ETAS ASCET-SE VB4

User Guide

Copyright

The data in this document may not be altered or amended without special noti-
fication from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license.
Using and copying is only allowed in concurrence with the specifications stipu-
lated in the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2021 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands

belonging to the respective owners.

ASCET-SE V6.4 — User Guide R0O6 EN —10.2021

ETAS Contents

Contents
1 INtroduction. 8
1.1 Privacy Notice. 8
1.1 Data Processing.o 8
11.2 Data and Data Categories. 8
1.1.3 Technical and Organizational Measures 9
1.1.4 Description of Problem Report 9
1.2 About this Document 10
1.2.1 Target Audience. 10
122 Document Structure 10
1.2.3 Presentation of Instructions. 11
124 Presentation of Supporting Information 12
1.3 INstallation. 12
1.4 Abbreviations and Definitions 13
2 Safety Information for Application SoftwareDesign....................... 18
2.1 Intended Use. 18
2.2 Classification of Safety Messages. 18
2.3 Demands on the Technical State of the Product. 18
2.4 Interpolation Routines. 19
2.5 FPUUSAgE ... 20
2.6 Non-Volatile Elements. 20
2.7 Provision of Customized Data Types. i 21
3 Getting Started 22
3.1 Components of ASCET-SE. 22
3.2 Basic Stages from Model to Executable 23
3.2.1 Code Generation. 26
322 Compilationand Linking 26
3.2.3 ASAM-MCD-2MC Generation. 26
3.3 Configuring ASCET-SE for Code Generation 27
3.3.1 Target Selection. 27
3.3.2 Path Settings for External Tools 27
3.3.3 Code Generation Settings. 28
3.34 Operating System Configuration. 29
3.3.5 Memory Class Configuration..................................... 30
3.36 Target Initialization Code 31
337 Customizations for Compilingand Linking......................... 31
3.3.8 Generating the Executable File and Running it on the Target 32
34 ASCET-SE Installation Reference 35
3.4.1 Installation Contents 35
Implementation Configuration 41
4.1 Implementations for Basic Model Types 42

ASCET-SE V6.4 — User Guide 3

ETAS

4.2

4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

5.4

5.5

5.6

Contents
411 Implementation Data Types. 43
41.2 Conversion Formula ... 44
41.3 Value Range (Only for Numerical Quantities) 45
414 Implementation Master 45
415 Implementation Types 46
41.6 Value Range Limitation.................... 46
4.1.7 Zero ContainednessintheValueRange 47
41.8 Memory LOCations. 47
419 Consistency Check 48
4110 Additional Information. ... 48
471117 Sizes of Composite Model Types, 48
4112 Summary of Element Implementation........................... .. 48
Implementations for Classes 49
4.2.1 Optimized Method Calls 50
4272 User-Defined Service Routines, 52
423 Prototype Implementations 55
424 Implementation of Methods, Processes and Runnables 58
Implementation of Records. 60
Implementations for Temporary Variables. 61
Implementations for Implementation Casts. 61
Implementations for Method- and Process-Local Variables................... 62
Migration of Operator Implementations 62
Configuring ASCET for Code Generation. 63
The codegen[*].iniFiles 63
The target.ini File 65
ThememorySections.xml File............ 68
5.3.1 DefiningaMemory Class 68
532 Defining Memory Segments 70
533 Defining Memory Classes for Variable Array/Matrix References 72
534 Migration of Legacy Projects. 72
Build System Control & Configuration Settings 73
5.4 Project Settings — Make File project settings.mk............. 75
542 Target and Compiler Settings — Make Files target settings.mk
and settings <compiler>.mKc.oiiiriiniinianinaai.. 75
543 Code Generation — Make File generate.mk 75
544 Compilation — Make File compile.mk............................ 76
54.5 Build = Make Filebuild.mk............ 76
Customizing Code Generation i 77
5.5.1 Banners ... 77
552 Formatting Generated Code — . indent .pro Configuration File 77
55.3 Code POSt-Processing. 77
554 Common Subexpression Elimination. 78
Customizing the Build Process 79
5.6.1 Including Your Own Make Files........... 79
56.2 Including User-Defined Cand HFiles. 79

ASCET-SE V6.4 — User Guide 4

ETAS

5.7

6.1
6.2

7.1
7.2
7.3

8.1
8.2

8.3
8.4

8.5
8.6

8.7

9.1
9.2
9.3

9.4
9.5
9.6

10
10.1

Contents
56.3 Special Makefile Variables Provided by ASCET 80
Controlling What is Compiled Using ASCET Header Files 80
5.7.1 TheInclude Filea basdef.h...........o i 80
572 Thelnclude Fileproj def.h...o 81
Memory SEegMIENtS. e e 83
Default Memory Class Per Category and Segment. 83
Propagating Memory Segments. 84
Interpolation Routines 85
Use of Interpolation Routines 86
The Interpolation Procedure 86
Accuracy and Allowed Range of Values 87
Operating System Integration. 88
Scheduling and the Priority Scheme 88
SettingUp the Project. 90
8.2.1 Generating ASCET's OS Configuration File 90
8.2.2 Providing Additional OS Configuration.......... 91
Providing the Main Program 93
The dT Variable 93
8.4.1 Dynamic dT 94
8.4.2 StaticdT. ... 96
8.4.3 Implementing Your Own dT Routines........ 97
Template-Based OS Configuration Generation 98
Interfacing with an Unknown Operating System............................. 99
8.6.1 Configurationof Tasks 99
8.6.2 Interfacing withthe OS APl 100
Template Language Reference. 107
8.7.1 Templating Basics. 101
8.7.2 ObjectReference 104
Measurement and Calibration with ASAM-MCD-2MC 110
Project Definitions in ASAM-MCD-2MC (prj def.a2l1File)................. 110
Memory Layout in ASAM-MCD-2MC (mem_lay.a2lFile)................... 110
ETK Driver Configuration in ASAM-MCD-2MC (aml_template.a2l and
if data template.aZl) ...t 111
Generation of an ASAM-MCD-2MC Description File 111
Suppressing Exported Elements and Parameters. 114
Working with SERAP 116
Integration with External Code i 117
Calling C Functions from an ASCET Model 117
1011 Useof Prototypes 117
10.1.2 Invocation by C Code Specified inASCET......................... 119

ASCET-SE V6.4 — User Guide 5

ETAS

10.2
10.3
10.4
10.5

10.6
11

12

13
131
13.2

13.3

14
141
14.2

14.3

Contents
10.1.3 Including C Source Files in the ASCET Make Process 120
Calling ASCET-Generated Functions from External CCode 120
Using External Global Variables/Parameters in ASCET Code................. 120
Generating Code for Use with External Data Structures 121
Configuring the ASCET Optimization Features 123
10.5.1 ConfiguringMethod Calls....................................... 123
10.5.2 Configuring Message COPIES. 124
Working with Variant Parameters. 125
Modeling Hints 126
Implementations 126
11.1.1 Definition of Conversion Formulas............................... 126
11.1.2 Definition of the Value Intervals. 127
11.1.3 Defining Implementations for Related Variables 128
11.1.4 Multiplicationof Large Results 130
Model STrUCTUNe 131
11.2.1 DIVISION. . 132
11.2.2 Multiple Calculations. 132
11.2.3 Concatenated Calculations 135
11.24 Logical Operators. 135
1125 ClassesandModules 136
1126 StateMachines. 137
Migrating an Existing ProjecttoaNew Target............. 138
Understanding Quantized Arithmetic............. 141
Degrees of Freedom and Optimization 141
Numerical Aspects of Integer Arithmetic 142
13271 Quantization Errors 142
13.2.2 Errors from Integer Division. 142
13.2.3 ErrorPropagation. ... 143
Rules of Integer Code Generation. 143
1331 ASSIgNMENTS. 144
13.3.2 Additionand Subtraction 146
1333 Multiplication. ... 147
1334 DiVISION. ..o 148
13.3.5 COMParisoNS. 149
13.3.6 Switchesand Multiplexers 150
1337 Literals ... 150
13.3.8 Treatment of Operators With Multiple Inputs. 150
13.3.9 Optimization of Mathematical Expressions 151
Understanding Generated Code i 155
Modularty 155
Distribution of Generated Codeto Files................ 155
14271 IncludeHierarchy 156
Software Architecture. 159

ASCET-SE V6.4 — User Guide 6

ETAS Contents
14317 Naming Conventions. 160
14.3.2 Storage Systems, Data Structures, Initialization of Primitive Objects . 161
14.3.3 Data Structures and Initialization for Complex (User-Defined)
ObjeCtsS o 182
14.3.4 Local Variables and Parameters.............. 184
14.3.5 Variant-Coded Data Structures 184
14.3.6 Exported and Imported Variables 187
1437 Method Declarationsand Calls 187
14.3.8 ConstantsandLiterals 188
1439 SystemConstants............... ... 189
14310 Virtual Parameters. 189
14.3.17 Dependent Parameters. 190
144 Real-Time Constructs 190
14.4.1 TaskS .o 190
T4.4.2 PrOCESSES . . oo 191
T4.4.3 MESSAUES . .ot 191
T4.4.4 RESOUICES . . .o o 193
1445 ApplicationModes. 193
15 INSide ASCET-SE. oot 195
15.1 Structure of the Code Generator. 196
15.1.1 Front-End Transformation 197
15.1.2 MDLand MDLBuilder 197
15.1.3 Code Generator 108
15.2 Code Administration 199
15.2.1 Make Mechanism. 199
1522 CodeManager 200
15.3 Directory Structure of Code ProductionRules.............................. 201
16 ASCET-SE — ReStriCtionNSso i 202
16.1 General Restrictions 202
16.1.1 Interval Arithmetic 202
16.1.2 No Quantization for Literals 202
16.1.3 ASCET Direct Access and Characteristic Curves/Maps. 202
16.2 Restrictions in Using ASCET-SE 203
16.2.1 Inputs of Characteristic CurvesandMaps 203
16.2.2 No Separate Search for Interpolation Nodes and Interpolation 204
16.2.3 No Choice for Interpolation Method 204
16.2.4 Unigueness of ComponentNames 204
16.2.5 Make Mechanism for Controllers and Fixed-Point Arithmetic. 205
16.3 Known Errors in the ASCET-SE Code Generation 205
16.3.1 Build Executable Code After Exiting ASCET 205
17 Contact Information. 206
FIgUIES o 207
Tables . .. 208
INAEX .o 209

ASCET-SE V6.4 -

User Guide 7

ETAS Introduction

1 Introduction
ASCET-SE is a tool for the following purposes:

generating target-specific C code for selected microcontrollers

integrating the code with a target operating system or run-time environ-
ment

(optionally) invoking the target-specific compiler and linker to generate
an executable application and calibration configuration file (e.g. for use
with ETAS’ INCA tool)

In this user guide you will learn how to do the following:

take models developed in ASCET-MD and define the attributes required
by ASCET-SE to convert those models to C code

define the real-time requirements of your system and how those require-
ments are realized on the target microcontroller

integrate third-party C code with ASCET generated code
understand the code ASCET generates
build models in an efficient way

1.1 Privacy Notice

Your privacy is important to ETAS so we have created the following Privacy
Statement that informs you which data are processed in ASCET, which data
categories ASCET uses, and which technical measure you have to take to
ensure the users'’ privacy. Additionally, we provide further instructions where
this product stores and where you can delete personal or personal-related data.

1.1.1 Data Processing
Note that personal data or data categories are processed when using this prod-
uct. As the controller, the purchaser undertakes to ensure the legal conformity
of these processing activities in accordance with Art. 4 No. 7 of the General
Data Protection Regulation (GDPR). As the manufacturer, ETAS GmbH is not
liable for any mishandling of this data.

1.1.2 Data and Data Categories
Please note that this product creates files containing file names and file paths,
e.g. for purposes of error analysis, ensuring correct deinstallation, referencing
source libraries, or for communicating with third party programs.

The same file names and file paths may contain personal data, if they refer to
the current user's personal directory or subdirectories (e.g., C: \Users\
<UserId>\Documents\...).

If you do not want personal information to be included in the generated files,
please make sure of the following:

The workspace of the product points to a directory without personal ref-
erence.

All settings in the product (see the menu option Tools — Options in the
product) refer to directories and file names without personal reference.

ASCET-SE V6.4 — User Guide 8

ETAS Introduction

All project settings in the product (see the menu option File —
Properties in the ASCET project editor) refer to directories and file
names without personal reference.

Windows environment variables (such as the temporary directory) refer
to directories without personal reference because these environment
variables are used by the product.

In this case, please also make sure that the users of this product have read and
write access to the newly set directories.

When using the ETAS License Manager in combination with user-based
licenses, particularly the following personal data or data categories are
recorded for the purpose of license management:

User data: UserlD

Communication data: IP address
As an option, the following personal data or data categories in particular may
be recorded for the purpose of assisting development:

Problem Report, see section 1.1.4 below

When using the ASCET add-on ASCET-DIFF, particularly the following personal
data or data categories are recorded for the purposes of user-specific settings
and user-specific log files:

User data: UserlD

1.1.3 Technical and Organizational Measures
This product does not itself encrypt the personal data that it records. Please
ensure that the data recorded is secured by means of suitable technical or
organizational measures in your IT system, e.g. by using classic anti-theft and
access protection.

Personal data in generated files can be deleted by tools in the operating sys-
tem.

1.1.4 Description of Problem Report

Purpose:

When an error occurs, ASCET offers to send an error report to ETAS for
troubleshooting. ETAS uses the personal information to have a contact
person in case of system errors.

Personal Data:
The problem report may contain the following personal data or data cat-
egory:
user data
— name and address entered during the installation process
— UserlD
communication data
— IP address

ASCET-SE V6.4 — User Guide 9

ETAS Introduction

Additionally to the problem information that is entered by the users themselves,
ASCET collects the available product-related log files in a zip archive to support
the bug fixing process at ETAS. The zip file is named by using the pattern
EtasLogFiles<index number>.zip and stored in the ETAS-specific log
files directory.

This automatically created zip file contains the following:

product-related log files created at installation time (necessary for unin-
stall action)

ETAS log files stored in the ETAS log files directory matching the file
name pattern * . log

recursive registry export of ETAS (32bit)-key (and sub keys):

HKEY CURRENT USER\Software\ETAS

registry export of ETAS (32bit)-key (and sub keys):
HKEY LOCAL MACHINE\Software\ETAS

All ETAS-related log files in the ETAS-specific log files directory and the zip
archives created by the Problem Report feature can be removed after closing
all ETAS applications if they are no longer needed.

1.2 About this Document

1.2.1 Target Audience
This ASCET-SE User Guide is a supplement to the ASCET documentation (Get-
ting Started and online help). You should be familiar with the basic features and
operation of ASCET before attempting to understand code generation.

This guide assumes you have:

A a basic understanding of the C programming language

B experience of compiling and linking C programs for embedded micro-
controllers

C knowledge of the target microcontroller.

1.2.2 Document Structure
The remainder of this manual is structured as follows:
« "Safety Information for Application Software Design"
Safety hints regarding the use of ASCET-SE.
+ "Getting Started"

An overview of how to get started with ASCET-SE, and a description of
the contents of the installation.

"Implementation Configuration”

Explains how to configure the implementation of model elements so that
code can be generated.

+ "Configuring ASCET for Code Generation"

Explains how to configure ASCET-SE for C code generation, how the
compilation and build process is controlled and how it can be custom-
ized.

+ "Memory Segments"
Explains how ASCET-SE treats memory segments.

ASCET-SE V6.4 — User Guide 10

ETAS

1.2.3

Introduction

"Interpolation Routines"

Describes how to provide the service routines required by ASCET-SE to
do interpolation in characteristic curves/maps.

"Operating System Integration”

Explains how ASCET-SE configured to generate code to integrate with an
operating system to provide real-time scheduling of the application.

"Measurement and Calibration with ASAM-MCD-2MC"

Shows how to generate an ASAM-MCD-2MC A2L file for use in ECU cali-
bration.

"Integration with External Code"

Explains how to integrate hand-written C code with ASCET-SE, to either
call or be called by ASCET-SE at runtime, and how to integrate that code
with the ASCET build process.

"Modeling Hints"

Provides some modeling hints that help ASCET-SE generate optimal
code.

"Migrating an Existing Project to a New Target"

Describes how to migrate a project from an existing target to an new
target.

"Understanding Quantized Arithmetic"

Explains the design choices and issues involved when using quantized
(fixed point) arithmetic.

"Understanding Generated Code"

Explains the principles by which ASCET-SE generates code, the structure
of the generated source code and provides a reference to how each part
of a model is converted to C code.

"Inside ASCET-SE"

Provides a technical overview of how ASCET-SE works.
"ASCET-SE — Restrictions"

Describes the restrictions of ASCET-SE code generation.
"Contact Information”

Explains how to contact ETAS for technical support.

Presentation of Instructions

All activities executed by the user are displayed in a "use case" format. The tar-
get to be achieved is defined in the heading. The necessary steps for his are in
a step-by-step guide:

Target definition

1. Step 1
Explanation

2. Step 2

3. Step 3

> Result

ASCET-SE V6.4 — User Guide 11

ETAS Introduction

1.2.4 Presentation of Supporting Information

“ NOTE

Contains additional supporting information.

1.3 Installation

The installation of ASCET-SE is described in the ASCET installation guide.

Like all ETAS products, ASCET-SE requires a valid license file. The entitlement
letter provides an URL from where a license file can be obtained. Licenses are
installed and managed using the ETAS License Manager.

You can choose to install ASCET-SE in the Silent mode, see the ASCET installa-
tion guide, chapter "Command Line Installation”. To select the target(s) to be
installed, you can either define environment variables or edit the
[SilentInstallation] sectionof the install.ini file.

If you want to use environment variables, you must define them in your environ-
ment before running the ASCET-SE installation program. The easiest way to do
this is to write a batch file like this:
setlocal

set TRG_ANSI=true

set TRG Cl6X CLASSIC=false

set TRG_Cl6X VX=false

set TRG _XCV2 VX=false

set TRG_TRICORE=false

set TRG_FFMCl6LX=true

set TRG_HCl2M=false

set TRG_HCSl2XM=false

set TRG_HCS12XC=false

set TRG_MPC55XX=true

set TRG _MPC56X=false

set TRG_NEC850=false

set TRG_SH2A=false

set TRG _TMS470=false

set TRG_EHOOKS=false

set TRG_SELF CONTAINED MODE=true
ASCET-SE.exe /S

endlocal

Each variable denotes an ASCET-SE target. If set to true, the target will be
installed. If setto false, the target will not be installed. If a target is not speci-
fied, then true is assumed by default.

ASCET-SE V6.4 — User Guide 12

ETAS

1.4

Introduction

TRG_SELF CONTAINED MODE controls whether or not targets share com-
mon files. If set to true, each installed target directory (trg_*) will include a
copy of all the common target files. You should choose this option if you plan
to make target-specific changes to the common files.

If set to false, the common target files are installed in a shared common
directory called common-se. You should choose this option if you want any
changes in the common files to apply for all installed targets.

Instead of setting environment variables, you can configure installation param-
etersinthe install.ini file. To do so, define the following entries in the
[SilentInstallation] section:

[SilentInstallation]

TRG_ANSI=true

TRG _Cl6X CLASSIC=false

TRG_Cl6X VX=false

TRG_XCV2 VX=false

TRG TRICORE=false

TRG _FFMCl6LX=true

TRG_HCl2M=false

TRG HCS12XM=false

TRG_HCS12XC=false

TRG_MPC55XX=true

TRG_MPC56X=false

TRG_NEC850=false

TRG_SH2A=false

TRG_TMS470=false

TRG_EHOOKS=false

TRG_SELF CONTAINED MODE=true

Values setin install.ini override environment variables.

Abbreviations and Definitions

ASAM-MCD

Association for Standardisation of Automation- and Measuring Sys-
tems, with the working groups Measuring, Calibration, Diagnosis

ASAM-MCD-2MC file

Standard exchange format for program descriptions for calibration pur-
poses.

ASCET

Development tool for control unit software
ASCET-MD

ASCET Modeling and Design
ASCET-SE

ASCET Software Engineering — integration package for microcontroller
targets; allows the generation of an executable application for the target
(control unit) with ASCET.

ASCET-SE V6.4 — User Guide 13

ETAS Introduction

AUTOSAR
Automotive Open System Architecture; see http://www.autosar.org/

BD

Block Diagram
BDE

Block Diagram Editor
BLOB

Binary large object, interface-specific description data provided in
ASAM-MCD-2MC files.

Class

A class is one of the component types in ASCET. Classes in ASCET are
comparable to object-oriented classes. The functionality of a class is
described by methods.

Code Generation

Code generation is the first step in the conversion of a physical model to
executable code. The physical model is transformed into ANSI C code.
Since the C code is partly compiler (and therefore target) dependent, dif-
ferent code for each target is produced.

Component

A component is the basic unit of reusable functionality in ASCET. Com-
ponents can be specified as classes, modules, or state machines. Each
component is built up of elements which are combined with operators to
build up the functionality.

CPR

Code Production Rules
ECCO

Embedded Code Creator and Optimizer
ECU

Electronic Control Unit
ESDL

Embedded Software Description Language
ETK

Emulator test probe (German: Emulator-Testkopf)
Implementation

An implementation describes the transformation of the physical specifi-
cation (model) to executable fixed point code. An implementation con-
sists of a (linear) transformation formula, a limiting interval for the model
values, and further information (as memory assignment) where neces-
sary.

Implementation Cast

Element that provides the users the possibility to control the implemen-
tations of intermediate results in arithmetic chains without changing the
physical representation of the elements in question.

Implementation Data Types

Implementation data types are the data types of the underlying C pro-
gramming language, e.g. unsigned byte (uint8), signed word
(sint16), float.

ASCET-SE V6.4 — User Guide 14

http://www.autosar.org/

ETAS

Introduction

Implementation Types

Implementation types offer the user the possibility to define implemen-
tation once at the center of the project, and assign them as often as
needed.

INCA
INtegrated Calibration and Acquisition Systems
Literal

A literal is used in the descriptions of components. A literal contains a
string that is interpreted as a value, e.g. as a continuous or logical vari-
able.

Memory class

A memory class is the name of the abstract memory area where a quan-
tity is placed later in the electronic control unit.

Message

A message is a real-time language construct in ASCET for protected
data exchange between concurrent processes.

Method

A method is part of the description of the functionality of a class in terms
of object-oriented programming. A method has arguments and one
return value.

Module

A module is one of the component types in ASCET. It describes a num-
ber of processes that can be activated by the operating system. A mod-
ule cannot be used as a subcomponent within other components.

OIL
OSEK Implementation Language

0s
Operating System

OSEK
Working group "open systems for electronics in automobiles” (German:
Arbeitskreis Offene Systeme fir die Elektronik im Kraftfahrzeug)

OSEK operating system
Operating system conforming to the OSEK standard.

Parameter
A parameter (characteristic value, curve, or map) is an element whose
value cannot be changed by the calculations executed in an ASCET
model. It can, however, be calibrated during an experiment.

Priority
Each OS task has a priority, represented by a number. The higher the
number, the higher the priority. The priority determines the order in which
the tasks are scheduled.

Process
A process is program function called from an operating system task.
Processes are specified in ASCET modules and do not have any argu-
ments or return values. Inputs to and outputs from a process are han-
dled by messages.

Project

ASCET-SE V6.4 — User Guide 15

ETAS

Introduction

A project describes an entire embedded software system. It contains
components which define the functionality, an operating system specifi-
cation, and a binding system which defines the communication.

RAM
Random Access Memory
Resource

Aresource is used to model parts of an embedded system that can be
used only mutually exclusively, e.g. timers. When such a part is
accessed, it has to be reserved; after executing its task, it is released
again. These reservations and releases are done using resources.

ROM
Read Only Memory
RTA-OSEK
ETAS' OSEK-compatible Real-Time Operating System.
RTE
AUTOSAR Run-Time Environment which provides the interface between
software components, basic software, and operating systems.
Scheduling
Scheduling is the assigning of processes to tasks, and the definition of
task activation by the operating system.
Scope
An element has one of two scopes: local (only visible inside a compo-
nent) or global (defined inside a project).
swc
Atomic AUTOSAR software component; the smallest non-dividable soft-
ware unit in AUTOSAR.
Target
The hardware a program or an experiment runs on. In ASCET-SE, a target
is specific to a combination of a microcontroller and compiler.
Task

Atask is the entry point for functionality that is scheduled by an OS. Attri-
butes of a task are its priority, its mode of scheduling and its operating
mode. The functionality of a task in ASCET-SE is defined by a collection
of processes. When a task runs the processes of a task are executed in
the specified order.

Trigger

A trigger activates the execution of a task (in the scope of the operating
system) or a state machine action.

Type
In an ASCET model, variables and parameters can have various types:
cont (continuous),udisc (unsigned discrete), sdisc(signed
discrete)or log (logic). Cont is used for physical quantities that
can have any value; udisc for positive integer values, sdisc for nega-
tive integer values; and 1og is used for Boolean values (true or false).
These types are not the same as the data types generated in the code.

Variable

ASCET-SE V6.4 — User Guide 16

ETAS Introduction

A variable is an element that can be read and written during the execu-
tion of an ASCET model. The value of a variable can also be measured
with the calibration system.

ASCET-SE V6.4 — User Guide 17

ETAS

2.1

2.2

2.3

Safety Information for Application Software Design

Safety Information for Application Software Design

ASCET and ASCET-SE provide numerous mechanisms to ensure safe and con-
sistent microcontroller code. Some details, however, cannot be checked by the
code generator. This may be the case due to technical reasons or because the
correctness of an implementation cannot be clearly determined in certain
cases (e.g. because the correctness is related to the usage of a model).

This chapter describes some general points that should be paid attention to
when designing application software in ASCET.

Please adhere to the ETAS Safety Advice and to the following safety informa-
tion to avoid injury to yourself and others as well as damage to property.

Intended Use

ETAS GmbH cannot be made liable for damage which is caused by incorrect
use and not adhering to the safety information.

Classification of Safety Messages

The safety messages used here warn of dangers that can lead to personal
injury or damage to property:

A WARNING

indicates a hazardous situation of medium risk, which could result in death or
serious injury if not avoided.

A CAUTION

indicates a hazardous situation of low risk, which may result in minor or mod-
erate injury if not avoided.

NOTICE

indicates a situation, which may result in damage to property if not avoided.

Demands on the Technical State of the Product

The following special requirements are made to ensure safe operation:

Take all information on environmental conditions into consideration before
setup and operation (see the documentation of your computer, hardware, etc.).

ASCET-SE V6.4 — User Guide 18

ETAS

2.4

Safety Information for Application Software Design

A WARNING

Wrongly initialized NVRAM variables can lead to unpredictable behavior of
a vehicle or a test bench.

This behavior can cause harm or property damage.

ASCET projects that use the NVRAM possibilities of AUTOSAR expect a user-
defined initialization that checks whether all NV variables are valid for the cur-
rent project, both individually and in combination with other NV variables. If
this is not the case, all NV variables have to be initialized with their (reason-
able) default values.

Due to the NVRAM saving concept, this is absolutely necessary when proj-
ects are used in environments where any harm to people and equipment can
happen when unsuitable initialization values are used (e.g. in-vehicle-use or at
test benches).

A CAUTION

Wrong word size and/or compiler division lead to wrong compilable code.
Wrong compilable code may lead to unpredictable behavior of a vehicle or
test bench.

This behavior can cause harm or property damage.

When working with the EHOOKS target, you must ensure that word size and
compiler division match the selected EHOOKS-DEV back end to avoid wrong
compilable code.

See also the ASCET-SE V6.4 EHOOKS User Guide.

Further safety advice is given in the ASCET V6.4 safety manual (ASCET
Safety Manual.pdf) available at ETAS upon request.

Interpolation Routines

Each ASCET-SE target is supplied with a pre-compiled interpolation routine
library.

The interpolation routine library is provided for example only. It is not permitted
to use the library in production code or within ECUs running in vehicles. The
libraries are signed. Any use of them in a project will give the following warning:

WARNING () : Disclaimer for interpolation routines.txt(l):
Invalid interpolation library linked. THE ETAS GROUP OF
COMPANIES AND THEIR REPRESENTATIVES, AGENTS AND AFFILI-
ATED COMPANIES SHALL NOT BE LIABLE FOR ANY DAMAGE OR
INJURY CAUSED BY USE OF THIS ROUTINES

ASCET-SE V6.4 — User Guide 19

ETAS

2.5

2.6

Safety Information for Application Software Design

ASCET-SE is also supplied with the source code and scripts required to re-build
the library. By re-building the library you take full responsibility for ensuring the
correctness of the source code, the build process and the interpolation routines
in the library.

“ NOTE

The ETAS group of companies and their representatives, agents and affiliated
companies shall not be liable for any damage or injury caused by use of these

routines.

FPU Usage

ASCET-SE supports floating-point code generation. This is especially advanta-
geous for microcontrollers with an on-chip floating-point unit (FPU).

However, if an application does not use floating-point, run time and stack con-
sumption can be saved by not saving and restoring the FPU’s floating point
registers over task context switches. RTA-OSEK provides this type of optimiza-
tion and ASCET-SE will automatically enable the optimization in the OS config-
uration if all processes and methods in a task do not use the FPU.

The information about whether or not a process or method uses the FPU is
provided by a flag in the implementation information. By default, this flag is
enabled, indicating the FPU is used. If the process or method does not use the
FPU then the flag can be disabled.

It is the user’s responsibility to ensure the FPU flag is only disabled when they
are certain that no floating-point code is used in the process or method.

If the flag is disabled and the process or method uses the FPU then the floating-
point context will not be saved and may be corrupted over a context switch,
resulting in unpredictable application behavior.

If in doubt, leave the FPU flag enabled.

Non-Volatile Elements

ASCET-SE supports the handling of different memory classes, as described in
chapter 5.3 "The memorySections.xml File". Each memory area can either
be volatile or non-volatile. For this reason, ASCET-SE checks the uniform usage
of each memory class either for volatile elements or for non-volatile elements.
If both properties are mixed within one memory class, an error message is gen-
erated.

Non-volatile variables are intended to remain in the ECU memory persistently,
also after a re-boot of the ECU. For this reason, variables specified as non-vola-
tile are not initialized, even if an initialization value can be entered in the respec-
tive data editor.

It is the user’s responsibility to care for a correct explicit initialization of non-
volatile variables as a part of the function specification.

ASCET-SE V6.4 — User Guide 20

ETAS Safety Information for Application Software Design

2.7 Provision of Customized Data Types

If customized data types are used then it is important to ensure that the types
declaredin a_user def.h are sufficiently wide to hold values of the associ-
ated ASCET data type. For example, a customized data type which replaces
sint8 must be wide enough to hold the value range -128..127.

ASCET cannot check for correct customized data type width, so it is essential
that declarations are checked during other stages of the development process
(for example by code review).

ASCET-SE V6.4 — User Guide

21

ETAS

3.1

Getting Started

Getting Started

ASCET-SE is a tool for generating software for embedded microcontrollers
from an ASCET-MD model. ASCET-SE uses the project to hold configuration
information.

Each ASCET project includes target-neutral code generation settings, an inte-
gration of ASCET modules and configuration settings for one or more targets
as shown below:

L Project
Project Modules
Settings r' i’ Target #N
Target #2
Option 1 r Target #1
v Option 2 | o0
e N s k&) €
= Option N Classes ¢

Fig. 3-1 ASCET project

The ASCET online help provides more information about how to create ASCET
projects.

To generate code using ASCET-SE, you need to configure a target. In
ASCET-SE, a target is a specific combination of a microcontroller, a computing
platform and a compiler.

Code generation produces C source code files that implement your ASCET
project, and also produces configuration files for an underlying operating sys-
tem (OS) or run-time environment (RTE). These configuration files capture the
real-time requirements of the model, such as sampling rates and communica-
tion between models. These configuration files define what ASCET requires
from the OS or RTE.

ASCET-SE supports code generation for:

A OSEK Operating Systems (OSEK 0S).
B AUTOSAR Run-Time Environments (AUTOSAR RTE)

ASCET-SE provides dedicated OSEK OS support for ETAS' RTA-OSEK, however,
code can be generated for use with any OSEK operating system and optionally
for any OS with a similar scheduling model to OSEK OS.

Components of ASCET-SE

The ASCET-SE delivery includes:

The ASCET-SE code generator tools.
A set of configuration files for each supported target.

A hex file reader.
These components have the following functions:

ASCET-SE V6.4 — User Guide 22

ETAS Getting Started

The ASCET-SE code generator tools extend the ASCET system with tar-
get-neutral C code generation, OS/RTE configuration file generation and
optional invocation of the compiler toolchain to build the ECU execut-
able. All targets use the same core code generator.

“ NOTE

The modeling capabilities of ASCET are not included in the ASCET-SE
shipment. They are subject to separate orders.

The configuration files hold all the target-specific information needed by
the ASCET-SE code generator to produce code for a particular embed-
ded microcontroller that interfaces with a specific OS/RTE. In addition,
the configuration files contain information on how to build the complete
system with a supported compiler to produce an executable to run on an
ECU.

“ NOTE

The RTA-OSEK operating system configuration tools and target plug-
ins are not included in the ASCET-SE shipment.

Please contact your local ETAS sales office for a quotation

“ NOTE

Target compilers and linkers are not included in the ASCET-SE ship-
ment. They are subject to separate orders from the compiler vendor.

The release notes included in the ASCET-SE installation describe the
compiler and linker versions that are supported.

The Hex file reader extracts address information from the executable so
that ASCET-SE can generate an ASAM-MCD-2MC file for measurement
and calibration.

“ NOTE

This applies only to the addresses of elements declared as ASCET ele-
ments.

3.2 Basic Stages from Model to Executable

The main stages in ASCET-SE code generation are:

A Generation of C code by the code generator

B Invocation of the compiler toolchain to compile and link the code to cre-
ate an executable ready for the ECU

C Generation of an ASAM-MCD-2MC file for measurement and calibration

ASCET-SE V6.4 — User Guide 23

ETAS Getting Started

The following figure shows these stages in outline:

Model

Behavioral C-Code
and

Implementation

ASCET-SE
Object-based
Controller
Implementation

. Executable
~4 1C hosted

Key:
COMPILER E tabl
Host: PC Xecutaple .
Input Ouput Target: 1C hosted A2L File
Embedded pC

ASCET-SE

Object-based
Controller
Implementation

Fig. 3-2 Main stages of ASCET-SE code generation

A more detailed view of what happens is shown in Fig. 3-3.The next three sec-
tions explain what happens in each stage

ASCET-SE V6.4 — User Guide 24

ETAS

Getting Started

Fig. 3-3

ASCET-SE V6.4 — User Guide

Basic stages in ASCET-SE code generation

Target ASCET Model User
Configuration [BDE, SM, ESDL, C] Libraries
[*.ini, *.xml, *.mk, *x . <1ib
conf*.oil,*.1lnk] [*.<2ip]
(Code Generation Y)
A
. ASCET-SE Jofo
Code Generator
OS config
Generator IS NCERY|
N RTA-OSEK ASCET code
il[or other OS tool] [*.h, *.c]
Invé)ke :
Compiler Invoke
: : A2L
In_voke file
Linker generation
. i J :
(Compilation and Linking RE
v | \J \ :
User-provided C compiler (e
Object Files
[*.0]
v \J
> User-provided linker
Key Executable
[* . hex] :
Automatically SuzggeEqrby I)
S B ser configurable (ASAM-MCD-2MC Generation | |
(>— * :
User-created :
with User-provided ASCET 'SE DI
ASCET-MD [HEX File Reader]
Data flow >
R » ASAM2.MCD-2MC
[*.a21]
_ J

25

ETAS Getting Started

3.2.1 Code Generation
The main function of ASCET-SE is the conversion of the ASCET model into
C code. Code generation in ASCET-SE always uses a complete model, i.e. a
project in ASCET, for the chosen target. C source code files are generated for

the project itself,

each module,

each class,

each OS task body.
The software architecture, or mapping of model structures into code, is identi-
cal for all ASCET-SE targets. However, the code generator uses target-specific
information provided by target configuration files to optimize code generation
or customize the code where necessary. For example, the target configuration
files can be used to tell ASCET-SE to generate compiler-specific pragmas to
place code or data into specific memory sections, whether the hardware pro-
vides bit-addressable memory that can be used to optimize bit-fields for space
etc.

ASCET-SE also generates an OS configuration file that defines all the OS
objects required by the ASCET configuration and then runs the OS generator
tools to generate the data structures required by the operating system.

The combination of the ACSET and OS code includes all variable and data defi-
nitions required to make the ASCET system work.

Code generated in this way will need to be built to produce a final executable.
ASCET-SE supports two use cases for this process:

A additional programmer, where the generated C code is exported to exter-
nal files and can be used in an external (to ASCET) build process.

B integration platform, where ASCET-SE uses your compiler toolchain to
build the executable. This is described in the next section.
More detailed information about how the ASCET-SE code generator works can
be found in chapter 15.

3.2.2 Compilation and Linking
In the integration platform use case the target toolchain, comprising compiler,
linker and locator, is driven from ASCET, so that the complete project can be
built in a similar way to developing software with an Integrated Development
Environment (IDE). The integration platform capabilities of ASCET-SE allow you
to include non-ASCET C source code and/or libraries in the build process.

ASCET uses a "make"-based system to control the build process, but interac-
tion is similar to the build for experimental targets: on selecting a menu option,
the build is started, and when it completes without error, a complete executable
program for the project that can be flashed to the ECU.

3.2.3 ASAM-MCD-2MC Generation
At the end of the build process, ASCET-SE uses the hex file reader to extract the
addresses of all variables and parameters declared in the ASCET model from
the generated hex file.

ASCET-SE V6.4 — User Guide 26

ETAS Getting Started

An ASAM-MCD-2MC description (commonly called an A2L file) can be gener-
ated, using a separate menu item, to supply information about the system to
calibration systems like ETAS' INCA.

3.3 Configuring ASCET-SE for Code Generation

The following sections explain how to configure ASCET-SE for target code gen-
eration.

3.3.1 Target Selection
During installation, the user chooses the target(s) to install. ASCET-SE can gen-
erate code for any installed target.

Each target isinstalled in a directory named by the target microcontroller family
<install dir>\target\trg <targetname>, for example:

<install dir>\target\trg cléx

<install dir>\target\trg mpc55xx
A special microcontroller independent target, called the ANSI-C target, is also
provided that generates portable ANSI-C code. This is installed in:

<install dir>\target\trg ansi
Unlike embedded targets, the generated code does not include any compiler-
specific intrinsics for memory mapping and data access on segmented or
paged hardware architectures.

ANSI-C code can be used as a basis for supporting targets not supported by
ASCET-SE.

In some cases, the supplied target will need to be customized for your specific
microcontroller and/or operating system. Please observe the hints provided in
this manual at the appropriate places. You are referred to the following sec-
tions in particular:

section 3.3.5 "Memory Class Configuration"

section 5.2 "The target.ini File"

section 5.3 "The memorySections.xml File"

section 8.6 "Interfacing with an Unknown Operating System”

3.3.2 Path Settings for External Tools
ASCET needs to know where the compiler and OS tool chains are installed
before it can use them to build ASCET applications. The paths for compiler and
operating system must therefore be set in ASCET. If these tools have been
installed before ASCET, then the ASCET installation process may be able to find
them if they have been installed on the same host PC.

“ NOTE

It is recommended that automatically identified toolchain paths are checked
for correctness before building an ASCET project. In particular, check that the
versions of the tools are compatible with the versions expected by ASCET.

ASCET-SE V6.4 — User Guide 27

ETAS Getting Started

To set Compiler and OS toolchain paths
1. Inthe ASCET Component Manager, select Tools — Options.
The "Options" dialog window opens.
Go to the "External Tools\Compiler" node.

Go to the subnode of your compiler, e.g., "Tasking Vx V2.x for
C16x".

4. Click on the button next to the "Tool Root Path" field.

Tasking VX V2.x for C16x

Tool Root Path * C:ycompiler{Tasking\C 16-VX v2.2r 1
Private directive

Public directive

Pre-Build Command

Post-Build Command

Unigque identifier TASKINGC 166VXV21

Object file extension .obj

Library file extension ik

2 H]J H]J H]J H]J H]J H]J H]J H]J

5. Inthe "Path Selection" window, select the path for the com-
piler/linker and close the window.

6. Inthe "Options" dialog window, go to the "Operating System"
node.

7. Gotothe subnode of the OS you want to use and select the OS
Installation Path.

File View
‘ || RTA-0SEKVS.0
=] mﬂphons -~ aE Installation Path |c:\rta [l
[Appearance aE Configuration Tool |${P,05,R00n\b\ﬂvfﬁb“i|d-€xe =
= 3 suid
-
— & Environment M Unigue identifier RTA/RTAS
—HE t
& Experimen & 05 Category OsEK
£ E3 External Tools
ASCII Editor aE RTIO Category HwC
a
aE

R compiler

EHooks Tool

[= Operating System
GEMERIC-OSEK
pRTA-OSEK V5.0)
RTA-OSEK V5.0 (ES300)
RTA-OSEK V5.0 (RTPRO-PC)
RTE-AUTOSAR 4.0.2

Interpolation Alias Mapping Defaull| % TARGETROOT %e\common interpolation\ASCETAlia | | [

& | & | system Defaults

RTE-AUTOSAR 4.0.3 Installation Path:
RTE-AUTOSAR 4.2.2 N
RTE-AUTOSAR 4.3.0 Root path where the operating system suite is installed. This path will be
RTE-ALUTOSAR 4.3.1 v used in make environment to call the OS build tool. Make variable

< = $(P_OS_ROQT) can be used to refer to this path. v

OK Cancel

8. Click OK to accept the changes.

3.3.3 Code Generation Settings
Code generation settings are specified on a per-project basis in ASCET's Proj-
ect Editor. The settings control which compiler and OS are used for the build
process.

ASCET-SE V6.4 — User Guide 28

ETAS Getting Started

To set the project options

@ -~ 1. Inthe project editor, click the Project Properties button.

The "Project Properties" window opens in the "Build" node.
2. Select the target and the corresponding compiler.

3. Select a code generator.

The "Code Generator" combo box offers the entries Object
Based Controller Implementation and Object
Based Controller Physical.

4. Select the operating system.
A selection of the following operating systems is available:

RTA-OSEK Vx.y Code and configuration data are gen-
erated to interface with version x.y of
ETAS' OSEK operating system.

GENERIC-OSEK Code and configuration data are gen-
erated for a Generic OSEK. Additional
vendor-specific configuration may be
required outside of ASCET.

RTE-AUTOSAR x.y Code and configuration data are gen-
erated to interface with Version x.y of
the AUTOSAR RTE.

“ NOTE

The RTE-AUTOSAR x.y operating systems are only avail-
able for the ANSI-C target.

5. Set the code generation options in the various subnodes.
6. Click OK to accept the changes.
More details on code generation settings are given in the ASCET online help.

3.34 Operating System Configuration
Operating system configuration is used to configure how the OS is integrated
with ASCET. OS integration includes mapping processes into tasks, defining
task attributes settings, defining interrupt attributes, etc.

Configuration is done in the "0S" tab of the Project Editor (see the ASCET online
help for additional details about the Project Editor).

ASCET assumes a priority-based pre-emptive operating system like OSEK OS.
It is important to understand how the OS schedules tasks at runtime because
this influences how ASCET processes (mapped into tasks) are scheduled.

ASCET-SE V6.4 — User Guide 29

ETAS Getting Started

Some basic guidance, including the restrictions which apply to OS integration,
is provided in section 8.1 "Scheduling and the Priority Scheme". Code genera-
tion errors will be issued if the restrictions mentioned there are not observed.

n NOTE

For the RTE-AUTOSAR "operating system", only ANSI-C code generation is
supported and no operating system settings are required. Any settings you
make in the "0S" tab for a newly created project that uses RTE-AUTOSAR are
removed together with the "0S" tab itself when you close the project editor.

3.3.5 Memory Class Configuration
Unlike a PC, embedded microcontrollers usually require that data and code is
located in specific sections of memory, often at specific addresses. Program
code and static data (e.g. constants) is usually located in ROM. Dynamic data
(i.e. variables) must be located in RAM.

Some microcontrollers also allow memory sections that can be addressed in
different ways. For example, some sections might be addressable with an 8 or
16-bit address and other sections may only be accessible with a 32-bit address.

The arrangement of elements in the controller memory is determined by the
memory classes they are assigned to in the implementation. In the ASCET data
model, memory classes are represented simply by abstract names, freely
selected by the user. Example names might be:

IRAM - Internal RAM

IFLASHT - First bank of internal Flash ROM memory

IFLASH?2 - Second bank of internal Flash ROM memory

NEAR_RAM - RAM addressable with an 8-bit address

FAR_ROM - ROM addressable with a 32-bit address

The definition of the names and the conversion to compiler-specific conven-
tions for marking up the C code correctly is stored in a file called
memorySections.xml in the target directory. ASCET-SE supplies a typical
file for each target.

The section names defined in memorySections.xml are selectable in the
implementation editor for each ASCET element.

During the second phase of code generation, ASCET-SE uses the conversion
information in memorySections.xml to add the correct compiler intrinsics
(usually #pragma statements) to the generated C code.

The use of memory classes is described in detail in section 5.3 "The
memorySections.xml File"

The assignment of actual memory addresses to these locations is done in the
linker control file.

ASCET-SE V6.4 — User Guide 30

ETAS

3.3.6

3.3.7

Getting Started

Target Initialization Code

Each ASCET target includes an example application which provides simple tar-
get configuration. By default, ASCET-SE uses the target configuration and the
main program from this example when building a project. The following files
are used:

<install dir>\target\example\target. [hc]

<install dir>\target\example\system counter.c
These files contain a main program and the code required to initialize the target
hardware to provide a Tms periodic timer interrupt used to drive task schedul-
ing. The interrupt handler itself is provided in system counter.c. This
code must be reviewed for suitability in production projects.

If additional interrupts are defined in ASCET, then additional target code is
required to configure the interrupt sources and (possibly) to initialize interrupt
priority registers. You should consult your OS documentation for further infor-
mation.

Note that ASCET assumes that memory sections have been initialized correctly
for executing C programs. By default, ASCET uses the C start-up code (the
code which executes before the main program is entered) provided by the com-
piler vendor for initializing the C environment.

Customizations for Compiling and Linking
The following settings are required in the linker/locator control file to customize
for a specific hardware target:

Locate the ASCET memory classes defined inmemorySections.xml
to the applicable physical memory space (see section “Linker/Locator
Control” on page 76).

Locate the memory sections for the operating system into the physical
memory space. Note that it may be necessary to tell the OS the location
of the stack pointer. For specific instructions, refer to the OS documen-
tation (for RTA-OSEK this information is given in the RTA-OSEK Binding
manual for the target).
Compiler and linker invocation can be customized in the
project settings.mk make file (see section 5.4.1). For example, special
supplementary header files and pre-compiled objects can be integrated via this
make file, as well as user-provided libraries (e.g. for drivers, external code, inter-
polation routines), compiler, assembler and linker options and some settings
concerning the build process.
On some targets, additional configuration for time measurements may be
required.
Enter the input frequency and timer prescale factor in the
project settings.mk file (see section 5.4.1).
Modifications are also possible in the target settings.mk configuration
make file (see section 5.4.1), which contains compiler-specific configurations.
However, changes in this file should be avoided, if possible.

ASCET-SE V6.4 — User Guide 31

ETAS

3.3.8

Getting Started

Generating the Executable File and Running it on the Target
Before an application can be executed on the target microcontroller an execut-
able file must be created. If a measurement and calibration tool will be used,
then an ASAM-MCD-2MC file also needs to be generated. This section reviews
the steps for generating source code, the executable, and the ASAM-MCD-2MC
file.

Depending on the target, the following modifications may be necessary:

Enter the memory layout into the ASAM-MCD-2MC data file
mem_lay.a2l (see section 9.2).

Enter global blobs for the ETK (TP and QP blobs) into the ASAM-MCD-
2MC data files aml template.a2l and if data template.a2l
(see section 9.3).

The following sections explain each stage.

To generate the source code

“ NOTE

Code can be generated and simulated for an ASCET module without a project
context when using the code generator in physical experiment mode only.

Using other modes of the code generator require that modules are integrated
into a project.

A default project can be defined for each class or module for that purpose.
This is the only way to access the implementation information. Without proj-
ect context, the conversion formulas as well as all implementations of
imported entities are missing.

1. In the project or component editor, select Build — Generate
Code to generate source code.

Code can be generated for the entire project or any component
(i.e., module or class). All the necessary components are gen-
erated automatically.

2. Select File — Export — Generated Code — * to save the
source code to a file.

Until this step is performed, the code only exists internally
within the ASCET code manager.

To generate executable code for the project

1. Inthe project editor, select Build — Build to create an execut-
able file.

Code for the complete project is generated, compiled, and
linked. If no errors occur, an executable file in hexadec. format,
named temp. *, is created. The source and object code cre-
ated during the code generation is stored in the ASCET data-
base/workspace.

When generating an executable file, all files (including the source code) are cre-
ated by defaultin the <install dir>\CGen directory. If the Keep files in
Code Generation Directory option in the "Build" node of the ASCET options is

ASCET-SE V6.4 — User Guide 32

ETAS Getting Started

deactivated (see the ASCET online help), the content of the
<install dir>\CGen directory is deleted whenever you exit your ASCET
session.

“ NOTE

To retain any of these files, they should be copied into another directory
before ASCET is closed. Retrospectively activating the option has no effect
for the running session.

The files generated in <install dir>\CGen are notcompilable C source
files.

If only the source code needs to be saved, then the code should be exported
using File — Export — Generated Code — *. These menu options prompt
you for a location in which to save the generated code provided the code was
previously stored in the database/workspace during the code generation pro-
cess.

ASCET’s make mechanism does not take all dependencies (e.g., formula
changes, etc.) into account for efficiency reasons. Some global side effects
from changes in the model are therefore not recognized. After changes in the
model structure, a complete regeneration should therefore be enforced via
Build — Touch — Recursive before the generation of important code is
started.

Once the executable is being generated, the ASAM-MCD-2MC data for the inter-
face to the application system needs to be created.
To write the ASAM-MCD-2MC file

1. In the project editor, select Tools — ASAM-2MC — Write to
generate the ASAM-MCD-2MC file.

The "Write ASAM-2MC To:" dialog window is displayed.

2. Inthe dialog window, enter the specific file name and select
the specific storage directory.

n NOTE

If the ASAM-MCD-2MC file is to be stored, be careful when placing in the
directory . \cGen\. The files in this directory may be deleted upon exiting
ASCET, depending on the settings in the ASCET options (see the ASCET
online help).

At this point, the user has everything that is needed to run the program on the
target. The executable program can be loaded onto the controller or evaluation
board, for instance, using a debugger or calibration system. The ASAM-MCD-
2MC file is used by the calibration system (e.g., INCA) for calibration and mea-
surement.

Other tools (e.g., logic analyzer, source level debugger) can be used if neces-
sary, based on the user's preference.

ASCET-SE V6.4 — User Guide 33

ETAS Getting Started

3.3.8.1 Differences for the ANSI-C Target
Linking is suppressed for the ANSI-C target due to undefined behavior for e.g.
startup code, memory layout etc. This suppression is controlled by the
noLinking option inthe target.ini file; this option contains a list of all
compilers for which linking is disabled.

If you use a compiler listed after the noLinking option, Build — Build All and
Build — Rebuild All stop after the creation of the * . ob files and the following
error message is shown in the monitor window:

Selected target "ANSI-C" / compiler "<compiler name>"
combination does not support "Link Code" --- please
refer to target description file ("c:\ETAS\ASCETx.y\
Target\trg ansiltarget.ini")
For compilers as Microsoft Visual C++, the calculation of physical addresses is
meaningless. To suppress map file generation for these compilers,
target.ini offersthe noMapFileGeneration option which contains alist
of compilers for which no map files shall be generated.

Similarly, generation of an ASAM-MCD-2MC description needs access to the
executable program file. As ANSI-C code generation usually does not produce
an executable (because linking does not happen) the generation of an ASAM-
MCD-2MC file is not possible.

It is recommended that the code generation option Generate Map File (see the
"Project Properties" window or the ASCET online help for details) is deactivated
in order to avoid the generation of the Virtual Address Table and the etas . map
file. See also the notes in section 9.4.

The following table show which ASCET-SE features are supported by a default
installation for which combinations of target and operating system.

Target
Operating System Embedded ANSI-C
RTA-OSEK Code Generation Code Generation
Compile Compile
Link
A2L generation
Generic OSEK Code Generation Code Generation
Compile Compile
Link
A2L generation
RTE-AUTOSAR Code Generation
Compile

ASCET-SE V6.4 — User Guide 34

ETAS

Getting Started

34 ASCET-SE Installation Reference

This section provides a quick reference to an ASCET-SE target installation
directory <install dir>\target\trg <targetname>.

3.4.1 Installation Contents

Some important ASCET-SE files are listed and shortly described below. They
are located in a subdirectory of the ASCET installation, i.e., relative to the
<install dir>\ETAS\ASCET6.4 directory. The subdirectory is called
.\target\trg <targetname>

3.4.1.1 Directory . \target\trg <targetname>

File

.indent.pro

aml template.aZ2l

build.mk

clean.mk

codegen.ini

codegen <targetname>.1
ni

codegen_ecco.ini

compile.mk
custom settings.mk

depend.mk

do compile.mk

generate.mk

global settings.mk
if data template.aZ2l

ASCET-SE V6.4 — User Guide

Meaning / Explanation

Configuration file for the "Indent" code format-
ting utility.

Template file with type descriptions of global
configuration BLOBs for the ETK. This file
must be customized by the user (see
section 9.3 on page 111).

Makefile for the linker/locator phase (see
section 5.4.5).

Makefile to customize the Build — Clean
Code Generation Directory menu optionin the
project editor.

File with macro definitions for code genera-
tion. The individual entries are explained in the
file itself.

File with target-specific settings for code gen-
eration. The individual entries are explained in
the file itself.

File with ECCO settings for code generation. It
isread by ECCO each time code generation for
a specific target is started. The entries are
explained in the file.

Makefile for the compiler phase.
Makefile for customizing the Make process.

Makefile for generating the dependencies of
the generated files.

Make file for actual compiler invocation.

Makefile only for code generation via ECCO.
After execution of this makefile, all project
modules are generated as C and H files and
are written in the directory . \CGen of the
ASCET installation (see section 5.4.3 "Code
Generation — Make File generate.mk").

ASCET-SE internal makefile.

Template file with type descriptions of global
configuration BLOBs for the ETK. This file
must be customized by the user (see
section 9.3 on page 111).

35

ETAS

File

mem lay.a2l

memorySections.xml

0S_<osname> <version>.
template

os_settings.mk

postasap.mk
prj def.a2l

project settings.mk

services.ini

settings <compiler>.mk

smart compile.mk

target.ini

target <variant>.ini

target settings.mk

Getting Started

Meaning / Explanation

Example data file defining the memory layout
of the controller in ASAM-MCD-2MC format.
This file must be customized by the user (see
section 9.2 on page 110).

Contains XML definitions of memory classes.
See section 5.3 "The memorySections.xml
File" for more information.

Note that the ANSI-C target (trg_ansi) con-
tains additional memory class definitions files
memorySections_Autosar.xmland
memorySections Autosar4.xml

0S template file for <osname> (and optionaly
<version>) used by ASCET-SE to generate
an OS congfiguration file.

Makefile for general OS settings.

Makefile for post-processing ASAM-MCD-
2MC files.

Example ASAM-MCD-2MC file to define the
MOD PAR section (see section 9.1).

Contains project-specific configuration set-
tings like included libraries or special compiler
and linker settings (see section 5.4.1).

File containing arithmetic services (see the
"Arithmetic Services" section in the ASCET
online help).

Defines compiler- and target-specific settings
valid for all projects, such as file extensions,
call conventions for precompiler, compiler,
linker and other programs, as well as paths for
program calls, include files and libraries (see
section 5.4.4).

Makefile for SmartCompile control.

Target-specific settings for ASCET for the
default variant of the target microcontroller;
the individual entries are described in more
detail in section 5.2.

Target-specific settings for ASCET for alterna-
tive variants of the target microcontroller; the
individual entries are described in more detail
in section 5.2.

Makefile to specify target specific settings
(see section 5.4.1).

3.41.2 Directory .\target\trg <targetname>\cp rules
This subdirectory contains the Perl macros, know as the Code Production
Rules, that are used by ECCO during C code generation.

ASCET-SE V6.4 — User Guide

36

ETAS

Getting Started

3.4.1.3 Directory . \target\trg <targetname>\docco
This subdirectory contains the stylesheets and definitions files used in by the
DOCCO automatic code documentation tool.

3.41.4 Directory .\target\trg <targetname>\example
This directory contains files with target-specific settings for a small ASCET-SE

example project.

File
confv50.0il

example rta.exp

ReadMe Example.html

<targetname> user
.<lnk>

Meaning / Explanation

Atemplate OIL file, which is the entry point for the
example project. This file contains definitions of
OIL objects like CPU, 0S, COUNTER (system
counter, forthe timeraster),an ISR (which drives
the system counter) and com.

ASCET export file containing the example project.

HTML file that describes the further content of
this directory and explains what the example
application does and how to build it in ASCET.

Example linker/locator control file; see also sec-
tion “Linker/Locator Control” on page 76. The
<1lnk> extension depends on the target.

3.4.1.5 Directory . \target\trg <targetname>\include
This directory contains the C include files for ASCET-SE.

File

a basdef.h

a limits.h

a_sect.h

a_std type.h

a user def.h

message_ scheme.h

os_inface.h

os_rta inface.h

ASCET-SE V6.4 — User Guide

Meaning / Explanation

Central header file with ASCET controller defini-
tions; the file is to be included by all ASCET project
files.

Definitions of the upper and lower boundaries for
standard ASCET types.

Header file with memory section definitions. Not
required for all targets.

Contains definitions of ASCET standard types,
€.g., uintle.

Used to define customized data types. By default,
this file contains no compilable code.

Header file for the selection of the message vari-
ant (for more information, see section 14.4.3
"Messages").

Header file containing OS interface definitions; the
file is included by all generated component C files.

Header file containing OS interface adaptations
for RTA-OSEK.

37

ETAS

File

os_unknown_inface.h

proj def.h

tipdep.h

Getting Started

Meaning / Explanation

Template header file containing OS interface
adaptations that allows customization to an
OSEK-like OS.

Header file for application-specific adaptations
(see section 5.7.2 "The Include File
proj def.h").

Header file for target-specific declarations.

3.41.6 Directory .\target\trg <targetname>\Intpol

“ NOTE

The interpolation routines provided with ASCET are examples, not intended to
be used in production orin ECUs running in a vehicle. See also the safety hints

in section 2.4.
File Meaning / Explanation
a_intpol.h interface definitions of the interpolation routines

build cmd.bat

customize.pm

intpol <target>
<compiler>.bat

makeintpol.pl

makeintpol Theader.pl

path settings.bat

ReadMe Interpolation.
html

settings
<compiler>.mk

ASCET-SE V6.4 — User Guide

Batch file used during the build process of the
interpolation library.

“ NOTE

This file must not be called directly. It is to be
called only by
intpol <target> <compiler>.bat files.

Perl macro with functions that can be custom-
ized to generate desired type combinations for
interpolation routines.

Batch file to start the build process for an inter-
polation library for the target <target>and the
compiler <compiler>. The source files must
be located inthe .\target\

trg <targetname>\intpol\src subdirec-
tory.

Perl script to generate the type combinations of
interpolation routines.

Perl script to generate a header file with proto-
types of interpolation routines, used by
ASCET-SE for characteristic curves/maps.

Batch file to set compiler paths for all targets.
Called by
intpol <target> <compiler>.bat.

Instructions on handling of interpolation rou-
tines.

Make file for compiler-specific settings.

38

ETAS

Getting Started

3.4.1.7 Directory .\target\trg <targetname>\Intpol\lib

File

Disclaimer for
interpolation
routines.txt

intpol <target>
<compiler>.<lib>

Meaning / Explanation

“ NOTE

Important information regarding the provided inter-
polation routines. Read carefully!

Library of interpolation routines, which is linked to
the projectinproject settings.mk(includedin
build.mk, see section 5.4.5).

The library does not contain all possible interpola-
tion routines. Further routines can be generated
automatically on demand via the customized.pm
file.

The extension <1ib>is the target-specific exten-
sion for libraries defined by the target compiler. Typ-
ical examples are *.1ib, *.h12, *.a.

For further details see chapter 7 "Interpolation Routines"; if in doubt, please

contact ETAS.

3.41.8 Directory .\target\trg <targetname>\Intpol\Src
This directory contains all source code templates for interpolation routines.

3.41.9 Directory .\target\trg <targetname>\scripts
This directory contains several Perl scripts. The table lists the most important

ones.

File
convert hip db.bat

convert hip db.pl
cctolog.pl

lltolog.pl

ostolog.pl

ASCET-SE V6.4 — User Guide

Meaning / Explanation

Batch file for migration of memory class definitions
fromthe old format (hip.db/target.ini)tothe
current format (memoryScections.xml).

Perl script used by convert hip db.bat.

Perl script that transforms error/warning mes-
sages generated by a compiler into a format read-
able by ASCET. Thus, errors/warnings can be
automatically displayed in the ASCET monitor win-
dow.

Perl script that transforms error/warning mes-
sages generated by a linker into a format readable
by ASCET. Thus, errors/warnings can be automati-
cally displayed in the ASCET monitor window.

Perl script that transforms error/warning mes-
sages generated by an OS configuration tool (like
rtabuild.exe)intoaformatreadable by ASCET.
Thus, errors/warnings can be automatically dis-
played in the ASCET monitor window.

39

ETAS Getting Started

3.41.10 Directory .\target\trg <targetname>\source

File Meaning / Explanation

blkcopy.c Block Copy routines for initializing the arrays in the controller
code.

msgcopy.c Contains methods for copying non-atomic messages (i.e.,
messages larger than one machine word).

upmsgcp.c unprotected message copy - used to allow communication
between two processes via messages.

ASCET-SE V6.4 — User Guide 40

ETAS Implementation Configuration

4 Implementation Configuration

When modeling with ASCET, the physical model’s functional behavior can be
tested. Then, the embedded control software can be refined gradually up to the
production stage of development. This is done by specifying the implementa-
tion information in conjunction with the code generation.

The task of the implementation consists of mapping the physical model, repre-
sented by continuous, discrete and logical entities, to the implementation layer
in a semantically correct way. A major part of this task is to decide how to map
continuous real arithmetic of the model into the discrete integer (fixed-point)
arithmetic supported by embedded target microcontrollers. The transforma-
tion requires a quantized representation of all entities. Quantization introduces
numerical error that cannot be avoided. The behavior of the generated code will
always differ slightly from the physical specification.

“ NOTE

In ASCET, "Implementation code generator" serves as a generic term for the
code generators used for the "implementation experiment" and "controller
implementation” (or "object-based controller implementation”, respectively).
They resemble each other closely in terms of structure and mode of opera-
tion.

In the context of the user’s specifications, the implementation code generators
create a compromise between numerical precision, RAM and stack require-
ment, code size, and code performance.

Implementations are a refinement (the addition of detail) of the physical model
and are necessary to create embedded control software in ASCET. They deter-
mine how the physical functionality is mapped to an implementation in an ECU.
The separation of the physical model and its corresponding implementation in
ASCET helps to support a structured development process.

All of the settings described in this chapter are ignored for the physical experi-
ment, the quantized experiment and the physical code generation for controller
targets. This includes the arithmetic parts of the implementation as well as the
memory locations, symbols and implementations of complex model types.

For classes with a service routine or prototype implementation, as well as for
externally defined records, it is possible to mark them as "Production code
only". In this case, these components or records are treated as regular model
elements in the implementation experiment and only refer to external C code
for implementation code generation for microcontroller targets. This can be
useful, because the data structures in the experiment are different from the
microcontroller data structures, or because some libraries interface to special
hardware components that are only available for microcontroller targets.

ASCET-SE V6.4 — User Guide 47

ETAS Implementation Configuration

4.1 Implementations for Basic Model Types

To edit an element implementation

1. Right-click the element you want to implement, e.g. the param-
eter P_Gain in the following example.

2. Select Implementation from the context menu.

|
P_gain
romr e k

The implementation editor shown below opens.

@ Implementation for: P_gain Project: Module_examples_DEFAULT ... @

Value | Additional Information

Use Implementation Type

Implementation

Transformation

Formula [T Rescalable
Conversion flphys) = 0 + 64 * phys
Quantization Calculated | 0.015625 Qu.Exp. 0

Master
() Model (@) Implementation

Model Implementation

Type cont Type
Min 0.0 Min a

Max 50.0 Max 3200

Implementation Interval Adaptation

Limit Assignments

Limit to maximum bit length Automatic

Memory Location of Instance Default -
Memory Location of Reference Default
Memory Location of Search Result Default
Memory Segment Automatic -

Consistency

Source Conflict

'l 1 +

uto Correction [OK] [Cancel]

In this example, P_Gain is the proportional gain for a PID controller. It has a
physical range of 0.0 to 50.0 and a quantization of 0.015625, i.e.

Ximpl = 0 + 64*xphys

The implementation of the variable has type uint16 with a range of 0 to 3200.
The following table shows how physical values are mapped onto implementa-

tion values:
xphys Ximpl

Integer Binary
0.000000 0 00000000_00000000
0.015625 1 00000000_00000001
0.031250 2 00000000_00000010
0.984375 63 00000000_00111111

ASCET-SE V6.4 — User Guide 42

ETAS

4.1.1

Implementation Configuration

xphys Ximpl

Integer Binary
1.000000 64 00000000_01000000
1.015625 65 00000000_01000001
49.968750 3198 00001100_01111110
49.984375 3199 00001100_01111111
50.000000 3200 00001100_10000000

Since this is a calibration parameter (the parameters are typically located in a
ROM memory area), the memory class IROM is selected.

The following sections describe the various aspects of element implementa-
tion.

Implementation Data Types

Unlike the abstract data types used for quantities in the physical model (i.e,,
continuous, discrete, logical), a concrete data type is used in the implementa-
tion. ASCET uses the following implementation data types:

Type Contents Comment

sint8 8-bit signed integer -128to +127

uints8 8-bit unsigned integer 0to +255

sintlé6 16-bit signed integer -32768 to +32767

uintlé6 16-bit unsigned integer 0to +65536

sint32 32-bit signed integer -2147483648 to +2147483647
uint32 32-bit unsigned integer 0 to +4294967296

real32 32-bit IEEE Floating-Point unavailable for some targets
realé64 64-bit IEEE Floating-Point unavailable for some targets
bit directly addressable single bit unavailable for some targets
bool

“ NOTE

On certain processors, the floating-point implementation is only possible with
software libraries that are capable of emulating floating-point arithmetic. In

such cases, it is not recommended for typical applications in electronic con-
trol units because it requires considerable more execution time and memory.

The following special cases apply:

When a variable of model data type udisc is mapped to an implementa-
tion data type of sint*, the lower limit of the implementation interval is
not set to the corresponding negative value, but to zero.

When a variable of model data type sdisc is mapped to an implementa-
tion data type uint*, the upper limit of the model interval is not set to
2147483647, but to the maximum value of the implementation data
type. This is valid even for the uint32 implementation data type.

ASCET-SE V6.4 — User Guide 43

ETAS Implementation Configuration

When you edit a variable of model data type cont or sdisc and imple-
mentation data type uint*, the lower limit of the model interval is not
set to the corresponding negative value, but to zero.

The code generation allows a combination of floating-point and integer arith-
metic in the software for assignment only:

The assignment of non-quantized floating-point to quantized integer
quantities and vice versa is valid.

The code generator creates the necessary code for the conversion and
automatic limits.

The same holds true regarding method calls for the implicit mapping
between formal and actual arguments.

“ NOTE

The combination of floating-point and integer implementations in mathemat-
ical operations or comparisons is invalid and results in an error message.

41.2 Conversion Formula
A conversion formula transforms the physical value of a model quantity into its
implementation value in the software. This transformation must be invertible in
the valid interval (i.e. value range) for the quantity. In ASCET, the conversion
formula is always specified from physical model to implementation, i.e.

Ximpl = f (xphys)
Conversion formulas are required:

for physical quantities of type cont that are to be mapped to integer in the
generated code.
The identity conversion formula (Ximpl = xphys) must be used in the follow-
ing cases:

for logical (Boolean) quantities, there is no possibility to specify conver-
sion formulas.

for discrete physical quantities, those of type udisc or sdisc, the identity
conversion formula is mandatory.

for physical quantities of type cont with floating-point implementation,
the identity conversion formula is mandatory.
In the following discussion, physical quantities are generally represented in
lower-case characters. The corresponding implementation values are written
in upper-case characters.

Conversion formulas can be defined globally for an entire project in the "Formu-
las" tab of the Project Editor. There, select Global Formulas — Add in order to

define a new formula. Afterwards, you can use the defined conversion formulas
in the implementation editors.

ASCET knows different types of conversion formulas (i.e., linear, linear rational,
square rational, tabular and verbal formulas). However, the code generation
supports only simple linear formulas of the following form:

X = ax+b

Here, a and b are called the scale value and offset, respectively. The quanti-
zation of a value is the reciprocal of the scale value:

ASCET-SE V6.4 — User Guide 44

ETAS

41.3

41.4

Implementation Configuration

q=1/a
In the following, it is assumed that scale values and offsets are rational num-
bers. This is not a substantial restriction because real values can be approxi-
mated with a given level of precision using rational numbers. Note also that
only rational numbers can be used in for integer arithmetic anyway.

Non-linear conversion formulas can be used in the specification. However, an
automatic conversion between non-linear formulas in the code generation is
not supported.

“ NOTE

The code generation treats non-linear conversion formulas internally like

identity so that no automatic conversions are performed.

Arithmetic with non-linear quantizations is not possible. They can only be used
for inputs of characteristics and methods, e.g., as a time constant of an integra-
tor. The user is responsible for ensuring that non-linearly quantized quantities
are used only in such a way. There is no further tool support of this, including
the code generation.

Value Range (Only for Numerical Quantities)

The range of values for a quantity is simply its valid numerical interval. The
specified value ranges are then used by the code generator to calculate the
intervals of intermediate results. In doing so, the occurrence of overflows can
be detected. The code generator decides through this how to generate interme-
diate results and calculations in the software. If necessary, the use of limiters
must be enabled.

Both the physical and implementation value ranges can be specified. Then, the
linear, invertible conversion formula updates the other value range. Therefore,
the user can choose which environment (physical or implementation environ-
ment) to work in.

In the following cases, however, the specification of a value range is not possi-
ble or will be ignored:

For logical (Boolean) quantities and enumerations, there is no possibility
to specify a value range.

Continuous physical quantities with floating-point implementation are
mapped without limits to the specified implementation data type.
Though you can enter a value range in the ASCET editors, it will be
ignored. A pseudo-infinite interval is used instead.

Implementation Master

Either the physical model specification or the implementation specification can
be chosen as implementation master. The values entered by the user for the
implementation master will be used to adapt the opposite, non-master side
according to the master specification and the formula.

After the global change of a formula in the project editor, all affected implemen-
tations can be updated automatically by means of the Extras — Update
Implementations option in the project editor. In this context, the "Master"

ASCET-SE V6.4 — User Guide 45

ETAS Implementation Configuration

options in the implementation editor can be used to specify whether to pre-
serve the value range on the model side or the implementation side. If the
model side is selected as the master, the settings of the model side will remain
unchanged and the implementation side will be updated. If the implementation
side is the master, the model side will be updated.

4.1.5 Implementation Types
To be able to edit the implementations of individual variables more easily and
to be able to easily assign the same implementations to elements with compa-
rable physical significance, you can define what are referred to as
implementation types in the project context. This is also true of the default proj-
ect of a class or a module. These implementation types contain the implemen-
tation parts described in chapters 4.1.1 to 4.1.4; they can be assigned to
individual elements in their implementation editors.

How to create and set up implementation types is described in the ASCET
online help, section "Implementation Types". How these are used during imple-
mentation is described in the instruction "Using Implementation Types" of the
ASCET online help.

4.1.6 Value Range Limitation
The Limit Assignments option can be used to specify for each element individ-
ually if its value range shall be limited to the defined range. Calculated values
which are less than the lowest permitted value are set to the lowest value. Sim-
ilarly, calculated values that are higher than the highest permitted value are set
to the highest value. This is called saturated arithmetic — the highest (lowest)
value in the type range is "saturated" with all higher (lower) values. Saturated
arithmetic prevents underflow and overflow at runtime.

If the option is activated, additional code is generated for each assignment
operation to check and ensure that the specified range is kept. If the option is
deactivated, it is the user’s responsibility to keep the value range. Continuos
physical quantities with floating-point implementation are generated with the
selected implementation data type and without limitation.

“ NOTE

In previous ASCET versions, the "Integer Arithmetic" node of the "Project
Properties" dialog window contained an option Generate Limiters, which had
to be activated for the element-specific limiter configuration to become
active.

Since ASCET V6.3, this option is always true. It can no longer be edited and
has been removed from the "Project Properties" dialog window.

By means of the option Limit to maximum bit length the user can specify indi-
vidually for each element, whether and how ASCET checks and avoids potential
overflows during assignments. In addition, the user can define the way by
which overflow is avoided.

Reduce Resolution: potential overflows are avoided by a suitable re-
quantization. This results in a loss of precision.

ASCET-SE V6.4 — User Guide 46

ETAS Implementation Configuration

Keep Resolution: potential overflows are avoided by means of limitation.
The resolution remains unchanged. This option can only be used in con-
nection with arithmetic services.

Automatic: ASCET treats potential overflows according to the option
Keep Resolution if the usage of arithmetic services is active, and accord-
ing to the option Reduce Resolution otherwise.

4.1.7 Zero Containedness in the Value Range
The code generation assumes that the implementation interval can include
zero. It is checked whether the denominator of a division contains zero. You
can switch off the check in the Project Properties window, "Code Generation'
node, Protected against Division by Zero option.

If required, C code is generated that prevents a possible division by zero at run-
time. The Result on Division by Zero option in the "Code Generation" node of
the "Project Properties" window can be used to determine the behavior upon
division by zero.

“ NOTE

The option Zero not included (available in ASCET V5.0 - V6.3) is no longer
available in ASCET V6.4. When working with older models that contain this
flag, Zero not included is always treated as deactivated, i.e. code generation
assumes that zero is included in the interval.

41.8 Memory Locations
Memory locations (selected in the "Memory Location of *' combo boxes) spec-
ify the name of the abstract memory section where a quantity (and its refer-
ence where applicable) is placed in the memory of the ECU. The code generator
uses this information to generate C code data structures according to the
required layout of elements in the control unit memory. Besides, the memory
classes are used for the generation of corresponding compiler intrinsics, typi-
cally #pragma statements. The locator uses these #pragma statements to
map the memory classes to certain address ranges in the control unit. This is
done with the help of a transformation table specified by the user.

The code generation checks whether all elements in a certain memory class
have the same setting assigned in the Non-Volatile option of the properties
editor or not. In the latter case, an error message is generated because one
memory class cannot refer to both volatile and non-volatile memory at the
same time.

Depending on the activation status of the Non-Volatile option, variables are
treated differently by the code generation: only volatile elements are automati-
cally initialized.

For databases, ASCET provides an easy way to get rid of the error message: the
Component Manager menu functions Tools — Database — Convert —
Variables to Volatile and Tools — Database — Convert — Parameters to
Nonvolatile. The former function assigns the attribute volatile to all variables in
the database, while the latter assigns the attribute non-volatile to all parame-
ters.

ASCET-SE V6.4 — User Guide 47

ETAS

4.1.9

4.1.10

4.1.11

41.12

Implementation Configuration

For workspaces, these conversion functions are available as Tools —
Workspace — Convert — *.

Consistency Check

If the implementation editor contains inconsistent data, ASCET will notify the
user by means of the Consistency check list in the implementation editor. The
user can highlight single inconsistencies in the list and correct them automati-
cally means of the Auto Correction button, if desired.

Additional Information

Further implementation information can be entered in the "Additional Informa-
tion"tab, if required. This can be necessary for a specific electronic control unit.
They can also be used for supporting special infrastructures (e.g., DAMOS and
MSRDOC). Depending on the application, this field may contain the following:

Code syntax, address scheme
Bit base address and binary position for bit packets

This field is not used in the ASCET basic system. Its syntax and semantics are
not defined here. The field definition is application-specific. Through the open
interface it is possible to add further implementation information.

Sizes of Composite Model Types

The size of composite model types, i.e. arrays, matrices, distributions, charac-
teristic curves and maps, are not part of the implementation specification.
Instead, this information is part of the data sets in ASCET.

Summary of Element Implementation

The table below summarizes the implementation information required for each
basic model type used in ASCET. Note that only logicals (1og type) and enu-
merations do not require all of the implementation information, e.g., no conver-
sion formula. The other scalar types (i.e. continuous and signed/
unsigned discrete)require all of the implementation constituents. This is
also true for the array, matrix, and distribution composite types.

“ NOTE

For continuous model types with floating-point implementation, the Identity
Conversion Formula (identity, i.e., multiplication with the factor 1.0) is
required. For discrete data types, the Identity Conversion Formula is required,
too.

In both cases, a warning is displayed when another formula is selected.

ASCET-SE V6.4 — User Guide 48

ETAS Implementation Configuration

Characteristic curves and maps have special treatment. For these composite
types, separate implementation data types, conversion formulas, and value
ranges may be specified for the independent and dependent axes. Besides, the
access type (linear, rounded, user-defined) can be specified in the properties
editor of a characteristic.

Scalars Enu- |Arrays, |Characteristics
logical |dis- |cont. |M€r@ |Matrices, |cyrve |Maps
Crete t|0nS DiStribU'
tions
Implementation |+ + + + 2%(xy) |3*(xy.2)
Type
Formula 0 + + 2%(x,y) 13*(xy,2)
Implementation |+ + + + 2%(xy) |3*(xy,2)
Data Type
Value Range + + + 2%(xy) [3*(xy.2)
Data + + + + +
Representation*
Memory Loca- |+ + + + + + +
tion
"Additional Infor- |+ + + + + + +
mation" tab
Access Type X X
(linear / rounded
/ userdef)
4.2 Implementations for Classes

The implementation of a complex model type (i.e. class, module or project)
involves the following steps:

Enter the implementations for all the basic model types included in that
component.

Enter the implementations for any other complex model types (i.e., other
classes, modules or projects) contained in that component.

Only if an individual memory class or other component-specific settings
(e. g. for the use of user-provided service routines, or for calling hand
coded functions) are necessary for the data structures of the compo-
nent: Activate the respective settings in the "Settings" tab of the imple-
mentation editor for components.
The implementation of an entire project defines the implementation of all ele-
ments within that project.

In ASCET, it is possible to indicate a number of different implementation alter-
natives for complex model types. For the code generation, however, only one of
the indicated alternatives is activated for each instance.

Changing between the alternatives can be done in the implementation editor of
the specific element (e.g., on project level). Due to the hierarchic linking of the
implementations of a model, the implementations of all child elements are also
adapted.

ASCET-SE V6.4 — User Guide 49

ETAS Implementation Configuration

To edit a project or component implementation

1. In the project or component editor, select Edit —
Component — Implementation.

The implementation editor of the component or project opens.

@ Implementation Editor for: ControllerTest @
Implementation Element

Implementation

& Impl [DEFALLT]

| Local I Impl. Cast| Global |Setﬁngs|

Elements
Element Type Implementation
(& dT ST ident [0.0,2147.433]
| 1dieCon fﬁ IdleCon Impl
| FrocModel EC ProcModel Impl
|9 signalcony fﬁ SignalConv Impl
Eun T cont default [-oo, +00]
Eu_t T cont default [-oo, +00]
L |

2. Inthe "Elements" pane, double-click on one of the elements.
The implementation editor for that element opens.
This process can be repeated to access the implementation editor for any ele-
ment in the project or component. The above example only allows selecting a
standard implementation. However, it is also possible to define target-specific
implementation alternatives that can be selected.
To copy and paste element implementations

In the implementation editor of complex model elements, implementations of
basic model elements can be copied and pasted easily.

1. Inthe component/project implementation editor, right-click on
a basic element and select Copy Implementation To Buffer.

The complete implementation information of the selected ele-
ment is copied into a buffer.

2. Right-click on another basic element and select Paste
Implementation From Buffer.

The entire implementation information from the buffer is
assigned to the selected element.

4.2.1 Optimized Method Calls
For methods defined in classes, ASCET is able to handle multiple instances
using identical code but different data structures (see chapter 14.3.3 "Data
Structures and Initialization for Complex (User-Defined) Objects"). In these
cases, a pointer to the data structure is passed to the generated C function, the
so-called self-pointer. As an example, a respective method declaration has the
form:

sintl6 PIDT1 IMPL out (
const struct PIDT1 IMPL *self,
sintl6 in);

ASCET-SE V6.4 — User Guide 50

ETAS

Implementation Configuration

For classes using only one data structure (so-called single instances), ASCET
automatically optimizes the method call and the data elements are accessed
directly, e. g.

sintl6 PIDT1 IMPL out (sintl6 in);
This optimization is done by default.

If a user intends to call ASCET-generated methods from code created manu-
ally, however, it is not desirable to have the self-pointer optimization done by
the tool automatically, as the calling conventions for a method may change
unexpectedly due to model changes. For this purpose, ASCET offers the possi-
bility to deactivate the single method optimization, class-wise in the "Settings"
tab of the class implementation editor, and target-wise in the ASCET options
window, "Targets\ <your target>\Build" node..

Local Impl. Cast Global Settings

Memory Location of Instance Default e

Memory Segment Automatic ~

Hierarchical Code Generation for State Machines
Qutline Automatically Generated Methods for State Machines
Auto-Inline Private Methods (Smaller Code Size)

Generate Data Structures

(®) Generate Method Body
O Service Routine

(O Prototype Implementation
[Jeroduction code anly

(I:‘ Optimize method calls)

Additional Header Indudes

5 Build

&E [IPlace ArrayMatrix reference structure of Variables on the Stack ~

Experiment -
External Tools

Hardware

Integration

&E [CIPlace Array/Matrix reference structure of Parameters on the Stack

&E Function Name of memcpy | memcpy

Interfaces [&E [CJForce no self pointer optimization)
Modeling - -
B Targets EE Generate Method Body Use Component Settings -
] ANSI-C :
Bl & | & | system Defaults

Filename Templates Force no self pointer optimization:

Name Templates ~
EHOOKS By default, the "self pointer optimization” can be configured
E5910 class-wise in the implementation editor. With this option it is

possible to deactivate the optimization per target completely.

oK Cancel

If the target option Force no self pointer optimization is activated for a partic-
ular target, the class implementation option Optimize method calls is irrelevant
for all classes whose parent projects use that target.

In this case, the self pointer will always be generated, no matter if the class is
multiply instantiated or not.

ASCET-SE V6.4 — User Guide 51

ETAS Implementation Configuration

If the target option Force no self pointer optimization is deactivated for a par-
ticular target, the setting of Optimize method calls determines if the self
pointer is generated.

n NOTE

When calling ASCET-generated methods or using ASCET-generated variable
and parameter definitions from handcoded functions, you must observe the
data type definitions generated by ASCET carefully. It is not recommended to
use types other than the ones generated by ASCET. This is especially empha-
sized for the self pointer.

The function interfaces provided by the ASCET-generated code might change
in successor versions of the tool.

If a class will only be single instantiated in a model, a method interface that
does not use a self pointer can be attained by deactivating the target option
Force no self pointer optimization and activating the Optimize method calls
option.

4.2.2 User-Defined Service Routines
The code generator offers the possibility to implement class methods and pro-
cesses as user-defined service routines. The method body is then no longer
generated by ASCET, but must be provided by the user, for example, by adding
the code during the link process. This makes it possible, e.g., to implement
highly optimized methods in assembler code. In particular, service routines
have the following properties:

No method bodies are generated for class methods implemented as ser-
vice routines. The functionality modeled in ASCET (as block diagram,
ESDL or C code) will be ignored for the implementation experiment and/
or microcontroller code generation. The user must provide the respec-
tive code in other sources. However, ASCET still offers the possibility to
specify method contents as they could be needed in simulation experi-
ments executed in ASCET or for physical code generation for microcon-
t