

ES5340.2 Internal Combustion Engine Application

Benutzerhandbuch

Copyright

Die Angaben in diesem Schriftstück dürfen nicht ohne gesonderte Mitteilung der ETAS GmbH geändert werden. Desweiteren geht die ETAS GmbH mit diesem Schriftstück keine weiteren Verpflichtungen ein. Die darin dargestellte Software wird auf Basis eines allgemeinen Lizenzvertrages oder einer Einzellizenz geliefert. Benutzung und Vervielfältigung ist nur in Übereinstimmung mit den vertraglichen Abmachungen gestattet.

Unter keinen Umständen darf ein Teil dieser Veröffentlichung in irgendeiner Form ohne schriftliche Genehmigung der ETAS GmbH kopiert, vervielfältigt, in einem Retrievalsystem gespeichert oder in eine andere Sprache übersetzt werden.

© Copyright 2014-2019 ETAS GmbH, Stuttgart

Die verwendeten Bezeichnungen und Namen sind Warenzeichen oder Handelsnamen ihrer entsprechenden Eigentümer.

V1.0.0 R08 DE - 06.2019

Inhalt

1	Einfü	hrung		5				
	1.1		Applage und digitale Fin und Ausgänge	ך ב				
		1.1.1		5				
		1.1.2	Signalvermessung	5				
		1.1.3	Generierung arbitrarer Signale	5				
	1.2	2 Grundlegende Sicherheitshinweise						
		1.2.1	Kennzeichnung von Sicherheitshinweisen	7				
		1.2.2	Allgemeine Sicherheitsinformationen.	7				
		1.2.3	Anforderungen an den Benutzer und Pflichten des Betreibers	8				
		1.2.4	Bestimmungsgemäße Verwendung	8				
	1.3	Kennzei	chnungen auf dem Produkt	12				
		1.3.1	CE-Kennzeichen	12				
		1.3.2	KC-Kennzeichnung	12				
		1.3.3	RoHS-Konformität	13				
	1.4	Produktr	rücknahme und Recycling ŕ	14				
	1.5 Deklarationspflichtige Stoffe							
	1.6	Über die	ses Handbuch	15				
		1.6.1	Umgang mit dem Handbuch	15				
2	Instal	lation un	d Konfiguration	17				
	2.1	Installier	en der ES5340.2-ICE im Real-Time PC	17				
		2.1.1	Anforderungen und Spezifikationen	17				
		2.1.2	Vorgehensweise beim Einbau	18				
	2.2	Installier	en der ES5340.2-ICE im ES5300.1-A Housing	18				
	2.3	Winkelta	akt-Master/Slave-Konfiguration	18				
		2.3.1	Verbinden der Winkeltaktbusse zweier Karten	18				
		2.3.2	Konfiguration der Winkeltakteinheit (in LABCAR-RTC).	19				
			-					

3	Hard	warebesc	hreibung	21
	3.1	Generie	rung analoger Signale	22
		3.1.1	Spezifikation	22
		3.1.2	Konfiguration der analogen Signale	23
	3.2	Ausgang	gsmultiplexer für die analogen Signale	24
	3.3	Generie	rung digitaler Signale	25
		3.3.1	Spezifikation	25
		3.3.2	Konfiguration der digitalen Signale	27
	3.4	Ausgang	gsmultiplexer für die digitalen Signale	28
	3.5	Analoge	e Eingänge	29
		3.5.1	Spezifikation	29
		3.5.2	Konfiguration der analogen Eingänge	29
	3.6	Digitale	Eingänge	30
		3.6.1	Spezifikation	30
		3.6.2	Schwellwertvergleich	30
		3.6.3	Konfiguration der digitalen Eingänge.	31
		3.6.4	Konfiguration mit ES5436 zur Vermessung von digitalen Ausgä	ngen
			einer ECU	32
		3.6.5	Konfiguration als H-Brücke	34
		3.6.6	Messverfahren	35
		3.6.7	Raildruckmessungen	36
	3.7	Arbiträre	e Signalgeneratoren	37
		3.7.1	RPM-Generator	38
		3.7.2	Wellenformspeicher für Signalgeneratoren	38
		3.7.3	Klopfsignalgenerator	39
		3.7.4	Zündaussetzsteuerung	40
		3.7.5	Sequenztabellen	40
		3.7.6	MSA-Sensor	40
	3.8	Drehzah	lgenerator (RPM-Generator)	41
		3.8.1	Winkeltaktsignal	41
		3.8.2	Synchronisation	42
		3.8.3	Konfiguration der Winkeltakteinheit in LABCAR-RTC	42
	<u> </u>			4 5
4	Steck	erbelegu	ng und Anzeigeelemente	45
	4.1	Steckerd	Delegung	46
		4.1.1	Steckverbinder für die Ausgange	46
		4.1.2	Steckverbinder für die Eingange	4/
	4.2	4.1.3	Steckverbinder für das Winkeltaktsignal.	49
	4.2	Anzeige	elemente	49
5	Techr	nische Da	iten und Normen	51
	5.1	Technisc	he Daten	51
	5.2	Erfüllte S	Standards und Normen	54
6	Beste	lldaten u	nd Lieferumfang	55
7	ETAS	Kontakti	information	57
	Abbil	dungsver	zeichnis	59
	Index	(61

1 Einführung

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Eigenschaften" auf Seite 5
- "Grundlegende Sicherheitshinweise" auf Seite 7
- "Kennzeichnungen auf dem Produkt" auf Seite 12
- "CE-Kennzeichen" auf Seite 12
- "KC-Kennzeichnung" auf Seite 12
- "RoHS-Konformität" auf Seite 13
- "Produktrücknahme und Recycling" auf Seite 14
- "Deklarationspflichtige Stoffe" auf Seite 14
- "Über dieses Handbuch" auf Seite 15

1.1 Eigenschaften

Die ES5340.2 Internal Combustion Engine Application (kurz: ES5340.2-ICE) dient zur Erfassung, Auswertung und Generierung von winkelsynchronen Steuergerätesignalen bei Zwei- und Viertakt-Verbrennungsmotoren und hat folgende Eigenschaften:

- 1.1.1 Analoge und digitale Ein- und Ausgänge
 - Vier analoge Eingänge
 - Acht analoge Ausgänge
 - Acht digitale oder PWM-Ausgänge

1.1.2 Signalvermessung

Zur Vermessung von Signalen stehen 20 digitale Eingänge zur Verfügung. Die Signale können mit einer Vielzahl von zeitbasierten (Cycle Time, Frequency, Duty Cycle, High Time usw.) und winkelbasierten Messverfahren vermessen werden.

1.1.3 Generierung arbiträrer Signale

Zur Generierung arbiträrer Signale stehen acht frei programmierbare arbiträre Signalgeneratoren zur Verfügung, die vom zentralen Winkeltaktgenerator oder von einem (pro Signalgenerator) lokalen Taktgenerator (0 - 1 MHz) getaktet werden können.

- Für alle Signalgeneratoren stehen 16 Signalbänke zur Verfügung, zwischen denen zur Laufzeit in Echtzeit gewechselt werden kann.
- Acht D/A-Wandler mit 16 Bit Auflösung und einem Ausgangsspannungsbereich von -10 V bis +10 V
- Die Genauigkeit der Ausgangsspannung beträgt ±5 mV (bei interner Referenz).
- Jeder Signalgenerator besitzt eine interne oder externe Spannungsreferenz

- Ausgabemodi:
 - analog, galvanisch getrennt
 - digital (Open-Collector/Pull-Up, 10 mA), galvanisch getrennt
 Wechsel des Ausgabemodus über Software möglich.
- Jeder Ausgangskanal besitzt eine eigene galvanische Trennung
- Jeder Ausgangskanal ist per Software abschaltbar
- Simulation von Klopfsensoren und Fehlzündungssimulation möglich
- Klopfgenerator mit 4 unabhängigen Ausgängen
- Kurzschlusssicher und überspannungsfest bis ±60 V

Die folgende Abbildung zeigt die Frontplatte der ES5340.2 Internal Combustion Engine Application mit den verschiedenen Anschlüssen.

Abb. 1-1 Frontplatte der ES5340.2 Internal Combustion Engine Application Die Funktion und die Belegung der Steckanschlüsse sind im Kapitel "Steckerbelegung und Anzeigeelemente" auf Seite 45 beschrieben.

1.2 Grundlegende Sicherheitshinweise

Bitte beachten Sie die nachfolgenden Sicherheitshinweise, um gesundheitliche Beeinträchtigungen oder Schäden am Gerät zu vermeiden.

1.2.1 Kennzeichnung von Sicherheitshinweisen

Die in diesem Handbuch enthaltenen Sicherheitshinweise sind mit dem unten dargestellten allgemeinen Gefahrensymbol gekennzeichnet:

Dabei werden die unten dargestellten Sicherheitshinweise verwendet. Sie geben Hinweise auf äußerst wichtige Informationen. Bitte lesen Sie diese Informationen sorgfältig.

VORSICHT!

kennzeichnet eine Gefährdung mit geringem Risiko, die leichte oder mittlere Körperverletzungen oder Sachschäden zur Folge haben könnte, wenn sie nicht vermieden wird.

WARNUNG!

kennzeichnet eine mögliche Gefährdung mit mittlerem Risiko, die Tod oder (schwere) Körperverletzung zur Folge haben kann, wenn sie nicht vermieden wird.

GEFAHR!

kennzeichnet eine unmittelbare Gefährdung mit hohem Risiko, die Tod oder schwere Körperverletzung zur Folge haben wird, wenn sie nicht vermieden wird.

1.2.2 Allgemeine Sicherheitsinformationen

Bitte beachten Sie den Produkt-Sicherheitshinweis ("ETAS Safety Advice") und die nachfolgenden Sicherheitshinweise, um gesundheitliche Beeinträchtigungen oder Schäden am Gerät zu vermeiden.

<u>Hinweis</u>

Lesen Sie die zum Produkt gehörende Dokumentation (dieses Benutzerhandbuch) vor der Inbetriebnahme sorgfältig.

Die ETAS GmbH übernimmt keine Haftung für Schäden, die durch unsachgemäße Handhabung, nicht bestimmungsgemäßen Gebrauch und durch Nichteinhaltung der Sicherheitsvorkehrungen entstanden sind.

1.2.3 Anforderungen an den Benutzer und Pflichten des Betreibers

Montieren, bedienen und warten Sie das Produkt nur, wenn Sie über die erforderliche Qualifikation und Erfahrung für dieses Produkt verfügen. Fehlerhafte Nutzung oder Nutzung durch Anwender ohne ausreichende Qualifikation kann zu Schäden an Leben bzw. Gesundheit oder Eigentum führen.

Die Sicherheit von Systemen, die das Produkt verwenden, liegt in der Verantwortung des Systemintegrators.

Allgemeine Abeitssicherheit

Halten Sie die bestehenden Vorschriften zur Arbeitssicherheit und Unfallverhütung ein. Beim Einsatz dieses Produkts müssen alle geltenden Vorschriften und Gesetze in Bezug auf den Betrieb beachtet werden.

1.2.4 Bestimmungsgemäße Verwendung

Einsatzbereich des Produkts

Das Produkt ist eine PCI-Express-Einsteckkarte für die Hauptplatine des RTPCs im ES5300.1-A Housing oder für einen RTPC von ETAS (TP_RTPC_2/3U.x). Das Produkt darf ausschließlich in dem dafür vorgesehenen ES5300.1-A Housing oder RTPC von ETAS betrieben werden.

Der Verwendungszweck des Produkts ist wie folgt:

- Verwendung als Bestandteil in industriellen Laboreinrichtungen oder an industriellen Arbeitsplätzen
- Verwendung als Hardwareinterface für Steuergeräte in einem Hardwarein-the-Loop Testsystem
- Verwendung im Zusammenspiel mit ETAS Software, die das ES5300.1-A Housing und das ES5300.1-B Housing unterstützen
- Verwendung als Interface im Zusammenspiel mit Softwareprogrammen, welche die standardisierten, dokumentierten und offenen APIs von ETAS Software-Produkten bedienen

Das Produkt ist nicht vorgesehen für Folgendes:

- Verwendung innerhalb eines Fahrzeugs auf der Straße
- Verwendung als Teil eines Lebenserhaltungssystems
- Verwendung als Teil einer medizinischen Anwendung
- Anwendungen, bei denen der Missbrauch zu Verletzungen oder Schäden führen kann
- Verwendung in Umgebungen, in denen Bedingungen herrschen, welche außerhalb der spezifizierten Bereiche liegen (siehe "Umgebungsbedingungen" auf Seite 53)
- Verwendung mit Signalkonditionierung, die außerhalb der spezifizierten Bereiche liegt (siehe Spannungen, Ströme und Leistungsaufnahme im Kapitel "Technische Daten und Normen" auf Seite 51)

Anforderungen an den technischen Zustand des Produkts

Das Produkt entspricht dem Stand der Technik sowie den anerkannten sicherheitstechnischen Regeln. Das Produkt darf nur in technisch einwandfreiem Zustand sowie bestimmungsgemäß, sicherheits- und gefahrenbewusst unter Beachtung der zu dem Produkt gehörenden Dokumentation betrieben werden. Wird das Produkt nicht bestimmungsgemäß eingesetzt, kann der Schutz des Produkts beeinträchtigt werden.

Anforderungen an den Betrieb

- Verwenden Sie das Produkt nur entsprechend den Spezifikationen im zugehörigen Benutzerhandbuch. Bei abweichender Nutzung ist die Produktsicherheit nicht gewährleistet.
- Verwenden Sie das Produkt nicht in nasser oder feuchter Umgebung.
- Verwenden Sie das Produkt nicht in explosionsgefährdeten Bereichen.

Elektrosicherheit und Stromversorgung

Beachten Sie die am Einsatzort geltenden Vorschriften zur Elektrosicherheit sowie die Gesetze und Vorschriften zur Arbeitssicherheit!

WARNUNG!

Brandgefahr! Verwenden Sie nur Sicherungen, die der Spezifikation im Benutzerhandbuch des Produkts entsprechen! Überbrücken Sie niemals defekte Sicherungen! Nichtbeachten der Sicherungs-Spezifikation kann zu Überströmen, Kurzschlüssen und Bränden führen.

Stromversorgung

Die Stromversorgung des Produkts erfolgt durch das ES5300.1-A Housing oder durch das ES5300.1-B Housing über den PCIe-Steckplatz auf der Hauptplatine des RTPCs.

Isolationsanforderungen an Laborstromversorgungen für an das HiL-System angeschlossene Schaltkreise:

- Die Stromversorgung für angeschlossene Schaltkreise muss sicher von der Netzspannung getrennt sein. Verwenden Sie z.B. eine Fahrzeugbatterie oder eine geeignete Laborstromversorgung.
- Verwenden Sie nur Laborstromversorgungen mit doppeltem Schutz zum Versorgungsnetz (mit doppelter Isolation / mit verstärkter Isolation (DI/ RI)).

Laborstromversorgungen, die den Normen IEC/EN 60950 oder IEC/EN 61010 entsprechen, erfüllen diese Anforderungen.

• Die Laborstromversorgung muss für eine Einsatzhöhe von 2000 m und für eine Umgebungstemperatur bis zu 40°C zugelassen sein.

Einsteckkarte spannungsfrei schalten

Schalten Sie das ES5300.1-A Housing bzw. das ES5300.1-B Housing und externe Spannungsversorgungen aus und ziehen Sie den Netzstecker und die anderen Steckverbinder an der Einsteckkarte. Warten Sie mindestens drei Minuten, bevor Sie die Einsteckkarte ausbauen.

Zugelassene Kabel

Die Signalleitungen dürfen eine maximale Länge von 3 m nicht überschreiten!

WARNUNG!

Brandgefahr!

Verwenden Sie bei der Herstellung von Kabelbäumen (z.B. zum Anschluss des Steuergeräts und externer Lasten) nur zugelassene Kabel. Die verwendeten Kabel müssen insbesondere für die auftretenden Ströme, Spannungen und Temperaturen geeignet und flammhemmend nach einer der folgenden Normen IEC60332-1-2, IEC60332-2-2, UL2556/UL1581VW-1 sein!

Anforderungen an den Aufstellungsort

WARNUNG!

Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen.

Anforderungen an die Belüftung

VORSICHT!

Die Luftzirkulation innerhalb des ES5300.1-A Housings und des ES5300.1-B Housings kann nur sichergestellt werden, wenn alle freien Steckplätze mit Frontplatten abgedeckt sind. Ansonsten kann es zu Übertemperaturen kommen und der Übertemperaturschutz der ES5300.1-A bzw. der ES5300.1-B auslösen. Montieren Sie deshalb bei allen freien Steckplätzen Frontplatten!

Transport und Einbau

VORSICHT!

Einige Bauelemente des Produkts können durch elektrostatische Entladungen beschädigt oder zerstört werden. Belassen Sie die Einsteckkarte bis zu ihrem Einbau in der Transportverpackung. Entnehmen, konfigurieren und verbauen Sie das Produkt nur an einem gegen statische Entladungen gesicherten Arbeitsplatz.

VORSICHT!

Um eine Beschädigung der Einsteckkarten und des LABCAR-Housings und dadurch mögliche Schäden an Eigentum und Gesundheit zu vermeiden, beachten Sie die Montageanleitungen in den entsprechenden Benutzerhandbüchern und die darin enthaltenen Hinweise.

Anschließen/Entfernen von Geräten

Zur Vermeidung von Verletzungen und Hardwareschäden beachten Sie folgende Vorsichtsmaßnahmen:

- Legen Sie keine Spannungen an die Anschlüsse des Produkts an, die nicht den Spezifikationen des jeweiligen Anschlusses entsprechen.
- Schließen Sie keine Geräte an und entfernen Sie keine Geräte, während das ES5300.1-A Housing bzw. das ES5300.1-B Housing oder angeschlossene Geräte eingeschaltet sind. Schalten Sie zuvor das ES5300.1-A Housing bzw. ES5300.1-B Housing durch Herunterfahren des Real-Time PCs und durch Betätigen des Ein- /Ausschaltschalters auf der Rückseite aus und ziehen Sie den Netzstecker.
- Achten Sie beim Anschluss von Steckverbindern darauf, dass diese gerade eingeführt werden und keine Pins verbogen werden.

Wartung

Eine Wartung des Produkts ist nicht erforderlich.

Reparatur

Sollte eine Reparatur eines ETAS Hardware-Produkts erforderlich sein, schicken Sie das Produkt an ETAS.

Reinigung

Eine Reinigung des Produkts ist nicht vorgesehen.

Folgende Symbole werden zur Kennzeichnung des Produkts verwendet:

Symbol	Beschreibung
	Lesen Sie vor der Inbetriebnahme des Produktes unbedingt das Benutzerhandbuch
CE	Kennzeichnung für CE-Konformität (siehe "CE-Kennzeichen" auf Seite 12)
C	Kennzeichnung für KCC-Konformität (siehe "KC-Kennzeichnung" auf Seite 12)
•	Kennzeichnung für China RoHS, siehe Kapitel (siehe "RoHS-Konformität" auf Seite 13)
	Kennzeichnung zur Einhaltung der WEEE-Richtlinie (siehe "Produktrücknahme und Recycling" auf Seite 14)

Bitte beachten Sie die Informationen im Kapitel "Technische Daten und Norm auf Seite 51.

1.3.1 CE-Kennzeichen

ETAS bestätigt mit der auf dem Produkt oder auf dessen Verpackung angebrachten CE-Kennzeichnung, dass das Produkt den produktspezifisch geltenden europäischen Richtlinien entspricht. Die CE-Konformitätserklärung für das Produkt ist auf Anfrage erhältlich.

1.3.2 KC-Kennzeichnung

ETAS bestätigt mit der auf dem Produkt und der auf dessen Verpackung angebrachten KC-Kennzeichnung, dass das Produkt entsprechend den produktspezifisch geltenden KCC-Richtlinien der Republik Korea registriert wurde.

1.3.3 RoHS-Konformität

Europäische Union

Die EG-Richtlinie RoHS 2011/65/EU schränkt für Elektro- und Elektronikgeräte die Verwendung bestimmter gefährlicher Stoffe ein (RoHS-Konformität).

ETAS bestätigt, dass das Produkt dieser in der Europäischen Union geltenden Richtlinie entspricht.

China

ETAS bestätigt mit der auf dem Produkt oder auf dessen Verpackung angebrachten China RoHS-Kennzeichnung, dass das Produkt den in der Volksrepublik China geltenden Richtlinien der "China RoHS" (Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation) entspricht.

1.4 Produktrücknahme und Recycling

Die Europäische Union (EU) hat die Richtlinie über Elektro- und Elektronik-Altgeräte (Waste Electrical and Electronic Equipment - WEEE) erlassen, um in allen Ländern der EU die Einrichtung von Systemen zur Sammlung, Behandlung und Verwertung von Elektronikschrott sicherzustellen.

Dadurch wird gewährleistet, dass die Geräte auf eine ressourcenschonende Art und Weise recycelt werden, die keine Gefährdung für die Gesundheit des Menschen und der Umwelt darstellt.

Abb. 1-2 WEEE-Symbol

Das WEEE-Symbol auf dem Produkt oder dessen Verpackung kennzeichnet, dass das Produkt nicht zusammen mit dem Restmüll entsorgt werden darf.

Der Anwender ist verpflichtet, die Altgeräte getrennt zu sammeln und dem WEEE-Rücknahmesystem zur Wiederverwertung bereitzustellen.

Die WEEE-Richtlinie betrifft alle ETAS-Geräte, nicht jedoch externe Kabel oder Batterien.

Weitere Informationen zum Recycling-Programm der ETAS GmbH erhalten Sie von den ETAS Verkaufs- und Serviceniederlassungen (siehe "ETAS Kontaktinformation" auf Seite 57).

1.5 Deklarationspflichtige Stoffe

Einige Produkte der ETAS GmbH (z.B. Module, Boards, Kabel) verwenden Bauteile mit deklarationspflichtigen Stoffen entsprechend der REACH-Verordnung (EG) Nr.1907/2006. Detaillierte Informationen finden Sie im ETAS Downloadcenter in der Kundeninformation "REACH Declaration" <www.etas.com/Reach>. Diese Informationen werden ständig aktualisiert.

1.6 Über dieses Handbuch

Dieses Handbuch besteht aus den folgenden Kapiteln:

- "Einführung" auf Seite 5 Dieses Kapitel
- "Installation und Konfiguration" auf Seite 17

In diesem Kapitel finden Sie Hinweise zur Installation und Konfiguration der ES5340.2 Internal Combustion Engine Application.

"Hardwarebeschreibung" auf Seite 21

In diesem Kapitel finden Sie eine Beschreibung der Ein- und Ausgänge der ES5340.2 Internal Combustion Engine Application mit den damit vermessbaren bzw. dafür generierbaren Signalen.

• "Steckerbelegung und Anzeigeelemente" auf Seite 45

Dieses Kapitel enthält die Beschreibung der Steckanschlüsse und Anzeigeelemente der ES5340.2 Internal Combustion Engine Application.

"Technische Daten und Normen" auf Seite 51
 In diesem Kapitel finden Sie Hinweise zur Installation und Konfiguration

der ES5340.2 Internal Combustion Engine Application.

• "Bestelldaten und Lieferumfang" auf Seite 55

1.6.1 Umgang mit dem Handbuch

Darstellung von Information

Alle vom Anwender auszuführenden Tätigkeiten werden in einem sogenannten "Use-Case"-Format dargestellt. D. h., dass das zu erreichende Ziel zuerst in der Titelzeile kurz definiert wird, und die jeweiligen Schritte, die notwendig sind, um dieses Ziel zu erreichen, dann in einer Liste aufgeführt werden. Die Darstellung sieht wie folgt aus:

Zieldefinition

eventuelle Vorabinformation...

1. Schritt 1

eventuelle Erläuterung zu Schritt 1...

2. Schritt 2

eventuelle Erläuterung zu Schritt 2...

eventuelle abschließende Bemerkungen...

Konkretes Beispiel:

Erstellen einer neuen Datei

Vor dem Erstellen einer neuen Datei darf keine andere geöffnet sein.

1. Wählen Sie **Datei** \rightarrow **Neu**.

Die Dialogbox "Datei Erstellen" erscheint.

- Geben Sie den Namen f
 ür die Datei im Feld "Dateiname" ein.
 Der Dateiname darf nicht mehr als 8 Zeichen lang sein.
- 3. Klicken Sie **OK**.

Die neue Datei wird erstellt und unter dem von ihnen angegebenen Namen abgelegt. Sie können nun mit der Datei arbeiten.

Typografische Konventionen

Folgende typografischen Konventionen werden verwendet:

Wählen Sie Datei → Öffnen .	Menübefehle werden fett/blau dargestellt.
Klicken Sie OK .	Schaltflächen werden fett/blau dargestellt.
Drücken Sie <eingabe>.</eingabe>	Tastaturbefehle werden in spitzen Klammern, in Kapitälchen dargestellt.
Das Dialogfenster "Datei öffnen" erscheint.	Namen von Programmfenstern, Dialog- fenstern, Feldern u.ä. werden in Anfüh- rungszeichen gesetzt.
Wählen Sie die Datei setup.exe aus.	Text in Auswahllisten, Programmcode, sowie Pfad- und Dateinamen werden in der Schriftart Courier dargestellt.
Eine Konvertierung zwischen den Datentypen logisch und arithme- tisch ist <i>nicht</i> möglich.	Inhaltliche Hervorhebungen und neu ein- geführte Begriffe werden <i>kursiv</i> gesetzt.

Wichtige Hinweise für den Anwender werden so dargestellt:

<u>Hinweis</u>

Wichtiger Hinweis für den Anwender.

2 Installation und Konfiguration

In diesem Kapitel finden Sie Hinweise zur Installation und Konfiguration der ES5340.2 Internal Combustion Engine Application.

2.1 Installieren der ES5340.2-ICE im Real-Time PC

Wenn Sie Ihren Real-Time PC selbst aufbauen oder die PCI-Express-Karte nachträglich in einen bereits vorhandenen Real-Time PC einbauen wollen, beachten Sie bitte unbedingt die Hinweise und Anleitungen in diesem Kapitel.

2.1.1 Anforderungen und Spezifikationen

Freigegebene PCs und bekannte Installationen

Eine Liste mit von ETAS getesteten und freigegebenen PCs sowie mit bekannten Installationen (ETAS RTPC Vx.y.z HW Compatibility List.pdf) finden Sie im Web-Interface von LABCAR-RTPC unter Main Page \rightarrow Documentation.

<u>Hinweis</u>

Weil die Bootzeit der ES5340.2-ICE mehr als 800 µs beträgt, kann es bei nicht von ETAS freigegebenen PCs vorkommen, dass die Karte nicht erkannt wird!

Beim Einsatz der ES5340.2-ICE sollte die Hardware des Real-Time PC – über die im "LABCAR-RTPC - Benutzerhandbuch" beschriebenen Hardwarespezifikationen hinaus – folgenden Anforderungen genügen:

Southbridge Chip	ICH 2, 4, 5, 6, 7, 8, 9 z.B. Intel Chipsätze 915, 925, 945, 955, 965, 975, E7230 und X38, X48, X58
PCIe Slots	min. 1 (x4 oder mehr)

Tab. 2-1 Zusätzliche Anforderungen an den Real-Time PC

<u>Hinweis</u>

Um die beim Einsatz mehrerer PCI-Express-Karten erforderlichen Leistungen zu garantieren, sollte das Netzteil eine Mindestleistung von 400 W besitzen!

2.1.2 Vorgehensweise beim Einbau

Beachten Sie beim Einbau der ES5340.2 Internal Combustion Engine Application die folgenden Punkte:

- Schalten Sie vor dem Einbau Ihren Real-Time PC aus und ziehen Sie den Netzstecker.
- Zur Vermeidung von Schäden an der Hardware durch elektrostatische Entladung beachten Sie bitte folgende Vorsichtsmaßnahmen:

VORSICHT!

Einige Bauelemente der ES5340.2-ICE können durch elektrostatische Entladungen beschädigt oder zerstört werden. Belassen Sie die Einschubkarte bis zu ihrem Einbau in der Transportverpackung. Die ES5340.2-ICE darf nur an einem gegen statische Entladungen gesicherten Arbeitsplatz aus der Transportverpackung entnommen, konfiguriert und eingebaut werden.

• Folgen Sie den Anweisungen des PC-Herstellers zum Einbau von Erweiterungskarten.

2.2 Installieren der ES5340.2-ICE im ES5300.1-A Housing

Zum Einbau einer ES5340.2-ICE in das ES5300.1-A Housing muss diese zuerst auf eine dafür vorgesehene PCI Express-Trägerkarte (ES5370.1 Carrier Board PCI Express x16 socket, GEN1/2 x1 Link) montiert werden, die anschließend in die ES5300.1-A eingesetzt wird.

Eine detaillierte Beschreibung dazu finden Sie im Benutzerhandbuch des ES5300.1-A Housing.

2.3 Winkeltakt-Master/Slave-Konfiguration

Die auf der ES5340.2-ICE vorhandene Winkeltakteinheit kann als Master oder als Slave betrieben werden.

<u>Hinweis</u>

Die folgenden Ausführungen gelten nur für Karten, die sich in PCI Express-Steckplätzen befinden!

2.3.1 Verbinden der Winkeltaktbusse zweier Karten

Zum Anschließen des Winkeltaktsignals sind auf jeder Karte zwei Steckverbinder vorhanden, die mit einem entsprechenden Kabel verbunden werden.

Durchführung

- Wenn Sie eine weitere Karten einbauen oder zwei bereits eingebaute für eine Master/Slave-Konfiguration verbinden wollen, schalten Sie zuerst ihren Real-Time PC aus.
- Beachten Sie die in "Vorgehensweise beim Einbau" auf Seite 18 beschriebenen Punkte.
- Verbinden Sie die jeweils benachbarten Anschlüsse zweier Karten (Anschlüsse A in Abb. 2-1) mit einem der mitgelieferten Flachbandkabel.

• Terminieren Sie die jeweils gegenüberliegenden Anschlüsse (Anschlüsse B in Abb. 2-1) mit den mitgelieferten Terminierungssteckern.

Eine einzelne Karte muss ebenfalls mit einem Terminierungsstecker terminiert werden.

Abb. 2-1 Verbinden der Winkeltaktbusse zweier Karten

Hinweis

Bevor Sie die Stecker vorsichtig in die Buchsen drücken, achten Sie unbedingt darauf, dass die Steckerpins nicht versetzt zur Buchse positioniert werden!

2.3.2 Konfiguration der Winkeltakteinheit (in LABCAR-RTC)

Die Zuweisung, ob eine Winkeltakteinheit als Master oder als Slave fungiert, erfolgt beim "ES5340-RPM"-Item. In der Registerkarte "Globals" können Sie die Option "RPM Operating Mode" entsprechend einstellen.

3 Hardwarebeschreibung

In diesem Kapitel finden Sie eine Beschreibung der Ein- und Ausgänge der ES5340.2 Internal Combustion Engine Application mit den damit vermessbaren bzw. dafür generierbaren Signalen.

Im Einzelnen finden Sie Informationen zu folgenden Themen:

• "Generierung analoger Signale" auf Seite 22

Die ES5340.2 Internal Combustion Engine Application besitzt acht analoge Ausgänge. Diese Ausgänge dienen zur Ausgabe verschiedener analoger Signale über einen Ausgangsmultiplexer.

- "Spezifikation" auf Seite 22
- "Konfiguration der analogen Signale" auf Seite 23
- "Ausgangsmultiplexer f
 ür die analogen Signale" auf Seite 24

Jeder analoge Ausgang besitzt einen Multiplexer, mit dem das Signal für diesen Ausgang definiert werden kann.

• "Generierung digitaler Signale" auf Seite 25

Die ES5340.2 Internal Combustion Engine Application besitzt acht digitale Ausgänge. Diese Ausgänge dienen zur Ausgabe verschiedener digitaler Signale über einen Ausgangsmultiplexer.

- "Spezifikation" auf Seite 25
- "Konfiguration der digitalen Signale" auf Seite 27
- Ausgangsmultiplexer für die digitalen Signale" auf Seite 28

Jeder digitale Ausgang besitzt einen Multiplexer, mit dem das Signal für diesen Ausgang definiert werden kann.

• "Analoge Eingänge" auf Seite 29

Die ES5340.2 Internal Combustion Engine Application besitzt vier Eingänge zur Vermessung analoger Signale.

- "Spezifikation" auf Seite 29
- "Konfiguration der analogen Eingänge" auf Seite 29
- "Digitale Eingänge" auf Seite 30

Die ES5340.2 Internal Combustion Engine Application besitzt 20 Eingänge zur Vermessung digitaler Signale.

- "Spezifikation" auf Seite 30
- "Schwellwertvergleich" auf Seite 30
- "Konfiguration der digitalen Eingänge" auf Seite 31
- "Messverfahren" auf Seite 35
- "Raildruckmessungen" auf Seite 36
- "Arbiträre Signalgeneratoren" auf Seite 37
 - "RPM-Generator" auf Seite 38
 - "Wellenformspeicher für Signalgeneratoren" auf Seite 38
 - "Klopfsignalgenerator" auf Seite 39
 - "Zündaussetzsteuerung" auf Seite 40

- "Sequenztabellen" auf Seite 40
- "MSA-Sensor" auf Seite 40
- "Drehzahlgenerator (RPM-Generator)" auf Seite 41

Die ES5340.2 Internal Combustion Engine Application verfügt über einen zentralen Drehzahlgenerator (RPM-Generator), der ein drehzahlspezifisches Taktsignal ausgibt.

- "Winkeltaktsignal" auf Seite 41
- "Synchronisation" auf Seite 42
- "Konfiguration der Winkeltakteinheit in LABCAR-RTC" auf Seite 42

3.1 Generierung analoger Signale

Die ES5340.2 Internal Combustion Engine Application besitzt acht analoge Ausgänge. Diese Ausgänge dienen zur Ausgabe verschiedener analoger Signale über einen Ausgangsmultiplexer.

3.1.1 Spezifikation

Der **Ausgangsspannungsbereich** beträgt -10 V...+10 V bei interner Referenz bzw. -12 V...+12 V bei externer Referenzspannung – die **Auflösung** des D/A-Wandlers beträgt 16 Bit.

Alle Ausgänge sind **galvanisch isoliert** und besitzen eine **Spannungsfestigkeit** von ±60 V. Zudem besitzt jeder Ausgang ein Trennrelais.

Die **Genauigkeit** (interne Referenz) beträgt \pm 5 mV, der **maximale Strom** eines Ausgangs beträgt \pm 30 mA.

Die folgende Abbildung zeigt das Prinzipschaltbild eines Ausgangs.

Abb. 3-1 Prinzipschaltbild der analogen Ausgänge

Bei jedem der acht Kanäle CH0...CH7 kann für die Referenzspannung zwischen der internen (10 V) und externen Quelle gewählt werden (in LABCAR-RTC: Device "ES5340-Analog-Out-Mux", Registerkarte "Signals", Spalte "Reference Voltage").

3.1.2 Konfiguration der analogen Signale

Welche Signale auf die acht Ausgänge gelegt werden, wird im Ausgangsmultiplexer definiert (siehe **"Ausgangsmultiplexer für die analogen Signale" auf Seite 24**).

D 😅 🖬 🏪 🖫 🐩 🎦 💱 🍭 💷 🕨							
Items:		😭 Globals 🔐 Groups 🖹 📓 Signals	🕱 Data				
HWC::Hardware							
ERTPC::Rtpc		Option	Value				
ES5340-ICE::Es5340ice	=	Name	Es5340analogout				
ES5340-Master::Es5340master		Use Mode for Analog Output Device	Analog Direct Out				
ES5340-RPM::Es5340rpm		Analog Out Channels in Use	8				
ES5340-Analog-In::Es5340analogin		Pole Pairs					
ES5340-Analog-Direct-Out::Es5340analogout		SYNC/Clock Source					
ES5340-Analog-Out-Mux::Es5340analogoutmux		Waveform Table					
ES5340-Digital-Direct-Out::Es5340digitalout2							
ES5340-PWM-Output::Es5340digitalout							
ES5340-Digital-Out-Mux::Es5340digitaloutmux							
Module-Status::Modulestatus							
ES5340-Measure::ES5340measure		1					
ES5340-HW::ES5340Mw	-	Use Context for Analog Output Device.	A				
Hardware Interface Manager			-				
E System		1					
- Subsystem		Accent	Reset				
- Device		Accept	Reset				

Die analogen Kanäle selbst können wie folgt konfiguriert werden.

Analog Direct Out

Damit können Konstantspannungen und Werte, die im Rechenraster eines Modells berechnet werden, ausgegeben werden – spezifiziert durch den Wert von "OutValue_n" [-1.0...+1.0]:

U_{out} = OutValue_n * U_{Ref}

3.2 Ausgangsmultiplexer für die analogen Signale

Jeder analoge Ausgang besitzt einen Multiplexer, mit dem das Signal für diesen Ausgang definiert werden kann.

Quellen für die analogen Ausgänge

Die analogen Ausgangskanäle können von verschiedenen Quellen getrieben werden:

- Signale aus ES5340-Analog-Direct-Out
- Signale aus ES5340-Analog (arbiträre Signalgeneratoren)
- Signale aus ES5340-Knock (Klopfgeneratoren)

Die Konfiguration der Quellen erfolgt in LABCAR-RTC mit dem Item "ES5340-Analog-Out-Mux", Registerkarte "Signals" in der Spalte "Output Select".

_ D 🚅 🖬 1번 1번 1월 1월 책 8월 Ⅲ ▶						
Items:		🖼 Globals 🕼 Groups 📓 Signals 🕱 Data				
🔁 🎇 HWC::Hardware	*		1 2		1	
□ □ ■ RTPC::Rtpc		No.	Signal	Output Select	Reference Voltage	Output Mode
- ES5340-ICE::Es5340ice	=	1	Control_0	not used	Intern	Single Ended
ES5340-Master::Es5340master		2	Control 1	not used	Extern	Single Ended
ES5340-RPM::Es5340rpm		3	Control 2	not used	Intern	Single Ended
- ES5340-Analog-In::Es5340analogin		4	Control 3	not used	Intern	Single Ended
ES5340-Analog-Direct-Out::Es5340analogout		5	Control 4	not used	Intern	Single Ended
ES5340-Analog-Out-Mux::Es5340analogoutmux		6	Control 5	not used	Extern	Single Ended
─ □ -■ ES5340-Digital-Direct-Out::Es5340digitalout2		7	Control 6	not used	Intern	Differential
ES5340-PWM-Output::Es5340digitalout		8	Control 7	not used	Extern	Differential
ES5340-Digital-Out-Mux::Es5340digitaloutmux						
Module-status::Modulestatus						
ES5340-Measure::ES5340measure		Color	t Output Med	le fer euteute 7 and	9. Other outputs are	cipale anded
ES5340-HW::ES5340NW	-	Selec	.t Output Mot	ie for outputs 7 and	 Other butputs are 	: single ended. 🔺
Hardware Interface Manager						
E System						Ŧ
- Subsystem				1		
- Device			<u>A</u> ccept			<u>R</u> eset

Bei einer ES5340.2 Internal Combustion Engine Application können hier acht Signale auf die Ausgänge konfiguriert werden.

3.3 Generierung digitaler Signale

Die ES5340.2 Internal Combustion Engine Application besitzt acht digitale Ausgänge. Diese Ausgänge dienen zur Ausgabe verschiedener digitaler Signale über einen Ausgangsmultiplexer.

3.3.1 Spezifikation

Die **Ausgangspannung** beträgt 0...60 V (Open Collector) bzw. 5 V (interner Pull-Up).

Alle Ausgänge sind **galvanisch isoliert** und besitzen eine **Spannungsfestigkeit** von ± 60 V – zudem besitzt jeder Ausgang ein Trennrelais.

Der **maximale Strom** eines Ausgangs beträgt ±15 mA. Die **Anstiegszeit** (0 V \rightarrow 5 V) beträgt 2 µs, die **Abfallzeit** (5 V \rightarrow 0 V) 2 µs.

Signalerzeugung

Die Konfiguration der digitalen Ausgänge erfolgt im RTIO-Editor mit dem Item "ES5340-Digital-Out-Mux" (siehe **"Ausgangsmultiplexer für die digitalen Signale" auf Seite 28**).

Abb. 3-2 auf Seite 26 zeigt das Prinzipschaltbild eines digitalen Ausgangs.

S1 ist ein langsamer Schalter, mit dem der "Output Mode" ausgewählt wird.

S3 ist ein langsamer Schalter, der zur Signalunterbrechung dient.

S2 ist ein schneller Low-Side-Schalter, der das Ausgangssignal "Digital Output i" in Echtzeit erzeugt. S3 ist dabei geschlossen.

Erzeugung eines digitalen Ausgangssignals "Digital Output i":

- Das über "Output Select" in der Registerkarte "Signals" eingestellte Signal gibt die Taktfrequenz für den Schalter S2 vor.
- Über den Pull-up-Widerstand wird der Spannungspegel des Signals festgelegt. Unter "Output Mode" in der Registerkarte "Signals" können Sie zwischen internem Pull-up-Widerstand nach 5 V ("Pull-Up to +5 V") und externem Pull-up-Widerstand ("Open Collector") wählen (Abb. 3-2).
- Durch Schließen von S2 wird die Low-Phase des Signals erzeugt, durch Öffen von S2 die High-Phase.

Output Mode: Pull-Up to +5 V

Abb. 3-2 Prinzipschaltbild eines digitalen Ausgangs

3.3.2 Konfiguration der digitalen Signale

Welche Signale auf die acht Ausgänge gelegt werden, wird im Ausgangsmultiplexer definiert (siehe **"Ausgangsmultiplexer für die digitalen Signale" auf Seite 28**).

Die digitalen Kanäle selbst können wie folgt konfiguriert werden.

Digital Direct Out

Diese Ausgänge ermöglichen die direkte Stimulation von digitalen Steuergeräteeingängen.

PWM Output

Hier können Frequenzen zwischen 0 Hz und 100 kHz und Tastverhältnisse zwischen 0.0 und 1.0 gewählt werden.

SENT Signale

Auf vier Ausgangskanälen ist die Erzeugung von Signalen nach der SENT Spezifikation SAE J2716 möglich.

3.4 Ausgangsmultiplexer für die digitalen Signale

Jeder digitale Ausgang besitzt einen Multiplexer, mit dem das Signal für diesen Ausgang definiert werden kann.

Quellen für die digitalen Ausgänge

Die digitalen Ausgangskanäle können von verschiedenen Quellen getrieben werden:

- Ausgabegrößen aller Digital-Out RTIO-Elemente (ES5340-Digital-Direct-Out und ES5340-PWM-Output)
- Digitale Signale der arbiträren Signalgeneratoren (ES5340-SigGen)
- SENT-Signale (ES5340-Out-SENT-V3)
- MSA-Sensorsignal

Die Konfiguration der Quellen erfolgt in LABCAR-RTC mit dem Item "ES5340-Digital-Out-Mux", Registerkarte "Signals" in der Spalte "Output Select".

Items:	😭 G	ilobals 🔯 G	roups 😰 Signals	🔁 Data	
🔁 🚰 HWC::Hardware					
ERTPC::Rtpc	No.	Signal	Output Select	Output Mode	Delay Time [usec]
ES5340-ICE::Es5340ice	1	Control_0	not used	Open Collector	
ES5340-Master::Es5340master	2	Control 1	not used	Open Collector	
ES5340-RPM::Es5340rpm	3	Control_2	not used	Open Collector	
ES5340-Analog-In::Es5340analogin	4	Control_3	not used	Open Collector	
ES5340-Analog-Direct-Out::Es5340analogout	5	Control_4	not used	Open Collector	
ES5340-Analog-Out-Mux::Es5340analogoutml	6	Control_5	not used	Open Collector	
ES5340-Digital-Direct-Out; ES5340digitalout2	7	Control_6	not used	Open Collector	
ES5340-Digital-Out-Mux::Es5340digitaloutmux	8	Control_7	not used	Open Collector	
- Module-Status::Modulestatus					
4					2
Hardware Interface Manager					
E System					
Subsystem					
- Device		Accept	1		Reset

Für die Ausgabeart ("Output Mode") kann zwischen "Open Collector" und "Pull-Up to +5V" gewählt werden

3.5 Analoge Eingänge

Die ES5340.2 Internal Combustion Engine Application besitzt vier Eingänge zur Vermessung analoger Signale.

3.5.1 Spezifikation

Der **Eingangsspannungsbereich** zweier Eingänge beträgt 0...5 V, bei zwei weiteren beträgt er 0 V...+40 V. Alle Eingänge sind **galvanisch isoliert** und besitzen eine **Spannungsfestigkeit** von ±60 V – die **Impedanz** der Eingänge beträgt 1 M Ω .

Die **Erfassungsrate** beträgt 500 kSamples/s (softwareseitig kann über 2^n (n =1...8) Samples gemittelt werden) bei einer **Auflösung** von 12 Bit.

3.5.2 Konfiguration der analogen Eingänge

Die analogen Eingänge können zur Messung von Batteriespannungen und anderer Konstantspannungen (Steuersignale) verwendet werden.

Die Art, wie über die erfassten Signale gemittelt wird, kann in LABCAR-RTC im Item "ES5340-Analog-In" in der Registerkarte "Signals" einstellt werden.

3.6 Digitale Eingänge

Die ES5340.2 Internal Combustion Engine Application besitzt 20 Eingänge zur Vermessung digitaler Signale.

3.6.1 Spezifikation

Der **Eingangsspannungsbereich** beträgt 0...+60 V. Alle Eingänge sind **galvanisch isoliert** und besitzen eine **Spannungsfestigkeit** von ±60 V.

Die maximale **Eingangsfrequenz** beträgt 125 kHz, die **Auflösung** 8 ns (125 MHz).

Jeder Eingang besitzt zwei unabhängig voneinander **programmierbare Schwellen** zur Ermittlung des Zustandes des Eingangs ("High" oder "Low"). Der Einstellbereich für diese Schwellwerte beträgt 0 V...+10 V.

Die folgende Abbildung zeigt das Prinzipschaltbild eines digitalen Eingangs.

Abb. 3-3 Prinzipschaltbild eines digitalen Eingangs

3.6.2 Schwellwertvergleich

Jedes der 20 Eingangssignale der ES5340.2-ICE wird im FPGA mit zwei Schwellwerten verglichen. Dieser Vergleich führt zu einer Umwandlung des analogen Eingangssignals in digitale 0/1-Information.

Die Schwellen können per Software konfiguriert werden – dabei stehen folgende drei Möglichkeiten zur Auswahl:

- Vergleich zu 1/3 UBatt_X und 2/3 UBatt_X (X = A...E)
- Vergleich zu den vier analogen Eingängen Analn_0..3
- Vergleich zu zwei beliebigen, per Software (RTIO) konfigurierbaren Schwellwerten.

3.6.3 Konfiguration der digitalen Eingänge

Die Konfiguration der Referenzspannungen und der Winkelfenster erfolgt in der RTIO im Item "ES5340-HW".

Die Messverfahren werden in den Items "ES5340-MeasTime" bzw. "ES5340-MeasAngle" definiert.

ETAS

3.6.4 Konfiguration mit ES5436 zur Vermessung von digitalen Ausgängen einer ECU

Digitale Ausgänge einer ECU sind oft als Open Emitter oder Open Collector konfiguriert. An solchen digitalen Ausgängen sind im Fahrzeug kleine Lasten angeschlossen.

Um so erzeugte digitale Ausgangssignale einer ECU im HiL System mit der ES5340 vermessen zu können, kann die ES5436.1 als Lastnachbildung verwendet werden.

Eine Beschaltung der ECU mit der ES5340 und der ES5436 ist in Abb. 3-4 auf Seite 33 dargestellt.

Die ES5436 besitzt 48 Kanäle als Stromquellen für Ströme von 5 mA bis 150 mA, die mit den 20 digitalen Eingängen der ES5340 kombiniert werden können.

VORSICHT!

Bevor Sie die ES5436.1 anschließen, lesen Sie bitte das ES5436.1 Benutzerhandbuch.

Technische Daten der Stromquellen der ES5436.1

Ausgangsgröße	Daten
Ausgangsstrom	5 mA bis 150 mA
Ausgangsspannung	passive Schaltung
Genauigkeit	+/- 3 mA bei 150 mA
Galvanische Trennung	max. 60 V zu Erdpotential (funktionale Trennung)
Überspannungsschutz	60 V abs. Max.

Tab. 3-1Technische Daten der Stromquellen

Hinweis

Die Stromquelle der ES5436.1 hat im Leerlauf (nicht angesteuerter Lastkanal, Operation Mode "Disabled") ~70 μ A Leerlaufstrom.

<u>Hinweis</u>

Bei einer externen Spannung +VBAT < 6 V erzeugt die Stromquelle der ES5436.1 keinen Strom.

Beachten Sie beim Anschluss der ES5436.1 bitte den folgenden Hinweis:

<u>Hinweis</u>

Die Anwendungsfälle "Pull-Up", "Pull-Down" und "Bipolar" ("Bipolar" für H-Brücken-Konfiguration, siehe "Konfiguration als H-Brücke" auf Seite 34) sind für die ES5436.1 per Software konfigurierbar. Stellen Sie deshalb sicher, dass sowohl +VBAT als auch -VBAT immer angeschlossen sind.

Abb. 3-4 Vermessung von digitalen ECU-Ausgängen in der Konfiguration "Pull-UP" oder "Pull-Down" mit ES5340 zur Messung und ES5436 als Lastnachbildung

3.6.5 Konfiguration als H-Brücke

Abb. 3-5 zeigt die Konfiguration als H-Brücke

Beachten Sie bei der Beschaltung als H-Brücke bitte die folgenden Hinweise:

Hinweis

Jeweils Kanal 2i und Kanal 2i+1 der ES5436.1 sind gekoppelt und können für eine H-Brücke verwendet werden. Nur wenn die Kanäle 2i und 2i+1 für die H-Brücke verwendet werden, fließt Strom durch die H-Brücke.

<u>Hinweis</u>

Die Anwendungsfälle "Pull-Up", "Pull-Down" und "Bipolar" (für H-Brücke) sind für die ES5436.1 per Software konfigurierbar.

Stellen Sie deshalb sicher, dass sowohl +VBAT als auch -VBAT immer angeschlossen sind.

<u>Hinweis</u>

Für die ES5340 müssen die Anschlüsse -VBAT_m und -VBAT_n (Abb. 3-5) mit dem selben -VBAT-Potential verbunden sein.

3.6.6 Messverfahren

Folgende Messverfahren stehen für die ES5340.2 Internal Combustion Engine Application zur Verfügung. Die genaue Beschreibung der einzelnen Methoden finden Sie im Benutzerhandbuch zu LABCAR-RTC.

Zeitbasierte Verfahren

Bei zeitbasierten (asynchronen) Messungen wird der entsprechende Messwert (z.B. Frequenz, Tastverhältnis oder Hightime) auf Basis der aktuellsten im Speicher verfügbaren Flanken-Einträge berechnet.

- Pulsweitenmessungen
 - High Time
 - Low Time
- Frequenzmessungen
 - Cycle Time --/--
 - Cycle Time --\--
 - Frequency --/--
 - Frequency --\--
- Tastverhältnismessungen
 - Duty Cycle L/(L+H) --/--
 - Duty Cycle L/(L+H) --\--
 - Duty Cycle H/(L+H) --/--
 - Duty Cycle H/(L+H) --\--
- Pegelmessungen
 - Level (Active High)
 - Level (Active Low)

Winkelsynchrone Verfahren

Charakteristisch für winkelsynchrone Messungen sind Winkelfenster, die durch eine untere Winkelfenstergrenze (LWL) in °KW und eine obere Winkelfenstergrenze (UWL) in °KW spezifiziert werden.

Pro Hardwarekanal kann der Anwender bis zu drei Winkelfenster definieren, die sich überlappen dürfen, deren Größe jedoch jeweils 720 °KW (360 °KW bei Zweitaktmotor) nicht überschreiten darf.

- Additive Pulsweitenmessungen
 - Additive Hightime
 - Additive Lowtime
- Vermessung von Flanken: Winkelstempel
 - Rising Edge of n-th Pulse
 - Falling Edge of n-th Pulse
- Vermessung von Weite des n-ten Pulses
 - H-Time n-th Pulse (H-Valid.)
 - H-Time n-th Pulse (L-Valid.)

- H-Time n-th Pulse (Pu Qual.)
- L-Time n-th Pulse (Pu Qual.)
- Vermessung von Flanken: Zeitstempel
 - Time Stamp of n-th Rising Edge
 - Time Stamp of n-th Falling Edge
- Pulszählung
 - Number of Low-Pulses
 - Number of High-Pulses

3.6.7 Raildruckmessungen

Zur Vermessung des Raildruckes bietet die ES5340.2 Internal Combustion Engine Application das Item "ES5340-RailPump" mit folgenden drehzahlsynchronen Messverfahren:

- Winkel der ersten steigenden Flanke einer Pulsfolge
- Winkel der ersten fallenden Flanke einer Pulsfolge
- Winkel der letzten steigenden Flanke einer Pulsfolge
- Winkel der letzten fallenden Flanke einer Pulsfolge

Vermessung von ersten Flanken

Die Funktionsweise der Messverfahren für die erste fallende (oder steigende) Flanke ist wie folgt (siehe Beispiel für erste fallenende Flanke in Abb. 3-6 auf Seite 36).

In der RTIO wird ein Winkelmessfenster (von LWL nach UWL) vorgegeben, in dem nach der ersten fallenden Flanke einer Pulsfolge gesucht wird. Als Messwert wird dann der Winkelbereich zwischen dieser ersten fallenden Flanke und einem definierten Referenzwinkel zurückgegeben. Die Messung der ersten steigenden Flanke verläuft analog.

Abb. 3-6 Beispiel: Winkel der ersten fallenden Flanke einer Pulsfolge

<u>Hinweis</u>

Winkelfenster und Referenzwinkel können zusätzlich um einen Offsetwinkel gegenüber dem Kurbelwellenwinkel verschoben werden.

Übertragung der Messwerte

Der Messwert kann in diesem Fall sofort nach Erreichen der ersten fallenden Flanke ermittelt und zur RTIO übertragen werden.

Vermessung von letzten Flanken

Abb. 3-7 zeigt ein Beispiel für die letzte fallende Flanke - hier wird die Winkeldifferenz zwischen der letzten fallenden Flanke vor Erreichen des Upper Window Limits und einem Referenzwinkel gemessen. Die Messung der letzten steigenden Flanke verläuft analog.

Übertragung der Messwerte

Die Ermittlung und anschließende Übertragung der Messwerte ist wie folgt: Der Winkel der aktuell detektierten fallenden Flanke wird immer in einem Register der ES5340.2-ICE gespeichert – sobald eine neue fallende Flanke erkannt wird, wird das Register mit dem neuen Winkelwert überschrieben.

Wird nun das Upper Window Limit erreicht, so wird der zuletzt gespeicherte Winkelwert aus dem Register ausgelesen, die Differenz zum Referenzwinkel (= der Messwert) berechnet und zur RTIO übertragen.

3.7 Arbiträre Signalgeneratoren

Auf der ES5340.2-ICE stehen acht analoge und acht digitale Signalgeneratoren zur Verfügung. Jeder der Signalgeneratoren kann dabei eine der 16 zur Verfügung stehenden Wellenformen abspielen. Als Taktquellen stehen ein zentraler RPM-Generator und ein pro Signalgenerator vorhandener variabler Taktgenerator (Maximalfrequenz: 1 MHz) zur Verfügung.

Pro Signalgenerator kann eine individuelle Grundphase sowie eine zusätzliche Phasenverschiebung gewählt werden. Die Geschwindigkeit, mit der eine Änderung der Phasenverschiebung wirkt, ist wählbar.

Bei Verwendung des variablen Taktgenerators kann die Frequenz des Taktgenerators, der Trigger-Modus (single shot, continuous) sowie ein Triggersignal vorgegeben werden.

Die Amplitude des internen Ausgangs-Signal des Signalgenerators kann zwischen 0.0 und 1.0 verändert werden.

3.7.1 RPM-Generator

Die ES5340.2-ICE verfügt über einen zentralen Drehzahlgenerator (RPM-Generator), der ein motordrehzahlspezifisches Taktsignal ausgibt. Dieses Taktsignal kann von den Signalgeneratoren zum Austakten der Wellenformen verwendet werden. Die maximale Drehzahl beträgt 60000 rpm, die Auflösung in etwa 0,1 rpm. Das Drehzahlsignal selbst kann über einen Fehlzündungsgenerator moduliert werden.

Das Drehzahlsignal kann zu Messzwecken auf den Anschluss "SYNC" (auf der Frontplatte) der ES5340.2-ICE gelegt werden (siehe "Sync Port" auf Seite 252).

Winkelauflösung

Die Winkelauflösung beträgt 65536 Punkte pro Zyklus. Bei einem typischen Viertaktmotor mit einer Periode von 720 °KW entspricht das einer Winkelauflösung von ca. 0.01 °KW.

3.7.2 Wellenformspeicher für Signalgeneratoren

Es stehen 16 Wellenformen zur Verfügung, die von den arbiträren Signalgeneratoren verwendet werden können. Die Wellenformen können vom Anwender über Tabellen beschrieben werden. Über ein Interpolationsverfahren wird der Signalverlauf in der Tabelle in die jeweilige Wellenform geschrieben.

Wellenformauflösung:

Die maximale Auflösung einer Wellenform wird durch die maximal mögliche Zahl von 65536 Stützstellen bestimmt. Auch hier kann die Auflösung in Zweierpotenzen bis auf 16 Punkte reduziert werden; dabei ist zu beachten, dass die Auflösung (1/(Anzahl der Stützstellen)) einer Wellenform kleiner oder gleich der Winkelauflösung sein muss. Typischerweise sollte die Auflösung einer Wellenform mit der Winkelauflösung übereinstimmen.

Die Wellenformen werden von den Signalgeneratoren ausgetaktet. Dabei kann entweder der zentrale RPM-Generator als Taktquelle fungieren oder es wird ein variabler Frequenzgenerator (maximale Frequenz: 1 MHz) im Signalgenerator verwendet.

Wellenformauflösung kleiner als Winkelauflösung:

Falls über den Signalgenerator (unter Verwendung des variablen Frequenzgenerators) ein hochfrequentes Signal ausgegeben werden soll, ist es eventuell nötig, die Auflösung einer Wellenform kleiner als die Winkelauflösung zu halten.

Das folgende Beispiel illustriert das Vorgehen:

Angenommen, es soll ein Sinussignal von 40 kHz ausgegeben werden, die Signaltabelle beschreibt eine einzige Sinus-Periode. Die Winkelauflösung beträgt 65536 Punkte. Durch die maximale Frequenz des variablen Taktgenerators von 1 MHz ergibt sich dadurch eine maximale Signalfrequenz für das Sinussignal von 1 MHz/65536 = 15,25 Hz, was natürlich weit von den gewünschten 40 kHz entfernt ist. Durch Verkleinern der Wellenformauflösung auf z.B. 16 Stützstellen wird das Sinussignal mehrfach hintereinander (konkret 65536/16 = 4096-fach) in der Wellenform mit 65536 Stützstellen abgelegt. Damit ergibt sich eine resultierende Maximalfrequenz für das Sinussignal von 1 MHz/16 = 62,5 kHz, was über der gewünschten Frequenz von 40 kHz liegt. Durch eine entsprechende Absenkung der variablen Taktfrequenz auf 640 kHz kann man damit das gewünschte Sinussignal mit 40 kHz erzeugen.

Das Beispiel zeigt, dass durch eine Verkleinerung der Wellenformauflösung gegenüber der Winkelauflösung die Wellenformauflösung nicht wirklich verkleinert wird. Es wird lediglich das Signal der Signaltabelle mehrfach hintereinander in die Wellenform geschrieben und damit die "sichtbare" Auflösung verkleinert.

3.7.3 Klopfsignalgenerator

Die bei einem Verbrennungsmotor auftretenden Klopfgeräusche können durch den Kopfsignalgenerator nachgebildet werden. Ein Klopfsignal besteht aus einzelnen Klopfpaketen. Ein Klopfpaket selbst besteht aus einer Sinusschwingung mit wählbarer Frequenz und einer die Sinusschwingung modulierenden Hüllkurve mit definierbarer Dauer.

Die nachfolgende Abbildung zeigt ein einzelnes Klopfpaket. Dabei wird als Hüllkurve eine Sinus-Halbwelle verwendet.

Envelope Duration

Abb. 3-8 Ein Klopfpaket

Auch eine nicht-klopfende Verbrennung erzeugt Geräusche, die von einem realen Körperschall-Klopfsensor erfasst werden. Über die Steuerung der Amplitude des Klopfsignals wird zwischen einer korrekten und einer klopfenden Verbrennung unterschieden.

Zusätzlich gibt es noch eine stochastische Variation der Amplitude eines Klopfpakets. Damit werden die im realen Betrieb auftretenden Änderungen der Klopfsignale nachgebildet.

Ein gewisses Rauschen ist auch dann vorhanden, wenn gerade kein Klopfpaket ausgegeben wird. Dieses Grundrauschen wird z.B. benötigt, um die initiale Diagnose des Sensors bestehen zu können. Moderne Steuergeräte behandeln nicht rauschende Eingänge als fehlerhaft oder nicht vorhanden.

Pro Zylinder kann nun individuell die Winkellage (in °KW) eines Klopfsignals sowie das Auftreten des Klopfereignisses per Wahrscheinlichkeitswert oder mittels Sequenztabellen (siehe "Sequenztabellen" auf Seite 40) gesteuert werden.

Der Klopfsignalgenerator verfügt über vier interne Ausgänge. Für jeden Ausgang kann gewählt werden, welche Zylinder den jeweiligen Ausgang bedienen. Bei viel-zylindrigen Fahrzeugen ist dabei wichtig, dass sich einzelne Klopfpakete auch überlagern können.

<u>Hinweis</u>

Es können sich maximal vier Wellenformen überlagern!

3.7.4 Zündaussetzsteuerung

Zur Nachbildung von Zündaussetzern ist eine entsprechende Steuerung auf der ES5340.2-ICE vorhanden, die eine Modulation der Drehzahl des RPM-Generators in einem bestimmten Winkelbereich bewirkt. Dabei ist es möglich, die Drehzahl über den Kurbelwellenwinkel relativ zur vorgegebenen Drehzahl des RPM-Generators zu verändern (verringern/erhöhen um den Faktor 0,01 bis 2,0). In der typischen Anwendung zur Nachbildung von Zündaussetzern wird die Drehzahl gegenüber der vorgegebenen Drehzahl verringert.

Der Startwirkungswinkel der Drehzahlmodulation ist zylinderindividuell festlegbar. Über einen Wahrscheinlichkeitswert oder über Sequenztabellen (siehe "Sequenztabellen" auf Seite 40) kann das Wirken der Drehzahlmodulation pro Zylinder gesteuert werden.

Die Drehzahlmodulation kann über vier vorhandenen Modulationsprofile vorgegeben werden, die den Modulationsverlauf über eine komplette Periode von 720 °KW (bzw. 360 ° beim Zweitaktmotor) darstellen. Dabei entspricht der Wert 1.0 einer nicht vorhandenen Modulation, ein Wert von 0.01 verringert die Drehzahl auf 1% der vorgegebenen Drehzahl, der Wert 2.0 verdoppelt die vorgegebene Drehzahl. Pro Zylinder kann individuell eines der vier vorhandenen Modulationsprofile ausgewählt werden.

3.7.5 Sequenztabellen

Beim Zündaussetzgenerator und beim Klopfsignalgenerator kommen Sequenztabellen zum Einsatz, die es dem Benutzer ermöglichen, komplexe Abläufe von Klopf- bzw. Fehlzündungen darzustellen.

Dabei wird eine Tabelle mit maximal 100 Stützstellen verwendet. Nach Starten der Sequenz wird pro Periode eine Stützstelle vorangegangen. Bei Fehlzündungen bedeutet dabei ein Wert größer als 0.5 an der jeweiligen Stützstelle, dass eine Fehlzündung in dieser Periode auftritt. Beim Klopfsignalgenerator kann man über diesen Wert in der Tabelle zusätzlich festlegen, wie stark der Klopfsensor das Klopfsignal wahrnehmen soll (nahe Zylinder: großer Wert, ferne Zylinder: kleiner Wert).

Nach 100 Stützstellen wird sofort von vorne begonnen ("Sequence trigger = continuous"), oder das Abspielen wird beendet ("Sequence trigger = Single Shot") und muss über ein entsprechendes Triggersignal erneut gestartet werden.

Es ist grundsätzlich möglich, pro Zylinder eine individuelle Sequenz vorzugeben. Jedoch gibt es sowohl beim Zündaussetz- als auch beim Klopfgenerator eine gemeinsame Sequenz ("Common Sequence"), auf die alle Zylinder zugreifen können. Das erleichtert das rasche Einstellen von Sequenzen, die für mehrere Zylinder verwendet werden sollen.

3.7.6 MSA-Sensor

Eine besondere Verwendung der Signalgeneratoren ist die Nachbildung von Kurbelwellensensoren mit Drehrichtungserkennung (MSA-Sensoren). Ein Zahnpuls hat dabei keine feste Winkelbreite sondern eine feste Pulsdauer. Außerdem ist als Ausgabesignal ein Low-aktives Open-Collector-Signal vorgegeben.

Wird ein MSA-Sensor RTIO-Element verwendet, so wird für alle Wellenformverläufe während der Konfiguration (potentielle) Zahnmitteninformationen berechnet und im Wellenformspeicher abgelegt. Möglicherweise sind aber nicht alle Wellenformen für diesen Algorithmus geeignet – bei ungeeigneten Wellenformen wird bei Auswahl der entsprechenden Wellenform eine Fehlermeldung übermittelt.

3.8 Drehzahlgenerator (RPM-Generator)

Die ES5340.2 Internal Combustion Engine Application verfügt über einen zentralen Drehzahlgenerator (RPM-Generator), der ein drehzahlspezifisches Taktsignal ausgibt.

Diese Winkeltakteinheit erzeugt einen 16-Bit Winkelwert, welcher zur Erzeugung von arbiträren Signalen mittels analoger oder digitaler Signalgeneratoren verwendet wird.

Die maximale Drehzahl beträgt:

- 60000 U/min (für 720° Kurbelwellenwinkel eines Viertaktmotors)
- 30000 U/min (für 360° Kurbelwellenwinkel eines Zweitaktmotors)

Die Winkelauflösung beträgt 0.011 °KW (16 Bit).

3.8.1 Winkeltaktsignal

Das Winkeltaktsignal besteht aus drei Signalen (siehe Abb. 3-9 auf Seite 42):

- Das Synchronisationssignal bei 0 °KW
- Das eigentliche Taktsignal
- Das Signal für die Umdrehungsrichtung (DOR = direction of rotation)

Ein "High"-Pegel des DOR-Signals bedeutet "Rotation mit zunehmendem Kurbelwellenwinkel", ein "Low"-Pegel bedeutet "Rotation mit abnehmendem Kurbelwellenwinkel".

Eines dieser drei Taktsignale kann über einen Multiplexer auf den BNC-Anschluss auf der Frontplatte (siehe "Steckverbinder für das Winkeltaktsignal" auf Seite 49) ausgegeben werden.

Außerdem kann die Drehzahl ("Engine Speed") auf diesen Anschluss ausgegeben werden. Diese Signal ist "High" (= 5 V), wenn der aktuelle Kurbelwellenwinkel zwischen 0° und 360° (bzw. 0° und 180°) beträgt und "Low" (= 0 V) für Kurbelwellenwinkel zwischen 360° und 720° (bzw. 0° und 360°).

Die folgende Abbildung zeigt den Verlauf der vier Signale über eine Nockenwellenumdrehung.

Abb. 3-9 Sync, Clock, Direction und Engine Speed

3.8.2 Synchronisation

Ein winkel- oder drehzahlbasierte Synchronisation mehrerer ES5340.2-ICE ist möglich. Dazu wird eine ES5340.2-ICE als "RPM Master" konfiguriert und alle anderen als "RPM Slave".

3.8.3 Konfiguration der Winkeltakteinheit in LABCAR-RTC

Um die Betriebsart der Winkeltakteinheit festzulegen, wählen Sie in LABCAR-RTC das Item "ES5340-RPM" und wählen Sie in der Registerkarte "Globals" die Option "RPM Operating Mode".

Für die Option "RPM Operating Mode" sind folgende Einstellungen möglich:

• Slave

Die ES5340.2-ICE wird zu einem externen Winkeltaktsignal synchronisiert.

• Master

Das Winkeltaktsignal wird – basierend auf der mechanischen Winkelgeschwindigkeit – auf der ES5340.2-ICE erzeugt.

4 Steckerbelegung und Anzeigeelemente

Dieses Kapitel enthält die Beschreibung der Steckanschlüsse und Anzeigeelemente der ES5340.2 Internal Combustion Engine Application.

Es besteht aus folgenden Abschnitten:

• "Steckerbelegung" auf Seite 46

Hier werden alle auf der Frontplatte vorhandenen Steckanschlüsse beschrieben.

- "Steckverbinder für die Ausgänge" auf Seite 46
- "Steckverbinder für die Eingänge" auf Seite 47
- "Steckverbinder für das Winkeltaktsignal" auf Seite 49
- "Anzeigeelemente" auf Seite 49

Hier wird die Bedeutung der LED-Anzeige auf der Frontplatte beschrieben.

4.1 Steckerbelegung

In diesem Abschnitt wird die Belegung der Anschlüsse für die Ein- und Ausgänge der ES5340.2-ICE beschrieben.

4.1.1 Steckverbinder für die Ausgänge

Der Steckverbinder ist ein DSUB25-Verbinder (weiblich). Die Abschirmung liegt auf Frontplatten- und Gehäusepotential und damit auf Schutzerde.

Abb. 4-1 Steckverbinder für die Ausgänge (Draufsicht)

Pin	Signal	Pin	Signal
1	Analog Output Channel 0	14	Ground Channel 0
2	External Ref. Channel 0	15	Digital Output Channel 0
3	Analog Output Channel 1	16	Ground Channel 1
4	External Ref. Channel 1	17	Digital Output Channel 1
5	Analog Output Channel 2	18	Ground Channel 2
6	External Ref. Channel 2	19	Digital Output Channel 2
7	Analog Output Channel 3	20	Ground Channel 3
8	External Ref. Channel 3	21	Digital Output Channel 3
9	Analog Output Channel 4	22	Ground Channel 4
10	External Ref. Channel 4	23	Digital Output Channel 4
11	Analog Output Channel 5	24	Ground Channel 5
12	External Ref. Channel 5	25	Digital Output Channel 5
13	n.c.		Gehäuse auf Schutzerde

 Tab. 4-1
 Belegung des Steckverbinders für die Ausgänge

<u>Hinweis</u>

Analoge und Digitalmasse eines Ausgangskanals sind identisch!

4.1.2 Steckverbinder für die Eingänge

Der Steckverbinder ist ein DSUB62HD-Verbinder (männlich). Die Abschirmung liegt auf Schutzerde.

Abb. 4-2 Steckverbinder für die Eingänge (Draufsicht)

Pin	Signal	Pin	Signal	Pin	Signal
1	Analog Output Channel 6 –	22	Analog Output Channel 6 +	43	Analog Output Channel 6 AGND
2	Digital Output Channel 6	23	Excitation +	44	Digital Output Channel 6 AGND
3	Analog Output Channel 7 —	24	Analog Output Channel 7 +	45	Analog Output Channel 7 AGND
4	Digital Output Channel 7	25	Excitation –	46	Digital Output Channel 7 AGND
5	Digital Input Channel 0	26	Digital Input Channel 13	47	Digital Input Ground
6	Digital Input Channel 1	27	Digital Input Channel 14	48	Digital Input Ground
7	Digital Input Channel 2	28	Digital Input Channel 15	49	Digital Input Ground
8	Digital Input Channel 3	29	Digital Input Channel 16	50	Digital Input Ground
9	Digital Input Channel 4	30	Digital Input Channel 17	51	Digital Input Ground
10	Digital Input Channel 5	31	Digital Input Channel 18	52	Digital Input Ground
11	Digital Input Channel 6	32	Digital Input Channel 19	53	Digital Input Ground
12	Digital Input Channel 7	33	Digital Input Ground	54	Digital Input Ground
13	Digital Input Channel 8	34	Digital Input Ground	55	Digital Input Ground
14	Digital Input Channel 9	35	Digital Input Ground	56	Digital Input Ground
15	Digital Input Channel 10	36	Digital Input Ground	57	Digital Input Ground
16	Digital Input Channel 11	37	Digital Input Ground	58	Digital Input Ground
17	Digital Input Channel 12	38	Digital Input Ground	59	Digital Input Ground
18	Digital Input Ground	39	Analog Input Ground	60	Analog Input Ground
19	Analog Input Channel 0	40	Analog Input Channel 2	61	Analog Input Ground
20	Analog Input Channel 1	41	Analog Input Channel 3	62	Analog Input Ground
21	Analog Input Ground	42	Analog Input Ground	Geh	äuse auf Schutzerde

 Tab. 4-2
 Belegung des Steckverbinders für die Eingänge

4.1.3 Steckverbinder für das Winkeltaktsignal

Der Steckverbinder für das Winkeltaktsignal ist ein BNC-Verbinder (weiblich).

Abb. 4-3	Steckverbinder für das Winkeltaktsignal

Pin	Signal
1	"Sync", "Clock", "Direction" oder "Engine Speed" (siehe Hardwarekonfiguration in LABCAR-RTC: ES5340-Rpm Item, Desistarkarta, Clabala", Option, PNC Output Part Signal")
	Registerkarte "Globals", Option "BNC Output Port Signal")

 Tab. 4-3
 Belegung des Steckverbinders für das Winkeltaktsignal

4.2 Anzeigeelemente

Auf der Frontplatte der ES5340.2 Internal Combustion Engine Application befindet sich eine LED zur Identifikation der Karte aus dem Web-Interface von LABCAR-RTC.

5 Technische Daten und Normen

5.1 Technische Daten

Dieses Kapitel enthält die technischen Daten der ES5340.2 Internal Combustion Engine Application.

Analogausgänge

Anzahl	8
Ausgangsspannungsbereich	-10 V+10 V (interne Referenz) -12 V+12 V (externe Referenz)
Genauigkeit ohne Last	±5 mV (+23 °C/+73 °F)
Genauigkeit mit Last (12 kW)	±10 mV (+23 °C/+73 °F)
Ausgangsstrom	±30 mA (typisch)
Auflösung	16 Bit
Spannungsfestigkeit	±60 V
Galvanische Trennung	Ja

Digitalausgänge

Anzahl	8
Ausgangsspannungsbereich	Open-Collector: 060 V Interner Pull-Up: 5 V
Ausgangsstrom	Max. ±15 mA
Frequenzbereich	1 Hz100 kHz
Genauigkeit zwischen 1 Hz und 10 kHz	±0,04%
Genauigkeit zwischen 10 kHz und 100 kHz	±0,4%
Anstiegzeit (0 V \rightarrow 5 V)	2 µs (typisch)
Abfallzeit (5 V \rightarrow 0 V)	2 µs (typisch)
Tastverhältnis	0%100%
Genauigkeit Tastverhältnis (50%) zwischen 1 Hz und 10 kHz	±0,2%±2% (linear)
Genauigkeit Tastverhältnis (50%) zwischen 10 kHz und 100 kHz	±2%±20% (linear)
Taktrate für PWM-Generierung	8 ns
Spannungsfestigkeit	±60 V
Galvanische Trennung	Ja
Max. Anzahl der SENT Signale	4
SENT Spezifikation (Version)	SAE J2716
Galvanische Gruppe SENT	Eine Gruppe mit 4 Kanälen

Analogeingänge

Anzahl	4	
Eingangsspannungsbereich	0+5 V (CH0, CH2) 0 V40 V (CH1, CH3)	
Genauigkeit	±50 mV (CH0, CH2) ±200 mV (CH1, CH3)	
Auflösung	12 Bit	
Impedanz	1 MΩ	
Erfassungsrate	500 kSamples/s	
Spannungsfestigkeit	±60 V	
Galvanische Trennung	Ja	

Digitaleingänge

Anzahl	20
Eingangsspannungsbereich	0+60 V
Frequenzbereich	1 Hz100 kHz
Tastverhältnis	0%100%
Auflösung Tastverhältnis	0,1%
Genauigkeit im Bereich von 1 Hz bis 0 kHz	±0,04%
Genauigkeit im Bereich von 10 kHz bis 100 kHz	±0,4%
Auflösung	8 ns (125 MHz)
Programmierbare Schwellwerte für High/Low-Erkennung des Eingangs- signals	Einstellbar zwischen 0 V+10 V
Spannungsfestigkeit	±60 V
Galvanische Trennung	Ja

Winkeltakteinheit

Winkelauflösung	0,011 °CA
Max. Drehzahl	60000 U/min

Messwerterfassung

Max. Zahl von Pulsen	32
(je Kanal und 720° KW)	
Minimale Pulsbreite	100 ns
Tastverhältnis	0100%
Messung Anstiegs- und Abfallzeiten	800 ns 300 µs
Frequenzbereich	0,1 Hz 20 kHz
Genauigkeit der Frequenzmessung	± (160 ns + 0,1%)
Genauigkeit der High Time	± (0,5 µs + 0,5%)

Elektrische Daten

Stromaufnahme	980 mA @ +3,3 V DC	
	780 mA @ +12 V DC	

Spannungen / Ströme / Leistungsaufnahme

Die für das Produkt maximal zulässigen Spannungen und Ströme entsprechen der PCI-Express-Spezifikation. Um die beim Einsatz mehrerer PCI-Express-Karten erforderlichen Leistungen zu garantieren, sollte das Netzteil des RTPCs eine Mindestleistung von 400 W besitzen!

Umgebungsbedingungen

Umgebung	Nur innerhalb geschlossener und tro- ckener Räume verwenden
Max. Verschmutzungsgrad	2
Temperatur im Betrieb	5 °C bis 40 °C (41 °F bis 104 °F)
Relative Luftfeuchte	0 bis 95% (nicht kondensierend)
Einsatzhöhe	Max. 2000 m über Meeresspiegel
Physikalische Abmessungen	
ES5340.2-ICE:	
Länge	240 mm
Höhe	115 mm
Courielat	190 a

5.2 Erfüllte Standards und Normen

Das Produkt entspricht folgenden Standards und Normen:

Norm	Prüfung
IEC 61326-1	Elektrische Mess-, Steuer-, Regel- und Laborgeräte – EMV-Anforderungen (Industriebereich)
IEC 61010-1	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Teil 1: Allgemeine Anforderungen

Das Produkt ist nur für den Einsatz in Industriebereichen nach IEC 61326-1 konzipiert. Vermeiden Sie mögliche Funkstörungen bei Einsatz des Moduls außerhalb der Industriebereiche durch zusätzliche Abschirmungsmaßnahmen!

WARNUNG!

Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen.

6 Bestelldaten und Lieferumfang

Bestellname	Kurzname	Bestellnummer
ES5340.2 Internal Combustion Engine Application	ES5340.2-ICE	F-00K-109-496
Optionales Zubehör:		
Electric Drive Slave Board (Multi I/O)	ES5340.1-S	F-00K-107-054
Calibration Service for ES5340 Master	K_ES5340-M	F-00K-107-056
Calibration Service for ES5340 Slave	K_ES5340-S	F-00K-107-057

Lieferumfang ES5340.2-ICE	Stückzahl
ES5340.2 Internal Combustion Engine Application	1
Terminierungsstecker	1
Flachbandkabel kurz für Montage auf benachbarte Slots des RTPCs	1
Flachbandkabel lang für Montage auf ES5370.1	1
Lieferumfang ES5340.1-S	Stückzahl
Lieferumfang ES5340.1-S ES5340.1-S Electric_Drive_Slave_Board (Multi I/O)	Stückzahl 1
Lieferumfang ES5340.1-S ES5340.1-S Electric_Drive_Slave_Board (Multi I/O) Terminierungsstecker	Stückzahl 1 1
Lieferumfang ES5340.1-S ES5340.1-S Electric_Drive_Slave_Board (Multi I/O) Terminierungsstecker Flachbandkabel kurz für Montage auf benachbarte Slots des RTPCs	Stückzahl 1 1 1 1

7 ETAS Kontaktinformation

ETAS Hauptsitz		
ETAS GmbH		
Borsigstraße 24	Telefon:	+49 711 3423-0
70469 Stuttgart	Telefax:	+49 711 3423-2106
Deutschland	WWW:	www.etas.com

ETAS Regionalgesellschaften und Technischer Support

Informationen zu Ihrem lokalen Vertrieb und zu Ihrem lokalen Technischen Support bzw. den Produkt-Hotlines finden Sie im Internet:

ETAS Regionalgesellschaften	WWW:	www.etas.com/de/contact.php
ETAS Technischer Support	WWW:	www.etas.com/de/hotlines.php

Abbildungsverzeichnis

Abb. 1-1	Frontplatte der ES5340.2 Internal Combustion Engine Application	6
Abb. 1-2	WEEE-Symbol	14
Abb. 2-1	Verbinden der Winkeltaktbusse zweier Karten	19
Abb. 3-1	Prinzipschaltbild der analogen Ausgänge	22
Abb. 3-2	Prinzipschaltbild eines digitalen Ausgangs	26
Abb. 3-3	Prinzipschaltbild eines digitalen Eingangs	30
Abb. 3-4	Vermessung von digitalen ECU-Ausgängen in der Konfiguration "Pull-U	JP"
	oder "Pull-Down" mit ES5340 zur Messung und ES5436 als Lastnachbi	ldung.
	33	
Abb. 3-5	Blockschaltbild für Konfiguration als H-Brücke mit Vermessung der Kan	äle
	Chan_x und Chan_y durch die ES5340	34
Abb. 3-6	Beispiel: Winkel der ersten fallenden Flanke einer Pulsfolge	36
Abb. 3-7	Beispiel: Winkel der letzten fallenden Flanke einer Pulsfolge	37
Abb. 3-8	Ein Klopfpaket	39
Abb. 3-9	Sync, Clock, Direction und Engine Speed	42
Abb. 4-1	Steckverbinder für die Ausgänge (Draufsicht)	46
Abb. 4-2	Steckverbinder für die Eingänge (Draufsicht)	47
Abb. 4-3	Steckverbinder für das Winkeltaktsignal	49

Index

Α

Analog Direct Out 23 Analoge Eingänge 29 **Konfiguration 29** Spezifikation 29 Analoge Signale 22 Analog Direct Out 23 Ausgangsmultiplexer 24 Konfiguration 23 Spezifikation 22 Anforderungen an den Benutzer und Pflichten des Betreibers 8 Anforderungen an den Betrieb 9 Anforderungen an den technischen **Zustand des Produkts 8** Anschließen/Entfernen von Geräten 10 Anzeigeelemente 49 Aufstellungsort 10 Ausgangsmultiplexer Quellen 24, 28

В

Belüftung 10 Bestimmungsgemäße Verwendung 8

С

CE-Konformitätserklärung 12

D

Digital Direct Out 27 Digitale Eingänge 30 Spezifikation 30 Digitale Signale 25 Digital Direct Out 27 Konfiguration 27 Dokumentation 7 Drehzahlgenerator 41

Ε

Einsatzbereich 8 Elektrosicherheit 9 ETAS Kontaktinformation 57

F Frontplatte 6

Η

Hardwareanforderungen 17 HW Compatibility List 17

Κ

KC-Kennzeichnung 12

L Lieferumfang 55

М

Messverfahren 35

Index

Ρ

Produkt-Haftungsauschluss 7 Produktrücknahme 14

R

REACH 14 Recycling 14 Reinigung 11 Reparatur 11 RoHS-Konformität China 13 Europäische Union 13 RPM-Generator 41

S

Schwellwertvergleich 30 Sicherheitshinweise, Kennzeichnung von 7 Sicherheitsvorkehrungen 7 Signalgeneratoren arbiträre 37 Standards und Normen 54 Steckerbelegung 45 Signalausgänge 46 Signaleingänge 47 Winkeltaktsignal 49 Stromversorgung 9

Т

Transport und Einbau 10

W

Wartung 11 Waste Electrical and Electronic Equipment 14 WEEE-Rücknahmesystem 14 Winkeltaktsignal 41 Master/Slave-Konfiguration 18

Ζ

Zugelassene Kabel 10