

DO NOT TYPE IN THIS FOOTER SECTION ON PAGE 1. TEXT WILL BE INSERTED INTO THIS AREA BY SAE STAFF UPON RECEIPT OF THE FINAL
APPROVED MANUSCRIPT AT SAE INTERNATIONAL.

09CV-0113

EHOOKS – Prototyping is Rapid Again

Vivek Jaikamal
ETAS Inc.

Nigel Tracey
ETAS Ltd.

Copyright © 2009 SAE International

ABSTRACT

Automotive controls engineers have traditionally used
bypass rapid prototyping techniques to quickly try their
new ideas before integrating them into the final
embedded control unit (ECU) software. In order to make
this possible, switches (or “hooks”) are required to be
inserted in the ECU source code. The development
disruption and costs associated with this can be
extremely high. ETAS has developed a unique patent
pending technology which solves this problem in a
reliable way. This technology, to be productized under
the name “EHOOKS”, allows the controls engineer to
quickly add the necessary hooks in the base ECU
software without any modifications to the source code.
EHOOKS technology, therefore, enables “rapid”
software prototyping and testing.

INTRODUCTION

Rapid controls prototyping is an integral part of the
mainstream algorithm development process at most
major car manufacturers (OEMs) and ECU suppliers
(Tier 1s). For the end user (i.e., the algorithm
developer) it means major gains in productivity.
However, in order for it to be really effective,
organizations have to create formal methods and
allocate resources to maintain the several moving parts
involved. In a lot of cases, companies find it extremely
expensive to maintain and support the tools and
processes required. As a consequence, algorithm
engineers often find themselves unable to leverage the
power of rapid prototyping and companies do not realize

the return on the heavy investments made in tools and
resources.

In the following sections, we will first describe the
technical challenges facing conventional bypass rapid
prototyping and then present how the ETAS EHOOKS
technology addresses those challenges. We will also
explain in detail how the EHOOKS technology works
and what makes it stand out as compared to other
solutions on the market today. Finally, we will propose
how EHOOKS may be used in other applications to help
reduce development time and increase productivity.

CONVENTIONAL RAPID PROTOTYPING

DEFINITION - Let’s first define bypass rapid prototyping
in order to set the framework for the rest of this paper.
Figure 1 shows a high level concept of bypass rapid
prototyping. Here, an ECU native function (Throttle) is
bypassed (or over-written) by calculations in an external
model (e.g. in Simulink). As shown in this simple
diagram, the external model first reads the inputs to the
Throttle function, performs its own calculations and then
overwrites the output of the Throttle function before it is
routed to the ECU output ports. Conventional rapid
prototyping requires several pieces to work in harmony.
For example, the following components are needed (see
Figure 2):

1. ECU: The ECU hardware needs to be instrumented
with the correct data interface (e.g. ETK from ETAS,
or a CAN controller), and the base software needs to
be configured to support those interfaces.

2. Prototyping Hooks: The ECU function or variable
that will be bypassed needs to have a “hook”
implemented that allows the software to switch
between its internal value and that calculated by the
bypass function. It also allows the user to control
which value is used.

Figure 1: Schematic of Bypass Rapid Prototyping

3. External Processor: Usually the bypass function is
executed on an external processor that is more
powerful than the ECU’s microprocessor.

4. The data interface: The data interface between the
ECU and the external processor is crucial for the
real-time performance of the bypass system.

5. Software Services: Support services in the ECU
software are needed to manage the efficient
transport of data to/from the external processor.
These services also monitor the health of the data
link, and abort bypass if the link is broken.

6. Trigger Mechanism: In order for the bypass
function to run synchronously with the timer and
event based tasks of the real-time operating system
(RTOS) implemented in the ECU, a trigger
mechanism needs to be in place. This allows the
ECU microprocessor to be the master scheduler,
and the external processor to be the slave.

7. Configuration Tool: The PC application that allows
the new control algorithms to be mapped to the
bypass hooks in the ECU base software, compile
and execute the algorithms in the external
processor, and manage/control the experiment in
real-time.

Typically, an ECU tool vendor provides some of the
pieces above, while the Tier 1 supplier or OEM provides
the rest. There is an initial integration phase where the
software services, hooks, interfaces and tools are tested

to conform to the targeted development process. After
this is done, the tools are made available for the
algorithm engineer to use.

Figure 2: Typical System Components

EXAMPLES OF HOOKS – The usefulness and
application of hooks (or switches) is determined by their
location relative to an ECU function of interest. For
example, for rapid prototyping, a hook is typically placed
after an internal ECU function calculation is complete
(Figure 3). Thus the ECU calculated value is overwritten
by a different value. Bypass rapid prototyping relies on
hooks of this type to allow testing of new algorithms.

Figure 3: A Rapid Prototyping Hook

If the hook is placed at the input of the ECU function,
however, it represents a different application (Figure 4).
Test and validation engineers may use hooks of this
type to test the robustness of the ECU function in the
presence of input variability. Design engineers, on the

other hand, find it useful to test new sensor designs with
existing ECU software.

Figure 4: A Test and Validation Hook

Hooks may also be placed to re-write any ECU variable
located in RAM with a calibration parameter that may be
adjusted during run-time (Figure 5). Such hooks are
useful when you need to fix a certain ECU value in order
to focus on behavior observed downstream or isolate
problems one by one. Calibration and diagnostic
engineers find such hooks to be especially useful.

Figure 5: Calibration and Diagnostics Hooks

EHOOKS TECHNOLOGY

In the conventional framework described above, new
control algorithms invariably require new software hooks
to be placed in the base software. This task is arduous,
expensive and causes significant development
disruption – taking the rapid out of rapid prototyping!
EHOOKS enables the end user to place all necessary
hooks without the hassle of making changes to the base
software. EHOOKS does this in the following way.

PREPARATION PHASE – An essential element of
EHOOKS technology is the Preparation Tool. This
software tool allows the initial one-time preparation of
the ECU base software (e.g., by the Tier 1 supplier). It
also captures and stores the following information inside
an encrypted block in the ASAM-MCD-2MC (or A2L) file:

• Memory information – e.g. ROM and RAM for the
addition of user functions and bypass hooks.

• Information regarding the ECU software architecture
(e.g., the structure of global and local variables,
update rate of key variables etc.)

• ECU variables and functions that may be bypassed
by the end user. Software suppliers can use this
feature to protect certain areas of their software (e.g.
key input/output and diagnostic functions) from
being overwritten unintentionally by the end user.

• ECU variables and functions that can be utilized by
the bypass functions (e.g., math libraries, internal
sensor values etc.)

• ECU RTOS tasks and function containers that may
be used to execute bypass models.

In addition, this phase disables the ECU checksums
(which might otherwise cause the ECU to shut down)
and adds certain EHOOKS support functions and
administrative calibrations/variables to the base
software. Through this process, EHOOKS ensures that
the subsequent hook installation phase results in a
robust and reliable ECU image.

HOOK INSTALLATION PHASE – The second tool
(called the EHOOKS Hook Insertion Tool) exploits the
information stored in the A2L file by the Preparation Tool
and uses it to configure and install the bypass hooks into
the base HEX file. It does this in several steps:

• First, the user selects (from the A2L file) which
variables in the base software will be bypassed, and
with which type of hooks (e.g. constant, calibration,
external, internal). EHOOKS also allows a copy of
the original ECU value to be created for comparison
purposes. Example dialogs are shown in Figures 6
and 7. Both replacement and offset modes of
bypass are supported (Figure 8).

Figure 6: Selection dialog for Installing Hooks

• The Installation Tool then locates the write

instructions to these variables in the base HEX file.
As part of EHOOKS technology, ETAS has

developed an instruction set simulator (ISS) that
allows these write instructions to be correctly located
even in the presence of complex address
calculations (Figure 9).

• Once the writes are located, the Hook Insertion Tool
patches those locations with jump instructions to
reserved memory areas where special hook-code is
inserted (Figure 9).

• The hook control parameters are also added to the
calibration memory of the ECU (e.g. the Enable
parameter for each hook in Figure 8).

• User provided code for bypass functions is compiled
by EHOOKS, which then generates the necessary
link script to ensure the code (and its data) are
located within the ECU memory sections reserved
for use by EHOOKS as described in the encrypted
section of the A2L file.

• During each build EHOOKS checks to ensure the
available ECU resources reserved for EHOOKS use
are sufficient for the specific configuration. If not,
the build is halted with an error.

• The A2L file is updated with all the necessary hook
control parameters

Figure 7: Selection of Hook Properties

Figure 8: Bypass Modes supported by EHOOKS

The user can now rewrite the ECU memory with the new
HEX file using standard flashing and/or debugging tools
or calibration tools that support flashing (e.g. ETAS
INCA software). The new A2L file may be used by
standard calibration tools for accessing and controlling
the operation of the hooks during run-time.

Figure 9: The original and patched ECU images

TYPES OF HOOKS – With EHOOKS, several types of
hooks may be inserted in the original ECU software
image, enabling several different use cases.

1. Constant Value Hooks (Figure 10) are useful when

you need to fix an ECU RAM variable to a constant
value (e.g. to simulate a faulty sensor). Once fixed,
the value cannot be changed during run-time. It has
to be changed by the EHOOKS Installation Tool and
a new software image has to be flashed to the ECU.

Figure 10: A Constant Value Hook

2. Calibration Hooks (Figure 11) are useful when you

need to control the value of an ECU RAM variable
during run-time using a standard calibration tool
(e.g., INCA from ETAS). The calibration parameter
is automatically added to the A2L file by the
EHOOKS Installation Tool.

Figure 11: A Calibration Value Hook

3. Internal Bypass Hooks (Figure 12) allow an ECU

RAM variable to be overwritten by an algorithm
running directly on the ECU. This methodology,
commonly known as on-target prototyping, is very
useful when the ECU has spare resources (ROM,
RAM, task-time) available to run new algorithms.

Figure 12: Internal Bypass Hooks

4. External Bypass Hooks (Figure 13) allow traditional

bypass rapid prototyping using an external
processor. Bypass algorithms may be developed in
model-based tools such as ASCET from ETAS or
Simulink from The Mathworks, or directly in C-code.
EHOOKS only configures the hooks in the ECU
image to accept values written by an external target,
independent of which external target or modeling
language is actually used.

EHOOKS, therefore, provides a completely scalable
solution for a wide variety of applications – starting from
simple calibration use cases (that require minimum

additional ECU resources) to on-target and external
rapid prototyping.

Figure 13: External Bypass Hooks

The technology leverages proprietary ECU internal
information encrypted and stored in the A2L file by the
Tier 1 supplier. This allows EHOOKS to not only reliably
detect all write instances of a RAM variable, but also
institute run-time safety detection mechanisms that alert
the user to potential data inconsistencies during run-
time. In addition, the hook code inserted by EHOOKS
includes the code from the original ECU software such
that, if the hook is disabled, the original ECU software
functionality is restored.

ADVANCED APPLICATIONS

In addition to the use cases described above, EHOOKS
technology may be applied to solve a myriad of
advanced problems related to software development
and validation. Some of these are described below.

1. Disabling an ECU process: The order of execution
of processes inside an ECU task is pre-defined and
normally cannot be altered by the user.

Figure 14: Disabling an ECU process

The encrypted A2L block created by the EHOOKS
Preparation Tool allows the Tier 1 supplier to
securely provide the process list to the EHOOKS
Installation Tool, which then allows the user to select
and control the execution of specific processes
(Figure 14). This feature is useful, for example,
when:

• An entire ECU function has to be bypassed.
By disabling the whole process, significant
CPU resources can be freed-up for a new
algorithm, or

• An errant ECU process is preventing
downstream processes from functioning
properly, or is paralyzing the ECU.

2. Scheduling of on-target algorithms: EHOOKS

provides the flexibility to leverage existing ECU
resources in the best way possible. One way to do
this is to allow user code for on-target algorithms to
run within a dedicated process created solely for that
purpose. These processes are known as “bypass
containers” (Figure 15). The actual software hook
may reside in a different (e.g. faster) process, but
due to bandwidth limitations it may be not be
possible to execute the new algorithm in the same
task. In many cases, it is still be acceptable to run
the new algorithm in a slower task in order to check
its validity. The EHOOKS Hook Insertion Tool
(optionally) allows the user to pick the bypass
container from an available list of processes, and
assign the algorithm to it.

Figure 15: Bypass Container Process

3. Function in the Loop (FiL): In a traditional hardware-

in-the-loop (HiL) setup (Figure 16), the ECU is
connected via an electrical harness to a HiL system
that runs a vehicle system model in real-time and
generates the necessary sensor signals (e.g., crank,

cam, wheel speeds). The sensor signals are
identical to those available on a real vehicle and are
passed to the ECU via the electrical harness. In
return, the actuator signals computed by the ECU
software are sent back over the harness to the HiL
system, where electrical or simulated loads are used
to emulate the conditions found on the vehicle. This
process requires extensive signal conditioning on
the HiL system in order to convert physical values
(e.g. temp in deg F, speed in m/s) to electrical
values (e.g. voltage) and vice-versa.

Figure 16: A conventional HiL system setup

Figure 17: A Function-in-the-Loop System

Although HiL systems come close to simulating the
environment of an ECU, there are significant costs
involved in building the signal conditioning hardware
necessary for proper operation. In the recent past,
the FiL methodology has emerged as a way to
overcome these challenges of HiL and reap some of
the same benefits. With FiL (Figure 17), the
expensive signal conditioning and load hardware is
avoided. The plant model running on a real-time PC
(e.g. the ETAS LABCAR-RTPC) generates sensor
signals that are copied directly to the ECU memory.
Similarly, the actuator commands are read directly
from the ECU memory and connected to back to the
plant model. This direct exchange of software
signals is made possible via a memory emulator
probe (e.g. the ETAS ETK device) mounted on the
ECU. Since the electrical interfaces of the ECU are
idle, it is necessary to disable diagnostic functions in
the ECU software for FiL to work.

EHOOKS technology is used to install the necessary
software hooks for FiL – e.g., to overwrite an ECU
memory location that is normally used to store a
sensor value calculated by the ECU.

CASE STUDIES

At the time of writing, ETAS is in the final stages of
releasing the EHOOKS product to the market. However,
the technology has already been proven and refined
through select lead customer projects over the last
eighteen months. Some key examples of customer
projects are presented below.

• In Asia, a major OEM is using EHOOKS for
accelerating the development of new ECU functions
via traditional rapid prototyping. They are now able
to avoid the cost (typically €10k - €30k) of each new
software change request for new hooks charged by
their Tier 1 supplier. They are also able to reduce
the number of ECU software releases required
before start of production by about 50%.

• In Europe, a major OEM is reporting that by using
EHOOKS they are able to create a new software
version in about 5 minutes, when it previously took
them anywhere from one to eight weeks.

• In Europe, another major OEM’s Tier1 supplier is
unable to manually add hooks to the software
because they don’t have access to certain sections
of the code. In this situation, the only option for the
OEM is to use EHOOKS to add the necessary
bypass hooks.

• A FiL system developed by ETAS jointly with a
leading European Tier 1 supplier is in use for
software development, system integration and
testing.

CONCLUSION

In this paper, we have presented a new patent-pending
technology from ETAS that inserts software hooks and
code into an existing ECU software image without the
need for the source code. This technology allows the
software vendor (Tier 1) to securely share proprietary
ECU architecture and implementation details (necessary
to make EHOOKS flexible and robust), without exposing
their core intellectual property to the OEMs. Using this
technology, controls engineers can once again “rapidly”
develop and test new strategies either directly on the
ECU (if there is enough memory and processor
bandwidth available) or on an external rapid prototyping
system (such as the ETAS ES910) without incurring the
cost and delays associated with traditional software
hooks.

ACKNOWLEDGMENTS

We wish to acknowledge the tireless efforts and
innovative spirit of the entire EHOOKS development and
product management team at ETAS. In addition, thanks
go to several lead customers who provided invaluable
input and feedback to help ETAS refine the technology.

REFERENCES

1. Gebhard, M.; Lauff, U.; Schnellbacher, K.: Operation
am offenen Herzen – Entwicklung und Test von
Steuergerätefunktionen mit der Bypass-Methode,
Elektronik Automotive 2008, Issue 6, Pg. 34-39.

2. Dubitzky, W.; Eismann, W; Schinagl, J.:
Einsatzmöglichkeiten der Bypass-Methode für
Entwicklung und Test von Steuergerätefunktionen,
Electronik Automotive 2008, Issue 8, Pg. 52-56.

3. Triess, B.; Müller, C; Lauff, U.; Mößner C.:
Entwicklung und Applikation von Motor- und
Getriebesteuerungen mit der ETK-
Steuergeräteschnittstelle. ATZ Automobiltechnische
Zeitschrift 109 (2007), Issue 1, Pg. 32-39.

4. INCA, ASCET, LABCAR-RTPC, ETK and other
ETAS products: www.etas.com

5. ASAM-MCD-2MC, www.asam.net

CONTACT

Vivek Jaikamal is a Marketing Manager for software
engineering tools at ETAS, Inc. in Ann Arbor, MI. He
can be reached via email at vivek.jaikamal@etas.com

Nigel J. Tracey is a Product Manager for ETAS
embedded software tools based out of York, UK. He
may be reached via email at nigel.tracey@etas.com

