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ABSTRACT 

The growing concern with environmental impact is a 

major drive for the tighter emissions imposed on combustion 

engines. The compliance with those restrictions is pushing 

new hardware and software solutions that, nevertheless, 

increase system complexity leading to more iterations and 

hence longer development time, a risk to profitability. In this 

context, it is paramount to reach optimum catalytic conversion 

temperature earlier through calibration strategies. This is 

challenging though, requiring heavy efforts in terms of time 

and use of resources/facilities.  

A promising approach to increase efficiency is the 

concept of virtualization via data-based engine modeling and 

model based calibration. This paper presents the combined 

automation and virtualization in vehicle for catalyst heating 

calibration. Firstly, a small number of test conditions were 

automatically measured based on a “Design of  

Experiment”(DoE). The acquired data was then fed into 

ASCMO, a Gaussian process regression algorithm 

implementation by ETAS, resulting in a model used for 

calibration optimization with respect to emission and engine 

stability targets. The use of this novel method anchored on 

automation, machine learning and virtualization aims to 

improve process efficiency and the robustness of the 

calibration data. 

 

 

 

INTRODUCTION 

Engine calibration task is divided into different working 

packages due to the high complexity and workload current 

systems require, such as base calibration, start, modeling, 

exhaust temperature control, drivability, diagnosis and 

emissions. The main goal over a calibration development is to 

achieve a tradeoff between customers (OEM) requirements 

and at the same time legislation compliance. Among the 

legislations required to release a combustion engine project 

into the market, tail pipe emissions are one of the most 

laborious tasks. That being said, catalyst heating strategy is a 

major calibration resource used to increase engine emissions 

efficiency mainly at cold phases. However, to optimize it there 

are a high number of combinations among the possible engine 

parameters combinations and strategies, such as: 

 Ignition angle Efficiency; 

 Multiple ignitions;  

 Engine speed;  

 Camshaft Position Control; 

 Injection rail pressure; 

 Injection mode operation;                                                                               

 Start/End Injection angles;  

 Injection distribution portion (Suction and 

Compression strokes).  

To find out the best combination of those engine inputs 

extensive testing and a large number of measurements are 

required. In addition to that, the manual effort to analyze this 

data without a processing tool, can make this task even harder 
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and bound to misunderstandings. One of the aims of this paper 

would be to propose a solution to increase engine calibration 

efficiency throughout a databased modeling approach for the 

catalyst temperature behavior and related outputs based on 

measurements taken in-vehicle, hence decreasing exhaust 

emissions.   

The target outputs considered in the model are: catalyst 

temperature itself, engine speed “roughness”, fuel mass 

consumption and misfire counters. They serve as metrics to 

determine the impact of the inputs combination on engine 

tailpipe emissions and the subsequent analysis and 

optimizations. 

As a proof of concept, this study has been performed with 

a modern, Flex-Fuel Turbo engine with 1.0 L displacement,  

inline three cylinders architecture and direct injection with 

inlet and outlet camshaft control. All measurements 

conducted for the elaboration of this paper were done so 

automatically with a dedicated solution able to perform back-

to-back measurement. The appropriate soak time was 

considered between measurement runs. In addition to the 

dedicated hardware, a combination of software solutions 

allows data to be measured, filtered and processed 

automatically. This mechatronics solution moves the 

calibration engine data through an efficient path, increasing 

not just efficiency itself but data consistency, repeatability, 

analysis methods and robustness.  

As the present and future legislations, lead to calibration 

processes complexity sharp increase, its efficiency must 

follow the same trend to maintain its viability in terms of 

“manpower”, costs and infrastructure. This combined 

automation and virtualization in vehicle for catalyst heating is 

able to achieve this important goal of keeping the process 

viable in spite of the growing complexity by means of 

efficiency increase. 

The usage of machine learning technics to analyze the 

data provides a leap in terms of process efficiency. ASCMO 

Gaussian process regression reduces sharply the number of 

data points required to evaluate the best input combination as 

its statistical interpolation properties allows the making of 

precise predictions even for combinations not explicitly 

measured. The ability to make reliable predictions of the 

catalyst temperature and engine speed roughness with much 

less measurement runs results in great competitive advantages 

in terms of engineering hours reduction and more efficient 

facilities usage. In the end, this translates as less cost and 

therefore less compromising of project budget. 

It is imperative to highlight also that the automation 

solution brings more than project budget savings. There are 

gains also in terms of robustness and consistency: regardless 

of the geographical location where the project may be 

running, it is guaranteed that the specific work package will 

be handled with the same execution procedures and analyses 

criteria. This also brings repeatability to the tests, a challenge 

when things are done manually by human operators. 

Furthermore, there is also a huge time saving when the fact 

that for a machine, there is no interruption with measurements 

and processing, no weekends, no holidays and no overnights 

breaks.  

Only the fact of performing measurements automatically 

in-vehicle, overnight and over the weekend creates a data 

collection efficiency increase up to four times when compared 

to the traditional, manual process. That combined with 

automatic data processing and virtualized, model-based 

calibration proposal can, in a synergic way, increase even 

more calibration process quality, robustness and utmost 

efficiency. 

METHODOLOGY 

ENGINE INPUT AND OUTPUT SELECTION - Engine 

calibration consists in parametrizing the values commanded 

by ECU to actuators in terms of the input sensors values. The 

main actuators from an Otto engine are fuel injector, spark 

plug and throttle valve. To optimize catalyst heating 

calibration besides, the main actuators there is also the 

camshaft control that allows the change of engine air charge 

strategy for specific conditions. 

However, for this proof of concept, the injector was the 

chosen actuator, where for a Direct Injection system through 

calibration is possible to control injection time, mass, angle, 

split mode and injection pressure by the high fuel pump 

pressure.  Among those options three inputs were swaped to 

analyze the impact into catalyst heating behavior: Beginning 

of injection angle (SOI), end of injection angle (EOI) and split 

mass factor as described at Figure 1 below.  
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Figure 1. Injection inputs calibrations changed over the 

study. 

Source: The Authors 

 
Due to analysis purposes, the injection mode has been 

fixed into two fuel injections per cycle, one at suction stroke 

and the other one at compression stroke, sweeping then its 

angles. The split of fuel mass factor between them was the 

third input used for the analysis. 

Afterwards, the criteria for output analysis and evaluation 

was based on the trade-off from two main variables: catalyst 

temperature and engine speed stability. By combining both 

outputs it is possible to infer emissions behavior: as soon as 

the catalyst lights off, fewer will be the emissions at tail pipe 

and as long as the idle engine stability is smooth, idle quality 

requirements will be achieved. 

The steps illustrated at Figure 2 defines the entire process. 

Calibrator did manual steps due to physical knowledge of 

engine behavior for DoE planning and model analysis in order 

to reach reliable model. 

 
Figure 2. Overwiew of implemented methodology. 

Source: The authors. 

The automated process executed DoE in blocks, each one 

considered the entire range of input variables, in order to make 

possible generation of preliminary models. Depending on the 

model quality, INCA FLOW executed a new DoE to increase 

the amount of data.  

DOE PLANNING – Catalyst heat behavior results from 

many different combinations: fuel mass, spark advance, 

engine speed are some examples. As explained in the previous 

sections, the DoE considered Start of First Injection, End of 

Second Injection and Fuel Mass split, in the ranges described 

in Table 1, referenced from Top Dead Center (TDC).  

Table 1. Model Input ranges. 

Variable Minimum Maximum 

First Injection (SOI) 200° 310° 

Second Injection (EOI) 30° 140° 

Fuel Mass Split 25% 85% 

  

For good accuracy, ASCMO indicates that for models 

with three inputs, at least 60 measured points were required. 

For better results and validation purposes, 120 points were 

defined, divided equally in four blocks. This approach 

allowed user to create models in end of each block execution.  

 
Figure 3. DoE plan. 

Source: The Authors. 

Figure 3 shows that each Block ID covered the entire 

range for Start of Injection, Second Injection and Fuel mass 

Split, as expected. 

ROBOT – This interface simulates the driver, 

manipulating pedals and buttons. Compounded by electric 

motors commanded by PWM using INCA FLOW through 

ETAS ES930, multi I/O module the robot can be implemented 

in any vehicle. It is illustrated at Figure 4. 
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Figure 4. Robot system. 

Source: The authors 

A major benefit in this approach is to use the same 

buttons, pedals and keys designed for the Driver, without any 

electrical changes in the vehicle electrical system or wiring 

harness.  

AUTOMATION TOOL – Traditional methods of 

measurement and calibration of ECU functions are based on 

manual measurement, calibration and analysis from the 

calibration engineer. Depending on the test scenario, 

environment and test conditions leads to complex criteria with 

hard reproduction and repetition. To optimize the process, 

automation methods are an alternative to monitoring all tasks 

and actions of a test, saving labor time and optimizing 

resources. One of major challenge for automotive test 

automation is get ECU data from ECU automotive protocols 

to take decision.  

In order to tackle this challenge, INCA FLOW 

automation tool was used due to the following features: 

 Measure and calibrate ECU data from INCA; 

 Read DoE set point ; 

 Taking decisions based on ECU data and 

environment criteria; 

 Manipulate electrical outputs to actuators; 

 Processing data from recorded files; 

 Calculate signals; 

 Connection to 3rd party software, like Excel or 

Outlook. 

The program tasks are designed using a simple flowchart 

and block diagram concept as seen on Figure 5.  

 

Figure 5. Inca Flow interface. 

Source: The authors. 

This paper used automation through INCA FLOW in two 

different phases: DoE execution and Data analysis.   

IMPLEMENTATION OF AUTOMATED SYSTEM – 

The following steps implemented the automation process: 

DOE Execution - To execute DoE in order to record data, 

the following steps were developed: 

 Load DoE block; 

 Monitoring oil temperature and Catalyst  

temperature to reach 25℃ and 35℃, respectively; 

 Set calibration variables according to DoE; 

 Communicate the calibrator that the interaction will 

start by e-mail; 

 Start recording; 

 Start engine through robot interface; 

 Wait until engine reach 50℃; 

 Stop engine; 

 Stop recording; 

 Communicate the calibrator that the interaction 

ended by email; 

 Wait initial criteria’s to execute next DoE scenario. 
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Figure 6. Developed flowchart. 

Source: The authors. 

Yellow blocks illustrate decisions while gray blocks 

defined actions by automation process. 

For each interaction, the automation tool sent e-mail 

before and after the engine start with a test summary. It kept 

the calibrator informed about the status of DoE execution.  

Automated system measured 120 scenarios, used to 

create and validate the mathematical model. 

After each DoE block execution, the automation loaded 

the recorded data and processed the information, finding the 

right interval to calculate outputs that would be fed into 

ASCMO for modelling. 

Measurement Analysis – The recorded data from ECU 

and measurement modules were based on time domain, while 

model outputs were based on static values. Then, for each 

DoE measured block, INCA FLOW loaded and analyzed the 

recorded files automatically to calculate the outputs used by 

modelling purposes. Based on the user criteria’s, it found the 

right interval in the acquisition that corresponded to the 

catalyst heating strategy. 

The following steps described measurement analysis and 

Figure 7 illustrate the flowchart: 

 Create a template file; 

 Verify non-analyzed recorded file (.dat) ; 

 Extract the information from valid data interval, 

based on “ECU software bit`s”; 

 Treat the information on the variables (calculations), 

extracting model output variables;  

 Write and organize the treated information in the 

template file created; 

 Configure the template to the next line;  

 Go back to the verify non-analyzed recorded files 

until all files has been analyzed. 

 
Figure 7. Measurement analysis INCA FLOW process. 

Source: The Authors. 

The result was a table (Figure 8) that correlate Inputs 

points from DoE and their respective outputs, calculated 

based on the recorded data files. Therefore the data 

information could be easily imported and interpreted at 

modelling phase. 

 
Figure 8. Analysis from recorded files. 

Source: The Authors. 
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To extract the data from measured files, automated 

system loaded the recorded file and fulfilled internal vectors 

with recorded time and signals values.   

Correlating the logic based in “ECU software bit`s”, 

automation found the properly interval at the vectors. It 

corresponded to the catalyst heating period. 

With the relevant data, the following calculations were 

done in order to calculate the properly information for the 

Gaussian models:  

 Inputs variables “First Injection”, “Second Injection” 

and “Split” needed to be constants during the 

“Catalyst Heating” period. To ensure that, a “Mean 

Value Calculations” was executed to each variable.; 

 In order to evaluate the data recorded in variation 

aspect a “Standard Deviation” was calculated by the 

variable “Split”; 

 An off-set in the time variable was made so it’s 

represented the catalyst heating period. The heating 

initial time was subtract from the general time. 

 

Figure 9. Inca flow “input’s” calculation. 

Source: The Authors. 

 To represent the catalyst temperature as an 

accumulated an integration of catalyst temperature 

and the maximum value were extracted; 

 The catalyst heat time division performed the time 

correlation; 

 In order to have more than one type of representation 

on the catalyst temperature was used an average 

calculation.  

 

Figure 10. INCA FLOW calculation. 
Source: The Authors. 

MACHINE LEARNING MODELLING – Machine 

learning technics may be divided in 3 main branches: 

“Supervised Leaning”, “Unsupervised Learning” and 

“Reinforcement Learning”:  

 

Figure 11. Types of Machine Learning Algorithms. 
Source: https://www.linkedin.com/pulse/business-

intelligence-its-relationship-big-data-geekstyle 

The technic chosen for the present paper, “Gaussian 

Process Regression” is within the realm of “Supervised 

Learning”: the algorithm is fed with both the input data and 

the respective measured output. As both inputs and outputs 

are known quantities for the training data and used in training, 

the term “Supervised” is used.   

ASCMO runs a Gaussian Process Regression Algorithm 

(Kriging) in order to establish relations and find underlying 

patterns between the model inputs and its respective outputs. 

The core idea is very similar to the more common polynomial 

regression, where the outputs are represented as a sum of a 

number of functions of the inputs. Nevertheless, in this case 

these kernel functions are of the exponential quadratic form 

(Gaussian Process), leading to a statistical model.  
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As in any machine learning technic, the first step is the 

definition of a training dataset (𝑋, 𝑦) containing n measured 

inputs and its respective outputs: 

 
𝑋 =  {(𝑥𝑖)|𝑖 =  1, . . . , 𝑛} 
𝑦 =  {(𝑦𝑖)|𝑖 =  1, . . . , 𝑛} 

(1) 

 

It is defined as well a test dataset, for which the trained 

model should make its predictions. The inputs 𝑋∗ are the 

desired inputs for which a predictor function 𝒇∗ shall be 
constructed: 

 𝑋∗  =  {(𝑥𝑖∗)|𝑖 =  1, . . . , 𝑛∗} (1) 

 

The first assumption is to define this predictor function in 

the form of a Gaussian Process, a type of multivariate 

stochastic  process for which every collection of random 

variables contained in it have a joint multivariate normal 

distribution. This kind of mathematical object is particularly 

suitable for the application as it is completely defined by its 

second order statistics. In order words, it is possible to 

synthesize a Gaussian Process by defining only its mean 

function 𝑚(𝑥) and a covariance function between its 

elements  𝑘(𝑥, 𝑥’): 

𝑓(𝑥) ~ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥’)) 

More precisely the definitions are: 

 𝑚(𝑥)  = 𝐸[𝑓(𝑥)]  

   

 
𝑘(𝑥, 𝑥′) = 

𝐸[(𝑓(𝑥) −  𝑚(𝑥))(𝑓(𝑥′ ) −  𝑚(𝑥′ ))] 
 

 

The problem of Gaussian Process Regression is now 

redefined as the process of defining a proper covariance 

function 𝑘(𝑥, 𝑥′), which is done in two steps: 

Firstly and without looking at the training data, general 

assumptions are made on the expected behavior of the 

input/output relation being modeled. In this paper, the classic 

exponential quadratic framework was chosen. More details on 

it may be found on Rasmussen and Williams, Chapter 2: 

𝑐𝑜𝑣 (𝑓(𝑥𝑝), 𝑓(𝑥𝑞)) = 𝜎𝑓
2 exp (−1

2

|𝑥𝑝 − 𝑥𝑞|
2

𝐿2
) + 𝜎𝑛

2𝛿𝑝𝑞 

This covariance function between the outputs in terms of 

the inputs has some degrees of freedom as it is written with 3 

free “hyperparameters” 𝜎𝑓
2, 𝐿2 and 𝜎𝑛

2. The first one, 𝜎𝑓
2, is a 

scale factor between the inputs and outputs. 𝐿2, on its turn, is 

called a Length Scale, representing the extent and reach of the 

influence of one training data point on its neighbors. Finally, 

as real world data naturally contains “noise” as a result of the 

measuring processes, this is incorporated in the model as an 

additive “Noise Level” 𝜎𝑛
2 acting on the input. 

 It is clear now that “training” the model corresponds to 

finding the best combinations of hyperparameters by learning 

trhought the data. This is done by a marginal likelihood 

optimization algorithm in ASCMO. Naturally, the marginal 

likelihood optimization runs iteratively over a series of 

generated models making the model synthesizing is a relevant 

part of the process: 

Applying the parametrized covariation function 

elementwise over the training dataset, a covariance matrix 
𝐾(𝑋, 𝑋) is created: 

 𝑐𝑜𝑣(𝑦) = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼, 

 

The same process is repeated for the hypothetical test 

dataset 𝑋∗. It is possible now to define a joint distribution of 

training and test data. It is a Gaussian Process with mean zero 

and therefore governed by the covariance matrixes of training 

data and test data: 

[
𝑦
𝑓∗

] ~ 𝒩 (0, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
]) 

The idea here is to isolate the unknown predictor function 

𝑓∗ from the know quantities. This is done by conditioning it to 

the observed data using Bayes Theorem, resulting in the 

following “Posteriori” probability distribution: 

𝑓∗|𝑋∗, 𝑋, 𝑦 ~ 𝒩 (𝑓∗̅, 𝑐𝑜𝑣( 𝑓∗)) 

 

The predictor function 𝑓∗̅ may be defined as the most 

probable value of the posteriori probability distribution that its 

average. The details on the mathematical process may be 

found on Rasmussen and Williams [2]. 

 
𝑓∗̅ ≜ 𝐸[𝑓∗|𝑋∗, 𝑋, 𝑦] =  

𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑦 

 

In analogous manner, it is possible to determine the 

confidence of the prediction by calculation its covariance. 
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This is a major advantage of the usage of Gaussian process 

modelling, as this serves as an internal model quality metrics. 

 
𝑐𝑜𝑣( 𝑓∗) = 𝐾(𝑋∗, 𝑋∗) −  

𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1 𝐾(𝑋, 𝑋∗) 

 

 

Model Creation With ASCMO – In order to generate the 

model, data created by automated system was fed in ASCMO 

considering: 

Inputs: 

 Start of First Injection Angle(SOI); 

 End of Second Injection Angle(EOI); 

 Injection Split. 

Outputs: 

 Final catalyst converter temperature; 

 Catalyst converter average temperature; 

 Engine speed stability. 

Figure 112 highlights ASCMO’s user interface: Inputs 

are listed in the lower bar while outputs are represented in left 

bar. The points represents measured data and the black line 

represents the model prediction in terms of the inputs. Cursors 

can be used by the user to navigate the inputs and visualize 

the predicted output.  

 

Figure 112. Gaussian model by ASCMO. 

Source: The authors. 

Alternately, for studding the interaction between multiple 

inputs, 3D view can be used, as illustrated by Figure 123. The 

points in 3D map represents the measured points while the 

surface represents the model.  

 

Figure 123. 3D model example. 

Source: The authors. 

To evaluate the model quality, some metrics were chosen. 

The definitions of R2 and RMSE are given bellow:  

RMSE =  √
𝑆𝑆𝑅

𝑛
     𝑅2 = 1 −

𝑆𝑆𝑅

𝑆𝑆𝑇
, where: 

𝑆𝑆𝑅 =  ∑(𝑥𝑖,𝑝𝑟𝑒𝑑 − 𝑥𝑖,𝑚𝑒𝑎𝑠)

𝑛

𝑖=1

² 

𝑆𝑆𝑇 =  ∑(𝑥𝑖,𝑚𝑒𝑎𝑠 − �̅�𝑚𝑒𝑎𝑠)

𝑛

𝑖=1

² 

𝑛 = number of data points (training or test) under analysis 

A cross validation by “Leave-One-Out” method was 

executed. A instance of the model is generated trained by each 

point on the dataset except one. A prediction for this point 

“left out” is then made. The process is repeated successively 

for all the training data. The results are then plotted on a 

diagram with the predicted value on bottom axes and the real 

measured value on left axes. Finally, RMSE and R² may be 

applied on this data to assess model quality. An example is 

shown in Figure 14: 
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Figure 14. Leave One Out. 

Source: The authors. 

RESULTS AND ANALYSIS 

AUTOMATED SCRIPT RESULTS – For each point of 

DoE, a soak time was considered in order to guarantee the 

same initial test conditions in each test instance. In our 

process, each soak cycle took around three hours. In total, 

automation system was executed for around 360 hours 

without human interference. 

 

Figure 15. Efficiency gain during the measurement process. 

Source: The authors. 

 

Considering a workweek of 42 hours, an equivalent 

measurement process done manually would take at least seven 

workweeks to be completed. In comparison, once the 

proposed measurement system has been automatized, it took 

only two straights weeks to complete the 360 hours of 

measurements.  Therefore, it is possible to affirm that for this 

measurement process the efficiency increased by roughly 

71% when compared to a manual measurement system.  

When each measurement block was finished and the data 

archives generated, a calibrator executed the automated data 

analysis script, to “extract” the relevant information for model 

training. The process took mere minutes to load recorded data, 

calculate the parameters and save relevant information in a 

Excel file, orders of magnitude faster than manual analysis. 

MODEL ANALYSIS – Better quality models were observed 

from 68 measured points, close to ASCMO DoE development 

indication.   

Model With 68 Measured Points – Firstly a Gaussian 

model was generated using 68 measured points from 3 of the 

4 blocks. Figures 16, 17 and 18 illustrates the input and output 

relationship obtained. 

 
Figure 16.  3D model of Inputs and Outputs for Final TCat. 

Source: The authors 

 

Figure 13. 3D view for Average TCat model. 

Source: The authors. 
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Figure 18. 3D view form Stability/Time model. 

Source: The authors. 

This preliminary model was validated against 24 testing 

data points measured from the 4th block, not used in model 

training. The SOI, EOI and split values were input on the 

model and the respective predicted outputs were compared to 

measured outputs. The results and its associate metrics are 

shown in Table 2: 

Table 2. Global R2 and RMSE for training and test data. 

 Training Data Validation Data 

 R2 RMSE R2 RMSE 

TCAT Average Temperature 0,80 6,60 0,90 4,92 

Final TCAT 0,83 7,14 0,91 5,37 

Stability/Time 0,66 0,68 0,58 0,84 

 

For Final TCAT and Average TCAT models, training 

Leave One Out global and validation against Validation Data 

have real good fit, with R² over 0,8. ETAS indicates this 

number as a threshold for the model ability of making 

quantitative predictions. The Stability/Time criteria results in 

less reliable predictions, with R² between 0,6 and 0,7. 

Nevertheless, this range indicates the consistence for making 

qualitative predictions, which is precisely the idea for this 

specific criteria, as it is more important here to predict 

instability trends with input variation than finding its exact 

value. Therefore, the 68 point model was considered 

successful in its objectives.  

With the model quality assured, the validation data points 

were incorporated in the training process for even better 

accuracy, resulting in a model with 90 points. The scatter plot 

from Figure 14 to Figure 15 indicates the measured data used 

to train the model and the observed results for outputs. The 

colors indicate the same regions between the scatter plots.  

 
Figure 14. Scatter plot of measured data SOI x EOI. 

Source: The authors. 

 

Figure 20. Scatter Plot for Average TCAT and Fuel Split. 

Source: The authors. 

 

Figure 15. Scatter Plot for Final TCAT x Stability/Time. 

Source: The authors. 

The scatter plot indicates that catalytic temperature 

achieved higher values for EOI angle range between 36 and 

75 degrees to a wide range of SOI angle. However, the 

Stability / Time has high values on this same range, indicating 

engine idle instability and therefore conflicting solutions to 

find the best calibration. 

Figures 22, 23 and 24 shows the trained model by 

ASCMO and their correlation with the three inputs used: 
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Figure 16. Final catalytic temperature model.  

Source: The authors 

 

Figure 17. Average catalytic temperature model. 

Source: The authors 

 

Figure 18. Stability/Time model final model. 

Source: The authors 

As expected, the model generated with 90 points has the 

same behavior as its predecessor of 68 points. 

The Leave One Out analysis was also applied to the final 

model. Its results are shown in (Figure 19 to Figure 21). 

 

Figure 19. Predicted vs Measured Leave One Out analysis 

for  average catalytic temperature. 

Source: The Authors. 

 

Figure 20. Predicted vs Measured Leave One Out analysis 

for Final Catalytic temperature. 

Source: The Authors. 

 

Figure 21. Predicted vs Measured Leave One Out analysis 

for Stability/Time model. 

Source: The Authors. 

 Table 3 compare 90 points model with the previous 

the 68 point models in terms of R² and RMSE metrics. As 

expected, more data resulted in more model accuracy.  
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Table 3. Global R2 and RMSE comparison between models. 

 Model form 

68points 

Model form 90 

points 
 R2 RMSE R2 RMSE 

Tcat Average 

Temperature 
0,80 6,60 0,84 5,92 

Final Tcat 0,83 7,14 0,85 6,53 

Stability/Time 0,66 0,68 0,67 0,66 

 

The main beneficial point found in the use of virtual 

models for catalyst heating calibration process was that with 

considerably few measurements it was possible to obtain a 

high quality model prediction for the system. This, added to 

the calibration engineer expertise, allows a much better 

understanding of the system behavior and its individual 

dependencies on each of the inputs. Calibration strategy 

opportunities are more easily seen and many complex 

scenarios may be tested without the need for additional 

experiments. The virtual model also opens up the possibility 

of optimization algorithms being used as a calibrator’s tool.  

SINGLE AND MULTI RESULT OPTIMIZATION – 

After the model behavior is assessed, it is up to the calibration 

engineer to navigate the data and define the best possible 

trade-offs. ASCMO may help with that as well with its inbuilt 

single target and multi-result optimization packages. They 

were employed on our model to illustrate the additional 

efficiency gain possible through its usage: 

Single Result – A specific input combinations is 

calculated to better suffice the criteria defined for each one of 

the outputs: 

Table 4: Single Result parametrization for desired output.  

Single Result Optimization 

Output Criteria Value 

Average TCAT Target 300ºC 

Final TCAT Weak Upper Bound 300ºC 

Stability/Time Weak Upper Bound 4 

 

This method of optimization works better when the 

outputs are limited to a narrow value range. For future, fully 

automated analysis, that require more deterministic steps, this 

method is more suitable than a multi result, for example.  

Multi Result – In this methodology of optimization, 

ASCMO finds not one, but all the optimal solutions in terms 

of the inputs combination. They are then presented to the user 

as a series of “Pareto Frontiers”. The user may then highlight 

each solution and see its impact on the outputs, defining 

manually the desired calibration tradeoff. 

This technic is very efficient when dealing with big 

models comprised of many inputs and desired output targets 

and constrains. Its holistic presentation of the variable 

interactions and the assurance that all the displayed/proposed 

solutions are "Pareto optimal” enables the quick visualization 

of the tradeoffs, its impacts and, finally, the obtention of the 

desired calibration dataset. 

 

Figure 22. Fuel mass split factor input, Catalyst Temp and 

Engine Stability Outputs- Pareto output graphs with area 

selection. 

Source: The Authors 

 

For future implementation, calibration proposal and report are 

expected to be generated automatically as well, the diagram 

illustrated in Figure 239 shows how the automated system it 

is supposed to works.  

 

 
Figure 239. System overview with expected automated 

process included 

Source: The Authors. 
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CONCLUSION 

The prosed combinations of solutions has shown clearly 

a promising path to increase in-vehicle calibration efficiency. 

This area, particularly, lacks integrated solutions, as most of 

the standard calibration automation tools are aimed at engine 

dyno. The process efficiency was increased through the entire 

chain: data measurement, processing and analysis, data based 

model virtualization and subsequent optimization. 

Combining automation process and mechatronic systems, 

tests could be executed uninterruptedly for many days or even 

weeks increasing prototype usage. Also, data analysis could 

be done automatically, saving much engineering hours. 

By using virtualization within calibration tasks, more 

scenarios could be foreseen and then analyzed even with a  

reduced number of tests. Gaussian process modelling was 

applied successfully to the purposed system. As a benefit, 

general behavior of the system could be visualized and 

optimization scenarios were calculated. Both aspects are 

relevant considering tighter emissions and new technology 

implementations. 

The next step to this project will be the integration of 

automated calibration  proposals and automatic compiled data 

report generation.  
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