

ES5436.1 Current Source Load Board (48-CH)

User's Guide

Copyright

The data in this document may not be altered or amended without special notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this document. The software described in it can only be used if the customer is in possession of a general license agreement or single license. Using and copying is only allowed in concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmitted, stored in a retrieval system or translated into another language without the express written permission of ETAS GmbH.

© Copyright 2019 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging to the respective owners.

V1.0.0 R05 EN - 02.2019

ETAS Contents

Contents

1	Intro	duction .		 5
	1.1	Properti	ies	 5
	1.2	Basic Sa	afety Notices	 7
		1.2.1	Identification of Safety Notices	 7
		1.2.2	General Safety Information	 7
		1.2.3	Requirements for Users and Duties for Operators	 7
		1.2.4	Intended Use	 8
	1.3	Identific	cations on the Product	 . 12
		1.3.1	CE Mark	 . 12
		1.3.2	RoHS Conformity	 . 12
	1.4	Product	Return and Recycling	 . 13
	1.5	Declaral	ble Substances	 . 13
	1.6	About t	his Manual	 . 14
		1.6.1	Working with this manual	 . 14
2	Desic	n. Install	lation and Fuses	 . 17
	2.1	•	of Supply	
	2.2		of ES5436.1	
	2.3	_	ne plug "CO200" and I/O plug X1	
	2.4			
	2.5		ion in the ES5300.1-A and the ES5300.1-B housing	
3	Signa	als		 . 21
	3.1		ies	
	3.2	•	uration as Pull-Up / Pull-Down	
	3.3	Configu	uration with ES5321 to Measure ECU Digital Output Signals	 . 22
	3.4	Configu	ıration as H-bridge	 . 25
4	Conr	nections a	and Connectors	 . 27

Contents ETAS

		Plug Connector X1	
	5.1	nical Data and Standards Technical Data Norms and Standards met	37
6	Orde	ring Data	39
7	ETAS	Contact Addresses	41
	Index	(43

ETAS Introduction

1 Introduction

This User's Guide contains the description of the ES5436.1 Current Source Load Boards.

CAUTION!

Some components of the ES5436.1 can be damaged or destroyed by electrostatic discharges. Leave the board in its transport packaging until it is installed.

Only remove, configure and install the ES5436.1 at a workplace that is protected against electrostatic discharges.

CAUTION!

If cards (e.g. for startup or calibration) are unlocked but not completely removed from the housing, they have to be pulled out far enough that the distance between the respective card and the backplane of the housing is at least 1 cm! Otherwise, contacts may be established between the cards and lead to their destruction.

This chapter contains information about the following topics:

- "Properties" on page 5
- "Basic Safety Notices" on page 7
- "Identifications on the Product" on page 12
 - "CE Mark" on page 12
 - "RoHS Conformity" on page 12
- "Product Return and Recycling" on page 13
- "Declarable Substances" on page 13
- "About this Manual" on page 14

1.1 Properties

The ES5436.1 Current Source Load Board is a plug-in board for a ES5300.1 Housing, for simulating the load in a LABCAR HiL-system.

The ES5436.1 provides 48 channels as power sources. Each power source can generate a current between 5 mA and 150 mA. Each channel can be configured independently as pull-up or pull-down. Two neighboring channels can be configured in pairs as an H-bridge.

- 48 channels as power sources for currents from 5 mA to 150 mA
- Wiring of the channels with pull-up, pull-down and in pairs as H-bridge configuration possible
- Adjustable current values: 5 mA to 150 mA, accuracy: 3 mA
- Maximum battery voltage Ubatt: 60 V

Introduction ETAS

Fig. 1-1 shows the wiring as pull-up and pull-down. Fig. 1-2 shows the wiring as an H-bridge.

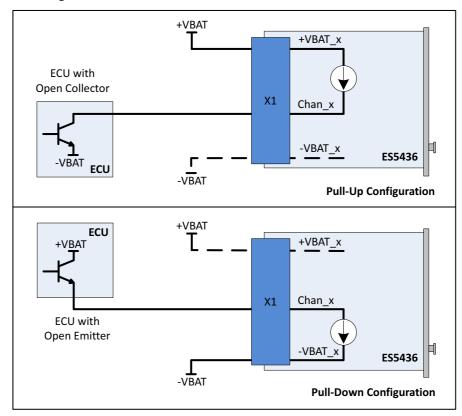


Fig. 1-1 Block diagram for open collector, open emitter

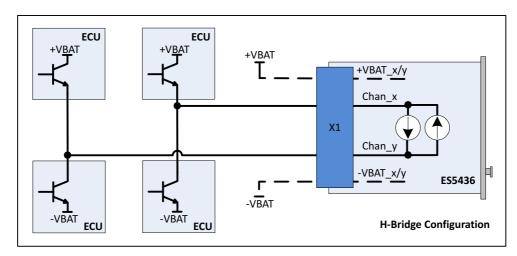


Fig. 1-2 Block diagram for H-bridge

ETAS Introduction

1.2 Basic Safety Notices

Please observe the following safety notices to avoid health issues or damage to the device.

1.2.1 Identification of Safety Notices

The safety notices contained in this manual are identified with the danger symbol shown below:

The safety notices shown below are used for this purpose. They notify you of extremely important information. Please read this information carefully.

CAUTION!

indicates a danger with low risk of minor or moderate injury or property damage, if not avoided.

WARNING!

indicates a possible danger with moderate risk of death or (serious) injury, if not avoided.

DANGER!

indicates an immediate danger with a high risk of death or serious injury, if not avoided.

1.2.2 General Safety Information

Please observe the Product Safety Notices ("ETAS Safety Advice") and the following safety notices to avoid health issues or damage to the device.

Note

The User's Guide must be read prior to the startup of the product!

ETAS GmbH does not assume any liability for damages resulting from improper handling, unintended use or non-observance of the safety precautions.

1.2.3 Requirements for Users and Duties for Operators

The product may be assembled, operated and maintained only if you have the necessary qualification and experience for this product. Improper use or use by a user without sufficient qualification can lead to damages or injuries to one's health or damages to property.

The system integrator is responsible for the safety of systems that use the product!

Introduction

General Safety at Work

Follow the existing regulations for work safety and accident prevention. All applicable regulations and laws regarding operation must be strictly adhered to when using this product.

1.2.4 Intended Use

The ES5436.1 is a plug-in board for the ES5300 system housing for simulating pull-up and pull-down resistors and for simulating loads. This enables open collector and open emitter inputs and outputs to be wired. In addition, the ES5436.1 can be used to simulate the load for an H-bridge.

The ES5436.1 plug-in board consists of the following:

- Power sources for simulating loads up to 3 W
- Interface for battery node activation signals for switching the 48 power sources on and off
- Interface to the ES5300 system housing

The ES5436.1 may only be installed and operated in the ES5300.1-A Housing and the ES5300.1-B Housing and must not be operated as a stand-alone unit.

The intended use of the ES5436.1 in an ES5300.1-A Housing or ES5300.1-B Housing is:

- Use in industrial lab facilities or at industrial workplaces.
- As a Hardware interface for ECUs in a hardware-in-the-loop test system.
- In Conjunction with ETAS software that supports the ES5300.1-A Housing or the ES5300.1-B Housing.
- As an Interface in conjunction with software programs that operate the standardized, documented and open APIs of ETAS software products.

The ES5436.1 is **not** intended for the following:

- Use within a vehicle on the road.
- Use as part of a life support system.
- Use as part of a medical application.
- In applications where misuse can lead to injuries or damages.
- Use in environments in which conditions prevail that fall outside the specified ranges: see "Ambient conditions" on page 38.
- Use with signal conditioning that falls outside the specified ranges: see "Technical Data and Standards" on page 37 (voltages, currents and power consumption).

Requirements for Operation

The following requirements are necessary for safe operation:

- Use the product only according to the specifications in the corresponding User's Guide. If the product is used in any other way, the product safety is no longer ensured.
- Do not use the product in a wet or damp environment.
- Do not use the product in potentially explosive atmospheres.

ETAS Introduction

Requirements for the Technical State of the Product

The product is designed in accordance with state-of-the-art technology and recognized safety rules. The product must only be operated in a technically flawless state, in accordance with its intended purpose and in a safety-conscious and hazard-aware manner under consideration of the documentation regarding the product. If the product is not used in accordance with its intended purpose, its product safety may be impaired.

Electrical Safety and Power Supply

Observe the regulations applicable at the operating location concerning electrical safety as well as the laws and regulations concerning work safety.

WARNING!

Fire Hazard!

Only use fuses that comply with the specification in the User's Guide for the product. Never bridge defective fuses!
Failure to observe the fuse specification can lead to excess currents, short circuits and fires.

Power Supply

The product is powered by the ES5300.1-A Housing or the ES5300.1-B Housing via the PCle backplane connector.

The electrical connection is made via the backplane connector CO200.

Insulation Requirements for lab power supplies to circuits connected to the HiL-System:

- The power supply to live circuitry must be safely isolated from the supply voltage. For example, use a car battery or a suitable lab power supply.
- Only use lab power supplies with dual protection for the supply network (with double/reinforced insulation (DI/RI)). Lab power supplies that comply with IEC/EN 60950 or IEC/EN 61010 meet this requirement.
- The lab power supply must be approved for use at a height of 2000 m and in ambient temperatures of up to 40 °C.

De-energizing the Plug-in board

Switch off the ES5300.1-A Housing or the ES5300.1-B Housing and external power supplies and unplug the power plug and other connectors attached to the plug-in board. Wait at least three minutes before removing the plug-in board.

Approved Cables

The signal lines must not exceed a maximum length of 3 m.

Introduction

WARNING!

Fire hazard!

Use only approved cables for creating cable assemblies (e.g. for connecting the ECU and external loads). The cables used must, in particular, be suitable for the currents, voltages and temperatures which occur and must be flame-retardant in accordance with one of the following standards

IEC60332-1-2, IEC60332-2-2, UL2556/UL1581VW-1!

Requirements for the Installation Location

WARNING!

This is class A equipment. This equipment can cause radio interference in residential areas. Should that be the case, the operator may be requested to institute reasonable measures.

Requirements for Ventilation

CAUTION!

The air circulation inside the ES5300.1-A Housing or the ES5300.1-B Housing can be ensured only if all free slots are covered with front plates. Otherwise, it may lead to overtemperatures and trip the overtemperature protection of the ES5300.1-A or the ES5300.1-B. For this reason, install front plates in all free slots!

Transport and Installation

To avoid damages to the hardware from electrostatic discharge, please observe the following precautionary measures:

CAUTION!

Some components of the ES5436.1 can be damaged or destroyed by electrostatic discharges. Leave the plug-in card in its transport packaging until its installation.

The ES5436.1 may be removed from the transport packaging, configured and installed only at a workplace that is secured against electrostatic discharges.

CAUTION!

In order to prevent damage to the plug-in board and the LABCAR-Housing and thereby also avoid damage to property or health, observe the installation instructions and information contained in the relevant User's Guide.

ETAS Introduction

CAUTION!

If cards (e.g. for startup or calibration) are unlocked but not completely removed from the housing, they have to be pulled out far enough that the distance between the respective card and the backplane of the housing is at least 1 cm! Otherwise, contacts may be established between the cards and lead to their destruction.

Connecting/Disconnecting Devices

To avoid injuries and hardware damages, please observe the following precautionary measures:

- Do not apply any voltages to the connections of the ES5436.1 that do not correspond to the specifications of the respective connection. The exact specification of the I/O hardware is located in the manuals of the corresponding boards.
- Do not connect or disconnect any devices while the ES5300.1-A Housing, the ES5300.1-B Housing or external devices are switched on. First, switch off the ES5300.1-A Housing or the ES5300.1-B Housing by shutting down the real-time PC and by activating the On/Off switch at the rear, then unplug the power plug.
- When plugging in connectors, ensure that they are inserted straight and no pins are bent.

Maintenance

The device does not require maintenance.

Repairs

If an ETAS hardware product needs to be repaired, return the product to ETAS. *Cleaning*

The product is not expected to require cleaning.

Introduction

1.3 Identifications on the Product

The following symbols are used for product labeling:

The User's Guide must be read prior to the startup of the product

Marking for CE conformity, see "CE mark" on page 7

Marking for China RoHS, see "RoHS conformity" on page 7

Marking for conformity with WEEE directive, see "Product return and recycling" on page 8

Please observe the information in the chapter "Technical Data and Standards" on page 37.

1.3.1 CE Mark

With the CE mark attached to the product or its packaging, ETAS confirms that the product corresponds to the product-specific, applicable European Directives. The CE Declaration of Conformity for the product is available upon request.

1.3.2 RoHS Conformity

European Union

The EU Directive 2011/65/EU limits the use of certain dangerous materials for electric and electronic devices (RoHS conformity).

ETAS confirms that the product meets this directive applicable in the European Union.

China

With the China RoHS identification attached to the product or its packaging, ETAS confirms that the product meets the guidelines of the "China RoHS" (Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation) applicable in the People's Republic of China.

ETAS Introduction

1.4 Product Return and Recycling

The European Union (EU) released the Directive for Waste Electrical and Electronic Equipment - WEEE to ensure the setup of systems for collecting, treating and recycling electronic waste in all countries of the EU.

This ensures that the devices are recycled in a resource-friendly way that does not represent any risk to personal health and the environment.

Fig. 1-3 WEEE symbol

The WEEE symbol on the product or its packaging identifies that the product may not be disposed of together with the remaining trash.

The user is obligated to separately collect old devices and provide them to the WEEE return system for recycling.

The WEEE Directive applies to all ETAS devices, but not to external cables or batteries.

Additional information about the recycling program of ETAS GmbH is available from the ETAS sales and service locations (see "ETAS contact information" on page).

1.5 Declarable Substances

European Union

Some products from ETAS GmbH (e.g. modules, boards, cables) use components with materials that are subject to declaration in accordance with the REACH regulation (EU) no.1907/2006.

Detailed information is located in the ETAS download center in the customer information "REACH Declaration" (<u>www.etas.com/Reach</u>). This information is continuously being updated.

Introduction

1.6 About this Manual

This manual consists of the following chapters:

- "Introduction" on page 5 This chapter
- "Design, Installation and Fuses" on page 17
 This chapter contains information about the design and installation of ES5436.1, as well as information about the fuses.
- "Signals" on page 21
 This chapter contains a description of the signals of the ES5436.1.
- "Connections and Connectors" on page 27
 This section provides a description of the different connections, connectors and pin assignments of the ES5436.1.
- "Technical Data and Standards" on page 37
 This chapter contains the technical data of the ES5436.1. It also contains the norms and standards.
- "Ordering Data" on page 39

1.6.1 Working with this manual

Presentation of information

All activities to be performed by the user are presented in a "Use Case" format. That is, the goal to be accomplished is briefly defined in the heading, and the respective steps required for reaching this goal are then presented in a list. The presentation looks as follows:

Target definition

Any advance information...

1. Step 1

Any explanation for step 1...

2. Step 2

Any explanation for step 2...

Any concluding comments...

Specific example:

Creating a new file

Before creating a new file, no other file may be open.

1. Select **File** → **New**.

The "Create File" dialog box appears.

2. Enter the name of the new file in the "File name" field

The file name may not have more than 8 characters.

3. Click on OK.

The new file will be created and saved under the name you specified. You can now work with the file.

ETAS Introduction

Typographical conventions

The following typographical conventions are used:

Select File \rightarrow Open. Menu commands are displayed in bold/

blue.

Click on **OK**. Buttons are displayed in bold/blue.

Press <ENTER>. Key commands are printed in small capi-

tals enclosed in angle brackets.

The "Open file" dialog window

appears.

Names of program windows, dialog windows, fields and similar are given in quota-

tion marks.

Select the setup.exe file. Text in selection lists, program code, as

well as path and file names are displayed

in Courier font.

A conversion between the logical and arithmetic data types is *not*

possible.

Content-based highlights and newly intro-

duced terms are placed in italics.

Important notes for the user are presented as follows:

Note

Important note for the user.

Introduction ETAS

2 Design, Installation and Fuses

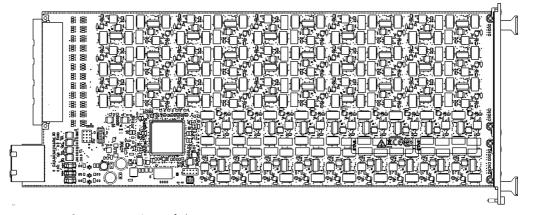
This chapter contains information about the design and installation of ES5436.1, as well as information about the fuses.

- "Scope of Supply" on page 17
- "Design of ES5436.1" on page 17
- "Backplane plug "CO200" and I/O plug X1" on page 18
- "Fuses" on page 18
- "Installation in the ES5300.1-A and the ES5300.1-B housing" on page 19

CAUTION!

Some components of the ES5436.1 can be damaged or destroyed by electrostatic discharges. Leave the board in its transport packaging until it is installed.

Only remove, configure and install the ES5436.1 at a workplace that is protected against electrostatic discharges.


2.1 Scope of Supply

You can find the scope of supply in chapter "Ordering Data" on page 39.

2.2 Design of ES5436.1

This chapter provides information about the ES5436.1 and the position of the plug connectors.

Fig. 2-1 shows a view of the ES5436.1.

Fig. 2-1 View of the ES5436.1

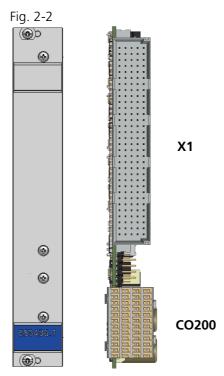


Fig. 2-2 Front plate and plug side of the ES5436.1

2.3 Backplane plug "CO200" and I/O plug X1

The connection of ES5436.1 to the ES5300.1-A Housing or to the ES5300.1-B housing is done via the PCle connector "CO200" (on page 18). CO200 is also used to provide the voltage supply of the ES5436.1.

A control unit can be connected via plug connector X1.

The pin assignments of the plugs are located in the chapter "Connections and Connectors" on page 27.

2.4 Fuses

The signal paths (or voltages) of the ES5436.1 are equipped with fuses. In case of a fuse defect, we recommend sending the board to ETAS for further testing. For this purpose, the device should be sent to ETAS (see "ETAS Contact Addresses" on page 41).

If a fuse trips multiple times, the device must be sent to ETAS.

WARNING!

Fire Hazard!

Only use fuses that comply with the specification in Tab. 2-1 on page 19. Never bridge defective fuses! Failure to observe the fuse specification can lead to excess currents, short circuits and fires.

Position of fuses

Fig. 2-3 shows the position of the fuses.

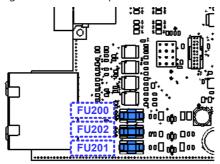


Fig. 2-3 Position of fuses (in blue) on the ES5436.1.

Specification of fuses

The specification of the fuses is as follows:

Fuse	Туре	Specification	Fuse protection of
FU200	NANO2® Slo-Blo® Fuse 452/454 Series	T 2 A	VCC3_3 (+3.3 V)
FU201	NANO2® Slo-Blo® Fuse 452/454 Series	T 3 A	VCC12 (+12 V)
FU202	NANO2® Slo-Blo® Fuse 452/454 Series	T 1 A	VCC5 (+5 V)

Tab. 2-1 Specification of fuses

2.5 Installation in the ES5300.1-A and the ES5300.1-B housing

A description for installing the ES5436.1 in the ES5300.1-A Housing or the ES5300.1-B housing is located in the manual for the ES5300.1-A Housing or the ES5300.1-B housing.

The installation of the ES5436.1 may be performed only by trained personnel in an ESD-safe area.

CAUTION!

Do not install the ES5436.1 while the ES5300.1-A Housing or the ES5300.1-B housing is switched on. First, switch off the ES5300.1-A housing or the ES5300.1-B housing by shutting down the real-time PC and by activating the On/Off switch at the rear.

CAUTION!

Some components of the ES5436.1 can be damaged or destroyed by electrostatic discharges. Leave the board in its transport packaging until it is installed.

Only remove, configure and install the ES5436.1 at a workplace that is protected against electrostatic discharges.

CAUTION!

The air circulation inside the ES5300.1-A Housing or the ES5300.1-B Housing can be ensured only if all free slots are covered with front plates. Otherwise, it may lead to overtemperatures and trip the overtemperature protection of the ES5300.1-A or ES5300.1-B. For this reason, install front plates in all free slots!

Installation of the ES5436.1 in the ES5300.1-A Housing or ES5300.1-B Housing

- 1. Ensure that ESD-compliant conditions exist at your workplace.
- 2. Shut down the real-time PC and switch off the power supply of the ES5300.1-A or ES5300.1-B using the switch at the rear of the housing.
- 3. Wait a few minutes for the components (capacitors, etc.) to be discharged.
- 4. Insert the ES5436.1 (handle at the front plate must point down!) into the upper and lower rail of the slot and push it in a little bit.
- 5. Carefully push in the carrier board until the backplane connector of the ES5436.1 is completely inserted in the socket of the backplane.

Note

Watch for cables in the insertion area while pushing in the board – pull the lines to the front door area if necessary.

- 6. Secure the carrier card by fastening the front plate with screws.
- 7. Install front plates at all open slots before starting up the ES5436.1.

ETAS Signals

3 Signals

This chapter contains a description of the signals of the ES5436.1.

3.1 Properties

The ES5436.1 Current Source Load Board is a plug-in board for a ES5300.1 Housing, for simulating the load in a LABCAR HiL-system.

The ES5436.1 provides 48 channels as power sources. Each power source can control a current between 5 mA and 150 mA. Each channel can be configured independently as pull-up, pull-down or in pairs as an H-bridge.

- 48 channels as power sources as current from 5 mA to 150 mA
- Wiring of the channels with pull-up, pull-down and in pairs as H-bridge configuration possible
- Adjustable current values: 5 mA to 150 mA, accuracy: 3 mA
- Maximum battery voltage VBAT: 60 V

3.2 Configuration as Pull-Up / Pull-Down

Fig. 3-1 shows the wiring as pull-up and pull-down.

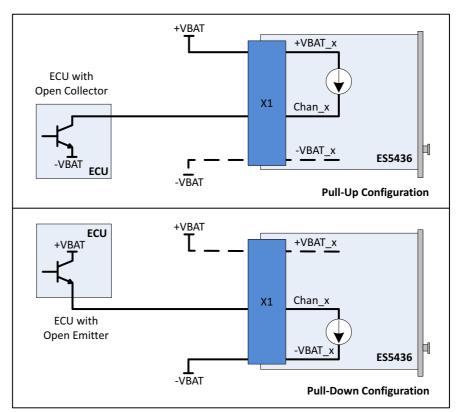


Fig. 3-1 Block diagram for pull-up (top) and pull-down configuration (below)

Signals

Note

The ES5436.1 use cases "Pull-Up", "Pull-Down" and "Bipolar" (for H-bridge) can be configured by software.

For this reason, make sure that +VBAT and -VBAT are always connected.

Technical Data of the ES5436.1 Power Sources

Output	Data
Output current	5 mA to 150 mA
Output voltage	Passive circuit
Accuracy	+/- 3 mA at 150 mA
Galvanic isolation	max. 60 V to ground potential (functional separation)
Overvoltage protection	60 V abs. max.

Tab. 3-1 Technical data of the power sources

Note

In the idle state (non activated load channel, operation mode "disabled") the power source's idle state current is $\sim 70 \ \mu A$.

Note

If the external voltage +VBAT < 6 V the power source doesn't carry any current.

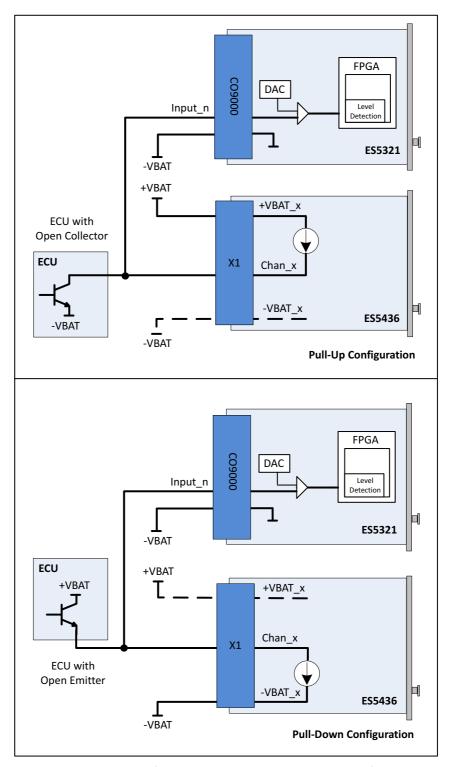
3.3 Configuration with ES5321 to Measure ECU Digital Output Signals

Digital outputs of ECUs are often configured as open emitter or open collector. In a vehicle, such outputs are connected to small loads.

To measure such digital output signals of an ECU in a HiL setup, the ES5436.1 can be used as load simulation and the ES5321 for measurement.

A schematic diagram for the ECU, the ES5321 and the ES5436.1 is shown in Fig. 3-2 on page 23.

The schematic diagram for H-bridge configuration is shown in Fig. 3-3 on page 25.


The ES5436.1 has 48 current channels for currents in the range of 5 mA to 150 mA. These current channels can be combined with the 48 digital inputs of the ES5321.1 or the ES5321.2.

CAUTION!

Before connecting the ES5321.1 or the ES5321.2, read the corresponding User's Guide.

ETAS Signals

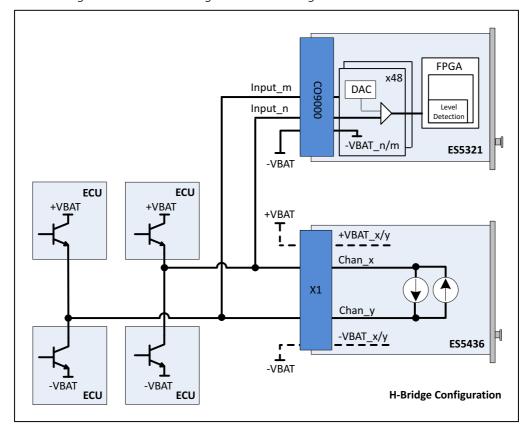
Fig. 3-2 Measurement of digital ECU output signals in the configuration "Pull-Up" or "Pull-Down" using ES5321 for measurement and ES5436.1 as load simulation

Signals

Note

The ES5436.1 use cases "Pull-Up", "Pull-Down" and "Bipolar" (for H-bridge) can be configured by software.

For this reason, make sure that +VBAT and -VBAT are always connected.


Technical Data ES5321.1/.2 Inputs

Number	48
Input voltage range	0 V+56 V
Input impedance	1 ΜΩ
Frequency range	1 Hz100 kHz
Duty cycle	0%100%
Duty cycle resolution	0.1%
Accuracy in range of 1 Hz to 10 kHz	±0.04%
Accuracy in range of 10 kHz to 100 kHz	±0.4%
Resolution	8 ns (125 MHz)
Counter	31 bit
Pulse width	120 ns to 17 s (= [2 ³¹ - 1] * 8 ns); Resolution: 8 ns
Programmable thresholds for high/low detection of input signal	+1 V+10 V
Threshold resolution	10 bit
Hysteresis (fix)	max. 0.5 V
Glitch filter	120 ns to 5000 ns or "Off"; resolution; 8 ns
Electric strength	±60 V
Galvanic groups	4 groups with 12 channels each
Max. number of SENT signals	4
SENT Specification (version)	SAE J2716

ETAS Signals

3.4 Configuration as H-bridge

Fig. 3-3 shows the configuration as H-bridge.

Fig. 3-3 Block diagram for configuration as H-bridge using ES5321 for measuring Chan_x and Chan_y

In case of H-bridge configuration, observe the following notes:

Note

Channel 2i and channel 2i+1 of the ES5436.1 are coupled in each case and can be used for an H-bridge. Only if channels 2i and 2i+1 are used, there will be a current flow through the H-bridge.

Note

The ES5436.1 use cases "Pull-Up", "Pull-Down" and "Bipolar" (for H-bridge) can be configured by software.

For this reason, make sure that +VBAT and -VBAT are always connected.

Note

For the ES5321.11.2, Input_m and Input_n (Fig. 3-3) must be in the same galvanic group.

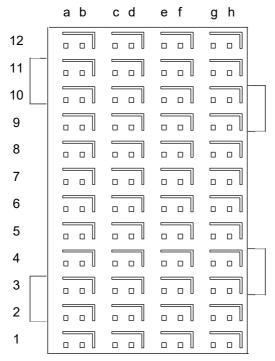
Signals

ES5436.1 Technical Data for the Configuration as H-bridge

Output	Data
Output current	5 mA to 150 mA
Output voltage	Passive circuit
Accuracy	+/- 3 mA at 150 mA
Galvanic isolation	max. 60 V to ground potential (functional separation)
Overvoltage protection	60 V abs. max.

Tab. 3-2 Technical data of H-bridge configuration

4 Connections and Connectors


This section provides a description of the different connections, connectors and pin assignments of the ES5436.1.

- "Backplane Connector (CO200)" on page 27
- "Plug Connector X1" on page 29
- "Connecting Cable" on page 35

4.1 Backplane Connector (CO200)

Type: ERNI ERMet ZD 4-pair angled female multipoint connector (4-12) (order no. 973099)

Counterplug (in ES5300): ERNI ERMet ZD 4-pair straight male multipoint connector (4-12) (order no. 973096)

Fig. 4-1 Connector to backplane (top view)

• The assignment of the pins is as follows (the maximum possible pin assignment for the ES5300.1-A Housing and the ES5300.1-B Housing is given):

ETAS

	h	g	f	е	d	С	е	а
12	GBLI_TX_n_0	GBLI_TX_p_0	GBLI_RX_n_0	GBLI_RX_p_0	M_LVDS_n_7	M_LVDS_p_7	BN_5	BN_4
12-shield	GN	ND .	G	ND	Gl	ND	GI	ND
11	GBLI_TX_n_1	GBLI_TX_p_1	GBLI_RX_n_1	GBLI_RX_p_1	M_LVDS_n_6	M_LVDS_p_6	SPI_CS_B_n	SPI_CS_A_n
11-shield	GN	ND .	G	ND	GI	ND	GI	ND
10	GBLI_TX_n_2	GBLI_TX_p_2	GBLI_RX_n_2	GBLI_RX_p_2	M_LVDS_n_5	M_LVDS_p_5	SPI_MOSI	SPI_CLK
10-shield	GN	ND .	G	ND	GI	ND	GI	ND
9	GBLI_TX_n_3	GBLI_TX_p_3	GBLI_RX_n_3	GBLI_RX_p_3	M_LVDS_n_4	M_LVDS_p_4	PCIE_WAKEn	SPI_MISO
9-shield	GN	ND .	G	ND	GI	ND	GI	ND
8	GBLI_PRESENT_n	GEO_ADDR_4	PCIE_REFCLK_n	PCIE_REFCLK_p	M_LVDS_n_3	M_LVDS_p_3	n.c.	n.c.
8-shield	GN	ND .	G	ND	Gl	ND	GI	ND
7	PCIE_RX_n_0	PCIE_RX_p_0	PCIE_TX_n_0	PCIE_TX_p_0	M_LVDS_n_2	M_LVDS_p_2	n.c.	n.c.
7-shield	GN	ND .	G	ND	Gl	ND	GI	ND
6	Ass. internally	Ass. internally	Ass. internally	Ass. internally	M_LVDS_n_1	M_LVDS_p_1	PCIE_JTAG_TCK	PCIE_JTAG_TDI
6-shield	GN	ND .	G	ND	Gl	ND	GI	ND
5	Ass. internally	Ass. internally	Ass. internally	Ass. internally	M_LVDS_n_0	M_LVDS_p_0	PCIE_JTAG_TDO	PCIE_JTAG_TMS
5-shield	GN	ND .	G	ND	GI	ND	GI	ND
4	Ass. internally	Ass. internally	IAss. internally	Ass. internally	GEO_ADDR_1	GEO_ADDR_0	BN_3	BN_2
4-shield	GN	ND .	G	ND	GI	ND	GI	ND
3	VCC24	VCC24	GEO_ADDR_3	GEO_ADDR_2	PCIE_SMBDAT	PCIE_SMBCLK	BN_1	BN_0
3-shield	VCC	3_3	VCC	3_3	VCC	3_3	VCC	3_3
2	VSS12	VSS12	VCC3_3	VCC5	PCIE_PERSTn	PCIE_PRSNT1n	PCIE_PRSNT2n_X 1	PCIE_PRSNT2n_X 4
2-shield	VCC	12	VC	C12	VC	C12	VC	C12
1	VCC3_3	VCC3_3	VCC5	VCC5	VCC12	VCC12	VCC12	VCC12
1-shield	VCC	C12	VC	C12	VC	C12	VC	C12

4.2 Plug Connector X1

The plug connector X1 enables the connection to an ECU. **Type:** Erni Eurocard DIN 41612 Connector, 5 rows, male

Order number: 384299

Mating plug: HARTING DIN 41612 plug connector

Order number: 02 05 000 0003

Crimp contacts: Harting Crimp contacts **Order number:** 02 05 000 2511

Note

Crimp tongs are necessary for attaching the crimp contacts.

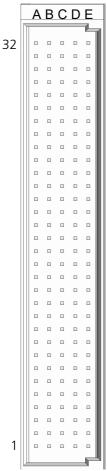


Fig. 4-2 Plug connector X1

Tab. 4-1 lists the pin assignment.

Pin assignment of X1

Shortname	Туре	Pin (Signal)
Chan_0_VBAT_P	+VBAT	D1
Chan_0	Current Sink/Source	D2
Chan_0_VBAT_N	-VBAT	D3
Chan_1_VBAT_P	+VBAT	C1
Chan_1	Current Sink/Source	C2
Chan_1_VBAT_N	-VBAT	C3
Chan_2_VBAT_P	+VBAT	E4
Chan_2	Current Sink/Source	E5
Chan_2_VBAT_N	-VBAT	E6
Chan_3_VBAT_P	+VBAT	E1
Chan_3	Current Sink/Source	E2
Chan_3_VBAT_N	-VBAT	E3
Chan_4_VBAT_P	+VBAT	A1
Chan_4	Current Sink/Source	A2
Chan_4_VBAT_N	-VBAT	А3
Chan_5_VBAT_P	+VBAT	D4
Chan_5	Current Sink/Source	D5
Chan_5_VBAT_N	-VBAT	D6
Chan_6_VBAT_P	+VBAT	C4
Chan_6	Current Sink/Source	C5
Chan_6_VBAT_N	-VBAT	C6
Chan_7_VBAT_P	+VBAT	B1
Chan_7	Current Sink/Source	B2
Chan_7_VBAT_N	-VBAT	В3
Chan_8_VBAT_P	+VBAT	A4
Chan_8	Current Sink/Source	A5
Chan_8_VBAT_N	-VBAT	A6
Chan_9_VBAT_P	+VBAT	E7
Chan_9	Current Sink/Source	E8
Chan_9_VBAT_N	-VBAT	E9

Shortname	Туре	Pin (Signal)
Chan_10_VBAT_P	+VBAT	D7
Chan_10	Current Sink/Source	D8
Chan_10_VBAT_N	-VBAT	D9
Chan_11_VBAT_P	+VBAT	B4
Chan_11	Current Sink/Source	B5
Chan_11_VBAT_N	-VBAT	В6
Chan_12_VBAT_P	+VBAT	В7
Chan_12	Current Sink/Source	B8
Chan_12_VBAT_N	-VBAT	В9
Chan_13_VBAT_P	+VBAT	A7
Chan_13	Current Sink/Source	A8
Chan_13_VBAT_N	-VBAT	A9
Chan_14_VBAT_P	+VBAT	E10
Chan_14	Current Sink/Source	E11
Chan_14_VBAT_N	-VBAT	E12
Chan_15_VBAT_P	+VBAT	C7
Chan_15	Current Sink/Source	C8
Chan_15_VBAT_N	-VBAT	C9
Chan_16_VBAT_P	+VBAT	C10
Chan_16	Current Sink/Source	C11
Chan_16_VBAT_N	-VBAT	C12
Chan_17_VBAT_P	+VBAT	D10
Chan_17	Current Sink/Source	D11
Chan_17_VBAT_N	-VBAT	D12
Chan_18_VBAT_P	+VBAT	B10
Chan_18	Current Sink/Source	B11
Chan_18_VBAT_N	-VBAT	B12
Chan_19_VBAT_P	+VBAT	A10
Chan_19	Current Sink/Source	A11
Chan_19_VBAT_N	-VBAT	A12

Shortname	Туре	Pin (Signal)
Chan_20_VBAT_P	+VBAT	E13
Chan_20	Current Sink/Source	E14
Chan_20_VBAT_N	-VBAT	E15
Chan_21_VBAT_P	+VBAT	D13
Chan_21	Current Sink/Source	D14
Chan_21_VBAT_N	-VBAT	D15
Chan_22_VBAT_P	+VBAT	C13
Chan_22	Current Sink/Source	C14
Chan_22_VBAT_N	-VBAT	C15
Chan_23_VBAT_P	+VBAT	B13
Chan_23	Current Sink/Source	B14
Chan_23_VBAT_N	-VBAT	B15
Chan_24_VBAT_P	+VBAT	A13
Chan_24	Current Sink/Source	A14
Chan_24_VBAT_N	-VBAT	A15
Chan_25_VBAT_P	+VBAT	E16
Chan_25	Current Sink/Source	E17
Chan_25_VBAT_N	-VBAT	E18
Chan_26_VBAT_P	+VBAT	D16
Chan_26	Current Sink/Source	D17
Chan_26_VBAT_N	-VBAT	D18
Chan_27_VBAT_P	+VBAT	C16
Chan_27	Current Sink/Source	C17
Chan_27_VBAT_N	-VBAT	C18
Chan_28_VBAT_P	+VBAT	B16
Chan_28	Current Sink/Source	B17
Chan_28_VBAT_N	-VBAT	B18
Chan_29_VBAT_P	+VBAT	A16
Chan_29	Current Sink/Source	A17
Chan_29_VBAT_N	-VBAT	A18

Shortname	Туре	Pin (Signal)
Chan_30_VBAT_P	+VBAT	E19
Chan_30	Current Sink/Source	E20
Chan_30_VBAT_N	-VBAT	E21
Chan_31_VBAT_P	+VBAT	D19
Chan_31	Current Sink/Source	D20
Chan_31_VBAT_N	-VBAT	D21
Chan_32_VBAT_P	+VBAT	C19
Chan_32	Current Sink/Source	C20
Chan_32_VBAT_N	-VBAT	C21
Chan_33_VBAT_P	+VBAT	B19
Chan_33	Current Sink/Source	B20
Chan_33_VBAT_N	-VBAT	B21
Chan_34_VBAT_P	+VBAT	A19
Chan_34	Current Sink/Source	A20
Chan_34_VBAT_N	-VBAT	A21
Chan_35_VBAT_P	+VBAT	E22
Chan_35	Current Sink/Source	E23
Chan_35_VBAT_N	-VBAT	E24
Chan_36_VBAT_P	+VBAT	B22
Chan_36	Current Sink/Source	B23
Chan_36_VBAT_N	-VBAT	B24
Chan_37_VBAT_P	+VBAT	C22
Chan_37	Current Sink/Source	C23
Chan_37_VBAT_N	-VBAT	C24
Chan_38_VBAT_P	+VBAT	D22
Chan_38	Current Sink/Source	D23
Chan_38_VBAT_N	-VBAT	D24
Chan_39_VBAT_P	+VBAT	A22
Chan_39	Current Sink/Source	A23
Chan_39_VBAT_N	-VBAT	A24

Shortname	Туре	Pin (Signal)
Chan_40_VBAT_P	+VBAT	E25
Chan_40	Current Sink/Source	E26
Chan_40_VBAT_N	-VBAT	E27
Chan_41_VBAT_P	+VBAT	D25
Chan_41	Current Sink/Source	D26
Chan_41_VBAT_N	-VBAT	D27
Chan_42_VBAT_P	+VBAT	C25
Chan_42	Current Sink/Source	C26
Chan_42_VBAT_N	-VBAT	C27
Chan_43_VBAT_P	+VBAT	B25
Chan_43	Current Sink/Source	B26
Chan_43_VBAT_N	-VBAT	B27
Chan_44_VBAT_P	+VBAT	A25
Chan_44	Current Sink/Source	A26
Chan_44_VBAT_N	-VBAT	A27
Chan_45_VBAT_P	+VBAT	C28
Chan_45	Current Sink/Source	C29
Chan_45_VBAT_N	-VBAT	C30
Chan_46_VBAT_P	+VBAT	B28
Chan_46	Current Sink/Source	B29
Chan_46_VBAT_N	-VBAT	B30
Chan_47_VBAT_P	+VBAT	A28
Chan_47	Current Sink/Source	A29
Chan_47_VBAT_N	-VBAT	A30

Tab. 4-1 Pin assignment of X1

<u>Note</u>

Channel 2i and 2i+1 are coupled in each case and can be used for an H-bridge.

4.3 Connecting Cable

Use only approved cables in the manufacture of cable harnesses (e.g. for connecting the ECU and external loads). The cable length must not exceed 3 m.

WARNING!

Fire hazard!

Use only approved cables for creating cable assemblies (e.g. for connecting the ECU and external loads). The cables used must, in particular, be suitable for the currents, voltages and temperatures which occur and must be flame-retardant in accordance with one of the following standards

IEC60332-1-2, IEC60332-2-2, UL2556/UL1581VW-1!

Note

The signal lines may not exceed a maximum length of 3 m!

5 Technical Data and Standards

This chapter contains the technical data of the ES5436.1. It also contains the norms and standards.

5.1 Technical Data

Inputs

Input quantity	Data
+VBAT	6 to 60 V
-VBAT	< +VBAT - 6 V

Outputs

5 mA to 150 mA
= 1 1 1:
Passive circuit
+/- 3 mA at 150 mA
max. 60 V to ground potential (functional separation)
60 V abs. max.

Power supply

Current consumption	100 mA @ +3.3 V DC	
	200 mA @ +5 V DC	
	200 mA @ +12 V DC	
	200 mA @ -12 V DC	

Electrical data ES5300.1-A, ES5300.1-B PCI backplane

Max. permissible power consumption	16 W at 12 V
	1 W at 5 V
	1 W at 3.3 V

Storage conditions

Temperature	-20 °C to 85 °C (-4 °F to 185 °F)
Relative humidity	0 to 95% (non-condensing)

Ambient conditions

Environment	Use only inside enclosed and dry rooms	
Max. contamination level	2	
Temperature during operation	5 °C to 40 °C (41 °F to 104 °F)	
Relative humidity	0 to 95% (non-condensing)	
Altitude	-200 m to 2000 m above sea level	
Physical Dimensions		
Height	4 U	
Width	5 HP	
Weight	0,5 kg	

5.2 Norms and Standards met

The ES5436.1 meets the following norms and standards:

Standard	Test
IEC 61326-1	Electrical equipment for measurement, control and laboratory use – EMC requirements (industrial setting)
IEC 61010-1	Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements

The module is only intended for use in industrial settings in accordance with EN 61326-1. Avoid potential radio interference when using the module outside of the industrial settings with additional shielding measures!

WARNING!

This is class A equipment. This equipment can cause radio interference in residential areas. Should that be the case, the operator may be requested to institute reasonable measures.

Note

The signal lines may not exceed a maximum length of 3 m!

ETAS Ordering Data

6 Ordering Data

Order name	Short name	Order number
Current Source Load Board (48-CH)	ES5436.1	F-00K-110-485
Calibration Service for ES5436	K_ES5436.1	F-00K-110-486
Scope of Supply	Number	
ES5436.1 Current Source Load Board	1	

Ordering Data ETAS

7 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

 Borsigstraße 24
 Phone: +49 711 3423-0

 70469 Stuttgart
 Fax: +49 711 3423-2106

 Germany
 WWW: www.etas.com

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team and product hotlines, take a look at the ETAS website:

ETAS subsidiaries WWW: <u>www.etas.com/en/contact.php</u>
ETAS technical support WWW: <u>www.etas.com/en/hotlines.php</u>

ETAS Index

Index

A Accident prevention 8 Application areas 5	Installation 17 Installation Location 10 Intended Use 8
C CE Declaration of Conformity 12 Cleaning 11 Configuration 21 H-bridge 25 Pull-Down 21	M Maintenance 11 N nstallation 10
Pull-Up 21 With ES5321 22 Connecting devices 11 Connections Backplane connector 27 Plug Connector X1 29	P Product exclusion if liability 7 Product Labeling 12 Product return 13 Q Qualification, required 7
D Declarable Substances 13 Devices Connecting 11 E ETAS Contact Addresses 41	R Recycling 13 Repairs 11 RoHS conformity China 12 European Union 12
F Fuses 17 I Improper use 7	Safety at work 8 Safety notices, identification of 7 Safety precautions 7 Standards 38

Index ETAS

T Technical Data 37 Transport 10

V

Ventilation 10

W

Waste Electrical and Electronic Equipment 13
WEEE return system 13