
ETAS ASCET V6.4

Getting Started

Copyright
The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used if
the customer is in possession of a general license agreement or single
license. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of ETAS GmbH.

© Copyright 2024 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or
brands belonging to the respective owners.

ASCET V6.4 | Getting Started R09 EN | 06.2024

3 | Contents

Contents

1 Introduction . 6

1.1 Intended Use . 6

1.2 Target Group . 6

1.3 Classification of Safety Messages . 7

1.4 Safety Information. 7

1.5 Data Protection. 8

1.6 Data and Information Security . 8
1.6.1 Data and Storage Locations . 8
1.6.2 Technical and Organizational Measures . 10

2 About ASCET . 11

2.1 Features at a Glance. 12
2.1.1 ASCET-MD. 12
2.1.2 ASCET-RP . 12
2.1.3 ASCET-SE . 12
2.1.4 ASCET-SCM . 13
2.1.5 ASCET-DIFF . 13

2.2 Supporting Functions. 13
2.2.1 Monitor Window . 13
2.2.2 Keyboard Assignment . 13

2.3 Finding Out More . 13

3 Embedded Automotive Control Software Development with ASCET. 15

3.1 Model-Based Design . 16
3.1.1 Control Algorithm Development. 17
3.1.2 Rapid Prototyping. 20
3.1.3 Implementation and ECU Integration of Control Algorithms 22
3.1.4 Reuse of Control Algorithm in Different Kinds of Projects 26
3.1.5 Testing Technical System Architecture in the Lab . 28
3.1.6 Testing and Honing of Technical System Architecture in the Vehicle. 28

3.2 Using ASCET in a Production Environment . 29

3.3 Summary . 31

4 Tutorial . 32

4.1 Preparations. 32
4.1.1 Tutorial Database or Workspace . 33
4.1.2 Summary . 34

4.2 Lesson 1: A Simple Block Diagram . 35
4.2.1 Preparatory Steps . 35
4.2.2 Specifying a Class . 36
4.2.3 Summary . 43

4.3 Lesson 2: Experimenting with Components . 43
ETAS ASCET V6.4 | Getting Started

4 | Contents
4.3.1 Starting the Experimentation Environment . 43
4.3.2 Setting up the Experimentation Environment . 44
4.3.3 Using the Experimentation Environment . 47
4.3.4 Summary . 49

4.4 Lesson 3: To Specify a Reusable Component . 49
4.4.1 Creating the Diagram . 50
4.4.2 Experimenting with the Integrator . 55
4.4.3 Summary . 57

4.5 Lesson 4: A Practical Example – Controller . 57
4.5.1 Specifying the Controller . 58
4.5.2 Experimenting with the Controller . 60
4.5.3 Project. 61
4.5.4 Setting Up the Project . 61
4.5.5 Experimenting with the Project . 63
4.5.6 Summary . 64

4.6 Lesson 5: Extending the Project . 64
4.6.1 Specifying the Signal Converter . 64
4.6.2 If...Then...Else in the Signal Converter . 66
4.6.3 Experimenting with the Signal Converter . 68
4.6.4 Integrating the Signal Converter into the Project . 70
4.6.5 Summary . 73

4.7 Lesson 6: Modeling a Continuous Time System. 73
4.7.1 Motion Equation . 73
4.7.2 Model Design . 74
4.7.3 Summary . 77

4.8 Lesson 7: Process Model . 78
4.8.1 Specifying the Process Model . 78
4.8.2 Integrating the Process Model . 81
4.8.3 Online Experiment with the Process Model. 83
4.8.4 Summary . 86

4.9 Lesson 8: State Machines . 86
4.9.1 Specifying the State Machine. 86
4.9.2 How a State Machine Works . 91
4.9.3 Experimenting with the State Machine. 92
4.9.4 Integrating the State Machine in the Controller . 93
4.9.5 Summary . 95

4.10 Lesson 9: Hierarchical State Machines . 95
4.10.1 Specifying the State Machine. 96
4.10.2 Experimenting with the Hierarchical State Machine . 100
4.10.3 How Hierarchical State Machines Work . 101
4.10.4 Summary . 101
ETAS ASCET V6.4 | Getting Started

5 | Contents
5 Support Function for Feedback to ETAS in Case of Errors . 102

6 Troubleshooting General Problems. 104

6.1 Network Adapter Cannot be Selected via Network Manager . 104

6.2 Search for Ethernet Hardware Fails . 104

7 Tool Classification for ISO26262 . 109

8 Contact Information . 112

Glossary . 113

Figures . 124

Index . 125
ETAS ASCET V6.4 | Getting Started

6 | Introduction
1 Introduction
In this chapter, you can find information about the intended use, the addressed
target group, and information about safety and privacy related topics.

Please adhere to the ETAS Safety Advice (accessible via Help > Product
Disclaimer) and to the safety information given in the user documentation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information.

1.1 Intended Use
The ASCET tools support model-based software development. In model-based
development, you construct an executable specification – the model – of your
system and establish its properties through simulation and testing in early stages
of development. When a model behaves as required, it can be converted automat-
ically to production-quality code.

ASCET provides a multi-paradigm modeling framework, providing integrated sup-
port for a number of different modeling notations. These modeling notations
abstract from low-level details, separating the concerns of what the system soft-
ware must do from how it is realized in code executing in the ECU. ASCET can also
interface directly with C code as a "low-level" specification language.

ASCET provides a systematic way to augment the high-level specification
(referred to as the physical model) with the necessary information for target
implementation (referred to as the implementation model). The implementation
model covers the low-level details required to make the model run on target hard-
ware.

The physical and implementation models are clearly separated in ASCET so that
the design specification is not corrupted with implementation details that may
change from project to project. Maintaining this separation also allows ASCET to
support multiple implementation models for a single physical model, keeping the
number of model variants low.

1.2 Target Group
This manual addresses qualified personnel working in the fields of automobile con-
trol unit development and calibration. Specialized knowledge in the areas of mea-
surement and control unit technology is required.

ASCET users should be familiar with the Microsoft Windows® 10 operating system.
Knowledge of a programming language, preferably ANSI-C, can be helpful when
using ASCET.
ETAS ASCET V6.4 | Getting Started

7 | Introduction
1.3 Classification of Safety Messages
Safety messages warn of dangers that can lead to personal injury or damage to
property:

1.4 Safety Information
Observe the following safety information when using the NVRAM capabilities of
the ASCET-RP or ASCET-SE targets, to avoid injury to yourself and others as well
as damage to property:

DANGER
DANGER indicates a hazardous situation that, if not avoided, will result in death
or serious injury.

WARNING
WARNING indicates a hazardous situation that, if not avoided, could result in
death or serious injury.

CAUTION
CAUTION indicates a hazardous situation that, if not avoided, could result in
minor or moderate injury.

NOTICE
NOTICE indicates a situation that, if not avoided, could result in damage to
property.
ETAS ASCET V6.4 | Getting Started

8 | Introduction
Adhere to the ETAS Safety Advice and the safety information given in the online
help and user guides. You can open the ETAS Safety Advice from the main ASCET
window with Help > Product Disclaimer. A PDF version is available on the installa-
tion medium: Documentation\ETAS Safety Advice.pdf

In addition, take all information on environmental conditions into consideration
before setup and operation (see the documentation of your computer, hardware,
etc.).

Further safety advice for this ETAS product is available in the ASCET V6.4 safety
manual, available at ETAS upon request.

1.5 Data Protection
If the product contains functions that process personal data, legal requirements
of data protection and data privacy laws shall be complied with by the customer.
As the data controller, the customer usually designs subsequent processing.
Therefore, he must check if the protective measures are sufficient.

1.6 Data and Information Security
To securely handle data in the context of this product, see the next sections
about data and storage locations as well as technical and organizational mea-
sures.

1.6.1 Data and Storage Locations
The following sections give information about data and their respective storage
locations for various use cases.

WARNING
Harm or property damage due to unpredictable behavior of vehicle or test
bench

Wrongly initialized NVRAM variables (NV variables) can lead to unpredictable
behavior of a vehicle or a test bench. This behavior can cause harm or property
damage.

ASCET projects that use the NVRAM possibilities of ASCET-RP targets expect a
user-defined initialization that checks whether all NV variables are valid for the
current project, both individually and in combination with other NV variables. If
this is not the case, all NV variables have to be initialized with their (reasonable)
default values.

Due to the NVRAM saving concept, this is absolutely necessary when projects
are used in environments where any harm to people and equipment can happen
when unsuitable initialization values are used (e.g. in-vehicle-use or at test
benches).
ETAS ASCET V6.4 | Getting Started

9 | Introduction
License Management
When using the ETAS License Manager in combination with user-based licenses
that are managed on the FNP license server within the customer's network, the fol-
lowing data are stored for license management purposes:

Data

- Communication data: IP address

- User data: Windows user ID

Storage location

- FNP license server log files on the customer network

When using the ETAS License Manager in combination with host-based licenses
that are provided as FNE machine-based licenses, the following data are stored for
license management purposes:

Data

- Activation data: Activation ID

Used only for license activation, but not continuously during license usage

Storage location

- FNE trusted storage

C:\ProgramData\ETAS\FlexNet\fne\license\ts

Problem Report
When an error occurs, ASCET offers to send an error report to ETAS for trouble-
shooting. ETAS uses the personal information to have a contact person in case of
system errors.

The problem report may contain the following personal data or data category:

Data

- Communication data: IP address

- User data: Windows user ID, user name

Storage location:

- EtasLogFiles<index number>.zip in the ETAS-specific log files direc-
tory

Additionally to the problem information that is entered by the users themselves,
ASCET collects the available product-related log files in a zip archive to support
the bug fixing process at ETAS. The zip file is named according to the pattern
EtasLogFiles<index number>.zip. See also chapter 5 "Support Function for
Feedback to ETAS in Case of Errors" on page 102.

All ETAS-related log files in the ETAS-specific log files directory and the zip
archives created by the Problem Report feature can be removed after closing all
ETAS applications if they are no longer needed.
ETAS ASCET V6.4 | Getting Started

10 | Introduction
1.6.2 Technical and Organizational Measures
We recommend that your IT department takes appropriate technical and organi-
zational measures, such as classic theft protection and access protection to
hardware and software.

Locations for Generated Files
Names and paths of files generated by ASCET may contain personal data, if they
refer to the current user's personal directory or subdirectories (e.g.,
C:\Users\<UserId>\Documents\...).

If you do not want personal information to be included in the generated files, make
sure of the following:

- The workspace of the product points to a directory without personal refer-
ence.

- All settings in the product (accessed via the menu function Tools > Options
in the product) refer to directories and file names without personal refer-
ence.

- All project settings in the projects (accessed via the menu function File >
Properties in the ASCET project editor) refer to directories and file names
without personal reference.

- Windows environment variables (such as the temporary directory) refer to
directories without personal reference because these environment vari-
ables are used by the product.

In this case, please also make sure that the users of this product have read and
write access to the newly set directories.
ETAS ASCET V6.4 | Getting Started

11 | About ASCET
2 About ASCET
The ASCET tools support model-based software development. In model-based
development, you construct an executable specification – the model – of your
system and establish its properties through simulation and testing in early stages
of development. When the model behaves as required, it can be converted auto-
matically to production-quality code.

The key advantage of model-based development is that the software system can
be designed by domain experts, using domain-specific notions, independently
from knowing any details how it will be realized by an implementation. You can learn
more about model-based design in section 3.1.

ASCET provides a multi-paradigm modeling framework, providing integrated sup-
port for a number of different modeling notations, each providing support for a dif-
ferent type of modeling need:

- Block diagrams (occasionally abbreviated to BD) – to model continuous
control systems

- State machines (occasionally abbreviated to SM) – to model event-trig-
gered systems

- Conditional and Boolean tables – to model complex mathematical expres-
sions

- Embedded Software Description Language (ESDL) – a textual modeling lan-
guage

The modeling languages abstract from low-level details, separating the concerns
of what the system software must do from how it is realized in code executing in
the ECU. ASCET can also interface directly with C code as a "low-level" specifica-
tion language.

ASCET provides a systematic way to augment the high-level specification
(referred to as the "physical model" in ASCET) with the necessary information for
target implementation (referred to as the "implementation model" in ASCET). The
implementation model covers the low-level details required to make the model run
on target hardware, including conversion between real-number arithmetic on the
model and fixed-point arithmetic on the target, interfacing to interpolation rou-
tines for maps and curves, integration of optimized arithmetic service implemen-
tations, integration with a real-time operating system for run-time scheduling,
memory mapping for embedded devices etc.

The physical and implementation models are clearly separated in ASCET so that
the design specification is not corrupted with implementation details that may
change from project to project. Maintaining this separation also allows ASCET to
support multiple implementation models, each containing different implementa-
tion characteristics, for a single physical model, keeping the number of model vari-
ants low during the overall life cycle of a software function.
ETAS ASCET V6.4 | Getting Started

12 | About ASCET
2.1 Features at a Glance
The ASCET product family consists of a number of products that provide inter-
faces to simulation processors, third-party software packages and for remote
access to ASCET. The following products are available for the current version of
ASCET.

Various additional customer-specific products can be integrated in ASCET. More
detailed information is available upon request.

2.1.1 ASCET-MD
- Model-based development of automotive software, including AUTOSAR

software components

- Hierarchical, object-based modeling architecture

- Support for systematic conversion from real-number to fixed-point arithme-
tic

- Creation of custom block set libraries

- Import and export of AUTOSAR software component descriptions

- Support for calibration parameters, including maps and curves

- Automatic documentation generation for archiving the design model

- PC-hosted, offline simulation of application software

2.1.2 ASCET-RP
- Hardware configuration for support for the ES910 experimental target

- Support for hardware-in-the loop simulation and rapid prototyping applica-
tions

2.1.3 ASCET-SE
- Automatic generation of fully modular, high-performance, low-overhead,

production-ready MISRA-C:2004 compliant C code that is easily traceable
to the parent model

- Integration of 3rd-party interpolation and arithmetic service routines.

- Configuration of memory sections and systematic application of compiler
intrinsic in generated code to support embedded microcontrollers

- Platform integration configuration to interface ASCET code with OSEK oper-
ating systems (e.g. RTA-OSEK) or with an AUTOSAR RTE (e.g. RTA-RTE) and
ensure correct use of platform concurrency control mechanisms

- "Additional programmer" mode to generate source code and data for inte-
gration with a 3rd-party build environment

- "Integration platform" mode to provide "one-click-build" of an ECU execut-
able image for a wide range of compilers and microcontrollers, with full user-
side customization

- Generation of ASAM-MCD-2MC data description files for calibration tools
(e.g. INCA)

- Generation of AUTOSAR XML code
ETAS ASCET V6.4 | Getting Started

13 | About ASCET
2.1.4 ASCET-SCM
- Interaction with 3rd-party version management tools from within ASCET

2.1.5 ASCET-DIFF
- Graphical and textual comparison of ASCET models

2.2 Supporting Functions

2.2.1 Monitor Window
The monitor window (see the ASCET online help) is used to log the working steps
performed by ASCET. All actions, including errors and notifications, are logged. As
soon as an event is logged, the monitor window is displayed in the foreground.

In addition to displaying information, the monitor window also provides the func-
tionality of an editor.

- The display field in the "Monitor" tab of the monitor window can be freely
edited. This way, your own notes and comments can be added to the ASCET
messages.

- The ASCET messages can be saved as text files along with your comments.

- Other ASCET text files already stored can be loaded so that you can com-
pare specific working steps.

2.2.2 Keyboard Assignment
You can display an overview of the keyboard commands currently used at any time
by pressing <CTRL> + <F1>.

For more details, see the ASCET online help, section "Operation Hints".

2.3 Finding Out More
If not specified otherwise during installation, the following PDF manuals are avail-
able in the ETAS\ETASManuals folder after installing ASCET and ASCET-MD:

- ASCET Getting Started (this manual; ASCET V6.4 Getting
Started.pdf)

- ASCET Installation Guide (ASCET V6.4 Installation.pdf)

- ASCET Icon Reference Guide (ASCET V6.4 Icon Reference
Guide.pdf)
ETAS ASCET V6.4 | Getting Started

14 | About ASCET
- ASCET AUTOSAR User Guide (ASCET V6.4 AUTOSAR User Guide.pdf)

- AUTOSAR to ASCET Importer User Guide (ASCET V6.4 AUTOSAR To
ASCET Converter User Guide.pdf)

When you install ASCET-RP, ASCET-SE, ASCET-SCM, or ASCET-DIFF, further docu-
mentation becomes available:

- ASCET-RP

• user guide (ASCET-RP V6.4 User Guide.pdf)

• separate online help; accessible via the Help menu and <F1> in the hard-
ware configurator

- ASCET-SE

• ASCET-SE user guide (ASCET-SE V6.4 User Guide.pdf)

• EHOOKS Add-On user guide (ASCET-SE V6.4 EHOOKS Add On User
Guide.pdf)

- ASCET-SCM

• online help (integrated in the main ASCET online help)

- ASCET-DIFF

• ASCET-DIFF installation guide

• separate online help; accessible via the Help menu and <F1> in the
ASCET-DIFF windows

ETAS offers efficient trainings in the use of ASCET in order to provide an even more
thorough knowledge of ASCET, especially if users have to gain a comprehensive
insight in the functionality of ASCET in a very short period of time.

NOTE
The cooperation of ASCET and AUTOSAR requires the installation of the
ASCET-SE target ANSI-C.
ETAS ASCET V6.4 | Getting Started

15 | Embedded Automotive Control Software Development with ASCET
3 Embedded Automotive Control Software Development
with ASCET
Embedded automotive software development is an interdisciplinary task requiring
cooperation between the different vehicle domains (infotainment, chassis, body,
powertrain) as well as between different companies, i.e. the vehicle manufacturer
and the supplier. Furthermore, embedded automotive software is an integral part
of a mechanical subsystem which means that it

- implements control algorithms which read data from sensors, and calculate
control values which are sent to an actuator.

- runs typically in so-called electronic control units (ECUs for short), employ-
ing one or more microcontrollers and additional electrics and electronics.

- will normally not be changed during the lifetime of a vehicle.

- has to obey all requirements with respect to safety and reliability of the
mechanical subsystems.

As a result, creating a common understanding of the functionality which has to be
implemented in software is the basis for a seamless integration and non-func-
tional optimizations, e.g. resource consumption. The latter point becomes appar-
ent if one keeps in mind that ECUs are produced in large quantity. Small cost
reduction of a single ECU may hence result in significant savings of the series’
overall costs. For example, saving of memory resulting in a cheaper derivate of a
microcontroller will lessen the overall cost even though the cost for a single ECU
changes only marginally.

A graphical model of the function frequently serves as the basis for the common
understanding described above. On the one hand, the graphical model is more
abstract than embedded C code, while on the other it is formal, i.e. unambiguous
without leeway for interpretations compared to a non-formal textual specification.
It can be executed on a computer in a simulation. It can be experienced in a vehicle
at an early point in time by means of rapid prototyping. For short, a graphical model
of a function serves as digital specification.

Using automatic code generation, graphical functional models can be transformed
to embedded automotive software. To accomplish this, functional models must be
enhanced by adding dedicated design information that includes non-functional
product properties like safety and resource consumption measures.

The operating environment of ECUs can be simulated by means of hardware-in-
the-loop test systems (HiL for short) which facilitate early testing of ECUs in the
laboratory. HiL-testing of ECUs offers a greater flexibility in generating test-cases
than in-vehicle tests typically provide.

The calibration of embedded automotive software often can be finalized only at
some point toward the end of the development process. In many cases, this pro-
cedure is carried out in the vehicle with all systems (i.e. mechanical systems
embedding automotive software of all domains) running, and requires support of
dedicated tools and methods, which have also to be considered during the gener-
ation of the software.
ETAS ASCET V6.4 | Getting Started

16 | Embedded Automotive Control Software Development with ASCET
Section 3.1 describes in detail the stages of model-based design and explains the
abstraction mechanisms employed in ASCET to create a graphical model of a func-
tion. Section 3.2 shows how ASCET models can be used in an ECU production
development environment while section 3.3 summarizes the major topics.

3.1 Model-Based Design
The development of embedded automotive control software is characterized by
several development steps which can be summarized by using the V-model. One
starts with the analysis and design of the logical system architecture, i.e. defines
the control functions, proceeds with defining the technical architecture, which is
a set of networked ECUs, and then proceeds with software implementation on an
ECU. The software components will be integrated and tested, then the ECU is
integrated in the vehicle network and, last but not least, the system running the
implemented functions is fine-tuned by means of calibration. However, this is not
a top-down process, but requires early feedback by means of simulation and
rapid-prototyping.

Fig. 3-1 Model-Based Development of a Software Function

 3l

5l

1l

 2l

 4l

Model of Software Functions Model of Driver, Vehicle, Environment

Driver, Vehicle, EnvironmentImplementation of Software Functions

f1 f2

f3 f4

Bus

SG 1

SG 3

SG 2

Logical
System
Architecture

Technical
System
Architecture

Methods of a Model-Based Development of Software Functions

1. Modeling and simulation of software functions as well as vehicle, driver, and
environment

2. Rapid prototyping of software functions in the real vehicle
3. Design and implementation of software functions
4. Integration and test of software functions with lab vehicles and test benches
5. Test and calibration of software functions in the vehicle
ETAS ASCET V6.4 | Getting Started

17 | Embedded Automotive Control Software Development with ASCET
3.1.1 Control Algorithm Development
At first, control algorithms are developed. This is mainly a control-engineering task.
It starts with the dynamic analysis of the system to be controlled, i.e. the plant. A
plant-model is a model of the vehicle (including the sensors and actuators), its
environment (e.g. the road conditions), and the driver. Typically, only subsystems
of the vehicle are considered in special scenarios like the engine with the power-
train and the driver, or the chassis with the road-conditions. These models can be
either analytical, such as an analytically solved differential equation, or a simula-
tion model, i.e. a differential equation to be solved numerically. In practice, a plant-
model is often a mixture of both.

Then, according to some quality criteria, the control law is applied. Control laws
compensate the dynamics of a plant. There are a lot of rules to find good control
laws. Automotive control algorithms very often combine closed-loop control laws
with open-loop control strategies. The latter are often automatons or switching
constructs. This means that control algorithms are hybrid systems from a system-
theory point of view. Typically, the control law consists of set-point generating
function with controlling and monitoring functions, all realized by software (see
section 3.1.1.1 "Software Realization of Control Algorithms").

The first step is to design a control algorithm for a vehicle subsystem which is rep-
resented as a simulation model. Both the control algorithm and the plant model are
running on a computer. The plant is typically realized as a quasi-continuous-time
model while the control algorithm is modeled in discrete-time. The value range of
both models is continuous, i.e. the state variables and parameters of the control
algorithm and the plant are realized as floating-point variables in the simulation
code. This model is depicted in the upper part of Fig. 3-1 on page 16. The logical
system architecture represents the control algorithm which is coupled to a model
of the driver, the vehicle & the environment. The arrow labeled 1 represents the
control algorithm design step. Control algorithm modeling is based on the use of
shared signals. This means that one component shares the signal in a provide role
while other components share the signal in a require role.

3.1.1.1 Software Realization of Control Algorithms
Control algorithms are hybrid systems, i.e. a mixture of open- and closed-loop sys-
tems where the open-loop parts are quite often non-linear, discrete systems, for
example finite-state-machines. If the control algorithms run on a microcontroller,
they have to be transformed in a sequential programming language, e.g. C. The
easiest way for a realization of the control algorithm is to construct a main-loop,
which is triggered by an interrupt, and to call several subroutines, which contain
the sequential program. Data exchange between the subroutines is performed by
global variables. Triggering the main-loop by interrupts realizes a reoccurring exe-
cution of the sequential-program. If the interrupt is a timing interrupt, the main-
loop realizes a sampled system.

This kind of straight-forward realization of control algorithms in software runs into
its limits if multi-rate systems are considered, i.e. systems having different sample
rates, which are realized by several tasks instead of one main-loop. These multi-
tasking systems require a proper exchange of signal data between the tasks. Fur-
thermore, it is quite difficult on C code level to distinguish between state variables,
ETAS ASCET V6.4 | Getting Started

18 | Embedded Automotive Control Software Development with ASCET
parameters, input and output signals. Realization of control algorithms in ASCET
closes the gap between the control-engineering view and the implementation
view of the control algorithm. Instead of simply using variables and subroutines,
ASCET provides the following control algorithm modeling constructs:

- Modules

- Classes

- Projects

Combinations of these constructs allow the construction and execution of com-
plex control algorithms on several targets. Targets are a PC, a rapid-prototyping
system or a microcontroller. Execution is performed by first transforming the
ASCET model to C code and afterwards transforming the C code to executable
code on the respective target. All modeling constructs are maintained in a data-
base or workspace.

3.1.1.2 Modules
Modules provide means for sequential statements, for (state) variables, parame-
ters, input and output signals. Sequential statements are realized in a block dia-
gram editor (BDE) by variables with sequence calls. These sequence calls assign
the result of an expression to the variable. An alternative to the BDE in ASCET to
realize statements is the ESDL programming language. Sequential statements can
be grouped to processes. Processes represent subroutines.

Input signals are modeled as so-called receive messages. Expressions can read
from receive messages and use the actual value of that message for further calcu-
lations. Output signals are modeled as so-called send messages. The result of an
expression can be assigned (written) to a send message. In the block diagram edi-
tor, the assignment to a message is realized by a sequence call similar to variables.

Parameters have an own representation. Their value can only be read by an
expression, but assignments are not allowed.

To summarize, a module consists of send and receive messages for data
exchange with other modules. It has several processes which cluster sequential
statements. Besides messages, a module contains variables and parameters.
Receive-message reading can be shared by the processes of the modules, while
message-writing requires disjoint access by the processes. There might be mes-
sages which are only exchanged between processes within a module. These ded-
icated messages are called send-receive messages.

3.1.1.3 Classes
If a process is running, it might want to store data to process-internal variables,
e.g. the state of a control algorithm. From a computer science point of view, inter-
nal variables are typed. Clustering types results in compound types. Furthermore,
statements can be defined on the elements of a compound type. These opera-
tions can themselves be clustered in sub-functions, or methods. In particular,
methods can have arguments which decouple the access to the data elements of
a compound type from the actual data manipulation. A compound type with meth-
ETAS ASCET V6.4 | Getting Started

19 | Embedded Automotive Control Software Development with ASCET
ods is called a class. Since a class is a type, it can be instantiated like the definition
of a variable. In ASCET, variables and instances of classes can be defined in classes
or modules.

If a class is defined as instance in the scope of another, i.e. outer class, the meth-
ods of the instantiated class can be called by the methods of the outer class. If an
"instantiated method" realizes a calculation, e.g. a filtering algorithm, its results
can be used in the calculations of the calling methods. Using this mechanism, one
can represent control algorithms as a typed object hierarchy. Calling a method of
the top-level class, i.e. the outermost class which is not instantiated in another
class, will result in the deliverable of the output value(s) of a method. For the cal-
culation of the result, methods of embedded instances will be called sequentially
and yield their results which will be used by other calculations. From this point of
view, the execution of a top-level method is equal to the sequential execution of
an object-oriented program.

3.1.1.4 Parameters
From a computer-scientist point of view, parameters are a special kind of internal
variables because they can only be read while writing is forbidden. From the con-
trol-engineering point of view, parameters are used to trim the control algorithm to
a dedicated vehicle. Parameters are set before the start of the control algorithm
execution and remain fixed1) during the run-time of the control algorithm. Because
parameters are a special kind of variables, they can be grouped in a similar way as
variables.

Classes might contain parameters (they can be seen as elements of a compound
type). Since classes can be instantiated several times, these parameters will exist
several times, too. However, as a rule, parameters are not initialized by dedicated
methods (e.g. constructors) in a start-up phase, but typically exist in read-only
memory. This means that an initial set of values has to be provided before run-
time, e.g. at design time. This set of values is called data set. If the allocation of
parameter values to instances of behavioral classes is done at design time, a data
set has to be associated to a particular instance. In ASCET, at design time of the
class, the data sets for tentative instances have to be defined, too, while the asso-
ciation to a particular instance is done when the instance is created.

3.1.1.5 Employing Classes in Modules
As written above, the sequential execution of a control algorithm starts with call-
ing the method of a top-level class. This method call is initiated by the execution of
a process. The arguments of a method are typically fed by the receive messages of
the process, while the return value of the method will be fed to a send-message
(Of course, these methods might also be fed by internal variables of a module).

From a real-time perspective, the process calling a method of a top-level class
generates a sequential call stack of methods which belong to encapsulated
instances. Even the methods of leave instances are executed in the context of the
task the process is mapped to. Making the call stack of methods deep might com-

1) Adaptive parameters are not considered here.
ETAS ASCET V6.4 | Getting Started

20 | Embedded Automotive Control Software Development with ASCET
promise reactivity to events. Therefore, when designing classes and employing
them into real-time components, one has to find an appropriate balance between
object-oriented reusability and reactiveness in a task-schedule.

3.1.1.6 Continuous Time Blocks for Plant Modeling
ASCET provides dedicated blocks for the modeling of continuous time systems.
These continuous-time blocks (CT blocks) have two flavors:

- Basic blocks, which describe the dynamics of elementary systems

- Structure blocks, which group elementary blocks

Basic blocks assume a non-linear system in normal form of the following equa-
tions:

Basic blocks specify the dynamic behavior in an object-oriented manner. There is
an initialization and termination method, input, update and derivative methods to
realize f as well as direct and non-direct output methods to realize g. Furthermore,
there is a state-event detection method as well as an event method describing
what to do in case of a state-event. Last but not least there is a method to resolve
dependent parameters. The expressions can be specified either in ESDL code or in
C code.

3.1.1.7 Projects for Closed-Loop Simulations
An ECU composition is a set of communicating modules and an operating system.
The operating system configuration defines the tasks and their schedule, while
the operating system itself realizes the tasks as well as the messages. The task-
schedule contains the assignment of processes to tasks. To perform closed-loop
simulations on a PC, CT blocks (cf. section “Continuous Time Blocks for Plant Mod-
eling” on page 20) are attached to the real-time components of the control algo-
rithm. Binding between the messages of the real-time components and the
CT blocks has to be done explicitly, i.e. by connecting ports graphically and not by
name-matching. The methods of a CT block are called from the numerical integra-
tion algorithms. The integration algorithms will be executed as separate task in the
resulting operating system configuration.

After mapping the processes to tasks and creating the appropriate CT block tasks,
the OS configuration will be translated to executable code. In case of a closed-
loop simulation on a PC, a simulation environment with appropriate event queues
and numerical solvers will be generated. The simulation environment is no real-
time execution environment.

3.1.2 Rapid Prototyping
Unfortunately, the employed plant models are typically not detailed enough to
serve as a unique reference throughout the design process. Therefore, the con-
trol algorithm has to be checked in a real vehicle. This is the first time the control
algorithm will run in real-time. The execution entry points of the software compo-
nents are mapped to operating system tasks while dedicated software compo-

),(
),(
uxgy
uxfx

=
=
ETAS ASCET V6.4 | Getting Started

21 | Embedded Automotive Control Software Development with ASCET
nents for hardware access have to be created and connected with the software
components of the control algorithm. This step is shown in Fig. 3-1 on page 16 in
linking the logical system architecture to the real vehicle which is driven by a driver
in a real environment, represented by the arrow labeled 2.

There are many ways to realize this step. First of all, one can use a dedicated rapid
prototyping system with dedicated I/O boards to interface with the vehicle. The
rapid prototyping systems (RP system) consist of a powerful processor board and
I/O boards. The boards are connected via an internal bus system, e.g. VME. Com-
pared to a production ECU, these processor boards are in general more powerful;
they have floating-point arithmetic units, and provide more ROM and RAM. Inter-
facing with sensors and actuators via bus-connected boards provides flexibility in
different use cases. For short, priority is on rapid prototyping of control algorithms
and not on production cost of ECUs.

The interfacing needs of the rapid prototyping systems often result in dedicated
electrics on the boards. This limits flexibility, and an alternative is therefore to
interface to sensors and actuators using a conventional ECU with its microcon-
troller peripherals and ECU electronics. A positive side-effect is that the software
components of the I/O-hardware abstraction layer can be reused for series pro-
duction later on. Fig. 3-2 shows that the control and monitoring functions run on a
bypass system, which is connected to the vehicle via sensors and actuators.

Fig. 3-2 typical rapid prototyping system

For rapid prototyping in bypass configuration, as shown in Fig. 3-2, the ECU’s
microcontroller-peripherals are used to drive the sensors and actuators. This
means that the control algorithm still runs in the rapid prototyping hardware
whereas the I/O-drivers are running on the production ECU.

The signals W, R, and U are digital values representing the set-point, the sampled
reaction of the plant, and the digital actuator signal. The actuator signal is trans-
formed to an electrical or mechanical signal Y driving the vehicle in the state pre-
scribed the driver’s wish W*. W is the corresponding sampled digital signal. The

Environment

ZW*

Driver

U

W

R
Electronic
Control Unit Experimental System

Vehicle

R
Sensors

XControlled
System

Y
Actuators

UController/
Monitor

WSet Point
Generator

R

ETAS ASCET V6.4 | Getting Started

22 | Embedded Automotive Control Software Development with ASCET
actual state of the vehicle in terms of mechanical or electrical signals X is sampled
and fed to the control algorithm as digital signal R. Furthermore, there are noise
signals Z like the road conditions which are not directly taken into account by the
control algorithm as measured input signal, but also influence the behavior of the
vehicle.

Provided no other vehicle signals are used directly, the RP system uses only a ded-
icated communication board in addition to the processor board. The sensor values
R, the set-point values W, and actuator values U are transmitted over the high-
speed link. In most cases, the ECU hardware is modified with dedicated facilities to
accommodate the high-speed communication link.

From the software development point of view, structured interfaces of the soft-
ware running on the production ECU as well as in the control algorithm develop-
ment improves the efficiency of rapid prototyping considerably.

3.1.2.1 Hardware Configuration Component
For rapid prototyping experiments, dedicated hardware will be used. Besides a
high-performance microprocessor, there are means available for communication
and I/O.

From a certain point of view, a rapid prototyping system represents a reconfigu-
rable embedded system. In particular, the communication and I/O hardware facili-
ties need basic software modules as glue between the hardware and the control
algorithm. These basic software modules are configurable. In ASCET, all basic soft-
ware modules for the communication and I/O are represented in a hardware con-
figuration component (see the ASCET-RP user guide for further information). For
example, there will be a process reading signals from the CAN buffer and providing
the signals as send messages. This process will be scheduled in an operating sys-
tem task. The signal name as well as the CAN-frame ID can be configured in an edi-
tor.

If a control algorithm shall be tested on an ETAS rapid prototyping system, the real-
time-I/O code has to be generated from the configuration parameters given in the
hardware configuration component. This component has to be attached to the
other real-time components, i.e. ASCET modules, to form a running rapid prototyp-
ing control algorithm.

3.1.2.2 Projects for Rapid Prototyping
A project for rapid prototyping does not contain a plant model represented by con-
tinuous time blocks. Instead, it contains a real-time I/O configuration in the shape
of a dedicated hardware configuration component. This real-time I/O configura-
tion is configured for the rapid prototyping project. On the model level, the real-
time I/O configuration communicates with the control algorithm modules via mes-
sages. Depending on the real-time I/O configuration, there are several processes
to be hooked to an operating system task.

3.1.3 Implementation and ECU Integration of Control Algorithms
After the rapid-prototyping step, the control algorithm is valid for use in the vehi-
cle. The code that was generated for rapid prototyping systems relied on the spe-
cial features of the processing board, such as RAM resources and the floating-
ETAS ASCET V6.4 | Getting Started

23 | Embedded Automotive Control Software Development with ASCET
point unit. To make the control algorithm executable under limited memory and
computational resources, the model of the control algorithm has to be re-engi-
neered. For example, computation formulas are transformed from floating-point to
fixed-point control algorithms, and efficiency, scalability, modularity and other
concerns are addressed. The adapted design can be automatically transformed to
production code in a code generation step.

3.1.3.1 Floating-Point to Fixed-Point Conversion
A physical plant, e.g. a vehicle, deals with physical quantities, like vehicle-speed
and acceleration, coolant temperature, yaw rate, battery voltage, etc. In simula-
tion models, these physical quantities are realized by variables of type float, either
in 64 or 32 bit guise. The simulation models represent a closed-loop control sys-
tem, which means that both the vehicle model and the model of the control algo-
rithm are represented in floating point. However, floating-point units are
expensive and their use in automotive microcontrollers is not common. This
means, implementation of a control algorithm on an automotive microcontroller
involves a floating-point to fixed-point conversion.

Example
The coolant temperature might range from -50° Celsius to 150° Celsius. Fitting
these values to a 16 bit integer straight forward would be quite inefficient. Only
0.3% of the available bits would be used, as shown in Fig. 3-3(a), and the resolution
of the temperature would only be 1° Celsius per bit, resulting in a measured tem-
perature of 83.4° Celsius represented as 83° Celsius in the control software.

This can be changed by multiplying every temperature value by 217.78 thus having
a resolution of approximately 0.0046° Celsius per Bit, as shown in Fig. 3-3(b).
Unfortunately, this adaptation will end up in a floating-point multiplication itself
and is therefore not desirable.

An alternative would be to limit the resolution to 0.0078125° Celsius per bit. Now
the multiplication operation can be expressed by a 7 bit left-shift operation. Apply-
ing this operation to the temperature range yields bit-patterns from -6400 to
19200, thus using a 16 bit integer variable by 39%. This scaling is shown in
Fig. 3-3(c).

An even better utilization can be achieved by using an unsigned 16-bit integer
value and a resolution of 0.00390625° Celsius per bit with an offset. This offset is
set to -12800. The temperature range can now be used from -12800 to 38400, thus
ETAS ASCET V6.4 | Getting Started

24 | Embedded Automotive Control Software Development with ASCET
using a range from 51200 values and hence providing a utilization of more than
78%, as shown in Fig. 3-3(d). However, the offset requires an additional subtrac-
tion.

Fig. 3-3 Unscaled Mapping (a), Arbitrary Mapping (b), 27 Scaling (c), 28 Scaling
with Offset (d)

The relationship can be expressed by the linear relationship:

impl_value = f_impl(phys_value) = phys_value * 256 + 12800
or, more generally, by

impl = scal * phys_value + x
where scal is the scaling factor and x the offset. The resolution is the reciprocal
scaling factor, which means that the physical value is represented by an imple-
mentation value of

phys_value = impl_value / scal - x

3.1.3.2 Arithmetic with Fixed-Point Values
Associating an implementation formula to every variable has a heavy impact on the
statements, i.e. expressions and assignments, of methods or processes. Even the
simple assignment of two variables representing physical values

a = b
is not a trivial operation if the implementations, i.e. the associated implementation
formulas, are different. Let a and b be implemented by the following implementa-
tion formulas as unsigned 8 bit variables (range from 0 to 255):

a = 2 * a_impl, b = 3 * b_impl

150

0

150

Physical Value Domain Integer Domain (int16)
150

0

150
Physical Value Domain Integer Domain (int16)

150

0

150

Physical Value Domain
150

0

Integer Domain (uint16)

150

(a)

(c) (d)

Integer Domain (int16) Physical Value Domain

(b)
- 150---

- 50---

-50- 50---

- 50

- 50

- 150

- 50 - 50

32767

0

-32768

- 50---

32767

0

19200

-32768

-19200---

32767

0

-32768---

-10889

65536

0

51200
ETAS ASCET V6.4 | Getting Started

25 | Embedded Automotive Control Software Development with ASCET
meaning that the physical value of a has a resolution of 2 while the physical value
of b has a resolution of 3. Representing the assignment a=b in implementation
terms yields:

2* a_impl = 3* b_impl
This is followed by a simple substitution:

a_impl = (3 / 2)* b_impl
Compared to the original statement a = b, we have now an adapted statement
a_impl = (3/2) * b_impl. With respect to implementation formulas1), the
adaptations are merely arithmetic operations with constants. However, care must
be taken with the series of adaptive operations in order to consider the require-
ment for maximum precision. If one, as shown above, first performs the division,
the various conversion equations would be ineffective due to the integer compu-
tation, and the results would be about 50% incorrect. A better way to express the
adapted statement would be:

a_impl = 3 * b_impl / 2
As a result, statements of physical variables adapted by implementation opera-
tions often take into account more than just a simple operation.

The question of overflow must be taken into account. This means that if one first
multiplies by 3, there is an overflow as soon as b_impl becomes greater than 255
/ 3 = 85. Similarly, one must always be careful of underflows and rounding errors. If
one first divides by 2, this is equivalent to a right shift operation, i.e. the last bit is
dropped. No distinction can then be made whether b_impl has the value 1 or 0. In
both cases, the result for a_impl and thus also for a is the value 0. In fact, the
assignment a = b only makes sense if the physical ranges are identical (here
max. 0 to 510). b_impl can therefore assume the maximum value 510 / 3 = 170. An
overflow can occur here and must be avoided at all costs. One might think of mak-
ing a case distinction in the code generation, i.e. first multiply for values from
b_impl to 170 and first divide for values from b_impl greater than 170. But this
leads to a requirement for more code. So here, one must accept a negligible error
in precision of max. 1.5. within the entire value range. It is clear that the situation
itself can become more difficult with regular arithmetic operations with few oper-
ands, not to mention complex links and expressions.

3.1.3.3 C Code Classes and Modules
For the migration of legacy code or for microcontroller peripheral access, one
might define classes with the internal behavior of the method specified in C code
as well as modules with the internal behavior of processes specified in C. Both
C code classes and C code modules already represent implemented code. This
code will be integrated verbatim into the executable for the target. Therefore,
C code classes and modules are target-dependent. If one changes the target of a
project, one has to provide the C code for the actual target, too.

1) At least the formulas ASCET supports
ETAS ASCET V6.4 | Getting Started

26 | Embedded Automotive Control Software Development with ASCET
3.1.3.4 Projects for Embedded Microcontrollers
As written above, C code classes and modules can be used to access the periph-
erals of a microcontroller. The ASCET project editors allow to fully configure and
generate an operating system. Together with the modules representing the con-
trol algorithms, projects for embedded microcontrollers can be used as integration
platform. In this case, the code generator will examine the OS schedule and the
message communication between the modules and generate the tasks, the mes-
sages and the access code1) of processes to messages. The resulting C code for
the project and all its contained modules can be transformed to a *.hex file and
flashed onto the microcontroller. Needless to say that an ASAM-MCD-2MC file will
be generated, too, containing all variables to be measured as well as all parameters
to be calibrated.

However, there are many cases where a build environment and dedicated basic
software modules are used for a series production ECU. In this case, typically only
the application software, i.e. the control algorithm, is modeled in ASCET2). The
messages are generated – including the access code of processes – as well as so-
called task bodies, i.e. a sequence of processes as specified in the OS editor. This
task body can then be copied to an appropriate OS configuration editor (external
to ASCET).

3.1.4 Reuse of Control Algorithm in Different Kinds of Projects
As written above, all ASCET modeling elements are maintained in a database or
workspace. Furthermore, projects for different targets differ in the number and
kind of modules for the same control algorithm.

- Project for closed-loop simulation:

This project references the modules for the control algorithm as well as
CT blocks.

- Project for rapid prototyping:

This project references the modules for the control algorithm (which are the
same modules as for the closed-loop simulation) and the hardware configu-
ration component.

- Project for embedded microcontroller:

This project references the modules for the control algorithm as well as the
(C code) modules for the peripheral access. If one wants to obtain fixed-
point code, one has to attach implementation formulas to modules, classes
and projects. Before generating code, one has to the select the appropriate
implementation for the project.

ASCET projects can be executed on different execution targets, which might be a
PC, a rapid prototyping system, or a production ECU3). To run experiments, ASCET
provides an integrated experiment environment (or EE for short) if the project runs

1) Typically realized as macro
2) This use case is often called additional programmer
3) or an evaluation board
ETAS ASCET V6.4 | Getting Started

27 | Embedded Automotive Control Software Development with ASCET
on a PC or rapid-prototyping system. For ECU experiments, an EE is integrated in
the measurement and calibration system INCA1) because ECU experiments are to
some extent similar to the fine-tuning2) of a control algorithm in the vehicle.

From a software perspective, there are the following kinds of experiments:

A Physical Experiment

B Quantized Experiment

C Implementation Experiment

D Object-Based Controller Implementation Experiment

E Object-Based Controller Physical Experiment

Only the physical experiment does not need any implementation information. The
quantized experiment needs the quantization, the implementation and object-
based implementation experiments need additionally the limits and, more import-
ant, an integer base type.

ASCET control algorithm models are composed of statements whose generated
code looks differently depending on the type of the target and the selected exper-
iment.

In physical experiments, the physical statements will be resolved to real64 vari-
ables with no quantization effects.

The quantized experiment uses also real64 variables as basis, but coerces the
physical statements in a way that quantization effects will become visible.

The implementation experiment uses the full implementation information and is
based on integer types. This means that the types of the variables in the gener-
ated code are the chosen base-types of the implementation and the operators in
the physical statements have been transformed to implementation statements.

The object-based controller implementation experiment uses the types and
implementation statements of the implementation experiment, but the structure
of the modules and classes is resolved in a different way. For example, it is possible
for every variable in ASCET not only to attach base types, limits and implementa-
tion formulas, but also memory classes. The memory classes reflect the memory
layout of the employed microcontroller. However, as written above, the object-
based controller implementation experiment can only be chosen for production
ECUs, and online experimentation can only be performed by INCA or any other
measurement & calibration tool.

The object-based controller physical experiment generates controller code, but
ignores the implementation specification.

When working with a PC or rapid-prototyping target, and all the implementation
information regarding base type, limit, offset and quantization has been attached
to all elements, one can study the effects of implementation formulas or integer
base types with respect to the physical environment by just switching the experi-
ment type.

1) If the ASCET project consists of CT blocks only and the project runs on a PC or rapid
prototyping hardware, the EE is integrated into LABCAR operator.

2) Because of the limited ECU resources for experimenting, dedicated means are nec-
essary which are not in the scope of this section.
ETAS ASCET V6.4 | Getting Started

28 | Embedded Automotive Control Software Development with ASCET
3.1.5 Testing Technical System Architecture in the Lab
The result of the implementation and integration phase is the technical system
architecture, i.e. networked ECUs. These ECUs are tested against plant-models in
real-time. The plant models themselves are augmented by models of the sensors
and actuators and dedicated boards being able to simulate the electrical signals
as they are expected by the ECU electronics. These kind of systems are called
Hardware-in-the-Loop systems (or HiL systems for short) and consist of process-
ing and I/O boards. The plant model is initialized with different values simulating
typical driving maneuvers. Then, the driving maneuver is simulated on the HiL and
providing ECU sensor data as output and accepting ECU actuator data as input.
This way it can be checked whether the ECU integration was successful. HiL test-
ing is represented by the arrow labeled 4 in Fig. 3-1 on page 16.

3.1.6 Testing and Honing of Technical System Architecture in the Vehicle
As written above, there are many use cases where plant models are not detailed
enough to represent the vehicle’s dynamics. Though a lot of calibration activities
can nowadays be done by means of HiL systems, final honing of a vehicle’s control
algorithm still needs to be done with the production software in a production ECU
in a real vehicle. This requires that the technical system architecture is built into a
vehicle and tests are done on a proving ground. This kind of fine-tuning only con-
cerns the parameter setting of the control algorithm.
ETAS ASCET V6.4 | Getting Started

29 | Embedded Automotive Control Software Development with ASCET
3.2 Using ASCET in a Production Environment

Fig. 3-4 Advanced Software Production Environment

In a manual coding environment, there are typically several software developers
providing the C code for the control algorithm as well as for the basic software
modules, including the operating system. Then there is an ECU integrator collect-
ing all necessary source code files and starting the so-called make toolchain,
which starts the compiler and linker. The C code is transferred between the soft-
ware developers by using the file system on the one hand and a source-code man-
agement (SCM) system1) on the other. The latter is a database holding different
versions of the source code files but also allowing the creation and maintenance
of configurations. The latter are used as a baseline to generate/integrate ECU
software. To see differences between two versions of a C code file, difference
browsers highlighting the changes in the program text are used. In the last
decade, intensive use of SCM systems and difference browsing contributed con-
siderably to the enhanced quality of embedded automotive software.

1) Typical SCM systems are CVS and SubVersion

Manual C Code
(Control Algorithm/

BSW)

Graphical
Modeling Tools

BSW
Configurators

.c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.c, .h

SCM
Repository

.c, .h.c, .h.c, .h.c, .h

Make System

.hex
ETAS ASCET V6.4 | Getting Started

30 | Embedded Automotive Control Software Development with ASCET
In advanced software production environments, some of the C files for control
algorithms are generated from control algorithm models, e.g. an implemented
ASCET model, while a lot of C files for basic-software modules, e.g. OS and COM
stack, are generated by so-called configurators. Leaving the ASAM-MCD-2MC file
generation aside, such an advanced production environment is shown in Fig. 3-4
on page 29. It shows the C code-generating entities, the SCM database as well as
the make system. Looking deeper in such an advanced production environment,
and focusing on the model-based generation of C code for control algorithms with
ASCET, one will realize that the models, which are the basis for the source code,
will evolve in the course of the control algorithm development, e.g. incorporating
the results of rapid prototyping. Hence, the models have to be maintained in the
SCM database too.

ASCET components are stored in a local database or workspace. The local data-
base/workspace holds exactly one version of the model. The ASCET-SCM inter-
face establishes a link from the local database/workspace to the SCM repository
and enables the model exchange. This model exchange is shown in part (a) of
Fig. 3-5. Since, in source-code development, difference-browsing between differ-
ent versions is indispensable, a similar feature is highly desirable in model-based
development, too. The ASCET-SCM interface can be enhanced by ASCET-DIFF (a
model difference browser), thus highlighting, e.g., an additional message in the
block diagram editor of a module.

Fig. 3-5 ASCET-SCM interface without (a) and with (b) ASCET-DIFF

(a)

SCM
Repository

ASCET
Database /
Workspace

.c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.xml

ASCET

(b)

SCM
Repository

ASCET
Database /
Workspace

.c, .h.c, .h.c, .h.c, .h .c, .h.c, .h.c, .h.xml

ASCET
ASCET-DIFF

(model difference
browser)
ETAS ASCET V6.4 | Getting Started

31 | Embedded Automotive Control Software Development with ASCET
3.3 Summary
Model-based design and implementation of control algorithms is supported by
ASCET for several development stages. The employed abstraction means allow to
use the physical control algorithm model as backbone for all subsequent imple-
mentation annotations throughout the course of development. In particular, no
blocks need to be replaced when changing the target. Employing the SCM inter-
face with difference browsing, ASCET can be seamlessly integrated in an ECU pro-
duction development environment.
ETAS ASCET V6.4 | Getting Started

32 | Tutorial
4 Tutorial
Users who are not familiar with ASCET will learn all the basic working steps in this
tutorial. The tutorial does not require any knowledge of ASCET, but does assume
that the user is familiar with the Windows operating system.

Before you start working on the tutorial, you should have read chapter “Embedded
Automotive Control Software Development with ASCET” on page 15.

All components and projects for lessons 1 – 9 of this tutorial can be found in the
folder named ASCET_Tutorial_Solutions in the database named Tutorial.
It is therefore not necessary to specify all the components described here your-
self.

It is, however, advisable to specify at least the components of lessons 1, 3 and 4, to
get some practice using ASCET.

These databases are available in the database directory of your ASCET installation
(e.g. D:\ETASData\ASCET6.4\database\Tutorial) and in the export files
Tutorial.*1) and INTECRIO_Tutorial.* in the Export directory of your ASCET
installation (e.g. C:\etas\ASCET6.4\export).

4.1 Preparations
Before you can start the tutorial, you have to prepare your computer.

The computer you want to use for the tutorial has to have an executable ASCET
installed. ASCET can either be launched using the icon on the desktop or using the
Windows Start menu.

At the start of ASCET, the Component Manager opens. If you open ASCET for the
first time, the Tutorial database opens. (If you open ASCET later, the most
recently used database/workspace opens.)

Fig. 4-1 on page 34 shows the Component Manager with an empty database or
workspace. The top left field, "Database" or "Workspace", will show the folders and
components in the database. The bottom left field is used for general comments
about the item selected in the "Database" or "Workspace" pane. The right field,
"Contents", will show the content of the item selected in the "Database" or "Work-
space" pane.

Before you can start, you have to open a database or workspace to work in. All
components of this tutorial will be stored in this database/workspace.

1) .* = .exp (binary export format) or .axl (compressed XML-based export format)

NOTE
You can perform the tasks in all lessons without any hardware.

Lesson 7 also describes an online experiment, which requires a working experi-
mental target.
ETAS ASCET V6.4 | Getting Started

33 | Tutorial
4.1.1 Tutorial Database or Workspace
It is recommended that you use a separate database/workspace – either a newly
created one or the Tutorial database shipped with ASCET – for the tutorial to
keep the data transparent.

To create a new database

1. In the Component Manager, select File > New Database.

The "New database" window opens.

2. Enter the name, e.g., Tutorial.

3. Click OK.

The new database (A in Fig. 4-1), containing only the database name, opens.

To create a new workspace

1. In the Component Manager, select File > New Workspace.

The "Save new workspace as" window opens. The ASCET workspace path1),
the ASCET workspace file type (*.aws), and the default name
workspace.aws are preselected.

2. In that window, create a new subfolder in the Workspaces folder and name
it, e.g., Tutorial.

3. Open the Tutorial subfolder.

4. Enter the file name Tutorial.aws and click Save.

The new workspace (B in Fig. 4-1), containing only the workspace name,
opens in the Component Manager.

1) e.g., C:\ETASData\ASCET6.4\Workspaces
ETAS ASCET V6.4 | Getting Started

34 | Tutorial
Fig. 4-1 ASCET Component Manager (A: with empty database, B: with empty
workspace)

To open a database

To use the existing Tutorial database, proceed as follows:

1. In the Component Manager, select File > Open.

The "Select database or workspace" window opens. It shows the current
database path and the databases found there.

2. Select the Tutorial database and click OK.

The Tutorial database opens in the Component Manager.

4.1.2 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating a new database or workspace

(A)

(B)
ETAS ASCET V6.4 | Getting Started

35 | Tutorial
- Opening an existing database

4.2 Lesson 1: A Simple Block Diagram
In ASCET you use components, such as classes and modules, as the main building
blocks of your applications. You can either use predefined components, which
come with ASCET or have been developed earlier, or create your own, which is
what you will be doing in this tutorial.

In ASCET components are usually specified graphically. Once all the components
have been specified, they are assembled into a project, which forms the basis of
an ASCET software system. A software system consists of C code that has been
generated from the graphical model description, and which can be run on a micro-
controller or experimental target computer.

4.2.1 Preparatory Steps
The first step in creating your own components is to create a new top level folder
named Tutorial and a subfolder named Lesson1.

To create new folders

1. In the "Database" or "Workspace" pane, select the database/workspace
name.

2. Click the Insert Folder button.

A new top-level folder named Root appears.

3. Change the name of the top-level folder to Tutorial.

You can type over the highlighted name and then press <ENTER>.

4. Select the folder Tutorial.

5. Add a subfolder named Lesson1 to Tutorial.

All components you create in this tutorial will be stored in a folder. You should cre-
ate a new folder Lesson<n> for every lesson.

You can proceed by creating your first component in the Lesson1 folder.

To create a component

1. In the "Database" or "Workspace" pane, click the folder Lesson1.

2. Select Insert > Class > Block Diagram.

A new component named Class_Block_Diagram appears in the "Data-
base" or "Workspace" pane under the Lesson1 folder. This component is of
type class, which is frequently used in ASCET.

3. Change the component name to Addition.

NOTE
All folder and item names and the names of variables and methods they contain
must comply with the ANSI C standard.
ETAS ASCET V6.4 | Getting Started

36 | Tutorial
4.2.2 Specifying a Class
After you have created a new component in the Tutorial\Lesson1 folder, you
can specify its functionality. First define the interface for the component, i.e. its
methods, arguments and return values. Then draw a block diagram that specifies
what the component does.

To prepare the class

1. In the "Database" or "Workspace" pane, select the component Addition.

2. To open the component, select Edit > Open Component.

The block diagram editor opens. This is the main window for specifying com-
ponent functionality.

Fig. 4-2 ASCET block diagram editor (Specification view)

3. In the "Outline" tab, select the method calc.

This method is created by default.

4. Select Edit > Rename.

The name of the method calc is highlighted.

5. Change the name of the method to DoAddition.

Every class needs at least one method. Methods in ASCET are similar to methods
in object-oriented programming, or functions in procedural programming lan-
guages. A method can have several arguments and one return value (these are all
optional). Arguments are used to transmit data to a component. Return values are
used to return results of calculations within the component to the "outside".

Drawing Area

"Tree Pane"
with

Palettes

"Outline" tab
ETAS ASCET V6.4 | Getting Started

37 | Tutorial
To specify the method signature, you will add two arguments of type continuous
and a return value using the signature editor.

To specify the method signature

1. Double-click the method name DoAddition.

The signature editor for the method opens.

2. In the signature editor, select Argument > Add.

A new argument called arg is created.

3. Change the name of the argument to input1.

4. Add another argument called input2.

By default, the data type of the arguments is set to continuous (or cont for
short), which is what you need in the example.

5. In the "Return" tab of the signature editor, activate the Return Value option.

The type of the return value is also set to cont by default.

6. Click OK to close the signature editor.

The names of the arguments and the return value for the method DoAddition
appear below the method in the "Outline" tab on the left of the block diagram edi-
tor. Now you can specify the functionality of the component by drawing a block
diagram.
ETAS ASCET V6.4 | Getting Started

38 | Tutorial
To specify the functionality of the component Addition
1. Drag the first argument from the "Outline" tab and drop it onto the drawing

area of the block diagram editor.

The symbol for the argument appears in the drawing area.

2. Now add the other argument and the return value to the diagram.

3. Click the Addition button in the "Basic Blocks" palette.

The mouse is loaded with an addition operator.

4. Click inside the drawing area, between the symbols for the argument and for
the return value.

An addition symbol is displayed. By default it has two input pins (indicated by
arrows) and one output pin. The output pin is located on the right.

You can now arrange the elements and the operator by dragging them to their
places on the drawing area. Next, you need to connect the elements to specify the
flow of information.

To connect the diagram elements

1. Click the Connect button in the "General" toolbar.

Alternatively, you can right-click in the drawing area (but not on an ele-
ment).

The cursor changes to a crosshair when it is inside the drawing area.

2. Click the output pin of the first argument symbol to begin a connection.

Now, as you move the mouse cursor, a line is drawn after it. Every time you
click inside the drawing area, the line remains fixed up to that point. That way
you can determine the path of the connection line.

3. Click the left input of the addition symbol.

The argument symbol is now connected to the input of the addition symbol.
ETAS ASCET V6.4 | Getting Started

39 | Tutorial
4. Connect the second argument symbol with the other input and the return
value with the output of the addition symbol.

The connection between the addition operator and the return value is dis-
played as a green line to indicate that the sequencing for this operation
needs to be determined.

5. End the connection mode with another click on the Connect button in the
"General" toolbar.

6. Double-click the empty sequence call /0/- to determine the addition
sequence automatically.

The connection between the addition operator and the return value is dis-
played as a black line.

Component specification is now complete. The last step in editing your compo-
nent is to specify its layout, i.e., the way it is displayed when used within other
components.

To edit the layout of a component

There are two ways to edit a layout:

1. Select Edit > Component > Layout.

Or – as an alternative –

2. Do the following:

i. Use the Browse tab to open the "Browse" view.
ETAS ASCET V6.4 | Getting Started

40 | Tutorial
ii. Double-click in the "Layout" tab.

The Layout Editor opens.

3. Click the block and drag the handles to resize it.

4. Drag the pins of the arguments and the return value to create a symmetrical
design.

5. Click OK.

Now that you have finished your component, the last step in this lesson is to save
the component in the database or workspace.

To save the component Addition
1. Select File > Save.

2. Close the block diagram editor with File > Close.

When you select Save in the block diagram editor, the changes are only
stored in the cache memory. It is therefore advisable to click Save in the
Component Manager regularly as work progresses.

3. In the Component Manager, click the Save button.

Your work is not written to disk until you perform this operation.

You can have your changes saved automatically by activating the appropri-
ate user options (see the ASCET online help) for your ASCET session.

As an optional exercise, you could now model the same functionality in ESDL
(ESDL: Embedded Software Description Language). If you continue with this exer-
cise, you will learn how to use the external source code editor.
ETAS ASCET V6.4 | Getting Started

41 | Tutorial
The first step is to copy the module interface to a new module with type ESDL and
rename it. Then create the functionality you want either directly in the ASCET ESDL
editor or use the external text editor.

To copy and specify the component AdditionESDL
1. In the "Database" or "Workspace" pane of the Component Manager, right-

click the component Addition and select Reproduce As > ESDL from the
context menu.

A copy of the component is created; it is named Addition1.

2. Name the new component AdditionESDL.

3. Double-click the name of the new component.

The ESDL editor for AdditionESDL opens, making various functionalities
available for editing.

Fig. 4-3 ASCET ESDL editor (Specification view)

4. Use the Activate External Editor button to switch to external editor mode.

If unsaved changes exist, you are asked if you want to save your changes.

"Edit" pane
(internal text editor)

palettes
ETAS ASCET V6.4 | Getting Started

42 | Tutorial
5. Confirm with Yes.

The changes are saved, and the ESDL editor switches to "external editor"
mode. The editor looks different in "external editor" mode.

6. In the process/method pane, select the method or process you want to
specify.

The functionality entered previously appears in the specification field, and
the Start Edit button is activated.

7. Activate the external editor with Start Edit.

8. Edit the functionality in the external editor.

9. Save the functionality in the external editor.

With that, your changes are transferred to the ESDL editor. You do not have
to close the external editor to continue working in ASCET.

10. Click Activate External Editor a second time to end the "external editor"
mode.

A message window opens. Read the text carefully.

11. Click OK to continue.

12. Select Build > Analyze Diagram to check the code you entered.

Errors are listed in the ASCET monitor window.

NOTE
When the external editor starts up, the application associated with the file
endings *.c and *.h in the operating system register database is called.
Data transfer is done via temporary files; this is why you have to save the
files before you close the external editor or end the "external editor" mode
of the ESDL editor.

process/method pane

display for process/method
specification
ETAS ASCET V6.4 | Getting Started

43 | Tutorial
4.2.3 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating and naming a folder

- Creating and naming a component

- Defining the interface for a method

- Placing diagram elements on the drawing area

- Connecting diagram elements

- Editing the layout of a component

- Switching between Specification and Browser views

- Saving a component

- Copying a component interface

- Using the ESDL editor

- Using the external editor

4.3 Lesson 2: Experimenting with Components
You can now experiment with the Addition or AdditionESDL components.
Experimentation allows you to see how the component works, just as it would in a
real application. The experimentation environment provides a variety of tools that
can show the values of inputs, outputs, parameters and variables within a compo-
nent.

4.3.1 Starting the Experimentation Environment
The experimentation environment is called from the block diagram or the ESDL edi-
tor. First open it with the component you want to experiment with.

To start the experimentation environment:

1. From the ASCET Component Manager, open the editor for the class
Addition or AdditionESDL.

2. In the editor, select Build > Experiment.

The code for the experiment is generated. ASCET analyses the model in
your specification and generates C code that implements the model. It is
possible to generate specific code for different platforms.

In your example, you simply use the default settings to generate code for
the PC.
ETAS ASCET V6.4 | Getting Started

44 | Tutorial
After the code has been generated and compiled, the experimentation envi-
ronment opens.

Fig. 4-4 ASCET offline experimentation environment

4.3.2 Setting up the Experimentation Environment
Before you can start experimenting, you have to set up the environment, which
means determining the input values generated for the experiment and how you
want to view the results. You have to carry out three steps. First, you set up the
event generator, then the data generator, and finally the measurement system.

To set up the Event Generator

1. Click the Open Event Generator button.

The "Event Generator" window opens. You need to create an event for each
method to be simulated, and also a generateData event. The events simu-
late the scheduling performed by the operating system of a real application.

2. Select the event DoAddtion.

3. Select Channels > Enable.

4. Select the event DoAddtion again.
ETAS ASCET V6.4 | Getting Started

45 | Tutorial
5. Select Channels > Edit.

The "Event" dialog window opens.

6. Set the dT value to 0.001.

7. Click OK.

8. In the event generator, select the generateData event and set its dT value
to 0.001.

9. Close the "Event Generator" window.

To set up the Data Generator

1. Click the Open Data Generator button.

The "Data Generator" window opens.

2. Select Channels > Create.

The "Create Data Generator Channel" dialog window opens.

3. Select the entries input1/DoAddition and input2/DoAddition from
the list.

4. Click OK.

Now both inputs are listed in the "Data Elements" pane of the "Data Genera-
tor" window.
ETAS ASCET V6.4 | Getting Started

46 | Tutorial
5. Select input1/DoAddition in the "Data Elements" pane.

6. Select Channels > Edit.

The "Stimulus" dialog window opens.

7. Set the values for input1 and input2 as follows.

8. Click OK to close the "Stimulus" dialog window.

9. Set the values for input2 as follows:

10. Close the "Data Generator" window.

With these settings you get two sine waves with different frequencies and differ-
ent amplitudes. The Addition component adds the two waves and displays the
resulting curve.

In order to see the three curves displayed on an oscilloscope, you will now set up a
measurement system.

To set up the measurement system

1. In the "Physical Experiment" window, select <2. New Oscilloscope> as
data display type from the "Measure View" combo box.

2. In the "Outline" tab, select input1/DoAddition.

Mode: sine
Frequency: 1.0 Hz
Phase: 0.0 s
Offset: 0.0
Amplitude: 1.0

Mode: sine
Frequency: 2.0 Hz
Phase: 0.0 s
Offset: 0.0
Amplitude: 2.0
ETAS ASCET V6.4 | Getting Started

47 | Tutorial
3. Select Extras > Measure.

An oscilloscope window opens with input1 as measurement channel. The
"Measure view" list in the experimentation environment is updated to dis-
play the title of the measurement window.

4. Add input2/DoAddition and return/doAddition to the same oscillo-
scope.

5. In the experimentation environment, select File > Save Environment.

Now the experimentation environment is set up, and you are ready to start the
experiment. Since you have saved the experiment, it is automatically reloaded
next time you start the experimentation environment for this component.

4.3.3 Using the Experimentation Environment
The experimentation environment provides a set of tools that allow you to view the
values of all the variables in your component and also change the setup while the
experiment is running. You can also adjust the way the values are displayed and
choose from several ways of displaying them.

To start the experiment

1. In the "Physical Experiment" window, click the Start Offline Experiment
button.

The experiment starts running and the results are displayed in the oscillo-
scope.

2. Click the Stop Offline Experiment button to stop the experiment.

You will only see a small portion of the curves on the oscilloscope. To display the
curves on the oscilloscope, you need to alter the scale on the value axis.

To change the scale on the oscilloscope

1. Select all three channels from the "Measure Channels" list in the oscillo-
scope window.

With that, the changes you make will affect all three of them.
ETAS ASCET V6.4 | Getting Started

48 | Tutorial
2. Select Extras > Setup.

The "Display Setup" dialog window opens.

3. Set the "Value Axis" to a range of -3 to 3.

4. Set the "Time Axis Extent" to 3.

5. Select a background color in the "Background color" list.

6. Press <ENTER>.

The oscilloscope now shows the values with the appropriate scaling on the value
axis. You will see the two input sine waves, together with the wave resulting from
their addition. You can now adjust the input values to see how the output is
affected.

To change the input values for experimentation

1. In the "Physical Experiment" window, open the "Data Generator" window.

2. In the data generator, select the variable you want to change.

3. Select Channels > Edit.

The "Stimulus" dialog window opens.

4. Adjust the values you want to change.

5. Click Apply.
ETAS ASCET V6.4 | Getting Started

49 | Tutorial
The curves in the oscilloscope change according to the new settings. You can
change all the settings in the experimentation environment while the experiment
is running.

To end the experiment

1. To stop the experiment, click the Stop Offline Experiment button.

2. To return to the component editor, click the Exit to Component button.

4.3.4 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Calling the experimentation environment

- Setting up the event generator

- Setting up the data generator

- Setting up the measuring system

- Starting and stopping the experiment

- Saving the experiment

- Changing stimuli while the experiment is running

4.4 Lesson 3: To Specify a Reusable Component
In this lesson you will create a class that implements an integrator, a standard
piece of functionality that is often used in microcontroller software. While this is a
slightly more complex diagram, the techniques for creating and experimenting
with it are the same ones you have learned already.

In this example, you specify an integrator that calculates the distance covered
where time and speed are known. The input value will be given in meters per sec-
ond, and at each interval multiplied with a dT in seconds. The value for each time
slice is added up in an accumulator. The accumulator stores the distance in meters
that has been covered after a certain length of time.

In ASCET, a standard block, such as an accumulator, can be realized with a simple
diagram.

1) 2)
ETAS ASCET V6.4 | Getting Started

50 | Tutorial
4.4.1 Creating the Diagram
Before you start working on the diagram, you should perform the same steps as for
the Addition component. First create a new folder in the Tutorial folder, then
add a new class. Finally, you can specify the interface of the methods, then the
block diagram and the layout.

You will start by creating the folder and the new class.

To create the integrator class

1. In the Component Manager, open the Tutorial folder.

2. Create a new folder and call it Lesson3.

3. In the Lesson3 folder, create a new class and call it Integrator.

To define the integrator interface

1. Open the Integrator class in the block diagram editor.

2. Rename the method calc to integrate.

3. Edit the method integrate and add one argument (type cont) and a
return value (type cont).

4. Place the argument and return value of integrate on the drawing area.

The integrator uses two new types of elements: a variable and a parameter.

Variables are used in the same way as they are used in programming languages;
you can store values in them and read the values for further calculations. In con-
trast, parameters are read-only. They can only be changed from outside, e.g. they
can be calibrated in the experimentation environment, but they cannot be over-
written by any of the calculations within the component itself.

In addition, you may specify a dependent parameter in this example. However, it is
irrelevant for the functionality of the integrator. A dependent parameter is depen-
dent on one or several parameters, i.e. its value is calculated based on a change in
another one. The calculation or dependency is only carried out on specification,
calibration or application. A dependent parameter behaves in exactly the same
way in the target code as a normal parameter.
ETAS ASCET V6.4 | Getting Started

51 | Tutorial
To create a variable

1. Click the Continuous Variable button in the "Elements" palette.

The properties editor opens.

2. Name the variable buffer, then click OK.

The cursor shape changes to a crosshair. It is loaded with the continuous
variable.

3. Click inside the drawing area to place the variable.

The variable is placed in the drawing area. Its name is highlighted in the "Out-
line" tab.

If the properties editor does not open automatically, place the variable in the draw-
ing area. Afterwards, double-click the variable to open the properties editor manu-
ally. Make the required settings and activate the Always show dialog for new
elements option. The next time you create an element, the properties editor
opens automatically.

To create a parameter

1. Use the Continuous Parameter button to create a parameter named Ki.

2. Click inside the drawing area to place the parameter.
ETAS ASCET V6.4 | Getting Started

52 | Tutorial
3. Right-click the parameter and select Data from the context menu.

A data configuration window (numeric editor) opens.

4. Set the value in the window to 4.0 and click OK.

This value becomes the default value for the parameter. You can assign
default values to all parameters or variables in a diagram.

To create a dependent parameter

1. Click the Continuous Parameter button.

The properties editor opens.

2. Name the parameter sqrt_Ki.

3. In the "Attributes" field, activate the option Dependent.

4. Open the formula editor using the Formula button.

The "Formula" field is used to specify the formula for a dependent parame-
ter. A formula consists of functions, operators, and formal parameters.

5. In the "Formula" field, specify the calculation rule.

You can select different operators and functions from the "Operator" and
"Function" combo boxes.

For the example here, select the root calculation of the formal parameter.

Formal Parameter: x
Formula: sqrt(x)

6. Exit with OK, and close the properties editor, too.

7. Click into the drawing area to place the parameter.

8. Right-click the sqrt_Ki parameter and select Data from the context menu.
ETAS ASCET V6.4 | Getting Started

53 | Tutorial
9. In the "Edit Dependency" window, assign a model parameter from the combo
box to the formal parameter (in this example Ki).

10. Complete data entry with OK.

You have now specified a parameter dependent on the parameter Ki which
on calibration will automatically be calculated based on Ki. Later on in the
experiment, you can check the dependency or the calculation.

Now that you have added all the elements, you need to specify an integrator. You
can proceed by creating the remainder of the diagram.

To create the diagram

1. In the "No. of arguments" combo box in the "Basic Blocks" palette, set the
current value to 3 to specify the number of input values for the multiplication
operator.

2. Create a multiplication operator and place it on the drawing area.

3. Click the Delta t button to create a dT element.

The properties editor opens. All setting options are deactivated.

4. Close the properties editor with OK.

5. Place the dT element inside the drawing area.

6. Create an addition operator with two inputs and place it on the drawing
area.

7. Connect the elements as shown below.

The input lines for both the buffer and the return value are displayed in
green.
ETAS ASCET V6.4 | Getting Started

54 | Tutorial
Now all elements of the diagram are in place. Next, you need to determine the
sequence of calculation by specifying the sequence calls.

To assign a value to a sequence call

1. Right-click the sequence call above the variable buffer.

2. Select Edit from the context menu.

The sequence editor opens.

3. Enter a number in the "Sequence Number" field.

4. Click OK to accept the settings.

The assignment comes first in the algorithm for your integrator.

To adjust the sequence number in a sequence call

1. Open the sequence editor for the sequence call above the return value for
integrate.

2. In the sequence editor, set the value for "Sequence Number" to a value
higher than the first sequence number.

3. Click OK.

The return value is assigned only after the variable buffer has been
updated.

To adjust the layout

1. Select Edit > Component > Layout.

The layout editor opens.

2. Drag the argument to the middle of the left-hand side of the block.

3. Drag the return value to the middle of the right-hand side of the block.

4. Click OK.

With that, the diagram for the integrator class is complete. Now save the changes
to the diagram and to the database/workspace.

Sequence calls
ETAS ASCET V6.4 | Getting Started

55 | Tutorial
4.4.2 Experimenting with the Integrator
Again, first set up the event generator, then the data generator and finally the
measurement system.

To set up the experimentation environment for the integrator

1. Start the experimentation environment by selecting Build > Experiment.

2. Open the "Event Generator" window and activate the event integrate
using the default dT value of 0.01.

3. Close the "Event generator" window.

4. Open the "Data Generator" window and create a data channel for the argu-
ment of the integrate method.

5. Set the values as follows:

6. Close the Data Generator.

7. Open an oscilloscope window with the arg and return values from the
integrate method.

8. Set the value axis for both values to a range from -10 to 10 and the time axis
extent to 10 seconds.

9. Start the experiment.

Mode: pulse
Frequency: 0.2 Hz
Phase: 0.0 s
Offset: -1.0
Amplitude: 2.0
ETAS ASCET V6.4 | Getting Started

56 | Tutorial
The output value of the integrate method increases when the argument is pos-
itive, and decreases when it is negative. Because the positive and negative parts
of the input curve are equal, the output remains within stable boundaries.

To reset an experiment

If you stop an experiment, the current values of variables and parameters are
stored; they are used again when the experiment is restarted. It may be desirable
to reset all variables or parameters to their initial values.

1. In the "Physical Experiment" window, select Extras > Reinitialize >
Variables or Parameters or Both.

Depending on your selection, either all variables or all parameters, or both,
are reset to their initialization values.

Next, you should experiment with various settings to illustrate the function of the
integrator. You can adjust the Ki parameter and change the input.

To experiment with the integrator

1. In the "Outline" tab, expand the Integrator element.

2. Select the parameter Ki.

3. Select Extras > Calibrate.

A numerical editor opens for the parameter.

4. Set the value to 5.

The output curve on the oscilloscope becomes steeper.

5. Set the value to 3.

The output curve now becomes flatter again.

6. Set the parameter back to 4 and close the numerical editor.

7. Open the "Data Generator" window.

8. Set the offset of the input pulse to -0.5.

9. Click OK.

Now the positive part is greater, so the output will start to increase. At some point
it will exceed the oscilloscope limits. You can adjust the scale of the oscilloscope
for each value individually by selecting only that value when you make changes.
You can also open a numerical display window to see the output value.
ETAS ASCET V6.4 | Getting Started

57 | Tutorial
To display a value numerically

1. Select <1.New Numeric Display> in the "Measure View" combo box in
the experimentation environment.

2. In the "Outline" tab, select the return value from the integrate method.

3. Select Extras > Measure.

A "Numeric display" window shows the current return value.

4. Also display the dependent parameter sqrt_Ki.

5. Change Ki and watch sqrt_Ki changing automatically.

When you have finished, you can stop the experiment and return to the block dia-
gram editor.

4.4.3 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating a parameter

- Creating and specifying a dependent parameter

- Creating a variable:

- Creating an operator with multiple inputs

- Setting the sequence number of a sequence call

- Assigning a default value

- Calibrating a value during experimentation

- Displaying values in a "Numeric display" window

4.5 Lesson 4: A Practical Example – Controller
In this lesson you will create a controller based on a slightly enhanced standard PI
filter. The controller will be used to keep the rotational speed of an idling car engine
constant.

When controlling the idling speed of an engine, you have to make sure that the
actual number of revolutions n stays close to the nominal value for idling
n_nominal. The value n is subtracted from n_nominal to determine the devia-
tion that is to be controlled.
ETAS ASCET V6.4 | Getting Started

58 | Tutorial
The deviation in the actual number of revolution forms the basis for calculating the
value of air_nominal, which determines the throttle position, i.e. the amount of
air the engine gets.

4.5.1 Specifying the Controller
The steps in creating the diagram for your controller are the same as earlier:

- adding a new folder and creating the component in the Component Man-
ager,

- defining the interface and drawing the block diagram.

The major difference is that you will implement the controller as a module. Modules
are used as the top-level components in projects. They define the processes that
make up a project.

To create the controller component

1. In the Component Manager, add a new subfolder named
Tutorial\Lesson4.

2. Select the Lesson4 folder and select Insert > Module > Block diagram to
add a new module.

3. Rename the new module IdleCon and open the block diagram editor.

4. In the "Outline" tab, rename the process process to p_idle.

The functionality of modules is specified in processes, which correspond to the
methods in classes. Unlike methods, processes do not have arguments or return
values. Data exchange (communication) between processes is based on directed
messages, which are referred to as Receive messages (inputs) and Send mes-
sages (outputs) in ASCET.

In your controller, you will use a receive message to process the actual number of
revolutions n and a send message to adjust the throttle position to air_nominal.

To specify the interface of the controller

1. Create a receive message by clicking on the Receive Message button, and
name it n.

2. In the properties editor for the message n, activate the Set() Method
option.

3. Click the Send Message button to create a send message air_nominal.

4. In the properties editor for the message air_nominal, activate the Get()
Method option.
ETAS ASCET V6.4 | Getting Started

59 | Tutorial
5. Place both messages in the drawing area.

The controller element uses the integrator you created in Lesson 4.

To add the Integrator to the controller

1. Select Insert > Component to open the "Select item" dialog window.

2. In the "Database" or "Workspace" pane, select the item Integrator from
the Tutorial\Lesson3 folder and click OK.

The integrator is included in the component IdleCon. A component is
included by reference, i.e., if you change the original specification of the
integrator, that change will be reflected in the included component.

In addition to the elements you have added so far, you need to add the following
elements to your controller:

- two continuous variables named ndiff and pi_value
- three continuous parameters named n_nominal, Kp, and air_low

To specify the functionality of the controller

1. Create the operators and the other elements needed, then connect them
as shown in the block diagram below.

2. In the "Outline" tab, select the n_nominal parameter, then select Edit >
Data.

3. Set the value for n_nominal to 900.

4. Set the value for Kp to 0.5.

5. Save your specification in the diagram and apply the changes to the data-
base/workspace.
ETAS ASCET V6.4 | Getting Started

60 | Tutorial
4.5.2 Experimenting with the Controller
Experimentation with modules works like experimentation with other components.
First the data and event generators and then the measurement system are set up.

To set up the experimentation environment

1. Start the experimentation environment.

2. Open the "Event Generator" window and enable the event for the process
p_idle using the default value of 0.01 for dT.

An event for a process works the same as an event for a method.

3. Open the "Data Generator" window and set up the channel for the receive
message n with the following values:

4. Set up an oscilloscope with the variables ndiff and air_nominal.

5. In the oscilloscope, set the value axis to -500 to 500 and the time axis extent
to 2.

6. Save the environment.

The experiment is now set up to display the relationship between the deviation in
the number of revolutions and the throttle position.

To experiment with the controller

1. Start the experiment.

2. Open a calibration window for the parameters Ki and Kp. From here, you can
adjust the values Ki and Kp and observe their effect on the output.

From time to time, you may need to reinitialize the model in order to get back
to meaningful values.

Mode: pulse
Frequency: 1.0 Hz
Phase: 0.0
Offset: 800.0
Amplitude: 200.0
ETAS ASCET V6.4 | Getting Started

61 | Tutorial
4.5.3 Project
A project is the main unit of ASCET software representing a complete software
system. This software system can be executed on experimental or microcontroller
targets in real-time with an online experiment. Individual components can only be
tested in the offline experimentation environment.

Every experiment runs in the context of a project. Whenever code is generated for
a project, the operating system code is also generated. The operating system
specification is required to run an ASCET software system in real-time. Running a
software system in real-time is called Online experimentation. So far, you have
experimented offline only, i.e. not in real-time.

4.5.4 Setting Up the Project
The project is created in the Component Manager. You can add it to the same
folder as the IdleCon module.

To create a project

1. In the Component Manager, click Insert Project to add a new project.

2. Name the project ControllerTest.

3. Double-click the project.

The project editor opens for the project.

Fig. 4-5 ASCET project editor (Specification view)

NOTE
All ASCET experiments – both online and offline – run within the context of a proj-
ect. This is clearly seen with offline experiments, which use an (otherwise invisi-
ble) default project. Creating and setting up a project for the express purpose of
specifying an operating system is only required for online experiments. However,
you also have the option of configuring the default project for your own applica-
tion.
ETAS ASCET V6.4 | Getting Started

62 | Tutorial
4. Add the IdleCon controller to the project (cf. Page 59).

The name of the controller is shown in the "Outline" tab of the project editor.

Components are included by reference, i.e. if you change the diagram of an
included component, that change will also be effective in the project.

The operating system schedules the tasks and processes of a project. Before you
can generate code for the project, you have to create the necessary tasks and
assign the processes to them.

The operating system schedule is specified in the "OS" tab of the project editor.
You will now specify the operating system schedule to have the p_idle process
activated every 10 ms.

To set up the operating system schedule for the project

1. Click the "OS" tab.

2. Select Task > Add to create a new task.

3. Name it Task10ms.

Newly created tasks are by default alarm tasks, i.e. they are periodically acti-
vated by the operating system.

4. Assign the task a period of 0.01 seconds in the "Period" field.

The period determines how often the task is activated, which is every 10 ms
in this case.

5. In the "Processes" list, expand the IdleCon item.

6. Select the process p_idle and select Process > Assign.

The process is assigned to the Task10ms task. It is displayed beneath the
task name in the "Tasks" list.

In projects, imported and exported elements are used for inter-process communi-
cation. They are global elements that correspond to the send and receive mes-
sages in the modules. Global elements must be declared in the project and linked
to their respective counterparts in the modules included in the project.
ETAS ASCET V6.4 | Getting Started

63 | Tutorial
To define global elements

1. In the project editor, select Extras > Resolve Globals.

The necessary global elements are created and automatically linked to their
counterparts. Elements with the same name are automatically linked to
each other.

4.5.5 Experimenting with the Project
You will now run an offline experiment with this project. Offline experimentation
can be performed on the PC without the connection of any additional hardware.
Projects run on the PC by default. Therefore you do not have to adjust any set-
tings. Offline experimentation with projects works like offline experimentation with
components.

To set up the experimentation environment

1. In the Component Manager, select File > Save.

It is always a good idea to apply your changes to the database/workspace
before you start the experimentation environment.

2. In the project editor, select Build > Experiment.

Code for the project is generated and the offline experimentation environ-
ment opens.

3. Open the "Event Generator" window.

In the event generator you see an event for each task you can use in the
experiment, rather than for each method or process, as in experimentation
with components.

4. Enable the task generateData from the event generator and use the
default dT value of 0.01 seconds.

The task Task10ms is already enabled by default, and both events now have
0.01 seconds as their dT value; therefore you do not need to make any fur-
ther adjustments.

5. Close the event generator.
ETAS ASCET V6.4 | Getting Started

64 | Tutorial
6. Set up the data generator and measurement system with the same values
as in the previous experiment (cf. “Experimenting with the Controller” on
page 60).

7. Save the environment.

To run the experiment

1. Click the Start Offline Experiment button.

2. Adjust the Ki and Kp parameters as in the previous section to see the effect
of your changes in the output.

4.5.6 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating modules

- Creating messages in modules

- Using components from the Component Manager in a block diagram.

- Creating a project

- Including components in projects.

- Creating tasks and assigning processes to them

- Experimenting with projects

4.6 Lesson 5: Extending the Project
In this lesson you will add some refinements to make your controller more realistic.
You will create a signal converter that converts sensor readings into actual values.
Many sensors, used for instance in automotive applications, return a voltage that
corresponds to a particular measurement value, such as temperature, position or
number of revolutions per minute. The relationship between the voltage and the
measured value is not always linear. ASCET provides characteristic lines and maps
to model this kind of behavior efficiently.

4.6.1 Specifying the Signal Converter
The first step in modeling the signal converter is to create a folder and a module
that specifies the functionality. The signal converter uses two characteristic lines
to map its input values to the corresponding outputs.

To create the module

1. In the Component Manager, create a new folder Tutorial\Lesson5.

2. Create a new module and name it SignalConv.

3. Double-click SignalConv to open the block diagram editor.

4. In the block diagram editor, select Insert > Process to create a second pro-
cess.

5. Name the processes n_sampling and t_sampling.

6. Create two receive messages with Set method1), U_n and U_t, and two
send messages with Get method1), t and n.
ETAS ASCET V6.4 | Getting Started

65 | Tutorial
7. Create a characteristic line by clicking the OneD Table button.

The properties editor opens.

8. In the properties editor, do the following:

i. Name the characteristic line t_sensor.

ii. In the "x" part of the "Dimension" field, enter the value 13.

The characteristic line can now span a maximum of 13 columns.

As you have created a (one-dimensional) characteristic line, there is no
"y" part of the "Dimension" field.

iii. In the "Interpolation" combo box, select Linear interpolation.

iv. Click OK to close the properties editor.

9. Then click in the drawing area to place the table.

The table is added to the "Outline" tab.

10. Create a second table named n_sensor with maximal 2 columns and linear
interpolation.

11. Connect the elements as shown and edit the sequencing to assign the cor-
responding processes.

Fig. 4-6 Signal Converter

The next step is to edit the data for the two characteristic lines. ASCET provides a
table editor for editing arrays, matrices and characteristic lines/maps.

To edit the tables

1. Right-click t_sensor and select Data from the context menu.

The table editor opens.

2. Adjust the size of the table as follows:

The table is extended to 13 columns with all Values set to 0 by default.

1) If you need help, see “To specify the interface of the controller” on page 58.

(A)

(B)
ETAS ASCET V6.4 | Getting Started

66 | Tutorial
3. Enter the values listed in the following table. The top row corresponds to the
"X" row, the bottom row to the "Values" row.

You should edit the table by entering the sample points (X values) first,
starting from left to right.

4. Click an X value and then enter the new value in the dialog box.

The new X value must be between the limits set by the adjacent sample
points.

5. Then enter the output values by clicking a value and typing over the high-
lighted value.

6. Edit the second table in the same way using the following data:

7. Save your specification in the diagram and apply the changes to the data-
base/workspace.

In this example, the second table represents a linear relationship between input
and output, therefore it needs only two sample points. This works because you
have specified the interpolation mode between values as linear.

In linear interpolation, for an input value between two sample points, the output
value is determined from a straight line. In this case, an input of 0 returns 0 and an
input of 10 returns 6000. If the input value is 5, the return value is interpolated
accordingly as 3000.

4.6.2 If...Then...Else in the Signal Converter
The If...Then block evaluates a logical expression and activates a control-flow
branch if the result is true. The control flow output is connected to one or more
sequence calls which are triggered whenever the control flow branch is activated.
Whenever the input expression evaluates to true, the connected sequence calls
are executed.

0.00 0.08 0.30 0.67 1.17 2.5 5.00 7.50 8.83 9.33 9.70 9.92 10.00
-40.0 -26.0 -13.0 0.0 13.0 40.0 80.0 120.0 146.0 160.0 173.0 186.0 200.0

0.0 10.0
0.0 6000.0
ETAS ASCET V6.4 | Getting Started

67 | Tutorial
If...Then...Else is similar to If...Then, but has two control flow branches.
Depending on the value of the logical expression, the right or the bottom branch is
executed. The right branch is executed if the expression evaluates to true, the
bottom branch is executed if the expression evaluates to false.

You will now insert an If...Then...Else block to the Signal Converter and use it to
change the behavior of t_sensor so that U_t values ≤ 0.025 produce a tem-
perature t of -40.0.

First, you specify the logical expression.

To specify the logical expression for the If...Then...Else block

1. Create an If...Then...Else block by clicking on the If Then Else button.

2. Create a Greater operator.

3. Create a new graphical occurrence of U_t: Drag U_t from the "Outline" tab
and drop it on the drawing area.

4. Create a literal.

5. Double-click the literal.

6. In the "Literal" editor, enter a value of 0.025, then click OK.

7. Connect U_t with the upper input of the operator and the literal with the
lower input of the operator.

8. Connect the operator output with the input of the If...Then...Else block.

9. Edit the sequence call as shown in the figure below.

logical expressions

control flow branch

bottom control flow branch

right control flow
branch

1) 2) 4)
ETAS ASCET V6.4 | Getting Started

68 | Tutorial
Next, you specify the control flow branches. The expression for the right branch is
already there (A in Fig. 4-6), it just needs to be connected to the If...Then...Else
block.

To specify the control-flow branches

1. To connect an expression to a control flow branch, convert the expression’s
sequence call to a connector.

i. Right-click the sequence call and select Connector from the context
menu.

A pin appears at the left of the sequence call, the number is reset to 0,
and the process name disappears.

ii. Connect the right branch of the If...Then...Else block to the connector.

2. Create a new graphical occurrence of t.

3. Create a literal with value -40.0 and connect it to the new occurrence of t.

4. Connect this expression to the bottom branch of the If...Then...Else block.

The temperature-related part of the diagram should now look like this:

4.6.3 Experimenting with the Signal Converter
You can now experiment with the new component to observe the behavior of the
tables. Since the two tables have different value ranges, you will set up a separate
oscilloscope window for each of them.

sequence call connector
ETAS ASCET V6.4 | Getting Started

69 | Tutorial
To set up the experimentation environment

1. Start the experimentation environment.

2. Create an event for each process in the component (n_sampling,
t_sampling, generateData) and assign a dT value of 4 ms to each
event.

3. In the data generator, create a channel for the message U_n and one for
U_t and set up both channels with the following values:

4. Create an oscilloscope window with the messages n and U_n and a second
oscilloscope with the messages t and U_t.

The resolution of the sampling points and their corresponding interpolation values
differs so much that you should configure each channel in the two oscilloscopes
individually in order to optimize the way the behavior of the two tables is displayed.

To set up the oscilloscopes for measuring

1. In the oscilloscope for the process n_sampling (channels U_n and n),
select the message n and select Extras > Setup.

The "Display Setup" dialog window for the message n is displayed.

2. Set the range of the value axis to 0 to 6000 and the time axis to 0.5

3. Open the "Display Setup" dialog window for the message U_n.

4. Set its value axis to a range from -1 to 11.

The time axis must be the same for all variables in an oscilloscope window,
so you do not have to change that.

Mode: sine
Frequency: 2.0 Hz
Phase: 0.0
Offset: 5.0
Amplitude: 5.0
ETAS ASCET V6.4 | Getting Started

70 | Tutorial
5. Set up the channels in the oscilloscope for the process t_sampling as fol-
lows:

6. Save the experimentation environment.

You are now ready to run the experiment and see how your signal converter works.
Observe the differences between the two conversion modes.

To run the experiment

1. Start the offline experiment.

The n_sensor table changes only the amplitude of the input sine wave. The
input here is a voltage signal ranging from 0 to 10 volts, this is mapped to the
rotational speed, ranging from 0 to 6000 revolutions per minute.

The t_sensor table does not represent a linear relationship between the
input voltage and the output temperature. It matches the characteristic
behavior of temperature sensors commonly used in the automotive indus-
try.

The influence of the If...Then...Else block can be seen at the lower peak of
the t curve.

2. Change the data generator channels to different waveforms and observe
the effect on both output curves.

4.6.4 Integrating the Signal Converter into the Project
After you have specified the signal converter, you can integrate it in the project
you created in Lesson 4. The output signal for the signal converter is used as the
input signal for the motor controller.

To integrate the signal converter in the project, you will set up another task in the
operating system schedule for the new processes and declare and link the global
elements necessary for the processes to communicate.

To add the signal converter to the project

1. Open the project editor for ControllerTest.

2. Add the module SignalConv to the project (cf. Page 59).

3. Click the "OS" tab to activate the operating system editor.

4. Create a new task n_sampling with a period of 0.004 seconds.

U_t t
Min -1 -40
Max 11 200
Extent 0.5 0.5
ETAS ASCET V6.4 | Getting Started

71 | Tutorial
5. Assign the process n_sampling to the task n_sampling.

The project now has two tasks. The first task is activated every 10 milliseconds, the
second one every 4 milliseconds. All processes assigned to a given task are exe-
cuted at the interval specified. In the example, each task has only one process, but
it is possible to have any number of processes per task.

The next step in integrating the signal converter is to resolve communication
between the modules. Communication between the processes works through
global elements. All global elements used within a project have to be defined as
messages in the corresponding modules.

By default, send messages are defined in a module, while receive messages are
normally only imported into a module so they have to be defined now within the
context of the project.

Each global element must be defined only once in the project context. Multiple
definitions cause code generation errors.

To set up the global elements

1. Select Extras > Resolve Globals to set up automatic links.

All necessary global elements are created and linked automatically to the
corresponding elements with a matching name. The global message U_n,
for instance, is automatically linked to the message U_n in SignalConv.
ETAS ASCET V6.4 | Getting Started

72 | Tutorial
2. Delete the message n from the project.

This message was defined in lesson 4 in the project. Now, it is defined in the
module SignalConv, and it is used for communication between the pro-
cesses of the modules. The definition in the project is no longer needed.

3. The project may contain unused global elements. To search and delete
them, proceed as follows.

i. Select Extras > Show Unused Elements.

The "Search Results" view opens below the tabs. (See the online help for
details.) This view lists all unused elements at the project level and in the
modules.

ii. In the "Elements" tab of the "Search Results" view, select all elements on
project level you want to delete and press .

To experiment with the project

1. Open the experimentation environment.

2. Open the event generator.

The new task n_sampling is already enabled by default, with 0.004 sec-
onds as dT value. You do not need to make any adjustments.

During offline experimentation with projects, the event generator simulates
the scheduling that is performed by the operating system during online
experimentation.

3. Open the data generator and delete the existing data channel.

4. Set up a new channel for the message U_n:

U_n is the output voltage of the rotational speed sensor.

The signal converter converts the voltage value into the actual value for n
using the characteristic table n_sensor.

The values given above produce an output range for n that matches the
range from the previous experiment (without signal processing).

5. Save the environment, then start the experiment.

The output curves should be the same as in the example without signal process-
ing. The stimulus created by the data generator is different, but it is then pro-
cessed in the table so that it looks the same as before.

Mode: pulse
Frequency: 1.0 Hz
Phase: 0.0
Offset: 1.333333
Amplitude: 0.333333
ETAS ASCET V6.4 | Getting Started

73 | Tutorial
4.6.5 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating and using characteristic lines

- Creating and using an If...Then...Else block

- Adding components to a project

- Defining the communication between different components in a project

4.7 Lesson 6: Modeling a Continuous Time System
The realistic modeling of physical, mechanical, electrical, and mechatronical pro-
cesses, often described by differential equations, requires continuous time meth-
ods. Before integrating a method like this in the project created in the previous
lessons, this lesson covers modeling a continuous time system using a detailed
example.

ASCET supports the modeling and simulation of continuous time systems by
means of so-called CT blocks. CT stands for "Continuous Time" and refers to items
that are modeled or calculated in quasi-continuous time intervals. The continuous
time modeling in ASCET is based on state space representation, the standard
description form used in the design of continuous time systems. This representa-
tion allows the description of CT basic blocks by nonlinear ordinary first-order dif-
ferential equations and nonlinear output equations. ASCET provides several real-
time integration methods to find optimal solutions to these differential equations
(refer to the ASCET online help for more information).

The procedure for modeling a continuous time system will now be explained using
the example of a mass-spring pendulum with attenuation by the earth's gravity.

4.7.1 Motion Equation
The mass m shown in the following illustration is subject to the following forces:

- gravity: Fg = -mg
(g = gravitational acceleration)

- Spring force: FF = - c (x + l0)
(c = spring rate, l0 = length of spring at rest, and x = position of mass m)

x

m

d

c

ETAS ASCET V6.4 | Getting Started

74 | Tutorial
- Attenuation FD = - d x’
(d = attenuation constant and x’ = velocity of mass)

This gives the motion equation as follows:

mx’’ = -mg + F or x’’ = -g + F/m (with F = FF + FD)
Breaking the second-order differential equation into two first-order differential
equations (x = x, v = x’) results in:

x’ = v
v’ = -g + F/m

These differential equations will be used in the following model design.

4.7.2 Model Design
For simplicity, the model of the mass-spring pendulum can be designed using a
single CT block. However, to illustrate the "direct pass-through" or "non-direct
pass-through" properties and to demonstrate how to avoid an algebraic loop by
skillful setting of these properties, we will design this model using two blocks.

- The Force block calculates spring force F from the position of the pendu-
lum’s mass m and the friction force from the velocity x’.

- From the spring force F the Mass block calculates the acceleration x’’ from
the integration of which the velocity x’ and the position x result.

At first sight, this system looks like an algebraic loop: each block expects an input
value from the other block in order to calculate an output value required by the
other block.

This algebraic loop can be avoided by clever setting of the direct pass-through or
non-direct pass-through properties:

- In the Force block, the output variable F depends directly on the input vari-
ables x and x’; see the following equation:

F = -c(x + l0) - dx’

This block is thus defined as having a direct pass-through.

- In the Mass block however, the output variables x and x’ do not depend
directly on the input variable F, but on the internal state variables of the
block. These, at least at the start, have initial values from which the output
variables x and x’ can be calculated, when the input variable F is unknown.
Otherwise the output variables are calculated using the following differen-
tial equations:

x’ = v
v’ = -g + F/m

This block is thus defined as having a non-direct pass-through.

To create the model

1. In the Component Manager, create a folder Lesson6.

Force Mass
F

x, x’
ETAS ASCET V6.4 | Getting Started

75 | Tutorial
2. In this folder, use Insert > Continuous Time Block > ESDL to create a block
Force and a block Mass.

3. Double-click the Force block to open the ESDL editor.

4. Use the Input button to create two inputs x and v (type continuous).

5. Use the Output button to create an output F (type continuous).

6. Use the Parameter button to create the parameters c (spring rate), d
(attenuation constant) and l0 (length of the spring at rest).

Fig. 4-7 ASCET ESDL editor for CT blocks (Specification view)

The methods in the "Outline" tab are fixed.

7. Assign realistic values to the constants (e.g., 5.0 to the spring rate c, 1.0 to
the attenuation constant d, and 2.0 to the length of the spring at rest l0).

8. In the "Outline" tab, click the method directOutputs().

9. In the edit field, specify the formula used to calculate the force:

F = -c * (x + l0) - d*v;

10. Click the Generate Code button.

The CT block Force is compiled.

4) 5) 6)
ETAS ASCET V6.4 | Getting Started

76 | Tutorial
11. Double-click the Mass block to open the ESDL editor.

12. As above, create an input F, two outputs x and v, one parameter m (mass),
and one parameter or constant g (gravitational acceleration).

13. Assign values to g and m (9.81 to g and, e.g., 2.0 to the mass m).

14. Click the Continuous State button to create state variables x_local and
v_local for the internal calculation of the outputs.

15. For the derivatives() method, specify the differential equations
required for the calculation:

x_local.ddt(v_local);
v_local.ddt(-g + F/m);

16. In nondirectOutputs(), pass the state variables x_local and v_local
to the outputs x and v:

x=x_local;
v=v_local;

17. In the init() method, you can provide the system with realistic initial val-
ues for x and v using the resetContinuousState() function.

resetContinuousState(x_local,0.0);
resetContinuousState(v_local,0.0);

18. Click the Generate Code button to compile the Mass CT block.

19. Adjust the layout of both blocks.

To combine the two basic CT blocks

The combination of the two basic CT blocks into one CT structure block is done
using the block diagram editor (BDE).

1. In the Component Manager, Lesson6 folder, select Insert > Continuous
Time Block > Block Diagram to create a new block Mass_Spring.

2. Open the new block in the block diagram editor.

3. Add the Mass and Force blocks to the Mass_Spring block.

4. Connect the corresponding inputs and outputs with each other.
ETAS ASCET V6.4 | Getting Started

77 | Tutorial
5. Select Build > Experiment.

The CT block is now compiled, and the experiment is started.

6. Create the experimentation environment required with numeric editors for
the parameters and graphical displays for x and v.

7. Scale the channels in the oscilloscope separately, from -10 to 0 for x, from -
8 to +8 for v.

8. Set the extent of the time axis to 25 s.

9. Perform the experiment.

4.7.3 Summary
After finishing this lesson, you should be able to carry out the following tasks in
ASCET:

NOTE
Double-clicking a CT basic block opens it in the respective editor. Note, however,
that any modification to the blocks affects the entire library, i.e., all structure
blocks that use these basic blocks.
ETAS ASCET V6.4 | Getting Started

78 | Tutorial
- Creating a model to simulate a process

- Using the ESDL editor to create CT blocks with direct and non-direct pass-
through

- Using the block diagram editor to combine CT blocks

- Performing the physical experiment

4.8 Lesson 7: Process Model
Following the introduction of CT blocks in the previous lesson, you will now use a
CT block for testing your controller. In ASCET you can develop a model of the tech-
nical process to be controlled, and then experiment with a closed control loop. This
means the controller can be thoroughly tested before it is used in a real vehicle.

In the current example, the motor is the technical process. It returns a value U_n
which is a sensor reading of the rotational speed of the engine. This value is pro-
cessed by the controller, which returns a value air_nominal. The controller out-
put value determines the throttle- position of the engine, and thus in turn
influences the rotational speed.

Fig. 4-8 Closed-loop experiment

You will use a CT block for this process model. This type of component is particu-
larly suitable for process models. The model is based on the following differential
equation, which models a PT2 system:

T2 s’’ + 2DTs’ + s = Ku
Equ. 4-1 A PT2 - system

The parameters T, D and K have to be set up with appropriate values.

4.8.1 Specifying the Process Model
Creating continuous time components is different from creating other compo-
nents. They have inputs and outputs, which are the equivalent of arguments and
return values. The main difference is that a continuous time block can have multi-
ple inputs and outputs, which are not tied to a particular method. There is a fixed
set of methods defined in each continuous time block, that cannot be modified by
the user.

Controller

Technical
Process

U
_
n

a
i
r
_
n
o
m
i
n
a
l

ETAS ASCET V6.4 | Getting Started

79 | Tutorial
You will use ESDL Code for the example here. The syntax of the ESDL code is similar
to C++ or Java. An object method is called with the name of the object, a dot, the
name of the method and the arguments in brackets followed by a semicolon. The
method used for deriving is called ddt(). For example, the equation is
equivalent to the ESDL statement s.ddt(sp);.

To create a continuous time component

1. In the Component Manager create the folder Tutorial\Lesson7.

2. To add a continuous time block, select Insert > Continuous Time Block >
ESDL.

3. Name the new component ProcModel.

4. Open ProcModel in the ESDL editor.

You can, of course, also use the external text editor. There are instructions
for this in the first part of the tutorial.

To edit the process model, first add the elements required and then edit the
methods derivatives and non directOutput.

To edit the process model

1. In the ESDL editor, create two continuous states s and sp.

2. Create an input u and an output y; both of type cont.

3. Create the parameters D, K and T.

The "Outline" tab for the process model should look like this:

4. Adjust the parameter values as follows:

D = 0.4
K = 0.002
T = 0.05

sp s·=

1) 2) 3)
ETAS ASCET V6.4 | Getting Started

80 | Tutorial
5. In the "Outline" tab, select the derivatives method and edit the code as
follows:

s.ddt(sp);
sp.ddt((K*u - 2*D*T*sp - s) / (T*T));

6. Select the nondirectOutputs method and type in the following text.

y = s;
7. Adjust the layout in the layout editor.

Note that in a process model it is preferable to put the outputs on the left
and the inputs on the right.

8. Save the process model.

You can now start experimenting with the new model.

To experiment with the model

1. Open the experimentation environment.

2. Click the Open CT Solver button.

The "Solver Configuration" window opens.

3. Enter a dT value of 0.005, then click OK.

4. Open the data generator and create a channel for the input u.

5. Set up the channel u with the following values:

NOTE
See the ASCET online help for specifying CT blocks for information on how
to resolve a differential equation.

Mode: pulse
Frequency: 0.5 Hz
Phase: 0.0 s
Offset: -0.5
Amplitude: 1.0
ETAS ASCET V6.4 | Getting Started

81 | Tutorial
6. Open an oscilloscope window with the channels u and y.

7. Set the measure channels for the oscilloscope as follows:

8. Save the environment.

9. Start the experiment.

The output should look like this:

4.8.2 Integrating the Process Model
To create a closed control loop, you will now integrate the process model into the
controller project you created in Lesson 4. The steps required are the same as
before: including the module, setting up the operating system and linking the
global elements.

To include the process model

1. Open the project editor for ControllerTest.

2. In the project editor, add the component ProcModel to the "Outline" tab.

3. Go to the "OS" tab of the project editor to specify the scheduling for the CT
tasks.

4. Select the task simulate_CT1 and set the value in the "Period" field to
0.01 s.

The controller and the process model both run in the same time interval.

u y
Min -1 -0.002
Max 2 0.004
Extent 3.0 3.0

NOTE
The process model is added to the same project for simplicity. This is often use-
ful in the early stages of testing closed loop simulation. In regular projects, the
process model would be distributed over a network in another project since they
are not part of the same embedded system.
ETAS ASCET V6.4 | Getting Started

82 | Tutorial
Linking the continuous time blocks and the modules cannot be done automati-
cally. They have to be connected explicitly in a block diagram.

To adjust the linking between modules and CT block

1. Go to the "Graphics" tab.

2. From the "Outline" tab, drag the three components and drop them into the
drawing area.

3. Connect the messages of the modules with the corresponding input and
output of the CT block.

To construct the example, connect the output y of ProcModel with the
global message U_n, and connect the input u of ProcModel with the global
message air_nominal.

4. Right-click each component and select Ports > Remove Unconnected
Ports to remove these ports from the diagram.

Linking the messages for communicating between modules is done automatically.
Messages that have the same name are linked with each other.

The project is now complete and ready for experimentation.

To experiment with the process model

1. Open the experiment environment.

2. Remove all existing channels from the data generator.

3. Open numeric editors for n_nominal, Ki and Kp.

4. Create an oscilloscope window with the elements air_nominal, ndiff,
n_nominal and n.
ETAS ASCET V6.4 | Getting Started

83 | Tutorial
5. Set up the channels according to the following table:

6. Save the environment.

7. Start the experiment.

The values for air_nominal and ndiff should quickly approach finite val-
ues and stay there. The value for n should quickly approach n_nominal and
stay there.

8. Modify n_nominal in the numeric editor.

The value n should change in line with the changes to n_nominal.

9. You can optimize the behavior of the control loop by adjusting the Ki and Kp
parameters.

4.8.3 Online Experiment with the Process Model
If desired, you will now experiment online, which requires an ASCET-RP installation
and an ES910 real-time target. If you do not have both, you have to skip this sec-
tion.

To set up the project for online experimentation

1. Click the Project Properties button.

Min. Max. Extent
air_nominal
ndiff

-900 900 1.5 s

n_nominal
n

0 2000 1.5 s
ETAS ASCET V6.4 | Getting Started

84 | Tutorial
2. In the "Project Properties" dialog window, "Build" node, select the following
options:

These options specify the hardware and the corresponding compiler for
code generation.

3. Click OK to close the "Project Properties" dialog window.

The buttons Reconnect to Experiment of selected Experiment Target
and Select Hardware are now available.

4. Click the "OS" tab to activate the operating system editor.

5. Set the number of preemptive levels to 8.

6. To copy the schedule you created earlier, select Operating System > Copy
From Target.

7. From the "Selection Required" dialog, select PC-->GENERIC and click OK.

The project for the new target now has the same scheduling as that speci-
fied before for the offline PC simulation.

There are several differences from the offline experiment. In the online experi-
ment, there is no event or data generator. The event generator serves to simulate
the scheduling of the operating system tasks generated for online experiments.

Target: ES910
Code Generator: Physical Experiment
Compiler: QCC V6.5.0
Operating System: RTA-OSEK V5.0 (ES900)
ETAS ASCET V6.4 | Getting Started

85 | Tutorial
In the online experiment, the experiment and the measurements are started sep-
arately, and have separate buttons in the toolbar. This is because the measure-
ments may influence the real-time behavior of the experiment, so it may
sometimes be necessary to switch them off.

To experiment online with the project

1. Select Online (RP) from the "Experiment Target" combo box.

Offline (RP) is intended for offline experiments on the target.

2. Select Build > Experiment.

The code for the experiment is generated and the experiment opens with
the environment defined in the offline experiment (see Page 82).

Fig. 4-9 ASCET online experimentation environment

If your project contains several tasks, you may be prompted to select one
acquisition task for each measure value.

3. In the "Selection Required" window, select the #3 simulate_CT1 task and
click OK.
ETAS ASCET V6.4 | Getting Started

86 | Tutorial
4. Click the Start Measurement button and then click the Start OS button.

The experiment starts and the results are displayed on the oscilloscope.
The value for n should quickly approach n_nominal and stay there.

5. Modify n_nominal in the numeric editor.

The value n should change in line with the changes to n_nominal.

6. You can optimize the behavior of the control loop by adjusting the Ki and Kp
parameters.

4.8.4 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating and specifying continuous time blocks

- Experimenting with continuous time blocks

- Integrating continuous time blocks in a project

- Creating variable links

- Switching between different targets

- Experimenting offline and online with a project

4.9 Lesson 8: State Machines
State machines are useful for modeling systems that move between a limited
number of distinct states. ASCET provides a powerful mechanism for specifying
components as state machines. In this lesson, you will specify and test a simple
state machine that implements a temperature dependent change in the nominal
number of revolutions of an idling engine. That state machine will then be inte-
grated into our project. In the next lesson (section 4.10 on page 95), you will then
construct a hierarchical state machine.

If the engine is cold, it has to idle at a higher speed to keep it turning over. Once the
engine has warmed up, the rotational speed for idling can be decreased to reduce
fuel consumption. Our state machine thus has two states: one when the engine is
cold, and one when it is warm. It represents a two- phase control.

4.9.1 Specifying the State Machine
A state machine consists of the state graph itself and a number of specifications
of actions and conditions. The actions and conditions can be specified using
either block diagrams or ESDL code. They determine what happens in the various
states and during the transitions between states.

Start OS

Start Measurement
ETAS ASCET V6.4 | Getting Started

87 | Tutorial
The diagrams for actions and conditions are specified in the block diagram editor
or ESDL editor. Another possibility is to write ESDL code directly in a text editor,
which can be opened for every state and every transition (i.e., without opening the
ESDL editor). State machines have inputs and outputs for data transfer with other
components.

To create a state machine

1. In the Component Manager, create the folder Tutorial\Lesson8.

2. Click the Statemachine button to create a new state machine.

3. Name it WarmUp.

4. Open the state machine in the state machine editor.

Fig. 4-10 ASCET state machine editor (Specification view)

When you create a state machine, you specify the state diagram first and then
define the various actions and conditions associated with states and state transi-
tions.

The state machine controlling your motor has two states: one for when the motor
is cold and one for when the motor is warm.

To specify the states

1. Click the State button to load the cursor with a state item.

2. Click inside the drawing area, where you want to place the state.

A state symbol is drawn where you clicked.

3. Create a second state and place it below the first one in the drawing area.
ETAS ASCET V6.4 | Getting Started

88 | Tutorial
4. Right-click the first state and select Edit State from the context menu.

The State Editor opens.

5. In the "State" field, enter the name coldEngine.

6. Activate the Start State option to determine the state the machine is in
when it is first started.

Each state machine must have one start state.

7. Click OK to close the State Editor.

The name is displayed in the state symbol.

8. Name the second state symbol warmEngine.

If desired, change the colors of the individual states to improve clarity.

To set state colors

1. Open the State Editor and select the color in the "Color" combo box.

2. Close the State Editor with OK.

To create the transitions

1. Right-click in the drawing area, outside any symbol, to activate the connec-
tion mode.
ETAS ASCET V6.4 | Getting Started

89 | Tutorial
2. Click in the right half of the coldEngine state symbol to begin a connec-
tion, then click in the right half of the warmEngine state symbol to connect
the two states.

A line is drawn between the two state symbols. It has an arrow at one end,
pointing from the top to the bottom symbol. The lines represent possible
transitions between states.

3. Create another transition from warmEngine to coldEngine.

The next step in building the state machine is to specify its interface. You need an
input for the temperature value and an output for the number of revolutions. In
addition, parameters are required that specify high and low temperature and num-
ber of revolutions per minute.

To specify the interface of the state machine

1. Create an input t and an output n_nominal.

2. Create four continuous parameters:

t_up = 70

t_down = 60

n_cold = 900

n_warm = 600

You can now proceed by specifying the actions and conditions for both the states
and the transitions between states. You can specify three actions for each state:

- The entry action is executed each time the state is entered.

Exception: Upon first activation of the state machine, the entry action of the
start state is not executed.

- The exit action is executed each time the state is left.

- The static action is executed while the state machine remains stationary.

Similarly, a trigger event, a condition, a priority and an action can be specified for
each transition. The name of the trigger and of the condition appear next to the
transition. One trigger is automatically created when the state machine is created.

The actions and conditions are specified in ordinary diagrams or in ESDL code. In
this example you will use ESDL code.
ETAS ASCET V6.4 | Getting Started

90 | Tutorial
To specify the trigger actions and conditions

1. Right-click the transition from the coldEngine state to warmEngine and
select Edit Transition from the context menu.

The condition for a transition from cold to warm is that the actual tempera-
ture value t is greater than t_up.

2. On the "Condition" tab, select <ESDL> from the combo box.

You can influence the default selection in this combo box via the "State
Machine" node in the ASCET options window.

3. Enter the following code in the code pane of the condition:

// reached warmup temperature
t > t_up

The first line is a comment, the second line is the condition.

If the condition evaluates to true, the idle speed of the engine is set to
n_warm.

By default, the code of the condition is shown in the state diagram. Here, the
comment in the first line is used as an alias name for the condition instead.

4. Select <ESDL> for the action, too, and enter the following code:

n_nominal = n_warm;
5. Click OK to close the Transition Editor.

6. Look at the diagram. Note that the condition and the action of the transition
can be seen.

7. Edit the transition from warmEngine to coldEngine and enter the follow-
ing ESDL code for action and transition:

8. Close the transition editor and save the state machine.

NOTE
In the Transition Editor, the condition is not terminated with a semicolon.
This is also true for regular ESDL code where conditions appear in paren-
theses.

condition: t < t_down
action: n_nominal = n_cold;
ETAS ASCET V6.4 | Getting Started

91 | Tutorial
You can also specify the actions and conditions as block diagrams instead of ESDL
code. See the ASCET online help for details.

The initial value for the output n_nominal is still missing. Unlike the parameter val-
ues, this cannot be set. Instead, you need to specify an action for the coldEngine
start state. Since the entry action of the start state is not executed at the fist acti-
vation of a state machine, you have to specify the initial value in the static action.

To specify a static action

1. Open the coldEngine state in the State Editor.

2. Select <ESDL> from the combo box on the "Static" tab to specify the static
action.

You can influence the default selection in this combo box via the "State
Machine" node in the ASCET options window.

3. Enter n_nominal = n_cold; in the code pane to set the initial value of
n_nominal to 900.

4. Close the State Editor and save the state machine.

That completes the specification of your state machine. Before you start experi-
menting with it, you should understand the way it works.

4.9.2 How a State Machine Works
While it is usually easy to understand what a standard component does from its
graphical specification, the function of a state machine may, at first, be less obvi-
ous. This section explains the principles of state machines using the example from
the previous section. A detailed description of state machines and their function-
ality is given in the ASCET online help for the state machine editor.

Each state of a state machine has a name, an entry action, a static action and an
exit action. It has transitions to and from other states. Each transition has a prior-
ity, a trigger, an action and a condition. All actions are optional.

Each state machine needs a start state. When the state machine is first called up,
it is in the start state. It then checks the conditions in all the transitions pointing
away from it. In our example there is just one such transition with the condition
ETAS ASCET V6.4 | Getting Started

92 | Tutorial
t > t_up. This condition checks whether the input value exceeds the value of
the t_up parameter. If that is the case, the condition is true, and a transition takes
place.

The parameters t_up and t_down determine the temperature that the engine has
to reach, before the nominal rotational speed can be changed. In our example, if
the engine temperature rises above 70 degrees, the speed can be reduced to 600
revolutions per minute. If it then falls below 60 degrees, the nominal speed must be
reset to 900 revolutions per minute.

Whenever a transition takes place, the transition action specified for the transition
is executed. In this example the transition action n_nominal = n_warm, which is
executed when a transition from coldEngine to warmEngine takes place, sets
the variable n_nominal to 600. The transition action n_nominal = n_cold sets
it to 900 in the reverse case. When a transition occurs, the state machine also exe-
cutes the exit action of the state it leaves, and the entry action of the state it
enters. In our example, these are empty and nothing happens.

Once the state machine has entered the second state, it stays in that state until
the condition in the transition from the second to the first state is fulfilled. While
the state machine stays in one state, the static action is executed every time the
state machine is triggered. Triggering is always an outside event which starts one
pass through the state machine.

A pass through a state machine consists of first testing all the conditions on tran-
sitions leading away from the current state. Transitions and their conditions are
tested in order of their priorities. If a condition is true, the corresponding transition
is performed and the exit, transition and entry actions are executed. Once the first
condition checks out true, any other transitions leading from the same state but
having lower priorities are not tested. If no condition is true, the machine remains
in the current state and performs the static action once for each pass.

Once the condition in the second transition of our state machine is true, i.e. if the
input value falls below the threshold, the state machine returns to the first state.
The machine then remains in that state until the input value grows larger than the
threshold again.

4.9.3 Experimenting with the State Machine
The experimentation environment works the same for state machines as for other
types of components. One extra feature for experimenting with state machines is
their animation, i.e. the current state is highlighted in the state machine diagram
while the experiment is running.
ETAS ASCET V6.4 | Getting Started

93 | Tutorial
To experiment with the state machine

1. Open the experimentation environment.

2. Right-click one of the states and select Animate States from the context
menu.

3. Enable the trigger event.

4. In the data generator, create a channel for the variable t.

5. Assign a sine wave with frequency 1 Hz, offset 70, and amplitude 20 to the
channel.

6. Open an oscilloscope window for t and n_nominal.

7. Experiment with the state machine.

The value of n_nominal changes according to whether the sine-wave exceeds or
falls below the corresponding temperature threshold value. You can change the
threshold using the calibration system to observe the effect of different values on
the output. Also, in the state diagram the current state is highlighted.

4.9.4 Integrating the State Machine in the Controller
Like other components in ASCET, a state machine can be used as a building block
within another component of any type. You can now integrate the state machine
into your controller module to adjust the rotational speed to the engine tempera-
ture.

To integrate the state machine

1. Open IdleCon in a block diagram editor.

2. Remove the parameter n_nominal from the diagram and then from the
"Outline" tab.

You will replace the parameter with the state machine in the block diagram.

3. Add the state machine to the controller.

4. Create a receive message and name it t.
ETAS ASCET V6.4 | Getting Started

94 | Tutorial
5. Connect the output of the WarmUp component with the subtraction opera-
tor in place of the deleted parameter, and connect the input of WarmUp with
the receive message t.

6. Adjust the diagram as shown below. Be sure to adjust the sequencing in the
diagram to include all items in the correct order.

7. Save IdleCon.

In order to make the modified controller work with your project, you have to make
some adjustments to the project. At this point you will also integrate the tempera-
ture sensor, which has been left unused so far.

To modify the project

1. Open the project editor for the project ControllerTest.

2. Switch to the "OS" tab.

3. Assign the process t_sampling to the task Task10ms.

4. Use the command Task > Move Up to make the process t_sampling the
first process in that task.

To experiment with the modified project

1. Select Build > Experiment.

2. Set up the experiment as described on Page 82.

3. Open an additional scalar calibration window for the value U_t.

4. Add n_nominal and t to the oscilloscope and set up the channels accord-
ing to the following table.

5. Start the experiment.

Min. Max. Extent
n_nominal 0 2000 1.5 s
t -50 150 1.5 s
ETAS ASCET V6.4 | Getting Started

95 | Tutorial
6. Adjust the value U_t and observe its effect.

If the value of t exceeds the 70 degree limit (1, 3 and 5 in the figure below),
the state machine sets n_nominal to the lower value of 600. If the tem-
perature falls below 60 degrees (simulated by adjusting U_t; 2 and 4 in the
figure below), n_nominal regains the original value of 900.

4.9.5 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating a state diagram

- Creating and assigning conditions, actions and triggers

- Experimenting with state machines

- Integrating state machines into other components

4.10 Lesson 9: Hierarchical State Machines
Now that you have familiarized yourself with the way state machines work in the
preceding lesson, we shall look at creating a more complex system. This unit con-
centrates on hierarchical state machines. You will also learn how to use the system
libraries and components supplied with ASCET, such as timers.

ASCET permits structuring of state machines in closed and open hierarchies. With
closed hierarchies, the internal functionality is concealed, with open hierarchies
the substates are also shown graphically.

You will build a traffic light control system to run through the individual phases of a
traffic light using parameterizable timing. The traffic light will also have an error
status where it will flash.

(1) (2) (3) (4) (5)
ETAS ASCET V6.4 | Getting Started

96 | Tutorial
4.10.1 Specifying the State Machine
First you will import the libraries you need and prepare for the task.

To import the system library

1. In the Component Manager, click Import.

The "Select Import File" window opens.

2. In the "Import File" field, use the button to select the
ETAS_System_Library.*1) file from the Export directory of your ASCET
installation (e.g. C:\ETAS\ASCET6.4\export).

The OK button is now available.

3. Click OK to start the import.

The "Items available for import" window opens. All objects contained in the
file are selected.

4. Confirm the import of all files with OK.

The files are imported. This can take up to several minutes. When the import
procedure is finished, all imported items are listed in the "Imported Items"
window.

The second step is to specify the two main states possible for the traffic light
(NormalMode and ErrorMode).

To create the state machine

1. In the Component Manager, create the folder Tutorial\Lesson9.

2. Create a new state machine (cf. Page 87) and call it Light.

3. Open Light in the state machine editor.

You can start specifying the state machine that will control your traffic light.

4. Create the two states ErrorMode and NormalMode.

5. Add Timer from the Counter_Timer folder of the ETAS_SystemLib library
to the state machine.

To specify the state diagram

1. Specify the necessary data elements as follows:

• input error of type Logic
• outputs yellow, green, red of type Logic to symbolize traffic light col-

ors

1) * = exp (binary export format; can only be imported into a database) or axl (XML-
based export format)

DB WS
ETAS ASCET V6.4 | Getting Started

97 | Tutorial
• continuous parameters BlinkTime, YellowTime, GreenTime,
RedTime for the different traffic light phases

To get more practice with dependent parameters, you will configure the
parameters so that only the green phase is specified; the other parameters
are given values dependent on that:

RedTime = 2 * GreenTime
YellowTime = GreenTime/3
BlinkTime = YellowTime/10

2. Now specify calculations and dependencies of the individual parameters.

To do this, activate the Dependent option under "Dependency" in the prop-
erties editor for the parameters RedTime, YellowTime and BlinkTime.

The properties editor is started with a double-click the element name or via
the Edit context menu.

3. Click the Formula button to start the formula editor.

4. In the formula editor, specify the calculation for each of the dependent
parameters.

Redtime : 2*x
YellowTime : x/3
BlinkTime : x/10

5. Close the formula editor and the properties editor.

6. Open the dependency editor via the context menu Edit Data.

7. Assign the corresponding model parameter to the formal parameter x for
each of the dependent parameters.

RedTime : x = GreenTime
YellowTime : x = GreenTime
BlinkTime : x = YellowTime

8. Give the data elements meaningful values (e.g. GreenTime = 30).

9. Open the state editor for the ErrorMode state.

10. Define this state as the start state and color it red.

11. Enlarge both states so that the hierarchies can be inserted.
ETAS ASCET V6.4 | Getting Started

98 | Tutorial
12. Create and specify the transitions between the two states.

The normal state NormalMode is activated when the input error is false
(i.e. there has not been an error), and ErrorMode is activated when there is
an error.

13. Save the state machine.

14. You might like to experiment with the main states.

The next step towards creating the traffic light control system is to specify the
substates. First specify the performance in the error mode (state ErrorMode). In
this state, a yellow flashing light will be output. To do this, introduce two substates
YellowOff and YellowOn; with the timer as switch between them. In the
YellowOn state, the output yellow will be set to true, while the YellowOff
state sets it back to false.

To specify the substates for the error mode

1. Create the states YellowOff and YellowOn and place them inside the
state ErrorMode.

2. Define YellowOff as start state, and color YellowOn yellow.

3. Define the response of the state YellowOff in the state editor.

i. For the entry action, select ESDL in the combo box for the "Entry" tab and
enter the following code:

green = false;
red = false;
yellow = false;
Timer.start(BlinkTime);

ii. For the static action, enter the following code on the "Static" tab:

Timer.compute();
ETAS ASCET V6.4 | Getting Started

99 | Tutorial
4. Now define and describe the YellowOn state.

Entry action:

yellow = true;
Timer.start(BlinkTime);

Static action:

Timer.compute();
5. Now define the transitions between the two substates.

The condition for a state transition is that the timer has run out.

This means that the ErrorMode state is started in the YellowOff state. As well
as switching off the color signals, the entry action starts the timer with the param-
eterizable flashing time. The static action of the YellowOff state calls the timer
function compute() each time, which decrements the timer counter. When this
counter is 0, the timer function out() returns the code false, thus fulfilling the
transition condition !Timer.out(). The state YellowOn works in a similar way,
however, in the entry action, the Yellow color signal is switched on.

The next step is to specify the performance in normal operation. To do this, create
a start state, AllOff, and place it within the NormalMode state. Use the exit
action to set all the color signals to a defined state. Now think about a suitable
response for the traffic light control system.

In this example, you should describe the activation or deactivation of the individual
color signals in the transition actions, not in the entry actions of the states.

To specify the substates in normal operation

1. Create the states AllOff (start state), Yellow, Red, RedYellow, and
Green, and place them inside the NormalMode state.

2. Specify the response for the states by starting the appropriate timer for
each color (entry action) and initiating timer processing in the static action
(Timer.compute()).
ETAS ASCET V6.4 | Getting Started

100 | Tutorial
3. Define the state transitions and describe the response of the states within
the transition actions.

The transition from AllOff to Yellow should generally occur, all other
transitions should happen after the relevant timer has run out.

4. Enter the actions for each color signal in the "Action" tab of the transition
editor.

5. Close the transition editor and save the state machine.

That completes the specification of your traffic light control system. Before you
can experiment with it, you should enter meaningful values for the parameters in
the various color timers.

4.10.2 Experimenting with the Hierarchical State Machine
You can experiment with the hierarchical state machine in the same way as with
the basic state machine. Please do not forget to activate the animation in the
experiment.

Experimenting with the State Machine

1. Open the experimentation environment.

2. Right-click one of the states and select Animate States from the context
menu.

3. Enable the trigger event.

4. Start the experiment with the state machine.

5. Change the GreenTime parameter and thus the dependent parameters as
well.

6. Occasionally, set the error input to true.
ETAS ASCET V6.4 | Getting Started

101 | Tutorial
4.10.3 How Hierarchical State Machines Work
Hierarchical state machines work in the same way as normal state machines. In
principle, hierarchical state machines only represent a graphic structure of the
total set of responses. As an extra task, consider or demonstrate how the
response described could be achieved without a hierarchy.

The traffic light example is constructed with two hierarchical states. The system
switches between the two states ErrorMode and NormalMode using the logical
input variable error. The sub-responses are defined within these states.

To understand this, look at the processing in the ErrorMode hierarchy state. Each
time the trigger is called, the condition for the transition from the hierarchy state
ErrorMode to the hierarchy state NormalMode is checked (condition: !error). If
no transition is necessary, the transition from substate YellowOff to YellowOn
or vice versa is checked, and the necessary actions are performed.

If you now look at NormalMode, this means that, again, for each trigger call it is first
checked whether the input error is true, and therefore a transition to
ErrorMode is necessary. Only if this is not the case, the transitions from the sub-
states (AllOff, Yellow, Red, RedYellow, and Green) are checked. In the traffic
light example, it is checked whether the timer has run out.

You can have a look at the code generated from the state diagram to clarify this
process.

Displaying generated code

1. In the state machine editor, select Build > View Generated Code to display
the code generated.

The code from the components is written to a temporary file and then
opened with the default C code editor on your computer.

4.10.4 Summary
After completing this lesson you should be able to perform the following tasks in
ASCET:

- Creating hierarchical state diagrams

- Describing the way the states behave in actions and also in the transition
actions

- Importing modules, classes or components

- Importing system components from ASCET libraries

- Using the Timer system component

- Using dependent parameters

- Displaying generated code
ETAS ASCET V6.4 | Getting Started

102 | Support Function for Feedback to ETAS in Case of Errors
5 Support Function for Feedback to ETAS in Case of Errors
While developing ASCET, the functional safety of the program was of utmost
importance. Should an error occur nevertheless, please forward the following
information to ETAS:

- Which step were you about to perform with ASCET when the error occurred?

- What kind of error occurred (wrong function, system error or system crash)?

- Which model element or model was edited at the time of the error?

When you use the support function, ASCET compresses the entire contents of the
"log" directory (all *.log files) including a textual description into an archive file
named EtasLogFiles00.zip in the ...\ETAS\LogFiles\ subdirectory. For
additional archive files, the file name is incremented automatically (up to 19) to
avoid that older archive files are immediately overwritten.

This automatically created zip file contains the following:

- product-related log files created at installation time (necessary for uninstall
action)

- ETAS log files stored in the ETAS log files directory matching the file name
pattern *.log

- recursive registry export of ETAS (32bit)-key (and sub keys):
HKEY_CURRENT_USER\Software\ETAS

- registry export of ETAS (32bit)-key (and sub keys):
HKEY_LOCAL_MACHINE\Software\ETAS

If a critical system error occurs, the following window is displayed:

NOTE
To allow ASCET to be updated and developed further, it is important that you
report any errors which have occurred with an application to ETAS. You can use
the "Problem Report" method for this purpose.
ETAS ASCET V6.4 | Getting Started

103 | Support Function for Feedback to ETAS in Case of Errors
What to do in case of an error

1. Click the Problem Report button.

The support function is started.

2. Describe the error and forward the information – together with the model –
to ETAS.

Or

1. Click the Exit button.

ASCET is closed; all modifications that have not been saved will be lost.

2. Close any message boxes prompting you to save data without saving any
data.

3. Restart ASCET.

Or

1. Click the Continue button.

The application continues to run; the program jumps back to the location
where it was before the error occurred.

2. Save your data.

3. Exit ASCET.

4. Restart ASCET.

NOTE
It is generally advisable to close the program (without saving) and to restart it.
Thus, the risk of possible subsequent errors is omitted.

NOTE
When you continue using ASCET after a system error, subsequent errors
or incorrect configurations cannot be excluded.

Use the Continue button only if you have to save important configuration
data.
ETAS ASCET V6.4 | Getting Started

104 | Troubleshooting General Problems
6 Troubleshooting General Problems
This chapter gives some information of what you can do when problems arise that
are not specific to an individual software or hardware product.

6.1 Network Adapter Cannot be Selected via Network Manager

Cause: APIPA is Disabled
The alternative mechanism for IP addressing (APIPA) is usually enabled on all Win-
dows systems. Network security policies, however, may request the APIPA mech-
anism to be disabled. In this case, you cannot use a network adapter which is
configured for DHCP to access ETAS hardware. The ETAS Network Manager dis-
plays a warning message.

The APIPA mechanism can be enabled by editing the Windows registry. This is per-
mitted only to users who have administrator privileges. It should be done only in
coordination with your network administrator.

To enable the APIPA mechanism

1. Open the Registry Editor:

i. Press <WINDOWS LOGO> + <R>.
ii. Enter regedit and click OK.

2. Open the folder Computer\HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\Tcpic\Parameters\.

3. Select Edit > Find to search for the key IPAutoconfigurationEnabled.

If you cannot find any instances of the registry key mentioned, the APIPA
mechanism has not been disabled on your system, i.e. there is no need to
enable it. Otherwise, proceed with the following steps.

4. Set the value of the key IPAutoconfigurationEnabled to 1 to enable
the APIPA mechanism.

You may find several instances of this key in the Windows registry which
either apply to the TCP/IP service in general or to a specific network adapter.
You only need to change the value for the corresponding network adapter.

5. Close the registry editor.

6. Restart your workstation in order to make your changes take effect.

6.2 Search for Ethernet Hardware Fails
There is a number of different causes which might lead to connection problems,
most of them being based on inappropriate Windows or hardware settings. Usu-
ally, these can easily be modified, once they have been identified.

The following list of causes shall help you in finding the root cause of the problem
and fixing it.

Cause: Versions of Hardware and ETAS Software Not Compatible
If you are using ETAS hardware with ETAS MC software, you can use the ETAS HSP
Update Tool to check the firmware version of your hardware:
ETAS ASCET V6.4 | Getting Started

105 | Troubleshooting General Problems
- Make sure you use the ETAS HSP Update Tool with the latest HSP (Hardware
Service Pack) version.

- Also use the HSP Update Tool to check whether the hardware is compatible
with the MC1) software used.

- Make sure any additional drivers for that hardware are installed correctly.

You can get the required HSP from the ETAS internet pages at www.etas.com.

If you still cannot find the hardware using the HSP Update Tool, check whether the
hardware offers a Web interface and whether you can find using this interface.
Otherwise check whether one of the following causes and solutions might apply.

Cause: Personal Firewall Blocks Communication
Personal firewalls may interfere with access to ETAS Ethernet hardware. The auto-
matic search for hardware typically cannot find any Ethernet hardware at all,
although the configuration parameters are correct.

Certain actions in ETAS products may lead to some trouble if the firewall is not
properly parameterized, e.g. upon opening an experiment in ASCET or searching
for hardware from within INCA or HSP.

If a firewall is blocking communication to ETAS hardware, you must either disable
the firewall software while working with ETAS software, or the firewall must be con-
figured to give the following permissions:

Permissions given through the firewall block ETAS hardware:

- Outgoing limited IP broadcasts via UDP (destination address
255.255.255.255) for destination ports 17099 or 18001

- Incoming limited IP broadcasts via UDP (destination IP 255.255.255.255,
originating from source IP 0.0.0.0) for destination port 18001

- Directed IP broadcasts via UDP to the network configured for the ETAS appli-
cation, destination ports 17099 or 18001

- Outgoing IP unicasts via UDP to any IP in network configured for the ETAS
application, destination ports 17099 through 18020

- Incoming IP unicasts via UDP originating from any IP in the network config-
ured for the ETAS application, source ports 17099 through 18020,
destination ports 17099 through 18020

- Outgoing TCP/IP connections to the network configured for the ETAS appli-
cation, destination ports 18001 through 18020

1) measurement and calibration

NOTE
The ports that have to be used in concrete use cases depend on the hard-
ware used. For more precise information on the port numbers that can be
used please refer to your hardware documentation.
ETAS ASCET V6.4 | Getting Started

https://www.etas.com/

106 | Troubleshooting General Problems
Permissions given through the firewall block XCP on Ethernet:

- Outgoing IP multicasts for XCP Slave Detection via UDP to any IP in network,
destination IP 239.255.0.0, port 5556.

- Incoming IP multicasts for XCP Slave Detection via UDP from any IP in net-
work, destination IP 239.255.37.45, port 3745.

Contact your IT responsible to clarify whether the required permissions are, or can
be, given by the firewall.

Cause: Client Software for Remote Access Blocks Communication
PCs or notebooks which are used outside the ETAS hardware network sometimes
use a client software for remote access which might block communication to the
ETAS hardware. This can have the following causes:

- A firewall which is blocking Ethernet messages is being used (see “Cause:
Personal Firewall Blocks Communication” on page 105).

- By mistake, the VPN client software used for tunneling filters messages. As
an example, Cisco VPN clients with versions before V4.0.x in some cases
erroneously filtered certain UDP broadcasts.

If this might be the case, please update the software of your VPN client.

Cause: ETAS Hardware Hangs
Occasionally the ETAS hardware might hang. In this case switch the hardware off,
then switch it on again to reinitialize it.

Cause: ETAS Hardware Went Into Sleep Mode
In order to save power, some ETAS devices will go to sleep mode if they do not see
that they are connected to another device/computer.

To solve that, connect your Ethernet cable from your computer to the "HOST"/
"Sync In" port on the device. After the device turns on, connect to the device using
the web interface and change the settings so that the device stays always on.
Consult the device's manual for details on how to do that.

Cause: Network Adapter Temporarily Has No IP Address
Whenever you switch from a DHCP company LAN to the ETAS hardware network, it
takes at least 60 seconds until ETAS hardware can be found. This is caused by the
operating system’s switching from the DHCP protocol to APIPA, which is being
used by the ETAS hardware.

NOTICE
Unsecured computer system

Changes to your firewall configuration can make your system unsecured.

Always consult your IT responsible and/or check the IT security policies of your
company before changing your firewall configuration and reconnecting the com-
puter to the network.
ETAS ASCET V6.4 | Getting Started

107 | Troubleshooting General Problems
Cause: ETAS Hardware Connected to Another Logical Network
If you use more than one PC or notebook for accessing the same ETAS hardware,
the network adapters used must be configured to use the same logical network. If
this is not possible, it is necessary to switch the ETAS hardware off and on again
between different sessions (repowering).

Cause: Device Driver for Network Card Not in Operation
It is possible that the device driver of a network card is not running. In this case you
will have to deactivate and then reactivate the network card.

To deactivate and reactivate the network card

1. To deactivate the network card, open the Control Panel.

2. Go to the "Network and Sharing Center", then click the "Change adapter
settings" link.

3. In the "Network Connections" window, right-click the used network adapter
and select Disable in the context menu.

4. In order to reactivate the network adapter right-click it again and select
Enable.

Cause: Laptop Power Management Deactivates Network Card
The power management of a laptop computer can deactivate the network card.
Therefore you should turn off power monitoring on the laptop.

To switch off power monitoring on the laptop

1. Press <WINDOWS LOGO> + <X> to open the power user menu, then select
Device Manager from that menu.

2. In the Device Manager open the tree structure of the entry Network
Adapters.

3. Right-click the used network adapter and select Properties in the context
menu.

4. Select the Power Management tab and deactivate the Allow the computer
to turn off this device to save power option.

5. Select the Advanced tab. If the property Autosense is included, deactivate
it also.

6. Click OK to apply the settings.

Cause: Automatic Disruption of Network Connection
It is possible after a certain period of time without data traffic that the network
card automatically interrupts the Ethernet connection. This can be prevented by
setting the registry key autodisconnect.

To set the registry key autodisconnect

1. Open the Registry Editor.

2. Go to HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\
Services\lanmanserver\parameters, select the Registry Key
autodisconnect and change its value to 0xffffffff.
ETAS ASCET V6.4 | Getting Started

109 | Tool Classification for ISO26262
7 Tool Classification for ISO26262
The ISO26262 standard for safety-critical software in automotive systems
(ISO26262:2011) requires software development tools to be analyzed to deter-
mine what tool qualification measures are required.

Analysis is an assessment of likelihood that a tool introduces errors into the sys-
tem under development and that those errors go unchecked. It follows that analy-
sis is valid only in the context in which the tool operates, i.e. it can only be assessed
in the context of your development process.

This appendix provides some guidance on how to satisfy the requirements on
tools arising from ISO26262. References have the form <Part>§<Section>, for
example 8§11 means Part 8, Section 11 of the standard.

The key requirements are described in 8§11.4.4, in particular 8§11.4.4.1 regarding
planning of qualification and 8§11.4.4.2 regarding the availability of information.
Note that some of these requirements have both a user and a supplier obligation.
For example, users shall determine the environment in which the tool is used
(8§11.4.4.1c), and the supplier shall describe the environment for operation
(8§11.4.4.2c).

The following table outlines the input requirements for tool classification accord-
ing to ISO26262 for which information about ASCET is required and explains where
to find supporting evidence.
ETAS ASCET V6.4 | Getting Started

110 | Tool C
lassification for ISO

26262

ETAS ASC
ET V6.4

|G
etting Started

.minor version number, for example ASCET V6.4.
rsion number that indicates the refresh number.

 the initial release of ASCET V6.4 is version V6.4.0.
e refresh number.

g Help > About.

 core product are installed is available by selecting
e browser. This displays version information in the

installed is accessed through Help > Loaded

enerated in the root of the installation directory.
f all files installed and a calculated checksum of the

e or database
.a2l, *.template and *.xml files in the target

ur development process. However, you should read
c scope of application of ASCET.
ess.

loped.

s.
Requirement
synopsis

ISO26262
Reference

ASCET Evidence

Unique identification
number

8§11.4.4.1.a Versions of ASCET are referred to by their major
Version strings in ASCET include a sub-minor ve
The initial release is assigned zero, for example
Each refresh of an ASCET version increments th

Basic version information is available by selectin

Additional information about which parts of the
Help > Loaded Packages in the ASCET databas
Monitor window.

Information about which ASCET-SE targets are
Targets.

When ASCET is installed, a file called inst.ref is g
This file contains the fully qualified path names o
installed files.

Configuration of soft-
ware tool

8§11.4.4.1.b The configuration of ASCET is defined by:

- The ASCET model itself, either as a workspac
- Configuration held in the *.mk and *.ini, *

directory
Use cases 8§11.4.4.1.c N/A. This is a property of your use of ASCET in yo

chapter 2 and chapter 3 to understand the basi
Execution environment 8§11.4.4.1.d N/A. This is a property of your development proc
Maximum ASIL that may
be violated

8§11.4.4.1.e N/A. This is a property of the system being deve

Methods for qualifica-
tion

8§11.4.4.1.f N/A. This is the output from the analysis proces

111 | Tool C
lassification for ISO

26262

ETAS ASC
ET V6.4

|G
etting Started

 in chapter 2 of this document.

 the online help and the other user documentation.
each version of ASCET and for each ASCET add-on.
ETASManuals\ASCET Vx.y.

cting Help > Contents...
the ASCET Release Notes for each product and add-
ir>\..\ETASManuals\ASCET Vx.y
cally or semantically incorrect model, incompatible
de generation/build time and reported to in the

 an unsupported OS.
ented in the ASCET Release Notes.

 with workarounds where appropriate, are informed
le from www.etas.com/kir.

re patched with "Hot Fixes". Users are informed of
 for download from the ETAS download center at
.php.
on to aspects of the model that do not prevent code
ay not reflect the intention of design.

by promoting warnings to errors, thereby stopping
arning occurs.

n effort to minimize code generation errors. How-
rocess in which ASCET is used includes sufficient

s unchecked. A development process complying
8§9 should be sufficient.
Description of product
features

8§11.4.4.2.a An overview of the product features is provided

Individual features themselves are described in
Provision of user man-
ual

8§11.4.4.2.b User manuals and online help are supplied with
Manuals can be found in <install dir>\..\
Online help is accessed by pressing <F1> or sele

Valid operating environ-
ment

8§11.4.4.2.c The valid operating environment is described in
on. Release notes can be found in <install d

Behavior under anoma-
lous operating condi-
tions

8§11.4.4.2.d Errors in the ASCET configuration (e.g. syntacti
options etc.) are checked by the tool itself at co
"Messages" tab of the Monitor window.

ASCET cannot be installed on a host PC running
Known issues and
workarounds

8§11.4.4.2.e Known issues at the point of release are docum

Known issues identified after release, together
of new KIRs by email. All KIRs are publicly availab

Critical issues identified in a released product a
new hot fixes by email. All hotfixes are available
www.etas.com/en/products/download_center

Detection of erroneous
output

8§11.4.4.2.f ASCET generates warnings to draw your attenti
generation from completing successfully, but m

An additional degree of safety can be achieved
ASCET from generating code if any promoted w

ASCET is tested extensively before release in a
ever, it is recommended that the development p
measures to ensure that no potential error goe
with the verification requirements in ISO26262

Requirement
synopsis

ISO26262
Reference

ASCET Evidence

https://www.etas.com/kir
https://www.etas.com/en/products/download_center.php

112 | Contact Information

ETAS ASCET V6.4 | Getting Started

8 Contact Information

Technical Support

ETAS Headquarters
ETAS GmbH

For details of your local sales office as well as your local
technical support team and product hotlines, take a look at
the ETAS website:

www.etas.com/en/hotlines.php

ETAS offers trainings for its products:

www.etas.com/academy

Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

https://www.etas.com/en/hotlines.php
https://www.etas.com/academy
https://www.etas.com

113 |
Glossary
In this glossary the technical terms and abbreviations used in the ASCET docu-
mentation are explained. Many terms are also used in a more general sense, but
only the meaning specific to ASCET is explained here.

The terms are listed in alphabetic order.

Abbreviations

ASAM-MCD

Association for Standardisation of Automation- and Measuring Systems, with
the working groups Measuring, Calibration, Diagnosis
(German: Arbeitskreis zur Standardisierung von Automations- und Messsyste-
men, mit den Arbeitsgruppen Messen, Calibrieren und Diagnose)

ASCET

Development tool for control unit software

ASCET-MD

ASCET Modeling and Design

ASCET-RP

ASCET Rapid Prototyping

ASCET-SE

ASCET Software Engineering

AUTOSAR

Automotive Open System Architecture; see www.autosar.org

BD

Block Diagram

BDE

Block Diagram Editor

CPU

Central Processing Unit

ECU

Embedded Control Unit

ESDL

Embedded Software Description Language; a textual modeling language

ETK

emulator test probe (German: Emulatortastkopf)
ETAS ASCET V6.4 | Getting Started

https://www.autosar.org/

114 |
FPU

Floating Point Unit

HTML

Hypertext Markup Language

INCA

Integrated Calibration and Acquisition Systems

INTECRIO

An ETAS product family. INTECRIO integrates code from various behavioral
modeling tools, facilitates all necessary configurations, allows the generation
of executable code, and provides an experiment environment for the execution
of the Rapid Prototyping experiment.

NV

non-volatile

NVRAM

non-volatile RAM

OS

Operating system

OSEK

Working group "open systems for electronics in automobiles"
(German: Arbeitskreis Offene Systeme für die Elektronik im Kraftfahrzeug)

RAM

Random Access Memory

RE

Runnable entity; a a piece of code in an SWC that is triggered by the RTE at run-
time. It corresponds largely to the processes known in ASCET.

ROM

Read-Only Memory

RTA-RTE

AUTOSAR runtime environment by ETAS

RTE

AUTOSAR runtime environment; provides the interface between software
components, basic software, and operating systems.

SCM

source-code management
ETAS ASCET V6.4 | Getting Started

115 |
SM

state machine

SWC

Atomic AUTOSAR software component; the smallest non-dividable software
unit in AUTOSAR.

UML

Unified Modeling Language

XML

Extensible Markup Language

Terms

Action

An action is part of a state machine and associated with states or transitions of
the state machine. An action is a piece of functionality, whose execution is trig-
gered by the state machine.

Application mode

An application mode is part of the operating system of ASCET. An operating
mode describes different conditions a system can be in, e.g. EEPROM-program-
ming mode, warm-up, or normal mode.

Argument

An argument is the input to a method of a class. Arguments can only be used in
the specification of the method they belong to, and not in other methods of the
class.

Arithmetic services

User-defined C functions to optimize elementary operations, such as addition
operations, and to extend such operations with special properties, such as
value limits.

Array

An array is a one dimensional static list of elements of the basic scalar type
continuous or discrete, indexed by the basic scalar type discrete.

ASAM-MCD-2MC file

Default exchange format used for projects in ASCII format for the description of
measurement and calibration values. The files have the extension *.a2l.

Basic model types

Basic model types are used to model physical behavior. There are three types:
continuous, discrete and logical. A number of operations, such as addi-
tion or comparison, are defined for the basic model types. The implementation
is used to transform the model types to implementation types.
ETAS ASCET V6.4 | Getting Started

116 |
Block diagram

A block diagram is a graphical description for a component in which the various
elements, operators and inputs/arguments and outputs/return values are con-
nected by directed lines. A block diagram consists of one or more diagrams. The
description in terms of block diagrams is a physical description, in contrast to
the description with C code.

Bypass experiment

In a bypass experiment, ASCET is directly connected to a microcontroller, and
parts of the microcontroller software are simulated by ASCET.

Calibration

Calibration is the manipulation of the values (physical / implementation) of ele-
ments during the execution of an ASCET model (experiment).

Calibration window

ASCET working window which can be used to modify parameters.

Characteristic

General term used for characteristic map, curve and value (see also "Parame-
ter" .

Characteristic line

Two-dimensional parameter.

Characteristic map

Three-dimensional parameter.

Characteristic value

One-dimensional parameter (constant).

Class

A class is one of the component types in ASCET. Classes in ASCET are like
object-oriented classes. The functionality of a class is described by methods.

Code

The executable code is the "actual" program with the exception of the data
(contains the actual algorithms). The code is the program part which can be
executed by the CPU.

Code generation

Code generation is the first step in the transformation of a physical model to
executable code. The physical model is transformed into ANSI C-Code. Since
the C code is compiler- (and therefore target-) dependent, different code for
each target is produced.
ETAS ASCET V6.4 | Getting Started

117 |
Component

A component is the basic unit of reusable functionality in ASCET. Components
can be specified as classes, modules, or state machines. Each component is
built up of elements which are combined with operators to build up the func-
tionality.

Component Manager

Working environment in which the user can set up ASCET and manage the data
he created and which are stored in the database or workspace.

Condition

A condition is used to describe the control flow in a state machine. It returns a
logical value which determines, whether a transition from one state to another
takes place.

Constant

A constant is an element that cannot be changed during execution of an ASCET
model.

Container

Containers serve as containers for projects, classes and modules. Their pur-
pose is to structure models and databases/workspaces and place different
database/workspace items under a common version control.

Data generator

The data generator is part of the experimentation environment. It is used to
stimulate the inputs or variables in the model under experimentation.

Data logger

With the data logger measurement data can be read from an experiment and
stored to disk for further analysis.

Data set

A data set contains/references the initial data for all elements of a component
or project.

Database

A way to store all information specified or produced with ASCET. In ASCET, a
database is structured into folders. On the Windows file system, a database is
stored in a binary format.

Description file

Contains the physical description of the characteristics and measured values
in the control unit (names, addresses, conversion formulas, functional assign-
ments, etc.).

Diagram

A diagram is used for the graphical specification of components as block dia-
grams or state machines.
ETAS ASCET V6.4 | Getting Started

118 |
Dimension

The dimension is used to describe the ‘size’ of basic elements. The dimension
can either be scalar (zero dimensional), array (one dimensional) or characteris-
tic line/table.

Distribution

A distribution contains the sample points for one or more group characteristic
lines/maps.

Editor

See Calibration window.

Element

An element is a part of a component which reads or writes data, for instance a
variable, parameter or other component used within a component.

Event

An event is an (external) trigger that starts an action of the operating system,
e.g., a task.

Event generator

The event generator is part of the experimentation environment. It is used to
describe the order and the timing in which events are generated for the activa-
tion of tasks (methods/processes/time frames) in the case of an offline exper-
iment.

Experiment

An experiment defines the settings in the experiment environment that are
used to test the proper functioning of components or projects. It contains
information about the size, position and content of the measurement and cali-
bration windows, as well as the settings of the event generator, data generator
and the data logger. An experiment can be executed either offline (non real-
time) or online (real-time) and can be used to control a technical process in a
bypass or fullpass application. In all cases, instrumented code generated from
an ASCET specification is used for experiment execution.

Experiment environment

Main working environment in which the user performs his experiments.

Fixed-point code

From the physical specification, fixed-point code can be generated which can
be executed on processors without a floating point unit.

Folder

A folder is a management unit for structuring an ASCET database or workspace.
A folder contains items of any kind.

Formula

A formula is part of an implementation describing the transformation from the
model types to the implementation (data) types.
ETAS ASCET V6.4 | Getting Started

119 |
Fullpass experiment

In a fullpass experiment, ASCET is directly connected with an experimental
microcontroller, and the entire application is simulated by ASCET.

Group characteristic line/map

Group characteristic lines/maps are characteristic lines/maps that share the
same distribution of axis points but have different return values. The distribu-
tion of axis points and the individual group tables are specified as separate ele-
ments.

HEX file

Exchange format of a program version as Intel Hex or Motorola S Record file.

Hierarchy

A hierarchy block is used to structure the graphical specification of a block dia-
gram.

Icon

Icons can be used to illustrate the function of ASCET components.

Implementation

An implementation describes the transformation of the physical specification
(model) to executable fixed point code. An implementation consists of a (lin-
ear) transformation formula and a bounding interval for the model values.

Implementation cast

Element that provides the users the possibility to control the implementations
of intermediate results in arithmetic chains without changing the physical rep-
resentation of the elements in question.

Implementation data types

Implementation data types are the data types of the underlying C programming
language, e.g., unsigned byte (uint8), signed word (sint16), float.

Implementation types

Implementation templates. Implementation types contain the main specifica-
tions of an implementation; they are defined in the project editor and can be
assigned to individual elements in the implementation editors.

Intel hex

Exchange format used for program versions.

Interface

An interface of a component describes how the component exchanges data
with other components. It can be compared to the .h file in C.
ETAS ASCET V6.4 | Getting Started

120 |
Kind

There are three kinds of elements: variables, parameters, and constants. Vari-
ables can be read and written. Parameters can only be read but can calibrated
during experimentation. Constants can only be read and not written to during
experiments.

L1

The message format for exchanging data between the host and the target,
where the experiment is run. Data is transferred, e.g. for displaying values in
measure windows.

Layout

A component has a graphical representation that shows pins for the inputs/
arguments, outputs/return values and time frames/methods/processes. Addi-
tionally, the layout contains an icon that graphically represents the component
when used within other components.

Literal

A literal is used in the description of components. A literal contains a string that
is interpreted as a value, e.g. as a continuous or logical value.

Measuring

Recording of data which is either displayed or stored, or both displayed and
stored.

Measure window

ASCET working window which displays measured signals during a measure-
ment.

Measured signal

A variable to be measured.

Measurement

A measurement is the representation of values (physical / implementation) of
variables/parameter during an experiment. The values can be displayed with
various different measurement windows like oscilloscopes, numeric displays,
etc.

Measuring channel parameters

Parameters which can be set for the individual channels of a measuring module.

Message

A message is a real-time language construct of ASCET for protected data
exchange between concurrent processes.

Method

A method is part of the description of the functionality of a class in terms of
object oriented programming. A method can have one or more arguments and
no or one return value.
ETAS ASCET V6.4 | Getting Started

121 |
Model type

Each element of an ASCET component specification is either a component of
its own or is of a model type In contrast to implementation types, model types
represent physical values.

Module

A module is one of the component types in ASCET. It describes a number of pro-
cesses that can be activated by the operating system. A module cannot be
used as a subcomponent within other components.

Monitor

With a monitor the data value of an element can be displayed in a diagram
during an experiment.

Motorola-S-Record

Exchange format used for program versions.

Offline experiment

During offline experimentation the code generated by ASCET can be run on the
PC or an experimental target, but it does not run in real-time. Offline experimen-
tation focuses on testing the functional specification of a system.

Online experiment

In the online experiment the projects are executed in real-time with the behav-
ior defined in the real-time operating system. The code always runs on an
experimental target in real-time. The online experiment focuses on the operat-
ing system schedule and the corresponding real-time behavior of the control
system.

Operating system

The operating system is used to schedule the execution/activation of an
ASCET software system. The operating system also provides services for com-
munication (messages) and access to reserved parts of the hardware
(resources).

OSEK operating system

Operating system conforming to OSEK.

Parameter

A parameter (characteristic value, curve and map) is an element whose value
cannot be changed by the calculations executed in an ASCET model. It can,
however, be calibrated during an experiment.

Priority

Every task has a priority in the form of a number. The higher the number, the
higher the priority. The priority determines the order in which tasks are sched-
uled.
ETAS ASCET V6.4 | Getting Started

122 |
Process

A process is a concurrently executable piece of functionality that is activated
by the operating system. Processes are specified in modules and do not have
any arguments/inputs or return values/outputs.

Program

A program consists of code and data and is executed as a unit by the CPU of the
control unit.

Project

A project describes an entire embedded software system. It contains compo-
nents which define the functionality, an operating system specification, and a
binding mechanism which defines the communication.

Resource

A resource is used to model parts of an embedded system that can be used
only mutually exclusively, e.g. timers. When such a part is accessed, it has to be
reserved and then released again, which is done using resources.

Runnable entity

see RE

Runtime environment

see RTE

Scheduling

Scheduling is the assigning of processes to tasks and the definition of task
activation by the operating system.

Scope

An element has one of two scopes: local (only visible inside a component) or
global (defined inside a project).

State

A state is a part of a state machine. A state machine is always in a one of its
states. One of the states is marked as the start state which is the initial state of
the state machine. Each state is connected to other states by arcs. A state has
an entry action (that is executed upon entry of a state), an static action (that is
executed the state remains unchanged) and an exit action (that is executed
upon exit of the state).

State machine

A state machine is one of the component types in ASCET. The behavior is
described with a state graph consisting of states connected by transitions.

Target

A target is the hardware an experiment runs on. A target can either be an exper-
imental target (PC, Transputer, PowerPC) or a microcontroller target.
ETAS ASCET V6.4 | Getting Started

123 |
Task

A task is an ordered collection of processes that can be activated by the oper-
ating system. Attributes of a task are its operating modes, its activation trigger,
its priority, the mode of scheduling. On activation the processes of the task are
executed in the given order.

Trigger

A trigger activates the execution of a task (in the scope of the operating sys-
tem) or of a state machine.

Transition

A transition is a connection between states. Transitions describe possible
state changes. Each transition is assigned to a trigger of the state machine,
has a priority, a condition, and an action.

Type

Variables and parameters are of type cont (continuous), udisc (unsigned dis-
crete), sdisc (signed discrete) or log (logic). Cont is used for physical quan-
tities that can assume any value; udisc for positive integer values, sdisc for
negative integer values, and log is used for Boolean values (true or false).

Variable

A variable is an element that can be read and written during the execution of an
ASCET model. The value of a variable can also be changed with the calibration
system.

Also: General term used for parameters (characteristics) and measured sig-
nals.

Workspace

A way to store all information specified or produced with ASCET. In ASCET, a
workspace is structured into folders. On the Windows file system, a workspace
is stored in form of several XML files.
ETAS ASCET V6.4 | Getting Started

124 | Figures
Figures

Fig. 3-1 Model-Based Development of a Software Function .16

Fig. 3-2 typical rapid prototyping system .21

Fig. 3-3 Unscaled Mapping (a), Arbitrary Mapping (b), 27 Scaling (c), 28 Scaling with
Offset (d) . 24

Fig. 3-4 Advanced Software Production Environment . 29

Fig. 3-5 ASCET-SCM interface without (a) and with (b) ASCET-DIFF . 30

Fig. 4-1 ASCET Component Manager (A: with empty database, B: with empty
workspace) . 34

Fig. 4-2 ASCET block diagram editor (Specification view) . 36

Fig. 4-3 ASCET ESDL editor (Specification view) .41

Fig. 4-4 ASCET offline experimentation environment . 44

Fig. 4-5 ASCET project editor (Specification view) .61

Fig. 4-7 ASCET ESDL editor for CT blocks (Specification view) . 75

Fig. 4-8 Closed-loop experiment . 78

Fig. 4-9 ASCET online experimentation environment . 85

Fig. 4-10 ASCET state machine editor (Specification view) . 87
ETAS ASCET V6.4 | Getting Started

125 | Index
Index
A
application mode . 115
arithmetic

fixed-point . 24
ASAM-MCD-2MC file . 115
ASCET

in production environment 29

B
block diagram . 35

C
C code

class . 25
module . 25

class . 18, 116
C code . 25
tutorial . 49

closed-loop simulation 20
component . 117
Component Manager 117
condition . 117
constant . 117
contact information . 112
container . 117
continuous time blocks 20

tutorial . 73
control algorithm

classes . 18
classes in modules19
continuous time blocks 20
development . 17
ECU integration . 22
Implementation . 22
modules . 18
parameters .19
projects . 20
rapid prototyping 20
reuse . 26
software realization 17

conversion
floating-point to fixed-point 23

D
data generator . 117
data logger . 117
data set . 117
database . 117, 123
description file . 117
diagram . 117
distribution . 118

E
error

continue . 103
exit . 103

problem report . 103
support function "Problem Report" . 102
System Error window 102
what to do in case of ~ 103

ETAS contact information 112
ETAS Safety Advice . 8
event generator . 118
experiment . 118

implementation . 27
object-based controller

implementation 27
object-based controller physical 27
physical . 27
quantized . 27

experiment environment 118
experimenting . 43

F
features .12
fixed point code . 118
fixed-point arithmetic 24
floating-point to fixed-point

conversion . 23
folder . 118
formula . 118
fullpass experiment .119

G
general operation

monitor window .13
supporting functions13

glossary . 113–123

I
implementation .119
implementation experiment 27
interface .119

K
kind . 120

L
layout . 120

M
measure . 120
measurement . 120
measuring channel parameters 120
model type . 121
model-based design 16–28

control algorithm development 17
module . 18, 121

C code . 25
tutorial . 58

monitor . 121
ETAS ASCET V6.4 | Getting Started

126 | Index
O
object-based controller implementation

experiment . 27
object-based controller physical

experiment . 27

P
parameter . 19, 121
physical experiment . 27
priority . 121
Problem Report . 102
process . 122
process model . 78
Product liability disclaimer8
production environment 29
program . 122
program description 122
project .20, 22, 122

for embedded microcontrollers 26
reuse control algorithm 26
tutorial .61

Q
quantized experiment 27

R
rapid prototyping . 20

hardware configuration component . 22
projects . 22

resource . 122

S
Safety

intended use . 6
Safety information . 7
scheduling . 122
scope . 122
state . 122
state machine 86, 91, 122

hierarchical . 95
support function "Problem Report" 102

T
target . 122
task . 123
technical system architecture

test in lab . 28
test in vehicle . 28

tool classification for ISO26262 109–111
transition . 123
troubleshooting 104–108

network adapter cannot be
selected 104

search for Ethernet HW fails 104
tutorial . 32–101

continuous time system 73
controller . 57
CT block . 73, 78

experimenting . 43
extend project . 64
hierarchical state machines 95
module . 58
process model . 78
project .61
reusable component 49
simple block diagram 35
state machines . 86

type . 123

V
variables . 123
ETAS ASCET V6.4 | Getting Started

	ETAS ASCET V6.4
	Getting Started
	Contents
	1 Introduction
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Safety Information
	1.5 Data Protection
	1.6 Data and Information Security
	1.6.1 Data and Storage Locations
	1.6.2 Technical and Organizational Measures

	2 About ASCET
	2.1 Features at a Glance
	2.1.1 ASCET-MD
	2.1.2 ASCET-RP
	2.1.3 ASCET-SE
	2.1.4 ASCET-SCM
	2.1.5 ASCET-DIFF

	2.2 Supporting Functions
	2.2.1 Monitor Window
	2.2.2 Keyboard Assignment

	2.3 Finding Out More

	3 Embedded Automotive Control Software Development with ASCET
	3.1 Model-Based Design
	3.1.1 Control Algorithm Development
	3.1.1.1 Software Realization of Control Algorithms
	3.1.1.2 Modules
	3.1.1.3 Classes
	3.1.1.4 Parameters
	3.1.1.5 Employing Classes in Modules
	3.1.1.6 Continuous Time Blocks for Plant Modeling
	3.1.1.7 Projects for Closed-Loop Simulations

	3.1.2 Rapid Prototyping
	3.1.2.1 Hardware Configuration Component
	3.1.2.2 Projects for Rapid Prototyping

	3.1.3 Implementation and ECU Integration of Control Algorithms
	3.1.3.1 Floating-Point to Fixed-Point Conversion
	3.1.3.2 Arithmetic with Fixed-Point Values
	3.1.3.3 C Code Classes and Modules
	3.1.3.4 Projects for Embedded Microcontrollers

	3.1.4 Reuse of Control Algorithm in Different Kinds of Projects
	3.1.5 Testing Technical System Architecture in the Lab
	3.1.6 Testing and Honing of Technical System Architecture in the Vehicle

	3.2 Using ASCET in a Production Environment
	3.3 Summary

	4 Tutorial
	4.1 Preparations
	4.1.1 Tutorial Database or Workspace
	4.1.2 Summary

	4.2 Lesson 1: A Simple Block Diagram
	4.2.1 Preparatory Steps
	4.2.2 Specifying a Class
	4.2.3 Summary

	4.3 Lesson 2: Experimenting with Components
	4.3.1 Starting the Experimentation Environment
	4.3.2 Setting up the Experimentation Environment
	4.3.3 Using the Experimentation Environment
	4.3.4 Summary

	4.4 Lesson 3: To Specify a Reusable Component
	4.4.1 Creating the Diagram
	4.4.2 Experimenting with the Integrator
	4.4.3 Summary

	4.5 Lesson 4: A Practical Example – Controller
	4.5.1 Specifying the Controller
	4.5.2 Experimenting with the Controller
	4.5.3 Project
	4.5.4 Setting Up the Project
	4.5.5 Experimenting with the Project
	4.5.6 Summary

	4.6 Lesson 5: Extending the Project
	4.6.1 Specifying the Signal Converter
	4.6.2 If...Then...Else in the Signal Converter
	4.6.3 Experimenting with the Signal Converter
	4.6.4 Integrating the Signal Converter into the Project
	4.6.5 Summary

	4.7 Lesson 6: Modeling a Continuous Time System
	4.7.1 Motion Equation
	4.7.2 Model Design
	4.7.3 Summary

	4.8 Lesson 7: Process Model
	4.8.1 Specifying the Process Model
	4.8.2 Integrating the Process Model
	4.8.3 Online Experiment with the Process Model
	4.8.4 Summary

	4.9 Lesson 8: State Machines
	4.9.1 Specifying the State Machine
	4.9.2 How a State Machine Works
	4.9.3 Experimenting with the State Machine
	4.9.4 Integrating the State Machine in the Controller
	4.9.5 Summary

	4.10 Lesson 9: Hierarchical State Machines
	4.10.1 Specifying the State Machine
	4.10.2 Experimenting with the Hierarchical State Machine
	4.10.3 How Hierarchical State Machines Work
	4.10.4 Summary

	5 Support Function for Feedback to ETAS in Case of Errors
	6 Troubleshooting General Problems
	6.1 Network Adapter Cannot be Selected via Network Manager
	6.2 Search for Ethernet Hardware Fails

	7 Tool Classification for ISO26262
	8 Contact Information
	Glossary
	Figures
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.16667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

