
INTECRIO-ASC V6.2
User’s Guide

2

Copyright

The data in this document may not be altered or amended without special noti-
fication from ETAS GmbH. ETAS GmbH undertakes no further obligation in rela-
tion to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license. Using
and copying is only allowed in concurrence with the specifications stipulated in
the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2013 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document EC011101 V6.2 R01 EN - 05.2013

Contents

ETAS Contents
1 Introduction . 7
1.1 Safety Advice . 7

1.1.1 Correct Use . 7
1.1.2 Labeling of Safety Instructions . 7
1.1.3 Demands on the Technical State of the Product. 8

1.2 Components . 8
1.3 Installation . 9
1.4 Manual Structure . 9
1.5 Conventions . 10

1.5.1 Documentation Conventions . 10
1.5.2 Typographic Conventions . 10

2 Configuring Experimental Targets . 11
2.1 The Hardware Options . 11
2.2 Hardware Connection with the ETAS Network Manager 13

2.2.1 The Hardware Selection Window . 14
2.3 Interface Setup Without ETAS Network Manager (ES1000 Only) 17
2.4 Selecting a Compiler . 18

2.4.1 Using Your Own Compiler. 18
2.4.2 Changing to the GNU Cross Compiler or QCC Compiler 19

2.5 Hints on Using INTECRIO-ASC . 21
2.5.1 Preprocessing Available Data Bases . 21
2.5.2 Converting Projects for ES1000.1 to a Supported Target 21
2.5.3 Using dT . 22

3 Hardware Systems . 25
3.1 Hardware – ES1000.x Experimental System . 25
3.2 ES900 Experimental System . 26
3.3 RTPRO-PC Experimental System . 29
ASCET-SE V6.2 - User’s Guide 3

4

Contents ETAS
3.3.1 Startup . 30
3.3.2 Configuring RTPRO-PC . 30

3.4 Special Features of the ES1135 . 32
3.4.1 Watchdog . 32
3.4.2 LEDs . 34
3.4.3 Cache-Locking. 34

3.5 Non-Volatile RAM (NVRAM) . 38
3.5.1 Basics . 38
3.5.2 Hardware Support . 39
3.5.3 NV Variable Initialization and Update. 41
3.5.4 Data Consistency. 41
3.5.5 NVRAM Cockpit . 43
3.5.6 Tips . 45

4 Experimenting with INTECRIO . 47
4.1 Project Transfer to INTECRIO . 47
4.2 The INTECRIO Experiment . 55
4.3 The Back-Animation . 56
4.4 ASCET and SCOOP-IX . 61

5 Tutorial – Experimenting with INTECRIO . 67
5.1 Preparations . 67
5.2 Transferring the Project . 70
5.3 Experimenting in INTECRIO . 71
5.4 Using Back-Animation . 73

6 Appendix A: Compiler Switches and API Functions . 77
6.1 Compiler Switches for External C Code . 77
6.2 API Functions (ERCOSEK) . 77

6.2.1 Application Modes . 79
6.2.2 Tasks . 80
6.2.3 System Time . 81
6.2.4 Interrupt Handling. 82
6.2.5 dT Query . 83

6.3 API Functions (NVRAM) . 84
6.4 API Functions (Watchdog) . 90

6.4.1 Watchdog Configuration. 91
6.4.2 Watchdog Service . 94
6.4.3 Interrupt Control . 95
6.4.4 Watchdog Status. 96

6.5 API Functions (ES1135 LEDs) . 97
6.6 API Functions (Miscellaneous) . 98

7 ETAS Network Manager . 99
7.1 Overview . 99
7.2 ETAS Hardware Addressing . 99
7.3 Network Adapter Addressing . 100

7.3.1 Type of Network Adapter Addressing . 100
7.3.2 Addressing the Network Adapter Manually 100
7.3.3 Addressing the Network Adapter via DHCP 100
ASCET-SE V6.2 - User’s Guide

ETAS Contents
7.4 User Interface . 101
7.4.1 "Network settings for ETAS hardware (Page 1)" Dialog Window . 101
7.4.2 "Network settings for ETAS hardware (Page 2)" Dialog Window . 103
7.4.3 "Network settings for ETAS hardware (Page 4)" Dialog Window . 104

7.5 Configuring Network Addresses for ETAS Hardware 104
7.5.1 Adapter with Fixed IP Address . 104
7.5.2 Adapter in DHCP Environment. 106

7.6 Troubleshooting Ethernet Hardware Access . 107

8 Troubleshooting General Problems . 109
8.1 Problems and Solutions . 109

8.1.1 Network Adapter cannot be selected via Network Manager. 109
8.1.2 Search for Ethernet Hardware fails. 110
8.1.3 Personal Firewall blocks Communication 112

9 ETAS Contact Addresses . 117

Index . 119
ASCET-SE V6.2 - User’s Guide 5

6

Contents ETAS
ASCET-SE V6.2 - User’s Guide

ETAS Introduction
1 Introduction

The INTECRIO ASCET Connector (INTECRIO-ASC) is an add-on product to ASCET
and INTECRIO or higher. It contains everything required for a successful linking
of ASCET models in INTECRIO for integration and rapid prototyping.

During the installation of INTECRIO-ASC, the required files and settings are auto-
matically inserted in the existing ASCET installation. These files and settings have
the following tasks:

• Selection of INTECRIO-ASC as rapid prototyping environment in the
ASCET project editor.

• Provision of a special code generation for INTECRIO in which all required
files (C code, ASAM-MCD-2MC file, SCOOP-IX description file) are cre-
ated.

• If the ASCET code generation for INTECRIO is used, automatic import of
the project in INTECRIO.

• Adjusting the handling of non-resolved global variables and messages to
the needs of INTECRIO.

• Providing options for the migration of existing projects.

• Providing the option of performing the integration in an INTECRIO system
directly from ASCET.

• Providing the option for back animation of an ASCET model during the
experiment.

Back animation means that the model variables can be measured and cal-
ibrated directly from within the ASCET model.

INTECRIO-ASC V6.2 supports ASCET V6.2 and INTECRIO V4.0 or higher.

1.1 Safety Advice

Please adhere to the Product Liability Disclaimer (ETAS Safety Advice) and to the
following safety instructions to avoid injury to yourself and others as well as dam-
age to the device.

1.1.1 Correct Use

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety instructions.

1.1.2 Labeling of Safety Instructions

The safety instructions contained in this manual are shown with the standard
danger symbol shown below:
INTECRIO-ASC V6.2 - User’s Guide 7

8

Introduction ETAS
The following safety instructions are used. They provide extremely important
information. Read this information carefully.

1.1.3 Demands on the Technical State of the Product

The following special requirements are made to ensure safe operation:

• Take all information on environmental conditions into consideration
before setup and operation (see the documentation of your computer,
hardware, etc.).

Further safety advice is given in the ASCET V6.2 safety manual (ASCET Safety
Manual.pdf) available on your installation disk, in the ETASManuals\ASCET
V6.2 folder on your computer or in the download center of the ETAS web site.

1.2 Components

The INTECRIO-ASC installation includes the following components:

WARNING!

Indicates a possible medium-risk danger which could lead to serious
or even fatal injuries if not avoided.

CAUTION!

Indicates a low-risk danger which could result in minor or less serious
injury or damage if not avoided.

NOTICE

Indicates behavior which could result in damage to property.

WARNING!

Wrongly initialized NVRAM variables can lead to unpredictable
behavior of a vehicle or a test bench, and thus to safety-critical
situations.

Projects that use the NVRAM possibilities expect a user-defined INIT
process that checks whether all NV variables are valid for the current
project, both individually and in combination with other NV variables.
If this is not the case, all NV variables have to be initialized with their
(reasonable) default values.

Due to the NVRAM saving concept, this is absolutely necessary
when projects are used in environments where any harm to people
and equipment can happen when unsuitable initialization values are
used (e.g. in-vehicle-use or at test benches).
INTECRIO-ASC V6.2 - User’s Guide

ETAS Introduction
• Integration of the targets Prototyping, ES1130, ES11351, ES910 and
RTPRO-PC;

• GNU and QCC compilers;

• Documentation and example.

1.3 Installation

The INTECRIO-ASC software is supplied on an installation disk. Before installing
INTECRIO-ASC V6.2 on your PC you have to install ASCET V6.2. You can use
INTECRIO-ASC to generate code for INTECRIO, even if INTECRIO is not installed
on your computer.

First, start the installation programs ASCET.exe and ASCET-MD.exe. Con-
tinue with the installation program INTECRIO-ASC.exe from the CD-ROM.
Finally, obtain a license file.

When you try to install INTECRIO-ASC before the ASCET base system or
ASCET-MD, the following error messages are displayed.

The installation is aborted. The installation is also aborted when ASCET-RP is
found on your PC, because ASCET-RP covers the complete functionality of
INTECRIO-ASC V6.2.

Further details on the INTECRIO-ASC V6.2 installation can be found in the release
note.

Details on licensing are given in chapter 3 "Licensing" of the the ASCET installa-
tion guide.

Sample Files

After the installation of INTECRIO-ASC V6.2, the sample database exported from
ASCET is located in the EXPORT directory of your ASCET installation in the
Tutorial INTECRIO.* (* = .exp or *.axl) file.

1.4 Manual Structure

The INTECRIO-ASC V6.2 user’s guide consists of two main sections:

• General Section

• Tutorial

The general section is intended for all users of INTECRIO-ASC V6.2. Here, the
users find information about the structure, installation and usage of INTECRIO-
ASC V6.2.

The tutorial contains a lesson about experimenting with INTECRIO.

1. The term ES113x is used throughout this manual for an arbitrary ES1000 sys-
tem controller.
INTECRIO-ASC V6.2 - User’s Guide 9

10

Introduction ETAS
1.5 Conventions

1.5.1 Documentation Conventions

Instructions are phrased in a task-oriented format as shown in the following
example:

To reach a goal:

• Execute operation 1.

Explanations are given below an operation.

• Execute operation 2.

• Execute operation 3.

In this manual, an action is a sequence of operations that need to be executed in
order to reach a certain goal. The title of an action usually expresses the result of
the operations, such as "To create a new component" or "To rename an item".
The action descriptions often include screenshots of the corresponding ASCET
window or dialog window related to the action.

1.5.2 Typographic Conventions

The following typographic conventions are used throughout this manual:

Important notes for the users are presented as follows:

Select File  Open. Menu options are shown in boldface/blue.

Click OK. Buttons are shown in boldface/blue.

Press <ENTER>. Keyboard commands are shown in angled
brackets, in block capitals.

The "Open File" dialog window
opens.

Names of program windows, dialog windows,
fields, etc. are enclosed in double quotes.

Select the setup.exe file. Text in combo boxes on the screen, program
code, as well as path and file names are shown
in Courier font.

A distribution is always a one-
dimensional table of sample
points.

Emphasized text portions and newly intro-
duced terms are printed in italic font face.

The OSEK group (see http://
www.osekvdx.org/) has devel-
oped certain standards.

Links to internet documents are set in blue,
underlined font.

Note

Important note for the user.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Configuring Experimental Targets
2 Configuring Experimental Targets

INTECRIO-ASC offers code generation for the Prototyping, ES113x, ES910 and
RTPRO-PC targets incl. SCOOP-IX and ASAM-2MC files, transfer to ASCET and
back-animation of the ASCET model (after INTECRIO download).

INTECRIO-ASC V6.2 contains the tools required for producing the files required
for the integration of the project with INTECRIO. The target itself can be selected
in the target options of the project. That way the targets are fully integrated into
ASCET.

The configuration of the compiler and the linker, as well as the description of the
interface to the actual target hardware is not described in ASCET directly, but
either with the help of the ETAS Network Manager or with the help of *.ini
files. Chapter 2.1 describes the hardware options of INTECRIO-ASC, hardware
connection via the ETAS Network Manager is described in chapter 2.2.
Chapter 2.3 describes the configuration of the host interface via changes in
target.ini, as well as the configuration of the ethernet interface.

Chapter 2.4 describes the selection of the compiler, and chapter 2.5 gives some
hints on using INTECRIO-ASC.

Structure of the Target Directories

Installing INTECRIO-ASC V6.2 results in a target directory with three subdirecto-
ries being created in the ASCET directory. These subdirectories contain target-
specific information, configuration and library files. The following table shows
the both subdirectories:

The ...\Target\ES113x directory contains files used by both ES1000 simu-
lation nodes, e.g. compiler-specific make files.

All makefiles and build scripts support paths with blanks.

• If a path containing blanks is to be used in a makefile, ASCET converts it
to short Windows format (for example, c:\Documents and Set-
tings would be converted to c:\DOCUME~1).

• If a path containing blanks is to be used in a batch file, ASCET generates
it encapsulated in ", or converts it to short Windows format.

It is not necessary to change the target root path in the ASCET options window
to correspond to the target.

2.1 The Hardware Options

INTECRIO-ASC adds the "Hardware" node and its subnodes to the ASCET option
window for easy setting of the interface.

ASCET Subdirectory E-Target Computer Node

..\Target\ES1130 ES1000.2/ES1000.3a ES1130

..\Target\ES1135 ES1000.2/ ES1000.3 ES1135

..\Target\ES910 ES910.2/ES910.3 ES910

..\Target\QNx86 RTPRO-PC RTPRO-PC

..\Target\Prototyping (determined in INTECRIO)

a: The terms ES1000 or ES1000.x are used in this manual, unless a particular
target is meant.
INTECRIO-ASC V6.2 - User’s Guide 11

12

Configuring Experimental Targets ETAS
For INTECRIO-ASC, only the "Hardware Connection" node is relevant. In that
node, you can specify the following options. It is suggested that you select the
item you use most frequently.

• Check HW connection before Build

Use this option to determine whether, upon starting an experiment
(Open Experiment), the hardware search is performed before and after
(activated, default) or only after the build process. If no suitable hardware
is detected, an error message occurs.

When the option is activated, you can correct the error by adding a suit-
able hardware without losing the time for the build process.

When the option is deactivated, you can perform the build process with-
out an error message, despite missing hardware.

• Use ETAS Network Manager (enables ’Select Hardware’)

Use this option to determine whether the ETAS Network Manager
(chapter 7) is used (activated, default) or not.

When the option is activated, the Select Hardware button and the
Tools  Select Hardware menu option in the project editor become
available.

• Skip HW selection if exactly one matching target instance found

Available only when you are using the ETAS Network Manager.

When this option is activated (default), the "Experimental Target Hard-
ware Selection" window does not open when only one hardware, which
matches the project, is found upon experiment start.

Note

To work with the ES910 or RTPRO-PC, you must use the ETAS Network
Manager.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Configuring Experimental Targets
When this option is deactivated, the next option determines whether the
"Experimental Target Hardware Selection" window opens each time you
start an experiment. This window offers all experimental targets con-
nected to your PC for selection.

• Skip HW selection if last used target instance found

Available only when you are using the ETAS Network Manager.

When this option is activated (default), "Experimental Target Hardware
Selection" window does not open when only that hardware which was
last used with the project is found upon experiment start.
When this option is deactivated, the previous option determines whether
the "Experimental Target Hardware Selection" window opens each time
you start an experiment.

• Edit Network Settings

This link opens the ETAS Network Manager (see chapter 7).

• HW connection

Available only when you are not using the ETAS Network Manager.

In this combo box, you select whether the ES1000 and your PC are, by
default, connected via the ES1120 control unit (Indirect (ES1120),
default) or via the ES113x simulation computer (Direct (ES113x)).

• Try alternative HW connection

Available only when you are not using the ETAS Network Manager.

Use this option to determine whether a connection to both the device
selected in the "HW connection" combo box and the other device (acti-
vated, default) or only to the selected device (deactivated) is to be
searched.

2.2 Hardware Connection with the ETAS Network Manager

The ETAS Network Manager offers several advantages for the hardware connec-
tion.

• You can use a single network adapter for the ETAS hardware and our
company network.

• You can assign individual network addresses.

Working with the ETAS Network Manager is described in chapter 7. Here, you
find information regarding hardware connection using the EAS Network Man-
ager.

To activate ETAS Network Manager usage:

• In the component manager or in the project editor,
select Tools  Options.

The "Options" dialog window opens.

• Open the "Hardware\Hardware Connection" node.
INTECRIO-ASC V6.2 - User’s Guide 13

14

Configuring Experimental Targets ETAS
• Activate the Use ETAS Network Manager
(enables ’Select Hardware’) option.

If only this option is activated, the hardware selec-
tion window "Experimental Target Hardware
Selecvtion" window opens at each experiment
start.

• Activate the Skip HW selection if * options to skip
the hardware selection window under the respec-
tive conditions.

• Activate the Check HW connection before Build
if the hardware search is to be performed before
the build process.

In addition to this automatic, you can open the "Experimental Target Hardware
Selection" window from the project editor at any time.

To open the hardware selection window manually:

• Select Tools  Select Hardware

or

• click on the Select Hardware button.

The hardware selection window opens.

2.2.1 The Hardware Selection Window

The hardware selection window, named "Experimental Target Hardware Selec-
tion", contains the following elements:

Note

The Select Hardware button and the Tools  Select Hardware menu
option are only available when the Use ETAS Network Manager (enable
’Select Hardware’) option is activated.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Configuring Experimental Targets
• Field "Select simulation board of type <type>"1

This field displays, below the main entry HWC (symbol), all simulation
controllers (ES113x, ES910 or RTPRO-PC – symbol) connected with the
PC.
The simulation controller label contains, in addition to the controller
name, further information; see page 15. Available ES1000 boards (symbol

) are displayed below the simulation controller; the ES910 and
RTPRO-PC interfaces are not visible in this window.

For the experiment, select the simulation controller you have entered in
the code generation options of your project.

• Options Skip HW selection if exactly one matching target instance
found and Skip HW selection if last used target instance found

These options offer the same functionality as the identical options in the
"Hardware" tab of the ASCET option window (see chapter 2.1).
The settings performed here are transferred to the "Hardware" node and
vice versa.

• Button Set Alias Name

You can use this button to assign an arbitrary name to the ES113x or
ES1120 or ES910 or RTPRO-PC.

• Button Refresh

This button updates the "Select simulation board of type <type>" field.
Hardware newly connected or switched on is displayed afterwards, hard-
ware that was removed or switched off, disappears from the display.

• Buttons OK and Cancel

Click OK to accept the selection, or Cancel to close the hardware selec-
tion window without accepting the selection.

If an ES1000 simulation controller is directly connected to the PC, its entry in the
"Select simulation board of type <type>" field looks as follows:

ES113x - Name:<alias> - SN:<serial number> - 
IP:<IP address> - <direct> - ES1120 present 
[<SW>, <syslib version>, <boot mode>, 
ProgID=<ID>]

• ES113x is the simulation controller label.

• Name:<alias> is the optional name you can assign to the simulation
controller.
If you do not specify a name, this part is absent.

• SN:<serial number> is the serial number of the ES113x.

• IP:<IP address> is the IP address of the ES113x.

• <direct> indicates that the ES113x is connected directly to the PC.

• ES1120 present indicates that the ES1000 contains an unconnected
ES1120.
If the ES1000 contains no ES1120, this part is absent.

1. The name element <type> is determined by the target selected in the respec-
tive project.
INTECRIO-ASC V6.2 - User’s Guide 15

16

Configuring Experimental Targets ETAS
• <SW> is the software you used to load a program to the ES1000 (e.g.,
ASCET or INTECRIO).

• <syslib version> is the version of the hardware system library in use.

• <boot mode> indicates whether the project was started from the Flash
memory when the ES1000 was switched on (ROM), or whether a down-
load followed power-on (RAM).

• ProgID=<ID> is the identifier <ID> assigned to the project by the soft-
ware <SW>.

If an ES1000 simulation controller is indirectly connected to the PC, i.e. via
ES1120, its entry in the "Select simulation board of type <type>" field looks as
follows:

ES113x - <indirect via ES1120 - Name:<alias> - 
SN:<serial number> - IP:<IP address>> 
[<SW>, <syslib version>, <boot mode>, ProgID=<ID>]

• ES113x is the simulation controller label.

• <indirect via ES1120 ...> indicates that the ES113x is connected
indirectly to the PC.

• Name:<alias> is the optional name you can assign to the ES1120.

• SN:<serial number> is the serial number of the ES1120.

• IP:<IP address> is the IP address of the ES1120.

• <SW>, <syslib version>, <boot mode> and ProgID=<ID> have
the same meaning as the identical parts in a direct connection.

If an ES900 simulation controller is connected to the PC, its entry in the "Select
simulation board of type <type>" field looks as follows:

ES910 - Name:<alias> - SN:<serial number> - 
IP:<IP address> [<SW>, <syslib version>, 
<boot mode>, ProgID=<ID>]

• ES910 is the simulation controller label.

• Name:<alias> is the optional name you can assign to the ES910.

• SN:<serial number> is the serial number of the ES910.

• IP:<IP address> is the IP address of the ES910.

• <SW>, <syslib version>, <boot mode> and ProgID=<ID> have
the same meaning as the identical parts in an ES1000 direct connection
(see page 16).

If RTPRO-PC is used as simulation controller, its entry in the "Select simulation
board of type <type>" field looks as follows:

RTPRO-PC - Name:<alias> - SN:<serial number> - 
IP:<IP address> - <direct> - 
[<SW>, <syslib version>, <boot mode>, ProgID=<ID>]

• RTPRO-PC is the simulation controller label.

• Name:<alias> is the optional name you can assign to RTPRO-PC.

• SN:<serial number> is the serial number of RTPRO-PC.

• IP:<IP address> is the IP address of RTPRO-PC.

• <direct> indicates that RTPRO-PC is connected directly to the PC.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Configuring Experimental Targets
• <SW>, <syslib version>, <boot mode> and ProgID=<ID> have
the same meaning as the identical parts in an ES1000 direct connection
(see page 16).

2.3 Interface Setup Without ETAS Network Manager (ES1000 Only)

For special ES1000 use cases, INTECRIO-ASC offers the possibility to work with-
out the ETAS Network Manager, in accordance with previous versions. The eth-
ernet interface is set up for ASCET in the target.ini file of the target you are
using. The files are located in the ..\Target\ES1130 or ..\Target\
ES1135 directory.

To determine the ES1000 connection:

• In the Component Manager, select Tools 
Options.

The "Options" dialog window opens.

• Open the "Hardware\Hardware Conenction" node.

The options are described in chapter 2.1.

• Deactivate the Use ETAS Network Manager
(enables ’Select Hardware’) option.

• In the "HW connection" combo box, select the
appropriate entry for your ES1000.

• Activate the Try alternative HW connection
option when a connection to both the device
selected in the "HW connection" combo box and
the other device is to be searched.

When the option is deactivated, only a connection
to the selected device is searched.

• Activate the Check HW connection before Build
if the hardware search is to be performed before
and after the build process.

When the option is deactivated, the hardware
search is performed only after the build process.

• Finally, click OK to accept your settings.

Depending on your selection, a particular IP address variable from the respective
target.ini file in the target subirectory (..\Target\ES1130 or ..\Tar-
get\ES1135) is used for the ASCET experiment environment

• If the ASCET host PC is connected to the control unit (ES1120) of the
ES1000.x, the following variable is used:

– ES1130

IndirectIpAddress=192.168.40.10
;Default IP-Address for ES1120.x

– ES1135

IndirectIpAddress=192.168.40.10
;Default IP-Address for ES1120.x

• If the ASCET host PC is connected to the computer node (ES1130) of the
ES1000.x, the following variable is used:
INTECRIO-ASC V6.2 - User’s Guide 17

18

Configuring Experimental Targets ETAS
– ES1130

DirectIpAddress=192.168.40.11
;Default IP-Address for ES1130.x

– ES1135

DirectIpAddress=192.168.40.15
;Default IP-Address for ES1135.1

2.4 Selecting a Compiler

The GNU Cross Compiler (GNU-C V3.4.4 (Power PC) in the user interface)
is integrated in INTECRIO-ASC for the Prototyping and ES113x targets. The QCC
compiler (QCC V6.5.0 in the user interface) is integrated in INTECRIO-ASC for
the ES910 and RTPRO-PC target.

Tab. 2-1 Target/Compiler Overview

For each compiler, version-specific make files are provided in the ..\Target\
Prototyping\trgmake or ..\Target\ES113x\trgmake or
..\Target\ES910\trgmake or ..\Target\QNx86\trgmake directory.
Version-independent settings, which are included in the specific make files, are
stored in the files named settings_<compiler>_common.mk. In these files,
you can set separate compiler options for module code, project code and init
code. The following section in the make files is provided for that purpose:

Compilation settings for different lists of files

FILES_MODULES_INV = $(CC_INV) 
#Add specific options here

FILES_PROJECT_INV = $(CC_INV) 
#Add specific options here

FILES_INIT_INV = $(CC_INV) 
#Add specific options here

Precompiling C header files used by many C code files can significantly speed up
the compilation process. The GNU Cross Compiler, V3.4 and higher, supports
usage of precompiled headers. Only one precompiled header file can be used per
compilation. Therefore, Project should be selected in the "Build" node of the
project settings, to use precompiled headers as effectively as possible. Using pre-
compiled headers is activated automatically (ASCET options window, "GNU-C
V3.4.4 (PowerPC)" node, Supports precompiled header option).

2.4.1 Using Your Own Compiler

The MS-DOS version of the GNU Cross Compiler and the QCC compiler are sup-
plied as a standard parts of the INTECRIO-ASC V6.2 package.

Target Compiler

Prototyping, ES1130, ES1135 GNU Cross Compiler

ES910, RTPRO-PC QCC compiler
INTECRIO-ASC V6.2 - User’s Guide

ETAS Configuring Experimental Targets
If you want to use your own compiler, you have to reset the path of the GNU-C
V3.4.4 (PowerPC) or QCC V6.5.0 compiler to the new compiler in the
ASCET options dialog.

2.4.2 Changing to the GNU Cross Compiler or QCC Compiler

If you are working with an older project that uses the ES1130 target with the
Diab Data compiler, no error message is shown when you open the project. Only
the generation of executable code produces an error message in the ASCET
monitor window.

When you double-click the error message, the ASCET options window opens in
the "Build" node. The compiler is marked as undefined and not supported.
INTECRIO-ASC V6.2 - User’s Guide 19

20

Configuring Experimental Targets ETAS
If you are working with an older project that uses the ES1112 target, the follow-
ing error message is displayed when you open the project, and the missing target
is replaced by the target PC.

The required Target >ES1112< is not available! Changed
Target to >PC<!

In both cases, you have to select a suitable combination of target and compiler
for the project. Proceed as follows.

To change to a suitable target/compiler combination:

• In the project editor, click on the Project Proper-
ties button.

The "Project Properties" window opens.

• In the "Build" node, select the target Prototyp-
ing or ES1130 or ES1135 or ES910 or
RTPRO-PC.

A suitable compiler is selected automatically.

• Click OK.

Depending on which target the project used, you
now have to copy the C code, if your project uses
C code blocks. The procedure is described in "To
copy operating system settings and C Code:"
below.

• Finally, select Build  Touch  Recursive so that
all components of the project are recompiled in the
next run.

To copy operating system settings and C Code:

• Select the "OS" tab in the project editor.

• Select Operating System  Copy From Target
from the project editor.

The "Selection Required" window opens.

• From the "Selection Required" window, select the
original target of the old project.

• Click OK.

The operating system code is copied from the old
target to the Prototyping or ES1130 or
ES1135 or ES910 or RTPRO-PC target.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Configuring Experimental Targets
• In the project editor, select Extras  Copy C-Code
From.

The "Selection Required" window opens.

• In the "Selection Required" window, select the
original target, experiment and implementation of
the old project.

• Click OK.

The code is copied from the old target and experi-
ment to the current settings.

2.5 Hints on Using INTECRIO-ASC

2.5.1 Preprocessing Available Data Bases

ASCET databases which were created with ASCET versions prior to V4.x must be
converted to ASCET V4.x before they can be opened and converted with ASCET
V6.2.

2.5.2 Converting Projects for ES1000.1 to a Supported Target

ASCET projects which were created for the ES1000.1 E-target have to be con-
verted to a supported E-target, i.e. ES1000.2, ES1000.3, ES900 or RTPRO-PC.
The following steps have to be executed for the conversion.

To convert an ASCET project for ES1000.1 to a supported target:

• Load the ASCET project.

A message is displayed that the ES1112 target is no
longer available.

• Click OK to confirm the message.

The project opens; the target >PC< is selected
instead of the unavailable target.

Note

Detailed information on converting very old ASCET projects (with TIPExp V3.x
and older, Target PPC) is given in the ASCET online help.
INTECRIO-ASC V6.2 - User’s Guide 21

22

Configuring Experimental Targets ETAS
• Click the Project Properties button.

• In the "Project Properties" window, "Build" node,
select the target Prototyping or ES1130 or
ES1135 or ES910 or RTPRO-PC.

A suitable compiler is selected automatically.

• Click OK to close the "Project Properties" window.

• Copy the operating system settings and C code to
the selected target, as described in "To copy oper-
ating system settings and C Code:" on page 20.

The project can now be edited for the ES1000.2/ ES1000.3, ES900 or RTPRO-PC
system.

2.5.3 Using dT

The ERCOSEK operating system is implemented for the ES113x target. An RTA-
OSEK operating system is implemented for the ES910 and RTPRO-PC targets.
Both operating systems enable access to the time dT which has elapsed between
the last and second last call of the running task. dT always refers to the task in
which the variable is used (see Fig. 2-1).

Fig. 2-1 dT Scheme

dT is a global uint32 variable. It is declared in one of the ERCOSEK or RTA-
OSEK header files and contains the value for the current task in units of system
ticks.

dT can be accessed from ASCET using the dT button in the editors. This enables
you to create an element (real64) which contains the time in units of seconds.

If users do not generate this element in the C code editor, but still accesses dT,
no error message appears because dT is declared in the ERCOSEK/RTA-OSEK files.
But as dT in ERCOSEK/RTA-OSEK and dT in ASCET have different units (system
ticks or seconds respectively), the calculations are incorrect. Users should there-
fore ensure that they generate the corresponding element with the dT button.

A

B

Priority

Time

Task B

Task A

Background

dTB1
dTA3

dTA1 dTA2
INTECRIO-ASC V6.2 - User’s Guide

ETAS Configuring Experimental Targets
In the generated code for experimental targets, access to the global element dT
is indirect: A C code macro is�generated to�access dT.�The name of the macro is
created as follows:

<PROJECTNAME><IMPLEMENTATION>_dTAccess

A default definition of the macro is generated by ASCET which can be replaced
by a user-defined definition.
INTECRIO-ASC V6.2 - User’s Guide 23

24

Configuring Experimental Targets ETAS
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
3 Hardware Systems

The operation of a rapid-prototyping experiment requires an ETAS experimental
system, i.e. one of the following systems:

• ES1000.2

• ES1000.3

• ES900 system (with ES910.2 or ES910.3)

• RTPRO-PC

3.1 Hardware – ES1000.x Experimental System

All ES1000 system controller boards currently available are supported. Fig. 3-1
shows the standard configurations; special configurations are of course possible.

Fig. 3-1 Permissible and Supported System Controller Configurations

Control Unit ES1120 and Simulation Computer ES1130/ES1135

If the ES1000.x is used for application and rapid prototyping simultaneously, the
host PC is connected to the control unit ES1120 via ethernet cable. The functions
developed with ASCET are loaded via the control unit ES1120 onto the PPC mod-
ule ES1130 or ES1135, and then executed. Data can be measured and calibrated
with ASCET while the experiment runs.

Slot 1
(System

Controller)

Slot 1
(System

Controller)

Host
PC

Host
PC

Slot 1
(System

Controller)

Slot 1
(System

Controller)

Host
PC

Host
PC

ES1135.1

1

P0

2

3

A

L

S

L

S

L

S

L

S

M I SF

P1

P2

P3

SER

ES1120.3

PC

SERIAL

ES1135.1

1

P0

2

3

A

L

S

L

S

L

S

L

S

M I SF

P1

P2

P3

SER

ES1130.3

PC

SERIAL

SCD

MSF

MCI

MCD

ES1120.3

PC

SERIAL

ES1130.3

PC

SERIAL

SCD

MSF

MCI

MCD
INTECRIO-ASC V6.2 - User’s Guide 25

26

Hardware Systems ETAS
TCP/IP Protocol Options

To avoid conflicts with a second network card that might be used for the LAN,
the following TCP/IP settings should be selected.

To configure the TCP/IP protocol options:

• Disable the DHCP service.

• Enter the IP address 192.168.40.240.

• Enter the subnet mask 255.255.255.0.

• For the DNS service, use the local settings of your
internal network.

• Disable the WINS service.

• Make sure that the "IP Forwarding" option is not
activated.

3.2 ES900 Experimental System

ES910.2 and ES910.3 devices are supported.

Configuring the ES910

In order to use the ES910, you must adjust the port settings of ES910 via its
graphic user interface. A web browser application is used for that purpose; the
ES910 must be connected to the PC.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
To determine the IP address and open the configuration interface:

An alternative way to open the ES910 user interface is described in the ES910
user’s guide.

• In the Windows system tray, right-click the IP-Man-
ager icon and select Ethernet System Configura-
tion from the context menu.

The "Ethernet System Configuration" window
opens.

The IP address is shown in the "System or Master
view" field.
INTECRIO-ASC V6.2 - User’s Guide 27

28

Hardware Systems ETAS
• Enter this IP address in your web browser to open
the ES910 user interface.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
To configure the ES910:

Master resistor and power supply settings must be adjusted.

• On the start page of the ES910 user interface, fol-
low the link Port Settings below the "Device config-
uration" caption.

• Configure the ports according to your needs.

• Save the configuration.

3.3 RTPRO-PC Experimental System

RTPRO-PC allows the real-time execution of prototyping models on an off-the
shelf notebook. After installation of RTPRO-PC, the system can still be used as a
standard Windows®-only computer, but it has got a second boot option to work
as a combined Windows / prototyping (= real-time) computer.

On the Windows node of the combined mode, standard Windows applications
can be used with slightly less performance than in Windows-only mode.

The real-time node is supported as standard ETAS experimental target with the
following features:

• The RTPRO-PC target is configured and built in INTECRIO-ASC, ASCET-RP
V6.1.3 and higher or INTECRIO V4.1 and higher.
INTECRIO-ASC V6.2 - User’s Guide 29

30

Hardware Systems ETAS
• Experiments can be performed using the ASCET experiment environment,
the INTECRIO experiment environment, or INCA with INCA-EIP V7.0.1 and
higher.

• An internal switch on the real-time node allows ECU access via RTPRO-PC
from INCA.

• Up to four CAN interfaces (via two ES581.3) can be added. Each CAN
interface supports either XCP on CAN or CAN I/O.

• One Ethernet controller is supported. This can be used for XCP bypass on
UDP and XETK. The ethernet controller supports up to four XCP on UDP
interfaces.

The two nodes communicate via a virtual network.

To use the RTPRO-PC experimental system with ASCET-RP, you need a notebook
with ASCET-RP and RRTPRO-PC installations. RTPRO-PC is a separate product
available at ETAS; please contact your local sales representative.

RTPRO-PC is available for the following notebooks:

• HP EliteBook 8540w with Intel® Core™ i7-7xx or -8xx processor and
Mobile Intel® QM57 Express chipset

• HP EliteBook 8560w with Intel® Core™ i7-7xx, -8xx, -27xx, or -28xx pro-
cessor and Mobile Intel® QM67 Express chipset

• HP EliteBook 8570w with Intel® Core™ i7-* or i5-* (3rd generation) quad-
core processor (Intel® Hyper-Threading must be supported) and Mobile
Intel® QM77 Express chipset

• Lenovo Thinkpad T530 (with Intel® Core™ i7-* or i5-* (3rd generation)
dual-core processor (Intel® Hyper-Threading must be supported) and
Mobile Intel QM77 Express chipset

In addition, you need an USB stick to serve as persistent memory and to store the
license file and the NVRAM of the experimental system.

3.3.1 Startup

The Realtime Prototyping for PC platform is started with the POWER ON switch of
your notebook. After that, BIOS takes control and starts the GRUB bootloader.

The bootloader offers the following boot configurations:

• Windows

• ETAS RTPRO-PC and Windows

• ETAS RTPRO-PC (standalone hypervisor mode)

You must select ETAS RTPRO-PC and Windows or ETAS RTPRO-PC to use
RTPRO-PC.

For more details, see the RTPRO-PC user’s guide.

3.3.2 Configuring RTPRO-PC

In order to use RTPRO-PC and ES581 (CAN), you must adjust the ES581 device
settings of RTPRO-PC. A web interface is used for that purpose.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
To launch the web interface:

• In the Windows Start menu, open the ETAS pro-
gram folder, then open the RTPRO-PC subfolder
and select RTPRO-PC Control Panel.

• In the RTPRO-PC control panel, click on Open Web
Interface.

Or

• In the context menu of the RTPRO-PC system tray
icon, select Open Web Interface.

Or

• Open a web browser and enter the IP address of
RTPRO-PC in the address bar.

• Press <RETURN>.

Or

• Start HSP.

• In HSP, click Hardware Search.

• In the "Hardware" list, right-click RTPRO-PC and
select System configuration from the context
menu.

The RTPRO-PC embedded web server opens.
INTECRIO-ASC V6.2 - User’s Guide 31

32

Hardware Systems ETAS
To make settings for ES581:

• On the start page of the RTPRO-PC web interface,
follow the ES581 Device Settings link.

The "ES581 Device Settings" page opens. The
combo box for each device lists the serial numbers
of the ES581 hardware connected to the simulation
node.

• Open the combo box of each ES581 device and
select a serial number.

The number is displayed in the field above the
combo box.

• Click Save config. to store your settings.

3.4 Special Features of the ES1135

The ES1135 is a further development of the ES1130, and offers the user several
new functions. These functions are described in the sections of this chapter.

3.4.1 Watchdog

To integrate a safety concept for the rapid prototyping system, the ES1135 offers
a hardware watchdog function. The watchdog is an independent control unit
that monitors the main ES1135 processor. For that purpose, a predefined data

Note

Make sure that the settings here match the ES581
settings in INTECRIO-ASC.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
sequence is written periodically to a memory cell (watchdog service register).
After a maximum time (watchdog period) without successful write access
(watchdog service) to the watchdog service register, an exception handling
(event) is triggered in the processor.

The ES1135 HW watchdog can be operated in two modes:

1. Safety-oriented mode (safety mode)

2. Flexible mode with more functions (Reduced Safety Mode Enhanced Func-
tion, RSEF Mode)

In the RSEF mode, the following watchdog settings can be re-configured at runt-
ime:

• Event configuration

Defines the exception handling in case of watchdog expiration. The
watchdog can also be disabled via event configuration.

• Watchdog period

Defines the time until the watchdog expires if no new watchdog service
occurs.

• Switching modes

The safety mode is switched on with an arbitrary watchdog period and
vent configuration. After that, this mode cannot be reconfigured or left.
Therefore, the watchdog service should be set up in advance in a way that
no undesired watchdog event occurs.

After the supply voltage is switched on, the watchdog is set to RSEF mode and
switched off.

Watchdog Service

The Watchdog must be serviced before it expires. Otherwise, the selected watch-
dog event occurs. It is the task of the model designer to put the call of the service
function at a place, where a malfunction of the model can be detected.

The Simulation Controller firmware provides an automatic watchdog servicing
mechanism, which services the watchdog every 30 ms if interrupts are not dis-
abled by the model. Thus, assumed that operating system is running correctly,
the watchdog will be serviced regularly (if feature is enabled). This will be suffi-
cient in many use cases.

Interrupt Control

For debug and supervision purposes in particular, it is possible to configure the
watchdog to trigger a simulation processor interrupt on watchdog timer expira-
tion.

The interrupt may either be polled or routed to the internal interrupt controller.
A watchdog interrupt is latched and needs explicit acknowledging. Functions for
fast disabling and enabling of the interrupt source are available. These functions
only have effects on the interrupt propagation.

The watchdog interrupt is mapped to a HW Task inside ASCET. The watchdog
handler is running below the ERCOSEK level but above other HW interrupts (e.g.
from VME Bus), thus the watchdog interrupt is handled even if another HW
interrupt is currently handled. Interrupt acknowledgement is done inside the
ES1135 firmware, it should therefore not be done inside the handler task. The
available set of ERCOSEK calls in the handler task is not restricted.
INTECRIO-ASC V6.2 - User’s Guide 33

34

Hardware Systems ETAS
When a watchdog interrupt occurs, the watchdog is automatically restored from
the overrun situation after 250 s, restarting a new cycle with the previously
selected period. This restoration time may be shortened, by performing a normal
watchdog service with wdService().

A detailed description of the watchdog API is given in chapter 6.4 "API Functions
(Watchdog)" on page 90.

3.4.2 LEDs

The LEDs on the ES1135 front panel are divided into system LEDs (M, I, S, F, A, L,
S) and freely programmable LEDs (1, 2, 3).

Fig. 3-2 ES1135 – Front Panel

The system LEDs are described in the hardware manual.

The programmable LEDs can be accessed via the program interface (see
chapter 6.5 "API Functions (ES1135 LEDs)")

3.4.3 Cache-Locking

Depending on whether the respective function are placed in the main memory or
the cache of the ES1135, noticeable runtime differences an occur for short-
period tasks. For highly time-critical applications, these differences can be intol-
erable.

As a remedy, INTECRIO-ASC V6.2 provides the possibility to mark highly time-
critical parts of the model and thus make sure that they are always available in
the cache. This procedure is called cache locking. The second-level cache, or L2
cache, which is divided into four separate units (fourfold associative cache, 4-
ways), is used for that purpose.

ES1135.1

1

P0

2

3

A

L

S

L

S

L

S

L

S

M I S F

P1

P2

P3

SER
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
You can mark individual variables or parameters, as well as entire methods or
processes (cf. page 35). Components can be marked, too; this mark is adopted
by the elements of the component, if applicable (cf. page 35, 36, 36, 37).

The mark is part of a particular implementation. In another implementation, the
same object can have a different mark.

The following restrictions exist for cache locking:

• Up to 3 units of the L2 cache can be reserved for cache locking (cf
page 37). At least one unit remains free for the unmarked parts of the
model.

The associativity of the cache can make it impossible to keep all marked
model parts permanently in the cache, even though cache space is avail-
able. In that case, This problem occurs rarely for code, but frequently for
variables and parameters. It is thus recommended to mark code for cache
locking.

• A cache unit cannot be further divided. If the model parts marked for
cache locking occupy 2.5 units, the free half unit cannot be used other-
wise.

• If parts of the cache are reserved for cache locking, less cache is available
for the unmarked model parts. Runtime losses can occur.

Three settings are available for cache locking:

Set cache locking for variables, parameters and methods/processes:

• Open the implementation editor for the element.

• In the "Cache Locking" combo box, select the
desired setting.

Settings for individual elements, methods and pro-
cesses overwrite the settings for components.

Set cache locking for a component:

• Open the implementation editor for the compo-
nent.

• Open the "Settings" tab.

Automatic Variables, parameters, methods and processes adopt the setting
of the parent component. This is the default setting.
For components, Automatic is the same as Off.

On Cache locking is switched on.

Off Cache locking is switched off.

Note

For characteristic lines/maps, the setting in one tab
("Value", "X Distribution", "Y Distribution") is
adopted for the other tabs, too.
INTECRIO-ASC V6.2 - User’s Guide 35

36

Hardware Systems ETAS
• In the "Cache Locking" combo box, select the
desired setting.

The selected setting is adopted by all elements,
methods and processes with the Automatic set-
ting.
The setting is not recursive, however, it does not
apply to included components.

Set cache locking for an included component:

• In the "Outline" tab of a project or component edi-
tor, select an included component.

• Select Edit  Set Cache Locking  <setting>

or

• select Set Cache Locking  <setting> from the
context menu of the included component.

A confirmation window opens that lists the selected
component and its included components.

• Select the components to which you want to assign
<setting>.

• Click OK.

The setting is assigned to the selected components.
In the components, it is adopted by all elements,
methods and processes with the Automatic set-
ting.

Set cache locking in the OS editor:

In the OS editor ("OS" tab of the project editor), you can select a task and set
cache locking for the modules whose processes are included in the task.

• Open the OS editor.

• In the "Tasks" pane, select a task.

Note

This procedure is recursive, i.e. it affects included components.

Note

You cannot, in this way, set cache locking for individual processes. If the pro-
cesses of a module are assigned to different tasks, you can still make only one
setting for all of them in the OS editor. Setting cache locking for individual
processes is explained on page 35.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
• Select Task  Set Cache Locking  <setting>

or

• select Set Cache Locking  <setting> from the
context menu of the task.

A confirmation window opens that lists the parent
components of the processes in the selected tasks,
as well as the included components.

• Select the components to which you want to assign
<setting>.

• Click OK.

The setting is assigned to the selected components.
In the components, it is adopted by all elements,
methods and processes with the Automatic set-
ting.

Set cache locking globally for a project:

In the project properties, "Experiment Code" node, you can switch on/off cache
locking for the entire project.

• In the project editor, click on Project Properties to
open the "Project Properties" window.

• In the "Experiment Code" node, activate the Cache
Locking option to switch on cache locking globally.

• In the "Experiment Code" node, deactivate the
Cache Locking option to switch off cache locking
globally.

• Activate/deactivate the Cache Lock Code option to
switch on/off cache locking for code.

• Activate/deactivate the Cache Lock Data option to
switch on/off cache locking for data.

Note

The following options are only available if cache lock-
ing is activated.
INTECRIO-ASC V6.2 - User’s Guide 37

38

Hardware Systems ETAS
• In the "Used Cache Size" combo box, select the
number of cache units reserved for cache locking.

• Click OK to close the window and accept your set-
tings.

The setting is adopted by all elements, methods and
processes anywhere in the project with the Auto-
matic setting.

3.5 Non-Volatile RAM (NVRAM)

3.5.1 Basics

A non-volatile (NV) variable is a variable which can be used like any other ASCET
variable. Particularly, it can be written and read by the model, calibrated via a
calibration window and measured/logged with the data acquisition. The special
feature of an NV variable is that, in case of a simulation interruption, the current
value of the NV variable is available when the simulation with the same model is
restarted. This is especially useful for adaptive characteristics, commonly used
inside the ECU code for self-learning algorithms, and storage of diagnostic
results.

The optional attribute non-volatile (NV) is supported for all primitive data types
of ASCET (scalars, arrays, matrices, characteristic lines/maps). Only ASCET vari-
ables can be configured for NVRAM, C-Code variables are not supported.

0 kB – 0 units

256 kB – 1 unit

512 kB – 2 units

768 kB – 3 units
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
An NV variable can be created inside a class or module editor. This is done by
activating the Non-volatile option in the element editor of a variable.

3.5.2 Hardware Support

64 kByte of non-volatile RAM (NVRAM) are available in the address space of the
ES1135 main processor (IBM750GX), and 32 kByte of NVRAM are available on
the ES910. The amount of NVRAM available on RTPRO-PC depends on the USB
stick that is used as persistent memory. In this memory range, data can be stored
which are to be available after a power failure or longer than one power-on
cycle.

Due to performance reasons (accesses to the NVRAM are significantly slower
than accesses to the normal, volatile RAM and, in addition, cannot be cached),
NV variables are not directly allocated to the NVRAM. Instead, they are allocated
like normal, volatile variables to normal RAM, and periodically saved to the
NVRAM (auto-update mode). The period is by default set to 10 seconds; it can
be configured with the API method

uint32 nvramSetUpdateInterval(uint32 interval_sec)

(see Chapter 6.3) in the range from 1 second to 30 seconds. Saving to the
NVRAM is done within the idle task, it does not affect the real-time behavior of
the model.

For reasons of data consistency, the NVRAM is organized as alternation buffer
which halves the available capacity. Furthermore, there is some overhead
involved which reduces the NVRAM capacity available to the ASCET model to a
little less than 32 kByte (ES1135), 16 kByte (ES910) or half of the available capac-
ity (RTPRO-PC).

The ES1135 or ES910 or RTPRO-PC firmware ensures that the capacity limit is
respected. If the cumulative size of NV variables exceeds the NVRAM capacity, an
"NVRAM overflow" error message appears in the ASCET monitor window at the
start of the experiment. In this case, the NVRAM is not used, i.e. no values are
written to it. In order to be able to use the NVRAM, the user needs to reduce
number and/or size of NV-variables in the model.

WARNING!

Wrongly initialized NVRAM variables can lead to unpredictable
behavior of a vehicle or a test bench, and thus to safety-critical
situations.

Projects that use the NVRAM possibilities expect a user-defined INIT
process that checks whether all NV variables are valid for the current
project, both individually and in combination with other NV variables.
If this is not the case, all NV variables have to be initialized with their
(reasonable) default values.

Due to the NVRAM saving concept, this is absolutely necessary
when projects are used in environments where any harm to people
and equipment can happen when unsuitable initialization values are
used (e.g. in-vehicle-use or at test benches).
INTECRIO-ASC V6.2 - User’s Guide 39

40

Hardware Systems ETAS
The NVRAM data contain neither address information nor the names of the vari-
ables. Therefore, they correspond to the model only if the structure of the NV
variables in the model did not change after the last update. To check this, a
special NV identifier is created during code generation.

This NV identifier changes upon the following actions:

• Changing the instance name of any NV element on the project, module,
class, or sub-class level.

• Changing the implementation of any NV element on the project, module,
class, or sub-class level, namely:

– Code generation option Physical Experiment – switching the
implementation data type between cont and sdisc/udisc

– Code generation option Implementation Experiment – changes
of the implementation interval

• Changing the formula parameters of any NV element.

The NV identifier does not change if the name or the comment of a for-
mula is changed.

• For an NV enumeration:

– Changing the sequence of the enumerators

– Changing the names (values) of the enumerators

– Removing/adding enumerators

– Selecting a different enumeration, even if it contains the same enu-
merators

• Changing the maximal size of multidimensional NV elements (array,
matrix, characteristic line/map).

• Changing the settings for the implementation limitation in the implemen-
tation experiment (code generation option Implementation Exper-
iment).

• Deleting/adding NV elements on the project, module, class, or sub-class
level.

• Deleting/adding states in a state machine.

The NV identifier does not change upon the following actions:

• Renaming the project.

• Renaming the modules or classes within the project.

• Renaming the instances of any normal (volatile) element on the project,
module, class, or sub-class level.

• Changing the formula name or comment of any NV element.

When the formula parameters are changed, the NV identifier changes,
too.

• Renaming an enumeration.

• Changing the data of NV elements and normal elements.

• Changing the actual size of multidimensional elements (array, matrix,
characteristic line/map).

• Changing the memory area of NV elements and normal elements.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
3.5.3 NV Variable Initialization and Update

Starting the simulation: After the model code was downloaded to the tar-
get, NV variables are initialized with their default values if no matching data are
available in the NVRAM. No matching data means that the NV memory is empty,
inconsistent (verified via a checksum) or the NV data does not match with the
downloaded model (verification via NV identifier).

In case matching data is available in the NV memory, the variables are initialized
accordingly before the experiment can be started (Start OS).

Stopping the simulation : When the simulation is stopped (Stop OS), the
most recently saved values of the NV variables are persistently stored inside the
NVRAM. Even if the target is powered off or if the code is downloaded again, the
simulation can proceed with the most recently saved values of the NV variables.

As mentioned before, the NV variables are periodically saved to the NVRAM in
auto-update mode. To make sure that the current values—not the values from
the last cyclic update—are available in the NVRAM, the API function

void nvramUpdateMemoryExit(void)

should be called at the end of the Exit task (task with application mode inac-
tive).

If there are no NV variables inside the current model, the NVRAM content
remains unchanged.

Model with NV variables inside the FLASH memory: A simulation model
with NV variables inside the FLASH memory of the simulation controller is booted
when power on occurs. The potential matching NV data is used for initializing
the NV variables before starting the simulation.

Display whether model is running on default NV variable values:
Whether the model is running on default NV variable values (as specified in the
ASCET data editor), or whether the variables are initialized out of the NVRAM,
can be determined in two ways. In the experiment environment, an info message
is written in the Target Debugger window. From within the model, the API func-
tion

uint8 nvramCheckForInitializedVars(void)

provides the same information.

Clearing the NVRAM content: To prevent the initialization of a model with
the NV content (if the program identifier is matching), it is possible to clear the
NV memory content. This enforces the initialization of the NV variables with their
default values. This feature is currently not supported by the GUI. However, the
API function

uint32 nvramClear(void)

allows to reset the NVRAM from within the model (see chapter 6.3 "API Func-
tions (NVRAM)").

3.5.4 Data Consistency

When the simulation is interrupted by power off or a system crash, the NVRAM
contains values of the NV variables. The relevance of these values depends on the
time of the last automatically or manually (from within the model) triggered sav-
ing.
INTECRIO-ASC V6.2 - User’s Guide 41

42

Hardware Systems ETAS
To guarantee the consistency of the NVRAM content in case of an unexpected
termination of the simulation, different strategies can be used as introduced
below.

The consistency level can be set with the following API function:

uint32 nvramSetConsistencyLevel(T_consistencyLevel
level)

No consistency: The NVRAM update is done without respect to consistency
within NV variables and between individual NV variables.

Low level consistency (single variables): Low-level consistency means that
the data consistency within NV variables (scalars, arrays and matrices, but not
characteristic lines/maps) is guaranteed.

It must be noted here that the update of characteristic lines/maps cannot be
done atomically (in the sense of low-level consistency)

High level consistency (among variables, after task completion): High-
level consistency means that all NV variables are updated in the idle task, without
interruption by the model.

The update for a set of NV variables should be atomic. A self-learning algorithm,
for example, works on several variables, and it must be guaranteed that data for
different variables in the NVRAM come from the same calculation cycle.

Model-controlled consistency (among variables and over multiple tasks
cycles): The high level consistency mechanism guarantees consistency only if
manipulations of NV variables are done within one task cycle. There may be cases
where this manipulation lasts several task cycles (e.g. the update of an adaptive
characteristic, done in several tasks). The ES1135 / ES910 / RTPRO-PC firmware
cannot be aware of this, and therefore the model must control the NVRAM
update.

For this purpose, the automatic update can be disabled by the following func-
tion:

uint32 nvramDisableAutoUpdate(void)

The manual update of the complete set of NV variables can be started with this
command:

uint32 nvramManualUpdateBackground(void)

Even the manual update it is not allowed to block the whole system, and thus
change the real-time behavior, until the update is finished. Therefore, the func-
tion for manual update returns immediately and the update is done in the back-
ground. The model can poll the status of the manual update with the following
function:

uint8 nvramCheckRunningUpdate(void)

The function returns true if the update is running. The user, or the model, is
responsible that the NV variables are not modified during the update.

The manual update mode can be disabled with

uint32 nvramEnableAutoUpdate(void)

A selective update of NV variables is not supported.

If there are no NV variables inside the current model, the NVRAM content
remains unchanged.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
Defective NVRAM content: In case of defective NVRAM content, e.g. if the
checksum test failed, the user is warned. This is done textually in the experiment
environment (or the ASCET monitor window).

3.5.5 NVRAM Cockpit

The NVRAM API (see Chapter 6.3) offers several functionalities to control the
NVRAM update. During experiment, these functionalities are available in a spe-
cial window, the NVRAM cockpit. Changes applied via the API functions are
transferred to the NVRAM cockpit, too.

To work with the NVRAM cockpit:

• In the experiment, select Tools  NVRAM Cockpit

or

• click on the Open NVRAM Cockpit button.

The NVRAM cockpit opens.

• Use the control elements according to your needs.

• Close the NVRAM cockpit with Close.

The NVRAM cockpit contains the following control elements:

• Update Interval [sec]

Use this slider to adjust the interval (in seconds) for the automatic update
of the NVRAM content. You can set up to 30 seconds; an interval of 10
seconds is predefined.

The slider is activated only when automatic update is switched on.
INTECRIO-ASC V6.2 - User’s Guide 43

44

Hardware Systems ETAS
• Auto Update

This button switches the automatic update on and off. Automatic update
is switched on if the button appears impressed (a), and switched off if the
button appears upraised (b).

• Consistency level

Use this combo box to select the consistency level of the update; see also
"Data Consistency" on page 41.

• Clear NVRAM

Use this button to delete the NVRAM content.

When you click Clear NVRAM while the automatic update is running, the
NVRAM content is deleted, but it will be written again after the next
update interval at the latest.

• Update Now

Use this button to start the NVRAM content update manually.

This button is only available when automatic update is switched off.

The NVRAM cockpit contains the following displays:

• Time since last Update [sec]

This bar display shows the time elapsed since the last update. The entire
bar corresponds to 30 seconds; if this time is exceeded because automatic
update is switched off, only the number is increased.

The counting of seconds continues even if the experiment is stopped,
because time continues. Only a manual update after stopping the experi-
ment resets the counter, which starts anew.

The bar is green as long as the time since the last update is less than 30 s,
and red if this time is exceeded. Exception: The experiment was stopped
(Stop ERCOS) prior to the overflow; in that case, the bar turns yellow
upon overflow.

Note

The automatic NVRAM content update works only while the experiment is
running. Once you have stopped the experiment with Experiment  Stop
OS or with the Stop OS button, the NVRAM content can no longer be
updated automatically.

Note

The manual NVRAM content update works even if you stopped the experi-
ment with Experiment  Stop ERCOS or with the Stop ERCOS button.

(a) (b)
INTECRIO-ASC V6.2 - User’s Guide

ETAS Hardware Systems
• Non Volatile Variables initialized from NVRAM

This display appears light-green if the NV variables are initialized with the
NVRAM content (a), and dark-green if the NV variables are initialized with
their default values (b).

• NVRAM Update running

This display appears light-green if an NVRAM content update is currently
running.

3.5.6 Tips

The following tips are useful for working with NVRAM.

State variable as non-volatile: The enhanced NVRAM support includes the
possibility to assign the non-volatile attribute to the sm state variable of a state
machine. To do so, right-click on the sm variable in the "Elements" list of the
state machine editor and select Settings  Non-Volatile from the context
menu.

Actual size of multi-dimensional elements: The actual size ("current size"
attribute) of multi-dimensional elements (array, matrix, characteristic line/map) is
saved in the NVRAM.

Changes of the actual size in the model (offline) become valid in the downloaded
program only after the NVRAM content is deleted (e.g. via the NVRAM cockpit,
or if the NVRAM content is inconsistent with the program.

Flash project with NVRAM on the ES1000: Bear in mind that the program
in the Flash memory is launched each time the ES1000 or ES900 or RTPRO-PC is
started. If this project uses NV variables, it uses the NVRAM. A subsequent down-
load of any other program containing NV variables leads to an (unexpected) reset
of the NVRAM content.

(a)

(b)
INTECRIO-ASC V6.2 - User’s Guide 45

46

Hardware Systems ETAS
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
4 Experimenting with INTECRIO

If you have installed both INTECRIO-ASC and INTECRIO, you can experiment with
your Rapid-Prototyping project in INTECRIO. The project editor offers a function
for this purpose which allows convenient transfer of the experiment.

This chapter contains general instructions for experimenting with INTECRIO. A
specific sample task can be found in chapter 5 "Tutorial – Experimenting with
INTECRIO".

4.1 Project Transfer to INTECRIO

First of all, as usual, you create the ASCET project. You have all possibilities avail-
able to you which are possible in ASCET. But note the following points:

• By default, messages that are only read in ASCET (i.e. receive messages
without relevant send messages) are the signal sinks in INTECRIO. Mes-
sages that are only written to (i.e. send messages without the relevant
receive message) are the signal sources in INTECRIO. Messages that are
both read and written in ASCET are excluded from integration.

If required, you can make the latter appear as signal sources in INTECRIO,
see page 50.

• When your project contains unresolved messages (imported messages
without corresponding export), the code generation for INTECRIO displays
an error message.

You can either resolve the messages automatically or cancel the code gen-
eration and manually resolve the messages.

• It is possible to use global variables and parameters, but this is explicitly
not recommended.

• Enumerations and formulas in your project must have different names. If
the project contains an enumeration and a formula with identical names,
the code generation for INTECRIO displays an error message.

• You have to select the target Prototyping, ES1130, ES1135, ES910
or RTPRO-PC in the build options of the project. INTECRIO is prese-
lected in the "Experiment Target" combo box with any of these targets.
INTECRIO code generated with this target can be used with each experi-
mental target supported by INTECRIO.

The target Prototyping is strongly recommended for transfer to INTEC-
RIO.

• After selecting the Prototyping target, the following setup options are
deactivated:

– "Preemp. Levels" and "Coop. Levels" fields (all tasks)

– Enable Monitoring option, "pre-/post hooks" combo box (all tasks)

– "ISR Source" and "Min. Period" fields (interrupt tasks)

– "Max. Number of Activations" field (alarm/software tasks)
INTECRIO-ASC V6.2 - User’s Guide 47

48

Experimenting with INTECRIO ETAS
– Autostart option (alarm/software tasks)

In some cases, the number of preemptive levels is set to 0. In that case,
you can use Operating System  Copy From Target to copy the oper-
ating system settings (e.g., from an ES113x) to the Prototyping target.
The deactivated settings are copied and the "Preemp. Levels" field is
made available. You can now enter a suitable value, i.e. a number  8.

• See chapter 4.4 "ASCET and SCOOP-IX" for information on how some
ASCET settings appear in the SCOOP-IX file generated for use with INTEC-
RIO-ASC.

Once you have completely specified the project, you invoke the transfer of the
project to INTECRIO as the first step in code generation.

To prepare the project:

• Open the project you want to transfer to INTECRIO.

• Click the Project Properties button.

The "Project Properties" window opens in the
"Build" node.

• Select the target Prototyping or ES1130 or
ES1135 or ES910 or RTPRO-PC and an appropri-
ate compiler.

• In the "Experiment Code" node, activate the Use
OID for Generation of Component Names
option.

This setting is highly recommended.

To call transfer:

• Make sure that INTECRIO is selected in the
"Experiment Target" combo box.

The buttons Transfer Project to selected Experi-
ment Target and Reconnect to Experiment of
selected Experiment Target are now available.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
• Click the Transfer Project to selected Experi-
ment Target button

or

• select Build  Transfer.

The "INTECRIO Project Transfer" window opens.
The default transfer path (containing the project
name) is entered in the "Path" field. It is located in
the database directory. Thus, it is not overwritten,
even if the Keep files in Code generation Direc-
tory option is deactivated.

The second step is to enter the path under which the generated files are stored
in the "INTECRIO Project Transfer" window. You then have four choices:

• If you only want to generate the code required for INTECRIO, the "Paths"
field is the only one that must contain a value. The "Workspace" and
"System" fields must be empty.

This might be the case when the generated code is intended for transfer.

• If you want to generate code and import it into INTECRIO, you must also
select the INTECRIO version and the INTECRIO workspace. The "Systems"
field remains empty.

By default, the version of INTECRIO last installed is selected in the "Ver-
sion" field. If only one INTECRIO version is installed, this is selected auto-
matically; the field is disabled.

If the workspace does not exist, it is created automatically.

• If you want to generate code, import it and integrate it into INTECRIO (i.e.
add it to an INTECRIO system project), enter the INTECRIO system project
you want to work with.

In this case, both workspace and system project already have to exist.

Note

Mere code generation for INTECRIO is possible even if no INTECRIO ver-
sion is installed on your computer.
INTECRIO-ASC V6.2 - User’s Guide 49

50

Experimenting with INTECRIO ETAS
• If you want to generate code, import and integrate it into INTECRIO and
start the Build process in INTECRIO, complete all fields and activate Trig-
ger INTECRIO Build.

To ensure the Build process can run, and generates a usable prototype, a
hardware system and the operating system configuration have to be com-
pletely specified in INTECRIO.

If you want messages that are read and written in the ASCET model to appear as
signal sources/sinks, deactivate the Ignore internally connected messages
option. This option works with all of the four choices. Tab. 4-1 summarizes the
message-to-interface-conversion for the activated and deactivated option.

Tab. 4-1 Message conversion summary. S: messages sent by the respective
component, R: messages received by the respective component.

Note

ASCET does not check whether an existing workspace was created with the
selected INTECRIO version.
If you select another INTECRIO version than the one used to create the work-
space, the transfer can fail.

Message Access in INTECRIO Interface

Project Module A Module B option activated option deactivated

S/R — —

S/R S signal source signal source

S/R R signal sink signal sink

S/R S/R signal source signal source

S signal source signal source

S S signal source signal source

S R — signal source

S S/R — signal source

R signal sink signal sink

R R signal sink signal sink

R S/R — signal source
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
To set the path for the generated files:

• In the "INTECRIO Project Transfer" window , click
the Browse button next to the "Path" field.

The "Path Selection" window opens.

• If necessary, select a volume in the "Volume"
combo box.

• Select an existing directory from the "Directories"
list

or

• create a new directory using the New button.

• Click OK.

The directory is displayed in the "Path" field. Your
selection is saved with the project; it is preselected
at the next transfer.

To select the INTECRIO version:

If only one INTECRIO version is installed on your computer, that version is
selected automatically, and the manual selection is disabled.

• In the "INTECRIO Project Transfer" window, open
the "Version" combo box.

The list contains all INTECRIO versions installed on
your PC.

• Select an INTECRIO version.

Your selection is saved with the project.

To select the INTECRIO workspace:

• In the "Workspace" field of the "INTECRIO Project
Transfer" window, enter name and path of the
INTECRIO workspace you want to use.

Or

• Click the Browse button next to the "Workspace"
field.

The Windows file selection window opens.

• Select the directory which contains the workspace.

• Select the workspace (*.iow).
INTECRIO-ASC V6.2 - User’s Guide 51

52

Experimenting with INTECRIO ETAS
• Click Open.

The workspace is displayed in the "Workspace"
field.

To select the INTECRIO system project:

A workspace has to be selected and INTECRIO has to be running for the success-
ful integration of the ASCET project into an INTECRIO system project.

• In the "Systems" field of the "INTECRIO Project
Transfer" window, enter the name of the INTECRIO
system project you want to use.

Or

• Click the Browse button next to the "System"
field.

When INTECRIO is not running, it is started now.

The "INTECRIO systems" window opens. It displays
all system projects contained in the workspace.

• Select the system project into which you want to
add the ASCET project.

• Click OK.

The system project is displayed in the "System"
field.

To select the INTECRIO Build process:

If the INTECRIO system contains only one ASCET project, and if a hardware sys-
tem and the OS configuration have been created in INTECRIO, the INTECRIO
build process can be automatically started with the transfer.

• In the "INTECRIO Project Transfer" window, acti-
vate the Trigger INTECRIO Build option.

This is reasonable only when both an INTECRIO
workspace and a system project have been
selected.

The last step is the transfer to INTECRIO.

To execute transfer:

• Once you have made all the entries you need in the
"INTECRIO Project Transfer" window, click OK.

The transfer of the ASCET project to INTECRIO is
started.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
1. Problem: unresolved messages

When your project contains unresolved messages,
the following message opens.

There are imported elements without a
matching export. Do you want to
resolve global elements automati-
cally? Select <OK> to resolve globals
automatically or <Cancel> to go back
and resolve them manually.

• Click OK to automatically resolve the messages.

If the automatic procedure works, the transfer to
INTECRIO continues.

Or

• Click Cancel if you want to abort the code genera-
tion and resolve the messages manually.

In that case, you have to start the transfer anew.

2. Problem: another INTECRIO workspace is open

When INTECRIO is running, and another workspace
is open, at the start of the transfer, the following
message opens.

Active workspace in INTECRIO is dif-
ferent from the one you have
selected. Close active workspace and
start transfer anyway?

• Click OK to close the open workspace and continue
the transfer of the ASCET project to INTECRIO.

Or

• Click Cancel to abort the transfer.

3. Problem: workspace requires higher INTECRIO version than selected

When the selected workspace requires a higher
INTECRIO version than the one selected in "Ver-
sion", the following message opens:

INTECRIO workspace file <path>\
<filename>.iow does not fit for the
selected INTECRIO version.

• Click OK to confirm tne message and return to the
"INTECRIO Project Transfer" window.

• Select another workspace and/or another INTECRIO
version.
INTECRIO-ASC V6.2 - User’s Guide 53

54

Experimenting with INTECRIO ETAS
4. Problem: path for generated files is not empty

If the folder selected for the generated files (cf.
page 51) is not empty, the following message
opens:

The folder "<folder path and name>"
already exists! If you continue,
existing files may be overwritten. Do
you want to proceed anyway?

• Click OK to proceed.

Or

• Click Cancel to abort the transfer.

During the transfer, all files necessary for working with INTECRIO are generated
and stored in the specified directory.

If you have made the relevant entries, INTECRIO is started, the project is imported
into INTECRIO and integrated into the system project, and the INTECRIO build
process is started.

The following generated files are significant for working with INTECRIO:

• <project name>.six

This file contains the description of the project interfaces in the XML-
based language, SCOOP-IX.
The interfaces of a possible HWC module are not included in the
SCOOP-IX file because hardware configuration is done in INTECRIO.

A SCOOP-IX interface description basically consists of the following infor-
mation:

– Name, type and size of C variables

– Name, return value and signature of C functions

– File origin of the C elements

For more details, refer to the "SCOOP and SCOOP-IX" section of the
INTECRIO User’s Guide.

If you configured the operating system in the OS editor, the SCOOP-IX file
(except version V1.0) also contains some OS information but none from
the deactivated options (see page 47). However, this information is cur-
rently not used by INTECRIO.

The *.six file can be validated against the schema of the respective
SCOOP-IX version with a validating XML parser, e.g. XML SPY 2007 SP1.
The SCOOP-IX schema files are stored in the Formats\
SCOOP-IX\<x>.<y>\Schemas subdirectories of your ASCET installa-
tion, <x>.<y> being the SCOOP-IX version number.

• <project name>.a2l

The ASAM-MCD-2MC file generated for working with INTECRIO.

A possible HWC module is not included in this file, either.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
• <project name>.oil

This file contains the description of the operating system which can be
used in INTECRIO.
Here, too, the HWC module is ignored because hardware configuration
and OS configuration are done in INTECRIO.

• *.c and *.h

The C code and header files for the project and its different components.
Exactly which *.c and *.h files are used by INTECRIO is contained in the
following block of the *.six file:

<fileContainer complete="false">
<pathBase path="{{codeDir}}" />
<!-- model specific C files -->
... *.c- and *.h files ...

</fileContainer>

In addition, further files are created during code generation. These files are, how-
ever, irrelevant for working with INTECRIO.

4.2 The INTECRIO Experiment

Once transfer has been completed, you can experiment with the project in
INTECRIO. Depending on what specifications you have made for the transfer,
you have to carry out different steps.

To start an experiment:

The INTECRIO documentation describes how to execute the individual steps.

• Import the code manually into INTECRIO.

This step is not necessary if you imported the code
automatically.

• Add the model into the INTECRIO system project.

This step is not necessary if you integrated the code
automatically.

• Complete the system project.

This includes the creation of a hardware system, the
configuration of the operating system, the connec-
tions between the hardware and the software.

• Configure the operating system either manually or
by importing the *.oil file.

• Generate the executable.

• Start the experiment.

Note

This file is never imported automatically into INTECRIO. You either have
to configure the operating system in INTECRIO manually or import the
*.oil file manually.
The format of this *.oil file does not correspond to the OSEK stan-
dard; it is an XML-based description of the operating system configura-
tion.
INTECRIO-ASC V6.2 - User’s Guide 55

56

Experimenting with INTECRIO ETAS
Working with the INTECRIO experiment environment is described in the online
help of the experiment environment.

4.3 The Back-Animation

In addition to the INTECRIO experiment environment, the Back-Animation of
INTECRIO in ASCET provides you with a special experiment environment in which
you can calibrate values in the standard manner. The measure system of this
experiment environment works in the standard way but is reduced in function in
comparison to offline and online experiments in ASCET: oscilloscope, recorder
and data logger are not available. These need synchronous measuring which is
not given for Back-Animation when experimenting with INTECRIO. Instead, use
the relevant instruments of INTECRIO.

To start the Back-Animation:

• Start the INTECRIO experiment with your project.

• In the ASCET project editor, make sure that
INTECRIO is selected in the "Experiment Target"
combo box.

• Click the Reconnect to Experiment of Selected
Experiment Target button

or

• select Build  Reconnect.

To select hardware (with ETAS Network Manager):

When you activated the Use ETAS Network Manager (enables ’Select Hard-
ware’) option in the hardware options (Chapter 2.1), the hardware selection
window (Chapter 2.2.1) opens under certain conditions.

• In the "Select simulation board of type <type>"
field, select the hardware you want to use.

The OK button becomes available.

• If required, perform other settings.

• Close the window with OK.

The system checks whether the selected hardware
is available and agrees with the target you selected
in the code generation options of the project. If this
the case, the experiment environment opens; con-
tinue reading with section "To open the Back-Ani-
mation experiment environment:" on page 57.

Note

If you are working without ETAS Network manager, skip this section and con-
tinue reading with section "What to do in case of an error:" on page 57.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
What to do in case of an error:

If no agreement is found between selected and available hardware, the follow-
ing error message opens.

• Click Yes to repeat the search for a hardware con-
nection.

Or

• Click No to start the build process without hard-
ware connection.

When you are using the ETAS network Manager,
the hardware selection window opens again after
the Build process.

When you are not using the ETAS network Man-
ager, you are asked, after the Build process,
whether you want to repeat the search for a suit-
able hardware or not.

Or

• Click Cancel to abort the experiment.

To open the Back-Animation experiment environment:

The connection to the running INTECRIO experiment is established. The "Physical
Experiment..." window opens immediately after staring the back-animation (cf.
page 56) when you are working without ETAS Network Manager, or after suc-
cessful hardware selection (cf. page 56) when you are working with the ETAS
Network Manager. "INTECRIO Backanimation" indicates the special experiment
environment.

Unlike the online and offline experiment, this win-
dow only contains the "Graphics" tab.
INTECRIO-ASC V6.2 - User’s Guide 57

58

Experimenting with INTECRIO ETAS
When several environments have been defined, the
"Environment Browser" opens.

• In the "Environments" pane, select one entry.

• Click OK.

The predefined measurement and calibration win-
dows open.

The User Interface: The user interface of the back-animation experiment
environment is very similar to that of the offline experiment. However, the but-
tons controlling the experiment and the NVRAM cockpit (ES1135, ES910,
RTPRO-PC) and the functions in the Experiment and Tools menus are different
from the offline experiment.

Buttons:

1. Exit to Component (ends the experiment and invokes the project editor)

2. Load Environment (loads an experiment environment, i.e. predefined
measure and calibration windows with assigned variables)

3. Save Environment (saves the current experiment environment)

Control buttons "Measurement Window" Combo Box"Calibration Window"
Combo Box

1 2 3 4 5 6 7 8 9 10 11
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
4. Save Environment As (saves the current experiment environment under a
freely definable name)

5. Stop Measurement (stops measurement, i.e. the data display)

6. Start Measurement (starts measurement, i.e. the data display)

7. Update Dependent Parameters (updates the values of dependent param-
eters)

8. Expand / Collapse Window (shows/hides the component display)

9. Always on top (keeps the experiment window on top)

10.Navigate down to selected component (shows the selected included com-
ponent)

11.Navigate up to parent component (shows the parent component)

Experiment Menu:

• Stop Measurement

Stops the measurement.

• Start Measurement

Starts the measurement.

Tools Menu:

– Data Logger

Opens the Data Logger.

– Target Debugger

Opens the debugger window for C code components.

– NVRAM Cockpit
(Only available when the target ES1135, ES910 or RTPRO-PC was
selected in the code generation options.)

Opens the NVRAM Cockpit.

When the experiment environment for back-animation is opened, the system
checks the hardware used by the INTECRIO experiment. If the experiment runs
on an ES1135 or ES910 or RTPRO-PC, the NVRAM cockpit (cf. "NVRAM Cock-
pit" on page 43) is available via the NVRAM Cockpit button or the Tools 
NVRAM Cockpit menu option.

The other elements of the user interface correspond to those of the offline exper-
iment; they are described in the "Experimentation" section of the ASCET online
help.

To set up the Back-Animation experiment:

1. Measurement windows

• In the "Measurement Window" combo box, select
the type of measurement window that you want to
assign an element to.

The available types are listed in brackets, e.g.
<2. Numeric display>.

• In the "Outline" tab, select the element you want
to measure.

You can select more than one element.
INTECRIO-ASC V6.2 - User’s Guide 59

60

Experimenting with INTECRIO ETAS
• Select Extras  Measure

or

• drag the elements from the "Outline" tab or from
the block diagram display to the "Measurement
Window" combo box.

A new measurement window opens and the
selected elements are added to that window.

The "Measurement Window" combo box also shows the titles of all exist-
ing measurement windows. The entries for existing windows are dis-
played without brackets, e.g. Numeric display; 1.

2. Calibration windows

• In the "Calibration Window" combo box, select the
calibration window that you want to assign an ele-
ment to.

The available windows are listed in brackets, e.g.
<New Calibration Editor>.

• In the "Outline" tab, select the element you want
to calibrate.

• Select Extras  Calibrate

or

• drag the element from the "Outline" tab pane or
the block diagram display and drop it into the "Cal-
ibration Window" combo box.

A data editor for the selected element opens.

The "Calibration Window" combo box also shows the titles of all existing
calibration windows. The entries for existing windows are displayed with-
out brackets, e.g. Logical Editor; 2.

3. Monitors (see also the ASCET online help)

• Right-click an occurrence of an element in the block
diagram display.

• Select Monitor from the context menu.

When you start the measurement, the current value
of the element is shown in the block diagram dis-
play.

• Select the Monitor command again to de-assign
the monitor.

• Select View  Monitor All to assign monitors to
all elements.

• Select View  Delete Monitors to delete all the
monitors in the diagram.

To start the measurement:

• Select Experiment  Start Measurement

or
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
• click the Start Measurement button to start mea-
surement.

The measurement is started and all values set up in
the measurement system are displayed in the rele-
vant windows. The displays of the measurement
and calibration windows are updated cyclically.

You can load, save and export environments as described in the section "Exper-
imentation" of the ASCET online help. When you load an environment which
contains unavailable elements (e.g. an oscilloscope), these elements are ignored.

The monitor function (see the ASCET online help) for monitoring numeric and
logical variables is available. You can activate the function for individual or all
variables of a component. The setting of the monitor function is saved in the
environment.

You can navigate between the components of the project via the Navigate ...
buttons (and ; see also the ASCET online help).

If your project contains state machines, you can use the animation function for
state machines (see section "State Machine Editor" the ASCET online help).

You can write data from the experiment into the ASCET model. This is described
in the ASCET online help.

With Edit  Implementation  Show, you can look at the implementation of
the project with which you are measuring. It does not matter whether the exper-
iment is running or whether it has been stopped.

To end the measurement:

• Select Experiment  Stop Measurement

or

• click the Stop Measurement button.

Measurement is stopped, but the experiment con-
tinues. When measurement is restarted, the time
axis is set to the current value.

To end Back-Animation:

• Select File  Exit

or

• click the Exit to Component button.

The Back-Animation is ended and the experiment
environment closed. The INTECRIO experiment,
however, continues running.

4.4 ASCET and SCOOP-IX

SCOOP-IX is short for SCOOP Interface Exchange Language. This language is
based on XML and, therefore, well suited for use in INTECRIO-ASC, ASCET or
similar tools.

Exactly one SCOOP-IX file is generated for one ASCET project, regardless of the
number of modules and classes in the project.
INTECRIO-ASC V6.2 - User’s Guide 61

62

Experimenting with INTECRIO ETAS
This section shows some correspondences between ASCET settings and the
resulting SCOOP-IX code. More details on SCOOP-IX are given in the INTECRIO
user’s guide.

General Information:

The following information is part of the SCOOP-IX file:

• The ASCET component in which the equivalent of the respective interface
element is embedded

• The type of component (class, module or project; <pathNode> block
with kind="asd:module" option, see page 64)

• The type of equivalent of the interface element (element, message,
resource, method, process, task; <pathNode> block with
kind="asd:element" option, see page 64)

Implementation Information:

The settings for Implementation Interval Adaptation are written to the <satu-
ration> block in the SCOOP-IX file, see page 64).

The <saturation> block contains the options value, resolution and
assignment. Depending on the settings in the ASCET implementation editor,
the options are set as follows.

• value is set to true (false) if Limit to maximum bit length is acti-
vated (deactivated).

• resolution is set to automatic, keep, or reduce, depending on the
selection in the combo box next to Limit to maximum bit length.

• assignment is set to true (false) if Limit Assignments is activated
(deactivated).

The state of the Zero not Included option is written to the value option of the
<zeroExcluded> block in SCOOP-IX, see page 64).

• Zero not Included activated  value="true"

• Zero not Included deactivated  value="false"

Element Properties:

Information on measurement or calibration is given in the <usage> block in
SCOOP-IX, see page 64 (measurement) or page 65 (calibration).

• For parameters, the <usage> block contains the calibration option.
Its value is set to true (false) if the Calibration option in the Properties
editor is activated (deactivated).

• For variables and messages, the <usage> block contains the measure-
ment option. Its value is set to true.

• For constants and system constants, the <usage> block contains the
measurement option. Its value is set to false.

The scope of an element is set in the "Scope" area of the Properties editor. The
selected scope is written to the visibility option of the <modelKind>
block in SCOOP-IX, see page 64.

• Exported scope  visibility="public"

• Local scope  visibility="private"

Elements with scope Imported do not appear in te SCOOP-IX file.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
SCOOP-IX Example

An extract of a simple SCOOP-IX file created with ASCET can be found below.
The example is used exclusively to show usage of the SCOOP-IX format and pos-
sible file contents, it does not claim to be meaningful or correct.

...

<module

xmlns="http://www.etas.de/scoop-ix/1.2"

xmlns:ix="http://www.etas.de/scoop-ix/1.2"

xmlns:asd="http://www.etas.de/scoop-ix/1.2/ 
modelDomain/ascet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.etas.de/scoop-ix/1.2 
c:\ETAS\ASCET6.2\Formats\SCOOP-IX\1.2\Schemas\ 

scoop-ix-domain-asd.xsd"

xmlns:html="http://www.w3.org/1999/xhtml" >

...

<interface>

<modelLinkBase href="asd://
{{modelDir}}?INTECRIO-ASC/ASDSimpleModel/" > 
</modelLinkBase>

<pathBase path="{{codeDir}}" ></pathBase>

<headerFile name="asdsmpm.h" ></headerFile>

<headerFile name="conf.h" ></headerFile>

<headerFile name="modulem.h" ></headerFile>

<usage layoutFamily="asd:standardLayout" ></usage>

&baseTypes-asd;

<definitions>

<conversion name="ident">

<rationalFunction>

<numerator bx="1" ></numerator>

<denominator f="1" ></denominator>

</rationalFunction>

</conversion>

</definitions>

<dataElement interfaceKind="export">

<dataCInterface identifier= 
"MODULE_IMPL_ClassObj.Out1->val">

<type><typeRef name="real64" ></typeRef></type>

<fileOrigin name="MODULEM.c" ></fileOrigin>

<initValue value="0.0" ></initValue>

</dataCInterface>
INTECRIO-ASC V6.2 - User’s Guide 63

64

Experimenting with INTECRIO ETAS
<modelOrigin identifier="ASDSimpleModel. 
Module.Out1">

<name>Out1</name>

<modelLink href="Module.Out1" ></modelLink>

<modelLocation>

<pathNode name="Module" kind="asd:module">

<pathParameter name="asd:implementation" 
value="Impl" ></pathParameter>

<pathParameter name="asd:dataSet" 
value="Data" ></pathParameter>

</pathNode>

<pathNode name="Out1" kind="asd:element" > 
</pathNode>

</modelLocation>

<modelKind kind="message" visibility="public">

<flowDirection in="false" out="true" > 
</flowDirection>

</modelKind>

<modelType type="continuous" ></modelType>

<annotation>

<ix:documentation xmlns= 
"http://www.w3.org/1999/xhtml" 
lang="en-US">

This is output message <i>Out1</i> of 
continuous type.

</ix:documentation>

</annotation>

</modelOrigin>

<implementation>

<conversionRef name="ident" ></conversionRef>

<valueRange min="-2147483648" 
max="2147483647" ></valueRange>

<saturation value="true" resolution="reduce" 
assignment="true" ></saturation>

<zeroExcluded value="false" ></zeroExcluded>

</implementation>

<usage measurement="true" virtual="false" 
variant="false" >

<address kind="pseudo" >

<BLOB kind="KP_BLOB" device="E_TARGET" > 
<![CDATA[2 1001 1 1001 1]]></BLOB>

</address>

</usage>

</dataElement>

<dataElement interfaceKind="export">
INTECRIO-ASC V6.2 - User’s Guide

ETAS Experimenting with INTECRIO
<dataCInterface identifier= 
"ASDSIMPLEMODEL_IMPL_ClassObj.Module-> 

myPar->val">

<type><typeRef name="real64" ></typeRef></type>

<fileOrigin name="MODULEM.c" > 
</fileOrigin>

<initValue value="3.2" />

</dataCInterface>

<modelOrigin identifier="ASDSimpleModel. 
Module.myPar">

<name>myPar</name>

<modelLink href="ASDSimpleModel.Module.myPar" 
> </modelLink> 

<modelLocation>

<pathNode name="Module" kind="asd:module">

<pathParameter name=
"asd:implementation" value="Impl" > 
</pathParameter>

<pathParameter name= 
"asd:dataSet" value="Data" > 
</pathParameter>

</pathNode>

<pathNode name="myPar"
kind="asd:element" ></pathNode>

</modelLocation>

<modelKind kind="parameter" 
visibility="private" ></modelKind>

<modelType type="continuous" ></modelType>

</modelOrigin>

<implementation>

<conversionRef name="ident" ></conversionRef>

<valueRange min="-1.e+037" max="1.e+037" > 
</valueRange>

<zeroExcluded value="false" ></zeroExcluded>

</implementation>

<usage calibration="true" virtual="false" 
variant="false" >

<address kind="pseudo" >

<BLOB kind="KP_BLOB" device="E_TARGET" 
><![CDATA[2 1001 1 1000 1]]></BLOB>

</address>

</usage>

</dataElement>

<functionElement interfaceKind="export">

<functionCInterface identifier= 
"MODULE_IMPL_compute">
INTECRIO-ASC V6.2 - User’s Guide 65

66

Experimenting with INTECRIO ETAS
<signature>

<return>

<type><void /></type>

</return>

<void />

</signature>

<fileOrigin name="MODULEM.c" ></fileOrigin>

</functionCInterface>

<modelOrigin identifier="Module.compute">

<name>compute</name>

<modelLink href="Module.compute" />

<modelLocation>

<pathNode name="Module" kind="asd:module">

<pathParameter name="asd:implementation" 
value="Impl" ></pathParameter>

<pathParameter name="asd:dataSet"
value="Data" ></pathParameter>

</pathNode>

<pathNode name="compute" kind="asd:process" >
</pathNode>

</modelLocation>

<modelKind kind="process" 
visibility="public" > </modelKind>

<runTimeInfo>

<FPUUsage value="true" ></FPUUsage>

<TerminateTaskUsage value="false" > 
</TerminateTaskUsage>

<messageAccess>

<message identifier= 
"MODULE_IMPL_ClassObj.Out1->val" 
send="true" ></message>

</messageAccess>

<resourceAccess ></resourceAccess>

<constraint>

<period value="0.01" ></period>

<execution trigger="timer" priority="0" > 
</execution>

<scheduling mode="preemptive" > 
<scheduling>

</constraint>

</runTimeInfo>

</modelOrigin>

</functionElement>

</interface>

</module>
INTECRIO-ASC V6.2 - User’s Guide

ETAS Tutorial – Experimenting with INTECRIO
5 Tutorial – Experimenting with INTECRIO

The tutorial describes an INTECRIO experiment, using a supplied example. INTEC-
RIO-ASC V6.2 includes the sample file Tutorial INTECRIO.*1. During the
installation, the sample file is stored in the ASCET6.2\export subdirectory of
your ASCET installation.

The tutorial explains how to transfer ASCET projects to INTECRIO as well as how
to use Back-Animation (see page 56) when experimenting with INTECRIO. Cre-
ating a project in ASCET or a workspace in INTECRIO is not part of this chapter;
all files you need are supplied.

• The export file Tutorial INTECRIO.* (* = exp or axl) contains the
ASCET project with all relevant components.

The ASCET project P01_Project consists of a data generator
(M01_DataGenerator module) which is specified as a state machine
(SM01_DataGenerator). Use the PMode parameter to determine
whether the data generator is running as a a sawtooth (1) or a triangular
signal (2). The generated data represents the input signal for a low-pass
filter (M01_LowPass module) which is also part of the project.

• The INTECRIO_Tutorial_Workspace folder contains an INTECRIO
workspace which was prepared for the tutorial. This workspace contains
the INTECRIO system projects SystemProject_ES1130,
SystemProject_ES1135, and SystemProject_ES910; you use the
system project corresponding to your hardware.

The sample file can be imported into a new or an existing database.

5.1 Preparations

First of all, make the necessary preparations.

To configure the TCP/IP protocol options:

To avoid conflicts with a second network card that might be used for the LAN,
the following TCP/IP settings should be selected:

• Disable the DHCP service.

• Enter the IP address 192.168.40.240.

1. * = exp or axl

Note

This tutorial is written under the assumptions that
a) an ES1000 system is used,
b) a database is used,
c) the ETAS Network Manager is not used.

If you are using the ETAS Network Manager, slightly different behavior may
result;; see Chapter 2.2 and Chapter 4.

Note

If you are using the ETAS Network Manager, the instruction is obsolete.
INTECRIO-ASC V6.2 - User’s Guide 67

68

Tutorial – Experimenting with INTECRIO ETAS
• Enter the subnet mask 255.255.255.0.

• For the DNS service, use the local settings of your
internal network.

• Disable the WINS service.

• Make sure that the "IP Forwarding" option is not
activated.

To create a new ASCET database:

• In the Component Manager, select the File  New
Database menu option.

The "New Database" window opens.

• Enter the name for the new database.

• Click OK.

The database is created and opened.

To import the exercise example:

• In the Component Manager, select File  Import.

The "Select Import File" window opens.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Tutorial – Experimenting with INTECRIO
• Use the button to select the
Tutorial INTECRIO.* file from the
ASCET6.2\export subdirectory of your ASCET
installation.

The OK button is now available.

You can use the default import options, so that no
further action is required.

• Click OK to start the import.

• Make sure all components have been selected for
the import in the "Import" window..

• Click OK.

The items are imported. The "Imported Items" win-
dow shows a list of the imported items.

• Close the "Imported Items" window.

To select a target:

• Open the project P01_Project in the project edi-
tor.

• Click on Project Properties to open the "Project
Properties" window.

• In the "Build" node, select the target Prototyp-
ing and the compiler GNU-C V3.4.4 (Pow-
erPC).

The defined operating system settings for this tar-
get are loaded.
INTECRIO-ASC V6.2 - User’s Guide 69

70

Tutorial – Experimenting with INTECRIO ETAS
To copy the INTECRIO workspace:

The prepared INTECRIO workspace is located in the ETAS\ASCET6.2\
export directory of your ASCET installation.

• Copy the INTECRIO_Tutorial_Workspace direc-
tory to your hard disk, e.g. to

ETASData\INTECRIO4.0\
INTECRIO_Tutorial_Workspace.

5.2 Transferring the Project

The next step is to transfer the project to INTECRIO.

To transfer the project to INTECRIO:

• Open the project P01_Project.

• Click the Project Properties button to open the
"Project Properties" window.

• Make sure that the target Prototyping and the
GNU compiler are selected in the "Build" node, and
close the "Project Properties" window.

INTECRIO is preselected in the "Experiment Tar-
get" combo box; the buttons Transfer Project to
selected Experiment Target and Reconnect to
Experiment of selected Experiment Target are
now available.

• Click the Transfer Project to selected Experi-
ment Target button.

The "INTECRIO Project Transfer" window opens.

• In the "Path" field, enter a path for the generated
files.

• In the "Version" combo box, select the INTECRIO
version you will use.

• Use the Browse button next to the "Workspace"
field to enter the supplied workspace.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Tutorial – Experimenting with INTECRIO
• Use the Browse button next to the "System" field
to specify the suitable system project for your hard-
ware.

If INTECRIO is not yet running, it is started now.

• Click OK to start transfer.

If the folder for the generated files is not empty, the
following message opens:

The folder "<folder path and name>"
already exists! If you continue,
existing files may be overwritten. Do
you want to proceed anyway?

• Click OK to proceed.

Or

• Click Cancel to abort the transfer.

The code necessary for working with INTECRIO is
generated and stored in the specified directory.

The ASCET project is imported into INTECRIO and
stored as a module under the name
P01_Project. It is automatically added to the
selected system project.

Since you copied the workspace, the following error message can occur:

Click Proceed without Backup to continue.

5.3 Experimenting in INTECRIO

Now configure the operating system in INTECRIO, start the Build process and
finally the INTECRIO experiment.

To configure the INTECRIO operating system:

• Change to the INTECRIO window.

• In the Systems folder, select the system project you
are using, and select Set As Active Project from its
context menu.

• Select System  OS Configuration.

The OSC operating system editor opens. As the
example is very easy, you can use the automatic
configuration.
INTECRIO-ASC V6.2 - User’s Guide 71

72

Tutorial – Experimenting with INTECRIO ETAS
• Select System  OS Auto mapping.

The auto_10msTask task is created in UserApp-
Mode operating mode. The two processes of the
ASCET project are assigned to this task.

You do not need to make any further settings.

To start the INTECRIO Build process:

• Select Integration  Build from the INTECRIO
window

or

• if you are not starting the Build process for the first
time, select Integration  Rebuild.

The Build process is started. The "Log Window"
box at the bottom of the INTECRIO window indi-
cates progress.

The following message is displayed in the last lines
after a successful Build process:

Action succeeded

The active system project has been
set into the "Build" mode.

To start an INTECRIO experiment:

1. Opening an experiment environment

• In the INTECRIO window, select Experiment 
Open Experiment.

The experiment environment opens in its own win-
dow. The experiment is loaded into the experiment
environment.

2. Starting an experiment

• In the INTECRIO experiment environment, select
Experiment  Download.

The executable file (the prototype) is loaded to the
hardware.

• Select Experiment  Start OS.

The simulation is started.

• Select Experiment  Start Measurement.

The measurement is started.

To use Back-Animation, you do not have to open any measure and calibration
windows in INTECRIO. But as Back-Animation with ASCET does not provide an
oscilloscope, the INTECRIO experiment environment contains a predefined oscil-
loscope. The experiment environment also contains two calibration instruments.
If these instruments do not open automatically, open the prepared experiment
manually.

To open the experiment environment:

• In the INTECRIO experiment environment, select
File  Open Experiment.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Tutorial – Experimenting with INTECRIO
• Confirm the security question.

A file selection window opens.

• Open the INTECRIO_Tutorial.eex file from
the EE\Experiments\INTECRIO_Tutorial
subdirectory of your INTECRIO workspace.

As you have already started the simulation, values
are displayed immediately.

Your INTECRIO experiment environment then looks like this:

5.4 Using Back-Animation

Start Back-Animation from ASCET. The experiment has to continue running in
INTECRIO.

To start Back-Animation:

• Click the Reconnect to Experiment of Selected
Experiment Target button in the ASCET project
editor.

The connection is established to the running INTEC-
RIO experiment. The "Physical Experiment ..." win-
dow opens.
INTECRIO-ASC V6.2 - User’s Guide 73

74

Tutorial – Experimenting with INTECRIO ETAS
• In the "Environment Browser" window, select
INTECRIO as environment.

The predefined arrangement of measurement and
calibration windows opens.

• Click the Start Measurement button.

Measuring is started in the ASCET experiment; val-
ues are displayed in the measure windows.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Tutorial – Experimenting with INTECRIO
You can now calibrate values either in the ASCET experiment or in the INTECRIO
experiment. The modified values are transferred to the INTECRIO experiment and
displayed and used there.

To calibrate values:

• In the ASCET experiment, enter a value for the vari-
able LP_IV in the "Numeric Editor; 3" window.

The value in the left-hand calibration instrument in
the INTECRIO experiment ("Group1") is updated.

• In the INTECRIO experiment, enter another value for
the variable LP_IV in the "Group1" window.

The value in the "Numeric Editor; 3" window of the
ASCET experiment is updated.

• In the "Logical Editor; 2" window, set the ven-
able parameter to false.

The value of the signal generator stays at the last
value; the low-pass filter is set to the initialization
value LP_IV (A in the screenshot).

• Set venable back to true and then PMode to 2
to select the other signal generator.

The display in the INTECRIO oscilloscope changes
accordingly (B and C in the screenshot).

To view the ASCET components:

• In the ASCET window "Physical Experiment ...",
"Graphics" tab, double-click a component to view
it in detail.

The component is displayed in the "Physical Experi-
ment ..." window.

You can navigate through the entire hierarchy in
this way; the Navigate up to parent component
button or double-clicking the empty space gets you
back to the next highest level.

A B C
INTECRIO-ASC V6.2 - User’s Guide 75

76

Tutorial – Experimenting with INTECRIO ETAS
• Select View  Monitor All.

The current values of the elements are shown above
the elements.

• Navigate through the model specification to the
state machine SM01_DataGenerator.

• Right-click one of the states and select Animate
States from the context menu.

The current state is shown in color in the state dia-
gram.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
6 Appendix A: Compiler Switches and API Functions

This annex contains remarks to target-specific external C code (chapter 6.1
"Compiler Switches for External C Code"), as well as the API functions INTEC-
RIO-ASC provides for the ES113x experimental target. These functions define the
interfaces between INTECRIO-ASC and the following applications:

• ERCOSEK (Chapter 6.2)

• NVRAM (Chapter 6.3)

• Watchdog (Chapter 6.4)

• LEDs (Chapter 6.5)

• Miscellaneous (Chapter 6.6)

6.1 Compiler Switches for External C Code

It is sometimes necessary to bracket parts of external C code in target-specific
compiler switches. For that purpose, INTECRIO-ASC V6.2 provides the following
switches:

• ES910

• ES1130

• ES1135

• ES113x (for ES1130 and ES1135)

The syntax is as follows:

#ifdef ES1135

...

/* ES1135-specific code */

...

#endif

6.2 API Functions (ERCOSEK)

This chapter gives a detailed description of all existing API-functions (Application
Programming Interface). These service routines define the interface between the
application and ERCOSEK.

Each section deals with a group of service routines that are functionally related
to one another. The description structure of each service routine is as follows:

Note

If the Prototyping target is selected, the (test) compilation is performed
with the ES1135 switch.

_exampleRoutine

Function A short description of the service’s functionality.

Syntax The syntax is specified here in the form of a C function proto-
type. The C types used are described in the following chapter.
INTECRIO-ASC V6.2 - User’s Guide 77

78

Appendix A: Compiler Switches and API Functions ETAS
The following list provides a short overview of all existing ERCOSEK commands
supported by INTECRIO-ASC for the experimental target ES113x. More detailed
information (syntax, examples, etc.) can be found in the subsequent chapters.

Description This section contains a detailed description of the service rou-
tine, a description of the parameters as well as further details
and notes that the user should be aware of or take into consid-
eration when using the service routine.

Return code Type and value range of the return code (if available) and its
significance are specified here.

Example The Example demonstrates a typical usage of the described
function.

See also List of related functions.

Hint Some of the function descriptions include a hint providing
additional useful information.

Command Function Page

Application Modes

DeclareAppMode Serves as an external declaration of an
application mode.

79

SetNextAppMode Switches to the specified application mode
after processing all active tasks.

79

Tasks

DeclareTask Serves as an external declaration of a task. 80

ActivateTask Activates a SW task. 80

System Time

GetSystemTime Gets the current system time. 81

GetSystemTimeLow Gets the low-order part of the current sys-
tem time.

81

GetSystemTimeHigh Gets the high-order part of the current sys-
tem time.

82

Interrupt Handling

EnableAllInterrupts Globally enables all interrupts. 82

DisableAllInterrupts Globally disables all interrupts. 82

dT Query

GetDeltaT Returns the value of dT. 83
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
6.2.1 Application Modes

The concept of application modes allows the efficient management of different
processing states in the application software. An application mode is defined by
a set of tasks which are active in this mode and one or more optional timetables.
Application modes for an engine control unit can be, for example: normal oper-
ation (control of the technical process), auto-diagnostics, flash EPROM program-
ming. Only one application mode can be active at a time.

An application mode consists of two phases: the first phase is the initialization
phase. This is where the initialization routines of the application are processed.
Interrupts are disabled. After initialization, the interrupts are enabled and the
execution phase begins. Here the activated tasks of the application are processed
according to their priorities (scheduled).

DeclareAppMode

Function Serves as an external declaration of an application mode.

Syntax #define DeclareAppMode(AppID)
extern AppModeType AppID

Description If an application mode switch is performed within a module,
but the application mode descriptor is defined in another mod-
ule, the usage of the application mode descriptor must be dis-
closed by DeclareAppMode().
The function and use of this service are similar to that of the
external declaration of variables.

Example extern uint excCtr;

extern uint randx;

DeclareAppMode(idleMode);

See also DeclareTask

SetNextAppMode

Function Switches to the specified application mode after processing all
active tasks.

Syntax StatusType SetNextAppMode(AppModeType app-
Mode)

Description SetNextAppMode() requests a change to the application
mode referenced by pointer appMode. The operating system
executes the change as soon as no further task is running, i.e.
when the operating system is in the idle state. However, subse-
quent task activations via ChainTask() or RestartTask()
(not supported for Rapid Prototyping use case) will be ignored.
In case hardware tasks are initialized during startup (initializa-
tion phase), they will be reinitialized for the next application
mode.
INTECRIO-ASC V6.2 - User’s Guide 79

80

Appendix A: Compiler Switches and API Functions ETAS
6.2.2 Tasks

There are two types of tasks in ERCOSEK: firstly software tasks (SW tasks) which
are activated by ActivateTask(); the processing is coordinated by the
ERCOSEK scheduler and secondly hardware tasks (HW tasks) which are activated
by an interrupt. In this case scheduling is carried out by the interrupt control logic
of the processor, i.e. by the hardware.

Return code E_OK Request successfully processed.

Example SetNextAppMode(driveMode);

See also -

DeclareTask

Function Serves as an external declaration of a task.

Syntax #define DeclareTask(TaskID)
extern TaskType TaskID

Description If a task is used by a module, but is defined in another module,
its usage must be disclosed by DeclareTask().
The function and use of this service are similar to that of the
external declaration of variables.

Example extern uint excCtr;

extern uint randx;

DeclareTask(synchroSeq);

See also DeclareAppMode

ActivateTask

Function Activates a SW task.

Syntax StatusType ActivateTask(TaskType task)

Description ActivateTask() requires the operating system to process
the SW task specified by task. If this task activation is success-
ful (cf. return code), the processing of the task is planned
according to its priority by the ERCOSEK scheduler.
If several activations of a task are allowed (according to the
BCC2 definition) and the current number of activations of a
task is > 1, this task is temporarily stored in the FIFO buffer.
If ActivateTask() cannot be executed successfully, the sys-
tem switches to the user-specific error function.

Return code E_OK Activation successful.

SetNextAppMode (driveMode);

The application
mode switch
is performed
here.Task A

Task B

Task C

Priority

Time
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
6.2.3 System Time

A discrete system time is the time base of ERCOSEK. For those targets which do
not offer a hardware-based system time, the system time is set to 0 with the start
of the operating system. The system time, which is normally counted with a
width of two machine words, is used as the reference time for alarm services and
the ERCOSEK timetable. The time until an overflow of the system time occurs
depends on CPU and the frequency of the hardware timer used. The system time
is not interrupted or reset by an application mode change.

The system time is counted in ticks of the underlying timer register. The macro
SYSTEM_TICK_DURATION returns the duration of such a tick in nanoseconds.

E_OS_LIMIT No activation, as maximum number of task
activations for the task specified has already
been reached or because the maximum num-
ber of tasks in the task FIFO buffer at the spec-
ified priority level has already been reached.

Example ActivateTask(synchroSeq);

See also –

GetSystemTime

Function Gets the current system time.

Syntax TimeType GetSystemTime(void)

Description GetSystemTime() returns the system time in ticks. The
width is system dependent (32 bit on 16-bit wide and 64 bit on
32-bit wide systems).

Return code Current system time.

Example TimeType now;

now = GetSystemTime();

See also GetSystemTimeLow, GetSystemTimeHigh

GetSystemTimeLow

Function Gets the low-order part of the current system time.

Syntax TickType GetSystemTimeLow(void)

Description GetSystemTimeLow() returns the low-order part of the
current system time in ticks. These are the lower 16 bit for an
ERCOSEK implementation with a 32 bit wide system time; for
an implementation with a 64 bit wide system time, the lower
32 bit.

Return code Low-order part of the current system time.

Example TickType lowPartOfNow;

lowPartOfNow = GetSystemTimeLow();

See also GetSystemTime, GetSystemTimeHigh
INTECRIO-ASC V6.2 - User’s Guide 81

82

Appendix A: Compiler Switches and API Functions ETAS

6.2.4 Interrupt Handling

ERCOSEK provides a routine to save and restore context relevant data in the
frame of an interrupt service routine. Furthermore, the certain valid interrupt
descriptor can be accessed by an ERCOSEK API-function.

GetSystemTimeHigh

Function Gets the high-order part of the current system time.

Syntax TickType GetSystemTimeHigh(void)

Description GetSystemTimeHigh() returns the high-order part of the
current system time in ticks. These are the upper 16 bit for an
ERCOSEK implementation on a 32-bit wide system time; for an
implementation on a 64-bit wide system time, the upper 32
bit.

Return code High-order part of the current system time.

Example TickType highPartOfNow;

highPartOfNow = GetSystemTimeHigh();

See also GetSystemTime, GetSystemTimeLow

EnableAllInterrupts

Function Enables all interrupts globally.

Syntax void EnableAllInterrupts(void)

Description EnableAllInterrupts() enables the interrupts for the
controller-core globally without manipulating interrupt masks.
If multiple calls of DisableAllInterrupts() preceded the inter-
rupts are only enabled if the corresponding number of
EnableAllInterrupts() calls have been reached. Hence, a safe
realization of nested interrupt disabling is supported.

Return code None

See also DisableAllInterrupts

DisableAllInterrupts

Function Disables all interrupts globally.

Syntax void DisableAllInterrupts(void)

Description DisableAllInterrupts() disables all interrupts globally
and stores the state of nested calls.

Return code None

See also EnableAllInterrupts
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
6.2.5 dT Query

ERCOSEK provides a service routine for querying the time elapsed between the
last start of the currently running task and the start of the currently running task
(see figure below). The time returned always concerns the task from which the
service was called.

The dT returned by GetDeltaT() is very useful for mathematical calculations
e.g. an integration:

GetDeltaT

Function Returns the value of dT.

Syntax TickType GetDeltaT(void)

Description GetDeltaT() returns the time expired between two subse-
quent task executions.
Note: If this time exceeds half the width of the hardware
timer, the return value can not be relied on.
This function is only supported in ERCOSEK debug mode. See
chapter "Debug information within the task monitor" in the
ERCOSEK manual for detailed information about debugging an
application based on ERCOSEK.

Return code Value of dT in ticks.

Example TickType deltaT;

deltaT = GetDeltaT();

See also –

Prio
dTB1

dTA1 dTA2 dTA3

GetDeltaT()==dTB1

*: GetDeltaT()==dTA1

GetDeltaT()==dTA2

GetDeltaT()==dTA3*Task B

Time

Task A

Background
Task

F x  f T  Td

0

x


INTECRIO-ASC V6.2 - User’s Guide 83

84

Appendix A: Compiler Switches and API Functions ETAS
6.3 API Functions (NVRAM)

The default behavior of the NVRAM manager described in Chapter 3.5 can be
altered from within an ASCET model (C code component) via the following inter-
faces:

nvramInitModelVars

Function Initializes the NV variables.

Syntax uint32 nvramInitModelVars(void)

Description This function initializes the NV variables with the content of
the NVRAM if this content is valid and matching. The initializa-
tion may be triggered only once (via C code, L1 or automatic
flag) and only before any update of the NVRAM occurred.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_NO_NV_VARIABLES No NV variables inside
the model

EC_NVRAM_INADMISSIBLE_USE Function has been
already called

EC_NVRAM_INTERNAL_ERROR An internal error
occurred

EC_NVRAM_NO_MATCH The NVRAM content
does not match the
current model

Example –

See also nvramCheckForInitializedVars

nvramSetUpdateInterval

Function Sets the automatic NVRAM update interval.

Syntax uint32 nvramSetUpdateInterval(uint32
interval_sec)

Description Sets the automatic NVRAM update interval. This is the desired
time between two updates. If system load is high, the actual
time interval might be larger (depends significantly from the
requested consistency level). If the actual update interval
exceeds the requested interval for 10 times, a warning is
issued inside the experiment environment.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_INVALID_ARG Interval_sec > 30

Parameter interval_sec Update interval in seconds.
Must be a value between 0
and 30 (0: no periodical
update).

Example –

See also nvramGetUpdateInterval
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
nvramGetUpdateInterval

Function Gets the automatic NVRAM update interval.

Syntax uint32 nvramGetUpdateInterval(void)

Description Gets the automatic NVRAM update interval. This is the desired
time between two updates. If system load is high, the actual
time interval might be larger (depends significantly from the
requested consistency level). If the actual update interval
exceeds the requested interval for 10 times, a warning is
issued inside the experiment environment.

Return Value interval_sec Update interval in seconds.

Example –

See also nvramSetUpdateInterval

nvramSetConsistencyLevel

Function Sets the level of NV variable data consistency.

Syntax uint32 nvramSetConsistencyLevel
(T_consistencyLevel level)

Description Sets the level of NV variable data consistency.
No consistency: NVRAM update is done without respect to
consistency inside NV variables and between individual NV
variables.
Low level consistency: data consistency within NV variables
(scalars, vectors and matrices but not characteristics) is guaran-
teed.
High level consistency: all NV variables are updated without
interruption by the model, out of the idle task.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_INVALID_ARG Invalid level argument

Parameter level NVRAM_NO_CONSISTENCY
NVRAM_LOW_CONSISTENCY
NVRAM_HIGH_CONSISTENCY

Example –

See also nvramGetConsistencyLevel
INTECRIO-ASC V6.2 - User’s Guide 85

86

Appendix A: Compiler Switches and API Functions ETAS
nvramGetConsistencyLevel

Function Gets the level of NV variable data consistency.

Syntax T_consistencyLevel
nvramGetConsistencyLevel(void)

Description Gets the level of NV variable data consistency.
No consistency: NVRAM update is done without respect to
consistency inside NV variables and between individual NV
variables.
Low level consistency: data consistency within NV variables
(scalars, vectors and matrices but not characteristics) is guar-
anteed.
High level consistency: all NV variables are updated without
interruption by the model, out of the idle task.

Return Value NVRAM_NO_CONSISTENCY No consistency

NVRAM_LOW_CONSISTENCY Low level consistency

NVRAM_HIGH_CONSISTENCY High level consistency

Example –

See also nvramSetConsistencyLevel

nvramEnableAutoUpdate

Function Enables automatic update of the NVRAM content.

Syntax uint32 nvramEnableAutoUpdate(void)

Description Enables automatic update of the NVRAM content. This com-
prises periodical update as well as updates initiated by the Exit
Task.

Return Value EC_NVRAM_SUCCESS Success

Example –

See also nvramDisableAutoUpdate
nvramCheckForAutoUpdate

nvramDisableAutoUpdate

Function Disables automatic update of the NVRAM content.

Syntax uint32 nvramDisableAutoUpdate(void)

Description Disables automatic update of the NVRAM content. This com-
prises periodical update as well as updates initiated by the Exit
Task.

Return Value EC_NVRAM_SUCCESS Success

Example –

See also nvramEnableAutoUpdate,
nvramCheckForAutoUpdate
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
nvramCheckForAutoUpdate

Function This function checks if auto update mode is enabled.

Syntax uint8 nvramCheckForAutoUpdate(void)

Return Value true Auto update mode is enabled

false Auto update mode is disabled

Example –

See also nvramEnableAutoUpdate
nvramDisableAutoUpdate

nvramManualUpdateExit

Function Ensures a final update of the NVRAM content.

Syntax void nvramManualUpdateExit (void)

Description This function should be placed inside the Exit Task after the
last user process, to ensure a final update of the NVRAM con-
tent when the user application mode is left (Stop ERCOS But-
ton). Error messages are posted inside the experiment
environment if an error occurs.

Example –

See also nvramManualUpdateBackground
nvramManualUpdateBlocked

nvramManualUpdateBackground

Function Starts a manual update of the NVRAM content.

Syntax uint32 nvramManualUpdateBackground(void)

Description This function starts a manual update of the NVRAM content.
Manual update has precedence over the automatic periodical
update. Thus, a potentially running periodical update is
aborted. But if cyclic update is on the way (the Idle task is
interrupted by a preemptive task with the call of this func-
tion), start of manual update is impossible This function
returns immediately, because the update is running in the
background (Idle Task). The completion of this process can be
tested via the function nvramCheckRunningUpdate().
Note: It is not recommended to use this function when auto-
matic update is enabled.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_NO_NV_VARIABLES No NV variables in model

EC_NVRAM_FATAL_ERROR Fatal error occurred
before

EC_NVRAM_OVERFLOW Overflow of NVRAM.
Reduce Number / Size of
NV variables.
INTECRIO-ASC V6.2 - User’s Guide 87

88

Appendix A: Compiler Switches and API Functions ETAS
EC_NVRAM_UPDATE_RUNNING Other Update process
(manual or cyclic) is cur-
rently running. Start of
manual update failed.

Example –

See also nvramManualUpdateBlocked,
nvramManualUpdateExit

nvramManualUpdateBlocked

Function Starts a manual update of the NVRAM content (blocking on
the current priority).

Syntax uint32 nvramManualUpdateBlocked
(uint32 timeoutUs)

Description This function starts a manual update of the NVRAM content.
Manual update has precedence over the automatic periodical
update. Thus, a potentially running periodical update is
aborted. But if cyclic update is on the way (the Idle task is
interrupted by a preemptive task with the call of this func-
tion), start of manual update is impossible This function blocks
on the current priority until all NV variable contents have been
written to the local buffer or until a time-out occurred. After
the function has returned, the update process (writing from
local buffer into the NVRAM) is continued in the Idle task
(even if a time-out occurred). The completion of the update
process can be tested via the function nvramCheckRun-
ningUpdate().
Because interrupts are not suspended during this process, a
preemptive task with higher priority might interrupt the
update process. This could lead to data inconsistencies if this
task modifies any NV variable contents.

Note: It is not recommended to use this function when auto-
matic update is enabled.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_NO_NV_VARIABLES No NV variables in model

EC_NVRAM_FATAL_ERROR Fatal error occurred
before

EC_NVRAM_OVERFLOW Overflow of NVRAM.
Reduce Number / Size of
NV variables.

EC_NVRAM_UPDATE_RUNNING Other Update process
(manual or cyclic) is cur-
rently running. Start of
manual update failed.

nvramManualUpdateBackground
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
Parameter timeoutUs Time-out period in s

Example –

See also nvramManualUpdateBlocked,
nvramManualUpdateExit, nvramCheckRunningUp-
date

nvramCheckRunningUpdate

Function Checks if an manual NVRAM update started.

Syntax uint8 nvramCheckRunningUpdate(void)

Description This function checks if an manual NVRAM update started by
nvramStartManualUpdateBackground or nvram-
StartManualUpdateBlocked is still running in the back-
ground.

Return Value false Update is finished or has not been started
successfully

true Update is still running

Example –

See also nvramManualUpdateBackground
nvramManualUpdateBlocked

nvramCheckForInitializedVars

Function Checks if the NV variables have been initialized.

Syntax uint8 nvramCheckForInitializedVars(void)

Description This function checks if the NV variables inside the model have
been initialized with the NVRAM content. This might be trig-
gered by automatic update via the experiment environment or
initialization via C code API.

Return Value true NV variables have been initialized with the
NVRAM content

false NV variables have not been initialized with
the NVRAM content but with their default
values.

Example –

See also nvramInitModelVars

nvramGetUpdateAgeMs

Function Returns the elapsed time since the last finish of an update.

Syntax uint32 nvramGetUpdateAgeMs(void)

Return Value updateAge Time in milliseconds

nvramManualUpdateBlocked
INTECRIO-ASC V6.2 - User’s Guide 89

90

Appendix A: Compiler Switches and API Functions ETAS
6.4 API Functions (Watchdog)

The ES1135 Simulation Controller has a hardware watchdog. the watchdog
functionality is summarized in Chapter 3.4.1. The following interfaces are pro-
vided by the firmware.

Description This function returns the elapsed time since the last finish of
an update (manual or automatic update).

Example –

See also –

nvramClear

Function Erases the NVRAM contents.

Syntax uint32 nvramClear(void)

Return Value EC_NVRAM_SUCCESS Success

Description This function erases the NVRAM contents. The memory is ini-
tialized with zeros.

Example –

See also –

nvramGetUpdateAgeMs
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
6.4.1 Watchdog Configuration

wdSetSafetyMode

Function Sets the Safety Mode.

Syntax uint32 wdSetSafetyMode
(uint32 event, uint32 period)

Description This function switches from the pre-operational mode or the
RSEF mode to the safety critical mode. This cannot be undone
afterwards except by switching power off.
The parameter event selects the action which is to be done
when the watchdog expires.
WD_EVENT_DISABLE disables the watchdog.
WD_EVENT_PPC750_RESET resets the IBM 750GX simula-
tion processor.
WD_EVENT_PPC750_INT triggers an interrupt to the simula-
tion processor.
The parameter period (time period after that the watchdog
expires) can be configured in the range from 0.25 ms up to
4096 ms.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MODE Watchdog is already in safety
mode

EC_CFW_INVALID_ARG Invalid event or period value

Parameter event WD_EVENT_DISABLE
WD_EVENT_PPC750_RESET
WD_EVENT_PPC750_INT

period WD_PERIOD_4096MS
WD_PERIOD_1024MS
WD_PERIOD_256MS
WD_PERIOD_64MS
WD_PERIOD_16MS
WD_PERIOD_4MS
WD_PERIOD_1MS
WD_PERIOD_0_25MS

Example uint32 period;
uint32 event;
uint32 retVal;
event = WD_EVENT_DISABLE;
period = WD_PERIOD_4096MS;
retVal = wdSetSafetyMode(event, period);

See also wdSetPeriod, wdSetEvent
INTECRIO-ASC V6.2 - User’s Guide 91

92

Appendix A: Compiler Switches and API Functions ETAS
wdSetReducedSafetyMode

Function Sets the Reduced Safety Enhanced Function Mode.

Syntax uint32 wdSetReducedSafetyMode(void)

Description This function switches from the pre-operational mode to the
reduced safety enhanced function mode (RSEF).

Note: This function is already called inside the boot loader.
Thus, this API function has no impact for INTECRIO-ASC use,
because the model starts with the watchdog in RSEF mode.
The loader disables also the watchdog events. Afterwards,
watchdog period and event can be modified via wdSetPe-
riod and wdSetEvent.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MODE Watchdog is in safety mode.
This cannot be undone.

EC_CFW_WD_RSEF_MODE Watchdog is already in RSEF
mode.

Example -

See also wdSetPeriod, wdSetEvent

wdSetPeriod

Function Sets the Watchdog Period.

Syntax uint32 wdSetPeriod(uint32 period)

Description This function switches the watchdog period (time period after
that the watchdog expires) which can be configured in the
range from 0.25 ms up to 4096 ms.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MODE Watchdog is in safety mode.
No period modification pos-
sible.

EC_CFW_INVALID_ARG Invalid period value

EC_CFW_WD_PRE_OP_MODE Watchdog is in pre-opera-
tional mode. Switch first to
RSEF mode.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
Parameter period WD_PERIOD_4096MS
WD_PERIOD_1024MS
WD_PERIOD_256MS
WD_PERIOD_64MS
WD_PERIOD_16MS
WD_PERIOD_4MS
WD_PERIOD_1MS
WD_PERIOD_0_25MS

Example uint32 period;
uint32 retVal;
period = WD_PERIOD_4096MS;
retVal = wdSetPeriod(period);

See also wdSetSafetyMode, wdSetEvent

wdSetEvent

Function Sets the event to be handled, if the watchdog expires.

Syntax uint32 wdSetEvent(uint32 event)

Description The function selects the action which should be done when
the watchdog expires.
WD_EVENT_DISABLE disables the watchdog.
WD_EVENT_PPC750_RESET resets the IBM 750GX simula-
tion processor.
WD_EVENT_PPC750_INT triggers an interrupt to the simula-
tion processor.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MODE Watchdog is in safety mode.
No event modification possi-
ble.

EC_CFW_INVALID_ARG Invalid event value

EC_CFW_WD_PRE_OP_MODE Watchdog is in pre-opera-
tional mode. Switch first to
RSEF mode.

Parameter event WD_EVENT_DISABLE
WD_EVENT_PPC750_RESET
WD_EVENT_PPC750_INT

Example uint32 event;
uint32 retVal;
event = WD_EVENT_DISABLE;
retVal = wdSetEvent(event);

See also wdSetSafetyMode, wdSetPeriod

wdSetPeriod
INTECRIO-ASC V6.2 - User’s Guide 93

94

Appendix A: Compiler Switches and API Functions ETAS
6.4.2 Watchdog Service

wdService

Function Services the Watchdog.

Syntax Void wdSetEvent(void)

Description This function services the watchdog. That means, it initializes
the watchdog timer to the value set by wdSetPeriod().

Example wdService();

See also wdEnableAutoService, wdDisableAutoService

wdEnableAutoService

Function Enables automatic servicing.

Syntax void wdEnableAutoService (void)

Description This function enables the watchdog automatic servicing fea-
ture. It services the watchdog in 30 ms intervals, if interrupts
are enabled. Additional servicing may be done by RTIO device
drivers. The servicing is enabled by default.

Example wdEnableAutoService();

See also wdService, wdDisableAutoService

wdDisableAutoService

Function Disables automatic servicing.

Syntax void wdDisableAutoService(void)

Description This function disables the watchdog automatic servicing fea-
ture.

Note: It is up to the model to service the watchdog accord-
ingly. Please keep in mind, that disabling automatic servicing
disables also RTIO internal servicing calls. Because RTIO driver
calls (especially driver Init and Exit) potentially block for longer
times, automatic servicing should be enabled inside the Init
and Exit task.

Example wdDisableAutoService();

See also wdService, wdEnableAutoService
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
6.4.3 Interrupt Control

wdIntEnable

Function Enables Watchdog interrupt handling.

Syntax void wdIntEnable(void)

Description This function enables the watchdog interrupt handling. Use
wdSetEvent() in advance to map the watchdog event
accordingly. The wdIntEnable() call has only influence on
the interrupt propagation. wdIntPend() can be used even if
the watchdog interrupt is disabled.

Example wdIntEnable();

See also wdSetEvent, wdIntPend, wdIntDisable, wdIn-
tAck

wdIntDisable

Function Disables Watchdog interrupt handling.

Syntax void wdIntDisable(void)

Description This function disables the watchdog interrupt handling.

Example wdIntDisable();

See also wdIntEnable

wdIntPend

Function Checks if interrupt pending.

Syntax uint8 wdIntPend(void)

Return Value false No watchdog interrupt is pending

true Watchdog interrupt is pending

Description This function checks, if a watchdog interrupt is pending. Use
wdSetEvent() in advance to map the watchdog event
accordingly.

Example if(wdIntPend() == true)

{

intPollCount++;

/* Reset Interrupt */

wdIntAck();

}

See also wdSetEvent, wdIntDisable, wdIntAck
INTECRIO-ASC V6.2 - User’s Guide 95

96

Appendix A: Compiler Switches and API Functions ETAS
6.4.4 Watchdog Status

wdIntAck

Function Acknowledges Watchdog interrupt.

Syntax void wdIntAck(void)

Description This function acknowledges a Watchdog interrupt. The
Watchdog counter (automatic restart after triggering an
event) is not influenced by this call. If the Watchdog counter
should be initialized, use wdService() before.

Example if(wdIntPend() == true)

{

intPollCount++;

/* Reset Interrupt */

wdIntAck();

}

See also wdSetEvent
wdIntDisable
wdIntPend

wdCheckReducedSafetyMode

Function Checks if Watchdog is in RSEF mode.

Syntax uint8 wdCheckReducedSafetyMode(void)

Description This function checks, if the watchdog is running in reduced-
safety-enhanced-function (RSEF) mode. If so, the watchdog
settings can be modified at runtime.

Return Value false Watchdog is running in safety mode

true Watchdog is running in RSEF mode

Example asdWriteUserDebug("Active = %u 
ReducedSafety = %u \n", wdCheckActive(), 
wdCheckReducedSafetyMode());

(asdWriteUserDebug is described in Chapter 6.6.)

See also wdSetSafetyMode, wdCheckActive

wdCheckActive

Function Checks if Watchdog is active.

Syntax uint8 wdCheckActive(void)

Description This function checks if the watchdog is currently active. This
depends on the event setting and if a debugger is connected
to the ES1135 board.

Return Value false Watchdog is currently disabled
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix A: Compiler Switches and API Functions
6.5 API Functions (ES1135 LEDs)

The ES1135 Simulation Controller has three configurable LEDs. They are briefly
described in Chapter 3.4.2. The following interfaces to the LEDs are provided.

true Watchdog is currently enabled

Example asdWriteUserDebug("Active = %u 
ReducedSafety = %u \n", wdCheckActive(), 
wdCheckReducedSafetyMode());
(asdWriteUserDebug is described in Chapter 6.6.)

See also wdSetSafetyMode, wdSetEvent,
wdCheckReducedSafetyMode

userLed[n]On

Function Switches LED [n] on.

Syntax void userLed1On(void)
void userLed2On(void)
void userLed3On(void)

Description These functions switch the respective LEDs on.

Example userLed1On();

See also userLed[n]Off, userLed[n]Toggle

userLed[n]Off

Function Switches LED [n] off.

Syntax void userLed1Off(void)
void userLed2Off(void)
void userLed3Off(void)

Description These functions switch the respective LEDs off.

Example userLed1Off();

See also userLed[n]On
userLed[n]Toggle

userLed[n]Toggle

Function Toggles LED [n].

Syntax void userLed1Toggle(void)
void userLed2Toggle(void)
void userLed3Toggle(void)

Description These functions toggle the respective LEDs.

Example userLed1Toggle();

See also userLed[n]Off
userLed[n]On

wdCheckActive
INTECRIO-ASC V6.2 - User’s Guide 97

98

Appendix A: Compiler Switches and API Functions ETAS
6.6 API Functions (Miscellaneous)

A few more API functions are available.

asdWriteUserError

Function Writes comment to ASCET monitor window.

Syntax Equivalent to the ANSI-C function printf

Description This function displays user messages in the ASCET monitor
window.

Example uint8 number = 1;
asdWriteUserError("Example %u \n", number);

See also asdWriteUserDebug

asdWriteUserDebug

Function Writes comment to ASCET Target Debugger window.

Syntax Equivalent to the ANSI-C function printf

Description This function displays user messages in the ASCET Target
debugger window.

Example uint8 number = 1;
asdWriteUserDebug("Example %u \n", number);

See also asdWriteUserError
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix B: ETAS Network Manager
7 Appendix B: ETAS Network Manager

The ETAS Network Manager is used for creating a configuration that will be used
by the ETAS IP Manager. The IP Manager is responsible for dynamic IP addressing
of the ETAS hardware used in your network.

7.1 Overview

ETAS software supports different configurations for hardware access via Ether-
net:

• Using multiple network adapters:

– one network adapter for the company network,

– one network adapter for the ETAS hardware.

• Using one network adapter:

– automatic toggling between the company network and the ETAS
hardware.

The ETAS Network Manager supports you in selecting the network adapter for
the ETAS hardware.

The ETAS Network Manager gives you an overview of the network adapters
available for your PC and the type of IP address assignment. If more than one
network adapter is available in the system, you can select the network adapter to
use for connecting the ETAS hardware to your PC. You can also specify the
address range for the IP assignment for the ETAS hardware.

You do not need administrator rights to select the network adapter and the net-
work environment configuration for the ETAS hardware. You can toggle
between the ETAS network and the company network without rebooting your
PC.

7.2 ETAS Hardware Addressing

The ETAS network allows you to connect several devices (including those that are
the same type) to your PC. The connected devices are identified in the local ETAS
network by their unique IP address.

An IP Manager integrated in the ETAS software looks up which IP addresses are
available in a pre-configured address pool and assigns available IP addresses to
the connected ETAS hardware.

The address range for the address pool is specified using the ETAS Network Man-
ager.

Note

You do not require a separate network adapter to connect the ETAS hardware
to your PC. You can use the same network adapter both for the company net-
work and the ETAS network.

Note

With Network Manager, you cannot create or modify the configuration for the
network adapter. Instead modify the network settings of your PC via the Con-
trol Panel (see the documentation for your operating system).
Please note that this requires administrator rights.
INTECRIO-ASC V6.2 - User’s Guide 99

100

Appendix B: ETAS Network Manager ETAS
7.3 Network Adapter Addressing

7.3.1 Type of Network Adapter Addressing

The type of network adapter addressing done within the company network
depends on the operating system being used and the network adapter configu-
ration:

The ETAS network supports the following types of network adapter addressing:

If you wish to use the network adapters both for the company network and the
ETAS network, you cannot use the network adapters that exclusively support
DHCP addressing for this dual operation.

7.3.2 Addressing the Network Adapter Manually

Addressing a network adapter depends on the operating system.

For instructions on addressing your PC’s network adapter, see the documenta-
tion for your operating system.

To address the network adapter manually, you need administrator rights. Please
contact your system administrator, if necessary.

If the network adapter is addressed manually, i.e., it has a static IP address, it may
happen that you accidentally end up searching for or initialize ETAS hardware,
although the PC is connected to the company network. The Network Manager
allows you to stipulate that if this happens, you are to receive a warning before
an IP address is assigned to an ETAS hardware.

7.3.3 Addressing the Network Adapter via DHCP

Addressing via DHCP requires that the DHCP server be available. Should the
DHCP server not be available, or if there is no DHCP server (as in the ETAS net-
work), the network adapter has not been configured.

In this instance, each operating system has a feature that automatically assigns
the network adapter an IP address:

Operating
System

Type of Network Adapter Addressing

Manual DHCP DHCP+APIPA DHCP+
alternative IP address

Windows Vista yes yes yes yes

Windows 7 yes yes yes yes

Operating
System

Type of Network Adapter Addressing

Manual DHCP DHCP+APIPA DHCP+
alternative IP address

Windows Vista yes no yes yes

Windows 7 yes no yes yes

Note

DHCP can be used only in combination with APIPA or an alternative IP address!
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix B: ETAS Network Manager
Windows Vista / Windows 7

Windows Vista and Windows 7 automatically check whether there is a connec-
tion to the DHCP server. If there is none, it either assigns the IP address automat-
ically via APIPA, or it uses the user-specified alternative IP address. The ETAS
network always uses either the APIPA address or the alternative IP address.

When toggling between the DHCP network and ETAS hardware, make sure that
the operating system is able to detect a connection failure because only then will
reconfiguration be initiated. This may take up to 10 seconds. It takes the operat-
ing system 60 seconds to entirely reconfigure from a DHCP address to an APIPA
address or to the alternative address. If the network adapter is once again con-
nected to the DHCP network, configuring to a DHCP address takes place right
after the connection has been detected.

Addressing a network adapter via DHCP without alternative addressing is not
supported.

7.4 User Interface

7.4.1 "Network settings for ETAS hardware (Page 1)" Dialog Window

The following information on the available network adapters is displayed:

• Active for ETAS Network column

This column is only visible if the "Auto Configure ETAS network" check-
box is ticked. In the checkbox in this column you can determine which
network adapters shall be enabled for autoconfiguration by the ETAS
Network Manager.

• Name column

Name of the network adapter. This entry cannot be edited in this window.

• IP Address column

IP address of the network adapter. This entry cannot be edited in this win-
dow.

• Subnet Mask column

Setting for the subnet mask. This entry cannot be edited in this window.

• DHCP column

Shows whether the network adapter is configured for DHCP:
INTECRIO-ASC V6.2 - User’s Guide 101

102

Appendix B: ETAS Network Manager ETAS
– Enabled

The network adapter is configured for DHCP.

– Disabled

The network adapter is configured with a fixed IP address.

• Alternate IP Configuration column

Shows the alternative IP address of the network adapter if it is configured
for DHCP. This indication depends on the operating system being used.

– APIPA

Automatic Private IP Addressing: method for automating the IP config-
uration for network connections

– ---

An alternative IP address does not exist.

– User defined

The user can define a user-specific alternative IP address (Windows
Vista / Windows 7).

• Auto IP Address Range checkbox

If you tick this checkbox, the next configuration step is skipped, and the
ETAS Network Manager automatically assigns default IP address ranges
that will be used by the selected network adapter for addressing the ETAS
hardware. If the IP address range is automatically changed by the IP Man-
ager, a message is displayed in the system tray.

• Auto Configure ETAS Network checkbox

If you tick this checkbox, you can enable or disable several network adapt-
ers at once for auto-configuration through the IP Manager.

When you tick the checkbox, the "Auto IP Address Range" checkbox is
activated. In the list of available network adapters, the "Active for ETAS
Network" column is inserted, where you can determine which network
adapters shall be available for auto-configuration through the ETAS Net-
work Manager.

The ETAS Network Manager will go through the list (top-down) and use
the first adapter which has a valid IP configuration for ETAS1 and config-
ure the IP address range automatically. If a configured network adapter
fails, e.g. because the network adapter is being disabled or physically not
available, the IP Manager will configure the next available network
adapter automatically, and a message is displayed in the system tray, indi-
cating the new configuration.

1. An IP configuration is valid if the network adapter either uses a fix IP address,
or if DHCP and APIPA are enabled.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix B: ETAS Network Manager
7.4.2 "Network settings for ETAS hardware (Page 2)" Dialog Window

In general, all values can be modified by directly typing them in the correspond-
ing field, or by selecting the default setting from a list box.

The following network parameters can be set:

• Start Address

The first IP address in the IP address range for the ETAS hardware.

• End Address

The last IP address in the IP address range for the ETAS hardware.

• Subnet Mask

Associated Subnet Mask.

Reserved IP Addresses

The following IP addresses are reserved for certain ETAS hardware in the IP
address range that the ETAS hardware (192.168.40.1 - 192.168.40.254 with
Subnet Mask 255.255.255.0) is currently using:

These addresses are assigned exclusively to these devices and thus may not be
used for other ETAS hardware. This has to be taken into consideration when
defining the address pool.

IP_Address ETAS Hardware

192.168.40.10 ES1120

192.168.40.11 ES1130

192.168.40.12 ES780

192.168.40.13 Reserved

192.168.40.14 LABCAR-RTPC

192.168.40.15 ES1135
INTECRIO-ASC V6.2 - User’s Guide 103

104

Appendix B: ETAS Network Manager ETAS
7.4.3 "Network settings for ETAS hardware (Page 4)" Dialog Window

This dialog window appears only if the selected network adapter is addressed
manually.

The following parameters can be set:

• Display warning before IP address assignment is exe-
cuted

Use this check box to specify that a warning be displayed before an IP
address is assigned to an ETAS hardware device.

7.5 Configuring Network Addresses for ETAS Hardware

7.5.1 Adapter with Fixed IP Address

To start the Network Manager:

• In the Windows Start menu, go into the program
folder of your ETAS software (below Start  Pro-
grams  ETAS), and select ETAS Network Set-
tings.

The "Network settings for ETAS hardware (Page 1)"
dialog window opens.

Note

Enabling this warning is useful only if you want to run the PC both in the
company network or on an ETAS measurement module in the ETAS net-
work using this network adapter.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix B: ETAS Network Manager
To select the network adapter:

• In the "Available Network Adapters" field, select
the network adapters you want to use for the com-
pany network and the ETAS network.

You can select only network adapters of those types
that are supported by the ETAS network.

• Click the Continue button.

The "Network settings for ETAS hardware (Page 2)"
dialog window opens.

To define the address pool:

• Click the entry you want to modify in the "Start
Address", "End Address" or "Subnet Mask" field.

• Edit the value directly (text input).

Or

• Click the Default button.

The Network Manager automatically enters the
address range and the setting for the subnet mask.
You may accept these settings or overwrite them.

• Click the Continue button.

The "Network settings for ETAS hardware (Page 4)"
dialog window opens.
INTECRIO-ASC V6.2 - User’s Guide 105

106

Appendix B: ETAS Network Manager ETAS
To set a user-defined IP address:

• Activate the Display warning before IP assign-
ment is executed option if you want to specify
that a warning be displayed before an IP address is
assigned to the ETAS hardware.

• Click the Finish button.

The configuration is finished and the dialog box is
closed. The settings are saved.

• Restart the ETAS software to make the changes
effective.

Restarting is necessary only if the ETAS software did
not automatically invoke the configurator during a
hardware search or initialization.

7.5.2 Adapter in DHCP Environment

To start the Network Manager:

• In the Windows Start menu, go into the program
folder of your ETAS software (below Start  Pro-
grams  ETAS), and select ETAS Network Set-
tings.

The "Network settings for ETAS hardware (Page 1)"
dialog window opens.

To select the network adapter:

• In the "Available Network Adapters" field, select
the network adapters you want to use for the ETAS
network.

You can select only those network adapters whose
addressing type the ETAS network supports.

Note

Enabling this warning is useful only if you want to run
the PC both in the company network or on an ETAS
measurement module in the ETAS network using this
network adapter.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Appendix B: ETAS Network Manager
• Click the Continue button.

The "Network settings for ETAS hardware (Page 2)"
dialog window opens.

To define the address pool:

• Click the entry you want to modify in the "Start
Address," "End Address" or "Subnet Mask" field.

• Edit the value using the keyboard (text entry).

Or

• Click the Default button.

The Network Manager automatically enters the
address range and the setting for the subnet mask.
You may accept these settings or overwrite them.

• If you address the network adapter via DHCP using
an APIPA or alternative IP address, click the Finish
button.

The configuration is finished and the dialog win-
dow is closed. The settings are saved.

• Restart the ETAS software to make the changes
effective.

Restarting is necessary only if the ETAS software did
not automatically invoke the configurator during a
hardware search or initialization.

7.6 Troubleshooting Ethernet Hardware Access

In certain cases you might have problems accessing ETAS hardware via the Eth-
ernet interface. For instance, if APIPA, a mechanism for IP addressing, has not
been enabled on your system, you cannot select a network adapter in the Net-
work Manager. You can find descriptions of potential problems and their solu-
tions in "Troubleshooting General Problems" on page 109.
INTECRIO-ASC V6.2 - User’s Guide 107

108

Appendix B: ETAS Network Manager ETAS
INTECRIO-ASC V6.2 - User’s Guide

ETAS Troubleshooting General Problems
8 Troubleshooting General Problems

This chapter gives some information of what you can do when problems arise
that are not specific to an individual software or hardware product.

8.1 Problems and Solutions

8.1.1 Network Adapter cannot be selected via Network Manager

Cause: APIPA is disabled

The alternative mechanism for IP addressing (APIPA) is usually enabled on all
Windows XP and Vista systems. Network security policies, however, may request
the APIPA mechanism to be disabled. In this case, you cannot use a network
adapter which is configured for DHCP to access ETAS hardware. The ETAS Net-
work Manager displays a warning message.

The APIPA mechanism can be enabled by editing the Windows registry. This is
permitted only to users who have administrator privileges. It should be done only
in coordination with your network administrator.

To enable the APIPA mechanism:

• Open the Registry Editor:

– Windows 7:
Click Start and then click Run. Enter regedit
and click OK.

– Windows Vista:
Click Start, enter regedit in the entry field,
and press <ENTER>.

The registry editor is displayed.

• Open the folder HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\
Tcpic\Parameters\

• Select Edit  Find to search for the key IPAuto-
configurationEnabled.

If you cannot find any instances of the registry key mentioned, the APIPA mech-
anism has not been disabled on your system, i.e. there is no need to enable it.
Otherwise proceed with the following steps.

• Set the value of this key to 1 to enable the APIPA
mechanism.

You may find several instances of this key in the
Windows registry which either apply to the TCP/IP
service in general or to a specific network adapter.
You only need to change the value for the corre-
sponding network adapter.

• Close the registry editor.

• Restart your workstation in order to make your
changes take effect.
INTECRIO-ASC V6.2 - User’s Guide 109

110

Troubleshooting General Problems ETAS
8.1.2 Search for Ethernet Hardware fails

Cause: The versions of the Hardware and the ETAS MC Software are not
compatible

If you are using ETAS hardware with ETAS MC software, you can use the ETAS
HSP Update Tool to check the firmware version of your hardware:

• Make sure you use the ETAS HSP Update Tool with the latest HSP
(Hardware Service Pack) version.

• Also use the HSP Update Tool to check whether the hardware is compat-
ible with the MC software used.

• Make sure any additional drivers for that hardware are installed correctly.

You can get the required HSP from the ETAS internet pages under
www.etas.com.

If you still cannot find the hardware using the HSP Update Tool, check whether
the hardware offers a Web interface and whether you can find using this inter-
face. Otherwise check whether one of the following causes and solutions might
apply.

Cause: Personal Firewall blocks Communication

For a detailed description on problems caused by personal firewalls and possible
solutions see "Personal Firewall blocks Communication" on page 112.

Cause: Client Software for Remote Access blocks Communication

PCs or notebooks which are used outside the ETAS hardware network some-
times use a client software for remote access which might block communication
to the ETAS hardware. This can have the following causes:

• A firewall which is blocking Ethernet messages is being used (see „Cause:
Personal Firewall blocks Communication“ on page110)

• By mistake, the VPN client software used for tunneling filters messages. As
an example, Cisco VPN clients with versions before V4.0.x in some cases
erroneously filtered certain UDP broadcasts.

If this might be the case, please update the software of your VPN client.

Cause: ETAS Hardware hangs

Occasionally the ETAS hardware might hang. In this case switch the hardware
off, then switch it on again to re-initialize it.

Cause: ETAS Hardware went into Sleep Mode

In order to save power, some ETAS devices will go to sleep mode if they do not
see that they are connected to another device/computer.

To solve that, connect your Ethernet cable from your computer to the "HOST"/
"Sync In" port on the device. After the device turns on, connect to the device
using the web interface and change the settings so that the device stays always
on. Consult the device's manual for details on how to do that.
INTECRIO-ASC V6.2 - User’s Guide

http://www.etas.com/en/

ETAS Troubleshooting General Problems
Cause: Network Adapter temporarily has no IP Address

Whenever you switch from a DHCP company LAN to the ETAS hardware net-
work, it takes at least 60 seconds until ETAS hardware can be found. This is
caused by the operating system’s switching from the DHCP protocol to APIPA,
which is being used by the ETAS hardware.

Cause: ETAS Hardware had been connected to another Logical Network

If you use more than one PC or notebook for accessing the same ETAS hardware,
the network adapters used must be configured to use the same logical network.
If this is not possible, it is necessary to switch the ETAS hardware off and on
again between different sessions (repowering).

Cause: Device driver for network card not in operation

It is possible that the device driver of a network card is not running. In this case
you will have to deactivate and then reactivate the network card.

To deactivate and reactivate the network card (Win Vista):

• To deactivate the network card first select in the
Windows start menu the following item:

– Windows Vista:
Control Panel  Network and Internet 
Network and Sharing Center  Manage
Network Connections

• Right-click on the used network adapter and select
Disable in the context menu.

• In order to reactivate the network adapter right-
click on it again and select Enable.

To deactivate and reactivate the network card (Win 7):

• To deactivate the network card, select Control
Panel  Device Manager from the Windows start
menu.

• In the Device Manager, open the tree structure of
the entry Network Adapters.

• Click on the used connection to open its "<connec-
tion name> Status" dialog window.

• Right-click on the used network adapter and select
Disable in the context menu.

• In order to reactivate the network adapter right-
click on it again and select Enable.

Cause: Laptop energy management deactivates the network card

The energy management of a laptop computer can deactivate the network card.
Therefore you should turn off energy monitoring on the laptop.

To switch off power monitoring on the laptop

• From the Windows Start Menu, select

– Windows Vista:
Control Panel  System and
Maintenance  Device Manager.
INTECRIO-ASC V6.2 - User’s Guide 111

112

Troubleshooting General Problems ETAS
– Windows 7:
Control Panel  Device Manager.

• In the Device Manager open the tree structure of
the entry Network Adapter.

• Right-click on the used network adapter and select
Properties in the context menu.

• Select the Power Management tab and deactivate
the Allow the computer to turn off this device
to save power option.

• Select the Advanced tab. If the property
Autosense is included, deactivate it also.

• Click OK to apply the settings.

Cause: Automatic disruption of network connection

It is possible after a certain period of time without data traffic that the network
card automatically interrupts the Ethernet connection. This can be prevented by
setting the registry key autodisconnect.

To set the registry key autodisconnect:

• Open the Registry Editor.

• Select under HKEY_LOCAL_MACHINE\SYSTEM\
ControlSet001\Services\lanmanserver\
parameters the Registry Key autodisconnect
and change its value to 0xffffffff.

8.1.3 Personal Firewall blocks Communication

Cause: Permissions given through the firewall block ETAS hardware

Personal firewalls may interfere with access to ETAS Ethernet hardware. The
automatic search for hardware typically cannot find any Ethernet hardware at all,
although the configuration parameters are correct.

Certain actions in ETAS products may lead to some trouble if the firewall is not
properly parameterized, e.g. upon opening an experiment in ASCET or searching
for hardware from within INCA or HSP.

If a firewall is blocking communication to ETAS hardware, you must either dis-
able the firewall software while working with ETAS software, or the firewall must
be configured to give the following permissions:

• Outgoing limited IP broadcasts via UDP (destination address
255.255.255.255) for destination ports 17099 or 18001

• Incoming limited IP broadcasts via UDP (destination IP 255.255.255.255,
originating from source IP 0.0.0.0) for destination port 18001

• Directed IP broadcasts via UDP to the network configured for the ETAS
application, destination ports 17099 or 18001

• Outgoing IP unicasts via UDP to any IP in network configured for the ETAS
application, destination ports 17099 through 18020

• Incoming IP unicasts via UDP originating from any IP in the network con-
figured for the ETAS application, source ports 17099 through 18020,
destination ports 17099 through 18020
INTECRIO-ASC V6.2 - User’s Guide

ETAS Troubleshooting General Problems
• Outgoing TCP/IP connections to the network configured for the ETAS
application, destination ports 18001 through 18020

The Windows operating systems come with a built-in personal firewall. In addi-
tion, it is very common to have personal firewall software from third party ven-
dors, such as Symantec, McAffee or BlackIce installed. The proceedings in
configuring the ports might differ for each personal firewall software used.
Therefore please refer to the user documentation of your personal firewall soft-
ware for further details.

As an example for a firewall configuration, you will find below a description on
how to configure the widely used Windows XP firewall if the hardware access is
prohibited under Windows XP with Service Pack 2.

Solution for Windows XP Firewall, Users with Administrator Privileges

If you have administrator privileges on your PC, the following dialog window
opens if the firewall blocks an ETAS product.

To unblock a product:

• In the "Windows Security Alert" dialog window,
click on Unblock.

The firewall no longer blocks the ETAS product in
question (in the example: ASCET). This decision sur-
vives a restart of the program, or even the PC.

Instead of waiting for the "Windows Security Alert" dialog window, you can
unblock ETAS products in advance.

Unblocking ETAS products in the firewall control:

• From the Windows Start Menu, select Settings 
Control Panel.

Note

The ports that have to be used in concrete use cases depend on the hard-
ware used. For more precise information on the port numbers that can be
used please refer to your hardware documentation.
INTECRIO-ASC V6.2 - User’s Guide 113

114

Troubleshooting General Problems ETAS
• In the control panel, double-click the Windows
Firewall icon to open the "Windows Firewall" dia-
log window.

• In the "Windows Firewall" dialog window, open
the "Exceptions" tab.

This tab lists the exceptions not blocked by the fire-
wall. Use Add Program or Edit to add new pro-
grams, or edit existing ones.

• Make sure that the ETAS products and services you
want to use are properly configured exceptions.
INTECRIO-ASC V6.2 - User’s Guide

ETAS Troubleshooting General Problems
– Open the "Change Setup"window.

– To ensure proper ETAS hardware access, make
sure that at least the IP addresses
192.168.40.xxx are unblocked.

– Close the "Change Setup" window with OK.

• Close the "Windows Firewall" dialog window with
OK.

The firewall no longer blocks the ETAS product in
question. This decision survives a restart of the PC.

Solution for Windows XP Firewall, Users without Administrator Privileges

This section addresses users with restricted privileges, e.g., no system changes,
write restrictions, local login.

Working with an ETAS software product requires "Write" and "Modify" privi-
leges within the ETAS, ETASData, and ETAS temporary directories. Otherwise,
an error message opens if the product is started, and a database is opened. In
that case, no correct operation of the ETAS product is possible because the data-
base file and some *.ini files are modified during operation.

The ETAS software has to be installed by an administrator anyway. It is recom-
mended that the administrator assures that the ETAS program/processes are
added to the list of the Windows XP firewall exceptions, and selected in that list,
after the installation. If this is omitted, the following will happen:

• The "Window Security Alert" window opens when one of the actions
conflicting with a restrictive firewall configuration is executed.
INTECRIO-ASC V6.2 - User’s Guide 115

116

Troubleshooting General Problems ETAS
To unblock a program (no Admin privileges):

• In the "Windows Security Alert" dialog window,
activate the option For this program, don’t show
this message again.

• Click OK to close the window.

An administrator has to select the respective ETAS
software in the "Exceptions" tab of the "Windows
Firewall" dialog window to avoid further problems
regarding hardware access with that ETAS product.
INTECRIO-ASC V6.2 - User’s Guide

ETAS ETAS Contact Addresses
9 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team
and product hotlines, take a look at the ETAS website:

Borsigstraße 14 Phone: +49 711 89661-0

70469 Stuttgart Fax: +49 711 89661-106

Germany WWW: www.etas.com

ETAS subsidiaries WWW: www.etas.com/en/contact.php

ETAS technical support WWW: www.etas.com/en/hotlines.php
INTECRIO-ASC V6.2 - User’s Guide 117

http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etas.com
http://www.etas.com/en/contact.php
http://www.etas.com/en/hotlines.php

118

ETAS Contact Addresses ETAS
INTECRIO-ASC V6.2 - User’s Guide

ETAS Index
Index

A
ActivateTask 80
API Functions (ERCOSEK)

see also Service Routines
(ERCOSEK)

API Functions (LEDs)
see also Service Routines (LEDs)

API Functions (misc)
see also Service Routines (misc)

API Functions (NVRAM)
see also Service Routines (NVRAM)

API Functions (Watchdog)
see also Service Routines

(Watchdog)
Application Mode 79
ASCET options

"Hardware Connection" node 12
"Hardware" node 11

asdWriteUserDebug 98
asdWriteUserError 98

B
Back-Animation 56

end 61
end measurement 61
Monitors 60
open experiment environment 57
select hardware 56
set up experiment 59

start 56
start measurement 60
user interface 58

C
Cache locking 34

restrictions 35
set (component) 35
set (included component) 36
set (method) 35
set (parameter) 35
set (process) 35
set (variable) 35
set globally 37
set in OS editor 36

Compiler
GNU Cross ~ 19
precompiled header 18
QCC 19
use own ~ 18

compiler switches 77
control unit ES1120 25
Converting old projects 21

D
Declarations 79, 80
DeclareAppMode 79
DeclareTask 80
DisableAllInterrupts 82
dT 22
dT (delta t) 83
ASCET-SE V6.2 - User’s Guide 119

120

Index ETAS
E
EnableAllInterrupts 82
ES1000

TCP/IP protocol 26
ES1120 25
ES1130 25

dT 22
ES1130 target 18
ES1135 25

cache locking 34
dT 22
LED API Functions 97
LEDs 34
NVRAM 38
special features 32
Watchdog 32

ES1135 target 18
ES581

settings 32
ES910

configure 26
ES910 target 18
ETAS Contact Addresses 117
ETAS Network 99

activate usage 13
Configure network adapter 104
DHCP 100
Network Manager 101
Reserved addresses 103
Search error 107
x 100

ETAS network
Hardware Connection 13

Ethernet interface 17
Experimenting with INTECRIO 47–66

back-animation 56
calling transfer 48
creating an ASCET project 47
end back-animation 61
executing transfer 52
INTECRIO experiment 55
option "Ignore internally con-

nected messages" 50
prepare project 48
project transfer 47
select INTECRIO Build process 52
select system project 52
selecting the INTECRIO version 51
selecting the workspace 51

setting the path for files 51
starting an experiment 55
window "INTECRIO Project Trans-

fer" 49
EXPORT Subdirectory 9

G
GetDeltaT 83
GetSystemTime 81
GetSystemTimeHigh 82
GetSystemTimeLow 81
GNU Cross Compiler 19

H
Hardware Connection

with ETAS Network Manager 13
without ETAS Network Manager

17
hardware options 11
hardware selection window 14

open manually 14

I
installation program 9
INTECRIO experiment 55
Interrupts

Disable 82
Enable 82

N
Network configuration

s. ETAS network
non-volatile RAM

see NVRAM
NVRAM 38

API Functions 84
Basics 38
clear content 41
Data Consistency 41
defective content 43
Hardware Support 39
high level consistency 42
initialization of NV variables 41
low level consistency 42
model-controlled consistency 42
no consistency 42
NVRAM identifier 40
Tips 45
update of NV variables 41

NVRAM Cockpit 43

work with ~ 43
nvramCheckForAutoUpdate 87
ASCET-SE V6.2 - User’s Guide

ETAS Index
nvramCheckForInitializedVars 89
nvramCheckRunningUpdate 89
nvramClear 90
nvramDisableAutoUpdate 86
nvramEnableAutoUpdate 86
nvramGetConsistencyLevel 86
nvramGetUpdateAgeUs 89
nvramGetUpdateInterval 85
nvramInitModelVars 84
nvramManualUpdateBackground 87
nvramManualUpdateBlocked 88
nvramManualUpdateExit 87
nvramSetConsistencyLevel 85
nvramSetUpdateInterval 84

P
PPC module ES1130 25
PPC module ES1135 25
precompiled header 18
Product liability disclaimer 7
project transfer 47
Prototyping target 18, 47

Q
QCC compiler 19

R
RTPRO-PC 29

configure 30
ES581 settings 32
startup 30

S
Safety Instructions

technical state 8
SCOOP-IX 61–66

example 63
Service Routines

GetSystemTime 81
GetSystemTimeHigh 82

Service Routines (ERCOSEK)
ActivateTask 80
DeclareAppMode 79
DeclareTask 80
DisableAllInterrupts 82
EnableAllInterrupts 82
GetDeltaT 83
GetSystemTime 81
GetSystemTimeHigh 82
GetSystemTimeLow 81
SetNextAppMode 79

Service Routines (LEDs)
userLed(n)Off 97
userLed(n)On 97
userLed(n)Toggle 97

Service Routines (misc)
asdWriteUserDebug 98
asdWriteUserError 98

Service Routines (NVRAM)
nvramCheckForAutoUpdate 87
nvramCheckForInitializedVars 89
nvramCheckRunningUpdate 89
nvramClear 90
nvramDisableAutoUpdate 86
nvramEnableAutoUpdate 86
nvramGetConsistencyLevel 86
nvramGetUpdateAgeUs 89
nvramGetUpdateInterval 85
nvramInitModelVars 84
nvramManualUpdateBackground

87
nvramManualUpdateBlocked 88
nvramManualUpdateExit 87
nvramSetConsistencyLevel 85
nvramSetUpdateInterval 84

Service Routines (Watchdog)
wdCheckActive 96
wdCheckReducedSafetyMode 96
wdDisableAutoService 94
wdEnableAutoService 94
wdIntAck 96
wdIntDisable 95
wdIntEnable 95
wdIntPend 95
wdService 94
wdSetEvent 93
wdSetPeriod 92
wdSetReducedSafetyMode 92
wdSetSafetyMode 91

SetNextAppMode 79
Switch

Application Mode 79
System Time 81

T
target

set up interfaces (with ETAS
Network Manager) 13

set up interfaces (without ETAS
Network Manager) 17

Target directory 11
target.ini 17
ASCET-SE V6.2 - User’s Guide 121

122

Index ETAS
Task
Activation 80
general description 80

TCP/IP protocol 26

U
userLed(n)Off 97
userLed(n)On 97
userLed(n)Toggle 97

W
Watchdog 32

API Functions 90
interrupt control 33
modes 33
period 33
service 33
service register 33

wdCheckActive 96
wdCheckReducedSafetyMode 96
wdDisableAutoService 94
wdEnableAutoService 94
wdIntAck 96
wdIntDisable 95
wdIntEnable 95
wdIntPend 95
wdService 94
wdSetEvent 93
wdSetPeriod 92
wdSetReducedSafetyMode 92
wdSetSafetyMode 91
ASCET-SE V6.2 - User’s Guide

	INTECRIO-ASC V6.2
	1 Introduction
	1.1 Safety Advice
	1.1.1 Correct Use
	1.1.2 Labeling of Safety Instructions
	1.1.3 Demands on the Technical State of the Product

	1.2 Components
	1.3 Installation
	Sample Files

	1.4 Manual Structure
	1.5 Conventions
	1.5.1 Documentation Conventions
	1.5.2 Typographic Conventions

	2 Configuring Experimental Targets
	Structure of the Target Directories
	2.1 The Hardware Options
	2.2 Hardware Connection with the ETAS Network Manager
	2.2.1 The Hardware Selection Window

	2.3 Interface Setup Without ETAS Network Manager (ES1000 Only)
	2.4 Selecting a Compiler
	2.4.1 Using Your Own Compiler
	2.4.2 Changing to the GNU Cross Compiler or QCC Compiler

	2.5 Hints on Using INTECRIO-ASC
	2.5.1 Preprocessing Available Data Bases
	2.5.2 Converting Projects for ES1000.1 to a Supported Target
	2.5.3 Using dT

	3 Hardware Systems
	3.1 Hardware - ES1000.x Experimental System
	Control Unit ES1120 and Simulation Computer ES1130/ES1135
	TCP/IP Protocol Options

	3.2 ES900 Experimental System
	Configuring the ES910

	3.3 RTPROPC Experimental System
	3.3.1 Startup
	3.3.2 Configuring RTPROPC

	3.4 Special Features of the ES1135
	3.4.1 Watchdog
	Watchdog Service
	Interrupt Control

	3.4.2 LEDs
	3.4.3 Cache-Locking

	3.5 Non-Volatile RAM (NVRAM)
	3.5.1 Basics
	3.5.2 Hardware Support
	3.5.3 NV Variable Initialization and Update
	3.5.4 Data Consistency
	3.5.5 NVRAM Cockpit
	3.5.6 Tips

	4 Experimenting with INTECRIO
	4.1 Project Transfer to INTECRIO
	4.2 The INTECRIO Experiment
	4.3 The Back-Animation
	4.4 ASCET and SCOOP-IX
	SCOOPIX Example

	5 Tutorial - Experimenting with INTECRIO
	5.1 Preparations
	5.2 Transferring the Project
	5.3 Experimenting in INTECRIO
	5.4 Using Back-Animation

	6 Appendix A: Compiler Switches and API Functions
	6.1 Compiler Switches for External C Code
	6.2 API Functions (ERCOSEK)
	6.2.1 Application Modes
	6.2.2 Tasks
	6.2.3 System Time
	6.2.4 Interrupt Handling
	6.2.5 dT Query

	6.3 API Functions (NVRAM)
	6.4 API Functions (Watchdog)
	6.4.1 Watchdog Configuration
	6.4.2 Watchdog Service
	6.4.3 Interrupt Control
	6.4.4 Watchdog Status

	6.5 API Functions (ES1135 LEDs)
	6.6 API Functions (Miscellaneous)

	7 Appendix B: ETAS Network Manager
	7.1 Overview
	7.2 ETAS Hardware Addressing
	7.3 Network Adapter Addressing
	7.3.1 Type of Network Adapter Addressing
	7.3.2 Addressing the Network Adapter Manually
	7.3.3 Addressing the Network Adapter via DHCP
	Windows Vista / Windows 7

	7.4 User Interface
	7.4.1 "Network settings for ETAS hardware (Page 1)" Dialog Window
	7.4.2 "Network settings for ETAS hardware (Page 2)" Dialog Window
	Reserved IP Addresses

	7.4.3 "Network settings for ETAS hardware (Page 4)" Dialog Window

	7.5 Configuring Network Addresses for ETAS Hardware
	7.5.1 Adapter with Fixed IP Address
	7.5.2 Adapter in DHCP Environment

	7.6 Troubleshooting Ethernet Hardware Access

	8 Troubleshooting General Problems
	8.1 Problems and Solutions
	8.1.1 Network Adapter cannot be selected via Network Manager
	Cause: APIPA is disabled

	8.1.2 Search for Ethernet Hardware fails
	Cause: The versions of the Hardware and the ETAS MC Software are not compatible
	Cause: Personal Firewall blocks Communication
	Cause: Client Software for Remote Access blocks Communication
	Cause: ETAS Hardware hangs
	Cause: ETAS Hardware went into Sleep Mode
	Cause: Network Adapter temporarily has no IP Address
	Cause: ETAS Hardware had been connected to another Logical Network
	Cause: Device driver for network card not in operation
	Cause: Laptop energy management deactivates the network card
	Cause: Automatic disruption of network connection

	8.1.3 Personal Firewall blocks Communication
	Cause: Permissions given through the firewall block ETAS hardware
	Solution for Windows XP Firewall, Users with Administrator Privileges
	Solution for Windows XP Firewall, Users without Administrator Privileges

	9 ETAS Contact Addresses
	ETAS HQ
	ETAS Subsidiaries and Technical Support

	Index

