
the value U_t.

• Add the variable t to the oscilloscope.

• Click on the Start Measurement button.

• Click on the Start OS button.

• Adjust the value U_t and observe its effect.

If the value of t exceeds the 70 degree limit, the
state machine switches to nominal value for n to
the lower value of 600. If the temperature falls to
below 60 degrees (simulated by adjusting U_t), the
nominal value for n regains the original value of
900.

4.8.5 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• Creating a state diagram

• Creating and assigning conditions, actions and triggers

• Experimenting with state machines

• Integrating state machines into other components

4.9 Hierarchical State Machines

Now that you have familiarized yourself with the way state machines work in the
preceding lesson, we shall look at creating a more complex system. This unit
concentrates on hierarchical state machines. You will also learn how to use the
system libraries and components supplied with ASCET, such as timers.

ASCET permits structuring of state machines in closed and open hierarchies.
With closed hierarchies, the internal functionality is concealed, with open hierar-
chies the substates are also shown graphically.

You will build a traffic light control system to run through the individual phases
of a traffic light using parameterizable timing. The traffic light will also have an
error status where it will flash.

4.9.1 Specifying the State Machine

First you will import the libraries you need and prepare for the task.

To import the system library:

• In the Component Manager, click on Import.

The "Select Import File" window opens.

Start OS

Start Measurement
ASCET V6.2 - Getting Started

ETAS Tutorial
• In the "Import File" field, use the button to
select the ETAS_System_Library.*1 file from
the Export directory of your ASCET installation (e.g.
C:\etas\ASCET6.2\export).

The OK button is now available.

• Click OK to start the import.

The "Import" window opens. All objects contained
in the file are selected.

• Confirm the import of all files with OK.

The files are imported. This can take up to several
minutes. When the import procedure is finished, all
imported items are listed in the "Imported Items"
window.

The second step is to specify the two main states possible for the traffic light
(NormalMode and ErrorMode).

To create the state machine:

• In the Component Manager, create the folder
Tutorial\Lesson9.

• Select Insert State Machine to create a new
state machine, and call it Light.

• Select Edit Open Component to open the state
machine editor.

You can start specifying the state machine that will
control your traffic light.

• Create the two states ErrorMode and
NormalMode.

Then add a timer from the system library to the state machine.

To add the timer object:

• Select Insert Component.

• In the "Select Item" dialog, select the timer object
Timer from the Counter_Timer folder of the
ETAS_SystemLib library.

• Confirm your selection with Ok.

You have now added an object Timer to the "Out-
line" tab of your state machine.

To specify the state diagram:

• Specify the necessary data elements as follows:

– An input error of type Logic,

– three outputs (yellow, green, red) of type
Logic to symbolize traffic light colors,

1. * = exp (binary export format) or axl (XML-based export format)
ASCET V6.2 - Getting Started 97

98

Tutorial ETAS
– four continuous parameters (BlinkTime,
YellowTime, GreenTime, RedTime) for the
different traffic light phases.

To get more practice with dependent parameters,
you will configure the parameters so that only the
green phase is specified; the other parameters are
given values dependent on that:

RedTime = 2 * GreenTime

YellowTime = GreenTime/3

BlinkTime = YellowTime/10

• Now specify calculations and dependencies of the
individual parameters.

• To do this, activate the Dependent option under
"Dependency" in the properties editor for the
parameters RedTime, YellowTime and Blink-
Time.

The properties editor is started with a double-click
on the element name or via the Edit context menu.

• Click on the Formula button to start the formula
editor.

• In the formula editor, specify the calculation for
each of the dependent parameters.

Redtime : 2*x
YellowTime : x/3
BlinkTime : x/10

• Close the formula editor and the properties editor.

• Open the dependency editor via the context menu
Edit Data.

• Assign the corresponding model parameter to the
formal parameter x for each of the dependent
parameters.

RedTime : x = GreenTime
YellowTime : x = GreenTime
BlinkTime : x = YellowTime

• Give the data elements meaningful values (e.g.
GreenTime = 5).

• Open the state editor for the ErrorMode state.

• Define this state as the initial state and color it red.

• Enlarge both states so that the hierarchies can be
inserted.

• Create the transitions between the two states.

• Specify the transitions between the two states by
entering conditions in the transition dialog. Enter
the conditions in ESDL so that the normal state
ASCET V6.2 - Getting Started

ETAS Tutorial
NormalMode is activated when the input error is
false (i.e. there has not been an error), and
ErrorMode is activated when there is an error.

• Select File Save.

• Save your work in the Component Manager.

• You might like to experiment with the main states.

The next step towards creating the traffic light control system is to specify the
substates. First specify the performance in the error mode (state ErrorMode). In
this state, a yellow flashing light will be output. To do this, introduce two sub-
states YellowOff and YellowOn; with the timer as switch between them. In
the YellowOn state, the output yellow will be set to true, while the Yel-
lowOff state sets it back to false.

To specify the substates for the error mode

• Create the states YellowOff and YellowOn and
place them inside the state ErrorMode.

• Define YellowOff as start state, and color Yel-
lowOn yellow.

• Define the response of the state YellowOff in the
state editor.

– For the entry action, select ESDL in the combo
box for the "Entry" tab and enter the following
code:

green = false;
red = false;
yellow = false;
Timer.start(BlinkTime);

– For the static action, enter the following code
on the "Static" tab:
ASCET V6.2 - Getting Started 99

100

Tutorial ETAS
Timer.compute();

• Now define and describe the YellowOn state.

Entry action:

yellow = true;
Timer.start(BlinkTime);

Static action:

Timer.compute();

• Now define the transitions between the two sub-
states.

The condition for a state transition is that the timer
has run out (Timer.out() == false).

This means that the ErrorMode state is started in the YellowOff state. As
well as switching off the color signals, the entry action starts the timer with the
parameterizable flashing time. The static action of the YellowOff state calls
the timer function compute() each time, which decrements the timer counter.
When this counter is 0, the timer function out() returns the code false, thus
fulfilling the transition condition. The state YellowOn works in a similar way,
however, in the entry action, the Yellow color signal is switched on.

The next step is to specify the performance in normal operation. To do this, cre-
ate a start state, AllOff, and place it within the NormalMode state. Use the
exit action to set all the color signals to a defined state. Now think about a suit-
able response for the traffic light control system.

In this example, you should describe the activation or deactivation of the individ-
ual color signals in the transition actions, not in the entry actions of the states.

To specify the substates in normal operation

• Create the states AllOff (start state), Yellow,
Red, RedYellow, and Green, and place them
inside the NormalMode state.

• Specify the response for the states by starting the
appropriate timer for each color (entry action) and
initiating timer processing in the static action.
(Timer.compute()).
ASCET V6.2 - Getting Started

ETAS Tutorial
• Define the state transitions and describe the
response of the states within the transition actions.

The transition from AllOff to Yellow should
generally occur, all other transitions should happen
after the relevant timer has run out.

• Enter the actions for each color signal in the
"Action" tab of the transition editor.

• Close the transition editor and select File Save.

That completes the specification of your traffic light control system. Before you
can experiment with it, you should enter meaningful values for the parameters in
the various color timers.

4.9.2 Experimenting with the Hierarchical State Machine

You can experiment with the hierarchical state machine in the same way as with
the basic state machine. Please do not forget to activate the animation in the
experiment.

Experimenting with the State Machine:

• In the state machine editor, select Build Experi-
ment to open the experimentation environment.

• Right-click on one of the states and select Animate
States from the context menu.

• Enable the trigger event.

• Click on the Start Offline Experiment button to
experiment with the state machine.

• Experiment with the state machine by changing the
GreenTime parameter and thus changing the
dependent parameters as well.

• Occasionally, set the error input to true.
ASCET V6.2 - Getting Started 101

102

Tutorial ETAS
4.9.3 How Hierarchical State Machines Work

Hierarchical state machines work in the same way as normal state machines. In
principle, hierarchical state machines only represent a graphic structure of the
total set of responses. As an extra task, consider or demonstrate how the
response described could be achieved without a hierarchy.

The traffic light example is constructed with two hierarchical states. The system
switches between the two states ErrorMode and NormalMode using the log-
ical input variable error. The sub-responses are defined within these states.

To understand this, look at the processing in the ErrorMode hierarchy state.
Each time the trigger is called, the condition for the transition from the hierarchy
state ErrorMode to the hierarchy state NormalMode is checked (condition:
!error). If no transition is necessary, the transitions from substate YellowOff
to YellowOn or vice versa are checked, and the necessary actions are per-
formed.

If you now look at NormalMode, this means that, again, for each trigger call it
is first checked whether the input error is true, and therefore a transition to
ErrorMode is necessary. Only if this is not the case, the transitions from the
substates (AllOff, Yellow, Red, RedYellow, and Green) are checked. In
the traffic light example, it is checked whether the timer has run out.

You can have a look at the code generated from the state diagram to clarify this
process.

Displaying generated code:

• In the state machine editor, select Build View
Generated Code to display the code generated.

The code from the components is written to a tem-
porary file and then opened with an application
defined in the operating system register database.

4.9.4 Summary

After completing this lesson you should be able to perform the following tasks in
ASCET:

• Create hierarchical state diagrams

• Describe the way the states behave in actions and also in the transition
actions.

• Import modules, classes or components

• Import system components from ASCET libraries

• Use the Timer system component

• Use of dependent parameters

• Displaying generated code

Note

In order to display the generated code, a search is
made in the operating system register database for
an application with associated files of type *.c and
*.h. Depending on the file endings registered, the
relevant editor is started.
ASCET V6.2 - Getting Started

ETAS Glossary
5 Glossary

In this glossary the technical terms and abbreviations used in the ASCET docu-
mentation are explained. Many terms are also used in a more general sense, but
only the meaning specific to ASCET is explained here.

The terms are listed in alphabetic order.

5.1 Abbreviations

ASAM-MCD

Association for Standardisation of Automation- and Measuring Systems,
with the working groups Measuring, Calibration, Diagnosis
(German: Arbeitskreis zur Standardisierung von Automations- und Mess-
systemen, mit den Arbeitsgruppen Messen, Calibrieren und Diagnose)

ASCET

Development tool for control unit software

ASCET-MD

ASCET Modeling and Design

ASCET-RP

ASCET Rapid Prototyping

ASCET-SE

ASCET Software Engineering

AUTOSAR

Automotive Open System Architecture; see http://www.autosar.org/

BD

Block Diagram

BDE

Block Diagram Editor

CPU

Central Processing Unit

ECU

Embedded Control Unit

ERCOSEK

ETAS real-time operating system, OSEK-compliant

ESDL

Embedded Software Description Language; a textual modeling language

ETK

emulator test probe (German: Emulatortastkopf)

FPU

Floating Point Unit

HTML

Hypertext Markup Language
ASCET V6.2 - Getting Started 103

http://www.autosar.org/

104

Glossary ETAS
INCA

Integrated Calibration and Acquisition Systems

INTECRIO

An ETAS product family. INTECRIO integrates code from various behav-
ioral modeling tools, facilitates all necessary configurations, allows the
generation of executable code, and provides an experiment environment
for the execution of the Rapid Prototyping experiment.

OS

Operating System

OSEK

Working group "open systems for electronics in automobiles"
(German: Arbeitskreis Offene Systeme für die Elektronik im Kraftfahr-
zeug)

RAM

Random Access Memory

RE

Runnable entity; a a piece of code in an SWC that is triggered by the RTE
at runtime. It corresponds largely to the processes known in ASCET.

ROM

Read-Only Memory

RTA-RTE

AUTOSAR runtime environment by ETAS

RTE

AUTOSAR runtime environment; provides the interface between software
components, basic software, and operating systems.

SCM

source-code management

SM

state machine

SWC

Atomic AUTOSAR software component; the smallest non-dividable soft-
ware unit in AUTOSAR.

UML

Unified Modeling Language

XML

Extensible Markup Language

5.2 Terms

Action

An action is part of a state machine and associated with states or transi-
tions of the state machine. An action is a piece of functionality, whose
execution is triggered by the state machine.
ASCET V6.2 - Getting Started

ETAS Glossary
Application Modes

An application mode is part of the operating system of ASCET. An oper-
ating mode describes different conditions a system can be in, e.g.
EEPROM-programming mode, warm-up, or normal mode.

Argument

An argument is the input to a method of a class. Arguments can only be
used in the specification of the method they belong to, and not in other
methods of the class.

Arithmetic Services

User-defined C functions to optimize elementary operations, such as addi-
tion operations, and to extend such operations with special properties,
such as value limits.

Array

An array is a one dimensional static list of elements of the basic scalar type
continuous or discrete, indexed by the basic scalar type discrete.

ASAM-MCD-2MC file

Default exchange format used for projects in ASCII format for the descrip-
tion of measurement and calibration values. The files have the extension
*.a2l.

Basic Model Types

Basic model types are used to model physical behavior. There are three
types: continuous, discrete and logical. A number of operations,
such as addition or comparison, are defined for the basic model types. The
implementation is used to transform the model types to implementation
types.

Block Diagram

A block diagram is a graphical description for a component in which the
various elements, operators and inputs/arguments and outputs/return val-
ues are connected by directed lines. A block diagram consists of several
diagrams. The description in terms of block diagrams is a physical descrip-
tion in contrast to the description with C-Code.

Bypass Experiment

In a bypass experiment, ASCET is directly connected to a microcontroller,
and parts of the microcontroller software are simulated by ASCET.

Calibration

Calibration is the manipulation of the values (physical / implementation) of
elements during the execution of an ASCET model (experiment).

Calibration Window

ASCET working window which can be used to modify parameters.

C Code

C code is an implementation dependent description of a component.

Characteristic

General term used for characteristic map, curve and value (see also
"Parameter".
ASCET V6.2 - Getting Started 105

106

Glossary ETAS
Characteristic Line

Two-dimensional parameter.

Characteristic Map

Three-dimensional parameter.

Characteristic value

One-dimensional parameter (constant).

Class

A class is one of the component types in ASCET. Classes in ASCET are like
object-oriented classes. The functionality of a class is described by meth-
ods.

Code

The executable code is the "actual" program with the exception of the
data (contains the actual algorithms). The code is the program part which
can be executed by the CPU.

Code Generation

Code generation is the first step in the transformation of a physical model
to executable code. The physical model is transformed into ANSI C-Code.
Since the C-Code is compiler (and therefore target) dependent, different
code for each target is produced.

Component

A component is the basic unit of reusable functionality in ASCET. Compo-
nents can be specified as classes, modules, or state machines. Each com-
ponent is built up of elements which are combined with operators to build
up the functionality.

Component Manager

Working environment in which the user can set up ASCET and manage
the data he created and which are stored in the database or workspace.

Condition

A condition is used to describe the control flow in a state machine. It
returns a logical value which determines, whether a transition from one
state to another takes place.

Constant

A constant is an element that cannot be changed during execution of an
ASCET model.

Container

Containers serve as containers for projects, classes and modules. Their
purpose is to structure models and databases/workspaces and place dif-
ferent database/workspace items under a common version control.

Data

The data is the variables of a program used for calibration.

Data Generator

The data generator is part of the experimentation environment. It is used
to stimulate the inputs or variables in the model under experimentation.
ASCET V6.2 - Getting Started

ETAS Glossary
Data Logger

With the data logger measurement data can be read from an experiment
and stored to disk for further analysis.

Data Set

A data set contains/references the initial data for all elements of a compo-
nent or project.

Database

A way to store all information specified or produced with ASCET. In
ASCET, a database is structured into folders. On the Windows file system,
a database is stored in a binary format.

Description file

Contains the physical description of the characteristics and measured val-
ues in the control unit (names, addresses, conversion formulas, functional
assignments, etc.).

Diagram

A diagram is used for the graphical specification of components as block
diagrams or state machines.

Dimension

The dimension is used to describe the ‘size’ of basic elements. The dimen-
sion can either be scalar (zero dimensional), array (one dimensional) or
characteristic line/table.

Distribution

A distribution contains the sample points for one or more group charac-
teristic lines/maps.

Editor

See Calibration Window.

Element

An element is a part of a component which reads or writes data, for
instance a variable, parameter or other component used within a compo-
nent.

Event

An event is an (external) trigger that starts an action of the operating sys-
tem, e.g., a task.

Event Generator

The event generator is part of the experimentation environment. It is used
to describe the order and the timing in which events are generated for the
activation of tasks (methods/processes/time frames) in the case of an
offline experiment.

Experiment

An experiment defines the settings in the experiment environment that
are used to test the proper functioning of components or projects. It con-
tains information about the size, position and content of the measure-
ment and calibration windows, as well as the settings of the event
generator, data generator and the data logger. An experiment can be exe-
ASCET V6.2 - Getting Started 107

108

Glossary ETAS
cuted either offline (non real-time) or online (real-time) and can be used
to control a technical process in a bypass or fullpass application. In all
cases, instrumented code generated from an ASCET specification is used
for experiment execution.

Experiment environment

Main working environment in which the user performs his experiments.

Fixed Point Code

From the physical specification, fixed point code can be generated which
can be executed on processors without a floating point unit.

Folder

A folder is a management unit for structuring an ASCET database or
workspace. A folder contains items of any kind.

Formula

A formula is part of an implementation describing the transformation
from the model types to the implementation (data) types.

Fullpass Experiment

In a fullpass experiment, ASCET is directly connected with an experimental
microcontroller, and the entire application is simulated by ASCET.

Group Characteristic Line/Map

Group characteristic lines/maps are characteristic lines/maps that share
the same distribution of axis points but have different return values. The
distribution of axis points and the individual group tables are specified as
separate elements.

HEX file

Exchange format of a program version as Intel Hex or Motorola S Record
file.

Hierarchy

A hierarchy block is used to structure the graphical specification of a block
diagram.

Icon

Icons can be used to illustrate the function of ASCET components.

Implementation

An implementation describes the transformation of the physical specifica-
tion (model) to executable fixed point code. An implementation consists
of a (linear) transformation formula and a bounding interval for the model
values.

Implementation Cast

Element that provides the users the possibility to control the implementa-
tions of intermediate results in arithmetic chains without changing the
physical representation of the elements in question.

Implementation Data Types

Implementation data types are the data types of the underlying C pro-
gramming language, e.g., unsigned byte (uint8), signed word
(sint16), float.
ASCET V6.2 - Getting Started

ETAS Glossary
Implementation Types

Implementation templates. Implementation types contain the main speci-
fications of an implementation; they are defined in the project editor and
can be assigned to individual elements in the implementation editors.

Intel Hex

Exchange format used for program versions.

Interface

An interface of a component describes how the component exchanges
data with other components. It can be compared to the .h file in C.

Kind

There are three kinds of elements: variables, parameters, and constants.
Variables can be read and written. Parameters can only be read but can
calibrated during experimentation. Constants can only be read and not
written to during experiments.

L1

The message format for exchanging data between the host and the tar-
get, where the experiment is run. Data is transferred, e.g. for displaying
values in measure windows.

Layout

A component has a graphical representation that shows pins for the
inputs/arguments, outputs/return values and time frames/methods/pro-
cesses. Additionally, the layout contains an icon that graphically repre-
sents the component when used within other components.

Literal

A literal is used in the description of components. A literal contains a
string that is interpreted as a value, e.g. as a continuous or logical value.

Measuring

Recording of data which is either displayed or stored, or both displayed
and stored.

Measure window

ASCET working window which displays measured signals during a mea-
surement.

Measured signal

A variable to be measured.

Measurement

A measurement is the representation of values (physical / implementation)
of variables/parameter during an experiment. The values can be displayed
with various different measurement windows like oscilloscopes, numeric
displays, etc.

Measuring channel parameters

Parameters which can be set for the individual channels of a measuring
module.
ASCET V6.2 - Getting Started 109

110

Glossary ETAS
Message

A message is a real time language construct of ASCET for protected data
exchange between concurrent processes.

Method

A method is part of the description of the functionality of a class in terms
of object oriented programming. A method has arguments and one
return value.

Model Type

Each element of an ASCET component specification is either a component
of its own or is of a model type In contrast to implementation types,
model types represent physical values.

Module

A module is one of the component types in ASCET. It describes a number
of processes that can be activated by the operating system. A module
cannot be used as a subcomponent within other components.

Monitor

With a monitor the data value of an element can be displayed in a dia-
gram during an experiment.

Motorola-S-Record

Exchange format used for program versions.

Offline experiment

During offline experimentation the code generated by ASCET can be run
on the PC or an experimental target, but it does not run in real-time.
Offline experimentation focuses on testing the functional specification of
a system.

Online experiment

In the online experiment the projects are executed in real-time with the
behavior defined in the real-time operating system. The code always runs
on an experimental target in real-time. The online experiment focuses on
the operating system schedule and the corresponding real-time behavior
of the control system.

Operating System

The operating system is used to schedule the execution/activation of an
ASCET software system. The operating system also provides services for
communication (messages) and access to reserved parts of the hardware
(resources). The ASCET operating system is based on the real-time operat-
ing system ERCOSEK.

OSEK operating system

Operating system conforming to OSEK.

Oscilloscope

An oscilloscope is a type of measurement window that graphically displays
data values during experiments.
ASCET V6.2 - Getting Started

ETAS Glossary
Parameter

A parameter (characteristic value, curve and map) is an element whose
value cannot be changed by the calculations executed in an ASCET model.
It can, however, be calibrated during an experiment.

Priority

Every task has a priority in the form of a number. The higher the number,
the higher the priority. The priority determines the order in which tasks are
scheduled.

Process

A process is a concurrently executable piece of functionality that is acti-
vated by the operating system. Processes are specified in modules and do
not have any arguments/inputs or return values/outputs.

Program

A program consists of code and data and is executed as a unit by the CPU
of the control unit.

Project

A project describes an entire embedded software system. It contains com-
ponents which define the functionality, an operating system specification,
and a binding mechanism which defines the communication.

Resource

A resource is used to model parts of an embedded system that can be
used only mutually exclusively, e.g. timers. When such a part is accessed,
it has to be reserved and then released again, which is done using
resources.

Runnable entity

see RE

Runtime environment

see RTE

Scheduling

Scheduling is the assigning of processes to tasks and the definition of task
activation by the operating system.

Scope

An element has one of two scopes: local (only visible inside a component)
or global (defined inside a project).

State

A state is a part of a state machine. A state machine is always in a one of
its states. One of the states is marked as the start state which is the initial
state of the state machine. Each state is connected to other states by arcs.
A state has an entry action (that is executed upon entry of a state), an
static action (that is executed the state remains unchanged) and an exit
action (that is executed upon exit of the state).

State Machine

A state machine is one of the component types in ASCET. The behavior is
described with a state graph consisting of states connected by transitions.
ASCET V6.2 - Getting Started 111

112

Glossary ETAS
Target

A target is the hardware an experiment runs on. A target can either be an
experimental target (PC, Transputer, PowerPC) or a microcontroller target.

Task

A task is an ordered collection of processes that can be activated by the
operating system. Attributes of a task are its operating modes, its activa-
tion trigger, its priority, the mode of scheduling. On activation the pro-
cesses of the task are executed in the given order.

Trigger

A trigger activates the execution of a task (in the scope of the operating
system) or of a state machine.

Transition

A transition is a connection between states. Transitions describe possible
state changes. Each transition is assigned to a trigger of the state
machine, has a priority, a condition, and an action.

Type

Variables and parameters are of type cont (continuous), udisc
(unsigned discrete), sdisc (signed discrete) or log (logic). Cont is used
for physical quantities that can assume any value; udisc for positive inte-
ger values, sdisc for negative integer values, and log is used for Bool-
ean values (true or false).

User profile

A set of user-specific option settings.

Variable

A variable is an element that can be read and written during the execution
of an ASCET model. The value of a variable can also be changed with the
calibration system.

Also: General term used for parameters (characteristics) and measured
signals.

Window elements

General term used for calibration and display elements.

Workspace

A way to store all information specified or produced with ASCET. In
ASCET, a workspace is structured into folders. On the Windows file sys-
tem, a workspace is stored in form of several XML files.
ASCET V6.2 - Getting Started

ETAS Appendix A: Troubleshooting ASCET Problems
6 Appendix A: Troubleshooting ASCET Problems

This chapter gives some information of what you can do when problems arise
during your work with ASCET.

6.1 Support Function for Feedback to ETAS in Case of Errors

While developing ASCET, the functional safety of the program was utmost
importance. Should an error occur nevertheless, please forward the following
information to ETAS:

• Which step were you about to perform with ASCET when the error
occurred?

• What kind of error occurred (wrong function, system error or system
crash)?

• Which model element or model was edited at the time of the error?

When you use the support function, ASCET compresses the entire contents of
the "log" directory (all *.log files) including a textual description into an
archive file named EtasLogFiles00.zip in the ...\ETAS\LogFiles\
subdirectory. For additional archive files, the file name is incremented automati-
cally (up to 19) to avoid that older archive files are immediately overwritten.

If a critical system error occurs, the following window is displayed:

What to do in case of an error:

1. Problem Report button

• Click on the Problem Report button.

The support function is started.

• Describe the error and forward the information—
together with the model—to ETAS.

Note

To allow ASCET to be updated and developed further, it is important that you
report any errors which have occurred with an application to ETAS. You can use
the "Problem Report" method for this purpose.
ASCET V6.2 - Getting Started 113

114

Appendix A: Troubleshooting ASCET Problems ETAS
2. Exit button

• Click on the Exit button.

ASCET is closed; all modifications that have not
been saved will be lost.

Close any message boxes prompting you to save
data without saving any data.

• Restart ASCET.

3. Continue button

• Click on the Continue button.

The application continues to run; the program
jumps back to the location where it was before the
error occurred.

• Save your data.

• Exit ASCET.

• Restart ASCET.

It is generally advisable to close the program (without saving) and to restart it.
Thus, the risk of possible subsequent errors is omitted.

6.2 Black Icons in ASCET

When the graphic modus of the PC or notebook is changed while ASCET is run-
ning, it can happen that the icons in the ASCET user interface turn black. With
certain ASCET add-ons, even a system error can occur.

Some actions change the graphic modus automatically, among them the activa-
tion or usage of a secondary graphic output (e.g., a second monitor). Currently,
no solution or workaround exists for these cases.

Note

Use the Continue button only if you have to save important configuration
data. Subsequent errors or incorrect configurations cannot be excluded!

Note

Therefore, it is not allowed to change the graphic mode of the PC or notebook
while ASCET is running.
ASCET V6.2 - Getting Started

ETAS Appendix B: Troubleshooting General Problems
7 Appendix B: Troubleshooting General Problems

This chapter gives some information of what you can do when problems arise
that are not specific to an individual software or hardware product.

7.1 Problems and Solutions

7.1.1 Network Adapter cannot be selected via Network Manager

Cause: APIPA is disabled

The alternative mechanism for IP addressing (APIPA) is usually enabled on all
Windows systems. Network security policies, however, may request the APIPA
mechanism to be disabled. In this case, you cannot use a network adapter which
is configured for DHCP to access ETAS hardware. The ETAS Network Manager
displays a warning message.

The APIPA mechanism can be enabled by editing the Windows registry. This is
permitted only to users who have administrator privileges. It should be done only
in coordination with your network administrator.

To enable the APIPA mechanism:

• Open the Registry Editor:

– Windows 7:
Click Start and then click Run. Enter regedit
and click OK.

– Windows Vista:
Click Start, enter regedit in the entry field,
and press <ENTER>.

The registry editor is displayed.

• Open the folder HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\
Tcpic\Parameters\

• Select Edit Find to search for the key IPAuto-
configurationEnabled.

If you cannot find any instances of the registry key mentioned, the APIPA mech-
anism has not been disabled on your system, i.e. there is no need to enable it.
Otherwise proceed with the following steps.

• Set the value of the key
IPAutoconfigurationEnabled to 1 to enable
the APIPA mechanism.

You may find several instances of this key in the
Windows registry which either apply to the TCP/IP
service in general or to a specific network adapter.
You only need to change the value for the corre-
sponding network adapter.

• Close the registry editor.

• Restart your workstation in order to make your
changes take effect.
ASCET V6.2 - Getting Started 115

116

Appendix B: Troubleshooting General Problems ETAS
7.1.2 Search for Ethernet Hardware fails

Cause: The versions of the Hardware and the ETAS MC Software are not
compatible

If you are using ETAS hardware with ETAS MC software, you can use the ETAS
HSP Update Tool to check the firmware version of your hardware:

• Make sure you use the ETAS HSP Update Tool with the latest HSP
(Hardware Service Pack) version.

• Also use the HSP Update Tool to check whether the hardware is compat-
ible with the MC software used.

• Make sure any additional drivers for that hardware are installed correctly.

You can get the required HSP from the ETAS internet pages under
www.etas.com.

If you still cannot find the hardware using the HSP Update Tool, check whether
the hardware offers a Web interface and whether you can find using this inter-
face. Otherwise check whether one of the following causes and solutions might
apply.

Cause: Personal Firewall blocks Communication

For a detailed description on problems caused by personal firewalls and possible
solutions see "Personal Firewall blocks Communication" on page 118.

Cause: Client Software for Remote Access blocks Communication

PCs or notebooks which are used outside the ETAS hardware network some-
times use a client software for remote access which might block communication
to the ETAS hardware. This can have the following causes:

• A firewall which is blocking Ethernet messages is being used (see „Cause:
Personal Firewall blocks Communication“ on page116)

• By mistake, the VPN client software used for tunneling filters messages. As
an example, Cisco VPN clients with versions before V4.0.x in some cases
erroneously filtered certain UDP broadcasts.

If this might be the case, please update the software of your VPN client.

Cause: ETAS Hardware hangs

Occasionally the ETAS hardware might hang. In this case switch the hardware
off, then switch it on again to re-initialize it.

Cause: ETAS Hardware went into Sleep Mode

In order to save power, some ETAS devices will go to sleep mode if they do not
see that they are connected to another device/computer.

To solve that, connect your Ethernet cable from your computer to the "HOST"/
"Sync In" port on the device. After the device turns on, connect to the device
using the web interface and change the settings so that the device stays always
on. Consult the device's manual for details on how to do that.
ASCET V6.2 - Getting Started

http://www.etas.com/en/

ETAS Appendix B: Troubleshooting General Problems
Cause: Network Adapter temporarily has no IP Address

Whenever you switch from a DHCP company LAN to the ETAS hardware net-
work, it takes at least 60 seconds until ETAS hardware can be found. This is
caused by the operating system’s switching from the DHCP protocol to APIPA,
which is being used by the ETAS hardware.

Cause: ETAS Hardware had been connected to another Logical Network

If you use more than one PC or notebook for accessing the same ETAS hardware,
the network adapters used must be configured to use the same logical network.
If this is not possible, it is necessary to switch the ETAS hardware off and on
again between different sessions (repowering).

Cause: Device driver for network card not in operation

It is possible that the device driver of a network card is not running. In this case
you will have to deactivate and then reactivate the network card.

To deactivate and reactivate the network card (Win Vista):

• To deactivate the network card first select in the
Windows start menu the following item:

Control Panel Network and Internet Net-
work and Sharing Center Manage Network
Connections

• Right-click on the used network adapter and select
Disable in the context menu.

• In order to reactivate the network adapter right-
click on it again and select Enable.

To deactivate and reactivate the network card (Win 7):

• To deactivate the network card, select Control
Panel Device Manager from the Windows start
menu.

• In the Device Manager, open the tree structure of
the entry Network Adapters.

• Click on the used connection to open its "<connec-
tion name> Status" dialog window.

• Right-click on the used network adapter and select
Disable in the context menu.

• In order to reactivate the network adapter right-
click on it again and select Enable.

Cause: Laptop power management deactivates the network card

The power management of a laptop computer can deactivate the network card.
Therefore you should turn off power monitoring on the laptop.

To switch off power monitoring on the laptop:

• From the Windows Start Menu, select

– Windows Vista:
Control Panel System and
Maintenance Device Manager.
ASCET V6.2 - Getting Started 117

118

Appendix B: Troubleshooting General Problems ETAS
– Windows 7:
Control Panel Device Manager.

• In the Device Manager open the tree structure of
the entry Network Adapters.

• Right-click on the used network adapter and select
Properties in the context menu.

• Select the Power Management tab and deactivate
the Allow the computer to turn off this device
to save power option.

• Select the Advanced tab. If the property
Autosense is included, deactivate it also.

• Click OK to apply the settings.

Cause: Automatic disruption of network connection

It is possible after a certain period of time without data traffic that the network
card automatically interrupts the Ethernet connection. This can be prevented by
setting the registry key autodisconnect.

To set the registry key autodisconnect:

• Open the Registry Editor.

• Select under HKEY_LOCAL_MACHINE\SYSTEM\
ControlSet001\Services\lanmanserver\
parameters the Registry Key autodisconnect
and change its value to 0xffffffff.

7.1.3 Personal Firewall blocks Communication

Cause: Permissions given through the firewall block ETAS hardware

Personal firewalls may interfere with access to ETAS Ethernet hardware. The
automatic search for hardware typically cannot find any Ethernet hardware at all,
although the configuration parameters are correct.

Certain actions in ETAS products may lead to some trouble if the firewall is not
properly parameterized, e.g. upon opening an experiment in ASCET or searching
for hardware from within INCA or HSP.

If a firewall is blocking communication to ETAS hardware, you must either dis-
able the firewall software while working with ETAS software, or the firewall must
be configured to give the following permissions:

• Outgoing limited IP broadcasts via UDP (destination address
255.255.255.255) for destination ports 17099 or 18001

• Incoming limited IP broadcasts via UDP (destination IP 255.255.255.255,
originating from source IP 0.0.0.0) for destination port 18001

• Directed IP broadcasts via UDP to the network configured for the ETAS
application, destination ports 17099 or 18001

• Outgoing IP unicasts via UDP to any IP in network configured for the ETAS
application, destination ports 17099 through 18020

• Incoming IP unicasts via UDP originating from any IP in the network con-
figured for the ETAS application, source ports 17099 through 18020,
destination ports 17099 through 18020
ASCET V6.2 - Getting Started

ETAS Appendix B: Troubleshooting General Problems
• Outgoing TCP/IP connections to the network configured for the ETAS
application, destination ports 18001 through 18020

The Windows operating systems come with a built-in personal firewall. In addi-
tion, it is very common to have personal firewall software from third party ven-
dors, such as Symantec, McAffee or BlackIce installed. The proceedings in
configuring the ports might differ for each personal firewall software used.
Therefore please refer to the user documentation of your personal firewall soft-
ware for further details.

As an example for a firewall configuration, you will find below a description on
how to configure the widely used Windows XP firewall if the hardware access is
prohibited under Windows XP with Service Pack 2.

Solution for Windows XP Firewall, Users with Administrator Privileges

If you have administrator privileges on your PC, the following dialog window
opens if the firewall blocks an ETAS product.

To unblock a product:

• In the "Windows Security Alert" dialog window,
click on Unblock.

The firewall no longer blocks the ETAS product in
question (in the example: ASCET). This decision sur-
vives a restart of the program, or even the PC.

Instead of waiting for the "Windows Security Alert" dialog window, you can
unblock ETAS products in advance.

To unblock ETAS products in the firewall control:

• From the Windows Start Menu, select Settings
Control Panel.

Note

The ports that have to be used in concrete use cases depend on the hard-
ware used. For more precise information on the port numbers that can be
used please refer to your hardware documentation.
ASCET V6.2 - Getting Started 119

120

Appendix B: Troubleshooting General Problems ETAS
• In the control panel, double-click the Windows
Firewall icon to open the "Windows Firewall" dia-
log window.

• In the "Windows Firewall" dialog window, open
the "Exceptions" tab.

This tab lists the exceptions not blocked by the fire-
wall. Use Add Program or Edit to add new pro-
grams, or edit existing ones.

• Make sure that the ETAS products and services you
want to use are properly configured exceptions.
ASCET V6.2 - Getting Started

ETAS Appendix B: Troubleshooting General Problems
– Open the "Change Setup" window.

– To ensure proper ETAS hardware access, make
sure that at least the IP addresses
192.168.40.xxx are unblocked.

– Close the "Change Setup" window with OK.

• Close the "Windows Firewall" dialog window with
OK.

The firewall no longer blocks the ETAS product in
question. This decision survives a restart of the PC.

Solution for Windows XP Firewall, Users without Administrator Privileges

This section addresses users with restricted privileges, e.g., no system changes,
write restrictions, local login.

Working with an ETAS software product requires "Write" and "Modify" privi-
leges within the ETAS, ETASData, and ETAS temporary directories. Otherwise,
an error message opens if the product is started, and a database is opened. In
that case, no correct operation of the ETAS product is possible because the data-
base file and some *.ini files are modified during operation.

The ETAS software has to be installed by an administrator anyway. It is recom-
mended that the administrator assures that the ETAS program/processes are
added to the list of the Windows XP firewall exceptions, and selected in that list,
after the installation. If this is omitted, the following will happen:

• The "Window Security Alert" window opens when one of the actions
conflicting with a restrictive firewall configuration is executed.
ASCET V6.2 - Getting Started 121

122

Appendix B: Troubleshooting General Problems ETAS
To unblock a program (no Admin privileges):

• In the "Windows Security Alert" dialog window,
activate the option For this program, don’t show
this message again.

• Click OK to close the window.

An administrator has to select the respective ETAS
software in the "Exceptions" tab of the "Windows
Firewall" dialog window to avoid further problems
regarding hardware access with that ETAS product.
ASCET V6.2 - Getting Started

ETAS Appendix C: Tool Classification for ISO26262
8 Appendix C: Tool Classification for ISO26262

The ISO26262 standard for safety-critical software in automotive systems
(ISO26262:2011) requires software development tools to be analyzed to deter-
mine what tool qualification measures are required.

Analysis is an assessment of likelihood that a tool introduces errors into the sys-
tem under development and that those errors go unchecked. It follows that anal-
ysis is valid only in the context in which the tool operates, i.e. it can only be
assessed in the context of your development process.

This appendix provides some guidance on how to satisfy the requirements on
tools arising from ISO26262. References have the form <Part>§<Section>, for
example 8§11 means Part 8, Section 11 of the standard.

The key requirements are described in 8§11.4.4, in particular 8§11.4.4.1 regard-
ing planning of qualification and 8§11.4.4.2 regarding the availability of infor-
mation. Note that some of these requirements have both a user and a supplier
obligation. For example, users shall determine the environment in which the tool
is used (8§11.4.4.1c), and the supplier shall describe the environment for opera-
tion (8§11.4.4.2c).
ASCET V6.2 - Getting Started 123

124

Appendix C: Tool Classification for ISO26262 ETAS
Th
e

fo
llo

w
in

g
ta

bl
e

ou
tli

ne
s

th
e

in
pu

t
re

qu
ire

m
en

ts
 f

or
 t

oo
l c

la
ss

ifi
ca

tio
n

ac
co

rd
in

g
to

 IS
O

26
26

2
fo

r
w

hi
ch

 in
fo

rm
at

io
n

ab
ou

t
A

SC
ET

 is
re

qu
ire

d
an

d
ex

pl
ai

ns
 w

he
re

 t
o

fin
d

su
pp

or
tin

g
ev

id
en

ce
.

R
eq

u
ir

em
en

t
sy

n
o

p
si

s
IS

O
26

26
2

R
ef

er
en

ce
A

SC
ET

 E
vi

d
en

ce

U
ni

qu
e

id
en

tif
ic

at
io

n
nu

m
be

r
8§

11
.4

.4
.1

.a
V

er
si

on
s

of
 A

SC
ET

 a
re

 re
fe

rr
ed

 to
 b

y
th

ei
r m

aj
or

.m
in

or
 v

er
si

on
 n

um
be

r,
 fo

r e
xa

m
pl

e
A

SC
ET

 6
.2

.
V

er
si

on
 s

tr
in

gs
 in

 A
SC

ET
 in

cl
ud

e
a

su
b-

m
in

or
 v

er
si

on
 n

um
be

r t
ha

t i
nd

ic
at

es
 th

e
re

fr
es

h
nu

m
be

r.

Th
e

in
iti

al
 r

el
ea

se
 is

 a
ss

ig
ne

d
ze

ro
, f

or
 e

xa
m

pl
e

th
e

in
iti

al
 r

el
ea

se
 o

f
A

SC
ET

 6
.2

 is
 v

er
si

on
 6

.2
.0

.
Ea

ch
 r

ef
re

sh
 o

f
an

 A
SC

ET
 v

er
si

on
 in

cr
em

en
ts

 t
he

 r
ef

re
sh

 n
um

be
r.

Ba
si

c
ve

rs
io

n
in

fo
rm

at
io

n
is

 a
va

ila
bl

e
by

 s
el

ec
tin

g
H

el
p

 A

b
o

u
t.

A
dd

iti
on

al
 in

fo
rm

at
io

n
ab

ou
t w

hi
ch

 p
ar

ts
 o

f t
he

 c
or

e
pr

od
uc

t
ar

e
in

st
al

le
d

is
 a

va
ila

bl
e

by
 s

el
ec

t-
in

g
H

el
p

 L

o
ad

ed
 P

ac
ka

g
es

 in
 t

he
 A

SC
ET

 d
at

ab
as

e
br

ow
se

r.
 T

hi
s

di
sp

la
ys

 v
er

si
on

 in
fo

rm
a-

tio
n

in
 t

he
 M

on
ito

r
w

in
do

w
.

In
fo

rm
at

io
n

ab
ou

t
w

hi
ch

 A
SC

ET
-S

E
ta

rg
et

s
ar

e
in

st
al

le
d

is
 a

cc
es

se
d

th
ro

ug
h

H
el

p

 L
o

ad
ed

Ta

rg
et

s.

W
he

n
A

SC
ET

 is
 in

st
al

le
d

a
fil

e
ca

lle
d

in
st

.r
ef

 is
 g

en
er

at
ed

 in
 th

e
ro

ot
 o

f t
he

 in
st

al
la

tio
n

di
re

ct
or

y.

Th
is

 f
ile

 c
on

ta
in

s
th

e
fu

lly
 q

ua
lif

ie
d

pa
th

 n
am

es
 o

f
al

l f
ile

s
in

st
al

le
d

an
d

a
ca

lc
ul

at
ed

 c
he

ck
su

m

of
 t

he
 in

st
al

le
d

fil
es

.

C
on

fig
ur

at
io

n
of

 s
of

t-
w

ar
e

to
ol

8§
11

.4
.4

.1
.b

Th
e

co
nf

ig
ur

at
io

n
of

 A
SC

ET
 is

 d
ef

in
ed

 b
y:

-
Th

e
A

SC
ET

 m
od

el
 it

se
lf,

 e
ith

er
 a

s
a

w
or

ks
pa

ce
 o

r
da

ta
ba

se
-

C
on

fig
ur

at
io

n
he

ld
 in

 t
he

 *
.
m
k

 a
nd

 *
.
i
n
i

, *
.
a
2
l

, *
.
t
e
m
p
l
a
t
e

 a
nd

 *
.
x
m
l

 f
ile

s
in

 t
he

ta

rg
et

 d
ire

ct
or

y

U
se

 c
as

es
8§

11
.4

.4
.1

.c
N

/A
. T

hi
s

is
 a

 p
ro

pe
rt

y
of

 y
ou

r u
se

 o
f A

SC
ET

 in
 y

ou
r d

ev
el

op
m

en
t p

ro
ce

ss
. H

ow
ev

er
, y

ou
 s

ho
ul

d
re

ad
 c

ha
pt

er
 2

 a
nd

 c
ha

pt
er

 3
 t

o
un

de
rs

ta
nd

 t
he

 b
as

ic
 s

co
pe

 o
f

ap
pl

ic
at

io
n

of
 A

SC
ET

.

Ex
ec

ut
io

n
en

vi
ro

nm
en

t
8§

11
.4

.4
.1

.d
N

/A
. T

hi
s

is
 a

 p
ro

pe
rt

y
of

 y
ou

r
de

ve
lo

pm
en

t
pr

oc
es

s.

M
ax

im
um

 A
SI

L
th

at
 m

ay

be
 v

io
la

te
d

8§
11

.4
.4

.1
.e

N
/A

. T
hi

s
is

 a
 p

ro
pe

rt
y

of
 t

he
 s

ys
te

m
 b

ei
ng

 d
ev

el
op

ed
.

M
et

ho
ds

 f
or

 q
ua

lif
ic

at
io

n
8§

11
.4

.4
.1

.f
N

/A
. T

hi
s

is
 t

he
 o

ut
pu

t
fr

om
 t

he
 a

na
ly

si
s

pr
oc

es
s.
ASCET V6.2 - Getting Started

ETAS Appendix C: Tool Classification for ISO26262
D
es

cr
ip

tio
n

of
 p

ro
du

ct

fe
at

ur
es

8§
11

.4
.4

.2
.a

A
n

ov
er

vi
ew

 o
f

th
e

pr
od

uc
t

fe
at

ur
es

 is
 p

ro
vi

de
d

in
 c

ha
pt

er
 2

 o
f

th
is

 d
oc

um
en

t.

In
di

vi
du

al
 f

ea
tu

re
s

th
em

se
lv

es
 a

re
 d

es
cr

ib
ed

 in
 t

he
 o

nl
in

e
he

lp
 a

nd
 t

he
 o

th
er

 u
se

r
do

cu
m

en
ta

-
tio

n.

Pr
ov

is
io

n
of

 u
se

r
m

an
ua

l
8§

11
.4

.4
.2

.b
U

se
r m

an
ua

ls
 a

nd
 o

nl
in

e
he

lp
 a

re
 s

up
pl

ie
d

w
ith

 e
ac

h
ve

rs
io

n
of

 A
SC

ET
 a

nd
 fo

r e
ac

h
A

SC
ET

 a
dd

-
on

.
M

an
ua

ls
 c

an
 b

e
fo

un
d

in
 <
i
n
s
t
a
l
l

d
i
r
>
\
.
.
\
E
T
A
S
M
a
n
u
a
l
s
\
A
S
C
E
T

V
x
.
y

.

O
nl

in
e

he
lp

 is
 a

cc
es

se
d

by
 p

re
ss

in
g

<
F1

>
 o

r
se

le
ct

in
g

H
el

p

 C
o

n
te

n
ts

...

V
al

id
 o

pe
ra

tin
g

en
vi

ro
n-

m
en

t
8§

11
.4

.4
.2

.c
Th

e
va

lid
 o

pe
ra

tin
g

en
vi

ro
nm

en
t

is
 d

es
cr

ib
ed

 in
 t

he
 A

SC
ET

 R
el

ea
se

 N
ot

es
 f

or
 e

ac
h

pr
od

uc
t

an
d

ad
d-

on
. R

el
ea

se
 n

ot
es

 c
an

 b
e

fo
un

d
in

 <
i
n
s
t
a
l
l

d
i
r
>
\
.
.
\
E
T
A
S
M
a
n
u
a
l
s
\
A
S
C
E
T

V
x
.
y

Be
ha

vi
or

 u
nd

er
 a

no
m

a-
lo

us
 o

pe
ra

tin
g

co
nd

iti
on

s
8§

11
.4

.4
.2

.d
Er

ro
rs

 in
 t

he
 A

SC
ET

 c
on

fig
ur

at
io

n
(e

.g
. s

yn
ta

ct
ic

al
ly

 o
r

se
m

an
tic

al
ly

 in
co

rr
ec

t
m

od
el

, i
nc

om
pa

t-
ib

le
 o

pt
io

ns
 e

tc
.)

ar
e

ch
ec

ke
d

by
 th

e
to

ol
 it

se
lf

at
 c

od
e

ge
ne

ra
tio

n/
bu

ild
 ti

m
e

an
d

re
po

rt
ed

 to
 in

th

e
"B

ui
ld

"
ta

b
of

 t
he

 M
on

ito
r

w
in

do
w

.

A
SC

ET
 c

an
no

t
be

 in
st

al
le

d
on

 a
 h

os
t

PC
 r

un
ni

ng
 a

n
un

su
pp

or
te

d
O

S.

K
no

w
n

is
su

es
 a

nd

w
or

ka
ro

un
ds

8§
11

.4
.4

.2
.e

K
no

w
n

is
su

es
 a

t
th

e
po

in
t

of
 r

el
ea

se
 a

re
 d

oc
um

en
te

d
in

 t
he

 A
SC

ET
 R

el
ea

se
 N

ot
es

.

K
no

w
n

is
su

es
 id

en
tif

ie
d

af
te

r
re

le
as

e,
 t

og
et

he
r

w
ith

 w
or

ka
ro

un
ds

 w
he

re
 a

pp
ro

pr
ia

te
, a

re

in
fo

rm
ed

 o
f

ne
w

 K
IR

s
by

 e
m

ai
l.

A
ll

K
IR

s
ar

e
pu

bl
ic

ly
 a

va
ila

bl
e

fr
om

 h
tt

p:
//w

w
w

.e
ta

s.
co

m
/k

ir .

C
rit

ic
al

 is
su

es
 id

en
tif

ie
d

in
 a

 re
le

as
ed

 p
ro

du
ct

 a
re

 p
at

ch
ed

 w
ith

 "
H

ot
 F

ix
es

".
 U

se
rs

 a
re

 in
fo

rm
ed

of

 n
ew

 h
ot

 f
ix

es
 b

y
em

ai
l.

A
ll

ho
t

fix
es

 a
re

 a
va

ila
bl

e
fo

r
do

w
nl

oa
d

fr
om

 t
he

 E
TA

S
do

w
nl

oa
d

ce
nt

er
 h

tt
p:

//w
w

w
.e

ta
s.

co
m

/e
n/

pr
od

uc
ts

/d
ow

nl
oa

d_
ce

nt
er

.p
hp

.

R
eq

u
ir

em
en

t
sy

n
o

p
si

s
IS

O
26

26
2

R
ef

er
en

ce
A

SC
ET

 E
vi

d
en

ce
ASCET V6.2 - Getting Started 125

http://www.etas.com/kir
http://www.etas.com/en/products/download_center.php

126

Appendix C: Tool Classification for ISO26262 ETAS
D
et

ec
tio

n
of

 e
rr

on
eo

us

ou
tp

ut
8§

11
.4

.4
.2

.f
A

SC
ET

 g
en

er
at

es
 w

ar
ni

ng
s

to
 d

ra
w

 y
ou

r
at

te
nt

io
n

to
 a

sp
ec

ts
 o

f
th

e
m

od
el

 t
ha

t
do

 n
ot

 p
re

ve
nt

co

de
 g

en
er

at
io

n
fr

om
 c

om
pl

et
in

g
su

cc
es

sf
ul

ly
, b

ut
 m

ay
 n

ot
 r

ef
le

ct
 t

he
 in

te
nt

io
n

of
 d

es
ig

n.

A
n

ad
di

tio
na

l d
eg

re
e

of
 s

af
et

y
ca

n
be

 a
ch

ie
ve

d
by

 p
ro

m
ot

in
g

w
ar

ni
ng

s
to

 e
rr

or
s,

 t
he

re
by

 s
to

p-
pi

ng
 A

SC
ET

 f
ro

m
 g

en
er

at
in

g
co

de
 if

 a
ny

 p
ro

m
ot

ed
 w

ar
ni

ng
 o

cc
ur

s.

A
SC

ET
 is

 te
st

ed
 e

xt
en

si
ve

ly
 b

ef
or

e
re

le
as

e
in

 a
n

ef
fo

rt
 to

 m
in

im
iz

e
co

de
 g

en
er

at
io

n
er

ro
rs

. H
ow

-
ev

er
, i

t
is

 r
ec

om
m

en
de

d
th

at
 t

he
 d

ev
el

op
m

en
t

pr
oc

es
s

in
 w

hi
ch

 A
SC

ET
 is

 u
se

d
in

cl
ud

es
 s

uf
fi-

ci
en

t
m

ea
su

re
s

to
 e

ns
ur

e
th

at
 n

o
po

te
nt

ia
l e

rr
or

 g
oe

s
un

ch
ec

ke
d.

 A
 d

ev
el

op
m

en
t

pr
oc

es
s

co
m

pl
yi

ng
 w

ith
 t

he
 v

er
ifi

ca
tio

n
re

qu
ire

m
en

ts
 in

 IS
O

26
26

2
8§

9
sh

ou
ld

 b
e

su
ff

ic
ie

nt
.

R
eq

u
ir

em
en

t
sy

n
o

p
si

s
IS

O
26

26
2

R
ef

er
en

ce
A

SC
ET

 E
vi

d
en

ce
ASCET V6.2 - Getting Started

ETAS ETAS Contact Addresses
9 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team
and product hotlines, take a look at the ETAS website:

Borsigstraße 14 Phone: +49 711 89661-0

70469 Stuttgart Fax: +49 711 89661-106

Germany WWW: www.etas.com

ETAS subsidiaries WWW: www.etas.com/en/contact.php

ETAS technical support WWW: www.etas.com/en/hotlines.php
ASCET V6.2 - Getting Started 127

http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etas.com
http://www.etas.com/en/contact.php
http://www.etas.com/en/hotlines.php

128

ETAS Contact Addresses ETAS
ASCET V6.2 - Getting Started

ETAS Index
Index

A
application mode 105
Arithmetic

fixed-point 24
ASAM-MCD-2MC file 105
ASCET

in production environment 28

B
black icons 114
block diagram 31

C
C code 105

class 25
module 25

calibration windows 105
characteristic line 106
characteristic map 106
characteristic value 106
class 18, 106

C code 25
tutorial 49

Closed-Loop Simulation 20
component 106
Component Manager 106
condition 106
Constant 106
Container 106

Continuous time blocks 19
tutorial 73

Control algorithm
Classes 18
Classes in modules 19
Continuous time blocks 19
development 16
ECU integration 22
Implementation 22
Modules 18
Parameters 19
Projects 20
Rapid Prototyping 20
Reuse 25
Software realization 17

Conversion
Floating-point to fixed-point 22

D
data 106
data generator 106
data logger 107
data set 107
database 107, 112
description file 107
diagram 107
dimension 107
Distribution 107
ASCET V6.2 - Getting Started 129

130

Index ETAS
E
editor 107
element 107
error

continue 114
exit 114
support function "Problem

Report" 113
System Error window 113
what to do in case of ~ 113

ETAS Contact Addresses 127
event 107
event generator 107
experiment 107

implementation 26
object-based controller

implementation 26
physical 26
quantized 26

experiment environment 108
Experimenting 42

F
features 13

ASCET-DIFF 14
ASCET-MD 13
ASCET-RP 14
ASCET-SCM 14
ASCET-SE 14

fixed point code 108
Fixed-point arithmetic 24
Floating-point to fixed-point

conversion 22
folder 108
formula 108
fullpass experiment 108

G
General Operation

monitor window 11
supporting functions 11

Glossary 103–112

H
HEX file 108
hierarchy 108

I
icon 108
implementation 108
implementation experiment 26
Intel Hex 109

interface 109

K
kind 109

L
layout 109
literal 109

M
measure 109
measure window 109
measured signal 109
measurement 109
measuring channel parameters 109
message 110
methods 110
Model conversion 29
model type 110
Model-based design 16–27

Control algorithm
development 16

module 18, 110
C code 25
tutorial 58

monitor 110
Motorola-S-Record 110

O
object-based controller implementa-

tion experiment 26
Oscilloscope 110

P
parameter 19, 111
physical experiment 26
priority 111
problem

black icons 114
Problem Report 113
process 111
Process model 79
Product liability disclaimer 7
Production environment 28

Model conversion 29
program 111
program description 111
project 20, 22, 111

for embedded microcontrollers 25
Reuse control algorithm 25
tutorial 62
ASCET V6.2 - Getting Started

ETAS Index
Q
quantized experiment 26

R
Rapid Prototyping 20

Projects 22
Realtime-IO module 22

resource 111

S
Safety Instructions

technical state 7
scheduling 111
scope 111
state 111
State machine 87, 92, 111

Hierarchical 96
support function "Problem Report"

113

T
target 112
task 112
Technical system architecture

test in lab 27
test in vehicle 27

Tool Classification for ISO26262 123–
126

Transition 112
Tutorial 31–102

Continuous time system 73
Controller 58
Experimenting 42
extend project 66
Hierarchical state machines 96
Module 58
Process model 79
Project 62
Reusable component 49
Simple block diagram 31
State machines 87

type 112

U
user profile 112

V
variables 112

W
window elements 112
ASCET V6.2 - Getting Started 131

132

Index ETAS
ASCET V6.2 - Getting Started

	ASCET V6.2
	1 Introduction
	1.1 Safety Advice
	1.1.1 Correct Use
	1.1.2 Labeling of Safety Instructions
	1.1.3 Demands on the Technical State of the Product

	1.2 System Information
	1.3 User Information
	1.3.1 User Profile
	1.3.2 Documentation Structure
	1.3.3 How to Use this Manual

	1.4 Supporting Functions
	1.4.1 Monitor Window
	1.4.2 Keyboard Assignment
	1.4.3 Manuals and Online Help

	2 Overview
	2.1 Features at a Glance
	2.1.1 ASCET-MD
	2.1.2 ASCET-RP
	2.1.3 ASCET-SE
	2.1.4 ASCET-SCM
	2.1.5 ASCET-DIFF

	3 Embedded Automotive Control Software Development with ASCET
	3.1 Model-Based Design
	3.1.1 Control Algorithm Development
	3.1.2 Rapid Prototyping
	3.1.3 Implementation and ECU Integration of Control Algorithms
	3.1.4 Reuse of the Control Algorithm in Different Kinds of Projects
	3.1.5 Testing the Technical System Architecture in the Lab
	3.1.6 Testing and Honing of the Technical System Architecture in the Vehicle

	3.2 Using ASCET in a Production Environment
	3.2.1 Model Conversion

	3.3 Summary

	4 Tutorial
	4.1 A Simple Block Diagram
	4.1.1 Preparatory Steps
	4.1.2 Specifying a Class
	4.1.3 Summary

	4.2 Experimenting with Components
	4.2.1 Starting the Experimentation Environment
	4.2.2 Setting up the Experimentation Environment
	4.2.3 Using the Experimentation Environment
	4.2.4 Summary

	4.3 To Specify a Reusable Component
	4.3.1 Creating the Diagram
	4.3.2 Experimenting with the Integrator
	4.3.3 Summary

	4.4 A Practical Example: Controller
	4.4.1 Specifying the Controller
	4.4.2 Experimenting with the Controller
	4.4.3 A Project
	4.4.4 To Set Up the Project
	4.4.5 Experimenting with the Project
	4.4.6 Summary

	4.5 Extending the Project
	4.5.1 Specifying the Signal Converter
	4.5.2 Experimenting with the Signal Converter
	4.5.3 Integrating the Signal Converter into the Project
	4.5.4 Summary

	4.6 Modeling a Continuous Time System
	4.6.1 Motion Equation
	4.6.2 Model Design
	4.6.3 Summary

	4.7 A Process Model
	4.7.1 Specifying the Process Model
	4.7.2 Integrating the Process Model
	4.7.3 Summary

	4.8 State Machines
	4.8.1 Specifying the State Machine
	4.8.2 How a State Machine Works
	4.8.3 Experimenting with the State Machine
	4.8.4 Integrating the State Machine in the Controller
	4.8.5 Summary

	4.9 Hierarchical State Machines
	4.9.1 Specifying the State Machine
	4.9.2 Experimenting with the Hierarchical State Machine
	4.9.3 How Hierarchical State Machines Work
	4.9.4 Summary

	5 Glossary
	5.1 Abbreviations
	5.2 Terms

	6 Appendix A: Troubleshooting ASCET Problems
	6.1 Support Function for Feedback to ETAS in Case of Errors
	6.2 Black Icons in ASCET

	7 Appendix B: Troubleshooting General Problems
	7.1 Problems and Solutions
	7.1.1 Network Adapter cannot be selected via Network Manager
	7.1.2 Search for Ethernet Hardware fails
	7.1.3 Personal Firewall blocks Communication

	8 Appendix C: Tool Classification for ISO26262
	9 ETAS Contact Addresses
	Index

