

User Guide

ETAS ASCET V6.4

AUTOSAR

Copyright
The data in this document may not be altered or amended without special notifi-
cation from ETA S GmbH. ETAS GmbH undertakes no further obligation in relation
to this document. The software described in it can only be used if the customer is
in possession of a general license agreement or single license. Using and copying
is only allowed in concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2024 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands be-
longing to the respective owners.

ETAS ASCET V6.4 | AUTOSAR User Guide R09 EN | 06.2024

3 | Contents

ETAS ASCET V6.4 | AUTOSAR User Guide

Contents
1 Introduction ... 7

1.1 Intended Use .. 7

1.2 Target Group .. 7

1.3 Classification of Safety Messages ... 7

1.4 Safety Information .. 8

1.5 Data Protection ... 8

1.6 Data and Information Security ... 9

1.6.1 Data and Storage Locations ... 9

1.6.2 Technical and Organizational Measures .. 10

2 AUTOSAR Overview .. 11

2.1 AUTOSAR Basic Approach.. 11

2.2 What is an AUTOSAR Authoring Tool? ... 12

2.3 What is a Runtime Environment? .. 14

2.4 What is a Behavior Modeling Tool? ... 15

3 Developing Software Components in ASCET ... 16

3.1 Configuring ASCET ... 16

3.1.1 Configuring the Creation of AUTOSAR Components ..17

3.1.2 Code Generation Settings for AUTOSAR ..17

3.1.3 Settings for the AUTOSAR XML Output .. 21

3.1.4 Code Generation ..22

3.2 Approaches for Creating Software Components .. 24

3.2.1 Top-Down Approach ... 24

3.2.2 Bottom-Up Approach ... 28

3.3 Working with the RTE Generator .. 28

3.3.1 Contract Phase .. 29

3.3.2 RTE Phase ... 29

4 Data Types ... 31

4.1 Application Data Types .. 31

4.2 Implementation Data Types ... 31

4.3 Base Types ... 32

4.4 Type Mappings .. 32

4.5 Platform Data Types ... 33

4.6 Primitive Data Types .. 34

4.7 Primitive Data Types With Semantics ... 40

4.7.1 Std_ReturnType ...43

4.8 Complex Data Types ... 44

4.8.1 Record Data Types .. 44

4.8.2 Array Data Types ... 52

4 | Contents

ETAS ASCET V6.4 | AUTOSAR User Guide

4.8.3 Matrix Data Types .. 57

5 Interfaces .. 63

5.1 Sender-Receiver .. 63

5.2 Mode Switch ...67

5.3 Client-Server .. 70

5.4 Calibration ... 77

5.5 NVData .. 80

5.6 Implementations of Interfaces ..83

6 Software Component Types .. 85

6.1 Ports .. 85

6.1.1 Provided Ports .. 86

6.1.2 Required Ports ... 96

7 Internal Behavior ... 105

7.1 Events .. 106

7.1.1 Timing Events .. 106

7.1.2 Operation-Invoked Events .. 108

7.1.3 Mode-Switch Events ... 109

7.2 Runnable Entities ... 110

7.3 Responding to Timing Events ... 113

7.4 Sending to a Port .. 114

7.4.1 Explicit Communication ... 114

7.4.2 Implicit Communication ... 116

7.5 Receiving from a Port .. 118

7.5.1 Explicit Data Read Access .. 119

7.5.2 Implicit Data Read Access ... 120

7.6 Queued Communication ... 122

7.7 Responding to a Server Request on a Port ... 125

7.7.1 Concurrent Invocation of Servers ... 126

7.8 Making a Client Request on a Port .. 128

7.9 Interrunnable Variables .. 130

7.9.1 Scalar Interrunnable Variables ... 130

7.9.2 Complex Interrunnable Variables .. 132

7.9.3 Read and Write Access ... 145

7.10 Exclusive Areas .. 153

7.10.1 Configuration .. 153

7.10.2 Usage ... 154

7.11 Variant Handling .. 156

7.11.1 Deriving the Conditions from the Model ... 157

7.11.2 System Constants ... 158

7.11.3 Variation Points for Interrunnable Variables .. 160

5 | Contents

ETAS ASCET V6.4 | AUTOSAR User Guide

7.11.4 Variation Points for Data Access ... 161

7.11.5 Variation Point Proxies... 162

7.11.6 Variants .. 163

8 Modes ... 165

8.1 Defining Modes .. 165

8.2 Mode Communication ... 166

8.3 Using Modes ... 167

8.3.1 Software Component Initialization and Finalization ... 168

8.3.2 Triggering a Runnable Entity on a Mode-Switch ... 168

8.3.3 Disabling Modes ... 170

9 Implementing Software Components ... 172

9.1 Basic Concepts .. 172

9.1.1 Namespace ... 172

9.1.2 Runnable Naming Convention ... 172

9.1.3 API Naming Convention ... 172

9.1.4 API Parameter Passing Mechanisms ... 173

9.2 Application Source Code ... 174

9.2.1 Application Header Files .. 174

9.2.2 Entry Point Signature for Runnable Entities .. 175

9.3 Sender-Receiver Communication ... 176

9.3.1 Sending to a Port: Explicit Communication ...177

9.3.2 Sending to a Port: Explicit Communication with Status177

9.3.3 Sending to a Port: Implicit Communication .. 180

9.3.4 Receiving from a Port: Explicit Communication... 180

9.3.5 Receiving from a Port: Explicit Communication with Status 181

9.3.6 Receiving from a Port: Implicit Communication ... 182

9.4 Client-Server Communication ... 183

9.4.1 Implementing a Server Operation .. 183

9.4.2 Making a Client Request on a Port ... 184

9.5 Message, NV Variable, and Parameter Mapping .. 185

9.5.1 Accessing Calibration Parameters .. 185

9.5.2 Accessing ASCET Messages .. 190

9.5.3 Accessing Non-Volatile Variables .. 196

9.5.4 Automatic Mapping .. 201

9.5.5 Mapping Conversion ... 204

9.6 Concurrency Control with Exclusive Areas ... 205

9.6.1 Sequences of a Runnable Assigned to an Exclusive Area 205

9.7 Description of Internal Data Structures.. 207

9.7.1 Measurement and Calibration .. 207

9.7.2 Multi-Instance Software Components .. 208

10 Contact Information ... 210

Glossary ... 211

6 | Contents

ETAS ASCET V6.4 | AUTOSAR User Guide

Figures .. 213

Code Listings .. 217

Tables ... 221

Index ... 222

7 | Introduction

ETAS ASCET V6.4 | AUTOSAR User Guide

1 Introduction
In this chapter, you can find information about the intended use, the addressed
target group, and information about safety and privacy related topics.

Please adhere to the ETAS Safety Advice (accessible via Help > Product Dis-
claimer) and to the safety information given in the user documentation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information.

1.1 Intended Use
The ASCET tools support model-based software development. In model-based
development, you construct an executable specification – the model – of your
system and establish its properties through simulation and testing in early stages
of development. When a model behaves as required, it can be converted auto-
matically to production-quality code.

ASCET-SE is the ASCET tool for generating software for embedded microcontrol-
lers, or AUTOSAR XML code, from an ASCET-MD model. ASCET-SE uses the pro-
ject to hold configuration information.

1.2 Target Group
This manual addresses qualified personnel working in the fields of automobile
control unit development and calibration. Specialized knowledge in the areas of
measurement and control unit technology is required, as well as knowledge of
ASCET and (at least) basic knowledge of AUTOSAR.

Any user who is not familiar with ASCET should read the ASCET Getting Started
manual before reading the AUTOSAR User Guide.

Any user who is not familiar with AUTOSAR should learn the relevant concepts be-
fore using the AUTOSAR features of ASCET.

1.3 Classification of Safety Messages
Safety messages warn of dangers that can lead to personal injury or damage to
property:

 DANGER

DANGER indicates a hazardous situation that, if not avoided, will result in death
or serious injury.

 WARNING

WARNING indicates a hazardous situation that, if not avoided, could result in
death or serious injury.

8 | Introduction

ETAS ASCET V6.4 | AUTOSAR User Guide

 CAUTION

CAUTION indicates a hazardous situation that, if not avoided, could result in
minor or moderate injury.

NOTICE

NOTICE indicates a situation that, if not avoided, could result in damage to
property.

1.4 Safety Information
Observe the following safety information when using the NVRAM capabilities of
the ASCET-RP or ASCET-SE targets to avoid injury to yourself and others as well
as damage to property:

 WARNING

Harm or property damage due to unpredictable behavior of vehicle or test
bench

Wrongly initialized NVRAM variables can lead to unpredictable behavior of a ve-
hicle or a test bench. This behavior can cause harm or property damage.

ASCET projects that use the NVRAM possibilities of AUTOSAR expect a user-
defined initialization that checks whether all NV variables are valid for the cur-
rent project, both individually and in combination with other NV variables. If this
is not the case, all NV variables have to be initialized with their (reasonable) de-
fault values.

Due to the NVRAM saving concept, this is absolutely necessary when projects
are used in environments where any harm to people and equipment can hap-
pen when unsuitable initialization values are used (e.g., in-vehicle-use or at
test benches).

Adhere to the ETAS Safety Advice and the safety information given in the online
help and user guides. You can open the ETAS Safety Advice from the main ASCET
window with Help > Product Disclaimer. A PDF version is available on the installa-
tion medium: Documentation\ETAS Safety Advice.pdf

In addition, take all information on environmental conditions into consideration
before setup and operation (see the documentation of your computer, hardware,
etc.).

Further safety advice for this ETAS product is available in the ASCET safety man-
ual, available at ETAS upon request.

1.5 Data Protection
If the product contains functions that process personal data, legal requirements
of data protection and data privacy laws shall be complied with by the customer.

9 | Introduction

ETAS ASCET V6.4 | AUTOSAR User Guide

As the data controller, the customer usually designs subsequent processing.
Therefore, he must check if the protective measures are sufficient.

1.6 Data and Information Security
To securely handle data in the context of this product, see the next sections
about data and storage locations as well as technical and organizational
measures.

1.6.1 Data and Storage Locations
The following sections give information about data and their respective storage
locations for various use cases.

1.6.1.1 License Management
When using the ETAS License Manager in combination with user-based licenses
that are managed on the FNP license server within the customer's network, the
following data are stored for license management purposes:

Data

− Communication data: IP address

− User data: Windows user ID

Storage location

− FNP license server log files on the customer network

When using the ETAS License Manager in combination with host-based licenses
that are provided as FNE machine-based licenses, the following data are stored
for license management purposes:

Data

− Activation data: Activation ID

Used only for license activation, but not continuously during license usage

Storage location

− FNE trusted storage

C:\ProgramData\ETAS\FlexNet\fne\license\ts

1.6.1.2 Problem Report
When an error occurs, ASCET offers to send an error report to ETAS for trouble-
shooting. ETAS uses the personal information to have a contact person in case of
system errors.

The problem report may contain the following personal data or data category:

Data

− Communication data: IP address

• User data: Windows user ID, user name

10 | Introduction

ETAS ASCET V6.4 | AUTOSAR User Guide

Storage location:

− EtasLogFiles<index number>.zip in the ETAS-specific log files direc-
tory

Additionally to the problem information that is entered by the users themselves,
ASCET collects the available product-related log files in a zip archive to support
the bug fixing process at ETAS. The zip file is named according to the pattern
EtasLogFiles<index number>.zip. See also chapter "Support Function for
Feedback to ETAS in Case of Errors" in the ASCET Getting Started manual.

All ETAS-related log files in the ETAS-specific log files directory and the zip ar-
chives created by the Problem Report feature can be removed after closing all
ETAS applications if they are no longer needed.

1.6.2 Technical and Organizational Measures
We recommend that your IT department takes appropriate technical and organi-
zational measures, such as classic theft protection and access protection to
hardware and software.

11 | AUTOSAR Overview

ETAS ASCET V6.4 | AUTOSAR User Guide

2 AUTOSAR Overview
Today, special effort is needed when integrating software components from dif-
ferent suppliers in a vehicle project comprising networks, electronic control units
(ECUs), and dissimilar software architectures. While clearly limiting the reusability
of automotive embedded software in different projects, this effort also calls for
extra work in order to provide the required fully functional, tested, and qualified
software.

By standardizing, inter alia, basic system functions and functional interfaces, the
AUTOSAR partnership aims to simplify the joint development of software for au-
tomotive electronics, reduce its costs and time-to-market, enhance its quality,
and provides mechanisms required for the design of safety relevant systems.

To reach these goals, AUTOSAR defines an architecture for automotive embed-
ded software. It provides for the easy reuse, exchange, scaling, and integration of
those ECU-independent that implement the functions of the respective applica-
tion software components

The next sections briefly describe the AUTOSAR process for the development of
application software components. For more detailed information, refer to the
AUTOSAR documents at the AUTOSAR website: www.autosar.org/.

2.1 AUTOSAR Basic Approach
Application software is the name given in AUTOSAR to vehicle functions. Each ap-
plication is decomposed into one or more software components (SWCs), which
are designed to be both CPU- and location-neutral. An AUTOSAR application soft-
ware component can be mapped to any available ECU during system configura-
tion.

The abstraction of the SWC environment is called the virtual function bus (VFB).
In each real AUTOSAR ECU, the VFB is mapped by a specific, ECU-dependent im-
plementation of the platform software. The AUTOSAR platform software is split
into two major areas of functionality: the runtime environment (RTE) and the
basic software (BSW).

The BSW provides communications, I/O, and other functionality that all software
components are likely to require, e.g., diagnostics and error reporting, or non-vol-
atile memory management.

Application SWCs have no direct access to the BSW. This means that compo-
nents cannot, for example, directly access operating system or communication
services. The runtime environment provides the interface between software
components, BSW modules, and operating systems (OS). Concerning the inter-
connection of SWCs, the RTE acts like a telephone switchboard. This is similarly
true of components that reside either on single ECUs or on networked ECUs in-
terconnected by vehicle buses.

In AUTOSAR, the OS calls the runnable entities of the SWCs through the RTE. RTE
and OS are the key modules of the basic software with respect to controlling ap-
plication software execution. ETAS offers the RTA-RTE AUTOSAR Runtime Envi-
ronment and the RTA-OS AUTOSAR Operating System.

https://www.autosar.org/

12 | AUTOSAR Overview

ETAS ASCET V6.4 | AUTOSAR User Guide

Based on their AUTOSAR interfaces, basic software modules from third-party
suppliers can be seamlessly integrated with RTA-RTE and RTA-OS.

Figure 1: AUTOSAR software component (SWC) communications are repre-
sented by a virtual function bus (VFB) implemented using the runtime environ-
ment (RTE) and basic software.

2.2 What is an AUTOSAR Authoring Tool?
An AUTOSAR authoring tool is a software tool that supports interpreting, pro-
cessing and creating of AUTOSAR descriptions:

− Software Component descriptions for the following items:

• the operations and data elements that the software component pro-
vides and requires

• the requirements which the software component has on the infrastruc-
ture

ECU

descriptions

System

constraint

description

Tool support deployment of SW

components

Mapping

ECU I

AUTOSAR

SWC 1

AUTOSAR

SWC 2

RTE

Basic Software

ECU II

AUTOSAR

SWC 3

RTE

Basic Software

...

Gateway

ECU III

AUTOSAR

SWC n

RTE

Basic Software

Virtual Function Bus

AUTOSAR

SWC 1

SWC

description

AUTOSAR

SWC 2

SWC

description

AUTOSAR

SWC 3

SWC

description

AUTOSAR

SWC n

SWC

description

13 | AUTOSAR Overview

ETAS ASCET V6.4 | AUTOSAR User Guide

• the resources needed by the software component (memory, CPU-time,
etc.)

• information regarding the specific implementation of the software com-
ponent

− System constraint descriptions for all system information and the infor-
mation that must be agreed between different ECUs

− ECU descriptions for the resources and configuration of the single ECUs

AUTOSAR SWCs are generic application-level components that are designed to
be independent of both CPU and location in the vehicle network. An SWC can be
mapped to any available ECU during system configuration, subject to constraints
imposed by the system designer. An AUTOSAR software component is therefore
the atomic unit of distribution in an AUTOSAR system; it must be mapped com-
pletely onto one ECU.

Before an SWC can be created, its component type (SWC type) must be defined.
The SWC type identifies fixed characteristics of an SWC, i.e. port names, how
ports are typed by interfaces, how the SWC behaves, etc. The SWC type is
named, and the name must be unique within the system. Thus, an SWC consists
of the following components:

− a complete formal SWC description that indicates how the infrastructure of
the component must be configured,

− an SWC implementation that contains the functionality (in the form of
C code)

To allow an SWC to be used, it needs to be instantiated at configuration time. The
distinction between type and instance is analogous to types and variables in con-
ventional programming languages. You define an application-wide unique type
name (SWC type), and declare one uniquely named variable of that type (one or
more SWC instance).

In the VFB model, software components interact through ports, which are typed
by interfaces. The interface controls what can be communicated, as well as the
semantics of communication. The port provides the SWC access to the interface.
The combination of port and port interface is named AUTOSAR interface.

A runnable entity is a piece of code in an SWC that is triggered by the RTE (see
section 2.3, What is a Runtime Environment?, on page 14) at runtime.

A software component comprises one or more runnable entities the RTE can ac-
cess at runtime. Runnable entities are triggered, among others, by the following
events:

− Timing events represent some periodic scheduling event, e.g., a periodic
timer tick. The runnable entity provides the entry point for regular execu-
tion.

− Events triggered by the reception of data at an Rport (DataReceive
events).

AUTOSAR runnable entities can be sorted in several categories. ASCET supports
runnable entities of category 1.

14 | AUTOSAR Overview

ETAS ASCET V6.4 | AUTOSAR User Guide

In order to be executed, runnable entities must be assigned to the tasks of an
AUTOSAR operating system.

AUTOSAR elements reference each other in a standardized XML file format, the
so-called ARXML format. The ARXML format can slightly differ depending on the
AUTOSAR release version. AUTOSAR authoring tools are required to be able to in-
terpret, create, or modify ARXML descriptions.

 NOTE

By default, the ARXML examples provided in this user guide are generated us-
ing the AUTOSAR release version 4.0.2.

Exceptions are labeled explicitly.

2.3 What is a Runtime Environment?
The VFB provides the abstraction that allows components to be reusable. The
runtime environment (RTE) provides the mechanisms required to make the VFB
abstraction work at runtime. The RTE is, therefore, in the simplest case, an imple-
mentation of the VFB. However, the RTE must provide the necessary interfacing
and infrastructure to allow software components to

A. be implemented without reference to an ECU (the VFB model); and

B. be integrated with the ECU and the wider vehicle network once this is
known (the Systems Integration model) without changing the application
software itself.

More specifically, the RTE must do the following:

− Provide a communication infrastructure for software components.

This includes both communication between software components on the
same ECU (intra-ECU) and communication between software components
on different ECUs (inter-ECU).

− Arrange for real-time scheduling of software components.

This typically means that the runnable entities of the SWCs are mapped,
according to time constraints specified at design time, onto tasks provided
by an operating system.

Application software components have no direct access to the basic software
below the abstraction implemented by the RTE. This means that components
cannot, for example, directly access operating system or communication ser-
vices. So, the RTE must present an abstraction over such services. It is essential
that this abstraction remains unchanged, irrespective of the software compo-
nents’ location. All interaction between software components therefore happens
through standardized RTE interface calls.

In addition, the RTE is used for the specific realization of a previously specified ar-
chitecture consisting of SWCs on one or more ECUs. To make the RTE implemen-
tation efficient, the RTE implementation required for the architecture is deter-
mined at build time for each ECU. The standardized RTE interfaces are automati-
cally implemented by an RTE generation tool that makes sure that the interface

15 | AUTOSAR Overview

ETAS ASCET V6.4 | AUTOSAR User Guide

behaves in the correct way for the specified component interaction and the
specified component allocation.

For example, if two software components reside on the same ECU, they can use
internal ECU communication, but if one is moved to a different ECU, communica-
tion now needs to occur across the vehicle network.

From the application software component perspective, the generated RTE there-
fore encapsulates the differences in the basic software of the various ECUs by:

− Presenting a consistent interface to the software components so they can
be reused – they can be designed and written once but used multiple
times.

− Binding that interface onto the underlying AUTOSAR basic software imple-
mented in the VFB design abstraction.

2.4 What is a Behavior Modeling Tool?
An AUTOSAR Behavior Modeling Tool is a software tool that allows defining and
implementing the functional behavior of AUTOSAR-compliant vehicle functions
using a behavior modeling language.

A behavior modeling language is a notation primarily used to capture a functional
behavior specification or design of a function or system. Usually, a functional be-
havior modeling language has a graphical notation and is regarded to be executa-
ble, i.e. its semantics is sufficiently precise to execute functional behavior models
by means of a simulation engine. Furthermore, the precision in its semantics then
allows the transformation of the functional model into a source code in a pro-
gramming language like C.

When ASCET is used as a behavioral modeling tool, the internal behavior of the
application software components is specified by means of the block diagram edi-
tor. The internal behavior can consist of variables, parameters, class instances
and modules. AUTOSAR runnable entities can be seamlessly implemented by
means of sequences of methods calls and processes.

Existing ASCET models can be easily adapted to AUTOSAR because many
AUTOSAR concepts can be mapped to interface specifications in ASCET in a simi-
lar form. On the whole, it suffices to rework the interface of the respective appli-
cation to make an existing software module AUTOSAR-compliant. In terms of
time, the expenditure of reworking an existing application is relatively minor.

16 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

3 Developing Software Components in ASCET
The following products are required to use the AUTOSAR features of the current
ASCET version:

− ASCET-MD

− ASCET-SE

− RTA-RTE (not part of the ASCET product family, see
www.etas.com/en/products/rta_rte.php for further information)

 NOTE

ASCET V6.4 supports the AUTOSAR releases R4.0.2, R4.0.3, R4.2.2, R4.3.0,
R4.3.1.

Sample Database
The database AUTOSAR_UG_Tutorial1 is provided with the ASCET installation.
The examples depicted in this document are modeled in the Solutions folder.
The corresponding ASCET-generated code can be found on the Windows file
system, in the subdirectory generated code_Solutions contained in the da-
tabase.

Finding Out More
This user guide is available electronically and can be viewed on the screen at any
time. Using the index, full-text search, and hypertext links, you can find refer-
ences fast and conveniently.

More detailed information on the AUTOSAR features of ASCET is given in the
ASCET online help, sections "Software Component Editor" and "AUTOSAR Inter-
faces".

The following related documents are installed with the respective software:

− ASCET Getting Started manual (ASCET V6.4 Getting Started.pdf)

− ASCET-SE User Guide (ASCET-SE V6.4 Users Guide.pdf)

− RTA-RTE User Guide and other RTA-RTE documentation (available via the
Windows Start menu, E > ETAS RTA-RTE<x.y> > <document>)

These documents are also available in the Download Center of the ETAS website.

3.1 Configuring ASCET
This section briefly describes how to configure ASCET for developing AUTOSAR
software components. For a more detailed description on how to work with
ASCET, please refer to the ASCET Getting Started manual and the ASCET online
help.

1 located in the Database folder of the ASCET data path (selected during installation)

https://www.etas.com/en/products/rta_rte.php
https://www.etas.com/en/products/download_center.php

17 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

3.1.1 Configuring the Creation of AUTOSAR Components
ASCET offers the possibility to configure user profiles. In the context of AU-
TOSAR, ASCET provides a configuration option for the creation of AUTOSAR com-
ponents.

To enable the creation of AUTOSAR components:

1. In the ASCET component manager, select Tools > Options.

The "Options" dialog window opens.

2. In the "Modeling" node, make sure that the Enable Creation of AUTOSAR
components option is activated.

3. Click OK.

Figure 2: Enable creation of AUTOSAR components

3.1.2 Code Generation Settings for AUTOSAR
A project is the main unit in ASCET representing a complete software system.
Formulas, implementation types etc. are defined within the context of a project.

To create a project

1. In the component manager, select Insert > Project or click the Insert
Project button to add a new project.

2. Name the project ARProject.

3. Select Edit > Open Component or double-click the project.

The project editor opens.

18 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

To set the code generation settings for AUTOSAR

1. In the project editor, select File > Properties or click the Project Prop-
erties button.

The "Project Properties" dialog window opens.

2. In the "Build" node, select the following options:

• Target: ANSI-C

 NOTE

Since ASCET V6.3, the ANSI-C target is the only target that can be
used for AUTOSAR code generation.

• Operating System: RTE-AUTOSAR x.y.z

Figure 3: Project settings for AUTOSAR projects

 NOTE

ASCET V6.4 supports the AUTOSAR releases 4.0.2, 4.0.3, R4.2.2, R4.3.0, R4.3.1.

3. If your SWC directly or indirectly contains a matrix, set up the ANSI-C target
as follows:

i. Follow the Edit Target Settings link.

The ASCET options window opens in the “Targets\ANSI-C\Build” node.

19 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

ii. In that node, set the “Number of dimensions for fixed matrices” option to
Two-dimensional.

Figure 4: Matrices in AUTOSAR: target settings for the ANSI-C target

iii. Close the ASCET options window with OK.

4. In the "Code Generation" node, select the MISRA compliant casting
strategy from the Casting combo box.

Other casting strategies are not recommended.

20 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 5: MISRA compliant casting for AUTOSAR projects

To define a memory sections definition file
When generating code in an AUTOSAR project, ASCET loads the memory sections
from an XML configuration file. This file is defined in the project properties, "OS
Configuration" node; see Figure 6.

1. Go to the "OS Configuration" node of the "Project Properties" dialog win-
dow.

2. In the "Memory Sections Configuration File" field, enter or select (via the
button) path and name of the XML file that contains your memory sections
definition.

21 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 6: OS Configuration settings for an AUTOSAR R4.* project

ASCET provides a sample file, memorySections_Autosar4.xml
(AUTOSAR R4.*). This file is preselected.

3.1.3 Settings for the AUTOSAR XML Output
The "Project Properties" window offers a possibility to configure the AUTOSAR
XML output, i.e. to set package names or short names, to specify output files, etc.

To configure the AUTOSAR XML (ARXML) output
1. In the "Project Properties" dialog window, go to the "OS Configuration"

node.

2. In the "AUTOSAR XML Configuration File" field, enter or select the configu-
ration file.

By default, each AUTOSAR Rx.y version uses a separate configuration file. It
is recommended that you do not change this behavior because different
AUTOSAR versions allow different ARXML settings.

3. Click the Edit button to open the "ARXML Configuration Settings" dialog
window.

This window provides a set of options to configure the AUTOSAR XML gen-
eration. The options are grouped in several categories; see Table 1.

22 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

Category Content

Package Templates Each package template allows the specification of an
ARXML package name following the scheme:
/<Root-Package>/<Sub-Package>/.../<Short-

Name>

Specific template parameters can be used.

Short Name Templates Each short name template allows the specification of
an ARXML short name.
Specific template parameters can be used.

Filename Templates Each filename template allows the specification of a
filename where the associated package will be gener-
ated into.
Specific template parameters can be used.

Miscellaneous Each miscellaneous template or option represents an
additional option somehow relevant for the ARXML
generation.
Among these options are the following:
• Generate System Constants, which is required for

variant handling (see section 7.11 on page 156).
▪ Use Imported ARXML Info, which is used to deter-

mine the way ASCET uses the usage information
from imported ARXML files (see section 3.2.1.2 on
page 25).

The miscellaneous options and templates are de-
scribed in the ASCET online help.

Table 1: Categories for the configuration of generated ARXML code. The con-
tent of the categories depends on the selected AUTOSAR version.

4. Adjust the options in the different categories according to your needs.

The descriptions in the "ARXML Configuration Settings" dialog window con-
tain detailed information on each option.

5. Click OK to confirm the settings and close the "ARXML Configuration Set-
tings" dialog window.

 NOTE

The changes in the "ARXML Configuration Settings" window are kept
even if you leave the "Project Properties" window with Cancel.

3.1.4 Code Generation
An AUTOSAR project shall contain an AUTOSAR software component and re-
quires the project settings described in the previous section. When generating
code for the project, ASCET creates the AUTOSAR XML description files
(*.arxml files) and the corresponding C code. The generated C code uses the
AUTOSAR API macros, which are implemented in the RTE.

23 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

To create an AUTOSAR software component
1. In the component manager, select Insert > AUTOSAR > Software Compo-

nent Block Diagram or Software Component ESDL.

2. Name the software component Swc.

To insert an AUTOSAR software component in a project

1. Open the project ARProject in the project editor.

2. In the project editor, select Insert > Component.

3. The "Select Item…" window opens.

4. In the „Database“ or "Workspace" field of the "Select Item…" window, select
the component Swc.

Figure 7: Select item Swc in the project ARProject

5. Click OK to close the "Select Item…" window and insert Swc into the project.

The "Properties for Complex Element" window opens. You can enter a name
and a comment for the Swc instance.

6. Click OK to use the default name and comment.

To generate code in a project

1. In the project editor, first select Build > Touch > Recursive, then select
File > Export > Generated Code > Recursive.

The "Path to export Items" window opens. The ASCET code generation di-
rectory, Cgen, is preselected.

 NOTE

The CGen directory in the ASCET installation is a temporary directory
that contains intermediate results from the code generator. It is not rec-
ommended to store code in this directory.

2. Select a destination folder to export the generated code.

You may use, e.g., a subdirectory of the current ASCET database
C:\ETASData\ASCET6.4\Database\AUTOSAR_UG_Tutorial.

For the ARProject containing the empty AUTOSAR software component
Swc, the following files are generated.

24 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 8: ASCET-generated AUTOSAR code for the project ARProject
(*.arxml, *.c, and *.h files) in a non-default directory; AUTOSAR R4.2.2

3.2 Approaches for Creating Software Components
The development of AUTOSAR software components in ASCET can be done using
two approaches: the top-down approach and the bottom-up approach.

In the top-down approach, the software architecture is described in an authoring
tool. In this case, ASCET is used as a behavior modeling tool for the implementa-
tion of the software components.

In the bottom-up approach, ASCET is not only used as a behavior modeling tool,
but as an authoring tool for the description of the AUTOSAR software compo-
nents as well.

3.2.1 Top-Down Approach
In the top-down approach, the creation of an AUTOSAR software component is
done in two steps:

A. In the first step, the interface of the component is defined. The interface is
specified in an authoring tool and exchanged via ARXML. The ARXML files
are then given to a component API generator, which transforms the inter-
face description into a header file. As a rule, the component API generator
is the contract phase part of an RTE generator (see section 3.3.1, Contract
Phase, on page 29).

B. In a second step, the ARXML files are imported in ASCET, and the applica-
tion software component developer provides the internal behavior in terms
of C files respecting and using the interfaces as defined in the header file.
Now the *.h and the *.c files of the software components are defined and
can be compiled.

25 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

In the top-down approach, a key feature is the ARXML importer, which is de-
scribed in the next subsections.

3.2.1.1 ARXML Importer
The ARXML description of a software component can be imported into ASCET
with the "AUTOSAR to ASCET Importer". This tool transforms the ARXML file(s)
containing all necessary information to describe a software component (i.e. AU-
TOSAR types, interfaces, software component type) into the proprietary ASCET
XML format, the AMD format. Afterwards, ASCET imports the AMD files into the
currently open database or workspace.

The AUTOSAR to ASCET Importer is started from the component manager, with
the Tools > AUTOSAR to ASCET Converter menu option. See the AUTOSAR to
ASCET Importer User Guide for details.

This is especially useful if the ARXML files contain multiple software components,
and only one of them shall be imported.

In addition, ARXML file(s) can be imported using the standard import menu op-
tion.

To import an ARXML file into ASCET

1. In the component manager, select File > Import.

The "Select Import File" dialog opens.

2. Select the ARXML file(s) to be imported and click OK.

ASCET imports the selected files in the currently open database or work-
space.

3.2.1.2 Usage Information from Imported ARXML Files
The ARXML files contain usage information for the interface elements in the
runnables. Usage information means, e.g., access information for data elements
and operation usage information.

Access information for a data element is stored using one of the following key-
words, with additional information on the port and the data element name.

DATA-READ-ACCESS, DATA-RECEIVE-POINT-BY-ARGUMENT,
DATA-RECEIVE-POINT-BY-VALUE, DATA-SEND-POINT,
DATA-WRITE-ACCESS, PARAMETER-ACCESS

Operation usage information is stored using one of the following keywords, with
additional information on the port and the operation name.

ASYNCHRONOUS-SERVER-CALL-RESULT-POINT, ASYNCHRONOUS-SERVER-
CALL-POINT, SYNCHRONOUS-SERVER-CALL-POINT

Prior to V6.4.7, this information was ignored by the ARXML importer. Beginning
with V6.4.7, this information is imported into ASCET. You can use the Use Im-
ported ARXML Info option to determine the way ASCET uses the usage infor-
mation from the ARXML file; see Table 2.

26 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

Use Imported ARXML Info
value

Action

Ignore Usage information from the ARXML file is ignored.

Match Usage information from the ARXML file is com-
pared with access information derived from the
model.

DeriveAndMatch Usage information from the ARXML file decides
about access semantics prior to comparing it to
the information derived from the model.

Table 2: Possible settings for the Use Imported ARXML Info ARXML configura-
tion option

If you set the ARXML configuration option Use Imported ARXML Info to Match,
usage information from the imported ARXML files is compared on a per-runnable
basis with usage information derived from the model.

If you set Use Imported ARXML Info to DeriveAndMatch, the ARXML usage in-
formation is used to determine the access semantics, and an information mes-
sage IMdl533 is issued. The result is then compared in the same way as for
Match.

If Use Imported ARXML Info is set to Match or DeriveAndMatch, and Generate
System Constants is activated, too, usage conditions from the imported ARXML
files are compared with usage conditions derived from the model.

If no match is detected, the following happens:

− If data access information is found in the ARXML usage information, but the
corresponding information in the model-derived usage information is dif-
ferent, or completely missing, a warning WIle533 is issued.

− If operation usage information is found in the ARXML usage information,
but the corresponding information in the model-derived usage information
is different, or completely missing, a warning WIle534 is issued.

− If data access information is found in the model-derived usage information,
but the corresponding information in the ARXML usage information is dif-
ferent, an error MIle533 is issued.

− If operation usage information is found in the model-derived usage infor-
mation, but the corresponding information in the ARXML usage information
is different, an error MIle534 is issued.

− If a usage condition is found in the ARXML file, but the corresponding usage
condition derived from the model is different, a warning WIle5351 is is-
sued.

− If a usage condition is completely missing either in the imported ARXML file
or in the model-derived information, TRUE is used instead, i.e. the element
is used unconditionally.

− If no usage information was imported from the ARXML file, but Use Im-
ported ARXML Info is set to Match or DeriveAndMatch, an error
MIle5331 or MIle5341 is issued.

27 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

3.2.1.3 Using the Attribute UUID in the ARXML Import
UUIDs (Universally Unique Identifiers) are optional fields in the ARXML specifica-
tion, and most authoring tools support them. ASCET also supports UUIDs in the
AMD format, and this enables ASCET to be easily integrated in AUTOSAR tool-
chains. At present, the ASCET-generated ARXML provides a UUID for those ele-
ments that were imported with this attribute; otherwise, the attribute is empty.

UUIDs are mainly used for the identification of existing elements in the ASCET
database or workspace when importing ARXML files. The use of the UUID attrib-
ute needs to be explicitly enabled.

To use UUIDs for identification

1. In the component manager, select Tools > Options.

The ASCET options dialog window opens.

2. Go to the "Interfaces\Import" node.

3. Enable the option Use UUIDs for Identification.

4. Click OK to close the ASCET options window and accept the setting.

The Use UUIDs for Identification option is also available in the "Select Im-
port File" window, see Figure 9.

28 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 9: Using UUIDs to identify components on import

3.2.2 Bottom-Up Approach
For single application software components, ASCET can be used as authoring
tool and behavior modeling tool. In the bottom-up approach, the AUTOSAR mod-
eling elements supported in ASCET V6.4, i.e. Mode Group, Interface2, Software
Component, are created and maintained in the ASCET database/workspace.

See the ASCET online help for details on how to create and specify SWC, inter-
faces2, and mode groups.

3.3 Working with the RTE Generator
The separation of the development and integration phases in AUTOSAR is re-
flected in a two-phase software component development process:

A. Software Component Development: the specification, design, and imple-
mentation of software components

2 Sender-receiver, Client-server, Parameter (named Calibration Interface in ASCET), NVData

29 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

B. Software Component Deployment: the allocation of components to ECUs
and the integration of components with the basic software on the ECU

The two phases of operation allow for initial software component configurations
to be made and integrated onto the VFB (through some auxiliary design and de-
velopment process) and then the RTE interface to be generated so that the soft-
ware components can be implemented before the prototypes are defined and
their particular allocations onto an ECU are known.

The phased development process means that some time can pass between the
development of a component type and the allocation of its component proto-
types to an ECU. Indeed, a component may be developed once and re-used multi-
ple times over many generations of vehicles. Furthermore, the component may be
supplied to an integrator in binary form only, but must be integrated to an ECU
with other components that have not yet been written.

The RTE generator supports the phased process by allowing the interface to the
RTE to be generated in advance of full knowledge of component prototype/ECU
allocation. Given a software component description, the RTE generator has suffi-
cient information to generate the interface definition files necessary for engi-
neers to start developing software components. The interface defines the con-
tract between the RTE and the component – what that component must provide
if future integration work is to happen easily. This is known as contract phase.

When the system is integrated, and the mapping of software components to
ECUs is known, the RTE itself can be generated. However, we now know how
many instances of a software component exist, where runnable entities are exe-
cuting, which communication is local to an ECU and which must be routed across
the network, etc. The RTE generator can use this information to re-generate the
interface definition files to include optimizations based on this additional context.
This is known as RTE phase.

The following sections discuss the Contract and RTE phases in more detail.

3.3.1 Contract Phase
In the contract phase, the RTE generator produces header files to be used in the
components under implementation. The header files define the contract be-
tween the component and the system as a whole and are suitable for both bi-
nary-code and source-code components. When running in the contract phase,
the RTE generator only needs access to the software component description
file(s). It is not necessary to have any information about system deployment.

The definitions in the ARXML file are used to define the APIs, and therefore only
valid runnable entities can be declared without an error occurring when the com-
ponent is compiled.

3.3.2 RTE Phase
Prior to using an RTE generator in RTE phase, a significant amount of system en-
gineering is needed. The AUTOSAR development process assumes that there are
a number of inputs to the system engineering process:

− Software component descriptions that define the software components,
their ports, internal behavior and implementation characteristic, and the

30 | Developing Software Components in ASCET

ETAS ASCET V6.4 | AUTOSAR User Guide

interfaces provided and required by the ports assuming their connection to
the Virtual Function Bus. These are the same descriptions as used in con-
tract phase.

− ECU resource descriptions that define the ECU hardware characteristics
(e.g., communication ports)

− A System constraint description that defines aspects of the system (e.g.,
communication protocols)

To build an AUTOSAR system (i.e. a set of software components mapped to ECUs
that communicate over a network) it is necessary to define the following:

− ECU configuration descriptions that define which software components
are mapped to which ECUs, the resources available on the ECU, etc.

− A System configuration description that defines things like the network to-
pology, how inter-ECU communication is mapped to the physical network
etc.

− An ECU Configuration that defines the mapping between elements; for ex-
ample, the mapping of runnable entities to AUTOSAR Operating System
tasks and the mapping of AUTOSAR signals to AUTOSAR COM signals.

Once you have configured your AUTOSAR system with an allocation of compo-
nent prototypes to ECU instances, the RTE generator is used in RTE Generation
phase to create the following items:

A. the implementation of the RTE itself

B. optimized component header files that exploit mapping knowledge pro-
vided by your configuration

C. operating system tasks that package your runnable entities

D. (optional) an operating system configuration file for the RTE generated ob-
jects and required behavior

E. (optional) a communication stack configuration file for inter-ECU commu-
nication configuration

In the RTE phase, the RTE generates optimized application header files suitable
for compiling source code components and, optionally, XML configuration files for
the communication stack and operating system. When running the RTE phase,
the RTE generator needs access to all system deployment information.

The RTE is generated as one or more C modules. Each module must be compiled
according to the dependency information output by the RTE. The module Rte.c
contains the core generated RTE.

31 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

4 Data Types
The types metamodel for AUTOSAR R4.* is a complete overhaul that replaces the
former system. AUTOSAR R4.* defines three layers of data type abstraction as il-
lustrated in Figure 10.

Application Data Types

Implementation Data Types

Base Types

Figure 10: AUTOSAR R4.* abstraction levels for describing data types

4.1 Application Data Types
Application data types are defined in physical terms. This allows application au-
thors to create software components without deciding the C data type too early
in the lifecycle.

Application data types contain the necessary information to support measure-
ment and calibration tools.

Application data types also support automatic conversion of values from one unit
to another.

The <SHORT-NAME> of an application data type is used within the scope of a soft-
ware component type (SWCT), so it is possible to have multiple application data
types with the same name when integrating several SWCTs on a single ECU (but
not within a single SWCT).

The <SHORT-NAME> of an application data type is not used in generated code, in
particular the RTE APIs are defined in terms of the mapped implementation data
types.

To support more complex data types, an application data type can be composed
of other application data types. This form of recursive definition permits records,
arrays, and matrices to be defined.

When the RTE is generated, used application data types must be mapped to im-
plementation types; see section 4.4, Type Mappings, on page 32 for details.

4.2 Implementation Data Types
Implementation data types represent C types in the generated code. The
<SHORT-NAME> of an implementation data type defines the symbol used in C to
access the type, e.g., in APIs and in user code.

In general, an implementation data type results in a typedef in the generated
C code, written to the file Rte_Type.h. See the RTA-RTE user guide for infor-
mation on the exceptions.

RTA-RTE always uses implementation data types in generated APIs. If the corre-
sponding <Variable-Data-Prototype> is defined by reference to an applica-
tion data type, then the mapped implementation data type is used in the API sig-
nature.

32 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

4.3 Base Types
Finally, base types describe the hardware-specific aspects of the data type, e.g.,
size and encoding. They form the basis on which the implementation data types
are built. A base type can be referenced by several implementation data types
(see section 4.2, Implementation Data Types, on page 31).

A base type’s <SHORT-NAME> never appears in the generated code; it is only
used as a reference target within the model. Only implementation data types are
present in the generated code.

4.4 Type Mappings
An SWC-specific data type mapping is used to map application data types (cf.
section 4.1) onto the implementing implementation data types (cf. section 4.2).

Mode type mappings are used to map mode declaration groups onto implementa-
tion types.

 NOTE

RTA-RTE requires a data type mapping for each application type and a mode
type mapping for each used mode declaration group in order to be able to gen-
erate the RTE.

In ASCET, these mappings are provided in the Swc_mappings.arxml file.

The data type mapping for a SWC is held within a <DATA-TYPE-MAPPING-SET>
element:

33 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 1: ARXML code – mapping application data types and mode type to im-
plementation data types (AUTOSAR R4.2.2)

A data type mapping contains one or more data type maps. Each map references
a single application data type and a single implementation data type; see
Listing 3, Listing 7, Listing 10, or Listing 16 for ARXML examples.

For more information on data type and mode mapping, refer to the RTA-RTE user
guide.

4.5 Platform Data Types
AUTOSAR specifies a set of platform data types for use in C code. These are im-
plementation data types whose purpose is to provide a set of types with the
same semantics across different target hardware. RTA-RTE uses platform data
types when it needs to create types for internal variables.

Unlike most implementation data types, the platform data types are also defined
in C language in the file PlatformTypes.h.

Beginning with R4.0.2, AUTOSAR also specifies the correct definitions and pack-
age name of the platform types. The platform types defined in the AUTOSAR
“Specification of Platform Types” manual (AUTOSAR_SWS_PlatformTypes.pdf)
and in the standard header file Platform_Types.h are:

− sint8 – 8-bit signed integer

− uint8 – 8-bit unsigned integer

34 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

− sint16 – 16-bit signed integer

− uint16 – 16-bit unsigned integer

− sint32 – 32-bit signed integer

− uint32 – 32-bit unsigned integer

− float32 – single precision floating point

− float64 – double precision floating point

− uint8_least – at least 8-bit unsigned integer

− uint16_least – at least 16-bit unsigned integer

− uint32_least – at least 32-bit unsigned integer

− sint8_least – at least 7-bit signed integer (plus sign bit)

− sint16_least – at least 15-bit signed integer (plus sign bit)

− sint32_least – at least 31-bit signed integer (plus sign bit)

− boolean – for use with TRUE/FALSE.

4.6 Primitive Data Types
The ASCET type system consists of model data types and implementation data
types. Model data types are abstract generic data types that can be realized in
one or more implementation data types.

The basic model data types for scalar elements are:

− Logic

− Limited Integer

− Wrap-Around Integer

− Signed Discrete

− Unsigned Discrete

− Continuous

All scalar elements in ASCET are implemented using one of the following data
types:

− sint8

− sint16

− sint32

− uint8

− uint16

− uint32

Additionally, the model data type "cont" can be implemented as follows:

− real64

− real32

The model type "log" can also be implemented as follows:

− bool

35 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

To configure the default implementation of model types

1. In the component manager, select Tools > Options.

The "Options" dialog window opens.

2. Open the "Modeling\Implementation\Default Implementation Types" node.

3. Configure the default implementation types, for instance, as shown below.

Figure 11: Default implementation of model types

4. Click OK.

The implementation of a model element can always be individually configured.
The following instruction shows how to implement a variable sdisc as an 8 bit
signed integer.

To implement a model type sdisc as a sint8

1. In the component manager, do one of the following:

• Double-click the project ARProject created in section 3.1.2 Code Gen-
eration Settings for AUTOSAR.

• Select the ARProject project and select Edit > Open Component.

The project editor opens.

2. In the project editor, double-click the software component Swc.

The software component editor opens.

3. Use the Interrunnable Variable button to create an interrunnable vari-
able.

The "Properties for Scalar Element" dialog window opens.

4. Do the following:

i. Name the interrunnable variable sdisc.

ii. Select the Basic Type Signed Discrete.

36 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

iii. Close the properties editor with OK.

5. In the "Outline" tab, right-click the sdisc element and select Implementa-
tion from the context menu.

The "Implementation for: sdisc" window opens.

6. In the "Master" field, activate Implementation.

7. In the "Type" combo box of the "Implementation" field, select sint8.

8. Close the "Implementation for: sdisc" window with OK.

Figure 12: Implementation of the signed discrete element sdisc as sint8

When generating code for an AUTOSAR R4.* project, ASCET creates the files
Swc_appltypes.arxml and Swc_impltypes.arxml, and copies the files

37 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

AUTOSAR_MOD_PlatformTypes.arxml and
AUTOSAR_MOD_PlatformBaseTypes_RTARTE.arxml3 to the code generation
directory.

The following primitive application data type is defined in
Swc_appltypes.arxml for the variable sdisc with sint8 implementation:

Listing 2: ARXML code – primitive application data type SInt8 (AUTOSAR
R4.2.2)

In the file Swc_mappings.arxml, the application data type is mapped to an im-
plementation data type:

3 In older RTA-RTE versions: AUTOSAR_MOD_PlatformBaseTypes_TC1796.arxml

38 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 3: ARXML code – mapping of SInt8 application data type and implemen-
tation data type (AUTOSAR R4.2.2)

The referenced implementation data type is a platform type, it does not appear in
the Swc_impltypes.arxml file. In the AUTOSAR_MOD_PlatformTypes.arxml
file, the referenced implementation data type looks as follows:

39 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 4: ARXML code – platform data type sint8 (AUTOSAR R4.2.2)

The referenced base type is provided in the
AUTOSAR_MOD_PlatformBaseTypes_RTARTE.arxml4 file:

4 In older RTA-RTE versions: AUTOSAR_MOD_PlatformBaseTypes_TC1796.arxml

40 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 5: ARXML code – base type sint8 (AUTOSAR R4.2.2)

The short-name of a data type must be a valid C identifier.

The types files are inputs for the RTE generator. The type definition for the user-
defined primitive type is then included in the generated file Rte_Type.h. The im-
plementation of the primitive types created by RTE references the BSW data
types is defined for a particular micro-controller target by the AUTOSAR header
file Platform_Types.h.

4.7 Primitive Data Types With Semantics
An additional data type in ASCET is Enumerations.

An enumeration in ASCET corresponds to an integer type with semantics. The se-
mantic is given by a compu-method with category Text Table. A compu-method is
a conversion formula from bit-pattern to physical value and vice versa.

To create an enumeration

1. In the component manager, select Insert > Enumeration or click the
Enumeration button.

2. Name the enumeration Enumeration.

3. Select the enumeration and switch to the "Contents" pane.

4. For the value 0, select Enumeration > Rename and set the label red.

5. Select Enumeration > Add Enumeration > Append or press the <INSERT>
key to create two new enumerators with value 1 / label yellow and value 2 /
label green.

41 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 13: Example of an enumeration in ASCET

6. In the software component editor, create an interrunnable variable of basic
type Enumeration and assign the enumeration you just created.

The definition of the data type and the compu-method in configuration language
can be found in the AUTOSAR package ASCET_Types. The following application
data type is defined in Swc_appltypes.arxml for the enumeration Enumera-
tion:

Listing 6: ARXML code – application data type Enumeration

In the file Swc_mappings.arxml, the application data type is mapped to an im-
plementation data type:

42 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 7: ARXML code – mapping of Enumeration application data type and im-
plementation data type

The referenced implementation data type is not a platform data type, i.e. it ap-
pears in the Swc_impltypes.arxml file.

Listing 8: ARXML code – implementation data type Enumeration

43 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

The implementation data type references the sint8 platform data type; see List-
ing 4 on page 39.

The sint8 platform data type references the sint8 base type; see Listing 5 on
page 40.

4.7.1 Std_ReturnType
The AUTOSAR standard defines "status" and "error" values returned by RTE API
functions. The following values are defined in the Std_ReturnType type:

Code Available in
AUTOSAR
Release

Meaning

COM_BUSY ≥ R4.2.2 The transmission/reception could not be
performed due to another transmis-
sion/reception currently ongoing for the
same signal.

COM_STOPPED all supported The RTE could not perform the operation
because the communication service is
currently not available (inter-ECU com-
munication only).

IN_EXCLUSIVE_AREA all supported The error is returned by a blocking API
and indicates that the runnable could
not enter a wait state.
This can happen, for example, because
one executable entity of the current
task's call stack has entered an exclusive
area.

INVALID all supported data element is invalid
LIMIT all supported An internal RTE limit has been exceeded.

Request could not be handled. OUT buff-
ers are not modified.

MAX_AGE_EXCEEDED all supported data element is outdated
Can be combined with other error codes.

NEVER_RECEIVED all supported No data received for the corresponding
unqueued data element since system
start or partition restart.

NO_DATA all supported An explicit read API call returned no data.
(This is no error.)

OK all supported no error occurred
OUT_OF_RANGE ≥ R4.2.2 received data element out of range
SEG_FAULT all supported The error can be returned by an RTE API

if the parameters contain a direct or indi-
rect reference to memory that is not ac-
cessible from the caller’s partition.

HARD_TRANS-

FORMER_ERROR

≥ R4.2.2 An error occurred during transformation.

44 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Code Available in
AUTOSAR
Release

Meaning

TRANSFORMER_LIMIT ≥ R4.2.2 Buffer for transformation operation
could not be created.

SOFT_TRANS-

FORMER_ERROR

≥ R4.2.2 An error occurred during transformation.
The error is reported even though valid
data is produced as output (comparable
to a warning).

TIMEOUT all supported A blocking API call returned due to expiry
of a local timeout rather than the
intended result. OUT buffers are not
modified.
The interpretation of this being an error
depends on the application.

TRANSMIT_ACK all supported transmission acknowledgment received
UNCONNECTED all supported The port used for communication is not

connected.

 NOTE
ASCET uses the error codes exactly as given in this table. The prefix RTE_E_, re-
quired to provide compliance to the AUTOSAR standard, is inserted during
AUTOSAR code generation.

If you enter an error code with the prefix, e.g., RTE_E_NO_DATA, a warning
(Wmdl1192) is issued during code generation:
Label <%1> for Rte_StdReturnType is deprecated, please use

<%2> instead

Table 3: AUTOSAR error codes

ASCET provides the Std_ReturnType type as a built-in enumeration. The error
codes are reserved words in ASCET and cannot be used in other enumerations.

Furthermore, OK is also reserved in ASCET, which denotes that a server runnable
returns no application error. The user shall specify – or import – the possible val-
ues of the application error in a standard enumeration.

4.8 Complex Data Types

4.8.1 Record Data Types
Record data types allow new complex data types to be created. A record data
type creates a data structure consisting of one or more named members.

To create a record in ASCET

1. In the component manager, select Insert > Record or click the Record
button.

2. Name the record Record.

45 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

3. Select Edit > Open Component or double-click the record.

The record editor opens.

4. Use the Unsigned Discrete Variable button to create a udisc variable.

The dialog "Properties for Scalar Element: udisc" opens.

5. Name the unsigned discrete variable A.

6. Use the Logic Variable button to create a log variable named B.

Figure 14: Record with elements A and B

To specify an implementation of a record

1. In the record editor, switch from the "Elements" tab to the "Implementa-
tion" tab.

2. In the "Implementation" tab, double-click the element A.

The "Implementation for: A" window opens.

3. In the "Master" field, activate Implementation.

4. In the "Implementation" field, select uint16.

5. Right-click in the "Max" field and select Default Value from the context
menu.

6. Close the "Implementation for: A" window with OK.

46 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 15: Implementation of the unsigned discrete element A as uint16

7. For the logic variable B, select the implementation type bool.

The "Implementation" tab of the record editor looks like the figure below.

47 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 16: Implementation Impl of Record with elements A and B

An implementation of a record in ASCET corresponds to a record data type in
AUTOSAR. The record data type in configuration language can be found in the
AUTOSAR package ASCET_types. The RTE generator will generate a C structure
type for each defined <RECORD-TYPE>. The structure definition is included in the
generated file Rte_Type.h.

To create a new implementation of a record
1. In the record editor, select Edit > Component > Implementation.

The "Implementation Editor for: Record" window opens.

2. Select Implementation > Add and name the new implementation, for in-
stance, Impl32.

3. Set an implementation uint32 with default min/max for A.

4. Set an implementation bool for B.

5. Click OK.

Figure 17: Record type Record_Impl32

48 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Now insert the record as an interrunnable variable into the SWC and generate
code5 for the project.

The following application data type is defined in Swc_appltypes.arxml for the
record type Record_Impl:

Listing 9: ARXML code – application data type Record_Impl

5 see To generate code in a project on page 23

49 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

In the file Swc_mappings.arxml, the application data type Record_Impl is
mapped to an implementation data type:

Listing 10: ARXML code – mapping of Record_Impl application data type and
implementation data type

50 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

The referenced implementation data type is not a platform data type, i.e. it ap-
pears in the Swc_impltypes.arxml file.

Listing 11: ARXML code – implementation data type Record_Impl

The implementation data type Record_impl references two platform data
types, one for each record element.

In the AUTOSAR_MOD_PlatformTypes.arxml file, the referenced implementa-
tion data types look as follows (the <INTRODUCTION> elements may be non-
empty in your generated code):

51 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 12: ARXML code – platform data type Boolean

Listing 13: ARXML code – platform data type uint16

52 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

The base types boolean and uint16, referenced in Listing 12 and Listing 13, are
provided in the AUTOSAR_MOD_PlatformBaseTypes_RTARTE.arxml6 file:

Listing 14: ARXML code – base types boolean and uint16

4.8.2 Array Data Types
Array data types, like record data types, allow new complex data types to be cre-
ated. An array data type creates a sequence of values mapped to an index posi-
tion.

To create an array

1. In the component manager, double-click the project ARProject.

The project editor opens.

6 In older RTA-RTE versions: AUTOSAR_MOD_PlatformBaseTypes_TC1796.arxml

53 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

2. In the project editor, double-click the software component Swc.

The software component editor opens.

3. Use the Array button to create an array.

The properties editor for the array opens.

4. Name the variable array and set the following properties:

Dimension X 16

Kind Interrunnable Variable
Basic type unsigned discrete

5. Close the properties editor with OK.

6. Open the implementation editor for array.

7. In the "Master" field, activate Implementation.

8. In the "Implementation" field, select uint8.

9. Close the "Implementation for: array" window with OK.

An implementation of an array in ASCET corresponds to an array data type in
AUTOSAR. The array data type in configuration language can be found in the
AUTOSAR package ASCET_types.

54 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

The following application data type is defined in Swc_appltypes.arxml for the
array array:

Listing 15: ARXML code – application data type UInt8_16 of category ARRAY

55 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

In the Swc_mappings.arxml file, the application data type is mapped to an im-
plementation data type:

Listing 16: ARXML code – mapping of UInt8_16 application data type and imple-
mentation data type

The referenced implementation data type is not a platform type, i.e. it appears in
the Swc_impltypes.arxml file.

Listing 17: ARXML code – implementation data type uint8_16

56 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

The implementation data type references the uint8 platform type. In the
AUTOSAR_MOD_PlatformTypes.arxml file, the referenced implementation
data type looks as follows (the <INTRODUCTION> element may be non-empty in
your generated code):

Listing 18: ARXML code – platform data type uint8

The uint8 platform type references the uint8 base type; the latter is provided
in the AUTOSAR_MOD_PlatformBaseTypes_RTARTE.arxml7 file:

Listing 19: ARXML code – base type uint8

The RTE generator will generate a C array type for each defined <ARRAY-TYPE>.
Therefore, array types must be declared according to the same semantics as the

7 In older RTA-RTE versions: AUTOSAR_MOD_PlatformBaseTypes_TC1796.arxml

57 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

C array. The array type definition (e.g., typedef uint8 uint8_16[16];) is in-
cluded in the generated file Rte_Type.h.

 NOTE

The implementation of arrays in application software components shall be
consistent with their declaration in the generated RTE. For more information,
refer to the AUTOSAR_SWS_RTE.pdf manual of your AUTOSAR release.

4.8.3 Matrix Data Types
Matrix data types, like array and record data types, allow new complex data types
to be created. In the ARXML code, a matrix is generated as an array of arrays.

 NOTE

If you use matrices, make sure that the “Number of dimensions for fixed ma-
trixes” target option is set to Two-dimensional.

Otherwise, a warning WMdl653 is issued during AUTOSAR code generation. By
default, this warning is promoted to an error.

To create a matrix
1. In the component manager, double-click the project ARProject.

The project editor opens.

2. In the project editor, double-click the software component Swc.

The software component editor opens.

3. Use the Matrix button to create a matrix.

The properties editor for the matrix opens.

4. Name the variable IRV_matrix and set the following properties:

Dimension X 4
Dimension Y 3

Kind Interrunnable Variable
Basic type Wrap-Around integer
Min / Max 0 / 255

Type uint8

5. Close the properties editor with OK.

You do not need to edit the implementation of IRV_matrix. The values
you entered for min, max, and type

An implementation of a matrix in ASCET is represented as an array of arrays in
AUTOSAR. Two data types can be found in the ASCET_types AUTOSAR package

58 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

in Swc_appltypes.arxml, one for the array of arrays8, and one for the arrays9
that form the array of arrays.

The following application data types are defined in Swc_appltypes.arxml for
the matrix (or array of arrays) IRV_matrix:

<AR-PACKAGE>

 <SHORT-NAME>ApplicationDataTypes</SHORT-NAME>

 <ELEMENTS>

 ...

 <APPLICATION-ARRAY-DATA-TYPE>

 <SHORT-NAME>UInt8_4_3</SHORT-NAME>

 <!--

 array of 4 "UInt8_3" values

 -->

 <CATEGORY>ARRAY</CATEGORY>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 <SW-CALIBRATION-ACCESS>READ-ONLY

 </SW-CALIBRATION-ACCESS>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 <ELEMENT>

 <SHORT-NAME>ElementName</SHORT-NAME>

 <CATEGORY>VALUE</CATEGORY>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 <TYPE-TREF DEST="APPLICATION-ARRAY-DATA-TYPE">

 /ASCET_Types/ApplicationDataTypes/UInt8_3</TYPE-TREF>

 <ARRAY-SIZE-SEMANTICS>FIXED-SIZE

 </ARRAY-SIZE-SEMANTICS>

 <MAX-NUMBER-OF-ELEMENTS>4</MAX-NUMBER-OF-ELEMENTS>

 </ELEMENT>

 </APPLICATION-ARRAY-DATA-TYPE>

 ...

 <APPLICATION-ARRAY-DATA-TYPE>

 <SHORT-NAME>UInt8_3</SHORT-NAME>

 <!--

 array of 3 "UInt8" values

 -->

8 <SHORT-NAME>UInt8_4_3</SHORT-NAME> in Listing 20
9 <SHORT-NAME>UInt8_3</SHORT-NAME> in Listing 20

59 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

 <CATEGORY>ARRAY</CATEGORY>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 <SW-CALIBRATION-ACCESS>READ-ONLY

 </SW-CALIBRATION-ACCESS>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 <ELEMENT>

 <SHORT-NAME>ElementName</SHORT-NAME>

 <CATEGORY>VALUE</CATEGORY>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 <TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">

 /ASCET_Types/ApplicationDataTypes/UInt8</TYPE-TREF>

 <ARRAY-SIZE-SEMANTICS>FIXED-SIZE

 </ARRAY-SIZE-SEMANTICS>

 <MAX-NUMBER-OF-ELEMENTS>3</MAX-NUMBER-OF-ELEMENTS>

 </ELEMENT>

 </APPLICATION-ARRAY-DATA-TYPE>

 ...

 </ELEMENTS>

</AR-PACKAGE>

Listing 20: ARXML code – application data types UInt8_4_3 and UInt8_3 of
category ARRAY (generated for IRV_matrix)

In the Swc_mappings.arxml file, the application data types are mapped to im-
plementation data types:

<AR-PACKAGE>

 <SHORT-NAME>ASCET_Mappings</SHORT-NAME>

 <AR-PACKAGES>

 <AR-PACKAGE>

 <SHORT-NAME>DataMappings</SHORT-NAME>

 <AR-PACKAGES>

 <AR-PACKAGE>

 <SHORT-NAME>Impl</SHORT-NAME>

 <ELEMENTS>

 <DATA-TYPE-MAPPING-SET>

 <SHORT-NAME>Swc</SHORT-NAME>

 <DATA-TYPE-MAPS>

 ...

60 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

 <DATA-TYPE-MAP>

 <APPLICATION-DATA-TYPE-REF

 DEST="APPLICATION-ARRAY-DATA-TYPE">

 /ASCET_Types/ApplicationDataTypes/UInt8_4_3

 </APPLICATION-DATA-TYPE-REF>

 <IMPLEMENTATION-DATA-TYPE-REF

 DEST="IMPLEMENTATION-DATA-TYPE">/ASCET_Types

 /ImplementationDataTypes/uint8_4_3

 </IMPLEMENTATION-DATA-TYPE-REF>

 </DATA-TYPE-MAP>

 ...

 <DATA-TYPE-MAP>

 <APPLICATION-DATA-TYPE-REF

 DEST="APPLICATION-ARRAY-DATA-TYPE">

 /ASCET_Types/ApplicationDataTypes/UInt8_3

 </APPLICATION-DATA-TYPE-REF>

 <IMPLEMENTATION-DATA-TYPE-REF

 DEST="IMPLEMENTATION-DATA-TYPE">/ASCET_Types

 /ImplementationDataTypes/uint8_3

 </IMPLEMENTATION-DATA-TYPE-REF>

 </DATA-TYPE-MAP>

 ...

 </DATA-TYPE-MAPS>

 <MODE-REQUEST-TYPE-MAPS></MODE-REQUEST-TYPE-MAPS>

 </DATA-TYPE-MAPPING-SET>

 </ELEMENTS>

 </AR-PACKAGE>

 </AR-PACKAGES>

 </AR-PACKAGE>

 </AR-PACKAGES>

</AR-PACKAGE>

Listing 21: ARXML code – mapping of UInt8_4_3 and UInt8_3 application
types and implementation data types

The referenced implementation data types are no platform types, i.e. they appear
in the Swc_impltypes.arxml file.

<AR-PACKAGE>

 <SHORT-NAME>ImplementationDataTypes</SHORT-NAME>

 <ELEMENTS>

 ...

 <IMPLEMENTATION-DATA-TYPE>

 <SHORT-NAME>uint8_4_3</SHORT-NAME>

 <!--

 array of 4 "uint8_3" values

 -->

 <CATEGORY>ARRAY</CATEGORY>

 <SUB-ELEMENTS>

 <IMPLEMENTATION-DATA-TYPE-ELEMENT>

 <SHORT-NAME>ElementName</SHORT-NAME>

 <CATEGORY>TYPE_REFERENCE</CATEGORY>

61 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

 <ARRAY-SIZE>4</ARRAY-SIZE>

 <ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 <IMPLEMENTATION-DATA-TYPE-REF

 DEST="IMPLEMENTATION-DATA-TYPE">

 /ASCET_Types/ImplementationDataTypes/uint8_3

 </IMPLEMENTATION-DATA-TYPE-REF>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 </IMPLEMENTATION-DATA-TYPE-ELEMENT>

 </SUB-ELEMENTS>

 </IMPLEMENTATION-DATA-TYPE>

 ...

 <IMPLEMENTATION-DATA-TYPE>

 <SHORT-NAME>uint8_3</SHORT-NAME>

 <!--

 array of 3 "uint8" values

 -->

 <CATEGORY>ARRAY</CATEGORY>

 <SUB-ELEMENTS>

 <IMPLEMENTATION-DATA-TYPE-ELEMENT>

 <SHORT-NAME>ElementName</SHORT-NAME>

 <CATEGORY>TYPE_REFERENCE</CATEGORY>

 <ARRAY-SIZE>3</ARRAY-SIZE>

 <ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 <IMPLEMENTATION-DATA-TYPE-REF

 DEST="IMPLEMENTATION-DATA-TYPE">

 /AUTOSAR_Platform/ImplementationDataTypes/uint8

 </IMPLEMENTATION-DATA-TYPE-REF>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 </IMPLEMENTATION-DATA-TYPE-ELEMENT>

 </SUB-ELEMENTS>

 </IMPLEMENTATION-DATA-TYPE>

 ...

 </ELEMENTS>

</AR-PACKAGE>

Listing 22: ARXML code – implementation data types uint8_4_3 and uint8_3
generated for IRV_matrix

62 | Data Types

ETAS ASCET V6.4 | AUTOSAR User Guide

The implementation data type references the uint8 platform type. In the
AUTOSAR_MOD_PlatformTypes.arxml file, the referenced implementation
data type looks as shown in Listing 18 on page 56.

The uint8 platform type references the uint8 base type; the latter is provided
in the AUTOSAR_MOD_PlatformBaseTypes_RTARTE.arxml10 file; see List-
ing 19 on page 56.

The RTE generator will generate two C array types for each defined matrix. These
array type definitions are included in the generated file Rte_Type.h.

For IRV_matrix, the generated array type definitions look as follows:

 typedef uint8 uint8_3[3];

 typedef uint8_3 uint8_4_3[4];

 NOTE

The implementation of arrays of arrays, and arrays in application software
components shall be consistent with their declaration in the generated RTE.
For more information, refer to the AUTOSAR_SWS_RTE.pdf manual of your
AUTOSAR release.

10 In older RTA-RTE versions: AUTOSAR_MOD_PlatformBaseTypes_TC1796.arxml

63 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

5 Interfaces
When an application consists of multiple software components, it may be neces-
sary for the software components to communicate, either to exchange data or to
trigger some function. Communication between AUTOSAR software components
is designed in terms of ports and interfaces. The following interface types are
available:

A. Sender-receiver (signal passing) – see section 5.1

B. Mode-switch (communication of mode switches) – see section 5.2

C. Client-server (function invocation) – see section 5.3

D. Calibration – see section 5.4

E. NV-data (non-volatile signal passing) – see section 5.5

These communication models are known as interfaces in AUTOSAR.

All ports of a software component (whether a provided or a required port) are
typed by a specific interface. Interface types are defined using either the
<SENDER-RECEIVER-INTERFACE> or <MODE-SWITCH-INTERFACE> or
<CLIENT-SERVER-INTERFACE> or <PARAMETER-INTERFACE> or <NV-DATA-
INTERFACE> elements.

The definition of sender-receiver, mode-switch, client-server, calibration, and
NV-data interfaces is considered in detail in this section.

Note that the way the software component interacts with the interface is defined
by the <INTERNAL-BEHAVIOR> element that references a software component.
This is discussed in chapter 7, Internal Behavior, on page 105.

5.1 Sender-Receiver
Sender-receiver communication involves the transmission and reception of sig-
nals consisting of atomic data elements sent by one component and received by
one or more components.

Each sender-receiver interface may contain multiple data elements, each of
which can be sent and received independently.

To create a sender-receiver interface
1. In the component manager, select Insert > AUTOSAR > SenderReceiver-

Interface.

2. Name the sender-receiver interface SRInterface.

3. Insert SRInterface into SWC.

When generating code for an AUTOSAR project, ASCET defines a <SENDER-
RECEIVER-INTERFACE> element in the file Swc_interfaces.arxml. The
<SENDER-RECEIVER-INTERFACE> element has the following structure in the
configuration language:

64 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 23: ARXML code – sender-receiver interface definition

The name of the sender-receiver interface definition is given by the <SHORT-
NAME>. The name is used within other elements that need to reference the inter-
face type, for example a software component may specify that it uses sender-
receiver interface SRInterface.

The short-name of a sender-receiver interface should be a valid C identifier.

A sender-receiver interface can be used to communicate data (using data ele-
ment prototypes within the <DATA-ELEMENTS> element) or modes (see section
5.2, Mode Switch, on page 67 for more details).

 NOTE

In AUTOSAR R4. *, a sender-receiver interface must contain either data ele-
ments or a single mode group. If a sender-receiver interface contains both
kinds of elements, an error is issued during code generation.

Data Element Prototypes
Each sender-receiver interface can specify zero or more data elements that con-
stitute the AUTOSAR signals communicated over the interface. Each data item
defines a prototype of a specific type and can be a primitive data type, a RECORD
or an ARRAY type. See chapter 4, Data Types, on page 31 for details of defining
data types.

To create data elements in ASCET

1. In the component manager, double-click SRInterface.

The "Sender Receiver Interface Editor for: SRInterface" editor opens.

2. Use the Limited Integer Variable button to create a limitInt varia-
ble.

65 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

The properties editor for the new variable opens.

3. Name the variable Speed and set "Min" and "Max" to -32768 and 32767.

Figure 18: Data element Speed for the sender-receiver interface SRInterface

4. Create a logical variable named log.

To create an implementation of a data element
1. In the "Sender Receiver Interface Editor for: SRInterface" editor, go to the

Implementation tab.

2. In the Implementation tab, double-click the Speed element.

The "Implementation for: Speed" window opens.

3. In the "Implementation" field, select the type sint16.

4. Close the "Implementation for: sdisc" window with OK.

The Implementation tab of the "Sender Receiver Interface Editor for: SRIn-
terface" editor shall look like the figure below.

5. For log, select the implementation data type bool.

Figure 19: Implementation Impl of the sender-receiver interface SRInterface
with data elements Speed and log

An implementation of a sender-receiver interface in ASCET corresponds to a
sender-receiver interface in AUTOSAR. The sender-receiver interface in configu-
ration language is generated by ASCET in the file Swc_interfaces.arxml.

The implementation editor of a sender-receiver interface element also contains
an "AUTOSAR" tab with a policy and an invalidation policy. These are written to
the ARXML, the latter can also specify the existance of the Rte_IStatus macro.
See the online help, section "RTE Access Macros", for details.

66 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

In AUTOSAR R4. *, the declaration of data elements within a sender-receiver in-
terface definition has the following structure:

Listing 24: ARXML code – declaration of data elements within sender-receiver
interface

A data element is defined using the <VARIABLE-DATA-PROTOTYPE> element,
and all elements must be defined within an encapsulating <DATA-ELEMENTS> el-
ement.

Each <VARIABLE-DATA-PROTOTYPE> element must specify:

− the <SHORT-NAME> that you will use to refer to the item

− the <SW-DATA-DEF-PROPS> data properties, among them

• the <SW-CALIBRATION-ACCESS>

67 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

− a <TYPE-TREF> reference to the type of the data item

5.2 Mode Switch
An AUTOSAR system can be configured to operate in one or more application
modes. A mode-switch interface can specify zero or more mode groups that de-
fine application modes.

In ASCET, mode-switch interfaces are realized as sender-receiver interface com-
ponents that contain mode groups.

Since AUTOSAR R4.0, a sender-receiver interface that contains a mode group
must not contain data elements, and vice versa. Mixing both kinds of elements
leads to a code generation error.

To create a mode group

1. In the component manager, select Insert > AUTOSAR > Mode Group.

2. Name the mode group OnOffMode.

3. In the "Database" or "Workspace" pane, select OnOffMode and go to the
"Contents" pane.

4. Select Mode > Rename to rename the label mode as off.

5. Select Mode > Add Mode > As Last to create a new mode on.

Figure 20: Mode declaration group OnOffMode

In AUTOSAR R4.*, ASCET declares the <MODE-DECLARATION-GROUP> in the
<swc name>_appltypes.arxml file, AUTOSAR package ASCET_types, sub-
package ApplicationDataTypes.

68 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 25: ARXML code – mode declaration group

To create a mode-switch interface

 NOTE

AUTOSAR R4.* allows a single mode group in a sender-receiver interface with
no data elements.

1. In the component manager, select Insert > AUTOSAR > SenderReceiver
Interface.

2. Name the sender-receiver interface ModeInterface.

3. Double-click ModeInterface.

The "Sender Receiver Interface Editor for: ModeInterface" editor opens.

4. Select Insert > Component.

The "Select Item" window opens.

69 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 21: Selection of the mode group OnOffMode

5. In the "Database" or "Workspace" field of the "Select Item" window, select
the mode group OnOffMode.

6. Click OK to close the "Select Item" window and insert OnOffMode into Mo-
deInterface.

The "Properties for Element: OnOffMode" window opens. You can enter a
name and a comment for the OnOffMode instance.

7. Click OK to use the default name and comment.

Figure 22: Mode-switch interface ModeInterface

8. Insert ModeInterface into SWC.

9. Generate code for the AUTOSAR project.

In AUTOSAR R4.*, the declaration of the mode group within a mode-switch inter-
face definition has the following structure:

70 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 26: ARXML code – declaration of mode group within mode-switch inter-
face

In AUTOSAR R4.*, a mode group is defined using the <MODE-GROUP> element.

Each <MODE-GROUP> element must specify the following:

− the <SHORT-NAME> that you will use to refer to the item

− the <TYPE-TREF> reference to mode declaration group

The use of mode declaration prototypes within sender-receiver interfaces is con-
sidered in detail in chapter 8, Modes, on page 165.

5.3 Client-Server
Client-server communication involves a component invoking a defined "server"
function in another component, which may or may not return a reply. Each client-
server interface can contain multiple operations, each of which can be invoked
separately.

To create a client-server interface:

1. In the component manager, select Insert > AUTOSAR > ClientServer
Interface.

2. Name the client-server interface CSInterface.

3. Insert CSInterface into SWC.

When generating code in an AUTOSAR project, ASCET defines the <CLIENT-
SERVER-INTERFACE> element in the file Swc_interfaces.arxml. The
<CLIENT-SERVER-INTERFACE> element has the following structure in the con-
figuration language:

Listing 27: ARXML code – client-server interface structure (all AUTOSAR ver-
sions)

A client-server interface is named using the <SHORT-NAME> element. The name
is used within other elements that need to reference the interface type.

The short-name of a client-server interface should be a valid C identifier.

71 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

A client-server interface consists of one or more operations defined using the
<OPERATIONS> container element.

Operations
An operation in a client-server interface can take zero or more parameters. The
return value of an operation is either of type Std_ReturnType or of an enumera-
tion type, depending on whether or not the operation returns an application error.

To create an operation

1. In the component manager, double-click CSInterface.

The "Interface Editor for: CSInterface" editor opens.

2. In the "Outline" tab, select the Main diagram.

3. Select Insert > Method Signature.

An operation is added.

4. Name the operation MaximumValue.

To create arguments in an operation

1. Double-click the operation MaximumValue.

The "Method Signature Editor for: MaximumValue" window opens.

2. Select Argument > Add and name the first argument InputA. Set the fol-
lowing parameters:

• Argument Type: sdisc

• Direction: in

3. Create a second argument InputB with the same type and direction.

4. Create a third argument OutputMaximum with type sdisc and direction
Out.

72 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 23: Arguments of the operation MaximumValue

5. Click OK.

ASCET represents the client-server interface CSInterface with operation
MaximumValue and arguments InputA, InputB and OutputMaximum as
follows.

Figure 24: Operation MaximumValue for the client-server interface CSInter-
face

To create an implementation of an operation

1. In the "Interface Editor for: CSInterface" editor, go to the "Implementation"
tab.

73 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

2. In the "Implementation" tab, double-click the InputA element.

The "Implementation for: InputA" window opens.

3. In the "Master" field, activate Implementation.

4. In the "Implementation" field, select sint16.

5. Right-click in the "Min" and "Max" fields and select Default Value from the
context menu.

6. Close the "Implementation for: InputA" window with OK.

7. Repeat the implementation procedure for the arguments InputB and
OutputMaximum.

Figure 25: Implementation of the operation MaximumValue

8. Generate code for the AUTOSAR project.

An implementation of a client-server interface in ASCET corresponds to a client-
server interface in AUTOSAR. The client-server interface in configuration lan-
guage is generated by ASCET in the Swc_interfaces.arxml file. The
<OPERATIONS> element encapsulates one or more <CLIENT-SERVER-
OPERATION> elements, each of which defines a single operation in the client-
server interface.

74 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 28: ARXML code – operation in a client-server interface

Each operation is named using the <SHORT-NAME> element. The name specified
here will form part of the name used by the RTE to refer to the operation in your
code.

The <ARGUMENTS> element encapsulates one or more <ARGUMENT-DATA-
PROTOTYPE> elements that define each argument (parameter) of the operation.

Each <ARGUMENT-DATA-PROTOTYPE> definition must define the following:

− the <SHORT-NAME> of the parameter

− a <TYPE-TREF> reference to the type of the parameter

The referenced type must correspond to a defined type – see chapter 4,
Data Types, on page 31

− the <DIRECTION> of the parameter as "IN" (read only), "OUT" (write
only) or "INOUT" (readable and writable by the component)

If nothing else is specified, operations in client-server interfaces return the RTE
standard return type Std_ReturnType. It is also possible to return an application
error. This is done by selecting a previously defined ASCET enumeration that con-
tains all possible errors.

To create an enumeration with the possible errors in an application error

1. In the component manager, select Insert > Enumeration or click the
Enumeration button.

75 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

2. Name the enumeration ApplicationError.

3. In the "Contents" pane, select the enumerator.

4. Select Enumeration > Rename and set the label to E_NOT_OK.

5. Double-click the value 0.

6. Set the value to a number in the range 2..63.

 NOTE

The value range for application errors is [2..63]. If the ASCET enumeration
for the application errors contains a value less than 2 or larger than 63, an error
is issued during code generation.

To assign an application error to the return value of an operation
1. Open CSInterface in the client-server interface editor.

2. Create another operation (see page 71) and name it Notification.

3. Double-click the operation Notification.

The "Method Signature Editor for: Notification" window opens.

4. Go to the "Return" tab and open the "Return Type" combo box.

76 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 26: Return type for the operation Notification

5. Select <enumeration>.

The "Choose a enumeration type…" window opens.

6. Select the enumeration ApplicationError.

7. Click OK to close the "Choose a enumeration type…" window.

8. Click OK to close the method signature editor.

The operation Notification and the possible application errors in configura-
tion language are generated by ASCET in the Swc_interfaces.arxml file:

77 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 29: ARXML code – operation with possible application errors

 NOTE

Application errors are coded in the least significant 6 bits of Std_ReturnType.
The value range for application errors is [2..63]. If the ASCET enumeration
for the application errors contains a value less than 2 or larger than 63, an error
is issued during code generation.

5.4 Calibration
Calibration interfaces are used for communication with Calibration components.
Calibration components are a kind of software component, which uniquely con-
sist of calibration information (parameters and characteristics).

Each calibration interface can contain multiple calibration parameters. A port of a
software component that requires an AUTOSAR calibration interface can inde-
pendently access any of the parameters defined in the interface by making an
RTE API to the required port. Calibration components provide the calibration in-
terface and thus provide implementations of the calibration parameters.

To create a calibration interface
1. In the component manager, select Insert > AUTOSAR > Calibration Inter-

face.

2. Name the calibration interface CalInterface.

78 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

3. Insert CalInterface into SWC.

When generating code for an AUTOSAR project, ASCET defines a <PARAMETER-
INTERFACE> element in the file Swc_interfaces.arxml. The <PARAMETER-
INTERFACE> element has the following structure in the configuration language:

Listing 30: ARXML code – calibration interface structure

A calibration interface is named using the <SHORT-NAME> element. The name is
used within other elements that need to reference the interface type.

The short-name of a calibration interface should be a valid C identifier.

A calibration interface consists of one or more calibration elements defined using
the <PARAMETER-DATA-PROTOTYPE> container element.

Calibration Parameters
To create a calibration parameter

1. In the component manager, double-click CalInterface.

The "Calibration Interface Editor for: CalInterface" editor opens.

2. Use the Logic Parameter button to create a logic parameter.

The dialog "Properties for Scalar Element: log" window opens.

3. Name the parameter CalParam1.

4. Create another logic parameter CalParam2.

5. Create () an unsigned discrete parameter CalParam3.

To create an implementation of a calibration parameter
1. In the "Calibration Interface Editor for: CalInterface" editor, go to the "Im-

plementation" tab.

2. In the "Implementation" tab, double-click the CalParam3 element.

3. The "Implementation for: CalParam3" dialog opens.

4. In the "Master" area, activate Model.

5. In the "Model" area, enter the value 24 in the "Max" field.

6. Click OK.

The Implementation tab of the "Calibration Interface Editor for: CalInterface" ed-
itor shall look like the figure below.

79 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 27: Implementation Impl of the calibration interface CalInterface

The implementation editor also contains an "AUTOSAR" tab with policy settings.
These are written to the ARXML files.

An implementation of a calibration interface in ASCET corresponds to a calibra-
tion interface in AUTOSAR. The calibration interface in configuration language is
generated by ASCET in the Swc_interfaces.arxml file. The declaration of cali-
bration elements within a calibration interface definition has the following struc-
ture:

80 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 31: ARXML code – declaration of calibration elements within a calibration
interface definition

A calibration element is defined using the <PARAMETER-DATA-PROTOTYPE> ele-
ment, and all elements must be defined within an encapsulating <PARAMETERS>
element.

Each <PARAMETER-DATA-PROTOTYPE> element must specify the following:

− the <SHORT-NAME> that you will use to refer to the item

− the <SW-DATA-DEF-PROPS> data properties, among them

• the <SW-CALIBRATION-ACCESS>

− a <TYPE-TREF> reference to the type of the data item

5.5 NVData
AUTOSAR R4.0 introduced the <NV-DATA-INTERFACE> element, which defines
an interface used by an Nv-block software component type. Each NVData inter-
face may contain multiple NVData elements, which can be sent and received in-
dependently.

81 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

To create an NVData interface

1. In the component manager, select Insert > AUTOSAR > NVData Interface.

2. Name the NVData interface NVData_Interface.

3. Insert NVData_Interface into SWC.

When generating code for an AUTOSAR project, ASCET defines an <NVDATA-
INTERFACE> element in the file Swc_interfaces.arxml. The <NVDATA-
INTERFACE> element has the following structure in the configuration language:

Listing 32: ARXML code – NVData interface structure

The name of the NVData interface definition is given by the <SHORT-NAME> ele-
ment. The name is used within other elements that need to reference the inter-
face type, for example, a software component may specify that it uses NVData
interface NVData_Interface.

The short-name of an NVData interface should be a valid C identifier.

An NVData interface can be used to communicate non-volatile data using NVData
elements, i.e. variable data prototypes, within the <NV-DATAS> element.

Variable Data Prototypes
Each NVData interface can specify zero or more NVData elements, or variable
data prototypes, which constitute the AUTOSAR signals communicated over the
interface. Each data element defines a prototype of a specific type and can be a
primitive data type, a RECORD or an ARRAY type. See chapter 4, Data Types, on
page 31 for details of defining data types.

82 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

To set up an NVData element in ASCET

1. Double-click NVData_Interface.

NVData_Interface opens in the NVData interface editor.

2. Create an sdisc element named Speed_NV, as described on page 64.

3. Create the same implementation for Speed_NV as described on page 65.

Figure 28: NVData element Speed_NV of the NVData interface NVData_Inter-
face with implementation Impl

An implementation of an NVData interface in ASCET corresponds to an NVData
interface in AUTOSAR. The NVData interface in configuration language is gener-
ated by ASCET in the file Swc_interfaces.arxml. The declaration of NVData
elements within an NVData interface definition has the following structure:

Listing 33: ARXML code – declaration of NVData elements within NVData inter-
face

An NVData element is defined using the <VARIABLE-DATA-PROTOTYPE> ele-
ment, and all elements must be defined within an encapsulating <NV-DATAS> el-
ement.

83 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

Each <VARIABLE-DATA-PROTOTYPE> element must specify:

− the <SHORT-NAME> that you will use to refer to the item

− the <SW-DATA-DEF-PROPS> data properties, among them

• the <SW-ADDR-METHOD-REF>

• the <SW-CALIBRATION-ACCESS>

• the <SW-IMPL-POLICY>

− a <TYPE-TREF> reference to the type of the data item

5.6 Implementations of Interfaces
The implementation editor for an AUTOSAR interface offers the following set-
tings:

− Interface represents an AUTOSAR service option

If this option is activated, ASCET sets the IS-SERIVCE element to true in
the generated ARXML code (i.e. <IS-SERVICE>true</IS-SERVICE>).
This tells an AUTOSAR RTE generator that the interface is to be used for
communication between an application software component and a service
component (e.g., an AUTOSAR service, ECU abstraction, or complex driver)
located on the same ECU.

For communication between application software components, this option
must be deactivated.

− "AUTOSAR package name" field

Allows to determine an AUTOSAR package name for the interface. The
AUTOSAR package name must be of the following form:

/<package>/<subpackage>[/<interface>]

At least /<package>/<subpackage> must be given; otherwise, an error is
issued during code generation.

The semantic of the give package name is as follows:

• If the name is empty, the general template for the associated interface
kind, specified in the "ARXML Configuration Settings" window, will apply.

• If the name is not empty, and of the proper form, it will be used as the
package name (this includes the short-name) of the associated
AUTOSAR interface.

The given name must not contain any template parameter (i.e. %...%), but
is taken as is.

− Interface is defined externally option

If this option is activated, the interface is defined externally and will not be
generated by ASCET, only referred to.

 NOTE

If Interface is defined externally is activated, the "AUTOSAR package
name" field must not be empty. If it is, an error (MMdl6490) is issued dur-
ing code generation.

84 | Interfaces

ETAS ASCET V6.4 | AUTOSAR User Guide

− "AUTOSAR Data Type Mapping Set" field

Allows to determine a data type mapping set that will be added to the soft-
ware component for data types used in an external interface.

If the name is empty, the general template specified in the "ARXML Config-
uration Settings" window will apply.

85 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

6 Software Component Types
A software component is the atomic software unit of application in AUTOSAR.
Software components interact through ports, which are typed interfaces. The in-
terfaces control what can be communicated and the semantics of the communi-
cation.

To create an AUTOSAR software component

1. In the component manager, select Insert > AUTOSAR > Software Compo-
nent Block Diagram or Software Component ESDL.

2. Name the software component Swc.

3. Follow the steps described in section 3.1.2, Code Generation Settings for
AUTOSAR, on page 17 to create an AUTOSAR project ARProject and set
the AUTOSAR code generation settings.

4. Insert the software component Swc in the project, as described on page 23.

To open a software component in an AUTOSAR project

1. In the component manager, double-click the ARProject project.

The project editor window opens.

2. In the "Outline" tab of the project editor, double-click the Swc software
component.

The software component editor window opens.

Each software component must have its component type declared in the RTE
generator's configuration. The component type makes the component available
for composition into a larger software system. An application software compo-
nent type is defined using the <APPLICATION-SOFTWARE-COMPONENT-TYPE>
element in the <swc name>.arxml file.

<APPLICATION-SW-COMPONENT-TYPE>

 <SHORT-NAME>SWC</SHOET-NAME>

 <PORTS>

 ...

 </PORTS>

</APPLICATION-SW-COMPONENT-TYPE>

Listing 34: ARXML code – definition of application software component type

The software component type must be named using the <SHORT-NAME> ele-
ment. The name must be system-wide unique; it is used within other elements to
reference the software component type.

The short-name of a software-component must be a valid C identifier.

6.1 Ports
Ports provide the software component access to the interface. There are two
classes of ports: provided ports (Pports) and required ports (Rports).

The ports of a software component are defined within the <PORTS> element.

86 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

<PORTS>

 <R-PORT-PROTOTYPE>

 ...

 </R-PORT-PROTOTYPE>

 <P-PORT-PROTOTYPE>

 ...

 </P-PORT-PROTOTYPE>

</PORTS>

Listing 35: ARXML code – port definition structure (all AUTOSAR versions)

Within the <PORTS> element, the <P-PORT-PROTOTYPE> and the <R-PORT-
PROTOTYPE> elements are used to define provided ports and required ports re-
spectively. When two components communicate, then typically both provided
and required ports reference the same interface definition. This guarantees that
they are compatible.

6.1.1 Provided Ports
Pports are used by a software component to provide data or services to other
software components. Provided ports implement senders and servers.

6.1.1.1 Sender Port
To create a sender port

1. In the "Software Component Editor for: Swc", select Insert > Component.

The "Select item…" window opens.

2. In the "Database" or "Workspace" field of the "Select Item" window, select
the interface SRInterface and click OK.

Figure 29: Selection of the item SRInterface

The "Properties for complex element: SRInterface" window opens.

3. Name the Port Sender, activate Provided in the "Internal Access" area and
click OK.

87 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 30: Provided port Sender of type SRInterface

4. If you are working in the block diagram editor for SWC, drag the element
Sender from the "Outline" tab and drop it on the drawing area of the soft-
ware component editor.

The Pport Sender with elements Speed and log appears in the drawing
area as follows.

88 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 31: Pport Sender in the drawing area of the block diagram editor for
software components

A provided port within a software component type definition is named using the
<SHORT-NAME> element. The name is used within other elements to reference
the port. The short-name of a provided port must be a valid C identifier.

Each provided port definition must specify the interface type over which it will
communicate with other ports. This is done in the <swc name>.arxml file, using
the <PROVIDED-INTERFACE-TREF> element. This <PROVIDED-INTERFACE-
TREF> element must identify the required interface.

In addition, AUTOSAR R4.* requires the <PROVIDED-COM-SPECS> element that
contains details about individual data elements, among them the following:

− <DATA-ELEMENT-REF> - which identifies the data element

− <INIT-VALUE> - which specifies the initial value of the data element

89 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 36: ARXML code – provided port Sender definition

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see Listing 36. However, AUTOSAR R4.* offers another speci-
fication means for physical initial values, <APPLICATION-VALUE-
SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

Boolean initial values TRUE/FALSE are generated as 0/1 when using the
<APPLICATION-VALUE-SPECIFICATION>.

To select the specification means for initial values

The selection made here applies to data elements in <PROVIDED-COM-SPECS>
and <REQUIRED-COM-SPECS> of sender-receiver and NVData interfaces, data
elements in <PARAMETER-REQUIRE-COM-SPEC> of calibration interfaces, and
interrunnable variables.

1. Open the parent project or default project of your SWC.

2. In the project editor, select File > Properties.

The "Project Properties" dialog window opens.

3. In the "OS Configuration" node (cf. Figure 6 on page 21), click the Edit but-
ton to open the "ARXML Configuration Settings" dialog window.

90 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

4. In the "Miscellaneous" node of the "ARXML Configuration Settings" dialog
window, do one of the following:

• Activate Generate Application Init Values to select application value
specification (cf. Listing 37 on page 92).

• Deactivate Generate Application Init Values to select numerical value
specification (cf. Listing 36 on page 89).

91 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 32: "ARXML Configuration Settings" window, "Miscellaneous" node

5. Close the "ARXML Configuration Settings " window with OK.

6. Close the "Project Properties" window.

 NOTE

The changes in the "ARXML Configuration Settings" window are kept
even if you leave the "Project Properties" window with Cancel.

7. Generate code for the project.

92 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 37: ARXML code – provided port Sender definition with <APPLICATION-
VALUE-SPECIFICATION>

AUTOSAR requires the <APPLICATION-VALUE-SPECIFICATION> initial values
to refer to a UNIT; see Listing 37 on page 92. A dummy unit named
ASCET_empty_unit (see A in Listing 37) is created and referred to by all initial
values with an empty unit specified at the transformation formula (see Figure 33)
selected in the implementation editor of the element.

Figure 33: Project editor, "Formulas" tab

93 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Units are defined in the Swc_compumethods.arxml file, in the ASCET_Units
package.

Listing 38: ARXML code – Swc_compumethods.arxml file, ASCET_Units defi-
nition

6.1.1.2 Server Port
To create a server port

1. In the "Software Component Editor for: Swc", select Insert > Component.

The "Select item…" window opens.

2. In the "Database" or "Workspace" field of the "Select Item" window, select
the interface CSInterface and click OK.

The "Properties for complex element: CSInterface" opens.

3. Name the Port "Server", activate Provided in the "Internal Access" area,
and click OK.

94 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 34: Provided port Server of type CSInterface

A message window opens and informs you that all graphical occurrences of
the port will be removed when you set the port to Provided.

4. Confirm the message with OK.

ASCET creates the following items:

• a server node named Server::CSInterface under the folder "Real-
ized Interfaces"

• a diagram Server_CSInterface

• a server runnable for each operation in the client-server interface
CSInterface
In Figure 35 below, ASCET has created the runnables Server_Maxi-
mumValue and Server_Notification.

95 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 35: Pport Server in the "Outline" tab of the software component Swc

The entry function of the server runnable has a return type of void or
Std_ReturnType, depending on whether or not the server returns an applica-
tion error.

The provided port must specify the interface type over which it will communicate
with other ports using the <PROVIDED-INTERFACE-TREF>. This <PROVIDED-
INTERFACE-TREF> element must identify the required interface.

Listing 39: ARXML code – provided port Server definition

Furthermore, ASCET provides additional information to the internal behavior of
the software component Swc. On the one hand, one operation-invoked event is
created for each operation in the server port. On the other hand, a runnable entity
is created for each operation in the server port. Refer to chapter 7, Internal Be-
havior, on page 105 for more detailed information.

 NOTE

A client-server interface might be edited once a server is inserted in a software
component. In this case, you must update the server interface in the software
component using the menu option Build > Update Interfaces.

96 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

6.1.2 Required Ports
Rports are used by a software component to require data or services from other
software components. Required ports implement receivers, clients, calibration
ports, and NVData ports.

The definition of a required port is identical to that of a provided port, with the ex-
ception that the <R-PORT-PROTOTYPE> element is used.

6.1.2.1 Receiver Port
To create a receiver port

1. In the "Software Component Editor for: Swc", select Insert > Component.

The "Select item…" window opens.

2. In the "Database" or "Workspace" field of the "Select Item" window, select
the interface SRInterface and click OK.

The "Properties for complex element: SRInterface" window opens.

3. Name the Port Receiver, activate Required in the "Internal Access" area
and click OK.

97 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 36: Required port Receiver of type SRInterface

4. If you are working in the block diagram editor for SWC, drag the element
Receiver from the "Outline" tab and drop it on the drawing area of the
software component editor.

The Rport Receiver with element Speed appears in the drawing area as
follows.

98 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 37: Rport Receiver in the drawing area of the block diagram editor
for software components

A required port within a software component type definition is named using the
<SHORT-NAME> element. The name is used within other elements to reference
the software component type. The short-name of a required port must be a valid
C identifier.

The required port definition must reference an interface definition defined using
the <REQUIRED-INTERFACE-TREF> element.

In addition, AUTOSAR R4.* requires the <REQUIRED-COM-SPECS> element that
contains details about individual data elements, e.g.,

− <DATA-ELEMENT-REF> - which identifies the data element,

− <INIT-VALUE> - which specifies the initial value of the data element,

and others.

Listing 40: ARXML code – required port Receiver definition

99 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see Listing 36. However, AUTOSAR R4.* offers another speci-
fication means for physical initial values, <APPLICATION-VALUE-
SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

See section To select the specification means for initial values on page 89 for an
instruction how to select the specification means.

6.1.2.2 Client Port
To create a client port

1. In the "Software Component Editor for: Swc", select Insert > Component.

The "Select item…" window opens.

2. In the "Database" or "Workspace" field of the "Select Item" window, select
the interface CSInterface and click OK.

The "Properties for complex element: CSInterface“ editor opens.

3. Name the Port "Client", activate Required in the "Internal Access" area
and click OK.

100 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 38: Required port Client of type CSInterface

4. In the block diagram editor for SWC, do also the following:

i. Drag the element Client from the "Outline" tab and drop it on the
drawing area of the software component editor.

ii. If necessary, activate flexible layout for the interface CSInterface:

a. Go to the component manager.

b. In the "Database" or "Workspace" pane, right-click CSInterface
and select Flexible Class Layout > Activate from the context menu.

c. In the "Change Flexible Class Layout State" window, select
CSInterface and click OK.

iii. In the drawing area, right-click the Client port and select Ports >
Methods from the context menu.

The "Port Editor<CSInterface>" window opens.

iv. Deactivate the method Notification and click OK.

101 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 39: Port editor window to select/deselect methods

v. Resize the Client block and reposition the pins.

The Rport Client with operation MaximumValue appears as follows (or
similar) in the drawing area.

Figure 40: Rport Client in the drawing area of the block diagram edi-
tor for software components

The required port definition must reference an interface definition defined using
the <REQUIRED-INTERFACE-TREF> element. In addition, the <REQUIRED-COM-
SPECS> element is required, which contains details about individual operations.

Listing 41: ARXML code – required port Client definition

6.1.2.3 Calibration Port
To create a calibration port

1. In the "Software Component Editor for: Swc", select Insert > Component.

The "Select item…" window opens.

2. In the "Database" or "Workspace" field of the "Select Item" window, select
the interface CalInterface and click OK.

102 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

The "Properties for complex element: CalInterface" window opens.

3. Name the Port Calibration and click OK.

The "Internal Access" is set to Required; it cannot be changed.

4. If you are working in the block diagram editor for SWC, drag the element
Calibration from the "Outline" tab and drop it on the drawing area of the
software component editor.

The Rport Calibration with elements CalParam1, CalParam2 and Cal-
Param3 appears in the drawing area as follows.

Figure 41: Rport Calibration in the drawing area of the block diagram
editor for software components

The required port definition must reference an interface definition defined using
the <REQUIRED-INTERFACE-TREF> element.

In addition, AUTOSAR R4.* requires the <REQUIRED-COM-SPECS> element that
contains one <PARAMETER-REQUIRE-COM-SPEC> element for each parameter
interface with details about the respective parameter, e.g.,

− <PARAMETER-REF> - which identifies the parameter,

− <INIT-VALUE> - which specifies the initial value of the parameter,

and others.

Listing 42: ARXML code – required port Calibration definition

103 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see Listing 36. However, AUTOSAR R4.* offers another speci-
fication means for physical initial values, <APPLICATION-VALUE-
SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

See section To select the specification means for initial values on page 89 for an
instruction how to select the specification means.

6.1.2.4 NVData Port
To create an NVData port

1. In the "Software Component Editor for: Swc", select Insert > Component.

The "Select item…" window opens.

2. In the "Database" or "Workspace" field of the "Select Item" window, select
the interface NVData_Interface and click OK.

The "Properties for complex element: NVData_Interface" window opens.

3. Name the Port NVData and click OK.

The "Internal Access" is set to Required; it cannot be changed.

4. If you are working in the block diagram editor for SWC, drag the element
NVData from the "Outline" tab and drop it on the drawing area of the soft-
ware component editor.

The Rport NVData with element Speed_NV appears in the drawing area as
follows.

Figure 42: Rport NVData in the drawing area of the block diagram editor
for software components

AUTOSAR R4.* requires the <REQUIRED-COM-SPECS> element that contains one
<NV-REQUIRE-COM-SPEC> element for each NVData element with details about
the respective NVData element, among them the following:

− <VARIABLE-REF> - which identifies the NVData element

− <INIT-VALUE> - which specifies the initial value of the NVData element

104 | Software Component Types

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 43: ARXML code – required port NVData definition

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see Listing 36. However, AUTOSAR R4.* offers another speci-
fication means for physical initial values, <APPLICATION-VALUE-
SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

See section To select the specification means for initial values on page 89 for an
instruction how to select the specification means.

105 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

7 Internal Behavior
The internal behavior of a software component defines how the code that imple-
ments the component interacts with the ports. In this chapter, you will see how to
configure the internal behavior.

Internal behavior elements are used to define how the software component will
interact with the RTE at runtime. The internal behavior of a software component
specifies:

− The runnable entities that belong to the software component and how
they interact (if at all) with the ports of the software component.

− The events that cause runnable entities to be activated at runtime.

− The interrunnable variables used for communication between the runna-
bles of a software component.

− The exclusive areas that exist so runnable entities can execute all or part
of their code in mutual exclusion from other runnable entities.

Each internal behavior description is applicable to a single software component
and therefore must reference the software component type to which it applies. In
AUTOSAR R4.*, the reference is established in the <SWC name>.arxml file, using
the <DATA-TYPE-MAPPING-REF> element.

Listing 44: ARXML code – internal behavior description for Swc

An internal behavior must be named using the <SHORT-NAME> element. The
name is used within other elements to reference the behavior. ASCET automati-
cally names the internal behavior of a software component with a prefix b fol-
lowed by the name of the software component.

106 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

The short-name of an internal behavior does not need to be a valid C identifier
(but it must pass the syntactic checks enforced by the XML Schema).

The following sections first outline the basic framework for events and runnable
entities before showing how to configure the RTE to achieve different types of
runnable entity/interface interaction.

7.1 Events
Events control how runnable entities are triggered by the generated RTE at
runtime. ASCET V6.4 supports the following events:

− TIMING-EVENT – activates a runnable entity periodically. The <TIMING-
EVENT> allows you to execute a runnable entity to poll an Rport to check if
data has been received, periodically call a server (i.e. be a client), periodi-
cally send data on a Pport, or simply to execute some internal software
component functionality. Runnable entities that are activated in response
to a timing event are said to be time-triggered.

− OPERATION-INVOKED-EVENT – activates a runnable entity to handle a
server call for an operation on a provided port characterized by a client-
server interface.

− MODE-SWITCH-EVENT – activates a runnable entity on either entry to, or
exit from, an application mode.

The structure for specifying events is similar to the structure shown in Listing 45.
The actual sequence of events is determined by the event names.

<EVENTS>

 <TIMING-EVENT>

 ...

 </TIMING-EVENT>

 <OPERATION-INVOKED-EVENT>

 ...

 </OPERATION-INVOKED-EVENT>

 <SWC-MODE-SWITCH-EVENT>

 ...

 </SWC-MODE-SWITCH-EVENT>

</EVENTS>

Listing 45: ARXML code – structure for event specification

An event can be used to activate a runnable entity when the event occurs. An
event references the runnable entity that is to be activated when the event oc-
curs.

7.1.1 Timing Events
A <TIMING-EVENT> is used to indicate that a runnable entity will be activated
periodically by the operating system. The RTE generator will use this information
to generate an appropriate schedule table that must be ticked from application
code.

107 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

To create a timing event
1. In the "Software Component Editor for: Swc", go to the "Event Specifica-

tion" tab.

2. Select Event > Add Event and name the event Cyclic_10ms.

3. In the "Event Kind" combo box, select Timing.

4. In the "Period" field, enter a period of 0.01 seconds.

The timing event Cyclic_10ms appears in the "Event Specification" tab as
follows.

Figure 43: Definition of the timing event Cyclic_10ms

ASCET enables the user to specify the modes in which this timing event shall be
activated. For the use of application modes refer to chapter 8, Modes, on
page 165.

When the timing event is mapped to a runnable entity (see section 7.2, Runnable
Entities, on page 110), then ASCET generates the <TIMING-EVENT> element in
the configuration language:

<EVENTS>

 <TIMING-EVENT>

 <SHORT-NAME>Cyclic_10ms</SHORT-NAME>

 <START-ON-EVENT-REF DEST="RUNNABLE-ENTITY">

 /ASCET_ComponentTypes/Swc/bSwc/RunnableEntity

 </START-ON-EVENT-REF>

 <PERIOD>0.01</PERIOD>

 </TIMING-EVENT>

 ...

</EVENTS>

Listing 46: ARXML code – definition of a timing event (all AUTOSAR versions)

108 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

A timing event must be named using the <SHORT-NAME> element. The name is
used within other elements to reference the timing event. The short-name of a
timing event does not need to be a valid C identifier.

The <START-ON-EVENT-REF DEST="RUNNABLE-ENTITY"> element defines
the runnable entity that is to be activated when the event occurs. The <PERIOD>
element specifies the time raster in seconds to be used by the RTE generator.

7.1.2 Operation-Invoked Events
Operation-Invoked events are automatically inserted in an ASCET software com-
ponent when you create a server port (see section 6.1.1, Provided Ports, on page
86 for how to create a server port).

Figure 44: Operation-Invoked event for the server operations MaximumVal and
Notification

An Operation-Invoked event is defined using the <OPERATION-INVOKED-
EVENT> element. Each <OPERATION-INVOKED-EVENT> element must specify:

− the <SHORT-NAME> to refer to the event, which can be edited manually in
ASCET by the user

− a <START-ON-EVENT-REF DEST="RUNNABLE-ENTITY"> reference to
the runnable entity

− an <OPERATION-IREF> reference to the operation prototype and server
port

The Operation-Invoked event for the operation MaximumValue is defined in the
configuration language as follows:

109 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 47: ARXML code – definition of an Operation-Invoked event

7.1.3 Mode-Switch Events
Mode-switch events activate a runnable entity on entry to, or exit from, an appli-
cation mode.

To create a mode-switch event
1. In the "Software Component Editor for: Swc", go to the Event Specifica-

tion tab.

2. Select Event > Add Event and name the event ModeEvent.

3. In the "Event Kind" combo box, select ModeSwitch.

4. Set the following mode switch settings:

• Activation: entry

• Assigned Mode: on::OnOffMode

Figure 45: Modeling ModeEvent on entry with mode on of the application mode
OnOffMode

When the mode-switch event is mapped to a runnable entity (see section 7.3, Re-
sponding to Timing Events, on page 113), then ASCET generates the <SWC-MODE-
SWITCH-EVENT> element in the configuration language:

110 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 48: ARXML code – definition of a Mode-Switch event

In the "Events" field, all modes in the assigned mode group are shown below the
Mode-Switch event. They can be enabled/disabled individually. If at least one
mode is deactivated (see Figure 71 on page 170), the <DISABLED-MODE-IREFS>
element is added to the configuration language, with one <DISABLED-MODE-
IREF> element for each deactivated mode.

For ARXML code examples, see Listing 90 on page 171.

See section 8.3.3, Disabling Modes, on page 170 for more information on disabled
modes.

A Mode-Switch event must be named using the <SHORT-NAME> element. The
name is used within other elements to reference the timing event. The short-
name of a timing event does not need to be a valid C identifier.

Each <MODE-SWITCH-EVENT> element must specify the following:

− a <START-ON-EVENT-REF DEST="RUNNABLE-ENTITY"> reference to
the runnable entity

− an <ACTIVATION> value, ENTRY or EXIT, for the activation type

− a <MODE-IREF> element, which defines the mode associated with the
event

− optionally, a <MODE-DEPENDENCY> reference to a mode declaration

7.2 Runnable Entities
A runnable entity, or simply runnable, is a piece of code in a software component
that is triggered by the RTE at runtime. A software component comprises one or
more runnables, and each runnable must have a unique handle so that the RTE
can access it at runtime.

111 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

To create a runnable entity
1. In the "Software Component Editor for: Swc", select a diagram (e.g., Main)

in the "Outline" tab.

2. Select Insert > Runnable and name it RunnableEntity.

All runnable entities must be defined in the Software Component Template within
the <RUNNABLES> definition in an <SWC-INTERNAL-BEHAVIOR> definition.

<RUNNABLE-ENTITY>

 <SHORT-NAME>RunnableEntity</SHORT-NAME>

 <CAN-ENTER-EXCLUSIVE-AREA-REFS>

 ...

 </CAN-ENTER-EXCLUSIVE-AREA-REFS>

 <MINIMUM-START-INTERVAL>0.0</MINIMUM-START-INTERVAL>

 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

 /ASCET_AddrMethods/CODE

 </SW-ADDR-METHOD-REF>

 <CAN-BE-INVOKED-CONCURRENTLY>false</CAN-BE-INVOKED-CONCURRENTLY>

 ...

 <SYMBOL>Swc_Impl_RunnableEntity</SYMBOL>

 ...

</RUNNABLE-ENTITY>

Listing 49: ARXML code – runnable entity definition (AUTOSAR R4.2.2)

A <RUNNABLE-ENTITY> must be named using the <SHORT-NAME> element. The
name is used within other elements to reference the runnable entity.

The <SHORT-NAME> denotes the name of the runnable entity in the XML
namespace, but it does not tell the RTE what the associated function body you
will provide in your code is called. This information is provided by the <SYMBOL>
declaration that links the runnable entity to the C function name you will use in
your implementation. The <SYMBOL> name must be a valid C identifier.

In AUTOSAR R4.*, the <SW-ADDR-METHOD-REF> element is used to determine
the memory class for the generated code.

The symbol of a runnable entity is optional information in ASCET. If not defined,
ASCET takes the name of the function in the ASCET-generated code that imple-
ments the runnable entity. In the example, ASCET generates the C function
SWC_IMPL_RunnableEntity. If the symbol is defined, then ASCET generates
C code for the runnable entity according to the given symbol.

To set the C identifier for a runnable
1. In the "Outline" tab of the software component editor, select the runnable

RunnableEntity and select Edit > Implementation.

The window "Implementation for: RunnableEntity" opens.

2. Enter the symbol RteRunnable_Swc_RunnableEntity.

3. Click OK.

112 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 46: Setting the symbol RteRunnable_Swc_RunnableEntity for the
runnable RunnableEntity

With that, ASCET will generate C code for the implemented runnable and name it
RteRunnable_Swc_RunnableEntity (see file Swc.c in this example):

FUNC(void, CODE) RteRunnable_SWC_RunnableEntity (void)

{

 ...

}

The <RUNNABLE-ENTITY> description is generated accordingly:

<RUNNABLE-ENTITY>

 <SHORT-NAME>RunnableEntity</SHORT-NAME>

 <CAN-ENTER-EXCLUSIVE-AREA-REFS>

 ...

 </CAN-ENTER-EXCLUSIVE-AREA-REFS>

 <MINIMUM-START-INTERVAL>0.0</MINIMUM-START-INTERVAL>

 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

 /ASCET_AddrMethods/CODE

 </SW-ADDR-METHOD-REF>

 <CAN-BE-INVOKED-CONCURRENTLY>false</CAN-BE-INVOKED-CONCURRENTLY>

 ...

 <SYMBOL>RteRunnable_Swc_RunnableEntity</SYMBOL>

 ...

</RUNNABLE-ENTITY>

Listing 50: ARXML code – runnable entity definition with user-defined
<SYMBOL> (AUTOSAR R4.2.2)

This declaration is sufficient if your runnable entity does not need to interact with
the software component's ports. However, if a runnable entity needs to com-
municate through ports, then you need to specify additional information that al-
lows the RTE generator to generate APIs to allow interaction to take place, for ex-
ample:

A. What data items the runnable entity can send.

B. What data items the runnable entity can receive.

113 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

C. Which servers the runnable entity calls and how it expects the result to be
returned.

You can use the same runnable entity to receive data on one port and send data
on another port, or to receive data on a port and then call a server port to process
the received data. For example, you may create a runnable entity that reads an
integer value from an Rport, multiplies it by two and sends it out on a Pport.

A runnable entity that is not invoked by an Operation-Invoked event can also
specify a minimum start interval to control the rate at which activations occur. A
minimum start interval will delay the activation of a runnable to prevent that the
runnable is started more than once within the interval.

 NOTE

When using minimum start intervals, check how the runnable activation is im-
plemented by the RTE generator in use.

7.3 Responding to Timing Events
A runnable entity is executed periodically at runtime when the runnable entity is
associated with a timing event. Timing events specify how often the runnable en-
tities should execute.

The <TIMING-EVENT> element specifies the <PERIOD> of occurrence in sec-
onds and must reference a runnable entity defined in the component's internal
behavior using a <START-ON-EVENT-REF> element. A period of zero is illegal.

The following example shows how to configure the RTE to activate a runnable en-
tity every 10 milliseconds.

To assign a timing event to a runnable

1. Go to the "Event Specification" tab of the "Software Component Editor for:
Swc".

2. In the "Events" field, select the event Cyclic_10ms.

3. In the "Runnables" field, select the runnable RunnableEntity.

4. Select Event > Assign Event or click the >> button.

114 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 47: The event Cyclic_10ms is assigned to RunnableEntity

In the <TIMING-EVENT> element, the <START-ON-EVENT-REF
DEST="RUNNABLE-ENTITY"> element defines the runnable entity that is to be
activated when the event occurs. The <PERIOD> element specifies the time ras-
ter to be used by the RTE generator.

A timing event must be named using the <SHORT-NAME> element. The name is
used within other elements to reference the timing event. The short-name of a
timing event does not need to be a valid C identifier.

See also Listing 46: ARXML code – definition of a timing event (all AUTOSAR ver-
sions), on page 107.

7.4 Sending to a Port
If your software component provides a sender-receiver interface, you must de-
fine at least one runnable entity that sends data over the interface.

The runnable can send data in two ways:

− Explicitly, in which case the RTE generates an explicit API call that may be
optimized to a macro. The sent datum may be either queued or unqueued.

− Implicitly, in which case the RTE generates an implicit API call that will be
optimized to a macro. The sent datum must not be queued.

For senders, it does not matter how the runnable entity is triggered, so any event
can be used to activate the runnable entity.

7.4.1 Explicit Communication
To send to a port with explicit communication

1. Add a Pport Sender to Swc, as described in section To create a sender port
on page 86.

2. Insert a literal with value 120.

3. Choose the runnable RunnableEntity in the tree pane.

4. If you are working in the block diagram editor for SWC, proceed as follows:

115 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

i. Drag the Pport Sender from the "Outline" tab and drop it in the drawing
area of the software component editor.

ii. Use the RTE Access button to create an RTE Access operator and
place it in the drawing area.

iii. Connect the output of the RTE Access operator with the data element
Speed of the Sender port.

iv. Double-click the sequence call of Speed.

ASCET automatically assigns a sequence number for the sending of the
data element Speed within the runnable RunnableEntity, i.e. the se-
quence 5.

v. Connect the literal to the input of the RTE Access operator.

5. If you are working in the ESDL editor for SWC, proceed as follows:

i. Enter the following code send to a port without status inquiry:

Sender.speed.explicitWrite(120);

You can now generate code (see To generate code in a project on page 23).

Figure 48: Sending a value 120 to a sender port with explicit communication
(block diagram editor for SWC)

Runnable entities sending data with explicit communication must define a
<DATA-SEND-POINTS> element that specifies the data items that will be sent for
a given interface.

In AUTOSAR R4.*, a sent data item is described in a <VARIABLE-ACCESS> ele-
ment. Each <VARIABLE-ACCESS> element must specify the following properties:

− the <SHORT-NAME> that you will use to refer to the item (the short-name
does not need to be a valid C identifier)

− the <ACCESSED-VARIABLE> element that includes the <AUTOSAR-VARI-
ABLE-IREF> element that contains

• a <P-PORT-PROTOTYPE-REF> reference to the Pport

• a <TARGET-DATA-PROTOTYPE-REF> reference to the sent element

116 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 51: ARXML code – runnable entity with explicit send

For senders, it does not matter how the runnable entity is triggered, so any event
can be used to activate the runnable entity.

For the ASCET-generated C code, refer to section 9.3.1, Sending to a Port: Explicit
Communication, on page 177.

7.4.2 Implicit Communication
Runnable entities can also communicate using implicit data read/write access.
Such configuration is guaranteed to be implemented as a simple macro that ac-
cesses global storage defined in the RTE rather than through a C function call.

There are two possibilities to model implicit communication in ASCET:

A. Changing the RTE access from explicit to implicit.

B. Modeling the implicit communication without using the RTE access opera-
tor.

To change the RTE access to implicit
This instruction is relevant only for the block diagram editor for SWC.

1. In the drawing area, right-click the RTE access operator from the example
of section 7.4.1 and select Access > Implicit from the context menu as
shown in Figure 49.

117 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 49: Changing the access type of the RTE Access operator to implicit
(block diagram editor for SWC)

To send to a port with implicit communication

1. Insert a literal with value 120.

2. Choose the runnable RunnableEntity in the tree pane.

3. If you are working in the block diagram editor for SWC, proceed as follows:

i. Drag the Pport Sender from the "Outline" tab and drop it in the drawing
area of the software component editor.

ii. Connect the literal to the data element Speed of the port Sender.

iii. Double-click the sequence call of the data element Speed.

ASCET automatically assigns a sequence number for the sending of the
data element Speed within the runnable RunnableEntity, i.e. the se-
quence 10.

4. If you are working in the ESDL editor for SWC, proceed as follows:

i. Enter the following code send to a port without status inquiry:

Sender.speed = 120;

118 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 50: Writing a value 120 to a sender port with implicit communication
(block diagram editor for SWC)

The configuration of the implicit communication is almost identical to the explicit
communication. Instead of a <DATA-SEND-POINTS> element, the implicit com-
munication is defined using a <DATA-WRITE-ACCESSS> element:

Listing 52: ARXML code – runnable entity with implicit send

For the ASCET-generated C code, refer to section 9.3.1, Sending to a Port: Explicit
Communication, on page 177.

7.5 Receiving from a Port
Similarly, if your software component requires a sender-receiver interface, then
you must define at least one runnable entity that receives data over the inter-
face. Data can be received in the following ways:

− Implicit data read access – your runnable is activated by some event, e.g., a
timing event, and makes an RTE API call to read data

− Explicit Data read access – your runnable entity is activated by an event
and makes an RTE API call to read/receive the data. The receiver uses a
non-blocking API to poll for the data.

119 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

7.5.1 Explicit Data Read Access
To receive from a port with explicit communication

1. Add an Rport Receiver to SWC, as described in section To create a re-
ceiver port on page 96.

2. Insert a limitedInteger variable named SpeedSwc, with range [-32768,
32767].

3. Implement the variable SpeedSwc as a sint16.

4. In the "Outline" tab, select the runnable RunnableEntity.

5. If you are working in the block diagram editor for SWC, proceed as follows:

i. Drag the Rport Receiver from the "Outline" tab and drop it in the draw-
ing area of the software component editor.

ii. Use the RTE Access button to create an RTE Access operator and
place it in the drawing area.

iii. Connect the data element Speed of the Receiver port to the input of
the RTE Access operator.

iv. Double-click the empty sequence call of the variable SpeedSwc.

ASCET automaticallys assign a sequence number to SpeedSwc within the
runnable RunnableEntity, e.g., the sequence 10.

6. If you are working in the ESDL editor for SWC, proceed as follows:

i. Enter the following code to receive from a port without status inquiry:

Receiver.Speed.explicitRead(SpeedSWC);

Figure 51: Receiving the value Speed from the Rport Receiver with explicit
communication (block diagram editor for SWC)

Runnables that are required to receive data with explicit "data read access" must
define a <DATA-RECEIVE-POINT-BY-VALUES> element that specifies the re-
ceived data items.

In AUTOSAR R4.*, a received data item is described in a <VARIABLE-ACCESS> el-
ement. Each <VARIABLE-ACCESS> element must specify the following proper-
ties:

− the <SHORT-NAME> that you will use to refer to the item (the short-name
does not need to be a valid C identifier)

− the <ACCESSED-VARIABLE> element that includes the <AUTOSAR-
VARIABLE-IREF> element that contains

120 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

• a <P-PORT-PROTOTYPE-REF> reference to the Rport

• a <TARGET-DATA-PROTOTYPE-REF> reference to the received ele-
ment

Listing 53: ARXML code – runnable entity with explicit receive

Using data read access implies that the runnable entity is polling the Rport for the
specified data item. It is common, therefore, that a runnable entity that defines a
<DATA-RECEIVE-POINT-BY-VALUES> element will be activated by a <TIMING-
EVENT> that specifies the required polling period.

For the ASCET-generated C code, refer to section 9.3.4, Receiving from a Port:
Explicit Communication, on page 180.

7.5.2 Implicit Data Read Access
The following possibilities to model implicit communication are available in ASCET:

A. Changing the RTE access from explicit to implicit.

B. Modeling the implicit communication without using the RTE access opera-
tor.

To change the RTE access to implicit

This instruction is relevant only or the block diagram editor for SWC.

1. In the drawing area, right-click the RTE access operator from the example
of section 7.5.1 and select Access > Implicit from the context menu as
shown in Figure 52.

121 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 52: Changing the access type to implicit in the RTE Access operator
(block diagram editor for SWC)

To receive from a port with implicit communication

1. Insert a signed discrete variable, name it SpeedSwc, and implement it as a
sint16 with implementation range [-32768, 32767].

2. In the "Outline" tab, select the runnable RunnableEntity.

3. If you are working in the block diagram editor for SWC, proceed as follows:

i. Drag the Rport Receiver from the "Outline" tab and drop it in the draw-
ing are of the software component editor.

ii. Connect the data element Speed of the Receiver port to the variable
SpeedSwc.

iii. Double-click the empty sequence call of the variable SpeedSwc.

ASCET automatically assigns a sequence number to SpeedSwc within
the runnable RunnableEntity, e.g., the sequence 10.

4. If you are working in the ESDL editor for SWC, proceed as follows:

i. Enter the following code to receive from a port:

Receiver.Speed.explicitRead(SpeedSWC);

Figure 53: Receiving the value Speed from the Rport Receiver with implicit
communication (block diagram editor for SWC)

122 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Likewise, runnables that are required to receive data with implicit data read ac-
cess must define a <DATA-READ-ACCESSS> element that specifies the data
items they will receive.

Listing 54: ARXML code – runnable entity with implicit receive

A single received data item is described by a <VARIABLE-ACCESS> element. A
<VARIABLE-ACCESS> element must be named using the <SHORT-NAME> ele-
ment. The name is used within other elements to reference the data read access.
The short-name does not need to be a valid C identifier.

For the ASCET-generated code, refer to section 9.3.6, Receiving from a Port: Im-
plicit Communication, on page 182.

7.6 Queued Communication
Elements in SenderReceiver interfaces can use queued communication. If set to
queued, the semantics is that the corresponding element needs to be added to a
queue (i.e., a FIFO data structure), from which it is later consumed by the actual
receiver software-component.

In ASCET, queued communication is activated in the AUTOSAR tab of the imple-
mentation editor of a SenderReceiver interface element:

123 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

The following rules apply:

− Queued elements must use explicit access.

If an implicit RTE Access operator is connected to a queued element, an er-
ror MMdl1132 is issued during code generation.

− ASCET allows queued communication only for the elements of SenderRe-
ceiver interfaces.

If SW-IMPL-POLICY is set to QUEUED for an element of another interface,
an error MMdl282 is issued during code generation.

− Calibration access to a queued element must be deactivated, i.e. SW-CAL-
IBRATION-ACCESS must be set to NOT-ACCESSIBLE. In ASCET, this is
done by deactivating both options in the Calibration Access area in the ele-
ment's properties editor.

If SW-CALIBRATION-ACCESS is set to ReadOnly (realized in by activating
Read in the Calibration Access area of the properties editor), a warning
WMdl283 is issued during code generation.

Access to queued elements uses special RTE macros, Rte_Send and Rte_Re-
ceive. For more information on these macros, see the ASCET online help.

One SenderReceiver interface can have some elements with queued communi-
cation and other elements with non-queued communication.

To activate queued communication for an element

1. Create a SenderReceiver interface (named, e.g., SRI_queued)with two el-
ements.

Name cont_queued log_queued

Calibration access none none

Model data type cont log

Implementation data type sint16 bool

124 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

2. Open the implementation editor for each element and set the Policy to
Queued.

Figure 54: Implementation editor, AUTOSAR tab, with Policy set to QUEUED

3. Add a Pport SRI_queued_P and an Rport SRI_queued_R to an SWC.

If you need help, see sections 6.1.1.1 Sender Port and 6.1.2.1 Receiver Port.

4. Add a cont variable with implementation data type sint16.

5. Specify the functionality, e.g., as shown in the following figure.

6. Add the SWC to a project that is set up for AUTOSAR.

If you need help, see section 3.1.2 Code Generation Settings for AUTOSAR.

The <PROVIDED-COM-SPECS> element in the Pport definition in
<SWC_name>.arxml contains a <QUEUED-SENDER-COM-SPEC> element for
each queued element.
<P-PORT-PROTOTYPE>

 <SHORT-NAME>SRI_queued_P</SHORT-NAME>

 <PROVIDED-COM-SPECS>

 ...

 <QUEUED-SENDER-COM-SPEC>

 <DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">

 /ASCET_Interfaces/Impl/SRI_queued/cont_queued

 </DATA-ELEMENT-REF>

 </QUEUED-SENDER-COM-SPEC>

 ...

 </PROVIDED-COM-SPECS>

 <PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">

 /ASCET_Interfaces/Impl/SRI_queued

 </PROVIDED-INTERFACE-TREF>

</P-PORT-PROTOTYPE>

Listing 55: ARXML code – Pport SRI_queued_P definition with queued elements

125 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

The <Required-COM-SPECS> element in the RPort definition in
<SWC_name>.arxml contains a <QUEUED- RECEIVER-COM-SPEC> element for
each queued element.
<R-PORT-PROTOTYPE>

 <SHORT-NAME>SRI_queued_R</SHORT-NAME>

 <REQUIRED-COM-SPECS>

 ...

 <QUEUED-RECEIVER-COM-SPEC>

 <DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">

 /ASCET_Interfaces/Impl/SRI_queued/cont_queued

 </DATA-ELEMENT-REF>

 <QUEUE-LENGTH>1</QUEUE-LENGTH>

 </QUEUED-RECEIVER-COM-SPEC>

 ...

 </REQUIRED-COM-SPECS>

 <REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">

 /ASCET_Interfaces/Impl/SRI_queued

 </REQUIRED-INTERFACE-TREF>

</R-PORT-PROTOTYPE>

Listing 56: ARXML code – Rport SRI_queued_R definition with queued ele-
ments

7.7 Responding to a Server Request on a Port
In software components that provide a client-server interface, ASCET defines
one runnable entity for each operation in the interface. These runnable entities
are the servers for the client-server Pports on the software component.

The runnable entity to be regarded by the RTE as a server must be tied to an
<OPERATION-INVOKED-EVENT>. This RTE event allows the RTE to call the runna-
ble entity at runtime in response to client requests. The <OPERATION-INVOKED-
EVENT> must specify what operation request on the server interface will result in
the runnable entity being activated.

The following example shows how ASCET configures the runnable
Server_MaximumValue to be executed when the operation called
MaximumValue is called on the Pport Server of interface type CSInterface.
See also:

A. section 5.3, Client-Server, on page 70 for the creation of the client inter-
face CSInterface

B. section 6.1.1, Provided Ports, on page 86 for the creation of the Server
Pport

C. section 7.1.2, Operation-Invoked Events, on page 108 for a detailed descrip-
tion of Operation-Invoked events

126 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 57: ARXML code – internal behavior responding to a server request

An <OPERATION-INVOKED-EVENT> must be named using the <SHORT-NAME>
element. The name is used within other elements to reference the event. The
short-name does not need to be a valid C identifier.

7.7.1 Concurrent Invocation of Servers
When a runnable acting as a server is written to be invoked concurrently, then the
RTE can optimize invocation by clients on the same ECU to a direct function call.
This means that no queuing is required (or possible) and therefore multiple invo-
cations of the server can occur concurrently.

The RTE generator needs to know which runnable entities can be called in this
way.

To enable concurrent invocation of a server
1. In the "Outline" tab of the software component editor, double-click the

server runnable Server_MaximumValue.

The server runnable Server_MaximumValue was automatically inserted
by ASCET when the Pport Server was created in section 6.1.1, Provided
Ports, on page 86.

127 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

The "Runnable Signature Editor for: Server_MaximumValue" window opens.

2. Select the "Settings" tab.

3. Activate the Can be Invoked Concurrently option.

Figure 55: Setting Can be Invoked Concurrently for the runnable
Server_MaximumValue

4. Close the runnable signature editor with OK.

Concurrent invocation is defined within the server's runnable entity definition as
follows:
<RUNNABLE-ENTITY>

 <SHORT-NAME>Server_MaximumValue</SHORT-NAME>

 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

 /ASCET_AddrMethods/CODE

 </SW-ADDR-METHOD-REF>

 <CAN-BE-INVOKED-CONCURRENTLY>true</CAN-BE-INVOKED-CONCURRENTLY>

 <SYMBOL>Swc_Impl_Server_MaximumValue</SYMBOL>

</RUNNABLE-ENTITY>

Listing 58: ARXML code – server runnable with concurrent invocation

 NOTE

The runnable must be written to be invoked concurrently. If this is not the case,
then data consistency is not guaranteed when there is more than one client
simultaneously requesting the server.

128 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

x

7.8 Making a Client Request on a Port
Similarly, if your software component requires a client-server interface, then you
must define at least one runnable entity that acts as the client.

In ASCET, clients can access servers synchronously, which means that the client
is blocked while the server processes the request. When the server has pro-
cessed the request, the result is passed back to the client and the client contin-
ues the execution. You have to ensure that the client is triggered by an RTE
event.

To make a client request on a port
1. Add an Rport Client to Swc, as described in section To create a client port

on page 99.

2. Insert a signed discrete variable, name it A, and implement it as a sint16
with implementation range [-32768, 32767].

3. Create the signed discrete variables B and C with the same implementation
as A.

4. Choose the runnable RunnableEntity in the tree pane.

5. If you are working in the block diagram editor for SWC, proceed as follows:

i. Drag the Rport Client from the "Outline" tab and drop it in the drawing
area of the software component editor.

ii. Deactivate the method Notification, as described on page 100.

iii. Connect A and B to the arguments InputA and InputB of the Rport
Client.

iv. Connect C to the argument OutputMaximum of Client.

v. Use the RTE Invoke button to create an RTE Invoke operator and
place it in the drawing area.

vi. Connect the return value of the operation MaximumValue to the RTE
Invoke operator.

vii. Double-click the empty sequence call InvokeOp.

ASCET will automatically assign a sequence number to InvokeOp within
the runnable RunnableEntity, i.e. the sequence 5.

6. If you are working in the ESDL editor for SWC, proceed as follows:

i. Enter the following code for a client request without status inquiry:

Client.MaximumValue(A, B, C);

129 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 56: Request on Rport Client to compute MaximumValue(A,B) and
store it in C (block diagram editor for SWC)

Runnable entities that need to call a server synchronously must define a syn-
chronous server call point. The <SYNCHRONOUS-SERVER-CALL-POINT> element
defines which operations the client can call, and specifies a global <TIMEOUT>
value for all called operations. The <TIMEOUT> specifies the maximum time that
the client will wait for any of the servers providing an operation.

<RUNNABLE-ENTITY>

 <SHORT-NAME>RunnableEntity</SHORT-NAME>

 ...

 <MINIMUM-START-INTERVAL>0.0</MINIMUM-START-INTERVAL>

 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

 /ASCET_AddrMethods/CODE

 </SW-ADDR-METHOD-REF>

 <CAN-BE-INVOKED-CONCURRENTLY>false</CAN-BE-INVOKED-CONCURRENTLY>

 ...

 <SERVER-CALL-POINTS>

 <SYNCHRONOUS-SERVER-CALL-POINT>

 <SHORT-NAME>ServerCallPoint1</SHORT-NAME>

 <OPERATION-IREF>

 <CONTEXT-R-PORT-REF DEST="R-PORT-PROTOTYPE">

 /ASCET_ComponentTypes/Swc/Client

 </CONTEXT-R-PORT-REF>

 <TARGET-REQUIRED-OPERATION-REF

 DEST="CLIENT-SERVER-OPERATION">

 /ASCET_Interfaces/Impl/CSInterface/MaximumValue

 </TARGET-REQUIRED-OPERATION-REF>

 </OPERATION-IREF>

 <TIMEOUT>0</TIMEOUT>

 </SYNCHRONOUS-SERVER-CALL-POINT>

 </SERVER-CALL-POINTS>

 <SYMBOL>Swc_Impl_RunnableEntity</SYMBOL>

 ...

</RUNNABLE-ENTITY>

Listing 59: ARXML code – runnable entity with client request (AUTOSAR R4.2.2)

A <SYNCHRONOUS-SERVER-CALL-POINT> must be named using the <SHORT-
NAME> element. The name is used within other elements to reference the call
point. The short-name does not need to be a valid C identifier, but it must pass
the syntactic checks imposed by the AUTOSAR schema.

 NOTE

The global <TIMEOUT> value for all the called operations is always set to 0 in
ASCET.

130 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

For the ASCET-generated C code, refer to section 9.4.2, Making a Client Request
on a Port, on page 184.

The same runnable entity can be used as a server on one interface and client on
another interface. For example, you may create a runnable entity that handles a
server request for sorting on a Pport and uses an auxiliary operation on an Rport.

7.9 Interrunnable Variables
In non-AUTOSAR projects, ASCET messages can be used for inter-process com-
munication. These messages are not available in AUTOSAR software compo-
nents. Instead, interrunnable variables are used for communication between dif-
ferent runnable entities.

Communication via interrunnable variables is equivalent in semantics to im-
plicit/explicit sender-receiver communication (see also section 5.1, Sender-Re-
ceiver, on page 63), but within the scope of the software component instance.

7.9.1 Scalar Interrunnable Variables
To specify scalar interrunnable variables

1. In the software component editor, use the Interrunnable Variable but-
ton to add an interrunnable variable.

The "Properties for Scalar Element: interrunnable" dialog window opens.

2. Name the interrunnable variable IRV_explicit.

3. Set the "Internal Access" to Explicit.

4. Select a "Basic Type", e.g., Signed Discrete.

5. Close the properties editor with OK.

6. Create a second interrunnable variable IRV_implicit with Implicit inter-
nal access.

7. Implement both interrunnable variables as sint8 (see Figure 12).

In AUTOSAR R4.*, a scalar interrunnable variable is described in a <VARIABLE-
DATA-PROTOTYPE> element. Explicit and implicit interrunnable variables are
stored in different elements of the <SWC-INTERNAL-BEHAVIOR>, i.e.
<EXPLICIT-INTER-RUNNABLE-VARIABLES> (see Listing 60) and <IMPLICIT-
INTER-RUNNABLE-VARIABLES> (see Listing 61).

131 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 60: ARXML code – explicit scalar interrunnable variable

Listing 61: ARXML code – implicit scalar interrunnable variable

Each interrunnable variable must be named using the <SHORT-NAME> element.
The name is used within other elements to reference the interrunnable variable.

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see Listing 36. However, AUTOSAR R4.* offers another speci-
fication means for physical initial values, <APPLICATION-VALUE-
SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

132 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

See section To select the specification means for initial values on page 89 for an
instruction how to select the specification means.

Listing 62: ARXML code – explicit scalar interrunnable variable with <APPLICA-
TION-VALUE-SPECIFICATION>

7.9.2 Complex Interrunnable Variables
In AUTOSAR R4.*, interrunnable variables can also be of a complex type:

− Interrunnable Variables of Array Type on page 133

− Interrunnable Variables of Matrix Type on page 137

− Interrunnable Variables of Record Type on page 142

Read access to a complex interrunnable variable, or to an element inside a com-
plex interrunnable variable, can be explicit or implicit.

Write access to an element in a complex interrunnable variable (e.g., an array ele-
ment, or an element inside a record) must be implicit (Figure 61, sequence call
/20/ModeRunnable). Explicit write access to elements in complex interrunnable
variables causes an error:

− MMdl1190 – %1 access to an array element

<array>11[<x>,<y>12] (not mapped) cannot be explicit

− MMdl119 – Write access to a record element

<record>.<record_element> (not mapped) cannot be ex-

plicit

Write access to a complex interrunnable variable as a whole, i.e. via its Set port,
can be explicit (Figure 63, sequence call /30/ModeRunnable) or implicit (Figure
61, sequence call /10/RunnableEntity).

11 includes arrays and matrices
12 only for matrices

133 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

7.9.2.1 Interrunnable Variables of Array Type

To create an interrunnable of array type

1. In the software component editor, use the Array button to create an
array.

The "Properties for Array Element: *" dialog window opens.

2. In that dialog, select the kind Interrunnable Variable.

 NOTE

This is the only way to create an interrunnable variable of array type.

You cannot convert an array interrunnable variable into a scalar interrun-
nable variable, or vice versa.

3. Enter the name IRV_array, the desired dimension, and other properties,
then click OK to close the window.

134 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 57: Interrunnable variable of array type

In AUTOSAR R4.*, an interrunnable variable of array type is described in a
<VARIABLE-DATA-PROTOTYPE> element below <IMPLICIT-INTER-
RUNNABLE-VARIABLES> or <EXPLICIT-INTER-RUNNABLE-VARIABLES> in the
<SWC-INTERNAL-BEHAVIOR> (see Listing 63 and Listing 64).

135 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 63: ARXML code – implicit interrunnable variable of array type

136 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 64: ARXML code – explicit interrunnable variable of array type

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see, e.g., Listing 63. However, AUTOSAR R4.* offers another
specification means for physical initial values, <APPLICATION-VALUE-
SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

See section To select the specification means for initial values on page 89 for an
instruction how to select the specification means.

137 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 65: ARXML code – interrunnable variable of array type with
<APPLICATION-VALUE-SPECIFICATION>

7.9.2.2 Interrunnable Variables of Matrix Type

 NOTE

If you use matrices as interrunnable variables, make sure that the “Number of
dimensions for fixed matrixes” target option is set to Two-dimensional.

Otherwise, a warning WMdl653 is issued during AUTOSAR code generation. By
default, this warning is promoted to an error.

To create an interrunnable of matrix type

1. In the software component editor, use the Matrix button to create a
matrix.

The "Properties for Matrix Element: *" dialog window opens.

2. In that dialog, select the kind Interrunnable Variable.

 NOTE

This is the only way to create an interrunnable variable of matrix type.

You cannot convert a matrix interrunnable variable into a scalar interrun-
nable variable, or vice versa.

138 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

3. Enter the name IRV_matrix, the desired dimension, and other properties,
then click OK to close the window.

Figure 58: Interrunnable variable of matrix type

An interrunnable variable of matrix type is described in a <VARIABLE-DATA-
PROTOTYPE> element below <IMPLICIT-INTER-RUNNABLE-VARIABLES> or
<EXPLICIT-INTER-RUNNABLE-VARIABLES> in the <SWC-INTERNAL-
BEHAVIOR> (see Listing 66 and Listing 67).

139 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

<IMPLICIT-INTER-RUNNABLE-VARIABLES>

 ...

 <VARIABLE-DATA-PROTOTYPE>

 <SHORT-NAME>IRV_matrix_i</SHORT-NAME>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

 /ASCET_AddrMethods/RAM_CLEARED</SW-ADDR-METHOD-REF>

 <SW-CALIBRATION-ACCESS>READ-ONLY

 </SW-CALIBRATION-ACCESS>

 <SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 <TYPE-TREF DEST="APPLICATION-ARRAY-DATA-TYPE">

 /ASCET_Types/ApplicationDataTypes/SInt32_2_6</TYPE-TREF>

 <INIT-VALUE>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <NUMERICAL-VALUE-SPECIFICATION>

 <VALUE>0</VALUE>

 </NUMERICAL-VALUE-SPECIFICATION>

 ...

 </ELEMENTS>

 </ARRAY-VALUE-SPECIFICATION>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <NUMERICAL-VALUE-SPECIFICATION>

 <VALUE>0</VALUE>

 </NUMERICAL-VALUE-SPECIFICATION>

 ...

 </ELEMENTS>

 </ARRAY-VALUE-SPECIFICATION>

 ...

 </ELEMENTS>

 </ARRAY-VALUE-SPECIFICATION>

 </INIT-VALUE>

 </VARIABLE-DATA-PROTOTYPE>

 ...

</IMPLICIT-INTER-RUNNABLE-VARIABLES>

Listing 66: ARXML code – implicit interrunnable variable of matrix type

140 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

<EXPLICIT-INTER-RUNNABLE-VARIABLES>

 ...

 <VARIABLE-DATA-PROTOTYPE>

 <SHORT-NAME>IRV_matrix_e</SHORT-NAME>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

 /ASCET_AddrMethods/RAM_INIT</SW-ADDR-METHOD-REF>

 <SW-CALIBRATION-ACCESS>READ-ONLY

 </SW-CALIBRATION-ACCESS>

 <SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 <TYPE-TREF DEST="APPLICATION-ARRAY-DATA-TYPE">

 /ASCET_Types/ApplicationDataTypes/UInt8_4_3</TYPE-TREF>

 <INIT-VALUE>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <NUMERICAL-VALUE-SPECIFICATION>

 <VALUE>1</VALUE>

 </NUMERICAL-VALUE-SPECIFICATION>

 ...

 </ELEMENTS>

 </ARRAY-VALUE-SPECIFICATION>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <NUMERICAL-VALUE-SPECIFICATION>

 <VALUE>2</VALUE>

 </NUMERICAL-VALUE-SPECIFICATION>

 ...

 </ELEMENTS>

 </ARRAY-VALUE-SPECIFICATION>

 ...

 </ELEMENTS>

 </ARRAY-VALUE-SPECIFICATION>

 </INIT-VALUE>

 </VARIABLE-DATA-PROTOTYPE>

</EXPLICIT-INTER-RUNNABLE-VARIABLES>

Listing 67: ARXML code – explicit interrunnable variable of matrix type

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see, e.g., see Listing 66. However, AUTOSAR R4.* offers
another specification means for physical initial values, <APPLICATION-VALUE-

141 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

See section To select the specification means for initial values on page 89 for an
instruction how to select the specification means.

<IMPLICIT-INTER-RUNNABLE-VARIABLES>

 <VARIABLE-DATA-PROTOTYPE>

 <SHORT-NAME>matrix</SHORT-NAME>

 <SW-DATA-DEF-PROPS>

 <SW-DATA-DEF-PROPS-VARIANTS>

 <SW-DATA-DEF-PROPS-CONDITIONAL>

 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

 /ASCET_AddrMethods/RAM_CLEARED</SW-ADDR-METHOD-REF>

 <SW-CALIBRATION-ACCESS>READ-ONLY

 </SW-CALIBRATION-ACCESS>

 <SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>

 </SW-DATA-DEF-PROPS-CONDITIONAL>

 </SW-DATA-DEF-PROPS-VARIANTS>

 </SW-DATA-DEF-PROPS>

 <TYPE-TREF DEST="APPLICATION-ARRAY-DATA-TYPE">

 /ASCET_Types/ApplicationDataTypes/SInt32_2_6</TYPE-TREF>

 <INIT-VALUE>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <ARRAY-VALUE-SPECIFICATION>

 <ELEMENTS>

 <APPLICATION-VALUE-SPECIFICATION>

 <CATEGORY>VALUE</CATEGORY>

 <SW-VALUE-CONT>

 <UNIT-REF DEST="UNIT">/ASCET_Units/NoUnit

 </UNIT-REF>

 <SW-VALUES-PHYS>

 <V>0.0</V>

 </SW-VALUES-PHYS>

 </SW-VALUE-CONT>

 </APPLICATION-VALUE-SPECIFICATION>

 ...

 </ARRAY-VALUE-SPECIFICATION>

 ...

 </ELEMENTS>

 </ARRAY-VALUE-SPECIFICATION>

 </INIT-VALUE>

 </VARIABLE-DATA-PROTOTYPE>

</IMPLICIT-INTER-RUNNABLE-VARIABLES>

Listing 68: ARXML code – interrunnable variable of matrix type with
<APPLICATION-VALUE-SPECIFICATION>

142 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

7.9.2.3 Interrunnable Variables of Record Type

To create an interrunnable variable of record type

1. In the software component editor, select Insert > Component.

The "Select Item" window opens. It shows the content of the current data-
base/workspace.

2. From the "Database" or "Workspace" list, select the record you want to use
as interrunnable variable.

 NOTE

Records are the only ASCET components that can be used as complex
interrunnable variable.

3. Click OK to add the record.

The properties editor for the record opens.

4. Name the record instance Record_IRV.

5. Open the "Kind" combo box and select Interrunnable Variable.

 NOTE

This is the only way to create an interrunnable variable of record type.

You cannot convert this interrunnable variable into a scalar interrunna-
ble variable.

6. Adjust the properties according to your needs and click OK.

The complex interrunnable variable is listed in the "Outline" tab. Its ele-
ments are available for message mapping; they appear in the "Internal Ac-
cess" tab.

See section 9.5.2, Accessing ASCET Messages, on page 190 for more de-
tails on mapping.

A complex interrunnable variable is described in a <VARIABLE-DATA-
PROTOTYPE> element below <IMPLICIT-INTER-RUNNABLE-VARIABLES> or
<EXPLICIT-INTER-RUNNABLE-VARIABLES> in the <SWC-INTERNAL-
BEHAVIOR> (see Listing 69 and Listing 70).

143 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 69: ARXML code – implicit interrunnable variable of record type

144 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 70: ARXML code – explicit interrunnable variable of record type

By default, initial values in ASCET are given as <NUMERICAL-VALUE-
SPECIFICATION>; see, e.g., Listing 69. However, AUTOSAR R4.* offers another
specification means for physical initial values, <APPLICATION-VALUE-
SPECIFICATION>, associated with elements typed using application data types
(see section 4.1, Application Data Types, on page 31).

See section To select the specification means for initial values on page 89 for an
instruction how to select the specification means.

145 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 71: ARXML code – interrunnable variable of record type with
<APPLICATION-VALUE-SPECIFICATION>

7.9.3 Read and Write Access
Each runnable entity must explicitly specify whether it reads or writes an in-
terrunnable variable at runtime.

Read access to a complex interrunnable variable, or to an element inside a com-
plex interrunnable variable, can be explicit or implicit.

Write access to an element in a complex interrunnable variable (e.g., an array ele-
ment, or an element inside a record) must be implicit (Figure 61, sequence call
/20/ModeRunnable). Explicit write access to elements in complex interrunnable
variables causes an error:

− MMdl1190 – %1 access to an array element

<array>13[<x>,<y>14] (not mapped) cannot be explicit

− MMdl119 – Write access to a record element

<record>.<record_element> (not mapped) cannot be ex-

plicit

Write access to a complex interrunnable variable as a whole, i.e. via its Set port,
can be explicit (Figure 63, sequence call /30/ModeRunnable) or implicit (Figure
61, sequence call /10/RunnableEntity).

13 includes arrays and matrices
14 only for matrices

146 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 59: Scalar interrunnable variables used by two runnable entities (block
diagram editor for SWC)

Figure 60: Complex interrunnable variable (implicit, array) used by two runnable
entities (block diagram editor for SWC)

Figure 61: Complex interrunnable variable (implicit, matrix) used by two runna-
ble entities (block diagram editor for SWC)

Figure 62: Complex interrunnable variable (implicit, record) used by two runna-
ble entities (block diagram editor for SWC)

Figure 63: Explicit read and write access to a complex interrunnable variable
(explicit, matrix)

The corresponding ESDL code for Figure 59 – Figure 63 is given in Table 4.

147 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

 ESDL code Runnable

Figure 59 IRV_explicit = 100;

IRV_implicit = 28;

RunnableEntity

limitInt = IRV_explicit + IRV_implicit; ModeRunnable

Figure 60 IRV_array[Index_set] = Set_value;

GetValue = IRV_array[Index_get];
RunnableEntity

array = IRV_array; ModeRunnable
Figure 61 IRV_matrix_i[in_x][in_y] = SetValue;

matrix_Out = IRV_matrix_i;

RunnableEntity

IRV_matrix_i = matrix;

Get_value = IRV_matrix_i[out_x][out_y];

ModeRunnable

Figure 62 Record_IRV.WrapInt = udisc; RunnableEntity
uMode = Record_IRV.WrapInt; ModeRunnable

Figure 63 IRV_explicit = Record_IRVe.wrapInt;

matrix_Out = IRV_matrix_e;

ModeRunnable

Table 4: ESDL code for access to interrunnable variables

Access to scalar interrunnable variables is declared within <READ-LOCAL-
VARIABLES> and <WRITTEN-LOCAL-VARIABLES> elements. The example
shown in Figure 59 results in the following description for the runnables
RunnableEntity and ModeRunnable:

148 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 72: ARXML code – runnable entities with read (top) and write (bottom)
access to scalar interrunnable variables

Access to interrunnable variables of array type is declared within <READ-LOCAL-
VARIABLES> and <WRITTEN-LOCAL-VARIABLES> elements. The example

149 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

shown in Figure 60 results in the following description for the runnables
ModeRunnable and RunnableEntity:

Listing 73: ARXML code – runnable entities with read (top, middle) and write
(bottom) access to an implicit interrunnable variable of array type

Access to interrunnable variables of matrix type is declared in the same way as
access to interrunnable variables of array type. The example shown in Figure 61
adds the following blocks to the descriptions of the runnables ModeRunnable
and RunnableEntity:

150 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

<READ-LOCAL-VARIABLES>

 ...

 <VARIABLE-ACCESS>

 <SHORT-NAME>Read_IRV_matrix_i</SHORT-NAME>

 <ACCESSED-VARIABLE>

 <LOCAL-VARIABLE-REF DEST="VARIABLE-DATA-PROTOTYPE">

 /ASCET_ComponentTypes/SWC/bSWC/IRV_matrix_i

 </LOCAL-VARIABLE-REF>

 </ACCESSED-VARIABLE>

 </VARIABLE-ACCESS>

 ...

</READ-LOCAL-VARIABLES>

...

<WRITTEN-LOCAL-VARIABLES>

 ...

 <VARIABLE-ACCESS>

 <SHORT-NAME>Write_IRV_matrix_i</SHORT-NAME>

 <ACCESSED-VARIABLE>

 <LOCAL-VARIABLE-REF DEST="VARIABLE-DATA-PROTOTYPE">

 /ASCET_ComponentTypes/SWC/bSWC/IRV_matrix_i

 </LOCAL-VARIABLE-REF>

 </ACCESSED-VARIABLE>

 </VARIABLE-ACCESS>

 ...

</WRITTEN-LOCAL-VARIABLES>

Listing 74: ARXML code – read (top) and write (bottom) access to an implicit in-
terrunnable variable of matrix type

151 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

The example shown in Figure 63 adds the following blocks to the descriptions of
the runnable ModeRunnable:

<READ-LOCAL-VARIABLES>

 ...

 <VARIABLE-ACCESS>

 <SHORT-NAME>Read_IRV_matrix_e</SHORT-NAME>

 <ACCESSED-VARIABLE>

 <LOCAL-VARIABLE-REF DEST="VARIABLE-DATA-PROTOTYPE">

 /ASCET_ComponentTypes/SWC/bSWC/IRV_matrix_e

 </LOCAL-VARIABLE-REF>

 </ACCESSED-VARIABLE>

 </VARIABLE-ACCESS>

</READ-LOCAL-VARIABLES>

...

<WRITTEN-LOCAL-VARIABLES>

...

<VARIABLE-ACCESS>

 <SHORT-NAME>Write_IRV_matrix_e</SHORT-NAME>

 <ACCESSED-VARIABLE>

 <LOCAL-VARIABLE-REF DEST="VARIABLE-DATA-PROTOTYPE">

 /ASCET_ComponentTypes/SWC/bSWC/IRV_matrix_e

 </LOCAL-VARIABLE-REF>

 </ACCESSED-VARIABLE>

 </VARIABLE-ACCESS>

...

</WRITTEN-LOCAL-VARIABLES>

Listing 75: ARXML code – read (top) and write (bottom) access to an explicit in-
terrunnable variable of matrix type

152 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Access to interrunnable variables of record type is declared within <READ-
LOCAL-VARIABLES> and <WRITTEN-LOCAL-VARIABLES> elements. The ex-
ample shown in Figure 62 results in the following description for the runnables
ModeRunnable and RunnableEntity:

Listing 76: ARXML code – runnable entities with read (top, middle) and write
(bottom) access to an interrunnable variable of record type

153 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

7.10 Exclusive Areas
Software components that need to provide mutual exclusion over data shared by
two (or more) of their runnable entities do so by configuring exclusive areas.

The RTE generator uses exclusive area configuration to create operating system
configuration files and to optimize exclusive areas. For example, if the only com-
ponents that access a region are mapped to the same task, then the entire re-
gion can be elided.

Exclusive areas are defined in the XML configuration and are associated with the
runnable entities that use them.

7.10.1 Configuration
Exclusive areas are created by means of ASCET resources.

To create an exclusive area

1. In the software component editor, use the Resource button to create a
resource.

2. If you are working in the block diagram editor for SWC, place the resource in
the drawing area.

3. In the "Outline" tab, right-click the resource, select Rename from the con-
text menu and rename the resource to SwcExclusiveArea.

When the newly created exclusive area SwcExclusiveArea is used in the soft-
ware component (see section 7.10.2), then the <SWC-INTERNAL-BEHAVIOR>
declaration names the <EXCLUSIVE-AREAS> it uses.

Listing 77: ARXML code – exclusive area definition

154 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

This means that the scope of any exclusive areas that you define is the software
component instance. It is not possible to define exclusive areas that cross soft-
ware component boundaries. Data that is shared between multiple software-
component instances, which can potentially be accessed concurrently, should
be encapsulated in its own component and then normal sender-receiver or cli-
ent-server communication used to access the data.

Each exclusive area defined within an internal behavior definition must be named
using the <SHORT-NAME> element. The name is used within other elements to
reference the exclusive area and to form the "handle" by which the exclusive area
is accessed at run-time. The short-name of an exclusive area should be a valid
C identifier.

Additionally, the RTE can be informed how to implement the exclusive area with
an ExclusiveAreaImplementation element within the ECU description.

 NOTE

If the definition of the ExclusiveAreaImplementation for an exclusive area is
omitted, then the RTE defaults to "OS resource" implementation strategy.

A different exclusive area implementation method can be set for each exclusive
area and SWC instance.

 NOTE

The InterruptBlocking method will cause all OS interrupts to be blocked in the
worst case for the longest execution time of the protected critical section.

7.10.2 Usage
Each runnable in the <SWC-INTERNAL-BEHAVIOR> section can declare if it uses
one of the named exclusive areas and how it uses the area at runtime.

ASCET defines exclusive areas with explicit access. The <RUNNABLE-ENTITY-
CAN-ENTER-EXCLUSIVE-AREA> element determines that the exclusive area is
accessed using an explicit API. The area's name forms part of the generated API
(explicit access is similar to a standard resource in OSEK OS).

Since ASCET V6.2, exclusive areas can only be accessed by assigning sequences
of a runnable entity in a user-defined exclusive area.

 NOTE

Since ASCET V6.2, messages and the automatically generated exclusive area
ASCET_exclusive_area are no longer available in software components.

To assign sequences of a runnable in an exclusive area

1. In the block diagram editor for SWC, proceed as follows:

155 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

i. Edit the sequence call reserve of the SwcExclusiveArea and provide
the sequence number 8 in the RunnableEntity method.

ii. Edit the sequence call release of the SwcExclusiveArea and provide
the sequence number 22 in the RunnableEntity method.

2. In the ESDL editor for SWC, proceed as follows:

i. In the “Outline” tab, select the runnable RunnableEntity.

ii. Enter the code you want to place in the exclusive area between the fol-
lowing lines:

SwcExclusiveArea.reserve();

 // your code inside the exclusive area, e.g.,

 SpeedSwc = Receiver.Speed;

 Client.MaximumValue(A, B, C);

SwcExclusiveArea.release();

Figure 64: Use of the exclusive area SwcExclusiveArea in RunnableEntity

(block diagram editor for SWC)

In the definition of the <RUNNABLE-ENTITY> element, the reference to the
SwcExclusiveArea is generated as shown in Listing 78.

156 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 78: ARXML code – runnable entity with reference to exclusive area

For the ASCET-generated C code, refer to section 9.6, Concurrency Control with
Exclusive Areas, on page 205.

7.11 Variant Handling
Since AUTOSAR R4.0, the standard describes variant handling. Elements in the
component description can be annotated with information when an element is
present or which value an attribute has, depending on the value of so-called sys-
tem constants. These annotations are called variation points. The value of a sys-
tem constant can also be used in the C code, if a corresponding #define di-
rective is generated based on a variation point proxy.

Variant handling in ASCET is done by specifying elements with kind “System con-
stant” and then adding conditions with such elements to the behavior specifica-
tion. The code generator then analyzes which code needs to be executed for
each variant, which data is needed, etc. The same approach is used for variant
handling with AUTOSAR. The conditions of the variation points are derived from
the usage in the model.

ASCET knows three different binding times: generation time, compile time, and
run time. For AUTOSAR variant handling, only compile time is supported. The cor-
responding binding time for AUTOSAR is PRE-COMPILE-TIME.

To enable variant handling, the AUTOSAR options for system constant generation
must be set as shown in Figure 65. See section 3.1.3, Settings for the AUTOSAR
XML Output, on page 21 to find this option.

157 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 65: Variant handling - required settings for system constant generation

See also topic Constants and System Constants in the ASCET online help and
section Variant-Coded Data Structures in the ASCET-SE User Guide.

7.11.1 Deriving the Conditions from the Model
ASCET includes a comprehensive analysis for the variant conditions, which takes
the following information into account:

− Conditions with system constants in the behavior specification that affect
the usage of AUTOSAR elements (data elements of data interfaces, opera-
tions of client/server interfaces, interrunnable variables)

− Conditions with system constants in the behavior specification that affect
calls to methods or processes

− The mapping of AUTOSAR elements to messages and parameters

In the example below, the runnable calls a process only for a specific variant (Fig-
ure 66). The messages in that process are therefore only used conditionally, and
this is propagated by the mapping to the AUTOSAR elements (Figure 67):

158 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 66: Conditional call of a process in a runnable (top) and usage of mes-
sages in the process (bottom)

Figure 67: Mapping of messages and parameters for variant handling (from top
to bottom: parameter mapping, internal message mapping, external message
mapping)

7.11.2 System Constants
All system constants that are used in the conditions of variation points are de-
fined in the AUTOSAR XML, in the <swc name>_systemconstants.arxml file.
The package name, file name and short name are configured as described in sec-
tion 3.1.3, Settings for the AUTOSAR XML Output, on page 21.

159 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 79: ARXML code – System Constant (AUTOSAR R4.2.2)

In addition, the default values for the system constants are also generated in
<swc name>_systemconstants.arxml to provide values for the system con-
stants:

Listing 80: ARXML code – System Constant value (AUTOSAR R4.2.2)

In addition to the built-in system constants, you can add user-defined system
constants. A template file for the creation of user-defined system constants is
given in the ASCET installation directory, Tools\System Constant subdirec-
tory. See the ASCET online help for details on how to create user-defined system
constants.

User-defined constants appear like an additional kind in the properties dialog
(e.g., My System Constant in Figure 68).

160 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 68: User-defined system constant My System Constant available for se-
lection in the properties editor

Each user-defined system constant has its own binding time, which can deviate
from the binding time selected in the ASCET options, "Targets\<target
name>\Build" node.

The binding time of a user-defined system constant can be set in the creation file
and in the ASCET options window, "Modeling\User-defined System Con-
stants\<system constant name>" node. The available binding times are de-
scribed in the description field of the ASCET options window.

7.11.3 Variation Points for Interrunnable Variables
If an interrunnable variable is only used for a specific variant, the corresponding
variation point is added to the definition of the interrunnable variable in
<swc name>.arxml (see also section 7.9, Interrunnable Variables, on page 130):

161 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 81: ARXML code – variation point for an interrunnable variable
(AUTOSAR R4.2.2)

7.11.4 Variation Points for Data Access
If a data element of a data interface (calibration, sender/receiver, NV data) is
used conditionally, the corresponding access is annotated with a variation point
in <swc name>.arxml:

Listing 82: ARXML code – variation point for a data access (AUTOSAR R4.2.2)

162 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

7.11.5 Variation Point Proxies
To make the value of a system constant available in the C code, a variation point
proxy in <swc name>.arxml instructs the RTE generator to add a #define
directive in the generated header files. The name of the preprocessor symbol fol-
lows the AUTOSAR naming convention and is therefore different from the regular
ASCET system constant names.

Listing 83: ARXML code – variation point proxy (AUTOSAR R4.2.2)

If you generate an RTE with RTA-RTE V6.8, this results in the following generated
code:

Listing 84: C code – Rte_Cfg.h with definition of system constant

Listing 85: C code – Rte_SWC.h with definition of system constant

163 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

 NOTE

Creating an RTE is not part of ASCET. See the RTA-RTE documentation for in-
formation.

As shown in this example, the data access is conditional, which means that the
RTE access macros are also defined conditionally. As a consequence, the pro-
cesses where these macros are used are also defined conditionally:

Listing 86: C code – M.h with conditional declaration of function

Listing 87: C code – M.c with conditional definition of function

7.11.6 Variants
The description of one component does not require values for the system con-
stants, but they are required to compile the software component. In the
AUTOSAR model, all components on one ECU share the same variant, and the se-
lection of the variant (in terms of values for the system constants) is therefore
done in the ECU configuration.

To simplify testing, ASCET also generates this information; it is stored in the
<swc name>_variants.arxml file. It is not intended to replace a proper variant
management tool, which has the ability to define valid combinations of values of
system constants, define constraints, and also track the test status for each var-
iant.

164 | Internal Behavior

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 88: ARXML code – Variant (AUTOSAR R4.2.2)

165 | Modes

ETAS ASCET V6.4 | AUTOSAR User Guide

8 Modes
The previous chapters have explored how an AUTOSAR software-component
type can be defined and configured. In this chapter, you will learn how to define
application modes that can be used by software components to control the exe-
cution of runnable entities.

This chapter summarizes the topics related with modes of the following sections:

− section 5.2, Mode Switch, on page 67

− section 7.1.3, Mode-Switch Events, on page 109

8.1 Defining Modes
Modes are declared within a <MODE-DECLARATION-GROUP> element contained
in the AUTOSAR package ASCET_types. The ASCET_types package contains
software-component-specific types.

In AUTOSAR R4.*, the ASCET_Types package is stored in the application types
file of the software component, i.e. the generated file SWC_appltypes.arxml.

<AR-PACKAGE>

 <SHORT-NAME>ASCET_Types</SHORT-NAME>

 <AR-PACKAGES>

 <AR-PACKAGE>

 <SHORT-NAME>ApplicationDataTypes</SHORT-NAME>

 <ELEMENTS>

 <MODE-DECLARATION-GROUP>

 ...

 </MODE-DECLARATION-GROUP>

 ...

 </ELEMENTS>

 </AR-PACKAGE>

 </AR-PACKAGES>

</AR-PACKAGE>

Listing 89: ARXML code – mode declaration group

The <MODE-DECLARATION-GROUP> element is used to declare one or more
modes that are subsequently used by interface declarations.

To create a mode group

1. In the component manager, select Insert > AUTOSAR > Mode Group.

2. Name the mode group OnOffMode.

3. Create two modes, off and on, as described on page 67.

166 | Modes

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 69: Mode declaration group OnOffMode

 NOTE

A mode declaration group resembles an ASCET enumeration. In contrast to
enumerations, the representing value cannot be set explicitly.

ASCET declares the <MODE-DECLARATION-GROUP> in the AUTOSAR package
ASCET_types. See Listing 25 on page 68 for an AUTOSAR R4.0.2 ARXML example.

One mode within a <MODE-DECLARATION-GROUP> element is marked as the
group's initial mode through the <INITIAL-MODE-REF>. Mode-Switch events
that are attached to the ENTRY of an initial mode are triggered by the RTE when
this is started using Rte_Start.

A <MODE-DECLARATION-GROUP> can be used (referenced) by multiple mode-
switch interfaces and therefore inherently used by multiple software-compo-
nents.

8.2 Mode Communication
Modes are communicated over a mode-switch interface (see section 5.2, Mode
Switch, on page 67).

In ASCET, mode-switch interfaces are realized as sender-receiver interface com-
ponents that contain mode groups.

In AUTOSAR R4.*, each mode-switch interface must specify one mode declara-
tion group prototype.

167 | Modes

ETAS ASCET V6.4 | AUTOSAR User Guide

Each mode declaration group prototype defines a prototype of a specific mode
declaration group.

To create a mode group interface

1. In the component manager, select Insert > AUTOSAR > SenderReceiver
Interface.

2. Name the sender-receiver interface ModeInterface.

3. Double-click ModeInterface.

The "Sender Receiver Interface Editor for: ModeInterface" editor opens.

4. Select Insert > Component.

The "Select Item …" window opens.

5. In the "Database" or "Workspace" field of the "Select Item" window, select
the mode group OnOffMode (see also Figure 21 on page 69).

6. Click OK to close the "Select Item" window and insert OnOffMode into
ModeInterface.

The "Properties for Element: OnOffMode" window opens.

7. Click OK to use the default name and comment.

The mode group interface ModeInterface now looks as shown in Figure
22 on page 69.

The declaration of mode declaration group prototypes within a mode-switch in-
terface definition has the structure shown in Listing 26 on page 70.

In AUTOSAR R4.*, a mode group is defined using the <MODE-GROUP> element.

Each <MODE-GROUP> must specify the following:

− the <SHORT-NAME> that you will use to refer to the item

− the <TYPE-TREF> reference to mode declaration group

In AUTOSAR R4.*, a sender-receiver interface component that contains a mode
group must not contain data elements, and vice versa. Mixing both kinds of ele-
ments leads to a code generation error.

8.3 Using Modes
A software component can be a mode user activated in response to a mode
switch. In this section, you learn how to use modes in a software component.

To insert a mode group interface in a software component

1. Create and set up a project as shown in section 3.1.2, Code Generation Set-
tings for AUTOSAR, on page 17.

2. Insert a software component Swc in the project, as described in To insert
an AUTOSAR software component in a project on page 23.

3. In the "Outline" tab of the project editor, double-click Swc to open the soft-
ware component editor.

4. In the software component editor, select Insert > Component.

The "Select item…" window opens.

168 | Modes

ETAS ASCET V6.4 | AUTOSAR User Guide

5. In the "Database" or "Workspace" field of the "Select Item" window, select
the interface ModeInterface and click OK.

The "Properties for complex element: ModeInterface" window opens.

6. Make sure that Required is activated in the "Internal Access" area.

 NOTE

Mode interfaces can only be used as Rports. If you insert a mode inter-
face as Pport, an error (MMdl1285) is issued during code generation.

7. Click OK to add the mode interface.

8.3.1 Software Component Initialization and Finalization
AUTOSAR modes can be used to execute code when the RTE is started, e.g., to
initialize internal data structures, etc. Similarly, when a system is shut down your
software component may need to store data, log operational details, etc.

Each mode declaration group describes an initial mode – to activate a runnable
when the system is started created by a <SWC-MODE-SWITCH-EVENT> for entry
to the initial mode.

To create a mode-switch event
1. In the "Software Component Editor for: Swc", go to the "Event Specifica-

tion" tab.

2. Select Event > Add Event and name the event ModeEvent.

3. In the "Event Kind" combo box, select ModeSwitch.

4. Set the following mode switch settings (see also Figure 45 on page 109):

• Activation: entry

• Assigned Mode: on::OnOffMode

A runnable entity within a software component can be started when the RTE is
started by declaring a <SWC-MODE-SWITCH-EVENT> for entry to an initial mode.

8.3.2 Triggering a Runnable Entity on a Mode-Switch
A runnable entity can be activated on either entry to or exit from a mode using a
Mode-Switch event configured, like all other events, in the <SWC-INTERNAL-BE-
HAVIOR> element of a software component.

To create a runnable entity:

1. In the "Software Component Editor for: Swc", select a diagram (e.g., Main)
in the "Outline" tab.

2. Select Insert > Runnable and name it ModeRunnable.

For details on runnable entities, refer to section 7.2, Runnable Entities, on
page 110.

If ModeRunnable is defined for entry, the runnable entity must be of Category 1.
This means that it must not make any (blocking) RTE calls nor access other appli-
cation components.

169 | Modes

ETAS ASCET V6.4 | AUTOSAR User Guide

Similarly, when a system is defined for exit, your software component may need
to store data, log termination etc. The principle is the same as initialization, ex-
cept that finalization is simply a transition to a new mode that is associated with
shutdown.

To add a Mode-Switch event to a runnable
1. Go to the "Event Specification" tab of the "Software Component Editor for:

Swc".

2. In the "Events" field, select the event ModeSwitch.

3. In the "Runnables" field, select the runnable ModeRunnable.

4. Select Event > Assign Event or click the >> button.

Figure 70: ModeSwitch is assigned to ModeRunnable

When the Mode-Switch event is mapped to a runnable entity, then ASCET gener-
ates the <SWC-MODE-SWITCH-EVENT> element in the configuration language as
shown in Listing 48 on page 110.

A <SWC-MODE-SWITCH-EVENT> element defines the following things:

A. The <START-ON-EVENT-REF> element defines the runnable entity to be
activated. The reference must be to a runnable entity within the same soft-
ware component type.

B. The <ACTIVATION> element defines whether the runnable entity is trig-
gered on entry to, or exit from, the mode. ASCET supports the text ENTRY
or EXIT. A Mode-Switch event can apply either to entry to a mode or exit
from a mode, but not to both. If runnable activation is required for entry and
exit, then two Mode-Switch events must be defined.

C. The <MODE-IREF> element defines the mode associated with the Mode-
Switch event. The <MODE-IREF> element must contain three references
(the port prototype, the mode declaration group prototype, and the mode
declaration group that types the declaration group prototype).

One mode within a <MODE-DECLARATION-GROUP> element is marked as the
group's initial mode. Any Mode-Switch events that are attached to the entry of an
initial mode within any group are triggered by the RTE when this is started using
Rte_Start.

170 | Modes

ETAS ASCET V6.4 | AUTOSAR User Guide

 NOTE

When more than one runnable entity is triggered by the same mode entry (or
exit), the order of execution of runnable entities is not defined. For portability,
therefore, a system should not rely on a particular execution order.

8.3.3 Disabling Modes
A <DISABLED-MODE-IREFS> element permits the behavior of an event to be dif-
ferent in different modes. This allows such use cases as the activation of a runna-
ble entity to be suppressed/permitted when a certain mode is active.

To disable the activation of a runnable
1. In the software component editor, go to the "Event Specification" tab.

2. In the "Events" pane, select the event ModeEvent.

3. Disable the mode off.

Figure 71: Mode off disabled in ModeEvent

The <DISABLED-MODE-IREFS> element specifies the disabled modes:

171 | Modes

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 90: ARXML code – definition of a Mode-Switch event with disabled mode

When the mode specified within the <DISABLED-MODE-IREFS> element is ac-
tive, the RTE will not activate the runnable (the activation is discarded).

For more information about the implementation of mode instances, please refer
to the RTA-RTE User Guide.

172 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

9 Implementing Software Components
This chapter shows how to model software components in ASCET so that the ob-
jects required by the RTE are declared, and how to use the RTE API generated by
the RTE generator.

 NOTE

The generated C code may differ for different RTE-AUTOSAR R* versions
used as OS (cf. page 18), depending on the settings in the respective memory
sections definition file (see To define a memory sections definition file on
page 20).

All C code examples in this chapter have been generated with RTE-AUTOSAR
R4.2.2, unless explicitly stated otherwise.

9.1 Basic Concepts

9.1.1 Namespace
All RTE symbols (e.g., function names, global variables etc.) that are visible in the
global namespace use either the prefix Rte_ or the prefix RTE_.

 NOTE

You must not create symbols that use either the prefix Rte_ or the prefix
RTE_, to avoid the possibility of namespace clashes.

9.1.2 Runnable Naming Convention
The RTE generator generates code that activates your runnable entities. To do
this, the RTE's internal mechanisms need to be able to access your code through
defined interfaces.

Each of the named runnable entities defined in your runnable entity <SYMBOL>
declarations must be implemented. Failure to define all runnable entities will be
detected at compile time when your application is linked to form the ECU's exe-
cutable image. The linker error message will reference the missing runnable entity
entry point.

Runnable entities are executed by RTE-generated code when required. The func-
tion providing an entry point for a runnable entity should not be invoked directly
by an application software component.

Like for all executable elements in the model, a symbol can also be specified in
the implementation settings for a runnable and will then take precedence over
the default naming scheme.

9.1.3 API Naming Convention
The RTE API calls are generated for each software component using names de-
rived from the RTE generator's input. The RTE API provides a consistent interface

173 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

to each software component, but allows the RTE generator to provide different
implementations of the API functionality.

Each API call name is formed from the following parts:

− prefix Rte_

− call functionality (read, write, etc.)

− Either

• port name and data item name (sender-receiver) or operation name
(client-server) through which the call operates

or
• name of the object (e.g., exclusive area) upon which the call operates

Thus, RTE API calls involving communication through ports have the format:
Rte_StatusType

 Rte_<API call name>_<port>_<dataitem/operation>

Whereas other RTE APIs have the format:
Rte_StatusType

 Rte_<API call name>_<object name>

9.1.4 API Parameter Passing Mechanisms
The RTE API calls may have one or more parameters. The API parameters (if any)
fall into one of three classes:

− "In" Parameters – All "in" parameters that are AUTOSAR primitive data types
(with the exception of a string) are passed by value. Strings and other "in"
parameters that are of a complex data type (i.e. a record, array, or matrix)
are passed by reference.

Note that while AUTOSAR defines a string as a primitive data type, its inher-
ent size makes it inefficient to pass by value and is therefore treated the
same as a complex data type.

"In" parameters are strictly read-only.

− "Out" Parameters – All "out" parameters are passed to RTE API functions by
reference. This is required to ensure that the API functions can modify the
parameter.

"Out" parameters are strictly write-only.

− "In/Out" Parameters – All "in/out" parameters are passed to the RTE API
functions by reference except for an asynchronous client-server call when
primitive data types (other than strings) are passed by value to Rte_Call
and by reference to Rte_Result.

"In/out" parameters can be read and written by the API function being
called.

174 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

 NOTE

ASCET configures the identifiers of the API parameters in the XML configura-
tion file specified in the project properties (see To define a memory sections
definition file on page 20). The standard configuration of the AUTOSAR
memory sections is provided in the exemplary files memorySections_Au-
tosar.xml and memorySections_Autosar4.xml.

When generating code in an AUTOSAR project, ASCET loads the memory sec-
tions defined in the specified XML file. Changes in the *.xml file will only be
considered if you perform Build > Touch > Recursive before the code genera-
tion is started.

9.2 Application Source Code
ASCET is a C code generator, and the RTE also generates C code. ASCET V6.4
supports, at present, single-instance software components.

9.2.1 Application Header Files
Each software component generated in ASCET includes the relevant application
header file <SWCname>.h created during RTE configuration.

Listing 91: C code – include application header file (<SWCname>.h)

The RTE API is specific to each software component type. Therefore, it must be
included only in the component's application header file for each source code file
that defines a component (whether completely or partially).

 NOTE

ASCET includes the header files in the application software when exporting
the generated code into a storage directory (see how to generate code in a
project in section 3.1.4, Code Generation, on page 22). The user shall not use
intermediate files taken from the code generation directory.

A single source module must not include multiple application header files, as the
API mappings they contain may be different for different software components.
The header files generated by the RTE generator protect against such multiple
file inclusion.

The component type specific header file defines the component's RTE API.

175 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

9.2.2 Entry Point Signature for Runnable Entities
The user models in ASCET the implementation of the runnables in the software
component. ASCET generates the source code of all the runnable entities re-
quired to make a software component work at runtime.

ASCET provides an entry point (i.e. a C function) for each <RUNNABLE-ENTITY>
declared in the component description.

Listing 92: C code – entry point for runnable entity

The signature of a runnable entity’s entry point function follows the following im-
plementation rules:

− There are no user-defined parameters.

− There is no return value (i.e. a return type of void must be specified).

− The memory class must be CODE.

All RTE events other than Operation-Invoked events use the same basic signa-
ture for runnable entity entry points, irrespective of the event that actually trig-
gers the runnable entity.

If the runnable entity responds to an <OPERATION-INVOKED-EVENT>, then addi-
tional parameters may be required.

176 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 93: C code – server runnable entity

The signature of a runnable entity entry point function invoked as a result of an
Operation-Invoked event follows the following implementation rules:

− There is a return value when a server specifies application errors, in which
case Std_ReturnType is used.

− Formal parameters are the operations' IN, IN/OUT and OUT parameters.
These parameters are passed by value or reference depending on the type.

− The memory class must be CODE.

9.3 Sender-Receiver Communication
The RTE API calls for handling non-queued sender-receiver communication differ
for the type of data access.

− Non-queued communication with explicit access

• Send with Rte_Write

• Receive with Rte_Read

• Receive with Rte_DRead

Non-queued communication with explicit access can be optionally imple-
mented with status.

− Non-queued communication with implicit access

• Send with Rte_IWrite

• Receive with Rte_IRead

The implicit API uses a locally cached copy of data to preserve consistency
over a calling runnable entity invocation. Data is read into a global cache
before the runnable entity starts executing and is written from the global
cache after the runnable entity terminates. Data writes are done once, no
matter how many times it is written.

177 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

The RTE guarantees cached data does not change during execution of the
runnable entity.

The implicit API should be used when you need to guarantee that every ac-
cess to a datum in a runnable entity will provide the same result irrespec-
tive of how many times it is accessed during an invocation of the runnable
entity.

The following sections show how to use these types of data access in your appli-
cation.

9.3.1 Sending to a Port: Explicit Communication
Components communicate data to other components using the Rte_Write call.
The call is defined per port and interfaces data item for each component and
therefore has the following signature:

Rte_StatusType Rte_Write_<Port>_<DataItem>(DataItemType Data)

For the example of section 7.4.1, Explicit Communication,

 (block diagram editor for SWC)

ASCET generates the following C code:

Listing 94: C code – explicit send (example of section 7.4.1, Explicit Communica-
tion)

9.3.2 Sending to a Port: Explicit Communication with Status
Explicit access can be optionally implemented with status.

To set explicit communication with status (block diagram editor for SWC)
1. Open the ARProject project and Swc software component from the ex-

ample in section 7.4.1, Explicit Communication, on page 114.

2. In the drawing area of the software component editor, right-click the RTE
access operator and select Access > Explicit with Status from the con-
text menu (see Figure 72).

178 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 72: Setting explicit communication with status (block diagram edi-
tor for SWC)

3. Use the RTE Status button to create an RTE Status operator and place
it in the drawing area.

4. Create a literal () and place it in the drawing area.

5. Edit the literal (see the online help for details) and enter one of the sta-
tus/error values listed in section 4.7.1, Std_ReturnType, on page 43.

This example uses RTE_E_NO_DATA.

6. Add a logic variable () named, e.g., noData.

7. Convert the variable's sequence call into a connector (see the online help
for details).

8. Add an Equal operator.

9. Connect literal, RTE status block, operator, and variable as shown in Fig-
ure 73.

10. Connect the pin below the RTE Status block with the connector of the
noData variable

179 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 73: Sending a value 120 to a sender port using explicit communication
with status (block diagram editor for SWC)

To set explicit communication with status (ESDL editor for SWC)
1. Open the ARProject project and Swc software component from the ex-

ample in section 7.4.1, Explicit Communication, on page 114.

2. Declare a method-/runnable-local variable of type Std_ReturnType:
 Std_ReturnType rteStatus;

This variable will hold the status from the explicit write procedure.

3. Enter the following code to use explicit write with status information:
 rt eStatus = Sender.Speed.explicitWrite(120);

4. Specify the status inquiry as follows:
 if (rteStatus != RTE_E_OK)

 {

 noData = rteStatus == RTE_E_NO_DATA;

 }

For the example, ASCET generates the following C code:

Listing 95: C code – explicit send with status

180 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

9.3.3 Sending to a Port: Implicit Communication
The implicit API includes a reference to the runnable entity that is declared as ac-
cessing the data in the API name. Care should be taken when writing a runnable
entity to invoke the correct API. The Rte_IWrite API reads data:
 Rte_StatusType

 Rte_IWrite_<runnable>_<port>_<data>(DataItemType Data)

The cache is updated before the runnable entity starts. Rte_IWrite writes data
to a cached copy and changes are only made visible after the runnable entity ter-
minates irrespective of the number of times the data is written.

For the example of section 7.4.2, Implicit Communication,

 (block diagram editor for SWC)

ASCET generates the following C code:

Listing 96: C code – implicit send (example of section 7.4.2, Implicit Communi-
cation)

9.3.4 Receiving from a Port: Explicit Communication
Components receive communicated data items from other components using
the Rte_Read call. The call is defined per port and interfaces data item for each
component and therefore has the following signature:
Rte_StatusType Rte_DRead_<Port>_<DataItem>()

For the example of section 7.5.1, Explicit Data Read Access,

 (block diagram editor for SWC)

181 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

ASCET generates the following C code:

Listing 97: C code – explicit receive (example of section 7.5.1, Explicit Data Read
Access)

9.3.5 Receiving from a Port: Explicit Communication with Status
Explicit access can be optionally implemented with status. To set explicit commu-
nication with status, see the example in section 9.3.2, Sending to a Port: Explicit
Communication with Status, on page 177.

When setting explicit communication with status to the example of the previous
section,

(block diagram edi-
tor for SWC)

ASCET generates the following C code:

182 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 98: C code – explicit receive with status

Rte_Read is non-blocking even if no data is present to read. If no data is present,
the return value from the call is RTE_E_NO_DATA.

9.3.6 Receiving from a Port: Implicit Communication
The implicit API includes a reference to the runnable entity that is declared as ac-
cessing the data in the API name. Care should be taken when writing a runnable
entity to invoke the correct API. The Rte_IRead API reads data:

DataItemType Rte_IRead_<runnable>_<port>_<data>()

The cache is updated before the runnable entity starts and therefore within a sin-
gle execution of a runnable entity the value returned by Rte_IRead is guaran-
teed not to change.

For the example of section 7.4.2, Implicit Communication,

 (block diagram editor for SWC)

ASCET generates the following C code:

183 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 99: C code – implicit receive (example of section 7.4.2, Implicit Commu-
nication)

9.4 Client-Server Communication
Client-server communication is initiated using the Rte_Call API call.

When the CLIENT_MODE is set to synchronous, then Rte_Call returns after the
operation has been completed by the server. This means that your code will not
continue to execute until the server returns the result. Once the result has been
computed, it is passed back to the component by the return value of the
Rte_Call.
Rte_StatusType Rte_Call_<Port>_<Operation>(InParam1Type In_1,

...,

InParamNType In_N,

OutParam1Type Out_1,

...,

OutParamMType Out_M)

9.4.1 Implementing a Server Operation
Each component that defines a server port must implement a runnable entity that
responds to an Operation-Invoked event. The signature of the runnable entity
must conform to the rules defined in section 9.2.2, Entry Point Signature for Run-
nable Entities, on page 175.

The following instruction explains how to implement the Server_MaximumValue
runnable of section 7.7 Responding to a Server Request on a Port.

.

To implement a server operation
1. Create a Pport Server as described in To create a server port on page 93.

2. If you are working in the block diagram editor for SWC, proceed as follows:

i. Load the diagram Server_CSInterface.

ii. Implement the operation Server_MaximumValue as shown in Figure
74.

3. If you are working in the ESDL editor for SWC, proceed as follows:

i. Open the Server_MaximumValue operation.

184 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

ii. Implement the operation as follows:

OutputMaximum = InputA.max(InputB);

Figure 74: Implementation of the operation Server_MaximumValue in the dia-
gram Server_CSInterface (block diagram editor for SWC)

For the operation Server_MaximumValue, ASCET generates the following
server runnable:

Listing 100: C code – server runnable

Servers may be invoked from multiple sources, for example, through a request
from a client received via the communication service or directly via intra-task
communication. Unless marked as concurrently executable within the runnable’s
configuration, the RTE will serialize access to the server, queuing requests on a
first-in/first-out basis.

9.4.2 Making a Client Request on a Port
A runnable entity will be invoked by the RTE each time a request is made for an
operation on the server’s port.

185 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

For the example of section 7.8, Making a Client Request on a Port, on page 128,

(block diagram
editor for SWC)

ASCET generates the following C code:

Listing 101: C code – client request

9.5 Message, NV Variable, and Parameter Mapping
This section describes how ASCET elements, i.e. messages, non-volatile variables
(NV variables), and imported parameters, are mapped to corresponding AUTOSAR
elements.

− 9.5.1, Accessing Calibration Parameters, on page 185

− 9.5.2, Accessing ASCET Messages, on page 190

− 9.5.3, Accessing Non-Volatile Variables, on page 196

− 9.5.4, Automatic Mapping, on page 201

To ease reuse of ASCET modules and classes in SWC, it is possible to export
mappings from one SWC and import them into another SWC. See the ASCET
online help for details.

9.5.1 Accessing Calibration Parameters
If a software component declares calibration parameters, then each characteris-
tic is accessed at runtime using the API call:

CalprmElementType Rte_Calprm_<Port>_<CalprmElement>()

The call returns either the calibration data (primitive types) or a pointer to the
data (complex types).

Calibration data in a function is modeled by means of ASCET imported parame-
ters. In an application software component, the calibration data can be mapped
to the calibration parameters of an AUTOSAR calibration component. For this

186 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

purpose, ASCET provides a special editor in the "Parameter Mapping" view of the
software component editor.

In that editor, imported parameters can be mapped to AUTOSAR elements ac-
cording to the following rules:

− Parameters can be mapped as shown in the following table.

Parameter Mapping
Scalar to scalar elements of calibration interfaces

to scalar elements of complex elements (records)
in calibration interfaces

Composite (arrays,
matrices)

to composite elements of calibration interfaces
to composite elements of complex elements (rec-
ords) in calibration interfaces

Complex (records) to complex elements (records) in calibration inter-
faces

to complex elements of complex elements (rec-
ords) in calibration interfaces

Table 5: Mapping possibilities for ASCET parameters

− A scalar parameter must be mapped to a scalar element of compatible
type.

Imported parameter type Calibration parameter type

Continuous (cont) cont / limitInt / wrapInt / sdisc / udisc
Limited Integer (limitInt) limitInt / wrapInt
Wrap-Around Integer (wrapInt) wrapInt

Signed Discrete (sdisc) cont / limitInt / wrapInt / sdisc / udisc
Unsigned Discrete (udisc) cont / limitInt / wrapInt / sdisc / udisc
Logic (log) log

Enumeration (enum) Enumeration of the same type

Table 6: Parameter types and compatible AUTOSAR types

If you map a scalar parameter to an element of compatible, but non-identi-
cal type, a warning (WMdl635) is issued during code generation.

If you map a scalar parameter to an element of incompatible type, an error
(MMdl635) is issued during code generation.

− A composite parameter (array, matrix) must be mapped to an array or ma-
trix of identical size, data type, and implementation.

Otherwise, the mapping is indicated as invalid, and an error (MMdl635) is
issued during code generation.

− A complex parameter (record) must be mapped to a record of identical
type and implementation.
Otherwise, the mapping is indicated as invalid, and an error (MMdl635) is
issued during code generation.

187 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

To create a function with parameters
1. In the component manager, select Insert > Class > Block Diagram to cre-

ate a class.

2. Name the class ClassWithParam.

3. Open ClassWithParam in the block diagram editor.

4. Use the Logic Parameter button to create a logic parameter.

The dialog "Properties for Scalar Element: log" opens.

5. Name the parameter localLog and change the scope to Imported.

Figure 75: Parameter localLog defined as imported

6. Add a wrapInt parameter () with name localWrapInt and scope
Imported.

188 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

7. Model the following method:

Figure 76: Block diagram of method calc

To map internal parameters of a function to AUTOSAR calibration parame-
ters

1. Create a project as described on page 17.

2. Insert Swc into the new project as described on page 23.

3. Insert the calibration interface CalInterface created in section 5.4, Cali-
bration, on page 77 into the software component Swc.

4. Insert the class ClassWithParam into the software component Swc.

5. Insert the cont variables inValue1 and outValue1.

6. Insert the wrapInt variables inValue2 and outValue2, both with type
uint16 and default min/max.

7. Create a runnable Runnable_Entity.

8. If you are working in the block diagram editor for SWC, proceed as follows:

i. Connect the variables as shown in Figure 77.

ii. Provide a sequence to the method calc within Runnable_Entity.

189 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 77: Accessing ClassWithParam in the software component (block dia-
gram editor for SWC)

9. If you are working in the ESDL editor for SWC, proceed as follows:

i. Enter the following code:

ClassWithParam.calc(inValue1, inValue2, outValue1,

outValue2);

10. In both SWC editors, continue as follows:

i. Go to the "Parameter Mapping" tab.

The left column of the table lists all imported parameters in modules and
classes of the software component.

The right column of the table contains a drop-down list for each im-
ported parameter. Each list provides the calibration parameters in the
software component matching, in type, the imported parameters.

ii. For the parameter localLog, select the calibration parameter
calParam1.

Figure 78: Mapping an imported parameter and a calibration parameter

iii. For the parameter localWrapInt, select the calibration parameter
calParam3.

With that, parameter mapping is complete.

190 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 79: Completed parameter mapping

For the class ClassWithParam, ASCET generates the following C code:

Listing 102: C code – class with mapped parameters

 NOTE

If a calibration interface is edited while the software component is open, up-
date the changes in the "Parameter Mapping" tab using the menu option Map-
ping > Update.

9.5.2 Accessing ASCET Messages
AUTOSAR does not know the concept of ASCET messages. If your SWC uses one
or more modules that contain ASCET messages, all messages must be mapped to
semantically equivalent AUTOSAR elements.

For this purpose, ASCET provides a special editor in the "Message Mapping" view
of the software component editor.

In that editor, messages can be mapped to AUTOSAR elements according to the
following rules:

− Messages can be mapped according to the following table:

191 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Message Internal mapping External mapping

Scalar to scalar interrunnable
variables

to scalar elements of Sender-
Receiver interfaces

to scalar elements of
complex interrunnables
(records)

to scalar elements of complex ele-
ments (records) in Sender-
Receiver interfaces

Composite
(arrays,
matrices)

to composite inter-
runnable variables

to composite elements (array, ma-
trix) of SenderReceiver interfaces

to composite elements of
complex interrunnables
(records)

to composite elements of complex
elements (records) in SenderRe-
ceiver interfaces

Complex
(records)

to complex interrunnable
variables (records)

to complex elements (records) in
SenderReceiver interfaces

to complex elements of
complex interrunnable
variables (records)

to complex elements of complex
elements (records) in Sender-
Receiver interfaces

Table 7: Mapping possibilities for ASCET messages

− Scalar and composite elements of nested records (record A contains rec-
ord B, which contains record C, etc.) used as SenderReceiver interface ele-
ments or interrunnable variables are available for message mapping.

 NOTE

Recursively nested records (record A contains record B, which contains
record A) are forbidden; using them leads to a code generation error
(EMake10).

− Complex elements of nested records (record A contains record B, which
contains record C, etc.) used as SenderReceiver interface elements or in-
terrunnable variables are not available for message mapping.

− A scalar message must be mapped to an element of compatible type.

Message type AUTOSAR element type
Continuous (cont) cont / limitInt / wrapInt / sdisc / udisc

Limited Integer (limitInt) limitInt / wrapInt
Wrap-Around Integer (wrapInt) wrapInt
Signed Discrete (sdisc) cont / limitInt / wrapInt / sdisc / udisc

Unsigned Discrete (udisc) cont / limitInt / wrapInt / sdisc / udisc
Logic (log) log
Enumeration (enum) Enumeration of the same type

Table 8: Message types and compatible AUTOSAR types

If you map a scalar message to an element of compatible, but non-identical
type, a warning (WMdl635) is issued during code generation.

192 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

If you map a scalar message to an element of incompatible type, an error
(MMdl635) is issued during code generation.

− A composite message (array, matrix) must be mapped to an array or matrix
of identical size, data type and implementation.

Otherwise, the mapping is indicated as invalid, and an error (MMdl635) is
issued during code generation.

− A complex message (record) must be mapped to a record of identical type
and implementation.

Otherwise, the mapping is indicated as invalid, and an error (MMdl635) is
issued during code generation.

− Redundant data storage must not be activated for mapped messages.

If it is, the following error (MMdl37) is issued during code generation:
redundant data flag is set for <message>, but redun-

dant data and mapped messages cannot be combined.

− A pure send message can only be mapped to an element of a sender-re-
ceiver interface used as Pport (external mapping), since the message
value is not used within the SWC and thus provided to be used by another
SWC.

A pure send message is a send message that appears as a send message
in all modules of the software component, i.e. it is not received by another
module. Its Get method is not activated. Import/export of the pure send
message is permitted.

− A send message with activated Get method can be mapped to one in-
terrunnable variable (internal mapping) and/or one or more elements of
SenderReceiver interfaces used as Pport (external mapping).

If you map such a message to an element of an Rport, an error (MMdl271) is
issued during code generation:

Invalid external access mapping for element "<mes-

sage>" in "<component>" - mapping to elements of pro-

vide port supported only

If you map such a message only to an element of a Pport (i.e. no internal
mapping), and use the Get method in the model, an error (MMdl106) is is-
sued during code generation:

Element "<element>" of provide port "<provide_port>"

can not be read

− A pure receive message can only be mapped to an element of a sender-re-
ceiver interface used as Rport (external mapping), since the message
value is not given within the SWC and must therefore be given by another
SWC. Internal mapping is not provided for pure receive messages.

A pure receive message is a receive message that is not used as send mes-
sage within the SWC. Its Set method is not activated.

− A receive message with activated Set method can be mapped to one in-
terrunnable variable (internal mapping) and/or one element of a sender-
receiver interface used as Rport (external mapping).

193 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

If you map such a message to an element of a Pport, an error (MMdl271) is
issued during code generation:

Invalid external access mapping for element "<mes-

sage>" in "<component>" - mapping to elements of re-

quire port supported only

If you map such a message only to an element of an Rport (i.e. no internal
mapping), and use the Set method in the model, an error (MMdl107) is is-
sued during code generation:

Element "<element>" of require port "<require_port>"

can not be written

− All other messages, i.e. SendReceive messages and messages specified as
send message in one module and as receive message in another module,
can be mapped to an interrunnable variable (internal mapping) or to an ele-
ment of a sender-receiver interface used as Pport (external mapping).

If you map a SendReceive message with activated Get and/or Set method
to an element of an Rport, an error (MMdl271) is issued during code gener-
ation.

− Pure receive messages can have one external mapping. Pure send mes-
sages and other messages can have multiple external mappings.

− Pure send messages and pure receive messages cannot have an internal
mapping. Other messages can have one internal mapping.

− Imported messages must have only one internal mapping. If you apply an
external mapping, too, an error (MMdl274) is issued during code genera-
tion.

Internal mapping is indicated as complete if each mappable message is mapped.
External mapping is indicated as complete if each mappable message is mapped
once. However, you can still map messages that allow multiple mapping.

To create a module with messages

1. In the component manager, select Insert > Module > Block Diagram to
create a module.

2. Name the module ModuleWithMsg.

3. Open ModuleWithMsg in the block diagram editor.

4. Use the SendReceive Message button to create a receive message.

The dialog "Properties for Scalar Element: message" opens.

5. Name the message SendRecMsg1 and change the basic type to Signed
Discrete.

6. Click OK to close the properties editor.

7. Add a second SendReceive message with name SendRecMsg2 and basic
type Signed Discrete.

8. Add a send message () with name SendMsg and basic type Logic.

9. Implement SendRecMsg1 and SendRecMsg2 as sint8 (see Figure 12).

10. Implement SendMsg as bool.

11. Model the process as shown in Figure 80.

194 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 80: Block diagram of process process in ModuleWithMsg

To map ASCET messages to AUTOSAR elements

1. Create (cf. page 17) and set up (cf. page 18) a project ARProject.

2. Create a software component Swc (cf. page 23) with a runnable entity and
three interrunnable variables (cf. page 130):

name IRV_sdisc1 IRV_sdisc2 IRV_log

basic type Signed Discrete Logic

Impl. type sint8 bool

Internal access implicit explicit implicit

3. Create a sender-receiver interface SRinterface (cf. page 63) with two
sdisc data elements, implemented as sint8, and one log element, im-
plemented as bool.

4. Add the module ModuleWithMsg to Swc, as shown below.

195 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

5. Use SRinterface to create a sender port in the SCW (cf. page 86).

6. Add Swc to ARProject.

7. In the "Outline" tab of the project editor, double-click Swc to open the com-
ponent in the project context.

8. In the software component editor, go to the "Message Mapping" tab and
the "Internal Access" sub-tab.

The left column of the table lists all messages that can be mapped to in-
terrunnable variables.

The right column of the table contains a drop-down list for each message.
Each list provides the interrunnable variables that can be mapped to the
message.

9. Map the messages to interrunnable variables as shown in Figure 81.

Figure 81: Mapping messages and interrunnable variables

10. Go to the "External Access" sub-tab.

The left column lists all messages that can be mapped to data elements in
sender or receiver ports.

The right column contains a drop-down list for each message. Each list pro-
vides the data elements that can be mapped to the message.

11. Map the messages to data elements as shown in Figure 82.

196 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 82: Mapping messages and data elements

With that, message mapping is complete.

For the module ModuleWithMsg, ASCET generates the following C code:

Listing 103: C code – module with mapped messages

9.5.3 Accessing Non-Volatile Variables
In case an ASCET class, state machine, or module containing non-volatile varia-
bles (NV variables) is used within an AUTOSAR software component, all NV varia-
bles (except local NV variables in classes) can be mapped to semantically

197 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

equivalent AUTOSAR elements. Unlike messages, however, you do not have to
map NV variables, you can access them in the normal way.

For this purpose, ASCET V6.4.6 introduced a special editor in the “NV-Data Map-
ping” view of the software component editor. In that editor, NV variables can be
mapped to AUTOSAR elements according to the following rules:

− NV variables of all scopes – exported, imported, local – can be mapped to
NVData interface elements, with one exception:

Local NV variables in classes cannot be mapped to NVData interface ele-
ments.

− You must not map NV variables that are written in your model to NVData in-
terfaces used as Rports.

If you do, an error MMdl2761 is issued during code generation.

 NOTE

You cannot create NVData interface Pports in ASCET, but you can import
ARXML files that contain NVData interface Pports.

− One NV variable can be mapped at most to one NVData interface Rport and
one NVData interface Pport.

− NV variables can be mapped as shown in the following table.

NV variable Mapping
scalar to scalar elements of NVData interfaces

to scalar elements of complex elements (records) in
NVData interfaces

composite
(arrays, matri-
ces)

to composite elements (arrays) of NVData interfaces
to composite elements of complex elements (records) in
NVData interfaces

complex
(records)

to complex elements (records) in NVData interfaces

to complex elements of complex elements in NVData in-
terfaces

Table 9: Mapping possibilities for ASCET NV variables

− Scalar NV variables must be mapped to scalar elements of compatible type.

NV variable type AUTOSAR element type

Continuous (cont) cont / limitInt / wrapInt / sdisc / udisc
Limited Integer (limitInt) limitInt / wrapInt
Wrap-Around Integer (wrapInt) wrapInt

Signed Discrete (sdisc) cont / limitInt / wrapInt / sdisc / udisc
Unsigned Discrete (udisc) cont / limitInt / wrapInt / sdisc / udisc
Logic (log) log

Enumeration (enum) Enumeration of the same type

Table 10: NV variable types and compatible AUTOSAR types

198 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

If you map a scalar NV variable to an element of compatible, but non-identi-
cal type, a warning WMdl635 is issued during code generation.

If you map a scalar NV variable to an element of incompatible type, an error
MMdl635 is issued during code generation.

− A composite NV variable (array, matrix) must be mapped to an array/matrix
of identical size, data type and implementation.

Otherwise, the mapping is indicated as invalid, and an error MMdl635 is is-
sued during code generation.

− A complex NV variable must be mapped to a record of identical type and im-
plementation.

Otherwise, the mapping is indicated as invalid, and an error MMdl635 is is-
sued during code generation.

− Redundant data storage must not be activated for NV variables.

If it is, an error MMdl37 is issued during code generation.

 NOTE

SWC that use NV data mapping can only be exported to ASCET V6.4.6 or
newer.

NV-Data mapping is indicated as complete if each mappable NV variable is
mapped once. However, you can still map NV variables that allow multiple map-
ping.

To create a module with NV variables

1. In the component manager, select Insert > Module > Block Diagram to
create a module.

2. Name the module Module_NVvar.

3. Open Module_NVvar in the block diagram editor.

4. Use the Continuous Variable button to create a variable.

The properties editor for the new variable opens.

5. Name the variable NV_cont_e, change the basic type to Continuous, set
the scope to Exported, and activate the Non-Volatile option.

6. Click OK to close the properties editor.

7. Add the following NV variables:

Name Type Scope Basic type Min/max
NV_cont_i scalar imported continuous
NV_cont_l scalar exported continuous
NV_array Array [4] local or

exported
Limited integer -32768 /

32767
NV_wrapInt scalar local or

exported
Wrap-around
integer

0 / 255

199 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

8. Add the following scalar volatile output variables:

Name Basic type Min/max
Out_cont continuous
Out_log logical
Out_limitInt Limited integer -32768 / 32767

9. Add a parameter out_x with basic type Wrap-around integer, type
uint8, and min/max of 0/3.

10. Implement the elements as follows:

Name Impl. Type Impl. Min Impl. Max
NV_cont_e sint16 -32768 32767
NV_cont_i not applicable
NV_cont_l sint16 -32768 32767
NV_array sint16 -32768 32767
out_x uint8 0 3
NV_wrapInt uint8 0 255
Out_cont sint32 -2147483648 2147483647
Out_log bool 0 1
Out_limitInt sint32 -2147483648 2147483647

11. Model the following process:

Figure 83: Block diagram of process process in Module_NVvar

To map NV variables to NVData interface elements

1. Create (cf. page 17) and set up (cf. page 18) a project ARProject.

2. Create a software component Swc (cf. page 23) with a runnable entity.

3. Create an NVData interface NVData_Interface with three scalar cont
data elements (implemented as sint16), one scalar wrapInt element

200 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

(implemented as uint8), and one array element array (limitInt, imple-
mented as sint16).

4. Add the module Module_NVvar to Swc.

5. Use NVData_Interface to create an NVData port in the SCW (cf.
page 103).

6. Add Swc to ARProject.

7. In the "Outline" tab of the project editor, double-click Swc to open the com-
ponent in the project context.

8. In the software component editor, go to the "NV-Data Mapping" tab.

The left column of the table lists all NV variables that can be mapped to
NVData elements.

The right column of the table contains a drop-down list for each NV varia-
bles. Each list provides the NVData elements that can be mapped to the NV
variable.

9. Map the NV variables to NVData elements as shown in Figure 84.

With that, NV Data mapping is complete.

201 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 84: Mapping NV variables and NVData elements

For the module Module_NVvar, ASCET generates the following C code:

FUNC(void, Swc_CODE) MODULE_NVVAR_IMPL_process (void)

{

 /* process: sequence call #5 */

 _Out_cont

 = (sint32)Rte_IRead_Runnable_NVData_Interface_cont_l()

 + Rte_IRead_Runnable_NVData_Interface_cont_i()

 + Rte_IRead_Runnable_NVData_Interface_cont_e();

 /* process: sequence call #10 */

 _Out_limitInt

 = Rte_IRead_Runnable_NVData_Interface_array()[_out_x];

 /* process: sequence call #15 */

 _Out_log

 = (sint32)Rte_IRead_Runnable_NVData_Interface_wrapInt()

 > _Out_limitInt;

}

Listing 104: C code – module with mapped NV variables

9.5.4 Automatic Mapping
Mapping each individual message, NV variable, or imported parameter can be
time-consuming if you have a lot of these elements. To simplify the task, the soft-
ware component editor provides an auto-mapping function.

By default, auto-mapping maps messages, NV variables, or imported parameters
and AUTOSAR elements with identical names. To make auto-mapping more effec-
tive, you can define patterns that are used to map messages, NV variables, or im-
ported parameters and AUTOSAR elements with different names. With these pat-
terns, you can, for example, take into account prefixes and/or postfixes.

Default patterns are defined in the ASCET options, "Appearance\Editors\Soft-
ware Component" node. These patterns are available in the combo boxes of the
"Parameter Mapping" view, the "Internal Access" and "External Access" tabs of
the "Message Mapping" view, and the “NV-Data Mapping” view. You can add your
own patterns, either via the ASCET options window or via the combo boxes.

202 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Auto-mapping automatically maps unconnected messages, NV variables, or im-
ported parameters in the software component to AUTOSAR elements with a
matching name and type (i.e. scalar, array, or record) according to the following
heuristic:

− "Parameter Mapping" tab

• An imported parameter is mapped to a Calibration interface element
with a matching name and type.

− "Internal Access" tab

• A message with several matching counterparts is mapped to the first
counterpart. Other counterparts are ignored.

− "External Access" tab

• A message labeled as S or S/R in the "Mapping" field with several match-
ing counterparts is mapped to each counterpart.

• A message labeled as R in the "Mapping" field is mapped to the first
matching counterpart. Other counterparts are ignored.

− “NV-Data Maping” tab

• An NV variable is mapped to an element of an NVData interface with a
matching name and type.

 NOTE

There is no guarantee that a message/imported parameter and an AUTOSAR
element with matching names represent the same concept.

For example, a message named Speed that represents speed in km/h is not
the same as an AUTOSAR element named Speed that represents speed in
miles/h.

You must therefore verify that any auto-mappings represent valid connec-
tions.

Matching names are derived from the currently selected pattern.

− "Parameter Mapping" tab

%IMPORTED.NAME% is the template for names of elements in the "Imported
Parameter" column, %CALIBRATION.NAME% is the template for names of
elements in the "Calibration Parameter" column.

− "Internal Access" tab and "External Access" tab

%MESSAGE.NAME% is the template for names of elements in the respective
"Messages" column, %VARIABLE.NAME% is the template for names of ele-
ments in the respective "Variables" column.

− “NV-Data Mapping” tab

%NVVARIABLE.NAME% is the template for names of NV variables in the
“NV Variables” column, %ELEMENT.NAME% is the template for names of ele-
ments in the “NV-Data Interface elements” column.

If you add a prefix or postfix to one of these templates, auto-mapping works as
shown in the following table.

203 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

 Pattern Auto-mapping result

"Parameter
Mapping"
tab

prefix_

%IMPORTED.NAME%

An imported parameter name and a Cali-
bration parameter prefix_name of the
same type15 are mapped.

%IMPORTED.NAME%

_postfix

An imported parameter name and a Cali-
bration parameter name_postfix of
the same type15 are mapped.

prefix_

%CALIBRATION.NAME%

An imported parameter prefix_name
and a Calibration parameter name of the
same type15 are mapped.

%CALIBRATION.NAME%

_postfix

An imported parameter name_postfix
and a Calibration parameter name of the
same type15 are mapped.

Names of classes, modules, Calibration interfaces, or rec-
ords are not considered.

"Internal
Access" tab

prefix_

%MESSAGE.NAME%

A message name and an interrunnable
variable prefix_name of the same
type15 are mapped.

%MESSAGE.NAME%

_postfix

A message name and an interrunnable
variable name_postfix of the same
type15 are mapped.

prefix_

%VARIABLE.NAME%

A message prefix_name and an in-
terrunnable variable name of the same
type15 are mapped.

%VARIABLE.NAME%

_postfix

A message name_postfix and an in-
terrunnable variable name of the same
type15 are mapped.

Names of modules or records are not considered.

"External
Access" tab

prefix_

%MESSAGE.NAME%

A message name and an interface ele-
ment prefix_name of the same type15
are mapped.

%MESSAGE.NAME%

_postfix

A message name and an interface ele-
ment name_postfix of the same type15
are mapped.

prefix_

%VARIABLE.NAME%

A message prefix_name and an inter-
face element name of the same type15
are mapped.

%VARIABLE.NAME%

_postfix

A message name_postfix and an in-
terface element name of the same type15
are mapped.

Names of modules, SenderReceiver/NVData interfaces, or
records are not considered.

15 i.e. scalar, array, matrix, or record

204 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

“NV-Data
Mapping”
tab

prefix_

%NVVARIABLE.NAME%

An NV variable name and an interface el-
ement prefix_name of the same type16
are mapped.

%NVVARIABLE.NAME%

_postfix

An NV variable name and an interface el-
ement name_postfix of the same
type16 are mapped.

prefix_

%ELEMENT.NAME%

An NV variable prefix_name and an in-
terface element name of the same
type16 are mapped.

%ELEMENT.NAME%

_postfix

An NV variable name_postfix and an
interface element name of the same
type16 are mapped.

Names of classes, modules, NVData interfaces, or records
are not considered.

Table 11: Results of auto-mapping with prefix and postfix patterns

Keep in mind the following rules when you define a template:

− You can add a prefix, or a postfix, or both.

− Prefixes and postfixes are case-sensitive; a pattern PREFIX_<name> will
not match a message or AUTOSAR element prefix_<name>.

− You cannot use %IMPORTED.NAME% and %CALIBRATION.NAME% in the
same pattern for parameter mapping.

− You cannot use %MESSAGE.NAME% and %VARIABLE.NAME% in the same
pattern for message mapping.

− You cannot use %NVVARIABLE.NAME% and %ELEMENT.NAME% in the same
pattern for NV data mapping.

Auto-mapping is accessed via the Mapping menu or - in the respective views -
the Auto-Mapping context menu option or the Auto-Mapping button. See also
the ASCET online help.

9.5.5 Mapping Conversion
Prior to ASCET V6.4.6, messages used in AUTOSAR SWCs could be mapped to
both SenderReceiver interface elements and NVData interface elements. Since
ASCET V6.4.6, messages can only be mapped to SenderReceiver interface ele-
ments. Existing mappings of messages to NVData interface elements must be
converted to NV data mappings.

When you open a database or workspace that contains mappings of messages to
NVData interface elements, these mappings become invalid; see the example in
Figure 85. Mappings of messages to SenderReceiver interface elements or in-
terrunnable variables remain valid.

16 i.e. scalar, array, matrix, or record

205 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 85: “Message Mapping” tab with invalid mappings of messages to NVData
elements

You must convert the invalid message mappings to NV-Data mappings. To make
this easier, ASCET offers the Convert to NV-Data Mapping option in the Map-
ping menu or the context menu in the lower table of the “External Access” tab.

Details on mapping conversion are given in the ASCET online help.

9.6 Concurrency Control with Exclusive Areas
Where a component has multiple runnable entities that require concurrent write
access to the same prototype state, then the Rte_Enter and Rte_Exit API
calls must be used to ensure that data consistency is maintained.

A component includes multiple runnable entities each of which can be active sim-
ultaneously. The potential exists for concurrent access to private global data
(e.g. elements in the data memory sections) and/or non-reentrant functions.

Operating system concurrency control mechanisms are hidden from compo-
nents. However, the RTE API implements explicit access to exclusive areas by ex-
posing an appropriate OS mechanism to components:

− Rte_Enter_<exclusive area name> enters an exclusive area.

− Rte_Exit_<exclusive area name> exits an exclusive area.

Where components declare exclusive areas, the generated RTE API for the com-
ponent includes these API calls to allow you to control concurrent access to
shared data.

9.6.1 Sequences of a Runnable Assigned to an Exclusive Area
A component can use the Rte_Enter and Rte_Exit API calls for any exclusive
area ID you define at configuration time.

For example, for the exclusive area SwcExclusiveArea of section 7.10, Exclusive
Areas, on page 153, the following C calls are used:

206 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 105: C code – enter/exit exclusive area

For the example of section 7.10.2 on page 154,

(block diagram edi-
tor for SWC)

ASCET generates the following C code:

Listing 106: C code – exclusive area example

 NOTE

The scope of an exclusive area is the software component prototype and not
the software component type or system wide. Therefore, exclusive areas only
provide concurrency control within one software component.

Wider scope can be achieved using an AUTOSAR component to broker access
to shared data.

207 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

9.7 Description of Internal Data Structures
In AUTOSAR, it is possible to add the description of internal data structures to the
ARXML code for two main purposes:

A. Generation of an A2L file describing the internal data for measurement and
calibration

The data structures are still generated by ASCET, but described in the
ARXML code using compu methods, data constraints and implementation
types, so that the description in the A2L is correct and also the addresses
of the data can be retrieved from the executable file.

B. Allow multiple instances of a software component

The data structures are described completely in the ARXML and are gener-
ated by the RTE generator. Special Rte macros are used in the generated
code to access the data. Also an A2L file can be generated. However, this
variant comes with some restrictions.

These variants can be configured in the "ARXML Configuration Settings" window,
"Miscellaneous" node.

Figure 86: Settings for generation of internal data structure in the "ARXML Con-
figuration Settings" window, "Miscellaneous" node

9.7.1 Measurement and Calibration
If the generation of internal data structures is activated without support of multi-
instance software components, the elements in the generated data structures
are also described in the ARXML code, with the following exceptions:

− elements with both read and write calibration access disabled (unless they
are distributions)

− elements of model type log with implementation type bit

208 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

− fixed characteristic lines/maps

− arrays with variant size, where the system constant is not generated by
the RTE

− reference elements

− group characteristic lines/maps of kind Variable

The internal behavior contains constant memory with parameter data proto-
types, and static memory with variable data prototypes for all non-empty memory
structures of the software component, modules, single-instance classes and ex-
ported elements. These prototypes may be typed by a generated record applica-
tion type to reproduce the nesting of structs as generated by ASCET.

Since the calibration access is specified for all data of a data prototype, it may not
be possible to reproduce the settings in the model for the ARXML description. If at
least one element with read-only calibration access is in the data prototype, the
complete prototype is configured as read-only, and a warning WIle57 is reported
for the affected read-write elements.

9.7.2 Multi-Instance Software Components
If the generation of multi-instance software components is activated, all ele-
ments are described in the data structures, with the following exceptions:

− elements of model type log with implementation type bit

− fixed characteristic lines/maps

− arrays with variant size, where the system constant is not generated by
the RTE

− reference elements

− group characteristic lines/maps of kind Variable

− distributions with a user-defined type for the distribution search results

To keep the data structures generated by the RTE generator as similar as possi-
ble to the data structure generated by ASCET, also a substruct pointer is added.
Since this substruct pointer cannot be statically initialized, it is initialized dynami-
cally in the init runnable. Therefore, the following restrictions apply if a multi-in-
stance class is used in the model:

− The main structure of the class must be allocated to a writable memory, i.e.
the memory location must be assigned to category Variable in the
memorySections*.xml file.

If this is not the case, an error (MMdl3462) is reported:

The memory class of the element <element> is <memClass>,

but it has to be a variable memory class (due to dynamic

initialization of substruct pointers for multiple in-

stance SWCs.

− The software component must include exactly on runnable with an init
event.

If this is not the case, an error (MMdl3461) is reported:

209 | Implementing Software Components

ETAS ASCET V6.4 | AUTOSAR User Guide

There is no init runnable defined, which is not allowed

for multiple instance SWCs due to dynamic initialization

of substruct pointers.

The internal behavior contains per-instance-parameter memory with parameter
data prototype and ar-types-per-instance-memory with variable data prototype
for all non-empty memory structures of the software component, modules, sin-
gle-instance classes and exported elements. These prototypes may be typed by
a generated record application type to reproduce the nesting of structs as gen-
erated by ASCET. These prototypes also contain the initialization.

In the generated C code, all functions have an additional argument named
rteInstance. This argument is required to invoke Rte macros. All accesses to
data is generated using the Rte_CData macros for parameters and Rte_Pim
macros for variables.

Listing 107: C code – example for accessing items in a multi-instance SWC

210 | Contact Information

ETAS ASCET V6.4 | AUTOSAR User Guide

10 Contact Information

Technical Support
For details of your local sales office as well as your local
technical support team and product hotlines, take a look
at the ETAS website:
www.etas.com/hotlines.

ETAS offers trainings for its products:
www.etas.com/academy

ETAS Headquarters
ETAS GmbH
Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

http://www.etas.com/hotlines
https://www.etas.com/academy
https://www.etas.com/

211 | Glossary

ETAS ASCET V6.4 | AUTOSAR User Guide

Glossary

ASCET

Development tool for control unit software

ASCET-MD

ASCET Modeling and Design

ASCET-SE

ASCET Software Engineering

AUTOSAR

Automotive Open System Architecture; see https://www.autosar.org/

AUTOSAR R4.*

All supported AUTOSAR versions with major version number 4, i.e. R4.0.2,
R4.0.3, R4.2.2, R4.3.0, R4.3.1.

ARXML

EXtensive Markup Language (XML) used to describe AUTOSAR configurations.

BSW

Basic software; provides communications, I/O, and other functionality that all
software components are likely to require.

CPU

Central processing unit

ECU

Embedded Control Unit

ESDL

Embedded software development language developed by ETAS

NV variable

Non-volatile variable

OS

Operating system

OSEK

Working group "open systems for electronics in automobiles" (German: Ar-
beitskreis Offene Systeme für die Elektronik im Kraftfahrzeug)

Pport

Provided port; used by a software component to provide data or services to
other software components.

https://www.autosar.org/

212 | Glossary

ETAS ASCET V6.4 | AUTOSAR User Guide

RE

Runnable entity; a piece of code in an SWC that is triggered by the RTE at
runtime. It corresponds largely to the processes known in ASCET.

Rport

Required port; used by a software component to require data or services from
other software components.

RTA-OS

ETAS real-time operating system for deeply embedded ECUs with the highest
safety level (ISO 26262 ASIL-D). It supports the latest versions of the relevant
AUTOSAR, OSEK*/VDX, ISO 26262, and MISRA C standards.

RTA-RTE

AUTOSAR runtime environment by ETAS

RTE

AUTOSAR runtime environment; provides the interface between software
components, basic software, and operating systems.

SWC

AUTOSAR software component; the smallest non-dividable software unit in
AUTOSAR.

UUID

Universally Unique Identifier

VFB

Virtual Function Bus

213 | Figures

ETAS ASCET V6.4 | AUTOSAR User Guide

Figures
Figure 1: AUTOSAR software component (SWC) communications are represented by a virtual

function bus (VFB) implemented using the runtime environment (RTE) and basic
software. .. 12

Figure 2: Enable creation of AUTOSAR components ...17

Figure 3: Project settings for AUTOSAR projects .. 18

Figure 4: Matrices in AUTOSAR: target settings for the ANSI-C target ... 19

Figure 5: MISRA compliant casting for AUTOSAR projects ... 20

Figure 6: OS Configuration settings for an AUTOSAR R4.* project .. 21

Figure 7: Select item Swc in the project ARProject .. 23

Figure 8: ASCET-generated AUTOSAR code for the project ARProject (*.arxml, *.c, and
*.h files) in a non-default directory; AUTOSAR R4.2.2 ... 24

Figure 9: Using UUIDs to identify components on import ... 28

Figure 10: AUTOSAR R4.* abstraction levels for describing data types .. 31

Figure 11: Default implementation of model types .. 35

Figure 12: Implementation of the signed discrete element sdisc as sint8 36

Figure 13: Example of an enumeration in ASCET ... 41

Figure 14: Record with elements A and B ... 45

Figure 15: Implementation of the unsigned discrete element A as uint16 46

Figure 16: Implementation Impl of Record with elements A and B ... 47

Figure 17: Record type Record_Impl32 .. 47

Figure 18: Data element Speed for the sender-receiver interface SRInterface 65

Figure 19: Implementation Impl of the sender-receiver interface SRInterface with data
elements Speed and log .. 65

Figure 20: Mode declaration group OnOffMode ... 67

Figure 21: Selection of the mode group OnOffMode ... 69

Figure 22: Mode-switch interface ModeInterface ... 69

Figure 23: Arguments of the operation MaximumValue ... 72

Figure 24: Operation MaximumValue for the client-server interface CSInterface 72

Figure 25: Implementation of the operation MaximumValue ... 73

Figure 26: Return type for the operation Notification ... 76

Figure 27: Implementation Impl of the calibration interface CalInterface 79

Figure 28: NVData element Speed_NV of the NVData interface NVData_Interface with
implementation Impl .. 82

Figure 29: Selection of the item SRInterface ... 86

Figure 30: Provided port Sender of type SRInterface ... 87

214 | Figures

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 31: Pport Sender in the drawing area of the block diagram editor for software
components ... 88

Figure 32: "ARXML Configuration Settings" window, "Miscellaneous" node 91

Figure 33: Project editor, "Formulas" tab ... 92

Figure 34: Provided port Server of type CSInterface .. 94

Figure 35: Pport Server in the "Outline" tab of the software component Swc 95

Figure 36: Required port Receiver of type SRInterface.. 97

Figure 37: Rport Receiver in the drawing area of the block diagram editor for software
components ... 98

Figure 38: Required port Client of type CSInterface .. 100

Figure 39: Port editor window to select/deselect methods ...101

Figure 40: Rport Client in the drawing area of the block diagram editor for software
components ...101

Figure 41: Rport Calibration in the drawing area of the block diagram editor for software
components .. 102

Figure 42: Rport NVData in the drawing area of the block diagram editor for software
components .. 103

Figure 43: Definition of the timing event Cyclic_10ms.. 107

Figure 44: Operation-Invoked event for the server operations MaximumVal and
Notification ... 108

Figure 45: Modeling ModeEvent on entry with mode on of the application mode OnOffMode
 ... 109

Figure 46: Setting the symbol RteRunnable_Swc_RunnableEntity for the runnable
RunnableEntity ... 112

Figure 47: The event Cyclic_10ms is assigned to RunnableEntity 114

Figure 48: Sending a value 120 to a sender port with explicit communication (block diagram
editor for SWC) .. 115

Figure 49: Changing the access type of the RTE Access operator to implicit (block diagram
editor for SWC) .. 117

Figure 50: Writing a value 120 to a sender port with implicit communication (block diagram
editor for SWC) .. 118

Figure 51: Receiving the value Speed from the Rport Receiver with explicit communication
(block diagram editor for SWC) .. 119

Figure 52: Changing the access type to implicit in the RTE Access operator (block diagram
editor for SWC) .. 121

Figure 53: Receiving the value Speed from the Rport Receiver with implicit communication
(block diagram editor for SWC) ... 121

Figure 54: Implementation editor, AUTOSAR tab, with Policy set to QUEUED 124

215 | Figures

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 55: Setting Can be Invoked Concurrently for the runnable Server_MaximumValue
 ... 127

Figure 56: Request on Rport Client to compute MaximumValue(A,B) and store it in C
(block diagram editor for SWC) .. 129

Figure 57: Interrunnable variable of array type .. 134

Figure 58: Interrunnable variable of matrix type .. 138

Figure 59: Scalar interrunnable variables used by two runnable entities (block diagram editor
for SWC) ... 146

Figure 60: Complex interrunnable variable (implicit, array) used by two runnable entities
(block diagram editor for SWC) .. 146

Figure 61: Complex interrunnable variable (implicit, matrix) used by two runnable entities
(block diagram editor for SWC) .. 146

Figure 62: Complex interrunnable variable (implicit, record) used by two runnable entities
(block diagram editor for SWC) .. 146

Figure 63: Explicit read and write access to a complex interrunnable variable (explicit, matrix)
 ... 146

Figure 64: Use of the exclusive area SwcExclusiveArea in RunnableEntity (block
diagram editor for SWC) .. 155

Figure 65: Variant handling - required settings for system constant generation 157

Figure 66: Conditional call of a process in a runnable (top) and usage of messages in the
process (bottom) ... 158

Figure 67: Mapping of messages and parameters for variant handling (from top to bottom:
parameter mapping, internal message mapping, external message mapping) ... 158

Figure 68: User-defined system constant My System Constant available for selection in the
properties editor ... 160

Figure 69: Mode declaration group OnOffMode ... 166

Figure 70: ModeSwitch is assigned to ModeRunnable .. 169

Figure 71: Mode off disabled in ModeEvent ... 170

Figure 72: Setting explicit communication with status (block diagram editor for SWC) 178

Figure 73: Sending a value 120 to a sender port using explicit communication with status
(block diagram editor for SWC) .. 179

Figure 74: Implementation of the operation Server_MaximumValue in the diagram
Server_CSInterface (block diagram editor for SWC) .. 184

Figure 75: Parameter localLog defined as imported ... 187

Figure 76: Block diagram of method calc .. 188

Figure 77: Accessing ClassWithParam in the software component (block diagram editor for
SWC) ... 189

Figure 78: Mapping an imported parameter and a calibration parameter 189

Figure 79: Completed parameter mapping .. 190

216 | Figures

ETAS ASCET V6.4 | AUTOSAR User Guide

Figure 80: Block diagram of process process in ModuleWithMsg ... 194

Figure 81: Mapping messages and interrunnable variables .. 195

Figure 82: Mapping messages and data elements ... 196

Figure 83: Block diagram of process process in Module_NVvar ... 199

Figure 84: Mapping NV variables and NVData elements .. 201

Figure 85: “Message Mapping” tab with invalid mappings of messages to NVData elements 205

Figure 86: Settings for generation of internal data structure in the "ARXML Configuration
Settings" window, "Miscellaneous" node .. 207

217 | Code Listings

ETAS ASCET V6.4 | AUTOSAR User Guide

Code Listings
Listing 1: ARXML code – mapping application data types and mode type to implementation

data types (AUTOSAR R4.2.2) .. 33

Listing 2: ARXML code – primitive application data type SInt8 (AUTOSAR R4.2.2) 37

Listing 3: ARXML code – mapping of SInt8 application data type and implementation data
type (AUTOSAR R4.2.2) ... 38

Listing 4: ARXML code – platform data type sint8 (AUTOSAR R4.2.2) 39

Listing 5: ARXML code – base type sint8 (AUTOSAR R4.2.2) .. 40

Listing 6: ARXML code – application data type Enumeration .. 41

Listing 7: ARXML code – mapping of Enumeration application data type and implementation
data type ... 42

Listing 8: ARXML code – implementation data type Enumeration ... 42

Listing 9: ARXML code – application data type Record_Impl ... 48

Listing 10: ARXML code – mapping of Record_Impl application data type and implementation
data type ... 49

Listing 11: ARXML code – implementation data type Record_Impl .. 50

Listing 12: ARXML code – platform data type Boolean ... 51

Listing 13: ARXML code – platform data type uint16.. 51

Listing 14: ARXML code – base types boolean and uint16 ... 52

Listing 15: ARXML code – application data type UInt8_16 of category ARRAY 54

Listing 16: ARXML code – mapping of UInt8_16 application data type and implementation
data type ... 55

Listing 17: ARXML code – implementation data type uint8_16 ... 55

Listing 18: ARXML code – platform data type uint8 ... 56

Listing 19: ARXML code – base type uint8 .. 56

Listing 20: ARXML code – application data types UInt8_4_3 and UInt8_3 of category ARRAY
(generated for IRV_matrix).. 59

Listing 21: ARXML code – mapping of UInt8_4_3 and UInt8_3 application types and
implementation data types .. 60

Listing 22: ARXML code – implementation data types uint8_4_3 and uint8_3 generated for
IRV_matrix ... 61

Listing 23: ARXML code – sender-receiver interface definition .. 64

Listing 24: ARXML code – declaration of data elements within sender-receiver interface 66

Listing 25: ARXML code – mode declaration group ... 68

Listing 26: ARXML code – declaration of mode group within mode-switch interface 70

Listing 27: ARXML code – client-server interface structure (all AUTOSAR versions) 70

Listing 28: ARXML code – operation in a client-server interface ... 74

218 | Code Listings

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 29: ARXML code – operation with possible application errors ... 77

Listing 30: ARXML code – calibration interface structure ... 78

Listing 31: ARXML code – declaration of calibration elements within a calibration interface
definition ... 80

Listing 32: ARXML code – NVData interface structure ... 81

Listing 33: ARXML code – declaration of NVData elements within NVData interface 82

Listing 34: ARXML code – definition of application software component type 85

Listing 35: ARXML code – port definition structure (all AUTOSAR versions) 86

Listing 36: ARXML code – provided port Sender definition ... 89

Listing 37: ARXML code – provided port Sender definition with <APPLICATION-VALUE-
SPECIFICATION> ... 92

Listing 38: ARXML code – Swc_compumethods.arxml file, ASCET_Units definition 93

Listing 39: ARXML code – provided port Server definition ... 95

Listing 40: ARXML code – required port Receiver definition ... 98

Listing 41: ARXML code – required port Client definition ..101

Listing 42: ARXML code – required port Calibration definition ... 102

Listing 43: ARXML code – required port NVData definition ... 104

Listing 44: ARXML code – internal behavior description for Swc .. 105

Listing 45: ARXML code – structure for event specification ... 106

Listing 46: ARXML code – definition of a timing event (all AUTOSAR versions) 107

Listing 47: ARXML code – definition of an Operation-Invoked event ... 109

Listing 48: ARXML code – definition of a Mode-Switch event ...110

Listing 49: ARXML code – runnable entity definition (AUTOSAR R4.2.2) 111

Listing 50: ARXML code – runnable entity definition with user-defined <SYMBOL>
(AUTOSAR R4.2.2) ... 112

Listing 51: ARXML code – runnable entity with explicit send .. 116

Listing 52: ARXML code – runnable entity with implicit send ... 118

Listing 53: ARXML code – runnable entity with explicit receive.. 120

Listing 54: ARXML code – runnable entity with implicit receive .. 122

Listing 55: ARXML code – Pport SRI_queued_P definition with queued elements 124

Listing 56: ARXML code – Rport SRI_queued_R definition with queued elements 125

Listing 57: ARXML code – internal behavior responding to a server request 126

Listing 58: ARXML code – server runnable with concurrent invocation 127

Listing 59: ARXML code – runnable entity with client request (AUTOSAR R4.2.2).................... 129

Listing 60: ARXML code – explicit scalar interrunnable variable ... 131

Listing 61: ARXML code – implicit scalar interrunnable variable .. 131

219 | Code Listings

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 62: ARXML code – explicit scalar interrunnable variable with <APPLICATION-VALUE-
SPECIFICATION> .. 132

Listing 63: ARXML code – implicit interrunnable variable of array type 135

Listing 64: ARXML code – explicit interrunnable variable of array type 136

Listing 65: ARXML code – interrunnable variable of array type with <APPLICATION-VALUE-
SPECIFICATION> .. 137

Listing 66: ARXML code – implicit interrunnable variable of matrix type 139

Listing 67: ARXML code – explicit interrunnable variable of matrix type 140

Listing 68: ARXML code – interrunnable variable of matrix type with <APPLICATION-VALUE-
SPECIFICATION> ... 141

Listing 69: ARXML code – implicit interrunnable variable of record type 143

Listing 70: ARXML code – explicit interrunnable variable of record type 144

Listing 71: ARXML code – interrunnable variable of record type with <APPLICATION-VALUE-
SPECIFICATION> .. 145

Listing 72: ARXML code – runnable entities with read (top) and write (bottom) access to
scalar interrunnable variables .. 148

Listing 73: ARXML code – runnable entities with read (top, middle) and write (bottom) access
to an implicit interrunnable variable of array type ... 149

Listing 74: ARXML code – read (top) and write (bottom) access to an implicit interrunnable
variable of matrix type .. 150

Listing 75: ARXML code – read (top) and write (bottom) access to an explicit interrunnable
variable of matrix type ... 151

Listing 76: ARXML code – runnable entities with read (top, middle) and write (bottom) access
to an interrunnable variable of record type .. 152

Listing 77: ARXML code – exclusive area definition .. 153

Listing 78: ARXML code – runnable entity with reference to exclusive area 156

Listing 79: ARXML code – System Constant (AUTOSAR R4.2.2) .. 159

Listing 80: ARXML code – System Constant value (AUTOSAR R4.2.2) 159

Listing 81: ARXML code – variation point for an interrunnable variable (AUTOSAR R4.2.2) 161

Listing 82: ARXML code – variation point for a data access (AUTOSAR R4.2.2) 161

Listing 83: ARXML code – variation point proxy (AUTOSAR R4.2.2) ... 162

Listing 84: C code – Rte_Cfg.h with definition of system constant ... 162

Listing 85: C code – Rte_SWC.h with definition of system constant ... 162

Listing 86: C code – M.h with conditional declaration of function ... 163

Listing 87: C code – M.c with conditional definition of function .. 163

Listing 88: ARXML code – Variant (AUTOSAR R4.2.2) ... 164

Listing 89: ARXML code – mode declaration group .. 165

220 | Code Listings

ETAS ASCET V6.4 | AUTOSAR User Guide

Listing 90: ARXML code – definition of a Mode-Switch event with disabled mode 171

Listing 91: C code – include application header file (<SWCname>.h).. 174

Listing 92: C code – entry point for runnable entity ... 175

Listing 93: C code – server runnable entity ... 176

Listing 94: C code – explicit send (example of section 7.4.1, Explicit Communication)177

Listing 95: C code – explicit send with status ... 179

Listing 96: C code – implicit send (example of section 7.4.2, Implicit Communication) 180

Listing 97: C code – explicit receive (example of section 7.5.1, Explicit Data Read Access) 181

Listing 98: C code – explicit receive with status ... 182

Listing 99: C code – implicit receive (example of section 7.4.2, Implicit Communication) 183

Listing 100: C code – server runnable ... 184

Listing 101: C code – client request ... 185

Listing 102: C code – class with mapped parameters .. 190

Listing 103: C code – module with mapped messages .. 196

Listing 104: C code – module with mapped NV variables ... 201

Listing 105: C code – enter/exit exclusive area ... 206

Listing 106: C code – exclusive area example .. 206

Listing 107: C code – example for accessing items in a multi-instance SWC............................ 209

221 | Tables

ETAS ASCET V6.4 | AUTOSAR User Guide

Tables
Table 1: Categories for the configuration of generated ARXML code. The content of the

categories depends on the selected AUTOSAR version. ...22

Table 2: Possible settings for the Use Imported ARXML Info ARXML configuration option 26

Table 3: AUTOSAR error codes .. 44

Table 4: ESDL code for access to interrunnable variables .. 147

Table 5: Mapping possibilities for ASCET parameters .. 186

Table 6: Parameter types and compatible AUTOSAR types .. 186

Table 7: Mapping possibilities for ASCET messages .. 191

Table 8: Message types and compatible AUTOSAR types .. 191

Table 9: Mapping possibilities for ASCET NV variables ... 197

Table 10: NV variable types and compatible AUTOSAR types ... 197

Table 11: Results of auto-mapping with prefix and postfix patterns ... 204

222 | Index

ETAS ASCET V6.4 | AUTOSAR User Guide

Index

A

access macros
Rte_Calprm ...185
Rte_DRead ... 180
Rte_Enter ... 205
Rte_Exit .. 205
Rte_IRead ... 182
Rte_IWrite .. 180
Rte_Write .. 177

application data type 31
application error .. 74

create .. 74
array ... 52

interrunnable variable 133
array of arrays see matrix
ARXML

internal data structure 207
ARXML file

configure ... 21
use imported information 25

ARXML importer ... 25
ASCET

assign runnable sequences to exclusive
area ... 154

AUTOSAR code generation settings 18
change RTE access................................. 116
create application error 74
create calibration interface 77
create client-server interface 70
create enumeration 40
create exclusive area 153
create mode group 67
create mode-switch interface 68
create NVData interface 81
create operation .. 71
create record ... 44
create runnable entity 111
create sender-receiver interface 63
create software component 23, 85
develop SWC ... 30

enable AUTOSAR component creation 17
generate code ... 23
implementation of data element 65
import ARXML file 25
message mapping 190, 194, 201
model software components 174–209
NV data mapping 196, 199, 201
parameter mapping 188, 201
specify operation 183

ASCET message
access ... 190
auto-mapping... 201

authoring tool ... 12
AUTOSAR

authoring tool ... 12
basic approach ... 11
behavior modeling tool............................. 15
calibration interface 77
client-server interface 70
code generation 22
code generation settings 17
configure ARXML output 21
data types .. 31–62
exclusive area 153, 205
interfaces .. 63–84
interrunnable variable 130
memory sections definition 20
mode .. 171
mode group .. 67
NVData interface 80
operation ... 71
Overview ... 11–15
provided port definition 88
required port definition 98
Rte_DRead ..180
runnable entity 13, 110
runtime environment 11, 14
software component 11
software component types 85–104
system constant 158
target .. 18

223 | Index

ETAS ASCET V6.4 | AUTOSAR User Guide

target setting for matrixes 18
use imported information 25
variant handling 156
virtual function bus 11

AUTOSAR component
create calibration interface 77
create client-server interface 70
create NVData interface 81
create sender-receiver interface 63
create software component 85
enable creation .. 17

AUTOSAR interface 13

B

base type .. 32
basic approach .. 11
behavior modeling tool 15
bottom-up approach 28

C

calibration interface 77
create ... 77
implementation ... 79
parameter ... 78

calibration parameter 78
access ..185
auto-mapping ...201
create .. 78
implementation ... 78
map to ASCET parameter 188

client request .. 128
client request on port 128
client-server communication 183

client request ...184
client-server interface 70

application error.. 74
create .. 70
implementation .. 73
operation ... 71, 183

code generation .. 22
code generation settings 18
complex data types

array ... 52

matrix... 57
record .. 44

complex interrunnable variable 132
read access 132, 145
write access 132, 145

complex types ... 44
concurrent invocation of server 126

enable.. 126
create

application error 74
calibration interface 77
calibration port ... 101
client port ... 99
client-server interface 70
enumeration .. 40
exclusive area .. 153
interrunnable variable (array) 133
interrunnable variable (matrix) 137
interrunnable variable (record) 142
interrunnable variable (scalar)............. 130
mode group .. 67
mode-switch event 109
mode-switch interface 68
NVData interface 81
NVData port .. 103
operation ... 71
project .. 17
receiver port .. 96
record .. 44
runnable entity .. 111
sender port .. 86
sender-receiver interface 63
server port .. 93
software component 23, 85
timing event .. 107

D

data element
create .. 64
implementation 65, 82
map to ASCET message 194

data structure
internal .. 207

224 | Index

ETAS ASCET V6.4 | AUTOSAR User Guide

data types ... 31–62
application data type 31
array ... 52
base type .. 32
complex ... 44, 52, 57
default implementation 35
enumeration .. 40
implementation data type 31
matrix ... 57
platform data type.................................... 33
primitive .. 34
primitive ~ with semantics 40
record .. 44

default implementation 35
developing SWC .. 30

E

enumeration ... 40
create .. 40
create application error 74

Product liability disclaimer8
event .. 106

mode-switch ~ .. 109
operation-invoked ~ 108
timing ~ ... 106

exclusive area 153, 205
assign sequences of runnable ... 154, 205
create ... 153
use ... 154

explicit communication 114
read access .. 119
receive from port 119
send to port .. 114

explicit data read access 119

I

implementation
calibration parameter 78
data element ... 65
default ... 35
of record ... 45, 47
operation .. 72
sdisc as sint8 ... 35

implementation data type 31
platform data type 33

implicit communication 116
read access .. 120
receive from port 121
send to port ... 117

implicit data read access 120
initial value

specification .. 89
interfaces ... 63–84

calibration ... 77
client-server .. 70
NVData .. 80
sender-receiver .. 63

internal behavior 105–64
client request on port 128
event ... 106
exclusive area .. 153
explicit communication 114, 119
implicit communication 116, 120
interrunnable variable 130
receive from port 118
respond to server request on port 125
response to timing event113
runnable entity ... 110
send to port .. 114
variant handling 156

internal data structure 207
calibration .. 207
in ARXML ... 207
measurement .. 207
multi-instance SWC 208

interrunnable variable 130
array .. 133
complex 133, 137, 142
create array ~ ... 133
create matrix ~ ... 137
create record ~ .. 142
create scalar ~ ... 130
map to ASCET message 194
matrix.. 137
record ... 142
scalar .. 130

225 | Index

ETAS ASCET V6.4 | AUTOSAR User Guide

variation point ... 160

M

mapping
automatic ..201
conversion ... 204
message ... 190
NV data .. 196
parameter ..185

matrix ... 57
create .. 57
interrunnable variable 137
target setting ... 18

memory sections
definition... 20

memorySections_Autosar4.xml 21
message mapping....................................... 190

convert to NV data mapping 204
mode .. 171

create mode group 165
define .. 165
disable .. 170
trigger runnable on mode-switch event

 .. 168
use .. 167

mode communication 166
create mode group interface 167

mode group .. 67
create .. 67, 165

mode group interface
create ... 167
insert in SWC .. 167

mode-switch event 109
add to runnable 169
create .. 109, 168
trigger runnable 168

mode-switch interface 67
create .. 68

N

Non-volatile variable see NV variable
NV data mapping ... 196

convert message mapping to ~ 204

NV variable
access ... 196
auto-mapping... 201
map to NVData element 199

NVData
interface ... 80

NVData element
create .. 82
map to ASCET NV variable 199

NVData interface
create ... 81
create data element 82
implementation ... 82
implementation of data element 82
variable data prototypes 81

O

operation .. 71, 183
create ... 71
create argument .. 71
implementation ..72
specify in ASCET 183

operation-invoked event108
Overview .. 11–15

authoring tool ... 12
behavior modeling tool............................. 15
runtime environment 14

P

parameter mapping 185
platform data type .. 33
port ... 85

client request ... 184
client request on ~ 128
create calibration port 101
create client port 99
create NVData port 103
create receiver port 96
create sender port 86
create server port 93
make client request 128
provided .. 86
receive from ~ .. 118

226 | Index

ETAS ASCET V6.4 | AUTOSAR User Guide

required... 96
respond to server request on ~ 125
send to ~ .. 114

PPort see provided port
primitive data types 34

with semantics .. 40
project

configure ARXML output 21
create ... 17
insert software component 23

provided port .. 86
create sender port 86
create server port 93

Q

Queued communication 122
activate .. 123
rules .. 123

R

receive from port 118, 180
explicit communication 119, 180
explicit communication + status 181
implicit communication 121, 182

record ... 44
create .. 44
interrunnable variable142

required port .. 96
create calibration port 101
create client port 99
create NVData port 103
create receiver port 96

respond to server request on port 125
RPort..................................... see required port
RTE API

client-server communication 183
naming convention 172
parameter passing mechanism 173
sender-receiver communication 176

RTE generator .. 28
contract phase.. 29
RTE phase .. 29

Rte_Call .. 183

Rte_Calprm ... 185
Rte_DRead ..180
Rte_Enter ... 205
Rte_Exit ... 205
Rte_IRead .. 182
Rte_IWrite..180
Rte_Write .. 177
runnable see runnable entity
runnable entity .. 13, 110

access interrunnable variable145
add mode-switch event 169
assign sequences in exclusive area ..154,

205
assign timing event113
category .. 13
create .. 111, 168
disable activation 170
entry point ... 175
naming convention 172
response to timing event113
set C identifier ... 111
trigger on mode-switch event 168

runtime environment 11, 14

S

Safety
intended use .. 7

Safety information ... 8
sample database .. 16
send to port .. 114, 177

explicit communication 114, 177
explicit communication + status 177
implicit communication 117, 180

Sender-Receiver
interface ... 63

sender-receiver communication 176
receive ...180
send .. 177

sender-receiver interface
create .. 63
create data element 64
create mode group interface 68
data element prototypes 64

227 | Index

ETAS ASCET V6.4 | AUTOSAR User Guide

implementation ... 65
mode communication............................ 166
mode group .. 67

SenderReceiver interface
queued communication 122

server
concurrent invocation 126

software component 11
~ types ... 85–104
component type 85
concurrent invocation of server 126
create .. 23, 85
create calibration port 101
create client port 99
create NVData port 103
create receiver port 96
create sender port 86
create server port 93
event.. 106
implement 174–209
insert in project ... 23
insert mode group interface 167
internal behavior 105–64
multi-instance ~ 208
open ... 85
port... 85

software component development ... 16–30
bottom-up approach 28
RTE generator ... 28
top-down approach 24

software component modeling 174–209
access ASCET messages 190
access calibration parameters185
access NV variables 196
application header files 174
application source code 174
basic concepts... 172
client request ...184
client-server communication 183
entry point for runnable 175
exclusive area ... 205

receive with explicit communication ..180
receive with explicit communication +

status ... 181
receive with implicit communication .. 182
send with explicit communication 177
send with explicit communication +

status ... 177
send with implicit communication180
sender-receiver communication 176
server operation 183

software component types 85–104
Std_ReturnType ... 43

T

Target
for AUTOSAR ... 18

timing event ... 106
assign to runnable....................................113
create ... 107
response to ~ ..113

Top-down approach 24
use information from ARXML file 25

U

UUID ...27

V

variant ...163
variant handling ... 156

derive conditions 157
system constant 158
variant ..163
variation point 160, 161
variation point proxy 162

variation point
data access .. 161
interrunnable variable 160

variation point proxy................................... 162
virtual function bus ... 11

	ETAS ASCET V6.4 AUTOSAR
	User Guide
	Contents

	1 Introduction
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Safety Information
	1.5 Data Protection
	1.6 Data and Information Security
	1.6.1 Data and Storage Locations
	1.6.1.1 License Management
	1.6.1.2 Problem Report

	1.6.2 Technical and Organizational Measures

	2 AUTOSAR Overview
	2.1 AUTOSAR Basic Approach
	2.2 What is an AUTOSAR Authoring Tool?
	2.3 What is a Runtime Environment?
	2.4 What is a Behavior Modeling Tool?

	3 Developing Software Components in ASCET
	Sample Database
	Finding Out More
	3.1 Configuring ASCET
	3.1.1 Configuring the Creation of AUTOSAR Components
	3.1.2 Code Generation Settings for AUTOSAR
	3.1.3 Settings for the AUTOSAR XML Output
	3.1.4 Code Generation

	3.2 Approaches for Creating Software Components
	3.2.1 Top-Down Approach
	3.2.1.1 ARXML Importer
	3.2.1.2 Usage Information from Imported ARXML Files
	3.2.1.3 Using the Attribute UUID in the ARXML Import

	3.2.2 Bottom-Up Approach

	3.3 Working with the RTE Generator
	3.3.1 Contract Phase
	3.3.2 RTE Phase

	4 Data Types
	4.1 Application Data Types
	4.2 Implementation Data Types
	4.3 Base Types
	4.4 Type Mappings
	4.5 Platform Data Types
	4.6 Primitive Data Types
	4.7 Primitive Data Types With Semantics
	4.7.1 Std_ReturnType

	4.8 Complex Data Types
	4.8.1 Record Data Types
	4.8.2 Array Data Types
	4.8.3 Matrix Data Types

	5 Interfaces
	5.1 Sender-Receiver
	Data Element Prototypes

	5.2 Mode Switch
	5.3 Client-Server
	Operations

	5.4 Calibration
	Calibration Parameters

	5.5 NVData
	Variable Data Prototypes

	5.6 Implementations of Interfaces

	6 Software Component Types
	6.1 Ports
	6.1.1 Provided Ports
	6.1.1.1 Sender Port
	6.1.1.2 Server Port

	6.1.2 Required Ports
	6.1.2.1 Receiver Port
	6.1.2.2 Client Port
	6.1.2.3 Calibration Port
	6.1.2.4 NVData Port

	7 Internal Behavior
	7.1 Events
	7.1.1 Timing Events
	7.1.2 Operation-Invoked Events
	7.1.3 Mode-Switch Events

	7.2 Runnable Entities
	7.3 Responding to Timing Events
	7.4 Sending to a Port
	7.4.1 Explicit Communication
	7.4.2 Implicit Communication

	7.5 Receiving from a Port
	7.5.1 Explicit Data Read Access
	7.5.2 Implicit Data Read Access

	7.6 Queued Communication
	7.7 Responding to a Server Request on a Port
	7.7.1 Concurrent Invocation of Servers

	7.8 Making a Client Request on a Port
	7.9 Interrunnable Variables
	7.9.1 Scalar Interrunnable Variables
	7.9.2 Complex Interrunnable Variables
	7.9.2.1 Interrunnable Variables of Array Type
	7.9.2.2 Interrunnable Variables of Matrix Type
	7.9.2.3 Interrunnable Variables of Record Type

	7.9.3 Read and Write Access

	7.10 Exclusive Areas
	7.10.1 Configuration
	7.10.2 Usage

	7.11 Variant Handling
	7.11.1 Deriving the Conditions from the Model
	7.11.2 System Constants
	7.11.3 Variation Points for Interrunnable Variables
	7.11.4 Variation Points for Data Access
	7.11.5 Variation Point Proxies
	7.11.6 Variants

	8 Modes
	8.1 Defining Modes
	8.2 Mode Communication
	8.3 Using Modes
	8.3.1 Software Component Initialization and Finalization
	8.3.2 Triggering a Runnable Entity on a Mode-Switch
	8.3.3 Disabling Modes

	9 Implementing Software Components
	9.1 Basic Concepts
	9.1.1 Namespace
	9.1.2 Runnable Naming Convention
	9.1.3 API Naming Convention
	9.1.4 API Parameter Passing Mechanisms

	9.2 Application Source Code
	9.2.1 Application Header Files
	9.2.2 Entry Point Signature for Runnable Entities

	9.3 Sender-Receiver Communication
	9.3.1 Sending to a Port: Explicit Communication
	9.3.2 Sending to a Port: Explicit Communication with Status
	9.3.3 Sending to a Port: Implicit Communication
	9.3.4 Receiving from a Port: Explicit Communication
	9.3.5 Receiving from a Port: Explicit Communication with Status
	9.3.6 Receiving from a Port: Implicit Communication

	9.4 Client-Server Communication
	9.4.1 Implementing a Server Operation
	9.4.2 Making a Client Request on a Port

	9.5 Message, NV Variable, and Parameter Mapping
	9.5.1 Accessing Calibration Parameters
	9.5.2 Accessing ASCET Messages
	9.5.3 Accessing Non-Volatile Variables
	9.5.4 Automatic Mapping
	9.5.5 Mapping Conversion

	9.6 Concurrency Control with Exclusive Areas
	9.6.1 Sequences of a Runnable Assigned to an Exclusive Area

	9.7 Description of Internal Data Structures
	9.7.1 Measurement and Calibration
	9.7.2 Multi-Instance Software Components

	10 Contact Information
	Technical Support
	ETAS Headquarters

	Glossary
	Figures
	Code Listings
	Tables
	Index

