

ETAS ASCMO-MOCA V5.13

www.etas.com

Copyright

The data in this document may not be altered or amended without special notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this document. The software described in it can only be used if the customer is in possession of a general license agreement or single license. Using and copying is only allowed in concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmitted, stored in a retrieval system or translated into another language without the express written permission of ETAS GmbH.

© Copyright 2024 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging to the respective owners.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.

ASCMO-MOCA V5.13 | User Guide R01 EN | 04.2024

Contents

1	Introduction					
1.1	Demand	ds on Technical State of the Product	6			
1.2	Intendeo	d Use	6			
1.3	Target G	Group	6			
1.4	Classific	cation of Safety Messages	6			
1.5	Safety Information					
1.6	Data Pro	otection	8			
1.7	Data and	d Information Security	8			
	1.7.1	Data and Storage Locations 1.7.1.1 License Management				
	1.7.2	Technical and Organizational Measures	8			
2	About As	ASCMO-MOCA	9			
2.1	Findina	Out More				
7	Inotallati	tion	10			
J Z 1						
3.1	7 1 1	LISER Privileges	10			
	3.1.2	Additional Software Requirements				
3.2	Installing	a	10			
	3.2.1	Start Menu				
	3.2.2	Files and Directories	14			
	3.2.3	P-Code Version	14			
3.3	Licensin	ng	15			
3.4	Uninstal	Iling	16			
4	Basics o	DFASCMO-MOCA	17			
4.1	Fields of	f Application of ASCMO-MOCA				
	4.1.1	Calibration of ECU Sensor Data	18			
	4.1.2	Research, Function and System Development				
	4.1.3	Fields of Application of ASCMO-MOCA Runtime	18			
4.2	Data		19			
	4.2.1	Assessment of the Input Data				
		4.2.1.1 Tabular Representation of All Model-Related Data	19			
		4.2.1.2 Checking the Relevance of the Inputs				
		4.2.1.3 Function Assessment and Improvement	20			
	4.2.2	Variables RMSE and R2	24			

		4.2.2.1	RMSE (Root Mean Squared Error)	24			
		4.2.2.2	Coefficient of Determination R2				
	4.2.3	Function	Evaluation Using RMSE and R2				
4.3	Parameters						
	4.3.1	Example					
	4.3.2	Available	Types of Parameters				
	4.3.3	System C	Constants				
	4.3.4	Paramete	ersets				
4.4	Visualiz	zation					
4.5	Models						
	4.5.1	Steady S	tate				
4.6	Functio	on					
	4.6.1	Mathema	atical Operators for Function Nodes				
	4.6.2	Feedbacl	k Loop				
4.7	Optimiz	zation					
	4.7.1	Descripti	ion of the Optimization Method				
	4.7.2	Optimiza	tion Algorithms	47			
	4.7.3	Optimize	er Options	50			
	4.7.4	Consider	ration of the Roughness				
	4.7.5	Optimiza	tion Criterion				
	4.7.6	Optimiza	tion Without Sequence	60			
	4.7.7	Optimiza	tion With a Sequence	60			
	4.7.8	Paramete	er Correlation	61			
	4.7.9	Paramete	er Sensitivity	62			
4.8	Symbo	lic Regressi	on				
	4.8.1	Symbolic	Regression Workflow				
	4.8.2	Algorithm	nic Details of Symbolic Regression				
5	Workin	g with ASC	МО-МОСА				
5.1	User In	terface of A	ASCMO-MOCA				
5.2	Elemer	nts of the AS	SCMO-MOCA User Interface	73			
	5.2.1	Main Mer	nu of ASCMO-MOCA	73			
	5.2.2	Toolbar .		73			
	5.2.3	Navigatio	on Pane of ASCMO-MOCA	75			
	5.2.4	Log Winc	dow				
6	Tutoria	al: Working v	with ASCMO-MOCA				
6.1	About	this Tutorial	l				
	6.1.1	Challeng	e in this Tutorial				
		0					

	6.1.2 Structure of the Tutorial					
	6.1.3	Requireme	ents on Measurement Data			
	6.1.4	Data for N	lodeling			
6.2	Start AS	CMO-MOC	Α			
6.3	Step 1: D	ata Import				
	6.3.1	Checking	the Plausibility of the Measurement Data			
	6.3.2	Saving an	d Loading a Configuration			
	6.3.3					
	6.3.4	Mapping N	Neasurement Channels to Variables			
	6.3.5	Working ir	h the Data Step of ASCMO-MOCA			
		6.3.5.1	Data Point Weights			
		6.3.5.2	Managing Data in a Dataset			
6.4	Step 2: D	ata Analys	is			
6.5	Step 3: P					
6.6	Step 4: N					
	6.6.1	Adding A S	Simulink® Model and Scripts			
	6.6.2	Mapping S	Simulink® Parameters			
	6.6.3	Mapping S	Simulink® Inputs			
	6.6.4	Mapping S	Simulink® Outputs			
	6.6.5	Validating	and Using the Simulink®Model			
		6.6.5.1	Validating a Simulink®Model			
6.7	Step 5: E	Build Up the	Function			
	6.7.1	Modeling	the Function			
6.8	Step 6: C	Optimizatio	n			
6.9	Step 7: E	xport				
7	Contact	Informatio	n			
Glossa	ry					
Figures	S					
Fauatio	าทร			125		
index .						

1 Introduction

In this chapter, you can find information about the intended use, the addressed target group, and information about safety and privacy related topics.

Please adhere to the ETAS Safety Advice (**Help > Safety Advice**) and to the safety information given in the user documentation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use and not adhering to the safety messages.

1.1 Demands on Technical State of the Product

The following special requirements are made to ensure safe operation:

 Take all information on environmental conditions into consideration before setup and operation (see the documentation of your computer, hardware, etc.).

1.2 Intended Use

The ETAS ASCMO tool family is intended for offline data based modeling, model based calibration or efficient optimization of parameters in physics based models. It is not intended to operate directly in a running system.

With ASCMO-STATIC and ASCMO-DYNAMIC it is possible to accurately model the behavior of complex systems on the basis of a small set of measurement data. This model can either be used to analyze and optimize input parameters or as a black box plant model in other simulation environments. In contrast to this ASCMO-MOCA typically uses existing physics based models with a defined structure to calibrate and optimize the parameters of the model itself. The results are a suggestion and must be additionally validated before further processing. ETAS GmbH cannot be made liable for damage which is caused by incorrect use and not adhering to the safety information. See **Help > Safety Advice**

1.3 Target Group

This manual is directed at trained qualified personnel in the development and calibration sector of motor vehicle ECUs. Technical knowledge in measuring and control unit engineering is a prerequisite.

1.4 Classification of Safety Messages

Safety messages warn of dangers that can lead to personal injury or damage to property:

A DANGER

DANGER indicates a hazardous situation that, if not avoided, will result in death or serious injury.

WARNING indicates a hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.

NOTICE

NOTICE indicates a situation that, if not avoided, could result in damage to property.

1.5 Safety Information

NOTICE

Damage due to wrong calibration data

Wrong usage of calibrations derived from ASCMO-MOCA model can lead to engine or test bench damage.

Compare measured data and model created data with Residual Analysis feature after the optimization or before exporting at the latest. Feature is accessible via Analysis > Residual Analysis > Training and Test Data > Absolute Error Analysis.

See "Performing the optimization" on page 117, export options in "Parameters" Step or "Optimization" Step, and 6.9 "Step 7: Export" on page 118.

NOTICE

Potential malicious code from external source

For FMU, ASCET and TSiM model types, ASCMO-MOCA executes an external runnable during model evaluation.

Make sure that the external runnable of the model comes from a trustworthy source.

1.6 Data Protection

If the product contains functions that process personal data, legal requirements of data protection and data privacy laws shall be complied with by the customer. As the data controller, the customer usually designs subsequent processing. Therefore, he must check if the protective measures are sufficient.

1.7 Data and Information Security

To securely handle data in the context of this product, see the next sections about data and storage locations as well as technical and organizational measures.

1.7.1 Data and Storage Locations

The following sections give information about data and their respective storage locations for various use cases.

1.7.1.1 License Management

When using the ETAS License Manager in combination with user-based licenses that are managed on the FNP license server within the customer's network, the following data are stored for license management purposes:

Data

- Communication data: IP address
- User data: Windows user ID

Storage location

- FNP license server log files on the customer network

When using the ETAS License Manager in combination with host-based licenses that are provided as FNE machine-based licenses, the following data are stored for license management purposes:

Data

- Activation data: Activation ID
 - Used only for license activation, but not continuously during license usage

Storage location

- FNE trusted storage
 - C:\ProgramData\ETAS\FlexNet\fne\license\ts

1.7.2 Technical and Organizational Measures

We recommend that your IT department takes appropriate technical and organizational measures, such as classic theft protection and access protection to hardware and software.

2 About ASCMO-MOCA

ASCMO-MOCA is a tool for **Mo**deling and **Ca**libration of functions with given data. These functions consist of mathematical operations on changeable parameters like lookup tables. The goal is to minimize the deviation of the output of the function to given data. The parameters of the function are adapted (calibrated) with an optimizer to minimize this deviation. Additional constraints like smoothness and gradients of curves/maps can be considered.

The results can be visualized in different views like scopes and scatter plots. A residuals analysis allows to detect problems, e.g. outliers.

ASCMO-MOCA comes in two versions, the full version and the runtime version. The full version allows modeling of the function, definition of an optimization sequence and the optimization itself. The runtime version opens existing projects from the full version and allows to import data and allows to start of the optimization, but not the definition of the function or the optimization sequence.

Building blocks of the function in ASCMO-MOCA are scalars, lookup tables, RBF (Radial Basis Function)-Nets and models from other sources like Simulink.

A time-independent function without inner states and loops can directly be modeled in ASCMO-MOCA. More complex, time-dependent functions are to be modeled in other tools like Simulink[®]. ASCMO-MOCA then uses the external tool during the optimization.

2.1 Finding Out More

Besides this User Guide, the online help is recommended – particularly when working with the user interface. It can be called up via **Help > Online Help** or contextsensitive (with <F1>) in the respective open operating window.

Help about the functions of the P-code version can be obtained via **Help > Inter**face Help.

3 Installation

This chapter provides information for preparing and performing the installation and for licensing ASCMO-MOCA V5.13.

- 3.1 "Preparation" below
- 3.2 "Installing" below
- 3.3 "Licensing" on page 15

3.1 Preparation

Prior to the installation, check that your computer meets the system requirements (see Release Notes "System Prerequisites"). Depending on the operating system used and network connection, you must ensure that you have the required user rights.

i Note

Ensure that you have the necessary access privileges to the Windows registry database for the installation and operation of the software. If in doubt, contact your system administrator.

3.1.1 User Privileges

Please observe the following notes concerning the user privileges for the installation and operation.

Required User Privileges for the Installation

To install the software on the PC, you require the user privileges of an administrator. If necessary, contact your system administrator.

Required User Privileges for the Operation

To operate the software, privileges of a standard user are sufficient.

3.1.2 Additional Software Requirements

All required software components that may be missing are installed during the installation of ASCMO-MOCA V5.13 and ASCMO-MOCA Runtime V5.13.

3.2 Installing

Starting the installation

 Go to the directory where the installation file is located and double-click on the Setup_ASCMO_x64.exe file.

The Setup Wizard opens.

📳 Setup - ETAS ASCMO	– 🗆 X
	Welcome to the ETAS ASCMO Setup Wizard
	This will install ETAS ASCMO on your computer. It is recommended that you close all other applications before continuing. Click Next to continue, or Cancel to exit Setup.
	Next > Cancel

2. Click Next.

The "License Agreement" window opens.

🔂 Setup - ETAS ASCMO — 🛛	×				
License Agreement Please read the following important information before continuing.					
Please read the following License Agreement. You must accept the terms of this agreement before continuing with the installation.					
End User License Agreement ETAS ASCMO	^				
ARTICLE I. GRANT OF LICENSE Subject to the provisions contained herein, ETAS GmbH, Borsigstrasse 24, 70469 Stuttgart, Germany, or an affiliate of ETAS GmbH (hereinafter collectively referred to as "Licensor"), either directly or through a designated ETAS reseller, hereby grants to the Licensee a non-exclusive, timely unlimited, non- transferable, non-sublicensable, revocable right to use Software ETAS ASCMO (hereinafter referred to as "Software"), a proprietary software tool, and any materials provided to the Licensee by Licensor in connection with the license					
I accept the agreement					
○ I do not accept the agreement					
< Back Next >	Cancel				

- 3. Read the license agreement carefully, then activate **I accept the agreement**.
- 4. Click Next.

The "Set Destination Location" window opens.

If you have already installed ETAS ASCMO, the path (Destination Location and Start Menu Folder) of the initial installation is used.

5. Accept the default folder or click **Browse** to select a new folder.

6. Click Next.

The "Select Start Menu Folder" window opens.

- 7. Accept the default directory or click **Browse** to select a new directory.
- 8. Click Next.

The "Selected Additional Tasks" window opens.

🔀 Setup - ETAS ASCMO			×
Select Additional Tasks Which additional tasks should be performed?			
Select the additional tasks you would like Setup to perform w ASCMO, then click Next.	hile installin	g ETAS	
Additional Icons:			
✓ Create a desktop icon			
Matlab Compiler Runtime:			
Install MCR (only) if not installed			
O Force MCR installation			
Visual Studio Redistributables:			
✓ Install Prerequisites			
< Back	Next >	С	ancel

9. Activate the **Create a desktop icon** checkbox if you want to create an icon on the desktop.

- 10. Activate one of the options regarding MATLAB Compiler Runtime installation.
- 11. If necessary, activate Install Prerequisites.
- 12. Click Next.

The "Ready to Install" window opens. You can check the information you entered in the previous windows.

🔀 Setup - ETAS ASCMO			×
Ready to Install Setup is now ready to begin installing ETAS ASCMO on your	r computer.	l	
Click Install to continue with the installation, or click Back if y change any settings.	you want to	review or	
Destination location: C:\Program Files\ETAS\ASCMO			^
Start Menu folder: ETAS ASCMO			
Additional tasks: Additional Icons: Create a desktop icon Matlab Compiler Runtime: Install MCR (only) if not installed Visual Studio Redistributables: Install Prerequisites			~
<		>	
< Back	Install	Ca	incel

- 13. If you want to change settings, click **Back**.
- 14. Click Install if you want to start the installation.

The installation is performed. A progress indicator shows how the installation is progressing.

When the installation is complete, the "Completing the ASCMO-MOCA Setup Wizard" window opens.

- 15. Click Finish.
- ⇒ The installation is completed. ETAS ASCMO can be started.

3.2.1 Start Menu

After successful installation, the folder you specified in the "Select Start Menu Folder" window (see page 12) with the following entries is added to the Windows start menu.

ASCMO Desk V5.13

Starts the ASCMO-DESK window, where you can start your ETAS ASCMO components.

ASCMO Dynamic V5.13

Starts ASCMO-DYNAMIC.

- ASCMO ExpeDes Dynamic V5.13
 Starts ASCMO-DYNAMIC ExpeDes.
- ASCMO ExpeDes V5.13

Starts ASCMO-STATIC ExpeDes.

ASCMO MOCA Runtime V5.13

Starts the ASCMO-MOCA Runtime environment with limited functionality.

- ASCMO MOCA V5.13

Starts ASCMO-MOCA.

- ASCMO Static V5.13
 Starts ASCMO-STATIC.
- Manuals and Tutorials

Opens the ASCMO documentation directory

(*<installation*>\Manuals), which contains the following information and documents.

- ASCMOInterfaceDoc a folder with interface documentation
- Examples a folder with different example data (e.g. ASCMO projects, MF4, DCM, XLS or FMU files, templates, plugins, etc.)
- HTML folder online help files for the installed components (available via <F1>)
- Manual_dynamic_en.pdf and Manual_dynamic_jp.pdf User Guide with tutorials for the basic functions of ASCMO-DYNAMIC
- Manual_en.pdf and Manual_jp.pdf User Guide with tutorials for the basic functions of ASCMO-STATIC
- MOCA_*.pdf User Guide with a tutorial for the basic functions of ASCMO-MOCA

3.2.2 Files and Directories

All files belonging to the program are located in the *<installation>* directory selected during the installation, and in additional subfolders of this directory.

By default, <installation> is C:\Program Files\ETAS\ASCMO
[[[Undefined variable ASCMOVar.prod version2]]].

Of special interest are the P-code files for MATLAB® and Simulink® in the *<installation>*\pCode\ascmo directory.

For more details, refer to section P-Code Version.

3.2.3 P-Code Version

The P-code version (see 3.2.2 "Files and Directories" above) also allows to start ETAS ASCMO within MATLAB[®].

Prerequisites

The P-code version requires an installation of MATLAB® R2016a up to R2019b. In addition, the following MATLAB® toolboxes are required:

- Optimization Toolbox™
- Statistics and Machine Learning Toolbox ™

Executing ETAS ASCMO

In MATLAB[®], change to the directory *<installation>*\pCode\ascmo. In the command window, enter one of the following commands:

command	action
AscmoDesk	Starts ASCMO-DESK.
ascmo static	Starts ASCMO-STATIC.
ascmo expedes	Starts ASCMO-STATIC ExpeDes.
ascmo dynamic	Starts ASCMO-DYNAMIC.
ascmo expedesdynamic	Starts ASCMO-DYNAMIC ExpeDes.
ascmo moca	Starts ASCMO-MOCA.
ascmo mocaruntime	Starts ASCMO-MOCA Runtime.
ascmo cyclegenerator	Starts the standalone ASCMO-Cycle Gen- erator.
ascmo scatterplot	Starts the standalone ASCMO-Scatter Plot.
ascmo cal- ibrationdataeditor	Starts the standalone ASCMO-Calibration Data Editor.

All further steps in an ETAS ASCMO tool – except the ASCMO-Scatter Plot and ASCMO-Calibration Data Editor – can be automated using commands whose description can be found in the main menu under **Help** > **Interface Help**.

3.3 Licensing

A valid license is required to use the software. You can obtain a license in one of the following ways:

- from your tool coordinator
- via the self-service portal on the ETAS website at www.etas.com/support/licensing
- via the ETAS License Manager

To activate the license, you must enter the Activation ID that you received from ETAS during the ordering process.

For more information about ETAS license management, see the ETAS License Management FAQ or the ETAS License Manager help.

To open the ETAS License Manager help

The ETAS License Manager is available on your computer after the installation of any ETAS software.

- From the Windows Start menu, select E > ETAS > ETAS License Manager. The ETAS License Manager opens.
- Click in the ETAS License Manager window and press F1.
 The ETAS License Manager help opens.

3.4 Uninstalling

i) Note

You cannot uninstall specific components. The procedure uninstalls **all** ETAS ASCMO components.

Use **Programs and Features** from the Windows control panel to start the ETAS ASCMO uninstall process.

To uninstall ETAS ASCMO

1. Start the uninstall procedure.

A warning message opens.

- 2. Click **Yes** to continue.
- 3. Click **OK** to end the uninstallation.

4 Basics of ASCMO-MOCA

ASCMO-MOCA enables optimization of model parameters and minimizes the deviation of model prediction and desired output values.

E.g. modern vehicle ECUs contain physics based models to replace or monitor real sensors. Such a physics based model is generic, but must be adapted to an actual engine. Parameters (maps/curves/scalars) are optimized using real measurements, e.g., from test bench or vehicle.

The model can be represented in ASCMO-MOCA as a set of formulas entered by the user. Alternatively, existing models, e.g. from Simulink[®], can be used.

In this chapter, you can find a description of the basic concepts of ASCMO-MOCA.

These are the following:

- "Fields of Application of ASCMO-MOCA" on the next page

This section provides a general overview of the wide range of application fields in ASCMO-MOCA.

- "Elements of the ASCMO-MOCA User Interface " on page 73

This section provides an brief overview of the user interface key elements of ASCMO-MOCA.

- "Data" on page 19

This section provides information on import, analysis and preprocessing of measured data.

"Assessment of the Input Data" on page 19

In this section you will find information on how you can assess the quality of the input data used by ASCMO-MOCA for the parameter optimization.

- "Models" on page 36

This section provides information on importing and using external models in ASCMO-MOCA.

"Function" on page 39

This section provides information on how to create a model by specifying a set of formulas that form a function.

- "Parameters " on page 26

This section contains general information about the optimization of parameters within ASCMO-MOCA.

"Available Types of Parameters" on page 26

This section provides a brief overview of the various types of parameters that can be used in the function (see "Step 5: Build Up the Function" on page 109) for optimization (see "Step 6: Optimization" on page 116).

"Optimization" on page 46

This section contains a description of the different optimization methods and the optimization criteria that can be used for the parameter optimization.

4.1 Fields of Application of ASCMO-MOCA

This section provides a general overview of the wide range of application fields of ASCMO-MOCA.

4.1.1 Calibration of ECU Sensor Data

- Optimization of parameters
- Optimization of time-dependent (dynamic) functions
- Parameterization of ECU models (cylinder fill, torque, ...)

The use of ASCMO-MOCA in the area of *calibration* offers a series of advantages:

- Significant increase in efficiency through reduced measuring and analysis efforts
- Improved complexity handling
- Improved data quality
- Multiple use of models

4.1.2 Research, Function and System Development

- Quick calibration and evaluation of experimental engines
- Use of models of real engines for test and development of new functions (e.g., controller strategies)
- Analysis and optimization of unknown systems.

The advantages in the area of *research and development* lie primarily in a quicker and more improved system understanding, coupled with a variety of possibilities for impact analysis.

4.1.3 Fields of Application of ASCMO-MOCA Runtime

The Runtime version of ASCMO-MOCA is designed to fulfill the special requirements of using the software with limited access to special functionalities. Reasons for doing this are to hide away special IP or to avoid that an user changes something critical.

This version can be either installed and used in parallel to the main (Developer) version or as standalone.

(i) Note

The Runtime version does not allow to create or modify functions.

The following activities can be carried out with ASCMO-MOCA Runtime:

- Import of stationary or transient data followed by name-mapping.
- Definition of conversion rules (Conversion Parameters / formulas).
- Import, export, creation, deletion and editing of parameters and system constants.
- Iterative optimization and calibration of parameters.

The installation of ASCMO-MOCA Runtime is particularly recommended if the one who has created the project with the optimization task is not the same as the one who executes the optimization.

This supports intellectual property protection and safety:

- You do not have to share special know-how about the function or the optimization logic with others.
- No critical parameters and settings are changed by the user who performs the optimization. Such changes could result in unexpected behavior.

4.2 Data

The first steps in ASCMO-MOCA are import, analysis and preprocessing of measured data. These steps are performed in the Data Step.

For more information, see the following subsections and the online help.

- "Assessment of the Input Data" below
- "Step 1: Data Import" on page 81 (tutorial)

4.2.1 Assessment of the Input Data

This section provides information on how you can assess the quality of the input data used by ASCMO-MOCA for the parameter optimization.

- "Tabular Representation of All Model-Related Data" below
- "Checking the Relevance of the Inputs" on the next page
- "Function Assessment and Improvement" on the next page
 - "Graphical Analysis of Data and Function Nodes" on the next page
 - "Residual Analysis" on page 21
 - "Improving the Model Quality" on page 24
- "Variables RMSE and R2" on page 24
- "Function Evaluation Using RMSE and R2" on page 25

4.2.1.1 Tabular Representation of All Model-Related Data

The Analysis > Data Table > Training Data/Test Data/Training and Test Data menu options open a table that displays the imported data columns, converted data columns from conversion formulas and additionally calculated nodes from the function. If optimization criteria are defined, also the residuals are displayed.

)Note

The data in the "All Data" window cannot be modified.

The following values are shown in the table in detail:

- imported data
- converted data (conversion rules)
- nodes (from functions)
- residuals (from optimization criteria)

承 Traini	ng Data										-		ĸ
<u>F</u> ile													
	Dataset No.	Weight	Speed	Rel_Airmass [-]	Ignition [-]	Torque_Meas [-]	trqOpt [-]	ignOpt [-]	deltaSpark [-]	etaSpark [-]	product [-] d	ragTorque [-	j
1	1	1	597	47.8089	-26.8200	7.0220	283.9725	24.9511	51.7711	0.1799	51.0782	40.283	> ^
2	1	1	597	51.6611	-26.8200	19.5251	312.5512	24.5889	51.4089	0.1832	57.2704	35.9652	2
3	1	1	597	40.1047	-22.2111	-3.6778	225.5456	25.5795	47.7905	0.2169	48.9110	49.0773	3
4	1	1	597	43.9568	-22.2111	8.1453	254.7590	25.2653	47.4763	0.2198	55.9899	44.6806	5
5	1	1	597	47.8089	-22.2111	21.1618	283.9725	24.9511	47.1621	0.2227	63.2394	40.283	3
6	1	1	881.2105	47.8089	-22.2111	1.0806	276.6741	26.2306	48.4416	0.2108	58.3248	43.6713	3
7	1	1	597	51.6611	-22.2111	34.1432	312.5512	24.5889	46.8000	0.2261	70.6555	35.9652	2
8	1	1	881.2105	51.6611	-22.2111	12.9679	304.4300	26.2328	48.4439	0.2108	64.1695	39.569	1
9	1	1	597	55.5132	-22.2111	47.6720	326.5844	23.1275	45.3385	0.2396	78.2627	33.433	5
10	1	1	597	59.3653	-22.2111	62.1931	340.6176	21.6660	43.8771	0.2542	86.5820	30.9017	7
11	1	1	597	32.4005	-17.6021	-14.1937	167.1187	26.2079	43.8100	0.2549	42.6035	57.8708	3
12	1	1	597	36.2526	-17.6021	-1.9017	196.3321	25.8937	43.4958	0.2584	50.7297	53.4740)
13	1	1	881.2105	36.2526	-17.6021	-18.1929	191.5710	26.0289	43.6310	0.2569	49.2145	56.143	5 v
	<											>	

Fig. 4-1: The "All Data" window

4.2.1.2 Checking the Relevance of the Inputs

During data import, you can check the inputs' relevance to the outputs (see also "To check the relevance of the inputs" on page 84).

If you do so, a polynomial stepwise regression is done with the inputs and outputs. The stepwise regression ignores inputs with a significance < 5% and can find dependent inputs.

If, for example, the training data contains the inputs *speed*, *load* and *speed* + *load*, then one of the inputs has a low significance.

The order of the inputs is important. After the stepwise regression, the inputs are permuted column by column, and a pseudo RMSE is calculated per input, to get a heuristic of the input's relevance. The findings are then plotted in the "Relevance of Inputs" window.

4.2.1.3 Function Assessment and Improvement

The **Analysis** menu offers a number of functions to compare the model output prediction with the measured data of the function output. Specifically, these are:

- Graphical analysis of the measured data and the function nodes
 See "Graphical Analysis of Data and Function Nodes" below for details.
- Residual analysis
 See "Residual Analysis" on the next page for details.

Graphical Analysis of Data and Function Nodes

The scatter plots (**Analysis** Menu) in the following windows provide a graphical control of the measurement data and the function evaluation:

- "Data Training Data/Test Data/Training and Test Data"
- "FunctionNode Training Data/Test Data/Training and Test Data"
- "Data and Nodes Training Data/Test Data/Training and Test Data"

When analyzing the measurement data, the following points should be considered particularly:

- Have all data been varied in accordance to the Design of Experiment (DoE) and has the measured system remained in the intended operating mode?
- Are the output values in a physically reasonable range?
- Are there outliers included which must be removed if appropriate?

Fig. 4-2: The "Data and Nodes" window

Residual Analysis

Residuals are the deviation of the data calculated according to the optimization criteria to the measured data.

Three types of residual analysis are available:

Absolute Error Analysis

For the Absolute Error Analysis, all residuals are displayed:

 $Y_{measured} - Y_{predicted}$

Relative Error Analysis

For the *Relative Error Analysis* the quotient from the residue and the measured value is displayed:

$$100 \cdot \left(\frac{Y_{measured} - Y_{predicted}}{Y_{measured}}\right)$$

Therefore, a percentage deviation is displayed.

Studentized Error Analysis

When performing a *Studentized error analysis*, the quotient from the residual and the RMSE 4.2.2.1 "RMSE (Root Mean Squared Error)" on page 24 is displayed:

$$\frac{Y_{measured} - Y_{predicted}}{RMSE}$$

Thus, the error based on the RMSE is shown.

Residual analysis is performed via the **Analysis > Residual Analysis > *** menu options. These menu options open four plot windows:

"Histogram" Window

The "Histogram" window displays the current error distribution (blue bars) on the total number of values for the predicted function output. The normal distribution fit (red line) is drawn additionally. This function enables you to validate whether the current error distribution fits to the normal distribution or not.

"Residuals over Inputs" Window

This window shows several scatter plots: data set number, Active flag and weight against measurement number, as well as the errors (absolute, relative, or studentized) of the computed data against the measured data. For a detailed description, see "Improving the Model Quality" on page 24.

Fig. 4-4: The "Residuals over Inputs" window

"Residuals over Outputs" Window

This window shows scatter plots of the errors (absolute, relative, or studentized) of the computed data against the function nodes.

"Measured vs. Predicted" Window

In this window, the model output is displayed on the X axis and the measuring points are displayed on the Y axis. A perfect match between the two would result in a "pearl necklace" (y = x). The further the points are removed from the y = x line, the greater the difference between measurement and model output.

Fig. 4-5: The "Measured vs. Predicted" window

The "Residuals over *" and "Measured vs. Predicted" windows are described in detail in the online help.

Improving the Model Quality

Outliers can be caused by measurement errors or by insufficient function quality. The scatter plots mentioned in sections "Graphical Analysis of Data and Function Nodes" on page 20 and "Residual Analysis" on page 21 allow visually determining and improving the model quality. You can search for outliers, draw a rectangle to mark them, delete them, deactivate them or reduce their weight manually, or you can set an outlier threshold and detect outliers automatically.

4.2.2 Variables RMSE and R²

A series of variables is used for quantifying the function quality. These variables are described in this section.

4.2.2.1 RMSE (Root Mean Squared Error)

The RMSE describes the variance to be expected (standard deviation) about the model: A second measurement falls less than 1 RMSE from the model prediction with a probability of 68% (with 95.5% < 2 RMSE, 99.7% < 3 RMSE, etc.).

The RMSE is defined as follows:

$$RMSE = \sqrt{\frac{SSR}{N}}$$

λ7

Equ. 4-1: Root Mean Squared Error (RMSE)

whereby N = the number of measuring data and

$$SSR = \sum_{i=1}^{N} \left(X_{i,predicted} - X_{i,measured} \right)^{2}$$

Equ. 4-2: Sum of Squared Residuals (SSR)

Therefore, SSR is the sum of squared residuals (SSR = Sum of Squared Residuals).

4.2.2.2 Coefficient of Determination R²

The coefficient of determination R² is derived from the comparison of the variance that remains after the model training (SSR) with the variance concerning the mean value of all measuring data (SST)

$$R^2 = 1 - \frac{SSR}{SST}$$

Equ. 4-3: Coefficient of determination R² whereby

$$SST = \sum_{i=1}^{N} (X_{i,measured} - \bar{X}_{i,mean})^2$$

Equ. 4-4: Total Sum of Squares (SST)

R² is a relative measure for evaluating the function output error – it indicates which portion of the total variance of the measuring data is described by the function.

4.2.3 Function Evaluation Using RMSE and R^2

Evaluation of R²

The most important variable is the coefficient of determination R² ("Coefficient of Determination R2" on the previous page) . This measure results in the following evaluations:

- The coefficient of determination, R², can be maximal 1. In this case, the function prediction fits exactly to each measured value.
- If the function would simply predict the mean of the measured output for any input data, an R² of 0 would be the result. A negative R² would mean that the prediction is worse than that simple prediction.
- An R² of 1 means a perfect fit, every prediction of the function is the same as the measured data. Typically, the measured data has added noise. In this case, an R² of 1 means overfitting. You should be interested in a high R² with consideration of the noise.
- Keep in mind that different signals can be measured with different quality. There might be signals where an R² of 0.6 might already be a good value. In contrast, a model for a different signal can be seen as good only if the R² is above 0.99.

Evaluation of RMSE

The absolute error RMSE (see section "RMSE (Root Mean Squared Error)" on the previous page) must be evaluated individually:

- At best, the RMSE can be as good as the experimental repeatability.
- Despite a good R², the RMSE can be too low, e. g. in case of a very large variation range of the modeled variable.
- Despite a small R², the RMSE can be good enough, e. g. if the modeled variable features only a minor variance over the input parameters of the function.

4.3 Parameters

Modern ECUs contain many map-based physical models¹⁾ to replace or monitor real sensors, e. g.:

- Engine torque
- Air charge/Air mass
- Exhaust gas temperature
- Fuel system corrections

To provide an optimal prediction quality, these models contain parameters such as maps (see also "Maps" on the next page) and curves (see also "Curves" on page 28) that need to be calibrated using real measurement data (e.g., from test bench or vehicle).

The high number of actuators in modern engines leads to a continuous increase in the complexity and the number of parameters of these functions.

A manual calibration is either very time consuming or even impossible.

ASCMO-MOCA supports the calibration and optimization tasks in an efficient and user-friendly way.

4.3.1 Example

You can find an example of parameter optimization for a sensor in the chapter "Tutorial: Working with ASCMO-MOCA" on page 78. In this tutorial, different maps and curves will be optimized in order to reduce the deviation between the measured values and the model prediction.

4.3.2 Available Types of Parameters

This chapter provides a brief overview of the various types of parameters that can be used in the function (see "Step 5: Build Up the Function" on page 109) for optimization (see "Step 6: Optimization" on page 116).

The parameters are divided in to the following classes:

- "Maps" on the next page
- "Curves" on page 28
- "Scalar" on page 29
- "3D- and 4D-Cubes" on page 29
- "Compressed Model" on page 29
- "Matrix" on page 29
- "Group Axis" on page 30
- "Text Scalar/Matrix/Curve/Group Axis" on page 30

Scalar, Cube-3D and Cube-4D parameters are similar to curves and maps, except that they have no, three (X, Y, Z1), or four (X, Y, Z1, Z2) axes. See the online help for an instruction on how to create such a parameter.

¹⁾ Similar models are used in other environments such as HiL systems.

🔞 Create Parameter — 🗆 🗙								
Specify Parameter Informat	tion ?							
Parameter Name	myParameter							
Parameter Type	Cube 4D			~				
Value Bounds	Lower Bound		Upper Bound					
Constant		0		1				
	Unit	Channel						
Input 1	-	-	~	Use Range and Unit				
Input 2	-	-	~	Use Range and Unit				
Input 3	-	-	~	Use Range and Unit				
Input 4	-	-	~	Use Range and Unit				
Output	-							
		Begin	End	Count				
Breakpoints X	Begin/End ~	0	1	10				
Breakpoints Y	Begin/End ~	0	1	10				
Breakpoints Z1	Begin/End ~	0	1	4				
Breakpoints Z2	Begin/End ~	0	1	3				
Extrapolation	Clip							
Depend on Formula				Edit				
OK Cancel								

Maps

A map is represented by a set of Z values that are defined over a two-dimensional grid that represents the X and Y axes.

In between grid points, the corresponding Z values are calculated by bi-linear interpolation. Therefore, the functional dependency is given by z = z (x, y) and a map is stored in the form of a two-dimensional lookup table.

Outside the grid, either clip- or linear interpolation is applied.

You can set up input-dependent bounds for map parameters. These can be edited in the **Parameter < parameter_name >** window; see the online help for more information.

Curves

A curve is represented by a set of Y values that are defined over a one dimensional grid, that represents the X axis.

In between grid points, the corresponding Y values are calculated by linear interpolation. Therefore, the functional dependency is given by y = y(x) and a curve is stored in the form of a one-dimensional lookup table.

Outside the grid, either clip- or linear interpolation is applied (cf. figure below).

You can set up input-dependent bounds for curve parameters. These can be edited in the **Parameter < parameter_name >** window; see the online help for more information.

Scalar

A scalar is a 0-dimensional calibration parameter.

3D- and 4D-Cubes

In addition to curves (one input) and maps (two inputs), ASCMO-MOCA supports also lookup tables with three and four inputs: Cube-3D and Cube-4D.

Compressed Model

In addition to lookup tables (Curve, Map, Cube), ASCMO-MOCA also supports networks of radial basis functions with a squared exponential kernel (RBF Net-SE) as a parameter.

The number of inputs for such a parameter can be chosen by the user. Also the number of basis functions (kernels) must be chosen by the user. A higher number of inputs and kernels increases the computational complexity of the optimization and evaluation of such a parameter.

The evaluation function for the parameter is a superposition of Gaussian functions. A rough estimate of the computational complexity for the function is "Number of inputs" multiplied with "Number of basis functions" evaluations of the efunction.

It can be seen as a black-box data based model and is also available in ASCMO as "Compressed Model". It can replace a whole function consisting of multiple lookup tables and connections between them.

A higher number of kernels increases the fidelity of the model, but it can result in overfitting and should be tested with test data.

Matrix

ASCMO-MOCA supports matrix parameters. A matrix is a two-dimensional, indexed set of elements. The position of a scalar value within a matrix is determined by its associated index values (non-negative integer values).

Group Axis

ASCMO-MOCA supports group axes for shared axes, which are used by several parameters, e.g. multiple maps share the same axes. They are handled as a separate parameter type. Using group axes ensures, they are consistent. Group axes are especially useful for Simulink[®] or FMU parameter mappings. For example if Simulink[®] multiple variable mappings point to the same variable in a Simulink[®] model or calculated parameters point to the same value reference in an FMU model. Group axes can be exported and imported as DCM or CDFX file and are automatically detected and created using the scan or validate function in the Models Step.

Group axes cannot be used in a function. Group axes can be optimized. Using group axes speeds up the communication with external models.

Text Scalar/Matrix/Curve/Group Axis

(i) Note

Text parameters can only be imported using a DCM and an A2L file; they cannot be created or edited. To import them, click **Import**, select the DCM file, and click **Open**. Then, click **Load A2L File** to select the corresponding A2L file.

Text Scalar: For text scalars, you can select the corresponding label in the **Enumeration** column drop-down. This label consists of the text part and its corresponding actual value in the control unit.

Text Matrix: Text matrices are similar to text scalars, but they have multiple cells with drop-downs where you can select the corresponding labels. These labels consist of the text and their respective actual values in the control unit.

Text Curve: For text curves, the **Label** column represents the X-axis and contains both the text part and its corresponding actual value in the control unit. In the **Value** column, you can find the corresponding Y-values. To edit a value, double-click the respective cell.

Text Group Axis: This is a group axis for multiple curves, where the X-axis is displayed as text in the **Label** column. The corresponding actual value in the control unit is shown in the **Index** column. The **#** column represents a continuous count.

4.3.3 System Constants

System constants can be used to provide default values for parameters. One or more parameters of any type can be assigned to a system constant, and a default value can be provided for each parameter. For non-scalar parameters, the same constant value is returned for each point.

By activating a system constant, you define that the default values of the assigned parameters are used.

System constants are created and managed in the "System Constant" tab of the Parameters Step.

See the online help for an instruction how to create a system constant.

4.3.4 Parametersets

Multiple parametersets can be used and managed whereby one set is always defined as working and reference parameterset. The working parameterset is the one, which is optimized and used in the Optimization Step.

The different parametersets can have different parameters, parameters with the same name can have different support vectors.

In addition to working and reference set, the following parametersets are created while optimization:

- Before last optimization (might be empty, but the set is created and the default Reference Parameterset)
- After last optimization
- During all the iterations, i. e. parameterset Iteration 1, Iteration 2,

Iterations of the optimizer are automatically stored as separate Parametersets. This allows to analyze the optimization progress and also go back to a previous set.

4.4 Visualization

In addition to the performed steps from Data to Optimization, ASCMO-MOCA provides a Visualization Step for having results visually in one place. You can create data and parameter visualizations according to your own taste. The Visualization step allows to combine different plot types to create user defined representations:

Signal Plot to show scatter and scope plots

Signal Plot 3D to show parameters as 3D plots

Parameter Plot to show parameters such as maps and curves

Parameter Table to show the value tables for each parameter

MapDragTorque (Calibration)								
Y \ X	500	1600	2700	3800	4900	6000		
13	77.0804	78.6306	78.7216	78.9457	79.6010	80.1531		
32.25	57.2164	66.5855	68.2530	69.1787	71.0912	72.4950		
51.5	34.8366	48.8347	39.5829	30.8083	15.6306	32.8890		
70.75	22.7061	30.7942	35.3824	33.8130	35.0545	37.8163		
90	16.5684	21.8265	25.3030	25.1882	26.5461	29.5359		

Parameter Heatmap to show the data coverage of a parameter

Data Table to show selections from other plots, values are highlighted in the associated color

	Speed	Rel_Airmass	Ignition	Torque_Meas	TorquePredict	
1	597.000	47.8089	-26.8200	7.02201	10.7943	~
2	597.000	51.6611	-26.8200	19.5251	21.3053	
3	597.000	40.1047	-22.2111	-3.67776	-0.166347	
4	597.000	43.9568	-22.2111	8.14535	11.3093	
5	597.000	47.8089	-22.2111	21.1618	22.9555	
6	881.211	47.8089	-22.2111	1.08058	14.6535	
7	597.000	51.6611	-22.2111	34.1432	34.6904	
8	881.211	51.6611	-22.2111	12.9679	24.6004	
9	597.000	55.5132	-22.2111	47.6720	44.8292	
10	597.000	59.3653	-22.2111	62.1931	55.6803	
11	597.000	32.4005	-17.6021	-14.1937	-15.2673	
12	597.000	36.2526	-17.6021	-1.90174	-2.74430	
13	881.211	36.2526	-17.6021	-18.1929	-6.92899	
14	597.000	40.1047	-17.6021	10.9310	9.98072	
15	881.211	40.1047	-17.6021	-5.53035	4.35335	
16	597.000	43.9568	-17.6021	23.8206	22.9078	
17	881.211	43.9568	-17.6021	6.26536	15.5937	
18	597.000	47.8089	-17.6021	38.2851	36.0368	
19	881.211	47.8089	-17.6021	19.5687	26.7921	
20	1165.42	47 8089	17 6021	0.470531	18.0611	×

Histogram to show a bar plot where the values are assigned to bins

For all types showing imported or calculated data, one or more datasets can be selected to be visualized. Beside this also additional settings can be configured to show only data points, also the lines between the points or a grid in back-ground.

For the types showing parameters, beside the selection of the parameter itself additional content can be chosen such as the reference values or bounds. Parameter plots cannot only show the current calibration, they can also be used to change it. Through this interaction, the Visualization Step acts like an experimental environment. The effect of changed values is directly visualized in all other plots.

You can define the layout of multiple views. Selections (rectangles and lassoes) can be used in signalplots and highlight the data in any view. Cursors can show the value at a specific time. Cursors can be set as a limit to show the number of values outside the limit. Selections and cursors are saved with the project.

For each visualization tab the screen can be divided into different elements and separately filled. Therefore two modes are available at the bottom: View and Configuration. The View mode also provides the possibility to use a print mode and to export or copy images to the clipboard. Beside visualizing plots you can also insert text into the elements. The visualization tabs can be undocked and arranged on the monitor according to your wishes. Tabs can be easily renamed by double-clicking on it.

The Visualization step supports you in data comparison and to have your data visualized at a glance in one overview.

The Only Marked Data option (> Configure Single Element > Only Marked

Data) gives you a better overview, e.g. prediction vs. ignition angle per operating point.

4.5 Models

In ASCMO-MOCA, you can work with models provided as a set of formulas, or you can import models created with ASCET, FMU, Simulink, ASCMO-STATIC or ASCMO-DYNAMIC. These models can then be used as function nodes in the ASCMO-MOCA project.

Importing and connecting external models is done in the Models Step.

- ASCET models

If you want to use an ASCET model in ASCMO-MOCA, you have to create a *.dll file with ASCET and ASCET-PSL first. This *.dll file is then added to the ASCMO-MOCA project; see the online help for details.

ASCET models are used as black boxes by ASCMO-MOCA. You cannot change the models, and no link to the ASCET model or to ASCET is created during import.

- FMU models

If you want to use an FMU model in ASCMO-MOCA, you have to create an FMI * . fmu file first. This * . fmu file is then added to the ASCMO-MOCA project; see the online help for details.

i) Note

FMU models that use FMI 2.x or FMI 3.x are supported by ASCMO-MOCA. FMU models that use FMI 1 cannot be used.

Only the FMU file name is added to the ASCMO-MOCA project. You cannot open the model itself. During optimization, the FMU model is used as a black box: ASCMO-MOCA passes the inputs to the model, and receives the outputs from the model. The way the model computes the output values remains unknown to ASCMO-MOCA.
The execution of Linux FMUs (i.e. no Win32 or Win64 binaries included in the FMU) is supported, an appropriate Linux image must exist. An FMU with Linux binaries can be run, if WSL2 (Windows Subsystem Linux) is installed. The virtual machine needs ZeroC Ice and Iibgomp.

For example on Debian this can be installed by

sudo apt install libgomp1

sudo apt install libzeroc-ice3.7 libzeroc-ice zeroc-icecompilers zeroc-ice-slice

Take care that at least Ice version 3.7.6 is installed.

- Simulink[®] models

Using Simulink[®] models in ASCMO-MOCA is described in detail in the tutorial, see "Step 4: Models" on page 99.

ASCMO-STATIC and ASCMO-DYNAMIC models

These models are used as black boxes. After import of the models, the ASCMO project isn't linked anymore and the models become part of the ASCMO-MOCA project.

During import, you can select one, several or all outputs for import. Each output is added as a separate model. See also section "Importing ASCMO-STATIC/ASCMO-DYNAMIC Models" in the online help.

- TSiM Plugin

If you want to use a TSiM Plugin in ASCMO-MOCA, you need a *.mexw64 file. This proprietary file format of Bosch is similar to FMU and typically represents control unit functions in a compiled form (DLL).

This format can be used in ASCMO-MOCA for simulations and optimization of parameters.

For more information, see the online help (F1).

4.5.1 Steady State

Steady State is a concept used in the Models Step in ASCMO-MOCA for following model types:

- FMU models
- Simulink models
- TSiM PlugIn

It can only be applied if the imported data is static. This can be checked in the Data Step (**Data Sampling: Static (no time)**).

🔞 ETAS ASCMO							- 0 X
File Data Analysis	s My Views	Plugins Help					
😜 🛍 🔲 🕅 🖂	😣 👔 🕩		() 10 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
			Comparison Formulas				
Essentials	Data		Conversion Formulas				
	Dataset	1: Dataset 1		✓ ₩ Weight 1	Import Data •		Data Sampling
Data	No.	Weight	Speed (rom)	Rel Airmass [%]	Ignition [deg CA]	Torque Meas [Nm]	Btatic (no time)
Descenters	1	1.00000	597.000	47.8089	-26.820	7.02201	Data
Parameters	2	1.00000	597.000	51.6611	-26.820	19.5251	Static Weight
10.0.0	3	1.00000	597.000	40.1047	-22.211	-3.67776	Citatio magazi
visualization	4	1.00000	597.000	43.9568	-22.211	1 8.14535	Delete •
	5	1.00000	597.000	47.8089	-22.211	1 21.1618	Columns
MOCA	6	1.00000	881.211	47.8089	-22.211	1 1.08058	Delate
	7	1.00000	597.000	51.6611	-22.211	1 34.1432	Delete
Models	8	1.00000	881.211	51.6611	-22.211	1 12.9679	Datasets (AII)
	9	1.00000	597.000	55.5132	-22.211	47.6720	Filter Data
Function	10	1.00000	597.000	33,4005	-22.211	1 62.1931	The Data
	12	1,00000	597.000	32.4005	-17.002	1 -14.155/	Remove NaN
Optimization	13	1.00000	881 211	36.2526	-17.602	1 .18 1929	
	14	1.00000	597.000	40 1047	-17.602	1 10.9310	
	15	1.00000	881.211	40.1047	-17.602	-5.53035	
	16	1.00000	597.000	43.9568	-17.602	1 23.8206	
	17	1.00000	881.211	43.9568	-17.602	6.26536	
	18	1.00000	597.000	47.8089	-17.602	1 38.2851	
	19	1.00000	881.211	47.8089	-17.602	1 19.5687	
	20	1.00000	1165.42	47.8089	-17.602	1 0.470531	
	21	1.00000	597.000	51.6611	-17.602	1 52.3921	~
	Channel	Name Mappir	ng () Map Selected Dataset	* Delete	Import Export	•	
			Name in Projec	t		Name in Dataset 1	<<
	1 Speed				Speed		~
	2 Rel_Airm	855			Rel_Airmass		~
	3 Ignition				Ignition		~
	4 Torque_I	leas			Torque_Meas		~
	5 New Nar	ne			-		~
44.00	L						
14:09							^
14:09 Loaded Project	'C:\Program F	iles\ETAS\ASCMO	5.12\Example\Moca\Torque.mo	ca' (<u>Open folder</u>)			~
							Working Parameterset: Parameterset 1 .:

Steady state is a state in which all relevant variables are constant relative to each other over time or grow at the same rate (steady development). That means the state of equilibrium. 3 sizes can be specified.

- **Simulation Step Size**: Define the simulation step size (base sample time). This is specified in the model and must match.
- **Time until Steady State**: This is the time span to wait until steady state is reached (worst case scenario).
- Average Last: Defining the duration of the average interval at the end of Time until Steady State phase. Enter time in seconds to average the last values and determine a mean value.

4.6 Function

In ASCMO-MOCA, you can work with models provided as a set of formulas, or you can import models created with Simulink, ASCET, ASCMO-STATIC or ASCMO-DYNAMIC and connect them to the ASCMO-MOCA project.

Specifying a function formed by a set of formulas is done in the Function pane.

Data channels, parameters, other function nodes and imported models can be used to define the expression of a function node. Several operators are available; see "Mathematical Operators for Function Nodes" below.

You can export and import functions to and from text files that follow the formula syntax. A sample export file is given here.

```
trqOpt[-] = %MapOptTorque%(%Speed%, %Rel_Airmass%)
ignOpt[-] = %MapOptIgnition%(%Speed%, %Rel_Airmass%)
deltaSpark[-] = %ignOpt% - %Ignition%
etaSpark[-] = %CurveEtaDeltaSpark%(%deltaSpark%)
product[-] = %SubFunction%(%deltaSpark%, %trqOpt%,
%CurveEtaDeltaSpark%)
dragTorque[-] = %MapDragTorque%(%Speed%, %Rel_Airmass%)
TorquePredict[-] = %product% - %dragTorque%
```

function SubFunction(InDeltaSpark : Data, IntrqOpt : Data, myCurve : Curve) curveOut[-] = %myCurve%(%InDeltaSpark%) functionOut[-] = %curveOut% .* %IntrqOpt%

For more information, see the following subsections and the online help.

- "Mathematical Operators for Function Nodes" below
- "Step 5: Build Up the Function" on page 109 (tutorial)

4.6.1 Mathematical Operators for Function Nodes

Function nodes can be added and edited in the "Edit Node" window. At the right side of that window, you can see buttons for common mathematical operators.

×	1	+	-
\checkmark	xa	abs	bswitch
()	,	min
max	&		cumsum
<	<=	==	>=
>	warnlf	timeDelay	dT
roundTo	steady States	+	

The button, for example, adds the operation . * to the formula expression. This operator results in a element-wise multiplication.

The	+	button deletes the last inserted items.
-----	---	---

$z = x \cdot y$	element-wise multiplication
z = x ./ y	element-wise division
z = x + y	element-wise addition
z = x - y	element-wise subrtaction
z = sqrt(x)	square root of x
z = x.^y	row-by-row ${f x}$ to the power of ${f y}$
z = abs(x)	absolute value
z = bswitch(x, y1, y2)	row-by-row "if"
	$\mathbf{v} \leq 0$ results in $\mathbf{v}1$
	$\mathbf{x} > 0$ results in \mathbf{y}^2
	 x > 0 results in y2 e.g. limit x to positive values via bswitch
	<pre>x > 0 results in y2 e.g. limit x to positive values via bswitch (%x%, 0, %x%)</pre>
z = min(x, y)	<pre>x > 0 results in y2 e.g. limit x to positive values via bswitch (%x%, 0, %x%) row-by-row minimum</pre>
$z = \min(x, y)$ $z = \max(x, y)$	<pre>x > 0 results in y2 e.g. limit x to positive values via bswitch (%x%, 0, %x%) row-by-row minimum row-by-row maximum</pre>
$z = \min(x, y)$ $z = \max(x, y)$ $z = x \& y$	x> 0 results in y2e.g. limit x to positive values via bswitch (%x%, 0, %x%)row-by-row minimumrow-by-row maximumlogical element-wise AND
$z = \min(x, y)$ $z = \max(x, y)$ $z = x \& y$ $z = x y$	x> 0 results in y2e.g. limit x to positive values via bswitch (%x%, 0, %x%)row-by-row minimumrow-by-row maximumlogical element-wise ANDlogical element-wise OR

z = x < y	logical row-by-row less than	
	also allowed: $x \leq y$ (<=)	
z = x == y	logical row-by-row equal	
z = x > y	logical row-by-row greater than	
	also allowed x \geq y (>=)	

warnlf	With the warnif button, you can define checks that are automatically executed after each optimization run. If the defined condition is met, the chosen warning text is shown in the log window. After clicking on the warnif button, you have to insert a condition in the expression field. Example: Expression					
	warnIf(%MapDragTorque%(%Speed%, %Rel_Airmass%) >0 ,'Warning')					
	If at least one of the values of the map parameter MapDragTorque is larger than zero after the optimization, the text Warning will appear in the log window.					
timeDelay	With the timeDelay button, you can delay a signal by one time step. After clicking on the timeDelay button, you have to insert a con- dition in the expression field: timeDelay(x, intialValue) Example:					
	Expression					
	timeDelay(%transferFcn%, %setpoint%(1))					
	x = Node transferFcn initialValue = 1. timestep of Input setpoint See Main Function in Demo Project <i>Function Closed-Loop (Pl con- troller)</i>					
	i Note					
	ASCMO-DYNAMIC models can run inside a feedback loop with timeDelay and can be used in the function. This enables optim- ization of control algorithms e.g. a PID controller with an ASCMO- DYNAMIC model. See Main Function in Demo Project ASCMO Dynamic Model Closed-Loop (PI Controller)					
	Setpoint					
	e.g. PID Controller e.g. ASCMO-DYNAMIC Model					
	Feedback					

dT	dT will be replaced with the value of the sample time in the data. Example:
	Expression
	dT ./ %filterConstant%
	dT = Values of time [s] column in Data Step %filterConstant% = Parameter See pt1 Function in Demo Project <i>Function Closed-Loop (Pl controller)</i>
roundTo	With the roundTo button, you can round a node to a specific value.
	After clicking on the roundTo button, you have to select a discrete parameter and enter the values.
	Example:
	Expression
	roundToDiscreteValues(%calMap_SCV%(%speed%, %load%), [0 1])
	In this example, you want to observe output of calibration map dis- crete. Calibration Map calMap_scv is rounded to values 0 and 1.
	See also exported ASCMO-STATIC Demo Project opened in ASCMO-MOCA using Optimization \rightarrow Export to MOCA in ASCMO-STATIC,
	checkbox "Replace Discrete Inputs by Continuous Inputs" must be deactivated.
steady States	With steadyState_abs (, you can calculate the steady state of a sig- nal based on the window length and window height.
	<pre>steadyState_abs(x, windowLength, windowHeight,</pre>
	sampleRate)
	Example:
	<pre>steadyState_abs(%signal%, 10, 200, dT)</pre>

The following operators are supported, but must be entered manually.

z = atan (x)	Inverse tangent. Result is in radians. Also allowed: cos, sin, asin, acos, tan, tanh.
z = x ~= Y	Logical row-by-row unequal.
z = log (x)	Logarithm to the radix e. Euler's number, i.e. 2.71828 18284

i) Note

ASCMO-MOCA supports nearly all operators available in MATLAB[®], if the derivative of the resulting formula can be calculated.

See online help (F1) for further information (section "button area" in "Insert/Edit Node" Window).

4.6.2 Feedback Loop

Within a node of the Function you can access a future node using a feedback loop with time delay. This can be also used with a dynamic model. See the following graphic and ASCMO-MOCA example.

Main Function Nodes

```
engine_speed[-] = timeDelay(%Output%, 0)
engine_torque[-] = %PID Controller%(%engine_speed_setpoint%,
%engine_speed%, %Ki%, %Kp%)
```

```
Output[-] = %Plant%(%engine_torque%)
```


PID Controller Function Nodes

diff[-] = %engine_speed_setpoint% - %engine_speed_act%
diff_integrated[-] = timeDelay(%diff_integrated%, 0) + dT .*
%diff%

engine_torque[-] = %Kp% .* %diff% + %Ki% .* %diff_integrated%

The **timeDelay** element is one of the mathematical operators in the "Insert/Edit Node" window.

4.7 Optimization

This section contains a description of the different optimization methods and the optimization criteria that can be used for the parameter optimization.

This section contains the following subsections:

- "Description of the Optimization Method" below
- "Consideration of the Roughness" on page 58
- "Optimization Criterion" on page 59
- "Optimization Without Sequence" on page 60
- "Optimization With a Sequence" on page 60
- "Parameter Correlation" on page 61
- "Parameter Sensitivity" on page 62

4.7.1 Description of the Optimization Method

The optimizer calibrates the p calibration values of the maps/curves with the goal to minimize the deviation between the measured, predetermined values and the predicted n values.

$$\underset{p}{\operatorname{argmin}} \sum_{i=1}^{n} \left(W_{o} * \left(Y_{i, predicted}(p) - Y_{i, measured}(p) \right)^{2} + \cdots \right)$$

Equ. 4-5: Optimization method

where

р	calibration values
n	number of measurement points
Ypredicted	prediction of the function in ASCMO- MOCA/ASCMO-MOCA Runtime
Y _{measured}	the imported data
Wo	Weight of Optimization
W _c	Weight of Constraint
Wg	Weight of Gradient, 1D dimensions
W _k	Smoothness factors, 1D dimensions

The squared deviation is minimized, where the square has the effect that larger deviations are penalized even stronger.

Based on this general formula, smoothness, local constraints and gradient limits can be added. This can be expressed in the following formulas.

Smoothness

$$\underset{p}{\operatorname{argmin}} \sum_{i=1}^{n} \left(W_{o} * \left(Y_{i, predicted}(p) - Y_{i, measured}(p) \right)^{2} + \sum_{k=1}^{D} W_{k} * Roughness + \cdots \right)$$

See 4.7.5 "Optimization Criterion" on page 59

Gradient Limits

$$\underset{p}{\operatorname{argmin}} \sum_{i=1}^{n} \left(W_{o} * \left(Y_{i, predicted}(p) - Y_{i, measured}(p) \right)^{2} + \sum_{g=1}^{D} W_{g} * Gradients + \cdots \right)$$

See "Optimization Criterion" on page 59

Local Constraints

$$\underset{p}{\operatorname{argmin}} \sum_{i=1}^{n} \left(W_{o} * \left(Y_{i, predicted}(p) - Y_{i, measured}(p) \right)^{2} + W_{c} * Constraint + \cdots \right)$$

4.7.2 Optimization Algorithms

In the **Optimization** step, you can choose from the following optimization algorithms:

- "Default (Gradient Descent)" on the next page
- "Respect Constraints (Gradient Descent)" on page 49
- "Gradient-free Optimizer" on page 49
- "Surrogate Optimizer (Global Optimization)" on page 49
- "Genetic Algorithm (Global Optimization)" on page 49
- "Simulated Annealing (Global Optimization)" on page 50
- "Particle Swarm (Global Optimization)" on page 50

Gradient Descent vs. Global Optimization

Gradient descent optimization starts with the working parameter set as initial values and uses the gradient of the cost function to iteratively follow the direction of the steepest descent to the minimum of the cost function. The gradient descent optimizer only finds a local minimum, so the starting position of the optimization is important.

ASCMO-MOCA calculates the gradients of the function analytically. Gradients from external models, such as Simulink or FMU models, are computed using the finite difference method. This allows the optimizer to find the local minimum quickly and with a minimum number of function evaluations. The memory consumption is at least the number of data points multiplied by the number of parameters and multiplied by two for the optimization algorithm itself.

Global optimizers are gradient-free optimizers that try to find a global optimum. They start with several random candidate solutions to the optimization problem spread over the entire search space. Then the search space is iteratively narrowed down to good, more accurate solutions. The optimization may not hit the optimum perfectly, so you can start with a global optimization to find the global optimum, and then continue with a gradient descent optimization to refine the result.

A typical optimization problem in ASCMO-MOCA is the optimization of maps and curves. Such an optimization problem usually has many parameters (e.g., a 20x20 map has 400 parameters), and a global optimizer may require many iterations to find a good solution.

Being gradient-free, global optimization can find a solution when the gradients of a function/model are not continuous. This happens when your model is implemented with a fixed-point representation of numbers or parameters and inputs or outputs are discrete. It can also happen if your model is implemented with 32bit instead of 64-bit floating point numbers.

Default (Gradient Descent)

This is a gradient descent least squares optimizer. It was chosen as the default optimizer because it performs well when the optimization task has many parameters, which is likely when using maps and curves.

The residuals enter the optimization algorithm as a vector, so the optimizer gets 100 residuals for a dataset with 100 data points. This is computationally expensive, but leads to good optimization results.

The residuals are implicitly squared by the optimizer, so the difference from a reference value is always minimized. To do a minimization or maximization, you must explicitly provide a low/high value to optimize against.

EXAMPLE

The output is in the range 0 to 1000. To do a maximization, define the optimization criterion as minarg(y(x)-1000).

Local constraints enter the optimization as part of the sum formula (w * con-straint). In the context of ASCMO, this is called a soft constraint. The weight of such a local constraint is increased every 10 iterations until the constraint is satisfied.

$$\operatorname{argmin}_{p} \sum_{i=1}^{n} \left(\left(Y_{i, predicted} - Y_{i, measured} \right)^{2} + W * Constraint \right)$$

During optimization, the weight of the constraint is increased if the constraint is violated. This may not be sufficient, and the constraint may still be violated after optimization.

Respect Constraints (Gradient Descent)

This is also a gradient descent least squares optimizer, but it takes constraints into account.

The constraints are treated by the optimizer as hard bounds. The default optimizer should be preferred unless the constraints are violated. Use this algorithm if a constraint is violated after optimizing with the default optimizer.

Gradient-free Optimizer

The gradient-free Optimizer uses a simplex algorithm for optimization. The algorithm does not depend on gradients and therefore requires more iterations than a gradient descent algorithm. The solutions are typically not as good as those of a gradient descent optimizer.

Use this gradient-free optimizer when the gradients of the function/model are not continuous. This happens when your model is implemented with a fixed-point representation of numbers or parameters and signals are discrete. It can also happen if your model is implemented with 32-bit instead of 64-bit floating point numbers.

Surrogate Optimizer (Global Optimization)

The Surrogate Optimizer tries to find a global optimum. It first builds a surrogate model and then optimizes it instead of the original function/model. This can be useful if the function/model evaluation takes a long time.

Genetic Algorithm (Global Optimization)

The Genetic Algorithm tries to find a global optimum. It is inspired by natural selection and the exchange of genomes. It starts with random candidate solutions, here called a population, see Wikipedia: Genetic Algorithm for more details. The size of the population strongly influences the memory consumption. An optimization task with many signals and/or data can lead to out-of-memory problems. Reducing the population size frees up memory. The algorithm performs a vectorization with all candidate solutions and can perform model evaluations of FMU and TSim models in parallel.

Simulated Annealing (Global Optimization)

Simulated Annealing tries to find a global optimum. It starts with random candidate solutions at the beginning of the optimization. Due to a high initial temperature, large parameter changes are possible. Over several iterations, the temperature decreases, limiting possible parameter changes and allowing more accurate solutions to be found. See Wikipedia: Simulated Annealing for more details. The number of particles strongly affects the memory consumption. An optimization task with many signals and/or data can lead to out-of-memory problems. Reducing the number of particles frees up memory.

Particle Swarm (Global Optimization)

Particle Swarm tries to find a global optimum. It starts with random candidate solutions, called particles. The particles have a position and a velocity. It starts with a high velocity and over several iterations the velocity decreases, allowing more accurate solutions to be found, see Wikipedia: Particle Swarm Optimization for more information. An optimization task with many signals and/or data can lead to out-of-memory problems. Reducing the number of particles frees up memory. The algorithm performs a vectorization with all candidate solutions and can perform model evaluations of FMU and TSim models in parallel.

4.7.3 Optimizer Options

From the **Optimization Algorithm** drop-down list, select the optimization algorithm for which you want to customize the settings:

Default

🐻 Op	otimizer Options				X	
Optim	ization Algorithm	Default		~		
With t	ime-delay Code (Genereration				
Iteratio	ons			1(D	
Multist	art				1	
Tolera	nce			1e-9	9	
Finite	Difference Facto				1	
	Reset	OK		Canc	el	

With time-delay Code Generation

When activated, C code is generated from the function and optimization works on compiled C code. This only works if the function does not use external models. This speeds up the optimization when the **timeDelay**

method is used in the function, in other cases it's usually slower.

Iterations

Enter the maximum number of iterations to be performed during optimization.

Multistart

Enter the number of times to run the optimizer with different initial values.

If set to a number greater than one, the optimizer will run multiple times. The first optimization is started with the current working parameter set, while subsequent optimizations start with random parameter values. This can be used to find a global optimum.

Tolerance

The optimization stop criterion. Typical values range from 1e-9 to 1e-16.

The value is used to stop the optimization in the following cases:

- A parameter change by the optimization algorithm would be smaller than this value.
- The change in the cost function is smaller than this value. The optimization has converged.

Finite Difference Factor

The gradients of external models (FMU, ...) are calculated by finite gradients.

Gradient = (f(x+e) - f(x)) / e

with e = Finite Difference Factor * Normalized Parameter Range * 1.5e-8

If the output of a model does not change by such a small value, the optimizer stops at the first iteration. In this case, the **Finite Difference Factor** must be increased. Typical values are 10, 100, 1000, 10,000,...

1.5e-8 is the square root of the smallest number that can be shown with a double precision floating point number. If the model uses single precision floating point numbers, set the factor to 10,000 to consider the loss of precision.

Respect Constraints

🔞 Optimizer Options	– 🗆 🗙
Optimization Algorithm	Respect Constraints 🗸
With time-delay Code Genereration	
Iterations	10
Multistart	1
Tolerance	1e-9
Finite Difference Factor	1
Reset OK	Cancel

When activated, C code is generated from the function and optimization works on compiled C code. This only works if the function does not use external models. This speeds up the optimization when the **timeDelay** method is used in the function, in other cases it's usually slower.

Iterations

Enter the maximum number of iterations to be performed during optimization.

Multistart

Enter the number of times to run the optimizer with different initial values. If set to a number greater than one, the optimizer will run multiple times. The first optimization is started with the current working parameter set, while subsequent optimizations start with random parameter values. This can be used to find a global optimum.

Tolerance

The optimization stop criterion. Typical values range from 1e-9 to 1e-16.

The value is used to stop the optimization in the following cases:

- A parameter change by the optimization algorithm would be smaller than this value.
- The change in the cost function is smaller than this value. The optimization has converged.

Finite Difference Factor

The gradients of external models (FMU, ...) are calculated by finite gradients.

Gradient = (f(x+e) - f(x)) / e

with e = Finite Difference Factor * Normalized Parameter Range * 1.5e-8

If the output of a model does not change by such a small value, the optimizer stops at the first iteration. In this case, the **Finite Difference Factor** must be increased. Typical values are 10, 100, 1000, 10,000,...

1.5e-8 is the square root of the smallest number that can be shown with a double precision floating point number. If the model uses single precision floating point numbers, set the factor to 10,000 to consider the loss of precision.

Gradient-free Optimizer

Optimizer Options	– 🗆 X		
Optimization Algorithm	Gradient-free Opti ~		
With time-delay Code Genereration			
Iterations	10		
Multistart	1		
Tolerance	1e-9		
Reset OK	Cancel		

When activated, C code is generated from the function and optimization works on compiled C code. This only works if the function does not use external models. This speeds up the optimization when the **timeDelay** method is used in the function, in other cases it's usually slower.

Iterations

Enter the maximum number of iterations to be performed during optimization.

Multistart

Enter the number of times to run the optimizer with different initial values.

If set to a number greater than one, the optimizer will run multiple times. The first optimization is started with the current working parameter set, while subsequent optimizations start with random parameter values. This can be used to find a global optimum.

Tolerance

The optimization stop criterion. Typical values range from 1e-9 to 1e-16. The value is used to stop the optimization in the following cases:

- A parameter change by the optimization algorithm would be smaller than this value.
- The change in the cost function is smaller than this value. The optimization has converged.

Surrogate Optimization

Optimizer Options	- 🗆 X
Optimization Algorithm	Surrogate Optimiz Y
With time-delay Code Genereration	
Iterations	10
Multistart	1
Min Surrogate Points	20
Reset OK	Cancel

When activated, C code is generated from the function and optimization works on compiled C code. This only works if the function does not use external models. This speeds up the optimization when the **timeDelay** method is used in the function, in other cases it's usually slower.

Iterations

Enter the maximum number of iterations to be performed during optimization.

Multistart

Enter the number of times to run the optimizer with different initial values.

If set to a number greater than one, the optimizer will run multiple times. The first optimization is started with the current working parameter set, while subsequent optimizations start with random parameter values. This can be used to find a global optimum.

Tolerance

The optimization stop criterion. Typical values range from 1e-9 to 1e-16.

The value is used to stop the optimization in the following cases:

- A parameter change by the optimization algorithm would be smaller than this value.
- The change in the cost function is smaller than this value. The optimization has converged.

Min. Surrogate Points

The surrogate model is a radial basis function model, and the minimum number of basis functions used in the model is defined here. The initial model is assessed at the location of these basis functions.

Genetic Algorithm

optimizer Options	– 🗆 X
Optimization Algorithm	Genetic Algorithm
With time-delay Code Genereration	
Use Vectorized	\checkmark
Iterations	10
Multistart	1
Tolerance	1e-9
Population Size	200
Elite Count	10
Crossover Fraction	0.8
Reset OK	Cancel

When activated, C code is generated from the function and optimization works on compiled C code. This only works if the function does not use external models. This speeds up the optimization when the **timeDelay** method is used in the function, in other cases it's usually slower.

Use Vectorized

If activated, the MOCA function is evaluated with all candidate solutions in a single vectorized call. The function's memory usage increases by a factor proportional to the number of individuals in the population during the evaluation process.

Iterations

Enter the maximum number of iterations to be performed during optimization.

Multistart

Enter the number of times to run the optimizer with different initial values.

If set to a number greater than one, the optimizer will run multiple times. The first optimization is started with the current working parameter set, while subsequent optimizations start with random parameter values. This can be used to find a global optimum.

Tolerance

The optimization stop criterion. Typical values range from 1e-9 to 1e-16. The value is used to stop the optimization in the following cases:

- A parameter change by the optimization algorithm would be smaller than this value.
- The change in the cost function is smaller than this value. The optimization has converged.

Population Size

The number of candidate solutions available during the optimization process. Increasing the population size may lead to better solutions, but also results in longer processing times and higher memory usage. The usual range for this value is between 100 and 1000.

Elite Count

The number of good candidate solutions that are carried over unchanged to the next iteration. Using a smaller number causes the algorithm to converge at a slower pace. Common values range from 5 to 20% of the overall population size.

Crossover Fraction

Crossover candidate solutions are produced by combining two candidates. Mutated candidate solutions are created by changing a candidate at random. The crossover fraction controls the amount of crossover and mutation, with a range of 0 to 1. A value of 0.8 means that 20% of candidates undergo mutation, while 80% are produced by crossover. Typically, values range from 0.5 to 0.9.

Simulated Annealing

🐻 Op	otimizer Options					×			
Optim	ization Algorithm		Simulated Annealing						
With t	ime-delay Code G								
Iteratio	ons					10			
Multist	art		1						
Tolera	nce		1e-9						
Initial	Temperature		100						
Reann	ealing Interval	100							
	Deset	01/		0					
	Reset	OK		Car	icel				

With time-delay Code Generation

When activated, C code is generated from the function and optimization works on compiled C code. This only works if the function does not use external models. This speeds up the optimization when the **timeDelay** method is used in the function, in other cases it's usually slower.

Iterations

Enter the maximum number of iterations to be performed during optimization.

Multistart

Enter the number of times to run the optimizer with different initial values.

If set to a number greater than one, the optimizer will run multiple times. The first optimization is started with the current working parameter set, while subsequent optimizations start with random parameter values. This can be used to find a global optimum.

Tolerance

The optimization stop criterion. Typical values range from 1e-9 to 1e-16.

The value is used to stop the optimization in the following cases:

- A parameter change by the optimization algorithm would be smaller than this value.
- The change in the cost function is smaller than this value. The optimization has converged.

Initial Temperature

This value controls the probability of accepting worse solutions during the optimization process. Typical values range from 50 to 200.

The initial temperature decreases by **Initial Temperature * 0.95**^{Iterations} per iteration. As the temperature decreases, the probability of accepting worse solutions decreases.

Reannealing Interval

After this number of iterations, the temperature is increased. Typical values are 50 to 200.

Particle Swarm

🐻 Optimizer Options	- 🗆 X
Optimization Algorithm	Particle Swarm
With time-delay Code Genereration	
Vectorization	\checkmark
Iterations	10
Multistart	1
Swarm Size	100
Reset OK	Cancel

With time-delay Code Generation

When activated, C code is generated from the function and optimization works on compiled C code. This only works if the function does not use external models. This speeds up the optimization when the **timeDelay** method is used in the function, in other cases it's usually slower.

Iterations

Enter the maximum number of iterations to be performed during optimization.

Multistart

Enter the number of times to run the optimizer with different initial values.

If set to a number greater than one, the optimizer will run multiple times. The first optimization is started with the current working parameter set, while subsequent optimizations start with random parameter values. This can be used to find a global optimum.

Tolerance

The optimization stop criterion. Typical values range from 1e-9 to 1e-16.

The value is used to stop the optimization in the following cases:

- A parameter change by the optimization algorithm would be smaller than this value.
- The change in the cost function is smaller than this value. The optimization has converged.

Swarm Size

The number of candidate solutions available during the optimization process. Enlarging the swarm size leads to longer optimization duration and increased memory usage, but may lead to better solutions. Typical values range from 50 to 200.

For an explanation of the optimization algorithms, see "Optimization Algorithms" on page 47

4.7.4 Consideration of the Roughness

Roughness of a Curve

The roughness *r* describes the change in the slope at the support points of the curve *c*. If the curve is given by an expression c(x), the roughness is given as the sum of the second derivatives at the support points x_i , i=1..k.

For a curve, this means:

$$r_{curve} = \sum_{i=1}^{k} \left(\frac{d^2 c}{dx^2} \right|_{\chi_i} \right)^2$$

Equ. 4-6: Roughness r of a curve

Roughness of a Map

The Roughness of a map $m = m(x_1, x_2)$ has to consider the second input variable and therefore is defined as:

$$r_{map} = \sum_{i=1}^{k} \left(\frac{d^2 m}{dx_1^2} \Big|_{\chi_{1i}} + \frac{d^2 m}{dx_2^2} \Big|_{\chi_{2i}} \right)^2$$

Equ. 4-7: Roughness of a map

where *K* is the number of the support points $(x_{11}, x_{21}), ..., (x_{1K}, x_{2K})$ of the map. The roughness is shown in the "Parameter Optimization Properties" Window (**Optimization Step > Optimization Criteria** button).

4.7.5 Optimization Criterion

To optimize one or more outputs, there is the target criterion **Smoothness** that limits the variation of the stiffness (see "Consideration of the Roughness" on the previous page) of a map or a curve. This factor is a weighted penalty term,

$$\operatorname{argmin}_{p} \left(\sum_{i=1}^{N} (Y_{i,predicted} - Y_{i,measured})^{2} + \sum_{i=1}^{M} Si * r_{curve/map} \right)$$

Equ. 4-8: Smoothness factor S_i

where S is the Smoothness factor and M the number of support points of the map or curve.

Different Smoothing Factors in X/Y Direction

For maps, Cube-3D and Cube-4D, the smoothing factor S is used per input direction. If only one value is given, the factor works for all directions. If a vector is given, each element corresponds to one input direction. In case of a map, e.g., one may set smoothness in X direction to 0.1 and in Y direction to 0.001 by specifying a vector [0.1 0.001].

The smoothing factor has to be a real number ≥ 0 and can be defined in the Optimization Step either via the **Optimization Criteria** button or by directly editing the column "Smoothness" in the parameter table.

Optimization Criteria Selection

For curves, maps, Cube-3D and Cube-4D, the gradients in each respective input direction can be constrained by defining a limit for the maximal and/or the minimal gradient. The gradient constraints can be defined in the Optimization Step via the **Optimization Criteria** button. All gradient constraints are handled as weak constraint by the optimizer.

You can also assign a weight to each set of gradient limits. This weight sets the priority of the gradient limits in relation to the primary optimization criteria. A higher weight makes the gradient limits more important.

🐻 Parameter Optimiza	ation Prop	perties					_		×
Set Parameter Properties									
Parameter	МарОр	tTorque	~	🗌 Optimize					
		Speed	Rel_A	irmass					
Smoothness	🗹 Link	0.001		0.001					
Map Roughness		0.5315		1.93					
Input Names		Set Gradient Limits		Curre	ent Gradients	Grad	lient Li	imit Wei	ghting
Speed		-Inf <=	In	f [-0.043	313, 0.002069]			1	
Rel_Airmass		-Inf <=	In	f [1.	218, 8.001]			1	
Grid Reduction Factor		1							
				OK	Apply			Cancel	

A step-by-step instruction how to set an optimization criterion is given in the online help.

4.7.6 Optimization Without Sequence

Unless your project must fulfill special requirements, all steps for optimization are performed in the "Optimize" tab of the Optimization pane:

- preparing the optimization
 - specifying optimization options
 - specifying optimization criteria
 - specifying local constraints
- running the optimization
- performing optional activities
 - showing data
 - dealing with reference parameters

See the online help for instructions how to do these steps.

4.7.7 Optimization With a Sequence

If your project must fulfill special requirements, you can define a sequence of optimization steps in the "Sequence" tab of the Optimization Step.

Opti	mize		Sequence	•					
Insert Command Delete Co		ommand		Edit Command					
		Command							
1	Set Optimization We	eight		\sim	[/] ALL, 0; %NNOut_u_sig%, 1				
2	Start Optimization			\sim	Default, 100, 1e-12, 5				
3	Set Optimization Weight				ALL, 0; %NNOut_n_sig%, 1				
4	Start Optimization			\sim	Default, 100, 1e-12, 5				
5	Set Optimization We	eight		\sim	~ ALL, 0; %NNOut_u_tanh%, 1				
6	Start Optimization			\sim	 Default, 100, 1e-12, 5 				
7	Set Optimization We	eight		~ ALL, 0; %NNOut_n_tanh%, 1					
8	Start Optimization			 Default, 100, 1e-12, 5 					
9	Set Optimization We	~ ALL, 0; %NNOut_u_max%, 1							
10	Start Optimization		✓ Default, 200, 1e-12, 5						
11	Set Optimization We		~ ALL, 0; %NNOut_u_max%, 1						
12	Start Optimization			 Default, 200, 1e-12, 5 					
13	-			\sim					

Special requirements can be, e.g., the following:

- First, one map shall be calibrated with a part of the data.
- Then the result of the first map is kept and the other parameters are calibrated.

Once your sequence is complete, you can run the optimization.

See the online help for instructions how to create and run an optimization sequence.

4.7.8 Parameter Correlation

You can use the **Analysis** > **Parameter Correlation** menu option to check if the parameters are correlated. A strong correlation (+1 or -1) means that two parameters do not independently affect the function node. To determine the correlation, the following happens.

ASCMO-MOCA calculates the gradient matrix g regarding all parameters:

$$G = \frac{\partial F(x, p)}{\partial p}$$

with

- **F** the optimization function to be minimized
- 🗴 training data
- parameter

ASCMO-MOCA then calculates the covariance matrix C:

$$C = ((G^T * G) + I))^{-1}$$

with

– G^{T} - transpose of G

- I - identity matrix

Then the correlation coefficients c between parameters a and b are calculated. $c_{ab}, c_{aa},$ and c_{bb} are elements of the covariance matrix.

$$c_{ab} = \frac{C_{ab}}{\sqrt{C_{aa}} * \sqrt{C_{bb}}}$$

The results are displayed in the "Parameter Correlation" window.

4.7.9 Parameter Sensitivity

You can use the **Analysis > Normalized Parameter Sensitivity** menu option to check the influence of parameters on function nodes.

ASCMO-MOCA calculates the gradients G of a node regarding the parameters for all parameters p_1 for all training data points x_1 :

$$G = \frac{\partial F(x, p)}{\partial p}$$

with

- **F** the optimization function to be minimized
- **x** training data
- parameter

The gradient is normalized to the range of the parameter:

$$g_{ij} = \frac{\partial F(x_i, p_j)}{\partial p_j} * (u_j - l_j)^{-1}$$

with

- uj upper limit of parameter pj
- 1j lower limit of parameter pj

The results are displayed in the "Normalized Parameter Sensitivity" window as follows:

Fig. 4-7: Normalized parameter sensitivity

- dark gray area: maximum gradient regarding one parameter pj over all training data points
- red line: mean gradient regarding one parameter pj over all training data points
- light gray area: mean gradient ± 1 o regarding one parameter pj over all training data points

(i) Note

Smaller values indicate less influence of the parameters on a node.

4.8 Symbolic Regression

Symbolic regression is a type of regression analysis on a symbolic level. Transferred to an application in the context of ASCMO-MOCA, this means to automatically find an equation-based or hybrid (mixing equation- and data-based approaches) model with the following properties:

- Model corresponds to a dataset well in a statistical sense.
- Model is as compact as desired.
- Model is human-interpretable.

The symbolic regression plugin of ASCMO-MOCA provides a solution to this task by carrying out optimizations on the structural level of equations and local optimizations to fit identified models to data. In terms of embedded software function engineering these two steps correspond to function engineering and calibration, respectively.

ASCMO-MOCA supports engineers carrying out this steps more efficiently and effectively using artificial-intelligence. From an alternative perspective, the method can also be viewed as an automated way of system identification.

The Symbolic Regression Feature is located in the Function Step.

4.8.1 Symbolic Regression Workflow

Symbolic Regression supports you to derive automatically a formula from the data with a genetic algorithm. You can also use Symbolic Regression for (time-dependent) dynamic functions with time-delay.

Nod	de Inser	De	lete	Edit	Validate	All	Symbolic Regr	ession •	Deper	ndency Gra	ph
							Main Fu	nction Node	s		
1 S)	ymbolic[-] = (a	1 • (a2Map ression	(Rel_Airma:	ss, Speed) - a3Curv	e(Ignition)))				- 0	x ı
N	lode Name	Unit	Target								
sy	mbolic	- 8	Torque	Meas [-]							~
S	elected input	5		Opt	timization	Configuration	n	Selected	Alphabet		
Rei	eed [-] I_Airmass [-] nition [-]			Pop	oulation Siz	e.	S	×	1	+	-
				Nur	mber of Ge	nerations	50	sin	cos	tan	exp
				 Opt Par 	imizer Itera simony Co	ations	10	log	x ²	\checkmark	x ^a
•	Symbolic Regressi	on "symbolic" fo Pareto Fron	r "Torque_Meas" nt (Click to se	- elect)	0 X		⊠ s	min	max	gaussian	sigmoid
	80 89 60							Curve	Map ^{3x3}	Map ^{5x5}	timeDelay
	¶ [−] enbuo										
	RMSE 7		0		8.5630						
Lo	0 5	10 15 Co	20 mplexity	25 30	35	3	Open Re	sult	Continue		Cancel

The workflow to carry out Symbolic Regression is comprised of several steps.

- Data Acquisition:

Acquire data which describes the system well. The dataset size should allow for a meaningful split into training, validation, and test data.

- Preparations and Data Import:

Requirements for Data

- Clean: all values are meaningful, no NaNs given, no errors from defect measurement devices, etc.
- Labeled: For all values the measured value (label) is defined along with its units.
- Splittable: The dataset can be split into training, validation and test data. All being representative in a statistical sense.
 After data preparation, start import.

Algorithm Configuration:

- Start the algorithm configuration with **Start Symbolic Regression** button in the Function Step.
- Define the regression problem by setting the target quantity in the field **Target** and choose the input quantities by shifting them from **Available Inputs** to **Selected Inputs**.
- Configure the algorithmic details in the fields below **Optimization Configuration**. See Algorithmic Details.
- Choose the function/operation types you want to use by clicking on the elements below **Selected Alphabet**.

- Execution:

Start the algorithmic execution by clicking on **OK** in the "Symbolic Regression" window and stop the execution at any time by clicking on **Stop** in the status bar beneath log window (main window). In the log window on the command line you will see the value of the selected **Fitness Method** for the best model which was found at the current iteration step.

- Model Choice:

Once the algorithm is finished, ASCMO-MOCA will open a window showing the pareto-front. The latter is made of the models contained in the paretoset. The pareto-set is defined in the space spanned by Fitness Method (yaxis) and Complexity (x-axis). Click on the bubbles to select a model. You will see the value of the currently selected Fitness Method right at the bubble. Additionally ASCMO-MOCA provides you with the selected model in the Function Step.

 Statistical Analysis: Evaluate the performance of the selected model in a statistical sense by choosing Analysis > Residual Analysis. See also Residual Analysis.

Structural and Semantic Analysis:

The Function and Parameters Step allow you to analyze and interpret the model on a structural and semantic level, respectively. The Function Step gives you an inside into the model itself.

The Parameters Step allows a detailed inspection of all parameters and maps, which are used by the model of your choice.

- Structure Adaption and Re-Optimization:

ASCMO-MOCA seamlessly allows you to adapt the model structure as described in Functions. Once done, you can carry out a re-optimization of this structure. See also "Optimization" on page 46.

4.8.2 Algorithmic Details of Symbolic Regression

Fig. 4-8: Algorithmic Details of Symbolic Regression

To carry out symbolic regression, ASCMO-MOCA uses a modified version of genetic programming. The algorithm is specifically suited to fulfill the required task. The major algorithmic steps are described below and in the image.

Function Set

A set of functional expressions is defined which are used during the course of the algorithm. In ASCMO-MOCA this step is covered by choosing the function/operation types you want to use by clicking on the elements in the "Selected Alphabet" area.

Population

After the function set is defined, a population/set of models is created on a stochastic basis. Starting with this step the models are represented as graphs. The creation process is constrained w.r.t. the population size and the graphs' dimensions. During the course of the algorithm the population evolves from the evolution operations. Each iteration-step in the main loop of the algorithm corresponds to one generation.

Corresponding Configuration Parameters (**Optimization Configuration** & **Initial Configuration**) in the "Symbolic Regression" window

- Random Seed: Integer used as the seed for the random number generation, which effects all stochastic steps within the algorithm. Modify this value to improve the performance in critical cases.
- **Population Size**: Number of models contained in each population. For hard problems population sizes of several thousands have performed well.
- Population Creation Method (Initial Configuration): The initial population is created with one of the three different methods. For unknown problems the half-and-half methods is a good choice.
 - half and half: One half of the population is created with full method and the other half of the population is created with the grow method. The used maximum depth value is determined from a uniform distribution within Population Init Depth Min and Population Init Depth Max, for each graph individually.
 - full: Each graph is created such that it has a depth of Population Init Depth Max in all branches.
 - grow: Each graph is created such that at least one branch has a depth of **Population Init Depth Max**.
- Population Init Depth Min: Minimum initial depth.
- Population Init Depth Max: Maximum initial depth. Graphs with a depth of ten are already huge and very complex. Numbers around four are more appropriate.
- Max Program Complexity (Optimization Configuration): No graphs are created (initially and during evolution) having a larger complexity. A graphs' complexity is an integer given by the sum of complexities of all nodes the graph is made of. Node complexities are defined ASCMO-MOCA internally based on experience. Using this option offers you to fasten the algorithm's execution if you have a clear expectation and experience on the complexity for your symbolic regression problem.
- Max Program Depth: No graphs are created (initially and during evolution) having a larger depth.
- Max Program Size: No graphs are created (initially and during evolution) having a larger size (number of nodes).

Datasets

Naturally, symbolic regression requires one or several datasets to be carried out.

Optimization

For each graph an individual and local optimization is performed. The goal of this optimization is to minimize the value obtained by using the method given by the Fitness Method.

Corresponding Configuration Parameters (Optimization Configuration)

- Optimizer Method
 - Levenberg-Marquardt method (LM)
 - Trust-region-reflective method
 - **Dogbox** algorithm
- Optimizer Iterations: Maximum number of iterations the local optimization should be carried out.

Termination criteria fulfilled Request

The algorithm stops if one of the following criteria holds:

- It holds for one of the models in the population that the value obtained by using the method given by the Fitness Method is smaller than the termination threshold.
- The maximum number of generations is reached.

Corresponding Configuration Parameters (**Optimization Configuration**)

- Termination Threshold: Threshold used for termination. The threshold is a positive double.
- Number of Generations: Maximum number of generations.

Fitness

For each model in the population it's fitness is computed. To do so the raw-fitness is computed as the sum of two parts:

- 1. The value obtained by using the method given by the fitness method, the cost-function.
- 2. A scalar value penalizing the complexity of the graph.

The actual fitness itself is obtained from normalizing the raw-fitness to values within [0,1].

Corresponding Configuration Parameters (**Optimization Configuration**)

- Fitness Method: Various cost-function types are available.
 - **rmse** Root mean squared error.
 - **mse** Mean squared error.
 - **abs** Normalized absolute difference (mean of L^1-norm).
- Parsimony Coefficient: Factor to weight the impact of the complexity penalty. For unknown problems, a value of 1 is a reasonable starting point. For smaller values of the Parsimony Coefficient the formula gets more complex.

Program Selection

The structural optimization of the graphs starts with selecting graphs from the population. The selection is done on the basis of the fitness obtained in the previous step, with the methods described below.

Corresponding Configuration Parameters (Optimization Configuration)

- Program Selection Method:
 - **tournament**: From the given population **Tournament Size** graphs are randomly drawn from the population and the one with the best fitness is selected.

> Tournament Size: Number of programs to select from tournament. Choosing the minimum of 2 individuals will lead to highly volatile progress of the algorithm. If the number converges to Population Size, a dominance of the fittest programs is enforced. Choosing about 10% of the Population Size is a good starting point.

- **fitness-based**: A probability distribution is derived from the fitness of all graphs in the current population. This distribution is sampled to select graphs. The fitter a graph is, the more likely it will be selected.
- greedy overselection: The population is divided into a high-fitness group and a low-fitness group. For both groups fitness-based selection is used. If the high-fitness group is used it is determined with **Probability Top**. Otherwise the low-fitness group is chosen.

> Fraction Top: The fraction of the population defines the size of the high-fitness group. The group is filled with the graphs having the highest fitness.

> **Probability Top**: Probability with which the high-fitness group is used for fitness-based selection.

• **multi tournament**: Similar to tournament. With a selectable probability, however, fitness/complexity is taken as a criterion instead of just fitness. This option states the a multi-criterial optimization possibilities, only given for a gradient-free technique like genetic programming.

> Tournament Size: Number of programs to select from tournament. Choosing the minimum of 2 individuals will lead to highly volatile progress of the algorithm. If the number converges to Population Size, a dominance of the fittest programs is enforced. Choosing about 10% of the Population Size is a good starting point.

> **Probability Fitness**: Probability to use fitness/complexity instead of fitness.

Evolution

The evolution step comprises the graph-modification operations of reproduction, expansion, mutation, and crossover. It is the actual structural optimization step and relies on the graph selected in the previous step. The probabilities for the different techniques determine how likely they are to be applied to this graph.

Corresponding Configuration Parameters (Evolution Probabilities)

For the four options, each probability defines how likely the according option is carried out. The sum of the probabilities has to equal 100.

- Crossover Probability: Setting it in the range of 80 90 is a meaningful choice.
- **Reproduction** Probability: This operation ensures that graphs with a good fitness are likely to be taken-over unchanged to the next generation.
- **Expansion** Probability
- Mutation Probability

Reproduction

Reproduction of a graph simply means to take it over as-is in the population of the next generation.

Expansion

The expansion of a graph is carried out by:

- randomly selection a terminal node of the graph,
- creating a new random graph with depth two,
- replacing the terminal node by the new graph.

If the expanded graph has a better fitness than the original one, it is taken over to the next generation. Else, the original graph is taken over as-is.

Mutation

A mutation of a graph is be carried out with three different operations, each of them being applied to a randomly selected node of the graph.

- New Tree: The selected node and all sub-nodes are replaced by a newly created graph with a maximum depth of three.
- Hoist: The selected node of the graph is removed, keeping the consistency of the graph. This method helps to prevent bloat of the graphs.
- Point: The selected node is replaced by a random node with the same number of inputs.

How likely which method is applied is determined by the individual probability. The sum of all three probabilities has to equal 100.

Corresponding Configuration Parameters (Mutuation Probabilities)

- New Tree: Probability to carry out the new tree operation.
- Hoist: Probability to carry out the hoist mutation operation.
- **Point**: Probability to carry out the point mutation operation.

Crossover

The crossover operation essentially is about recombining two graphs to find an even more fitter one. The operation is carried out by the following steps:

- 1. The graph selected in the previous step is defined as the target graph.
- 2. A second graph is selected exactly as described in Program Selection and defined to be the source graph.

- 3. In both graphs one node with all its sub-nodes is selected randomly as branches to-be-exchanged.
- 4. The branch in the target graph is replaced by the branch of the source graph.

The resulting graph is taken over to the population of the next generation.

Reached Population Size Request

The evolution operations are applied until the population of the next generation has **Population Size** number of members.

5 Working with ASCMO-MOCA

5.1 User Interface of ASCMO-MOCA

This section provides an overview of the user interface of ASCMO-MOCA.

A detailed description of the functions of the main menu and the various dialog windows associated with it is located in the context-sensitive online help (<F1> or Help > Online Help).
5.2 Elements of the ASCMO-MOCA User Interface

This chapter provides a brief overview of the user interface key elements. The following figure shows the main user interface of ASCMO-MOCA.

🔞 ETAS ASCMO								- 0	×
File Data Analysi	s My Views	Plugins Help							
🖺 🕼 📕 📓 🖄	2011 12	3 F 🔍 🤍 🖑	>>~~□□	2					
Essentials	Data		Conversion Formulas						
	Dataset	1: Dataset 1		 Weight 1 	Import Data *			Data Samplir	ıg
Data	No.	Weight	Speed [rpm]	Rel_Airmass [%]	Ignition [deg CA]	Torque_Meas [Nm]		Static (no time	#)
Parameters	1	1.00000	597.000	47.8089	-26.8200	7.02201	^	Rows	
1 arameters	2	1.00000	597.000	51.6611	-26.8200	19.5251		Weight	
Vieualization	3	1.00000	597.000	40.1047	-22.2111	-3.67776		Delate	
VISUAIIZATION	4	1.00000	597.000	43.9568	-22.2111	8.14535		Delete	
	5	1.00000	597.000	47.8089	-22.2111	21.1618		Columns	
MOCA	0	1.00000	881.211	47.8089	-22.2111	1.08058		Delete	
Madala	0	1.00000	597.000	51.0011	-22.2111	34.1432		001010	
IVIODEIS	0	1,00000	601.211	51.0011	-22.2111	47,6730		Datasets (AII)	
-	10	1.00000	597.000	50.0102	-22.2111	62 1931		Filter Data	
Function	11	1.00000	597.000	32 4005	-17 6021	-14 1937			
	12	1 00000	597.000	36 2526	-17 6021	-1 90174		Remove Na	N
Optimization	13	1.00000	881.211	36.2526	-17.6021	-18.1929			
	14	1.00000	597.000	40.1047	-17.6021	10.9310			
	15	1.00000	881.211	40.1047	-17.6021	-5.53035			
	16	1.00000	597.000	43.9568	-17.6021	23.8206			
	17	1.00000	881.211	43.9568	-17.6021	6.26536			
	18	1.00000	597.000	47.8089	-17.6021	38.2851			
	_4	1.00000	881.211	47.8089	-17.6021	19.5687			
•		1.00000	1165.42	47.8089	-17.6021	0.470531			
	21	1.00000	597.000	51.6611	-17.6021	52.3921	~		
	Channel	Name Mapping	Map Selected Dataset	* Delete	Import Export	•			
			Name in Projec	t		Name in Dataset 1			<<
	1 Speed				Speed			~	
	2 Rel_Airma	188			Rel_Airmass			~	
	3 Ignition				Ignition			~	
	4 Torque_M	leas			Torque_Meas			~	
	5 New Nam	ie .			-			~	
14:09									^
14:09 Loaded Project	'C:\Program Fil	les\ETAS\ASCMO 5.12	2\Example\Moca\Torque.mo	ca' (Open folder) 5					
							Working Param	eterset: Paramete	erset 1

Fig. 5-1: Main user interface elements of ASCMO-MOCA

Most of the user activity will take place in the main working window. Moreover, there is a number of interactive options in the navigation and the main menu bar that are described below.

- ① Main menu
- ② Toolbar (see "Toolbar" below)
- ③ Navigation pane (see "Navigation Pane of ASCMO-MOCA" on page 75)
- ④ Main working window
- ⑤ Log window (see "Log Window" on page 76)

Status bar (footer) with current state information

5.2.1 Main Menu of ASCMO-MOCA

For details of the functions of the main menu, refer to the online help (<F1> or **Help > Online Help**).

5.2.2 Toolbar

The toolbar contains a number of buttons that will run the following functions.

}	New project	Opens a new instance of ASCMO-MOCA.
\$	Open project	Opens a data selection dialog where you can open available projects (*.moca).
,	Save	Saves the current project.
**	Scatter plot for train- ing data	Opens the Data and Nodes - Training Data window. See also "Graphical Analysis of Data and Function Nodes" on page 20.
24	Scope view of resid- uals, function eval- uation and training data	Opens the Scope View - Training Data win- dow.
**	Open visualization in separate window	
	Pause evaluation	Pauses the evaluation of functions and external models unless you click Optimize . When activated, only NaNs are returned.
10		
	Recalculate once, ever	n if pause is active, update RMSE display
3	Recalculate once, even Select active data- sets	n if pause is active, update RMSE display Opens the Active Datasets window.
	Recalculate once, even Select active data- sets Automatically quant- ize all parameters and limits of all para- metersets on para- meter change	 n if pause is active, update RMSE display Opens the Active Datasets window. Automatic quantization automatically applies the A2L conversion formula after a para- meter change. Quantization is not active dur- ing optimization, but is applied when optimization is finished.
	Recalculate once, even Select active data- sets Automatically quant- ize all parameters and limits of all para- metersets on para- meter change Zoom in	 n if pause is active, update RMSE display Opens the Active Datasets window. Automatic quantization automatically applies the A2L conversion formula after a para- meter change. Quantization is not active dur- ing optimization, but is applied when optimization is finished. By clicking in the plot, the visualization becomes larger.
	Recalculate once, even Select active data- sets Automatically quant- ize all parameters and limits of all para- metersets on para- meter change Zoom in Zoom out	 n if pause is active, update RMSE display Opens the Active Datasets window. Automatic quantization automatically applies the A2L conversion formula after a parameter change. Quantization is not active during optimization, but is applied when optimization is finished. By clicking in the plot, the visualization becomes larger. By clicking in the plot, the visualization becomes smaller.
 ▶ ▶	Recalculate once, even Select active data- sets Automatically quant- ize all parameters and limits of all para- metersets on para- meter change Zoom in Zoom out Pan	 If pause is active, update RMSE display Opens the Active Datasets window. Automatic quantization automatically applies the A2L conversion formula after a parameter change. Quantization is not active during optimization, but is applied when optimization is finished. By clicking in the plot, the visualization becomes larger. By clicking in the plot, the visualization becomes smaller. This button allows you to move the plot within the window.
 ▶ ↓ ↓	Recalculate once, even Select active data- sets Automatically quant- ize all parameters and limits of all para- metersets on para- meter change Zoom in Zoom out Pan Rotate 3D	 If pause is active, update RMSE display Opens the Active Datasets window. Automatic quantization automatically applies the A2L conversion formula after a parameter change. Quantization is not active during optimization, but is applied when optimization is finished. By clicking in the plot, the visualization becomes larger. By clicking in the plot, the visualization becomes smaller. This button allows you to move the plot within the window. This button allows you to rotate a plot in all dimensions.

Add x axis cursor in plot
 Add y axis cursor in plot
 Mouse selection in plot with rectangle

 Mouse selection in plot with lasso
 Hide all selections
 Undock current visualization in separate window
 Lock visualization against changes
 Mouse selection in plot with lasso
 Undocks current visualization tab into a separate window.
 Lock visualization changes unless you click Optimize.

5.2.3 Navigation Pane of ASCMO-MOCA

The navigation pane at the left side of the window leads you through the process steps from the import of the measuring data up to the export of the optimized parameters.

Essentials
Data 1
Parameters 2
Visualization 3
MOCA
Models 4
Function 5
Optimization 6

1 – **Data**: Opens the Data Step in the main working window. Here, you can import a measurement file, edit the measurement data and export the data to a measurement file. In addition, the data channel from the measurement file can be mapped to the respective function variable (Channel Name Mapping).

Further information can be found in "Data" on page 19, in the tutorial (see "Step 1: Data Import" on page 81), and in the online help

2 – **Models**: Opens the Models Step in the main working window. You can import models and link the parameters, inputs and outputs with the available parameters in ASCMO-MOCA.

i) Note

To use a Simulink[®] model in ASCMO-MOCA, Simulink[®] installation with a valid license is required.

Further information can be found in section "Models" on page 36, in the tutorial (see "Step 4: Models" on page 99), and in the online help.

3 – **Function**: Opens the Function Step in the main working window. The function will be constructed from the stepwise creation of the nodes. The main point here is the linkage of the parameters and the data.

Further information can be found in "Function" on page 39, in the tutorial (see "Step 5: Build Up the Function" on page 109), and in the online help.

4 – **Parameters**: Opens the Parameters Step in the main working window. Here, you can manage and change maps, curves, scalars, cube-3D, cube-4D cube, compressed model and matrix for the usage in the Function Step.

Further information can be found in "Parameters" on page 26, in the tutorial (see "Step 3: Parameters" on page 98), and in the online help.

5 – **Optimization**: Opens the Optimization Step in the main working window. The parameter optimization takes place in the main working area of the optimization pane. Within this pane, the following major tasks can be performed:

- Definition of the parameter-related optimization criterion (e.g., smoothness, gradient constraints).
- Determination of parameters as reference for the comparison with following optimization results.
- Export of optimized parameters.

After performing these tasks, you can start the optimization.

Further information can be found in "Optimization" on page 46, in the tutorial (see "Step 6: Optimization" on page 116), and in the online help.

6 - **Visualization**: Opens the Visualization Step in the main working window. In this step you can visualize your data.

Further information can be found in "Visualization" on page 31, and in the online help.

5.2.4 Log Window

The bottom part of the main window displays information about the current program sequence, e.g. information about the optimization. Blue underlined words in the log window are links that open, e.g., the online help or the user guide (a and b in the figure) or give access to sample projects (c - e in the figure). In addition, the log files can be saved for analysis and error handling reasons.

Fig. 5-2: Information in the log window (example; a: link to the online help, b: link to the User Guide PDF)

Saving the logfile

1. Right-click in the log window and select **Save Log to File** from the context menu.

The "Save Log file As" window opens.

2. Insert a file name and click **Save**.

The log file is saved.

6 Tutorial: Working with ASCMO-MOCA

This chapter will help you with an example to familiarize yourself with the basic functions of ETAS ASCMO-MOCA.

6.1 About this Tutorial

In this section you can find information about the structure of the tutorial and about the requirements on the measurement data that are used for the parameter optimization.

6.1.1 Challenge in this Tutorial

An ECU often contains models for the calculation of signals, as the sensor-based data logging is either too difficult or too expensive. A common use case is, for example, the calculation of the engine torque. With ASCMO-MOCA you can set up and calibrate a function and optimize the function's parameters based on the measured sensor data. The goal of the optimizer is to minimize the root mean square error "RMSE (Root Mean Squared Error)" on page 24 of the function's parameter. That means that the deviation between the function prediction and the measured sensor data will be minimized.

The structure of the torque related function, that will be modeled step by step during the tutorial, is displayed in "Step 5: Build Up the Function" on page 109.

6.1.2 Structure of the Tutorial

The subsequent tutorial is structured with the following working steps:

- "Start ASCMO-MOCA" on page 80

This part of the tutorial describes how to start ASCMO-MOCA on your system.

- "Step 1: Data Import" on page 81

In this first step, the measurement data will first of all be loaded and the channels will be associated with a function node.

- "Step 2: Data Analysis" on page 93

For clearing up and evaluating the measuring data, at any time, you have the possibility to visualize it after the import graphically for anytime.

- "Step 4: Models" on page 99

In this step, you are able to link an existing Simulink model with and prepare the mapping of the parameters, the inputs and outputs.

- "Step 5: Build Up the Function" on page 109

After reading the measuring data and check the plausibility, you can start to set up the function for the torque sensor that will be modeled during the tutorial.

- "Step 3: Parameters" on page 98

This step allows you to check and possibly adapt the parameters. Only the parameters will be visualized, which you have defined as reference after an optimization "Step 6: Optimization" on page 116.

- "Step 6: Optimization" on page 116

Before starting with the optimization you have to insert different settings, which influence the optimization. After you have inserted these settings, you can finally start the optimization.

- "Step 7: Export" on page 118

In this step you will export the created and optimized parameters. The parameters can be exported as DCM file (*.dcm) and the project can be saved for the runtime environment with limited functionality.

6.1.3 Requirements on Measurement Data

Basically, a simple rule needs to be considered for a successful parameter optimization in ASCMO-MOCA: The quality of the function's parameter optimization result always depends on the quality of the measurement data. Or in other words: If the parameters have been calibrated based on non space-filling or even wrong data, the function prediction is of little use.

Importing the measurement file in ASCMO-MOCA requires a file with the following properties:

- Data format:
 - Microsoft Excel (*.xls/*.xlsx)
 - MDA Export (*.ascii)
 - Comma Separated Values (*.csv/*.txt)
 - Measurement Data Format (*.dat / *.mf4 / *.mdf / *.mdf3)
- Outputs in columns
- Names (and perhaps the units) have to be inserted in the first row (or in the first and second row).

i) Note

The data used for parameterization do not necessarily have to be derived from a physical experiment (e.g. test bench). They can also be for example a result of a computer simulation.

6.1.4 Data for Modeling

The data used for the parameter optimization in this tutorial can be found in the **Torque_Data.xlsx** Excel sheet in the **<installation>\Example** directory.

<installation>is the installation directory. By default, <installation> =
C:\Program Files\ETAS\ASCMO [[[Undefined variable ASCMOVar.prod_version2]]].

The measurement data from this file meets the already mentioned requirements for a successful parameter optimization in ASCMO-MOCA:

- The experimental design for logging the sensor data (e.g. at a test bench) corresponds to the DoE method, i. e. the measurements have been varied independently and are space-filling.
- The measured sensor data from the measurement file does not include any absurd values (e.g. values ≤ 0 for torque).

6.2 Start ASCMO-MOCA

This part of the tutorial describes how to start ETAS ASCMO-MOCA on your system.

Starting ASCMO-MOCA

- 1. Do one of the following:
 - i. In the ASCMO-DESK window, click the Model Calibration tile.

The start window of ASCMO-MOCA opens.

Open Recent Import Files New Demo Files Options Open ASCMO DESK License Management Clear History Help Video Tutorial	- 7-	Welcome to ETAS ASCMO-MO	DCA
Open Recent Import Files Import Mode Last Changed File Size New Import Mode Last Changed File Size Demo Files Import Mode Last Changed File Size Options Options Import Mode Last Changed File Size Options Options Import Mode Last Changed File Size Votions Votional Import Mode Last Changed File Size Votions Votional Import Mode Last Changed File Size Votions Votional Import Mode Last Changed File Si	•	🖺 Empty Project 🎐 Import Static Data	 Import Dynamic Data
New Demo Files Demo Files Demo Files Demo ASCMO DESK License Management Clear History telp User Manual Online Help Interface Help Video Tutorial	Open	Recent Import Files	Import Mode Last Changed File Size
Demo Files Dptons Dpen ASCMO DESK Leense Management Clear History telp User Manual Online Help Interface Help Video Tutorial	New		
Dptions Dpen ASCMO DESK Leense Management Clear History telp User Manual Online Help Interface Help Video Tutorial	Demo Files		
Dptions Dpen ASCMO DESK icense Management Zear History felp User Manual Online Help Interface Help Video Tutorial			
Dptions Open ASCMO DESK License Management Zlear History telp User Manual Online Help Initerface Help Video Tutorial			
Jpions Dipen ASCMO DESK License Management Zear History Help User Manual Online Help Interface Help Video Tutorial	- <i>1</i>		
Jeen Video Tutorial	Uptions		
Idear History telp User Manual Online Help Interface Help Video Tutorial	icense Management		
telp User Manual Online Help Interface Help Video Tutorial	Clear History		
User Manual Online Help Interface Help Video Tutorial	Help		
Online Help Interface Help Video Tutorial	User Manual		
Interface Help Video Tutorial			
Video Tutorial	Online Help		
	Online Help Interface Help		

2. Click **New** in the menu panel on the left.

static or dynamic data.

If you clicked **Empty Project**, the empty main window of ASCMO-MOCA opens. Now you can start with the measurement data import; see section

"Step 1: Data Import" below.

ETAS ASCMO – 🗆	×
e Data Analysis MyViews Plugins Help	
🐸 🖬 🔯 🖾 📲 🖿 🖄 🕼 🧐 🤄 🤄 🤄 🖉 🌾 🗀 🛛 🚳 🔎 📾	
Essentials Conversion Formulas	
Data Import Static Data Import Dynamic Data	
Parameters	
Visualization	
MOCA	
Models	
Function	
Optimization	
Channel Name Mapping () Map Selected Dataset • Delete Import •	
Name in Project	<<
1 New Name	
00 Checking license	^
00 License successfully checked out	~

6.3 Step 1: Data Import

In this first step, you will load the measurement data. When you import several files, you can assign the channel names to project specific names, e.g. if the channel names are not identical.

ETAS ASCMO										
File Data Analysi	is My Views Plugins Help									
🖺 😂 📕 🔯 🚰	🔀 💵 🕨 😰 🖅 🔍 🔍 🖑 🕻	> ☆ ๙ □ □ ∞ ■ ∩								
Essentials	Data C	Conversion Formulas								
Data	Import Static Data	Import Dynamic Data								
Parameters										
Visualization										
MOCA										
Models										
Function										
Optimization										
	Channel Name Mapping ()	Map Selected Dataset 🔹	Delete	Import	Export	•				
			N	ame in Project						<<
	1 New Name									
14:00 Checking licens	se									^
14:00 License succes	ssfully checked out									~
							Working Param	eterset: Par	rameters	et 1

Loading the measurement file

If you want to start a new project, you first of all have to load the required measurement file for parametrization and optimization.

- 1. In the main working area, click the button Import Static Data.
- 2. In the file selection window, select the file Torque_Data.xlsx from the <installation>\Example\Moca directory.

By default, <installation> is C:\Program Files\ETAS\ASCMO
[[[Undefined variable ASCMOVar.prod_version2]]].

3. Click Open.

If the import file contains several worksheets, the **Sheets** window opens.

4. In the **Sheets** window, select the worksheet you want to import (for this tutorial: Torque Data), then click **OK**.

SCN 🐻	10 Data Import - Torque_Data.xls				
File Extr	ras Help				
		Data Previe	w		
	Speed [-]	Rel_Airmass [-]	Ignition [-]	Torque_Meas	[-]
1	597	47.8089	-26.8200		7.0220 ^
2	597	51.6611	-26.8200		19.5251
3	597	40.1047	-22.2111		-3.6778
4	597	43.9568	-22.2111		8.1453
5	597	47.8089	-22.2111		21.1618
6	881.2105	47.8089	-22.2111		1.0806
7	597	51.6611	-22.2111		34.1432 🗡
	<				>
	Available Channels (4)	Imports	(0)	
Search			Na	ime	
Speed [-]]				
Rel_Airma	ass [-]				
Ignition [-1				
lorque_M	leas [-]				
		Import →			1
		← Remove			Ļ
Sort Lis	st Alphabetically Plot Selected		Sort List Alphabetically	Plot Selected	
			Imp	oort Canc	el

The ASCMO Data Import window (see) opens.

The **Data Preview** table shows all data in the table. In the **Available Chan-nels** field, you can determine which channels you want to import.

6.3.1 Checking the Plausibility of the Measurement Data

To check the measurement data again prior to the data import, you can display the measurement data, and you can check the relevance of the inputs.

To display measurement data prior to the import

In the **Available Channels** field, select one or more measuring data channels.

- 1. You can use the standard CTRL/SHIFT selection functions in the table, or click and hold LMB and drag the cursor over the cells/rows you want to select.
- 2. Do one of the following:
 - Click Plot Selected.
 - Select Extras > Plot Selected.

A window opens that displays one of the plots listed below, depending on the number of selected channels.

3. Check the plots for outliers or other unusual/implausible data.

1 channel: measured data against number of measurement - e.g., Speed against measurement number.

2 channels: data of one column against data of the other - e.g., Rel_airmass against Speed.

3 channels: data of the third column against the plane set up by the other two-e.g., Torque_Meas against the Speed-Rel_airmass plane.

4 or more channels: a series of scatter plots.

To check the relevance of the inputs

See "Checking the Relevance of the Inputs" on page 20 for more information on how the relevance is determined.

1. In the **Available Channels** field of the **ASCMO Data Import** window, select the input measuring data channels.

i) Note

At least one channel must remain unselected. If you select all channels, you cannot check the relevance of the inputs.

2. Click **Import** or double-click a channel.

The selected channels are added to the Import list.

3. Select Extras > Find Relevant Channels.

The Select Inputs for Channel Relevance window opens.

Select Inputs for	Channel Relevai	nce	—	×
Speed				 ^
Rel_Airmass				
Torque Meas				
				*
	OK	Cancel		

- 4. In that window, select at least two input channels and click OK.
- 5. The Select Outputs for Relevance window opens.

Select Outputs for Channel Relevance	—	×
Speed		^
Torque_meas		
		~
OK Cancel		

6. In that window, select one or more output channels and click OK.

The "Relevance of Inputs" window opens. It visualizes the influence of the inputs on the outputs.

- 7. Click **Show Table** to display the results as a data table in the **Relevance of Inputs Table** window.
- 8. If desired, refine your import selections based on the results.

6.3.2 Saving and Loading a Configuration

A configuration file (*.ini) may contain a special assignment of individual measurement data columns to the function variables.

Saving and loading a configuration

- In the ASCMO Data Import window, select File > Save Channel Config (*.ini).
- 2. In the file selection window, enter the name of the file under which the current configuration should be saved.
- To load a previously saved configuration file, select File > Load Channel Config (*.ini).

6.3.3 Importing Measurement Data

Now the data can be imported.

Importing the measurement data

1. In the ASCMO Data Import window, select all channels in the Available Channels field.

Available Channels (4)
Search
Speed [-] (i) Rel_Airmass [-] (i) Ignition [-] (i)
Torque_Meas [-] (i)

2. Click **Import** \rightarrow .

The channels are added to the **Import** list.

3. Click **Import** at the bottom right.

The data is imported in the current ASCMO-MOCA project. The content of the imported file is displayed in the **Data** tab.

Dataset 1: Torque_Data (Torque_Data) Work (Minimized Control (Minimize		Data		Conversion For	mulas					
Data No. Weight Speci [-] Ret/Armss [-] Import Torque/Mest [-] Static (no tin Review Parameters 1 1.00000 697.000 47.0009 -26.200 7.0221 Fill Weight Speci [-] Ret/Armss [-] Figure (-) Ret/Armss [-] Figure (-) Ret/Armss [-] Ret/Arms [-] <th>Essentials</th> <th>Dataset</th> <th>1: Torque_Data (Torqu</th> <th>ie_Data)</th> <th>~ 🖏 V</th> <th>Veight 1</th> <th>Import Data</th> <th>•</th> <th>Data Sampli</th> <th>ng</th>	Essentials	Dataset	1: Torque_Data (Torqu	ie_Data)	~ 🖏 V	Veight 1	Import Data	•	Data Sampli	ng
Parameters 1 1 0000 97 000 47 0000 2-26 000 7.0221 2 100000 957 000 56 811 -2-8 0200 7.0221 3 100000 957 000 40 1047 -2-2211 -3.6776 3 100000 957 000 47 0096 -2-2211 -3.6776 4 100000 957 000 47 0096 -2-2211 1.1618 6 100000 957 000 47 0096 -2-2211 1.1618 6 100000 857 000 47 0096 -2-2211 1.1618 7 100000 857 000 55 0512 -2-2211 1.1628 9 100000 957 000 52 0520 -17 6021 -1.8197 11 100000 957 000 32 2050 -17 6021 -1.8197 12 100000 957 000 32 4050 -17 6021 -1.8197 12 100000 957 000 32 9050 -17 6021 -2.8250 13 100000	Data	No.	Weight Sp	eed [-]	Rel_Airmass [-]	Ignition [-]	Torque_Meas [-]		Static (no tim	.e)
Parameters 2 0.0000 957.000 51.6611 -28.200 19.5251 Visualization 3 1.00000 557.000 43.9566 -22.2111 -3.47776 MoCA 5 1.00000 557.000 43.9566 -22.2111 2.1616 MoCA 5 1.00000 557.000 43.9566 -22.2111 2.1168 6 1.00000 557.000 43.9566 -22.2111 2.1868 Columns 7 1.00000 557.000 51.661 -22.2111 1.246979 Jatastat AL 9 1.00000 557.000 55.512 -22.2111 1.246979 Jatastat AL 9 1.00000 557.000 55.512 -22.2111 1.24162 Delete 010 1.00000 557.000 32.2005 -17.6021 -1.91074 13 1.00000 681.211 40.1047 -17.6021 -1.91074 13 1.00000 681.211 40.1047 -17.6021 -2.8206 -77.6021 -	Deservations	1	1.00000	597.000	47.8089	-26.8200	7.02201	^	Rows	
Visualization 3 0.0000 97.000 401047 -22211 -3.6776 MOCA 4 10000 557.000 47.0596 -222111 8.14555 MoCA 5 100000 557.000 47.0596 -222111 21.1655 Models 6 1.0000 557.000 47.0596 -222111 34.1455 Models 7 1.0000 557.000 15.0611 -222111 34.1452 Punction 9 1.0000 557.000 55.152 -222111 24.16956 10 1.00000 557.000 32.2556 -17.6627 -1.61.129 11 1.00000 557.000 32.2556 -17.6627 -1.61.129 12 1.00000 557.000 40.1947 -17.6627 -1.61.129 14 1.00000 557.000 40.1947 -17.6627 -5.53.035 15 1.00000 557.000 43.9568 -17.6627 -2.8.058 16 1.00000 557.000 47	Parameters	2	1.00000	597.000	51.6611	-26.8200	19.5251		Weight	
Visualization 4 0.0000 697.000 43.9580 -222111 8.4535 MOCA 5 1.0000 697.000 47.0090 -222111 1.0056 MOCA 6 1.0000 697.000 47.0090 -222111 1.0056 Models 7 1.0000 697.000 55.152 -222111 1.0056 Delete Models 9 1.0000 697.000 55.152 -222111 12.8579 Delete Function 10 1.0000 697.000 55.152 -222111 47.0780 Delete Optimization 11 0.0000 697.000 32.2026 -17.6021 -1.80174 13 1.0000 681.211 36.2528 -17.6021 -1.80174 71 1.0000 681.211 40.1047 -17.6021 -2.8206 15 1.0000 681.211 43.9568 -17.6021 -2.8205 - 15 1.0000 681.211 43.9568 -17.6021 2.8205 <td></td> <td>3</td> <td>1.00000</td> <td>597.000</td> <td>40.1047</td> <td>-22.2111</td> <td>-3.67776</td> <td></td> <td>weight</td> <td></td>		3	1.00000	597.000	40.1047	-22.2111	-3.67776		weight	
MOCA 5 0.0000 697.000 47.0089 -2.22111 21.168 Columns Models 6 1.0000 681.211 47.0089 -2.22111 1.00058 Date Models 8 1.00000 697.000 51.6611 -2.22111 34.1825 Date Date </td <td>Visualization</td> <td>4</td> <td>1.00000</td> <td>597.000</td> <td>43.9568</td> <td>-22.2111</td> <td>8.14535</td> <td></td> <td>Delete</td> <td></td>	Visualization	4	1.00000	597.000	43.9568	-22.2111	8.14535		Delete	
MOCA 6 1.0000 681.211 47.0009 -22.211 1.0005 Bit Models 7 1.0000 587.000 51.6611 -22.211 31.41.22 Bit 1.0005 Bit 1.12.211 31.41.22 Bit Bit 1.0000 587.000 55.6511 -22.2111 31.41.22 Bit Datasets (A) Function 10 1.0000 597.000 52.232 -17.6021 -16.11837 Remove N 11 1.0000 597.000 36.2328 -17.6021 -16.11837 Remove N 12 1.0000 597.000 36.2328 -17.6021 -16.11837 Remove N 14 1.0000 597.000 36.2328 -17.6021 -16.9310 1.9310		5	1.00000	597.000	47.8089	-22.2111	21.1618		<u>.</u>	
Total 7 00000 697.000 51.6611 -22.2111 34.132 Delet Models 9 100000 687.200 55.611 -22.2111 10.9679 Datasets (AI Function 10 1.00000 697.000 52.512 -22.2111 47.6720 Datasets (AI Function 11 1.0000 597.000 52.626 -17.6021 -14.1937 Remove N 12 1.00000 597.000 32.6256 -17.6021 -18.1929 Remove N 14 1.00000 597.000 40.1047 -17.6621 10.9310 Remove N 15 1.00000 597.000 43.9568 -17.6621 10.9310 11.1 Remove N 16 1.00000 597.000 43.9568 -17.6621 23.6266 - 18 1.00000 597.000 47.8089 -17.6621 26.5536 - 18 1.00000 597.000 47.8089 -17.6621 26.5536 - - <	MOCA	6	1.00000	881.211	47.8089	-22.2111	1.08058		Columns	
Models 8 100000 681 211 51.6511 -22.2111 12.9579 Datasets (Al Function 9 10000 597.000 59.353 -22.2111 47.670 Filer Datasets (Al 10 100000 597.000 59.353 -22.2111 47.670 Filer Datasets (Al 11 100000 597.000 59.353 -22.2111 61.9130 Filer Datasets (Al 12 100000 597.000 59.2526 -17.6021 -1.61370 Filer Datasets (Al 13 1.00000 597.000 59.2526 -17.6021 -1.61330 Filer Datasets (Al 14 1.0000 597.000 40.1047 -17.6021 -5.5305 Filer Datasets (Al 15 1.0000 681.211 40.1047 -17.6021 6.26556 Filer Datasets (Al 15 1.00000 681.211 43.35666 -17.6021 6.26556 Filer Dataset Filer Datasetasetase	moon	7	1.00000	597.000	51.6611	-22.2111	34.1432		Delete	e
9 1.00000 597.000 55.5132 222111 47.6720 Units and the second se	Models	8	1.00000	881.211	51.6611	-22.2111	12.9679		Deterrets (All	
Function 10 100000 597 000 59.3653 -22.211 62.1931 Filter Date Optimization 11 100000 597 000 32.4005 -17.6021 -1.41937 12 100000 597 000 32.2556 -17.6021 -1.6174 13 100000 597 000 32.2556 -17.6021 -1.8074 14 100000 597 000 40.1497 -17.6021 10.8301 14 100000 597 000 40.1497 -17.6021 2.8205 15 1.00000 681 211 40.1497 -17.6021 2.8205 16 1.00000 597 000 43.3568 -17.6021 2.8205 - 18 1.00000 597 000 43.3568 -17.6021 2.8205 - 18 1.00000 597 000 43.3568 -17.6021 2.8205 - 1 Speed Speed Speed - - - 2 ReLArmass ReLArmass - <td></td> <td>9</td> <td>1.00000</td> <td>597.000</td> <td>55.5132</td> <td>-22.2111</td> <td>47.6720</td> <td></td> <td>Datasets (All</td> <td>)</td>		9	1.00000	597.000	55.5132	-22.2111	47.6720		Datasets (All)
11 1.00000 597.000 32.4005 -17.6021 -14.1937 12 1.00000 597.000 38.2356 -17.6021 -1.9174 13 1.00000 681.211 38.2356 -17.6021 -1.9174 14 1.00000 681.211 38.2356 -17.6021 -1.9174 15 1.00000 681.211 40.1047 -17.6021 1.05310 16 1.00000 681.211 40.1047 -17.6021 2.82006 16 1.00000 681.211 43.9586 -17.6021 2.82006 17 1.00000 681.211 43.9586 -17.6021 2.82006 18 1 0.0000 597.000 47.2009 -17.6021 38.2051 V Channel Name Inproject Name In Troque_Data (Torque_Data) 1 5peed Speed Speed V 2 ReLArmass ReLArmass V V 3 uption Uption V V V	Function	10	1.00000	597.000	59.3653	-22.2111	62.1931		Filter Dat	a
Image: Dptimization Image: Image	T direction	11	1.00000	597.000	32.4005	-17.6021	-14.1937		Demove N	οN
Image: Second	Ontinuination	12	1.00000	597.000	36.2526	-17.6021	-1.90174		Tremove ru	an w.
14 1.0000 597.000 40.1047 -17.6021 10.9310 15 1.0000 581.211 40.1047 -17.6021 6.53035 16 1.0000 597.000 43.9568 -17.6021 23.8266 17 1.0000 597.000 47.8069 -17.6021 23.8266 18 1.0000 597.000 47.8069 -17.6021 32.8251 V Channel Name Mapping (0 Map Selected Dataset + Deteie Import Export + 1 Speed Speed Speed V 2 Rei Armass Rei Armass V 3 ynton Uprinton V 4 Torque_Mess Torque_Mess V 5 New Name - V	Optimization	13	1.00000	881.211	36.2526	-17.6021	-18.1929			
15 1.00000 881.211 40.1047 -17.6621 -5.5035 16 1.00000 597.000 43.9586 -17.0621 23.208 17 1.00000 681.211 43.9586 -17.0621 6.265.96 18 1.00000 681.211 43.9586 -17.0621 6.265.96 18 1.00000 597.000 47.0089 -17.0621 82.851 Channel Name Mapping (0) Mass Sected Dataset Deete Import Export + Name in Project Name in Torque_Data (Torque_Data) - 1 Speed Speed - - 2 ReLArmass ReLArmass - - 3 yntoin igntoin - - - 4 Torque_Meas Torque_Meas - - - 5 Niew Name - - - -		14	1.00000	597.000	40.1047	-17.6021	10.9310			
Interview Interview <thinterview< th=""> Interview <thinterview< th=""> Interview Interview</thinterview<></thinterview<>		15	1.00000	881.211	40.1047	-17.6021	-5.53035			
17 1.0000 881.211 43.9588 -17.6621 6.26536 18 1.0000 597.000 47.0089 -17.6621 38.2851 Channel Name Mapping () Map Setcled Dataset Decke Import. Export. + 1 Speed Speed Speed + <td></td> <td>16</td> <td>1.00000</td> <td>597.000</td> <td>43.9568</td> <td>-17.6021</td> <td>23.8206</td> <td></td> <td></td> <td></td>		16	1.00000	597.000	43.9568	-17.6021	23.8206			
Is 1.0000 S97 000 47.0009 -17.0021 38.2851 Channel Name Mapping @ Map Selected Dataset Detele Import Export 1 Speed Speed 2 Rel_Armass Rel_Armass 3 Ipation Speed 4 Torque_Mess Torque_Mess 5 New Name -		17	1.00000	881.211	43.9568	-17.6021	6.26536			
Name Mapping @ Map Selected Dataset + Debte Import Export. + Name in Project Name in Torque_Data (Torque_Data) 1 Speed Speed 2 Rel_Armass Rel_Armass 3 option uption 4 Torque_Meas Torque_Meas 5 Niew Name -		18	1.00000	597.000	47.8089	-17.6021	38.2851	~		
Name Mapping @ Map Selected Dataset Delete Import Export • Name in Project Name in Torque_Data (Torque_Data (Torque,Data (To										-
Name in Project Name in Torque_Data (Torque_Data) 1 Speed ~ 2 Rel_Armass ~ 3 option lpnion ~ 4 Torque_Mess Torque_Mess ~ 5 New Name - ~		Channel	Name Mapping	Map Selected	Dataset •	Delete	Import Exp	vort •		
1 Speed Speed v 2 Ret_Armasa v s 3 gnition ignition v 4 Torque_Meas Torque_Meas v 5 New Name - v			Ň	lame in Project		1	Name in Torque_Data (Torq	ue_Data)		
2 ReLArnass RelArnass 3 (unition Unition 4 Torque_Meas Torque_Meas 5 New Name -		1 Speed				Speed			~	
3 Ignition Ignition V 4 Torque, Meas Torque, Meas V 5 Mew Name - V		2 Rel_Airm	855			Rel_Airmass			~	
4 Torque_Meas Torque_Meas v 5 New Name -		3 Ignition				Ignition			~	
5 New Name		4 Torque_N	leas			Torque_Meas			~	
		5 New Nan	10			-			~	
	2 Importing Shee	t Torque Data	C							

6.3.4 Mapping Measurement Channels to Variables

In the next step, the channels of the imported measurement file have to be assigned to a variable (node), which will be used in the functions later.

i) Note

If the measurement file's structure meets the requirements (see "Requirements on Measurement Data" on page 79) for the data import, every channel is automatically assigned to the corresponding variable.

Because ASCMO-MOCA automatically performs the assignment, you can proceed with the analysis of the imported measurement data (see "Step 2: Data Analysis" on page 93).

Changing the variable name

If you want to use a different variable name (**Name in Project** column) in your functions, you can change the name in the Data Step, **Channel Name Mapping** table. To do so, proceed as follows:

- 1. In the **Name in Project** column, click on the variable whose name you want to change.
- 2. Enter the new variable name.

- 3. Press Enter.
- ⇒ The new variable name is applied.

Deleting a mapping

If you do not require certain channels in your measuring data for the parameter, you can delete the mapping in the Data pane, **Channel Name Mapping** table.

- 1. In the Name in Project column, select the desired variable.
- 2. Click **Delete**.
- The variable is deleted from the Channel Name Mapping table.

6.3.5 Working in the Data Step of ASCMO-MOCA

Econtials	Data		Conversion Form	ulas			
Lasenuais	Dataset	1: Torque_Data (Torque	Data)	Veight	1 Imp	ort Data	Data Sampli
Data	No.	Weight Spe	ed [-]	Rel_Airmass [-]	Ignition [-]	Torque_Meas [-]	Static (no tim
D	1	1.00000	597.000	47.8089	-26.8200	7.02201	∧ Rows
Parameters	2	1.00000	597.000	51.6611	-26.8200	19.5251	Weight
	3	1.00000	597.000	40.1047	-22.2111	-3.67776	weight
isualization	4	1.00000	597.000	43.9568	-22.2111	8.14535	Delete
	5	1.00000	597.000	47.8089	-22.2111	21.1618	C 1
MOCA	6	1.00000	881.211	47.8089	-22.2111	1.08058	Columns
moch	7	1.00000	597.000	51.6611	-22.2111	34.1432	Delete
Models	8	1.00000	881.211	51.6611	-22.2111	12.9679	Deterrete (All
	9	1.00000	597.000	55.5132	-22.2111	47.6720	Datasets (All
Function	10	1.00000	597.000	59.3653	-22.2111	62.1931	Filter Data
	11	1.00000	597.000	32.4005	-17.6021	-14.1937	Remove Na
Ontimization	12	1.00000	597.000	36.2526	-17.6021	-1.90174	
opumization	13	1.00000	881.211	36.2526	-17.6021	-18.1929	
	14	1.00000	597.000	40.1047	-17.6021	10.9310	
	15	1.00000	881.211	40.1047	-17.6021	-5.53035	
	16	1.00000	597.000	43.9568	-17.6021	23.8206	~
	Channel	Name Mapping ①	Map Selected Dat	taset • Delete	Import	Export •	
			Name in Project		Na	me in Torque_Data (Torque_Data)	
	1 Speed				Speed		~
	2 Rel_Airma	ass			Rel_Airmass		~
	3 Ignition				Ignition		~
	4 Torque_N	leas			Torque_Meas		~
	5 New Nam	ne			-		~

ASCMO-MOCA supports multiple datasets for training and test data, shown as multiple tabs in the data pane. All training datasets together are used for the optimization, while the test datasets are used for evaluation and prediction purposes.

A weight per dataset can be given, which controls the impact of this dataset on the optimization.

Different datasets can have different column names; name mapping is then used to correctly attach the different datasets.

The first import is always used as the first training dataset. When you import another file, you can choose to use this dataset as an additional training dataset or as test dataset or as a replacement. To get the RMSE for a test data set, **Analysis > Residual Analysis > Test Data > *** can be used.

Loading multiple data sets

If you want to load multiple data sets, proceed as follows:

1. Click Import Data.

- 2. In the file selection window, enter or select path and name of the file you want to import.
- 3. Click Open.

The ASCMO Data Import - < file name > window opens.

- 4. In that window, select the input channels as described in "Loading the measurement file" on page 81.
- 5. Click Import.

The selected file is imported.

Renaming a data set

- 1. Go to the tab of the data set you want to rename.
- 2. Right-click the tab and select Rename data set from the context menu.
- 3. In the **Rename** window, enter the new name, then click **OK**.

Deleting a data set

- 1. Go to the tab of the data set you want to delete.
- 2. Click Delete Dataset.

A confirmation window opens.

3. In the confirmation window, click **Delete**.

The selected data set is deleted from the project.

6.3.5.1 Data Point Weights

With the **Weight** column, the optimization weight for a data point can be set. Data rows can be set inactive by setting the value to zero. Inactive rows are ignored for the RMSE calculation and optimization. The default is one, and higher values show the optimizer that the respective points are more important, i.e. a stronger emphasis to meet the optimization criterion for this data point. The weight influences the optimization but is not reflected in the displayed RMSE.

Multiple rows can be selected with the <SHIFT> and <CTRL> key and left mouse button clicking. Then the weight for multiple rows can be set with the **Weight** button.

Another possibility to set the weight of data points is available in the scatter plot window, opened with **Analysis > Scatter Plot > ***. After marking some data points in a scatter plot, you can use the **Extras > Set Marked Points Weight** menu option to set the weight for the marked data.

Setting the weights of selected data points

- 1. To set the weights of data points via the **Weight** button, proceed as follows:
 - i. Select one or more rows.
 - ii. Click Weight.

🔞 Data Weight			×					
Set Weight for Selected Data © Current Selection Outside Current Selection								
Data Weight Formula: 1			٢					
Number of Affected Data Points: 9								
OK Apply Ca	ancel							

- iii. In the **Data Weight Formula** window, enter the weight and select if you want to set it for the data points inside or outside the current selection.
- iv. Click OK.

The weight is assigned.

- 2. To set the weight of an individual row, proceed as follows:
 - i. In the Weight column, double-click in the row you want to edit.
 - ii. Enter the number you want to assign.

Adjusting the weights of the entire data set

To adjust the weights of the entire data set, proceed as follows:

i) Note

The data set weight has no effect if there is just one data set.

1. In the Weight field, enter a value.

A value of 0 disables the data set. For this tutorial, enter the value 8.

Weight 8

2. To see the effect of the data set weight, select **Analysis > Data Table > Training Data** or **Test Data** or **Training and Test Data**.

The following window opens.

🐻 Traini	ing Data			—		
File						
	Dataset No.	Weight	Rel_Airmass [-]	Ignition [-]	Torque_Meas [-]	
1	1	8	47.8089	-26.8200	7.0220	^
2	1	8	51.6611	-26.8200	19.5251	
3	1	8	40.1047	-22.2111	-3.6778	}
4	1	8	43.9568	-22.2111	8.1453	\$
5	1	8	47.8089	-22.2111	21.1618	3
6	1	8	47.8089	-22.2111	1.0806	6
7	1	8	51.6611	-22.2111	34.1432	2
8	1	8	51.6611	-22.2111	12.9679	•
9	1	8	55.5132	-22.2111	47.6720)
10	1	8	59.3653	-22.2111	62.1931	
11	1	8	32.4005	-17.6021	-14.1937	,
12	1	8	36.2526	-17.6021	-1.9017	,
13	1	8	36.2526	-17.6021	-18.1929	, ~
	<				>	

All values in the **Weight** column have been multiplied with the entered value in the **Weight of** *< Dataset_name >* field. A row weight of 5 and a data set weight of 8 mean that this row has an absolute weight 40.

6.3.5.2 Managing Data in a Dataset

ASCMO-MOCA offers various possibilities to edit, filter and sort the data in a dataset:

Editing data points

To set a value in a particular column and row, proceed as follows:

- 1. In the column you want to edit, click in the row you want to edit.
- 2. Enter the number you want to assign.

Removing NaN values

If your imported data contains non-numeric values, you can automatically delete the affected rows in all data sets. Proceed as follows:

1. To delete the rows with NaN values, click **Remove NaN**.

Filtering data

(i) Note

The filter affects all data sets and only the views, not the optimization. To ignore data for the optimization, set the data weight to 0. For more information, see the MOCA Help.

1. Select Analysis > Filter Data.

The **Filter Data** window opens. The **Standard Filter** allows to filter single columns, the **Formula Filter** area allows a more complex filter.

🚳 Filt	er Data	-		×
File	łelp			
Only	how Data Points if condition is true Input and Node Names			
	Drag & Drop or enter name 🗸 Search			
	Weight Speed Rel_Airmass Ignition Torque_Meas trqOpt ignOpt deltaSpark etsSpark product dragTorque TorquePredict			
Form	ıla Filter			
inactive	×			
	ОК Аррі	у	Canc	el

- 2. In the **Standard Filter** area, proceed as follows:
 - i. In the empty dropdown, enter or select a column name.

A filter for the selected column is created.

Only show Data Points if condition is true

-Inf < Y Torque_M	eas ~	< ~ Inf X
Drag & D	op or enter name 🛛 🗸 🗸	

ii. In the input fields at both ends of the filter line, enter lower and upper limit.

A lower (upper) value of -Inf (Inf) means no lower (upper) limit.

- iii. In the dropdown lists, select the operators (< or \leq).
- iv. Click the \times **Remove this filter** button to delete the filter.
- 3. In the Formula Filter area, proceed as follows:
 - i. In the dropdown list, select the operator (OR or AND) that will connect standard filters and formula filters.

The input field for formula filters becomes active.

ii. In the input field, enter the formula condition you want to use.

The formula must follow the MATLAB syntax. Names of inputs and nodes must be included in %. You can drag names of inputs and nodes from the **Input and Node Names** area to the input field.

```
Example formula condition: %Speed% > 2000 & (%Ignition% < 5
| %Rel Airmass% == 2)</pre>
```

For further information about formula conditions, see 6.7 "Step 5: Build Up the Function" on page 109.

4. Click OK or Apply.

All rows that do not match the filter criteria are hidden.

Deleting a data point

- 1. Select a value in one or more rows.
- Click the **Delete** button in the **Rows** area.
 A confirmation window opens.
- In the confirmation window, click **Delete**.
 The selected rows are deleted.

Deleting an input column

- 1. Select a value in one or more columns.
- Click the **Delete** button in the **Columns** area.
 A confirmation window opens.
- In the confirmation window, click **Delete**.
 The selected columns are deleted.

6.4 Step 2: Data Analysis

For clearing up and evaluating the measuring data, you have the possibility to visualize it after the import graphically for anytime.

During the analysis, particular the following points should be considered.

- Have all parameters been varied according to the experiment plan and did the measured system remain in the operating mode intended for this purpose?
- Do the output variables fall in physically meaningful ranges?
- Are there any outliers included, which have to be removed, if appropriate?

Visualizing measurement data in a scatter plot

1. Select Analysis > Scatter Plot > Training Data/Test Data/Training and Test Data > Data/Function Nodes.

The **Data** and - if your project contains function nodes – **Function Nodes** windows open. Only the **Data** window is used for the current task.

The bottom-left plot (Speed over Rel_Airmass) shows the space-filling variation of the data in the experimental plan.

Changing the axis pairs

Since the current view does not show the dependence of the relevant measurement data, you must adjust the axis pairs. The selection of the displayed axes takes place directly in the plot window.

1. In the Data window of Scatter Plot, select View > Select Axes.

The "Select Axes" window opens.

2. Go to the Matrix tab.

Matrix								
elect Y vs. X								
	Dataset No.	Weight	Measurement Row	Speed [-]	Rel_Airmass	[-] Ignition [-]	Torque_Meas [-]	Deselect All
Dataset No.			\checkmark					
Weight			\checkmark					Select Minimal
Measurement Row								
Speed [-]					\checkmark			Select All Combinations
Rel_Airmass [-]								
Ignition [-]								
Torque_Meas [-]								Caus Aves Cotus
								Save Axes Setup
								Load Axes Setup

3. In the Matrix tab, select the axis pairs shown in the following figure.

Lis	st Matrix							
	Select Y vs. X							
		Dataset No.	Weight	Measurement Row	Speed [-]	Rel_Airmass [-]	Ignition [-]	Torque_Meas [-]
	Dataset No.							
	Weight							
	Measurement Row							
	Speed [-]							
	Rel_Airmass [-]							
	Ignition [-]							
	Torque_Meas [-]				\checkmark	\checkmark	\checkmark	

In the **List** tab, you have an alternate representation of the selection of the axes pairs that are to be visualized.

List	Matrix					
X-Axis Dataset No Weight Measurement Re Speed [-] Rel_Airmass [-] Ignition [-] Torque_Meas [-]	W	Y-Axis Dataset No. Weight Measurement Row Speed [-] Rel_Airmass [-] Ignition [-] Torque_Meas [-]	< >	Select → ← Remove	Show Y vs. X 1.Torque Meas [] / Speed [] 2. Torque_Meas [] / Rel.Am 3. Torque_Meas [] / Ignition [-	ass [-]]
Sort List		Sort List			t Up	Down ↓

- 4. Do one of the following:
 - Click Apply.
 - Click OK.
- The visualized axes in the scatter plot will be adjusted. The Select Axes window remains open.

Deleting an outlier

You can now use the scatter plots to remove outliers.

1. Search the plots for outliers.

In this tutorial, use the top-left point in the Torque_Meas over Speed plot, with Torque_Meas > 300.

- 2. Click the Mouse selection in Plot with Rectangle button.
- 3. Click in the plot and draw a rectangle around the outlier.

The selected points are colored in all scatter plots.

4. Right-click the frame of the rectangle and select **Mark Point** from the context menu.

The marked points are highlighted with a red circle.

- 5. Select Extras > Delete Marked Points.
- The outlier is deleted from the measurement data.

Displaying the measurement data range

After deleting the outlier from the measurement data, you can check whether the values of the measurement file are within a plausible range.

1. In the main window, select **Analysis > Show Data Min/Max**.

The Min/Max Data & Nodes window opens.

🐻 Min/Max Data & Nodes 🗕 🗆 🗡							
File							
Name	Min	Max					
Speed [rpm]	597	5997					
Rel_Airmass [%]	13.14	86.33					
Ignition [deg CA]	-26.82	60.75					
Torque_Meas [Nm]	-55.4733	310					
trqOpt [Nm]	101.574	408.38					
ignOpt [deg CA]	13.4343	34.2491					
deltaSpark [deg CA]	-29.6377	51.7711					
etaSpark [-]	0.17987	1					
product [Nm]	37.9569	305.107					
dragTorque [Nm]	16.3378	80.0959					
TorquePredict [Nm]	-38.9021	286.857					
Residual TorquePredict [Nm]	-24.9022	39.8787					

After importing and reviewing the measurement data, you can start to add nodes to the function. To do so, select the **Function** working step in the navigation (see "Elements of the ASCMO-MOCA User Interface " on page 73). The respective elements in the main working window will appear, where you can save, delete and edit the function "Step 5: Build Up the Function" on page 109).

😢 🖬 📉 🖼 🔛 📗 🕑 🖃 🔍 🔍 🗐 🎸 🕂 🗆 🖉 📓 Constants Essentials Parameterset Import... • Export. Data 500 113.641 167.302 314.732 385.370 416.833 Y [%] \ X [rp.. eter Name ↓ Parameters 109.211 148.194 235.909 326.875 374.466 Visualization 0.001 MOCA Models 1/6 parameters selected 0/30 elements se Function Parameter Window Calibratio Reference Last wRMS Difference Heatn 13.2426 Parameterset D 2D View X-Z Set as Working Set as Con Duplicate Delete Don 14:09 Loaded Project 'C:\Program Files\ETAS\ASCMO 5.12\Example\Moca\

6.5 Step 3: Parameters

This step allows you to check and possibly adapt the parameters. Only the reference parameters will be visualized, but not the optimized parameters. You can set the optimized parameters as (new) reference in the Optimization step.

In addition, you can display the reference and the current map during the optimization and visualize the data points in maps and curves.

Also you have the possibility to fix individual grid points and to lock them for the optimization.

Further information about how to create and edit a parameter is given in "Step 5: Build Up the Function" on page 109.

i) Note

In this tutorial, the parameters are already defined, so you can skip this step and continue with the optimization (see "Step 6: Optimization" on page 116).

NOTICE

If you extend the data range and limits of the function parameters beyond the valid range of your system (e.g., a test bench), the system can become overloaded and damaged, when using the exported parameters in the system.

Always ensure that the limits and ranges in ASCMO-MOCA match the limits and ranges of your system before exporting the parameters.

If you want to perform a specific calibration and optimization task, these values are required knowledge.

6.6 Step 4: Models

TAS ASCMO	-		×
File Data Analysis My Views Plugins Help			
$\overset{\otimes}{=} \overset{\otimes}{=} H \textcircled{\boxtimes} \boxtimes \boxtimes \textcircled{\boxtimes} \textcircled{\boxtimes} \textcircled{\boxtimes} \textcircled{\boxtimes} \textcircled{\otimes} \textcircled{\otimes} \textcircled{\otimes} \textcircled{\boxtimes} \textcircled{\boxtimes} \textcircled{\boxtimes} $			
Essentials Model Name Type Add Model •			
Data Parameters Delete Models Delete Models			
Visualization Select or create model			
MOCA Models			
Function			
Optimization			
14.02 Importing Sheet Torque_Data' 14.03 Importing data: 2812 x 4			•
Working Parame	terset: Pa	rameter	set 1 .:

In this step, you can link an existing Simulink[®] model with ASCMO-MOCA and prepare the mapping of the parameters, the inputs and outputs.

(i)Note

You do not have to embed a model to ASCMO-MOCA as a part of this tutorial. Therefore, you can skip this step in the navigation and start to build the function "Step 5: Build Up the Function" on page 109.

This step requires a Simulink[®] installation. By default, ASCMO-MOCA will use the MATLAB[®] and Simulink[®] version most recently installed on your system.

Selecting a Simulink® version

1. In the main window, select **File > Options**.

The **Options** window opens.

- 2. In the Simulink Version dropdown, select the version you want to use.
- 3. Click **OK** to apply your settings.

6.6.1 Adding A Simulink[®] Model and Scripts

You can add a Simulink model, which can be selected as node in "Step 5: Build Up the Function" on page 109. To add a Simulink model, proceed as follows:

Adding a Simulink® model and scripts

1. In the main working area, click on **Add Model** and select **Connect to Sim-ulink Model**.

A new line is added to the model list; additional options are displayed in the

lower part of the Model Step.

м	odel Name	Туре									
Torque		Simulink	A	dd Model • Rename Delete Mode	1						
Pre Load Script	%ProjectPath%\initTo	rqueModel.m									
Model	%ProjectPath%\Torq	ue.mdl			Open Model						
Post Load Script											
Start Time	Start Time Data sample time 0.1 End Time dT* (numData-1) Steady State No. Mean Values: 1										
Parameters Mappi MOCA Parameter Ty	ing Scan pe Table Data Simul	Model Create Paramete	er Import Pa reakpoints 2 Br	arameter Edit Parameter eakpoints 3 Breakpoints 4 Conve	Edit Mapping Get Calibration from Simulink ersion Count Breakpoints 1 Simulink Count Breakp						
- •-				-	~						
Simulink Inputs M	lapping	Scan Model Delete	Mapping	Simulink Outputs Mapping	Scan Model Delete Mapping						
MOCA Na	me	Simulink Input		MOCA Name	Simulink Output						
Speed	~ In(1)		^	torque_Simulink_Model	Out(1)						
Rel_Airmass	↓ In(2) ↓ In(3)			IVEW							
Validate	Set Calibratio	n	*								

2. In the **Simulink Model** field, enter or select (via the _____ button) path and name of the Simulink model to be optimized.

This can be an *.mdl (before R2012a) or *.slx (from R2012a) Simulink model.

3. Press < ENTER > or click in another field.

A warning opens if the Simulink model does not exist. Proceed as follows.

- i. Confirm the warning with OK.
- ii. Correct path and/or file name of the Simulink model.
- 4. If desired, enter or select (via the ____ button) path and name of an execut-

able M-script in the Pre Load Script field.

This Init script is optional and may contain a pre-calibration for the Simulink model. The pre-calibration is expected as a MATLAB workspace variable that will be assigned in the **Parameters Mapping** table.

5. If desired, enter or select (via the ____ button) path and name of another

executable M-script in the Post Load Script field.

This script is optional.

i) Note

You can use <code>%ProjectPath%</code> as the location. This is then automatically replaced by the current location of the ASCMO-MOCA project.

6.6.2 Mapping Simulink® Parameters

In the **Parameters Mapping** area, project-related maps/curves and scalars can be mapped to the parameters from the Simulink model.

ASCMO-MOCA expects the parameters to be calibrated as MATLAB® workspace variables. This could for example be the following Simulink map:

Lookup Table (n-D)									
Perform n-dimensional interpolated table lookup includi function in N variables. Breakpoint sets relate the input to the top (or left) input port.									
Table and Breakpoints Algorithm Data Types									
Number of table	e dimensio	ns: 2							
Table data:	mapOptT	orqueField							
Breakpoints 1:	speedAxis								
Breakpoints 2:	relAirmassAxis								

You can map project-related parameters and Simulink parameters either automatically (see "Scanning the Simulink[®] model and mapping parameters" below) or manually (see "Mapping parameters manually" on the next page).

Scanning the Simulink® model and mapping parameters

To automatically scan the Simulink model for possible parameters, proceed as follows.

1. In the main window, Parameters Mapping area, click Scan Model.

The block masks of lookup tables and other blocks are scanned for variable names. The results are then presented in the "Scan Model *< model_name >* for Parameter Mapping" window.

🔺 S	can 'Torque' for Pa	rameter Mapping						- 🗆 X				
Simulink block masks are scanned for Matlab Workspace variables.												
Sc Sc	alars 🛛 🖂 Mati	rix 🗹 Curves 🗹 Maps	Group Axes Sca	n all Subsystems 🛛 Use Tal	ble Name	Custom Blocks	Filter:					
>>	Create Mapping	MOCA Parameter	Simulink Path	Simulink Name	Type	Table Data Simulink	Breakpoints 1	Breakpoints 2				
	2	CurveEtaDeltaSpark ~		Curve_eta_delta_spark	Curve	curveEtaDeltaSpark	deltaSparkAxis					
		MapDragTorque ~		Map_Drag_Torque	Мар	mapDragTorqueFi	speedAxis	relAirmassAxis				
		MapOptIgnition ~		Map_Opt_Ignition	Мар	mapOptIgnitionField	speedAxis	relAirmassAxis				
		MapOptTorque ~		Map_Opt_Torque	Мар	mapOptTorqueField	speedAxis	relAirmassAxis				
		speedAxis ~			Group Axis	speedAxis						
		relAirmassAxis ~			Group Axis	relAirmassAxis						
	<							>				
(De)	Activate Shown			6 mappings sele	cted ?	Add Mappings	Replace Mappings	Cancel				

- 2. Activate/deactivate the **Scalars**, **Matrix**, **Curves**, **Maps** and/or **Group Axes** checkboxes to show/hide parameters of the respective types.
- 3. In the **Filter** field, enter the string by which you want to filter the list, then press <ENTER>.

i Note The filter is not caps-sensitive. You cannot use wildcards.

Only parameters whose Simulink names or paths contain the search string are displayed.

- 4. In the **Create Mapping** column, activate the checkboxes in all rows you want to map.
- Click Add Mappings to add the selected mappings to the Parameters Mapping list.

With **Add Mappings**, existing content in the **Parameters Mapping** list is kept. If an existing row is selected again, this selection is ignored and a message is issued in the log window.

Replace Mappings removes existing content in the **Parameters Mapping** list.

Mapping parameters manually

1. In the **Parameters Mapping** area, **MOCA Parameter** column, select a parameter from the dropdown list.

You can also create a new parameter with the **Create Parameter** button or import a DCM file with the **Import Parameter** button.

2. In the **Table Data Simulink** and **Breakpoints** *<n>* **Simulink** columns, enter the variable names from the block mask.

Or - as an alternative -

- 3. Proceed as follows.
 - i. Click Edit Mapping.

The **Mapping of** *< parameter >* window opens. The init script is executed first and the model is loaded. The existing MATLAB workspace variables are displayed. ASCMO-MOCA automatically performs a name search.

🚺 Mapping of Map_O	A Mapping of Map_Opt_Torque							
Select Simulink variables for parameter Map_Opt_Torque								
Field	Breakpoints 1	Breakpoints 2						
mapOptTorqueField curveEtaDeltaSpark deltaSparkAxis mapDragTorqueField mapOptIgnitionField mapOptTorqueField relAirmassAxis speedAxis	 speedAxis curveEtaDeltaSpark deltaSparkAxis mapDragTorqueField mapOptIgnitionField mapOptTorqueField relAirmassAxis speedAxis 	 relAirmassAxis curveEtaDeltaSpark deltaSparkAxis mapDragTorqueField mapOptIgnitionField mapOptTorqueField relAirmassAxis speedAxis 						
		OK Cancel						

- ii. In the **Field** column, select the MATLAB workspace variable that describes the parameter value or table data.
- iii. In the **Breakpoint** *<n>* columns, select MATLAB workspace variables used for the table axes.
- iv. Click OK to accept your settings and close the Mapping of *para-meter* window.

The Table Data Simulink and Breakpoint *<n>* Simulink columns in the Parameters Mapping area are updated according to your selections.

6.6.3 Mapping Simulink[®] Inputs

In the **Simulink Inputs Mapping** area, imported data columns or nodes from the ASCMO-MOCA project can be mapped to the Simulink model inputs.

Scanning the Simulink® model and mapping inputs

To automatically scan the Simulink model for inputs, proceed as follows:

1. In the Simulink Inputs Mapping area, click Scan Model.

The model is scanned for Inport and From Workspace blocks. The results are then presented in the "Scan Model *< model_name >* for Inputs" window.

Create Mapping	MOCA Name	Simulink Port	Туре		Dimension	Qualifier1	Qualifier2	Name Hint
V	Speed -	Inport 1: Speed	Scalar	•	1	-	-	
V	Rel_Airmass -	Inport 2: Rel_Airmass	Scalar	•	1	-	-	
V	Ignition -	Inport 3: Ignition	Scalar	Ŧ	1	-	-	
	2						(
(De)Activate All						Add Mappings	Replace Mappings	Cancel

Fig. 6-1: "Scan Model < model_name > for Inputs" window

2. If necessary, enter the dimension and qualifiers manually.

Consider, for example, the following input ports, which expect a bus and a vector.

ASCMO-MOCA automatically tries to identify such a bus or vector signal, by following the signal flow in Simulink. If this fails, you have to manually enter the type, dimension and qualifier.

- 3. In the **Create Mapping** column, activate the checkboxes in all rows you want to map.
- Click Add Mappings to add the selected mappings to the Simulink Inputs Mapping list.

With **Add Mappings**, existing content in the **Simulink Inputs Mapping** list is kept. If an existing row is selected again, this selection is ignored and a message is issued in the log window.

Replace Mappings removes existing content in the **Simulink Inputs Mapping** list.

After clicking Add/Replace Mappings, the Simulink Inputs Mapping table is filled.

Inp	ut Mapping	Scan Model	Delete
>>	MOCA Name		Simulink Input
	Speed	✓ In(1)	
	Rel_Airmass	✓ In(2)	
	Ignition	✓ In(3)	
	-	\sim	
	Validate Set Ca	alibration	

The notation Speed | In (1) means that the first **Simulink Input data** column is passed as **Speed**.

A list of possible notations is given in the online help.

6.6.4 Mapping Simulink[®] Outputs

In the Simulink Outputs Mapping area, the simulation outputs are made available to ASCMO-MOCA. Outport and ToWorkspace blocks are supported.

Scanning the Simulink® model and mapping outputs

1. In the Simulink Outputs Mapping area, click Scan Model.

The model is scanned for Outport and ToWorkspace blocks. The results are then presented in the "Scan Model *< model_name >* for Outputs" window.

Scan Model "Torque" for Outputs								
Create Mapping	MOCA Name	Simulink Port	Туре	Dimension	Qualifier1	Qualifier2	Name Hint	
V	Torque_PredictSL	Outport 1: Torque_PredictSL Scalar - 1		-	-			
(De)Activate All Add Mappings Replace Mappings Cancel								

Fig. 6-2: "Scan Model < model_name > for Outputs" window

- 2. If necessary, enter the dimension and qualifiers manually.
- 3. In the **Create Mapping** column, activate the checkboxes in all rows you want to map.
- 4. Click Add Mappings to add the selected mappings to the Simulink Outputs Mapping list.

With **Add Mappings**, existing content in the **Simulink Outputs Mapping** list is kept. If an existing row is selected again, this selection is ignored and a message is issued in the log window.

Replace Mappings removes existing content in the **Simulink Outputs Mapping** list.

Example

Torque_PredictSL | Out(1) makes the Simulink output available for optimization under the name Torque PredictSL.

Output Mapping	Scan Model		Delete
MOCA Name		Sin	nulink Output
Torque_PredictSL	Out(1)		
New			

A list of possible notations is given in the online help.

6.6.5 Validating and Using the Simulink[®]Model

i) Note

Running a Simulink[®] model is only possible if a suitable Simulink[®] version with corresponding license is available on your system.

After mapping parameters, inputs and outputs, perform the following steps:

6.6.5.1 Validating a Simulink[®]Model

Validating a Simulink[®] Model

1. In the lower section of the main working area, click Validate.

The validation is performed.

During validation, the following steps are executed:

- Start the (optional) init script.
- Add the model path to the MATLAB search path.
- Open the Simulink model.
- Start the (optional) post-load script.
- Check if all parameters are available as workspace variables.
- Replace the in/out ports in accordance to the In/Out mapping.
- Start a simulation with a subset size of the data.
- Read the output values.

Possible errors are reported. If the test is successful, a success message is displayed. The Simulink model is now ready for optimization.

Before you can use a model for the optimization, you need to make it available in the function.

Using a Simulink[®] model

Before you can use a model for the optimization, you need to make it available in the function. Proceed as follows:

1. In the navigation pane, click Function.

The Function pane opens.

2. Add a new node (see the online help for details).

The Simulink models are available in the **Nodes** area of the **Edit Node** window.

Edit Node					-	- 0
ode Name Unit E	xpression					
3 - =						
ata 👔	Parameter 1	Nodes				
eed _Airmass	MapOptTorque	trqOpt ignOpt	×	1	+	-
tion que_Meas	CurveEtaDeltaSpark MapDragTorque	deltaSpark etaSpark product	\checkmark	xa	abs	bswitch
		dragTorque TorquePredict PID (Simulink)	()	,	min
			max	&		cumsum
			<	<=	==	>=
			>	warnlf	timeDelay	dT
	~		roundTo	+		
	Create Import Delete Edit					
		? Valida	ate	OK		Canc

3. Insert the model in the expression.

The expression is set to %Torque% (Speed, Rel_Airmass, Ignition). In addition, the name Torque_mdl is entered in the Node Name field.

- 4. If desired, validate the node.
- 5. Click OK.

The node for the model is added to the Main Function Nodes table.

For the model output, another node named Torque_mdl.torque_Simulink_Model is created.

6. If desired, create more function nodes.

See "Step 5: Build Up the Function" on page 109 for more information.

If you are using a Simulink model with multiple outputs, one function node is created for each model output. These nodes can be used in optimization criteria and expressions.

The default notation used in the **Main Function Nodes** table is marked in Fig. 6-3. The notation used in previous versions of ASCMO-MOCA (nodes <code>Torque*_5.0</code> in Fig. 6-3) remains valid.

N	ode	Insert	Delete	Edit	Validate All	Symbolic Regression De			
	Main Function Nodes								
1	1 Torque_ExtendedSimulinkExample_mdl[-] = Torque_ExtendedSimulinkExample(Speed, Rel_Airmass, Speed, Rel_Airmass, Spee								
2	Torque	Dut[-] = Torque_Ex	tendedSimulinkEx	ample_mdl.To	rqueOut				
3	Torquel	FoWorkspace[-] = 1	Forque_ExtendedS	imulinkExamp	ple_mdl.TorqueToWorks	space			
4	TorqueLcoOut[-] = Torque ExtendedSimulinkExample mdl.TorqueLcoOut								
5	5 TorqueOut 5.0[-] = Torque ExtendedSimulinkExample mdl(:, 1)								
6	6 TorqueToWorkspace 5.0[-] = Torque ExtendedSimulinkExample mdl(:, 2)								
7	7 TorqueLcoOut 5.0[-] = Torque ExtendedSimulinkExample mdl(:, 3)								
8	8 New								

Fig. 6-3: Notation for a Simulink model with multiple outputs

i) Note

An implementation of ASCMO-MOCA using a Simulink® model with several outputs can be found in the example project Torque_ExtendedSimulinkExample.moca in *<installation>*\Example\Moca directory. By default, *<installation>* = C:\Program Files\ETAS\ASCMO [[[Undefined variable ASCMOVar.prod_version2]]].

Optimizing a Simulink[®] model

- 1. In the navigation pane, click **Optimization**.
- 2. Under **Optimization Criteria**, select the optimization criteria that are based on the outputs.

Optir	nization Op	tions	3				
Optimiz	ation Algorithm	Defau	lt 💌				
Numbe	r of Iterations	20					
Tolerar	nce/Accuracy	1e-09					
Multista	art	1					
	Optimize		🔲 Use Seq	uence			
Optir	nization Cri	teria					
				140			
min (((TorquePredict	▼ -	Torque_Meas	; 👻)^2			
	* 1)->	RMSE: 1.6	806			
+ (Torque_mdl.to	-	Torque_Meas	•)^2			
	trqOpt						
	ignOpt						
+	deltaSpark						
	etaSpark						
	product						
	dragTorque						
	TorquePredict						
	Torque_mdl						
1	Torque_mdl.torqu	ie_Sim	ulink_Model				
LOCa	Remove						

3. Click the **Optimize** button.

The optimization of the Simulink model is started. Information about the optimization can be found in the Log window (for example on iterations, RMSE). The resulting RMSE is shown below each optimization criterion.
6.7 Step 5: Build Up the Function

ETAS ASCMO		- 🗆 X
File Data Analys	s My Views Plugins Help	
🖺 🖏 📙 🔯 🚰	题 🔢 🕨 😰 🗾 🔍 🕲 🖉 🤄 🕂 다 🗆 🚳 🖉 🛍	
Essentials	Node Insert Delete Edit Validate All Symbolic Regression • Dependency Graph	Functions
Data	Main Function Nodes	Main Function
	1 trqOpt[Nm] = MapOptTorque(Speed,Rel_Airmass)	
Parameters	2 ignOpt[deg CA] = MapOptIgnition(Speed,Rel_Airmass)	
	3 deltaSpark[deg CA] = ignOpt - Ignition	
Visualization	4 etaSpark(] = CurveEtaDeltaSpark(deltaSpark)	
	s product[Nm] = trqOpr = taSpark	
MOCA	a uragi orquejivini - maporagi orque(opeeu,ree_Armass) 7 TorquePradictification - drag torque - drag torque	
Modele	s New	
Widdela		
Function		
Optimization		
		v .
		Add Edit Delete
		- da Delete
	Legend: Node Input Parameter Model Sub-Function	Import Functions Export Functions
15.40 Checking licen	38	^
15:40 License succes 15:40 Press "F1" to g	istuily checked out et context sensitive help or see Manual/Tutorial	
		Working Parameterret: Parameterret 1

After reading the measuring data and checking the plausibility, you can start to set up the function for the torque sensor that will be modeled during the tutorial. The available operators are described in section "Mathematical Operators for Function Nodes" on page 39.

NOTICE

If you extend the data range and limits of the function parameters beyond the valid range of your system (e.g., a test bench), the system can become overloaded and damaged, when using the exported parameters in the system.

Always ensure that the limits and ranges in ASCMO-MOCA match the limits and ranges of your system before exporting the parameters.

If you want to perform a specific calibration and optimization task, these values are required knowledge.

6.7.1 Modeling the Function

In the tutorial you will build the following function of the physical "engine torque" model.

Fig. 6-4: Structure of the function to be modeled

i) Note

Functions are always set up from left to right.

The model function shown in "Structure of the function to be modeled" on the previous page contains the following inputs:

- **1** Speed
- 2-Rel_Airmass
- **3**-Ignition

In addition to the inputs, you have imported the measured model output Torque_Meas in "Step 1: Data Import" on page 81. These values will be used as reference for the optimization, for minimizing the deviation between the measured values and the function prediction TorquePredict.

Adding the first node

To insert the first node trqOpt, proceed as follows.

- 1. Do one of the following:
 - In the Main Function Nodes table, click the New entry.
 - Click Insert.

The "Edit Node" window opens. All data channels you imported are listed in the **Data** area.

🔞 Insert Node					-		×
Node Name Unit Expr	ession						
Y_8 - =							
Data 1	Parameter 1	Nodes 1					
Speed Airmass	MapOptTorque / MapOptIgnition	timeDelay trqOpt A	×	1	+	-	
Ignition Torque_Meas	CurveEtaDeltaSpark MapDragTorque	timeDelay deltaSpark timeDelay etaSpark timeDelay product	\checkmark	x ^a	abs	bswitch	
		timeDelay dragTorque timeDelay TorquePredict	()	,	min	
			max	&		cumsum	
			<	<=	==	>=	
			>	warnlf	timeDelay	dT	
			roundTo	steady States	+		
~		,	,				
	Create Import Delete Edit		_				
		? Valida	ite	OK		Cance	el .

- 2. In the Node Name field, enter the name trqOpt.
- 3. If desired, enter a unit.

The unit has no influence on the calibration of the parameter and is only visualized for support.

4. Create a parameter MapOptTorque as described in "Creating a new parameter" on the next page.

- 5. Specify the expression for the function node.
 - i. In the **Parameter** area, select the parameter MapOptTorque.
 - ii. Click the 🕇 button.

The parameter is added to the Expression field.

- iii. Click Validate to check the validity of the new node.
- 6. Click **OK** to add the node and close the **Edit Node** window.
- ⇒ The node is displayed in the first row of the **Function Nodes** table.

	Function Nodes
1	trqOpt[-] = MapOptTorque(Speed,Rel_Airmass)

Creating a new parameter

To create the MapOptTorque parameter, proceed as follows.

1. In the Edit Note window, click the Create button below the Parameter area.

The Create Parameter window opens.

🔞 Create Parameter									
Specify Parameter Information ?									
Parameter Name							0		
Parameter Type	Мар					\sim			
Value Bounds	Lower Bound		Upper Bound						
Constant			0			1			
	Unit	Channel							
Input 1	-	-		~	Use Range and Un	it			
Input 2	-	-		\sim	Use Range and Un	it			
Output	-								
		Begin	End		Count				
Breakpoints X	Begin/End	/	0	1		10			
Breakpoints Y	Begin/End		0	1		10			
Extrapolation	Clip	·							
Depend on Formula					Edit				
		ОК Са	ncel						

2. Enter the parameter information.

For MapOptTorque, use the following values:

Parameter Name:	MapOptTorque
Parameter Type:	Мар
Value Bounds:	0 - 500
Input 1:	Speed
Input 2:	Rel_Airmass

```
Breakpoints X:Begin/End; Begin = 500; End = 6000; Count = 6Breakpoints Y:Begin/End; Begin = 10; End = 90; Count = 6Extrapolation:Clip
```

(i)Note

If you click **Use Range**, the values range of the X and Y axes are automatically set to the minimal and maximal value of the channel.

3. Click OK.

The parameter is created. It appears in the **Parameter** area.

Next, you create and set up the node ignOpt.

Adding and editing the node ignOpt

To add and edit the second node ignOpt, proceed as follows:

- 1. Open the Edit Node window.
- 2. Enter the node name ignOpt.

For this node you need a parameter MapOptIgnition.

3. Create the parameter MapOptIgnition (see "Creating a new parameter" on the previous page) with the following values:

Parameter Name:	MapOptIgnition
Parameter Type:	Мар
Value Bounds:	0 - 60
Input 1:	Speed
Input 2:	Rel_Airmass
Breakpoints X:	Begin/End; Begin = 500; End = 6000; Count = 6
Breakpoints Y:	Begin/End; Begin = 10; End = 90; Count = 6
Extrapolation:	Clip

4. Specify the following expression for the function node:

Node	Unit		Expression	
ignOpt	-	=	%MapOptIgnition%(%Speed%,%Rel_Airmass%)	

- 5. Check the validity of the new node.
- 6. Click **OK** to add the node and close the **Edit Node** window.

Next, you create and set up the node deltaSpark.

Adding and editing the node deltaSpark

To add and edit the third node deltaSpark, proceed as follows:

- 1. Open the Edit Node window.
- 2. Enter the node name deltaSpark.

For this node you need the node <code>ignOpt</code> and the input <code>Ignition</code>.

3. In the **Nodes** area, select ignOpt and click †

The ignOpt node is added to the **Expression** field.

- 4. Click to add a subtraction operator.
- 5. In the **Data** area, select Ignition and click on 1.

The Ignition channel is added to the Expression field.

6. Make sure that the expression looks as follows:

Node	Unit		Expression
deltaSpark	-	=	%ignOpt% - %lgnition%

- 7. Check the validity of the new node.
- 8. Click **OK** to add the node and close the **Edit Node** window.

Next, you create and set up the node etaSpark.

Adding and editing the node etaSpark

To add and edit the fourth node etaSpark, proceed as follows:

- 1. Open the Edit Node window.
- 2. Enter the node name etaSpark.

For this node you need a parameter ${\tt CurveEtaDeltaSpark}.$

3. Create the parameter CurveEtaDeltaSpark (see "Creating a new parameter" on page 111) with the following values:

Parameter Name:	CurveEtaDeltaSpark
Parameter Type:	Curve
Value Bounds:	0 - 1
Input 1:	deltaSpark
Breakpoints X:	Begin/End; Begin = -10; End = 55; Count = 10
Extrapolation:	Clip

4. Specify the following expression for the function node:

Node	Unit		Expression
etaSpark	-	=	%CurveEtaDeltaSpark%(%deltaSpark%)

- 5. Check the validity of the new node.
- 6. Click OK to add the node and close the Edit Node window.

Next, you create and set up the node product.

Adding and editing the node product

To add and edit the fifth node product, proceed as follows:

- 1. Open the **Edit Node** window.
- 2. Enter the node name product.

For this node you need the nodes trqOpt and etaSpark.

3. In the **Node** area, select trqOpt and click †

The trqOpt node is added to the Expression field.

- 4. Click 🗙 to add a multiplication operator.
- 5. Add the etaSpark node to the expression.
- 6. Make sure that the expression looks as follows:

Node	Unit		Expression
product	-	=	%trqOpt% .* %etaSpark%

- 7. Check the validity of the new node.
- 8. Click **OK** to add the node and close the **Edit Node** window.

Next, you create and set up the node dragTorque.

Adding and editing the node dragTorque

To add and edit the sixth node dragTorque, proceed as follows:

- 1. Open the Edit Node window.
- 2. Enter the node name dragTorque.

For this node you need a parameter MapDragTorque.

3. Create the parameter MapDragTorque (see "Creating a new parameter" on page 111) with the following values:

Parameter Name:	MapDragTorque
Parameter Type:	Мар
Value Bounds:	0 - 100
Input 1:	Speed
Input 2:	Rel_Airmass
Breakpoints X:	Begin/End; Begin = 500; End = 6000; Count = 6
Breakpoints Y:	Begin/End; Begin = 10; End = 90; Count = 6
Extrapolation:	Clip

4. Specify the following expression for the function node:

Node	Unit		Expression
dragTorque	-	=	%MapDragTorque%(%Speed%,%Rel_Airmass%)

- 5. Check the validity of the new node.
- 6. Click **OK** to add the node and close the **Edit Node** window.

Next, you create and set up the node TorquePredict.

Adding and editing the node TorquePredict

To add and edit the last node TorquePredict, proceed as follows:

- 1. Open the **Edit Node** window.
- 2. Enter the node name TorquePredict.

For this node you need the nodes product and dragTorque.

3. In the Node area, select product and click 👔 .

The product node is added to the Expression field.

- 4. Add a subtraction operator.
- 5. Add the dragTorque node to the expression.
- 6. Make sure that the expression looks as follows:

Node	Unit		Expression
TorquePredicted	-	=	%product% - %dragTorque%

- 7. Check the validity of the new node.
- 8. Click **OK** to add the node and close the **Edit Node** window.

After adding the node TorquePredict, the creation of the function to be optimized as a representation of the physical torque model is finished. The "Function Nodes" table should look like this:

	Function Nodes
1	trqOpt[-] = Map_Opt_Torque(Speed, Rel_Airmass)
2	ignOpt[-] = MapOptIgnition(Speed, Rel_Airmass)
3	deltaSpark[-] = ignOpt - Ignition
4	etaSpark[-] = CurveEtaDeltaSpark(deltaSpark)
5	product[-] = trqOpt * etaSpark
6	dragTorque[-] = MapDragTorque(Speed, Rel_Airmass)
7	TorquePredict[-] = product - dragTorque
8	New

i) Note

If you activate the **Edit Mode** option in the main working window, you can change the elements of the function directly in the "Function Nodes" table. The names of data, parameters and nodes are marked with %.

	Function Nodes
1	trqOpt[-] = %Map_Opt_Torque%(%Speed%, %Rel_Airmass%)

In the next step "Step 3: Parameters" on page 98 you have the possibility to check and edit the created parameters, if appropriate.

6.8 Step 6: Optimization

Before you start optimizing, you need to choose an optimization algorithm. To help you choose the best algorithm for your purpose, see "Optimization Algorithms" on page 47.

After you choose an algorithm, click **Optimizer Options Configure** to customize the options. For a description of the options available for each algorithm, see "Optimizer Options" on page 50.

i) Note

The above listed criteria and limits have to be adapted for the specific problem, such that a satisfactory minimal deviation (see "Variables RMSE and R2" on page 24) between the measured data and the function prediction can be reached by optimization.

In the **Optimization Options** area, you specify several parameters, see 6.8 "Step 6: Optimization" above.

In the **Optimization Criteria** area, you specify the optimization target. Select a function node in the first dropdown and a data channel (or '0') in the second dropdown. The optimizer then tries to find a set of parameter values that minimizes the quadratic deviation of these two quantities.

The **Local Constraints** area is not used in this tutorial to keep the example in the tutorial simple. Depending on the optimization problem, these constraints can be used to guide the optimization in a specific direction.

Preparing the optimization

- 1. In the Optimization Options area, do the following:
 - i. In the Number of Iterations field, enter a number of 40 iterations.
 - ii. Increase the number of **Multistart (Optimizer Options Configure**) to prevent the optimizer from getting stuck in a local minimum.
- 2. In the Optimization Criteria area, do the following:

Optimization Criteria

min ((TorquePredict	- 💌	Torque_Meas	-)^2)
	-	> RMSE: 76.2	81
+			

- i. From the first drop-down list, select the function output TorquePredict.
- ii. From the second drop-down list, select the imported data channel **Torque_Meas**.

The flat parameters results in a high RMSE (see "Variables RMSE and R2" on page 24). After the first optimization, the RMSE will be significantly reduced.

You have the possibility to define a sum of such optimization criteria using the + Add a new Optimization criterion button.

Performing the optimization

NOTICE

Damage due to wrong calibration data

Wrong usage of calibrations derived from ASCMO-MOCA model can lead to engine or test bench damage.

Compare measured data and model created data with Residual Analysis feature after the optimization or before exporting at the latest. Feature is accessible via Analysis > Residual Analysis > Training and Test Data > Absolute Error Analysis.

See "Performing the optimization" above, export options in "Parameters" Step or "Optimization" Step, and 6.9 "Step 7: Export" on the next page.

Once you have finished the preparations, start the optimization.

1. Click Optimize.

The optimizer starts optimizing the parameters. Information about the optimization can be found in the log window (e.g., iterations, RMSE). The resulting RMSE is displayed below the optimization criterion. The visualization of the maps is adjusted accordingly.

The optimization in this tutorial is now completed. Some optional activities in the **Optimization** step are described in the online help, section "Instructions (Optimization Step)".

In the following step (see "Step 7: Export" below), the optimized parameters will be exported for further processing.

6.9 Step 7: Export

NOTICE

Damage due to wrong calibration data

Wrong usage of calibrations derived from ASCMO-MOCA model can lead to engine or test bench damage.

Compare measured data and model created data with Residual Analysis feature after the optimization or before exporting at the latest. Feature is accessible via Analysis > Residual Analysis > Training and Test Data > Absolute Error Analysis. See "Performing the optimization" on page 117, export options in "Parameters" Step or "Optimization" Step, and 6.9 "Step 7: Export" on the previous page.

In this step, you will export the created and optimized parameters. The parameters can be exported in several file formats, and the project can be saved for the runtime environment ASCMO-MOCA Runtime with limited functionality.

Exporting the parameters

1. In the **Optimization** window, click the **Export** button.

The **Export Parameters** window opens.

- 2. In that window, enter or select path and name of the export file.
- 3. In the **Save as type** dropdown-list, select the export format.

Available formats

- DCM files (*.dcm)
- INCA comma-separated Values (*.csv)
- Excel(*.xls, *.xlsx, *.xlsm)
- Calibration data files (*.cdfx)
- M-script (*.m)
- 4. Click Save.

The parameters will be exported to a file in the selected format.

Exporting the project for ASCMO-MOCA Runtime

When you export a project to ASCMO-MOCA Runtime, the project gets encrypted, and the function in the project cannot be seen or edited.

1. In the main menu, select File > Export to MOCA-Runtime.

The Export to MOCA-Runtime window opens.

2. Activate **Show Sequence** if you want to show the optimization sequence in the exported project.

With that, you can see and edit the sequence in ASCMO-MOCA Runtime. The sequence is hidden if **Show Sequence** remains deactivated.

 Activate Allow opening in MATLAB (MOCA-Runtime p-Code) to allow the exported project to be opened in the p-Code version of ASCMO-MOCA Runtime.

If you activate **Allow opening in MATLAB (MOCA Runtime p-Code)**, the exported project gets encrypted with another key. ASCMO-MOCA Runtime p-Code cannot open exported projects without this setting. Such projects can only be opened with the standalone version of ASCMO-MOCA Runtime.

4. Click **Export** to continue.

The **Export MOCA project to MOCA-Runtime** window opens. The *.moca runtime format is preselected; it is mandatory.

- 5. Enter the file name and the file directory.
- 6. Click Save.

The project is saved for ASCMO-MOCA Runtime.

7 Contact Information

Technical Support

For details of your local sales office as well as your local technical support team and product hotlines, take a look at the ETAS website:

www.etas.com/hotlines

ETAS offers trainings for its products:

www.etas.com/academy

ETAS Headquarters

ETAS GmbH

Borsigstraße 24	Phone:	+49 711 3423-0
70469 Stuttgart	Fax:	+49 711 3423-2106
Germany	Internet:	www.etas.com

Glossary

F

Function

A function is the set of all elements required to represent the physical model.

Ρ

Project

Creation and optimization of functions and parameters occur in the context of a project. This project can be saved and loaded. One project at a time can be opned and edited in one instance of ASCMO-MOCA.

R

Residual

The residual is the discrepancy between measured data and function calculation. ASCMO-MOCA distinguishes between relative, absolute, and studentized error.

Residuum

The residual is the discrepancy between measured data and function calculation. ASCMO-MOCA distinguishes between relative, absolute, and studentized error.

RMSE

The root mean square error (RMSE) is a measure of the deviation of the predictions of a model from the actual values of the modeled object. The single deviation is called residuum.

Root Mean Square Error

The root mean square error (RMSE) is a measure of the deviation of the predictions of a model from the actual values of the modeled object. The single deviation is called residuum.

Roughness

Roughness describes the change in slope from one grid point of a curve, pap, or cube to the next.

S

Scalar

A scalar is a 0-dimentional calibration parameter.

System Constant

A system constant is a container for an element that cannot be changed. The counterpart o a system constant is a variable.

Т

Tolerance

Generally, a tolerance is a threshold which, if crossed, stops the iterations of a solver.

Figures

Fig. 4-1: The "All Data" window	20
Fig. 4-2: The "Data and Nodes" window	21
Fig. 4-3: The "Histogram" window	22
Fig. 4-4: The "Residuals over Inputs" window	23
Fig. 4-5: The "Measured vs. Predicted" window	24
Fig. 4-6: Steady state visualization: the dark blue line is the average of the light blue line	38
Fig. 4-7: Normalized parameter sensitivity	62
Fig. 4-8: Algorithmic Details of Symbolic Regression	66
Fig. 5-1: Main user interface elements of ASCMO-MOCA	73
Fig. 5-2: Information in the log window (example; a: link to the online help, b: link to the Use	er
Guide PDF)	77
Fig. 6-1: "Scan Model < model_name > for Inputs" window	103
Fig. 6-2: "Scan Model < model_name > for Outputs" window	104
Fig. 6-3: Notation for a Simulink model with multiple outputs	107
Fig. 6-4: Structure of the function to be modeled	. 109

Equations

Equ. 4-1: Root Mean Squared Error (RMSE)	24
Equ. 4-2: Sum of Squared Residuals (SSR)	24
Equ. 4-3: Coefficient of determination R2 whereby	. 24
Equ. 4-4: Total Sum of Squares (SST)	25
Equ. 4-5: Optimization method	46
Equ. 4-6: Roughness r of a curve	. 58
Equ. 4-7: Roughness of a map	. 59
Equ. 4-8: Smoothness factor Si	. 59

Index

А

ASCMO	
p-code version	14
ASCMO model	37
С	
Characteristic	
RMSE	24
Compressed model	
Concept	
assessment of input data	
parameter optimization	
Configuration file	
load	
save	
Contact Information	121
Correlation	
of parameters	61-62
D	

D Data

check plausibilit	y82
check relevance	
filter	
remove NaN	
Data analysis	
, Data point	
delete	
edit	
set weight	
weight	
Data quality	
assessment	
improvement	
Data set See	also Measurement data
delete	
load multiple	
multiple	
rename	
weight	
5	

Е

Error Analysis	
absolute	21
data	20
function node	20
relative	

Residual Analysis21	I
studentized	I
ETAS	
Contact Information121	I
F	
Fields of application18	3
ASCMO MOCA	3
ASCMO MOCA Runtime	3
Filter data91	I
FMU model)
Function	
add node110)
create)
mathematical operators)
structure)
Function evaluation	
R^2 25	5
RMSE 25	-
Function variable	
change name 87	7
delete mapping 88	3
map measurement channel 87	7
G	
glossary	-
I	
Import	
display data82)
load configuration	5
measurement data81	
save configuration86	5
start	5
Input data	
assessment19)
improvement19)
Inputs	
relevance	ł
Installation)
directories14	ł
files14	ł
license agreement11	I
path specification11	I
preparation10)
start10)
uninstall MOCA16	5
user privileges10)

Introduction6
L
Licensing15
Log file
save77

Μ

Matlab/Simulink	
select version	
Measurement data See also I	Data set
delete channel	
delete mapping to variable	
import	
map channel to variable	
plausibility check	
requirements	79
Measurement file	
format	
load	
Methods	17
MOCA	
start	80
uninstall	16
MOCA Runtime	
Export to	119
Export to p-Code version	119
Models	
add Simulink model	99
ASCET	
ASCMO-DYNAMIC	
ASCMO-STATIC	
FMU	
map parameters	. 100-101
map Simulink inputs	103
map Simulink outputs	104
Simulink	
TSim Plugin	

Ν

Nodes	
add	110
Mathematical operators	

0

Optimization	46,60,116
Parameter	26
Simulink model	107
with sequence	60
Optimization criterion	59

Optimization method	
Description	
Outlier	
delete	95
D	
	110
Parameter optimization	
Parameters	
3D cube	
4D cube	
Check	
compressed model	
correlation	61-62
create	
curve	
edit	
export	119
GroupAxis	
lookup-table	27
map	
map to Simulink parameters	
matrix	
scalar	
sensitivity	61-62
types	
Plausibility check	
0	
R	
R^2	
RMSE	24
Root Mean Square Error	
Roughness	
of a curve	
of a map	
<u> </u>	
Scatter plot	0.4
select axes	
Sensitivity	
of parameters	61-62
Sequence	
for optimization	60,119
in MOCA Runtime	119
Simulink model	

Start MOCA System constant	
т	
Toolbar	73
Tutorial	78
create function	109
data analysis	93
data import	
measurement da	ta 79
models	
11	
U	
User interface	70
Log window	/b
main elements	
navigation pane .	
looidar	
V	
Variable	See Function variable
W	
Weight	
data point	89
data set	90
Working steps	
create function	
data analysis	
, data import	
Exporting parame	eters
models	
Parameter optimi	zation116