
RTA-FBL FCA PORT

USER MANUAL

Status: RELEASED

2

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-
ment. The software described in it can only be used if the customer is in possession of a
general license agreement or single license. Using and copying is only allowed in concur-
rence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmit-
ted, stored in a retrieval system or translated into another language without the express
written permission of ETAS GmbH.

© Copyright 2019 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document : RTA_FBL_FCA_PORT_UserManual.docx

ETAS RTA-FBL FCA PORT – User Manual

3

Contents

Introduction.. 5

1.1 Revision History ... 5
1.2 Definition and Abbreviations ... 5
1.3 References .. 6
1.4 About this Document ... 6
1.5 Chapter Description ... 6

2 Introduction to ETAS RTA-FBL ... 7

2.1 What is a Flash Bootloader? .. 7
2.2 What is RTA-FBL? .. 8
2.3 The Flash Tool (Tester) .. 9
2.4 The OEM-defined Programming Sequence .. 9
2.5 Target Dependencies and the Flash Driver .. 9
2.6 Interaction with the Application using NvM ... 9
2.7 One and Two-Stage Bootloaders ... 9
2.8 FBL generation with the RTA-FBL ISOLAR-AB plugin .. 10
2.9 General architecture of RTA-FBL .. 12
2.10 Setting up your environment to generate an RTA-FBL instance 13

3 Installing RTA-FBL .. 14

4 The FCA Port ... 18

4.1 FCA RTA-FBL Architecture ... 18
4.2 FCA Download Sequence .. 19
4.3 Creating and building an RTA-FBL instance ... 21
4.3.1 Project creation ... 21
4.3.2 Configuration and Generation of FBL and BSW .. 24
4.3.3 Files created during generation ... 37
4.3.4 Building the RTA-FBL instance. .. 37
4.3.5 The RTA-FBL instance for the Dummy Target ... 37
4.4 Security .. 39
4.5 Replace the Security Stub Files .. 39
4.6 Supported targets .. 40
4.7 Integrator guidelines .. 40
4.7.1 FBL: Memory Layout Adaptation .. 41
4.7.2 FBL: User Functions ... 41
4.7.3 Initialization .. 41
4.7.4 Shutdown ... 42
4.7.5 Application validation ... 42
4.7.6 Software Identification Update .. 43
4.7.7 FBL: BSW adaptation ... 43
4.7.8 FBL: MCAL adaptation .. 43
4.7.9 FBL: OS adaptation .. 44
4.7.10 FBL: BLSM adaptation ... 44
4.7.11 ASW: NvM layout adaptation ... 45
4.7.12 ASW: Boot Jump Handling... 47

ETAS RTA-FBL FCA PORT – User Manual

4

5 How to Flash the ECU with INCA and the ProF Script .. 49

6 Privacy .. 60

6.1 Privacy Statement .. 60
6.2 Data Processing ... 60
6.3 Data and Data Categories ... 60
6.4 Technical and Organizational Measures .. 60

7 ETAS Contact Addresses .. 61

ETAS RTA-FBL FCA PORT – User Manual

5

Introduction

This user manual introduces the RTA-FBL port for FCA. It provides an overview of the RTA-
FBL architecture and software design. It also provides detailed information of the FCA port for
users developing ECUs that will be reprogrammed with RTA-FBL. This includes information
about how to configure RTA-FBL, as well as how to integrate the Application Software on the
ECU.

1.1 Revision History

Version Author Date Change (Why, What)

0.1 Francesco Ficili 29/11/2018 First version.

1.0 Andrew Borg 03/02/2019 First release.

1.1 Daniele Cloralio 29/05/2020 FCA Port version

1.2 Daniele Cloralio 15/07/2020 Minor changes

1.3 Daniele Cloralio 22/10/2020 Typo and minor changes

1.4 Francesco Sfragara 05/11/2020 Minor changes in section
4.3 and 3

1.2 Definition and Abbreviations

Term/Abbreviation Definition

ADC Analogue to Digital Convertor

AR AUTOSAR

Application Software
(ASW)

This is the software that executes the control logic of the
ECU

AUTOSAR AUTomotive Open System Architecture

BLSM Bootloader State Manager

BSW Basic Software

CAN Controller Area Network

CAN FD CAN Flexible Datarate

CRC Cyclic Redundancy Code – a CRC module is provided in
RTA-BSW

Dcm Diagnostic Communication Manager

DID Data IDentifier

DLL Dynamic Link Library

ECU Electronic Control Unit

FBL Flash Bootloader

Fee Flash EEPROM Emulation

FW Firmware

HW Hardware

ISR Interrupt Service Routine

MCAL Micro-Controller Abstraction Layer

NvM Non-Volatile Memory

OS Operative System

ETAS RTA-FBL FCA PORT – User Manual

6

Term/Abbreviation Definition

RTA-x The ETAS suite of embedded SW products

S&K Seed And Key

SW Software

UDS Unified Diagnostic Services

1.3 References

Ref. Document Name Ver.

[1] CS.00101_ECU FLASH
Reprogramming Requirements

Rev. C

[2] CS.00102_Standardized Diag Data Rev. D

[3] CS.00099_Diag Reqs UDS Rev. C

[4] CS.00100_Diagnostic Services Rev. C

[5] ISO 14229-1:2013

Road vehicles -- Unified diagnostic
services (UDS)

Ed.: 2

1.4 About this Document

This document provides a detailed description of ETAS’ RTA-FBL Port for FCA OEM. It provides
a reference for ECU developers that will allow reprogramming of their ECU using RTA-FBL.

1.5 Chapter Description

Chapter Description

Chapter 1 This is the document introductory chapter.

Chapter 2 This chapter introduces ECU reprogramming in general and
associated tooling, including RTA-FBL.

Chapter 3 This chapter explains how RTA-FBL must be installed in order to
allow you to create a complete RTA-FBL bootloader instance.

Chapter 4 This chapter introduces the RTA-FBL Port for FCA. It includes
important integration steps required for integrating RTA-FBL with
your Application Software.

Chapter 5 This chapter explains how to flash an ECU with an RTA-FBL
bootloader using INCA.

Chapter 6 This chapter contains important privacy information.

Chapter 7 This chapter contains ETAS references for customer support.

ETAS RTA-FBL FCA PORT – User Manual

7

2 Introduction to ETAS RTA-FBL

This section introduces basic FBL concepts independently of a particular OEM port or hardware
target. It also introduces ETAS’ FBL product, RTA-FBL, and provides information that is
common to all ports and targets. Specific information about your port and the targets
supported in this port are detailed in Section 4

2.1 What is a Flash Bootloader?

A Flash Bootloader (FBL) is embedded SW that allows the reprogramming of an ECU with new
Application SW using a standard communication channel. The FBL works in combination with
an external tool that runs as a desktop application (often called a Flash Tool or Tester Tool).
This tool communicates with the FBL executing on the ECU to transfer the new Application

SW. The FBL updates the ECU’s non-volatile memory with this new Application SW.

Figure 1: High level flashing process

The FBL is a standalone program. It has a separate run-time with respect to the Application
SW, and so the FBL and the Application SW never run concurrently. After startup, the FBL
always runs first as it needs to decide whether it is to wait for new Application SW to be sent
from a tester, or if it is to start the Application SW already present in the ECU. This decision
depends on two items of state in the ECU: whether a reprogramming request flag has been
set by the Application SW before the last reset, and whether the Application SW currently
programmed in the ECU is valid.

A classic boot loading sequence showing this decision is depicted in Figure 2. Note that the
Application SW is only started if the Application SW is valid and the reprogramming request
flag is not set. In any other case, the FBL enters the Bootloader state and communicates with
the tester to reprogram the ECU.

ETAS RTA-FBL FCA PORT – User Manual

8

Figure 2: Boot loading flowchart

2.2 What is RTA-FBL?

RTA-FBL is ETAS’ bootloader product offering. It allows integrators to create Flash Bootloader
software according to a specific OEM specification. RTA-FBL generates source code (flash boot
loader modules and basic software) from user configuration. This significantly reduces the
user effort required to get the flash bootloader up and running and integrated with the
application software.

RTA-FBL leverages the following layers defined by the AUTOSAR standard architecture:

• MCAL: provided by silicon vendor

• BSW: provided by ETAS (RTA-BSW)

Although RTA-FBL ports currently support CAN and CAN-FD, basing the underlying SW
architecture on AUTOSAR allows support of other communication protocols such as Ethernet,

FlexRay, LIN.

RTA-FBL satisfies requirements from different OEMs for different HW architectures by creating
ports that integrate with the core RTA-FBL product. The clear separation between core (which
is OEM independent and target independent) and port (which is OEM-dependent with support
for one or more targets) makes it possible to support a wide range of OEM FBL requirements
and allows quick porting to new targets.

RTA-FBL generates source code and BSW files through the following components:

• rtafblgen: an executable for FBL generation

• RTA-FBL GUI: a user interface for configuring the parameters used by rtafblgen for
generation. The configuration options depend on the OEM port and selected target.

ETAS RTA-FBL FCA PORT – User Manual

9

2.3 The Flash Tool (Tester)

The Flash Tool, or Tester, is a desktop application that handles the PC-side of the flashing
process. In general, the tester is used when the bootloader is in production and access to the
ECU is limited to non-debug communication protocols such as CAN, Ethernet and FlexRay.

2.4 The OEM-defined Programming Sequence

The tester communicates with the ECU by sending messages over a communication bus
according to a defined protocol. The ETAS FBL supports the UDS on the CAN protocol. This
means that requests are made to the ECU over a CAN bus, and the messages sent and received
comply with the UDS standard ISO 14229-1[2]. The allowed message sequence sent to the
ECU, as well as the expected response from the ECU differs across OEMs. Therefore, the ETAS
FBL supports different OEM standards for ECU reprogramming. These are called “OEM ports”
or just “ports”. This guide specifically addresses the RTA-FBL port that implements the
reprogramming standard described in [1]. Each port supports one or more hardware “targets”.
For example, the RTA-FBL port that implements [1] supports all the targets described in
Section 4.6.

2.5 Target Dependencies and the Flash Driver

An FBL will naturally contain several dependencies on the underlying microcontroller target.
In addition to the typical drivers such as communication, port and timer drivers is the driver
used by the bootloader to write the FLASH memory of the ECU. This is target dependent code
(usually provided by the silicon vendor), because each different target could have different
flash memory properties (i.e. different technology, layout, endurance, etc.). The flash driver
typically forms part of the MCAL.

2.6 Interaction with the Application using NvM

A Bootloader and the Application Software may need to share data. For example, a Tester
may read or write data such as the ECU serial number both when the ECU is running in boot-
loader mode and when running its Application Software (e.g. by using UDS
ReadDataByIndentifier and WriteDataByIdentifier commands). Typically, this will mean that
both the Bootloader and the Application Software will need to be able to read and write the

same non-volatile memory. Where non-volatile memory is implemented by EEPROM emulation
in flash such sharing may introduce technical challenges because the Bootloader and
Application Software must use the same algorithms and data-structures when emulating
EEPROM. (For example, if the application uses an Autosar Fee module for EEPROM emulation
then the Bootloader may need to use the same Fee module). The requirements for
compatibility between the FBL and Application Software for your port are detailed in Section
4.

2.7 One and Two-Stage Bootloaders

There are two broad models for bootloaders and the model type for the bootloader described
in [1] is described in more detail in Section 4.

 Single-stage: In this model, the complete Bootloader is stored on the ECU (in flash),
including the code used to write a new application to flash.

 Two-stage: In this model, a Primary Bootloader is stored in the ECU. This Primary
Bootloader is able to start the application running or download a Secondary Bootloader
into RAM. The Primary Bootloader is not able to write to the flash used to store the
application. Programming flash with a new application is done by the Secondary
Bootloader. There are three advantages to the two-stage approach:

1. The Primary Bootloader can in principal be smaller because it does not need
to include the code to write to flash (although space savings will be limited in

ETAS RTA-FBL FCA PORT – User Manual

10

practice if the Primary Bootloader also needs to include a flash driver to write
to non-volatile memory implemented with flash).

2. Since the Primary Bootloader does not contain the code to write to flash, the
application is less likely to corrupt itself or the bootloader because faulty code
in the application cannot jump to the flash reprogramming driver.

3. The Secondary Bootloader can be used to work around bugs in the bootloader
installed on the ECU when it was manufactured.

Rather than an independent Secondary Bootloader, some OEMs use a single-stage Bootloader
that only excludes the flash driver used to write to the flash that stores the application.
Instead, the driver used to write to flash is downloaded and stored in RAM during the
programming sequence. This is sometimes referred to as a software “interlock”.

2.8 FBL generation with the RTA-FBL ISOLAR-AB plugin

An instance of ETAS’s FBL is generated based on the chosen OEM specification that defines
the reprogramming sequence, the chosen hardware target, and the specific configurations
that are allowed within the scope of the OEM specification. The tool for generating this FBL
instance is an ISOLAR-AB plugin, which is included with your purchased core license. An FBL
generated using this plugin is described as “an instance of RTA-FBL”. The plugin creates
bootloader code as well as a full RTA-BSW project with configuration that is needed to support

the bootloader functionality. In the same generation process, the plugin therefore optionally
also invokes RTA-BSW to generate an instance of the BSW. Alternatively, the user can open
the RTA-BSW project created by the RTA-FBL plugin to inspect the generated configuration.
FBL generation also results in some ports in the generation of an MCAL project that can be
adapted. Further details relevant to your port are provided in Section 4.

ETAS RTA-FBL FCA PORT – User Manual

11

ISOLAR-AB with RTA-FBL
plugin

User creates RTA-FBL
configuration in an
ISOLAR-AB project

< generate request to >

< generates >

BSW Project

< generates >

ISOLAR-AB with RTA-BSW
plugin

< generate request to >

3rd Party MCAL generator

MCAL Code BSW Code

< generates >< generates >

3rd party and
additional

Integrator Code

Integrator’s build tooling or sample
build tooling provided with RTA-FBL

port installation (scons based)

FBL.elf

< compile and link >

FBL CodeMCAL Project

< generates >

< generate request to >

Integrator changes possible
but strictly limited to those
specified for Port

Figure 3: The process of generating an RTA-FBL instance

The tool process for generating an RTA-FBL instance is shown in Figure 3. ETAS-provided
tooling allows the integrator to create the bootloader-specific application code (through the
RTA-FBL plugin for ISOLAR-AB), and the BSW code (through the RTA-BSW plugin for ISOLAR-
AB). The MCAL code must be created using a 3rd party tool, typically provided by the silicon

vendor.

Note that the RTA-FBL ISOLAR-AB plugin generates source code that includes some sample
code that may require modification by the integrator. The integrator also has the option to
add further integration code. Finally, all source code needs to be integrated and built using
either the sample build scripts provided with RTA-FBL (and based on scons) or the integrator’s
own build toolchain.

IMPORTANT: RTA-FBL tests are carried out by ETAS for various FBL configurations that
create for each configuration different bootloader code, an MCAL project and a BSW project.
Since the integrator can make adaptations to specified sample code, the generated MCAL
project and the generated BSW project, this may result in a final software stack that is not
tested. For this reason, it is ultimately the integrator’s responsibility to test that the complete
bootloader works with any changes made to any code or projects generated by RTA-FBL.
Please read the important integrator guidelines provided in Section 4 for information relevant
to your port.

ETAS RTA-FBL FCA PORT – User Manual

12

2.9 General architecture of RTA-FBL

An instance of RTA-FBL consists of five types of module as shown within the complete RTA-
FBL architecture in Figure 4. These are:

1. Core bootloader modules (in blue): these are generated from the RTA-FBL ISOLAR-
AB plugin and must not be modified.

2. BSW modules (in orange): these are standard AUTOSAR BSW modules generated by
RTA-BSW and must not be modified.

3. Port-specific bootloader modules (in yellow): these are generated by the RTA-FBL
ISOLAR-AB plugin and must not be modified. They implement the bootloader features
that are specific to an OEM.

4. Port-specific bootloader modules (in green) generated from the RTA-FBL ISOLAR-AB
plugin that can be modified by the integrator as discussed in Section 4.7. For example,
the scheduler with callouts to main functions is provided in all ports as a sample OS,
and can be modified. Most ports will also include integration code that can be used as
provided in samples or completed by the integrator.

5. 3rd-party modules, and in particular the MCAL.

As noted in Section 2.8, you will need to install a number of tools in order to generate a
complete instance of RTA-FBL with all required modules as shown in Figure 4. A number of
integration steps will also be required to build your software. Details for your specific OEM
port and target are also given in Section 4, including the folder structure of a generated RTA-
FBL instance that contains the code for the modules in Figure 4.

Figure 4: General architecture of an RTA-FBL instance

ETAS RTA-FBL FCA PORT – User Manual

13

2.10 Setting up your environment to generate an RTA-FBL instance

In order to generate an instance of RTA-FBL, you will need to install:

1. ISOLAR-AB; the supported version depends on the BSW used by the Port, and it is
8.0.1.

2. The RTA-FBL installation package that contains the RTA-FBL plugin for ISOLAR-AB
that drives the FBL generation process, and includes the core RTA-FBL modules and
the correct RTA-BSW version, that for this port is 5.1.

Section 3 explains how to install package (3). Please see the installation guides for ISOLAR-
AB and RTA-BSW for information on how to install these packages.

Once you have the above packages, you will be able to generate an instance of RTA-FBL. In
order to build the instance, you will also need to have installed the 3rd party MCAL as well as
the relevant compiler toolchain. See Section 4.6 for further information specific to your target.

ETAS RTA-FBL FCA PORT – User Manual

14

3 Installing RTA-FBL

This section describes the installer for RTA-FBL. As noted in Section 2.10, you need to install
this package in addition to ISOLAR-AB. This installer is described further in this section.

In order to install RTA-FBL, follow the instructions below. At the end of this installation, the
PC needs to restart.

Step 1: Execute the file setup.exe from the root folder of the installation CD. When the
destination location window is displayed, select your preferred folder and click “Next”.

Figure 5: Welcome window

ETAS RTA-FBL FCA PORT – User Manual

15

Step 2: Select the ISOLAR version you want to install the plugin into and click “Next”.

Figure 6: ISOLAR integration

ETAS RTA-FBL FCA PORT – User Manual

16

Step 3: Wait for the software required for RTA-FBL to be installed.

Figure 7: Installation Ongoing

Step 5: Once the installation completes, click on “Finish” to close the installer.

ETAS RTA-FBL FCA PORT – User Manual

17

Figure 8: Installation finished

ETAS RTA-FBL FCA PORT – User Manual

18

4 The FCA Port

This chapter describes the FCA Port of RTA-FBL. It provides specific information relevant to
this port that expands on the general RTA-FBL features described in Chapter 2. This chapter
assumes that the reader is familiar with the FCA Bootloader Specification in [1] and all relevant
referenced specifications therein. Reference is therefore made to [1] only in describing the
configuration and implementation-specific features of RTA-FBL.

4.1 FCA RTA-FBL Architecture

Figure 9 provides a high-level view of RTA-FBL architecture for FCA. The communication,
memory and diagnostic stacks are based on RTA-BSW and support the AUTOSAR architecture
and methodology for source code configuration and generation. The rest of the components,

except for the MCAL, are provided by ETAS and Escrypt. The modules that comprise the RTA-
FBL instance for a FCA port are:

1. Core bootloader modules (in blue): these are generated from the RTA-FBL ISOLAR-
AB plugin and must not be modified by the integrator.

2. Standard AUTOSAR BSW modules (in orange): these are generated by RTA-BSW and
should not be modified by the integrator.

3. The FCA-specific port module (in yellow): this is generated by the RTA-FBL ISOLAR-

AB plugin when the FCA port is selected. This module implements the bootloader
features that are specific to the FCA specification [1].

4. The FCA-specific sample modules (in green): these are generated by the RTA-FBL
ISOLAR-AB plugin when the FCA port is selected and may be modified by the
integrator:

o The OS is a basic cyclic scheduler that can be replaced by any other scheduler

(e.g. a fully-configured RTA-OS) as long as the calls to the relevant main
functions are made at the correct periods as in the provided samples. See
Section 4.7.9 for further details on how to adapt this module.

o The BLSM contains code for initializing the Bootloader. Changes can be made
here by the integrator if other modules are to be integrated (e.g. other BSW
modules) but changes should not be made to the functions that interact with
the core FBL modules. See Section 4.7.10 for further details on how to adapt
this module.

5. Third-party software modules (in red): these are security modules provided by Escrypt
that should not be modified by the integrator. These modules are not generated with
RTA-FBL and shall be added manually. If Escrypt solution (CycurHSM and FCA
Wrapper) is not used, the integrator shall add a compatible security stack with the
right integration code.

6. The MCAL modules (in black); the modules shown are those required by the FCA port
of RTA-FBL. The integrator may add additional modules required for a specific ECU.
For example, the ADC module would likely be required if the integrator wishes to
check the battery voltage or other system operating conditions required for the
specific ECU.

ETAS RTA-FBL FCA PORT – User Manual

19

Figure 9: FCA architecture of an RTA-FBL instance

4.2 FCA Download Sequence

The download sequence is according to [1] and depicted below:

ETAS RTA-FBL FCA PORT – User Manual

20

Figure 10 - Flash Download Sequence Part 1

ETAS RTA-FBL FCA PORT – User Manual

21

Figure 11 - Flash Download Sequence Part 2

4.3 Creating and building an RTA-FBL instance

This section explains how to create an ISOLAR-AB project in order to configure and generate
an instance of RTA-FBL compliant with the FCA bootloader specification. The tooling described

in this section has been tested with Windows 10.

4.3.1 Project creation

A new FBL project is created in ISOLAR-AB. As shown in Figure 12, create a new RTA-CAR
project by clicking the “New Project” dropdown button and selecting “RTA-CAR Project”.

ETAS RTA-FBL FCA PORT – User Manual

22

Figure 12: RTA-CAR project creation

Il RTA-CAR Project is not present, select “Project” and search for “RTA-CAR Project” in the
new window, as shown in Figure 13.

Figure 13: RTA-CAR project

ETAS RTA-FBL FCA PORT – User Manual

23

In the New RTA-CAR Project window, choose a name for your project and select the 1.0.0.FCA
plugin under RTA Tools as shown in Figure 14.

Figure 14: New RTA-FBL Project

Next, click on the three dots icon to open the window “Additional Project Settings” and select
the target from the dropdown list as shown in Figure 15.

ETAS RTA-FBL FCA PORT – User Manual

24

Figure 15: Select Target

Once complete, clicking the Finish button will result in the creation of the FBL project.

Figure 16 shows the result of a successful project creation in the console window.

Figure 16: Console window upon successful project creation

4.3.2 Configuration and Generation of FBL and BSW

Next, complete the base configuration parameters. In the AR Explorer view, double click on
FblConfigSet under Bsw > Bsw Module Description > FBL, as shown in Figure 17.

ETAS RTA-FBL FCA PORT – User Manual

25

Figure 17: FblConfigSet

The user can now edit the base configuration parameters in the RTA-FBL Editor window.
Figure 18 shows as an example the configuration parameters for CAN communication. An
explanation of each parameter is provided in Section 4.3.2.

Figure 18: Edit Base Configuration Parameters

ETAS RTA-FBL FCA PORT – User Manual

26

Once complete, the user can generate the RTA-FBL instance first by clicking on “Open RTA
Code Generator dialog…” as shown in Figure 19 and then, in the opened RTA Code Generator
window, by clicking Run as shown in Figure 20.

Figure 19: Open RTA Code Generator Dialog

Figure 20: RTA Code Generator

On clicking Run, the RTA-FBL instance is generated. Figure 21 shows the result of a successful
generation in the console window.

ETAS RTA-FBL FCA PORT – User Manual

27

Figure 21: Console Window on Successful Generation

To complete the FBL instance, the user must generate the BSW code by selecting the BSW
modules for which the code should be generated in the RTA-BSW CodeGen tab of the RTA
Code Generator window, as shown in Figure 22.

Figure 22: RTA-BSW CodeGen tab

Once complete, check the box Generate BSW in Fbl Main tab of the RTA Code Generator
window and click Run.

The user can re-generate the BSW code by clicking on Generate RTA-FBL as shown in Figure
23. Upon successful generation, the popup message in Figure 24 is shown.

ETAS RTA-FBL FCA PORT – User Manual

28

Figure 23: Generate RTA-FBL

Figure 24: Successful generation

The following paragraphs describe the base configuration parameters that the user can
configure. The column Requires BSW Re-Gen in the following tables indicates whether the
BSW needs to be re-generated in case that parameter has been changed.

For each new region define the parameters as shown in Table 1.

Table 1: Configuration parameters FblGeneral of the FCA port of RTA-FBL

Parameter Description Requires
BSW
Re-Gen

FblRegionAddressLow Specifies the low address of the region Yes

FblRegionAddressHigh Specifies the high address of the region Yes

FblRegionMaxAttemptCounter Specifies the maximum number of reprogramming
attempts for the region. When the number of attempts
reaches this threshold, it will not be possible to
reprogram this block anymore.

Yes

FblRegionType Specifies the region type:

- 0  Boot region

- 1  App region

- 2  Data region

Yes

FblRegionExternalFlashSupport Specifies if erasing and writing the region should be
handled using MCAL APIs or it is an external region

Yes

ETAS RTA-FBL FCA PORT – User Manual

29

and it is handled by the user.

FblRegionID Specifies the index of the region. The index uniquely
identifies the region, and it is used by CDA tool to
address the block during download

Yes

Figure 25: RTA-FBL FCA regions configuration

Table 2 provides a description of each parameter for the container FblGeneral together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the
Description for exceptions.

Figure 26 shows the FBL Editor window for FblGeneral.

Figure 26: FblGeneral

ETAS RTA-FBL FCA PORT – User Manual

30

Table 2: Configuration parameters FblGeneral of the FCA port of RTA-FBL

Parameter O/M Description Requires
BSW
Re-Gen

FblMcalSourceFolder O Specifies the folder where target specific MCAL is

installed.

No

FblCompiler O Specifies which compiler to use when generating the
sample scons build scripts. If this parameter is not
specified, then these sample scripts are not created. In
this case, you are responsible for creating the build
scripts required for creating your bootloader. In most
cases, you would initially specify this parameter to
create these scripts, but if you then integrate
additional code in your FBL and manually modify these
scripts, you might want to remove this parameter in
order to avoid overwriting your changes. If the
compiler you are using is not available, you will have to
create your own build scripts. Note that RTA-FBL
supports any compiler that is supported by the MCAL,
but each target only provides a small set of sample
build scripts for a limited set of compilers and is tested
only using the compilers and versions as described in
Section 4.6.

No

FblCompilerFolder O The bin path where the compiler is installed. No

FblEcuType M This parameter indicates which ECU Type is selected. As
per FCA specification [1] three different ECU types are
supported:

- ECU Type A (FblEcuType = 0): no specific
security support, the Download is unlocked by
a security level 0x1 (Seed&Key). The FW blocks
are not protected with authenticity check
(signature verification) but only against
consistency (CRC check).

- ECU Type B (FblEcuType = 1): partial security
support, the Download is unlocked by a
security level 0x1 (Seed&Key). The FW blocks
are protected with authenticity check
(signature verification). To accomplish this the
ECU must maintain an internal certificate
database (TrustStore).

- ECU Type C (FblEcuType = 2): full security
support, the Download is unlocked by a
security level 0x11 (ADA – Challenge-
Response). The FW blocks are protected with
authenticity check (signature verification). To
accomplish this the ECU must maintain an
internal certificate database (TrustStore).

Yes

FblSleepWakeup M Specifies whether the ECU is a +15 or +30 node and it
shall support the Bootloader Sleep/Wakeup Mechanism
of [1].

No

FblBlockSize O Allows the user to configure the download block size in
bytes.

No

ETAS RTA-FBL FCA PORT – User Manual

31

Table 3 provides a description of each parameter for the container FblCore together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the
Description for exceptions.

Figure 27 shows the FBL Editor window for FblCore.

Figure 27: FblCore

Table 3: Configuration parameters FblCore of the FCA port of RTA-FBL

Parameter O/M Description Requires
BSW

Re-Gen

EraseTimeout M Allows to configure the maximum time in microseconds
for erase flash operation before timing out.

No

StartAddress M The start address of the application software. The
bootloader will jump to this address if the application is
valid and no reprogramming request has been made.

No

VerifyTimeout M Allows to configure the maximum time in microseconds
for flash verification operation before timing out.

No

WriteTimeout M Allows to configure the maximum time in microseconds
for write on flash operation before timing out.

No

Table 4 provides a description of each parameter for the container FblCan together with

whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the
Description for exceptions.

Figure 28 shows the FBL Editor window for FblCan.

ETAS RTA-FBL FCA PORT – User Manual

32

Figure 28: FblCan

Table 4: Configuration parameters FblCan of the FCA port of RTA-FBL

Parameter O/M Description Requires
BSW
Re-Gen

FblCanIdRxPhy M The physical receive Can ID.

It is an integer between 1 and 0x1FFFFFFF.
Only addressing mode 29 bits is supported.

Yes

FblCanIdRxFunc M The functional receive Can ID.

It is an integer between 1 and 0x1FFFFFFF.

Only addressing mode 29 bits is supported.

Yes

FblCanIdTxPhy M The physical trasmit Can ID.

It is an integer between 1 and 0x1FFFFFFF.
Only addressing mode 29 bits is supported.

Yes

FblCanFdIdRxPhy M The physical receive Can FD ID.

It is an integer between 1 and 0x1FFFFFFF.
Only addressing mode 29 bits is supported.

Yes

FblCanFdIdRxFunc M The functional receive Can FD ID.

It is an integer between 1 and 0x1FFFFFFF.
Only addressing mode 29 bits is supported.

Yes

FblCanFdIdTxPhy M The physical transmit Can FD ID.

It is an integer between 1 and 0x1FFFFFFF.
Only addressing mode 29 bits is supported.

Yes

Table 5 provides a description of each parameter for the container FblSec together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the
Description for exceptions.

Figure 29 shows the FBL Editor window for FblSec.

ETAS RTA-FBL FCA PORT – User Manual

33

Figure 29: FblSec

Table 5: Configuration parameters FblSec of the FCA port of RTA-FBL

Parameter O/M Description Requires
BSW
Re-Gen

FblSecCycurHsmIntegration M Allows to enable or disable the integration
code for CycurHSM 2.x
This parameter must be configured for ECU
Type B and ECU Type C

No

FblSecSk1, FblSecSk2 M* Security constants for Seed&Key algorithm to
unlock level 0x01, mandatory for ECU Type A
and ECU Type B.

No

FblSecTargetName M* Specifies the Target Name for Signed Firmware
Blocks, for details refer to [1].

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

No

FblSecTsMainStartAddress O Specifies the address of the main Trustore
Block.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

No

ETAS RTA-FBL FCA PORT – User Manual

34

FblSecTsBackup StartAddress O Specifies the address of the second Trustore
Block, the backup copy.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

No

FblSecTsCapacity O Specifies the maximum number of certificates
that could be stored in the Trustore.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

No

FblSecCsCapacity O Specifies the number of certificates that could
be stored in the CertStore.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

No

FblSecCrlCapacity O Specifies the number certificates that could be
stored in the Certificate Revocation List.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

No

FblSecCsCrlBlockId O Specifies the index of the region that should be
the CertStore and CRL. The chosen index
should be configured in the memory regions as

a data region.
This parameter must be configured for ECU
Type B and ECU Type C

No

Table 6 provides a description of each parameter for the container FblDid together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the
Description for exceptions.

Figure 30 shows the FBL Editor window for FblDid.

ETAS RTA-FBL FCA PORT – User Manual

35

Figure 30: FblDid

Table 6: Configuration parameters FblDid of the FCA port of RTA-FBL

Parameter O/M Description Requires
BSW

Re-Gen

FblDidBootSwVersion M String of 13 hexadecimal bytes value for DID $F180

The format shall be according to [2]

Byte Boot SW Version
Information

Hex Range

0 SW - Year 00-3F

1 SW – Week 01-34

2 SW – Patch Level 00-FF

3 - 12 SW Identification 00-FF

Yes

FblDidEcuDiagnosticVariant M Specifies Diagnostic Variant value for DID $F110, it
should be in range 0x01 - 0xFFFE

Yes

FblDidSupplierId M Specifies Supplier ID value for DID $F110, it should be
in range 0x00 - 0xFFFF

Yes

ETAS RTA-FBL FCA PORT – User Manual

36

FblDidEcuDiagnosticVersion M Specifies Diagnostic Version value for DID $F110, it
should be in range 0x00 - 0xFFFFFFFF

Yes

FblDidFdn M Specifies Flash Definition Number value for DID $F110,
it should be in range 0x00 - 0xFFFF

Yes

FblDidAlgorithmIdReprogramming M Specifies value for DID $F1A4, it should be in range
0x00 - 0xFFFF

Yes

FblDidPtEslmHardwareNumber M Specifies value for DID $F188, it should be an 11 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidEbomEcuPartNumber M Specifies value for DID $F132, it should be a 10 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidCodepEcuPartNumber M Specifies value for DID $F187, it should be a 11 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidElsmEcuSoftwareNumber M Specifies value for DID $F188, it should be an 11 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidElsmEcuSwApplicationNumber M Specifies value for DID $F18B, it should be a 10 bytes
value.

Yes

FblDidElsmEcuSwCalibrationNumber M Specifies value for DID $F18A, it should be a 10 bytes
value.

Yes

FblDidCodepAssemblyPartNumber M Specifies value for DID $F188, it should be an 11 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidElsmEcuHardwareNumber M Specifies value for DID $F191, it should be an 11 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidSupplierEcuHardwarePartNumber M Specifies value for DID $F192, it should be an 11 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidSupplierEcuSoftwarePartNumber M Specifies value for DID $F194, it should be an 11 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidEbomAssemblyPartNumber M Specifies value for DID $F194, it should be a 10 bytes
value. Each byte should be in range 20; 30-39; 41-5A

Yes

FblDidHwSupplierId M Specifies value for DID $F154, it should be in range
0x00 - 0xFFFF

Yes

FblDidSwSupplierId M Specifies value for DID $F155, it should be in range
0x00 - 0xFFFF

Yes

FblDidEcuSerialNumber M Specifies value for DID $F18C, it should be a 15 bytes
value. Each byte should be in range 30-39; 41-5A

Yes

FblDidSupplierManEcuSwVersion M Specifies value for DID $F195, it should be in range
0x00 - 0xFFFF

Yes

FblDidSupplierManEcuHwVersion M Specifies value for DID $F193, it should be in range
0x00 - 0xFF

Yes

FblDidPolicyType M* Specifies value for DID $2954, it should be in range
0x00 - 0xFF. It is mandatory for ECU Type B and ECU
Type C.

Yes

FblDidErotan O Specifies value for DID $F196, it should be a 15 bytes

value. If the parameter is not filled, the DID will not be
created.

Yes

FblDIDF122Size

O Specifies a particular size for DID $F122. If not
configured, DID $F122 and its corresponding NvM bock
will be generated with default size.

Yes

ETAS RTA-FBL FCA PORT – User Manual

37

4.3.3 Files created during generation

When you generate an instance of the FCA RTA-FBL using the RTA-FBL plugin for ISOLAR-AB,
files are created within a number of folders that you then use to build your RTA-FBL instance.
Table 7 summarizes the folder structure created for the FCA port.

Table 7: Files created by RTA-FBL generation

L1 Folder Description

. (files in this location) This contains the root of the project.

./fbl/output/Fbl/Bootloader This contains the core (port-independent and core-
independent) modules.

./fbl/output/Fbl/BSW This contains the BSW modules.

./fbl/output/Fbl/INFRA/BLSM The BLSM contains code for initializing the Bootloader. The
functions in ./src/BLSM_CallOuts.c can be changed as
described in Section 4.7.10, but the functions in
BLSM_Main.c should not be changed. It is the integrator’s
responsibility to ensure that any changes made in the
BLSM do not affect the bootloader’s correct functionality.

./fbl/output/Fbl/INFRA/OS The OS contains the cyclic scheduler that calls the module
main functions. The OS is provided as a fully functioning
and tested sample, but the integrator may replace the OS
as described in Section 4.7.9. For example, the integrator
may wish to use RTA-OS in order to more easily configure
interrupts for other software integrated with RTA-FBL. It is
the integrator’s responsibility to ensure that any changes
made to the OS do not affect the bootloader’s correct
functionality.

./fbl/output/Fbl/INFRA/Port This folder contains the code that implements port-specific
functionality.

./fbl/output/Fbl/Tools/Prof This folder contains the Prof to execute a download using
INCA, for details refer to Section 5.

4.3.4 Building the RTA-FBL instance.

Sample build scripts are provided for a limited set of compilers. See Section 4.6 for more
details on this topic.

If you have the compiler for which sample build scripts are supported on your target, then

you can build the RTA-FBL instance, by running the batch file Build_FBL.bat. In order to first
clean the output directory before building the FBL, use CleanAndBuild_FBL.bat. If you do not
have a compiler for which sample build scripts can be generated, then you will need to create
these yourselves. It is recommended in this case that you first create the sample build scripts
for any supported compiler, and then adapt these scripts.

4.3.5 The RTA-FBL instance for the Dummy Target

The user can select a dummy target when creating a new project (please refer to section
4.3.1). The dummy target provided with the FCA Port cannot be built. You can only use the
generated code as a reference to explore how different parameters change the generated
FBL instance.

The FBL for your target will have undergone an in-depth testing using the compiler and
MCAL that you have chosen. All targets use a common base that require the tools as
described in section 2.10.

ETAS RTA-FBL FCA PORT – User Manual

38

Note that although different compilers supported by your MCAL, as well as other MCAL
versions for this target should work, these have not been tested. If you do need to generate
your bootloader for a different MCAL/compiler combination than that listed above, it is
recommended that you first contact ETAS support team.

Dummy Target Memory Layout

In order to allow the user to experiment with different memory space configurations, the
dummy target is set up to mimic the memory layout of Infineon’s TC233 processor. This
processor has a memory layout as shown in Table 8. Memory regions of a space must begin
on sector boundaries and the bootloader reserves the first sector (i.e. the memory between
0xA0000000 and 0xA01FFFFF). You can experiment with different configurations of
Application, Calibration and Bootloader space if you have not yet received your Target
package. For example, if you configure a space that uses a memory region that is not on a
region boundary or that enters enter a disallowed space and note the error returned by the
FBL generator.

Table 8: Memory layout of the Dummy Target

Bank Sector Start End Comment

0

0 0xA0000000 0xA0003FFF Reserved for FBL

1 0xA0004000 0xA0007FFF Available for
Application/Calibration 2 0xA0008000 0xA000BFFF

3 0xA000C000 0xA000FFFF

4 0xA0010000 0xA0013FFF

5 0xA0014000 0xA0017FFF Not available for
Application/Calibration 6 0xA0018000 0xA001BFFF

7 0xA001C000 0xA001FFFF Available for
Application/Calibration 8 0xA0020000 0xA0027FFF

9 0xA0028000 0xA002FFFF

10 0xA0030000 0xA0037FFF

11 0xA0038000 0xA003FFFF

12 0xA0040000 0xA0047FFF

13 0xA0048000 0xA004FFFF

14 0xA0050000 0xA0057FFF

15 0xA0058000 0xA005FFFF

16 0xA0060000 0xA006FFFF Not available for
Application/Calibration 17 0xA0070000 0xA007FFFF

1

18 0xA0080000 0xA008FFFF Available for
Application/Calibration

19 0xA0090000 0xA009FFFF

20 0xA00A0000 0xA00BFFFF

21 0xA00C0000 0xA00DFFFF

22 0xA00E0000 0xA00FFFFF

2
23 0xA0100000 0xA013FFFF

24 0xA0140000 0xA017FFFF

3 25 0xA0180000 0xA01BFFFF

ETAS RTA-FBL FCA PORT – User Manual

39

26 0xA01C0000 0xA01FFFFF

4.4 Security

Depending on the configuration of the FBL created instance, the integrator may need to add
two security modules provided by Escrypt:

 FCA Security Manager (FSM)

 CycurHSM

The generated FBL contains stubs of this two stacks in order to allow the user to test the
others FBL functionalities. By default the stubs throw some compilation errors when the project
is build, in order to warn the user that the security functionalities are not present. To suppress
this errors the following define:

#define SUPPRESS_FBL_SEC_STUBS_ERROR_MSG STD_ON

must be set for the project (either at the highest level in the building chain or locally on the
stub files).

4.5 Replace the Security Stub Files

The security stack stubs file are located at the following path
"<generated_location>/Fbl/INFRA/Port/src/Security/Stubs”.

Stubs can be replaced with real security stacks by selecting the following option in file
fbl_settings.py:

If the Stub enabling option is set to True, stubs are used for security, while if are set to False
real stack are used (always use capital for first letter).

The generated code contains also the folders with needed building scripts for FSM1, HSM and
Cycurlib (FSM, HsmHost and Cycurlib folder). The user needs to copy and paste the correct
content from the FSM1 and HSM deliveries into "<generated_location>/Fbl/INFRA/SecStack/”,

keeping the generated folder structure:

 Fsm folder structure:

o \inc (from fhwp)

o \src (from fhwp)

 \hsm_hw

 \hsm_sw

o \Cycurlib (from fhwp)

 Hsm folder structure:

1 Also called as FHWP

ETAS RTA-FBL FCA PORT – User Manual

40

o CSAI (from ecy_hsm)

 \api

 \src

o Host_Applet (from ecy_hsm)

 \api

 \src

o Host_Mcal (from ecy_hsm_TC23x_HT)

 \api

 \src

o Host_Proxy (from ecy_hsm)

 \api

 \src

o Host_Storage from ecy_hsm

 \api

 \src

If the integrator does not use CycurHSM solution, the integration steps will be different and
he should refer to the security stack used.

4.6 Supported targets

RTA-FBL is a hardware independent FlashBootloader, using the abstraction layers provided by
AUTOSAR: the integrator could integrate any targets and MCALs, depending on the customer
needs.

This port has been developed and tested with different MCALs and compilers, please contact
ETAS if you are interested to know the targets already used.

4.7 Integrator guidelines

Section 4.3 demonstrated how an RTA-FBL project is created in the ISOLAR-AB plugin and the
RTA-FBL instance generated. This section explains how and where the integrator can modify
this generated instance, as well as integrate the control Application Software on the ECU. This
may require adaptation of the FBL as well as adaptations of your Applications Software.

The integrator may need to make the following changes to the default generated FBL:

 Memory layout adaptation,

 Completion of user functions,

 BSW module adaptation (optional),

 C-code startup and trap table updates (optional),

 MCAL adaptation (optional),

 OS adaptation (optional),

 BLSM adaptation (optional).

The integrator may need to make the following changes to the Application Software:

 NvM layout adaptation,

 Boot jump handling.

ETAS RTA-FBL FCA PORT – User Manual

41

The integrator may need to make additional changes not described in this User Manual to
support specific use cases for his ECU. It is the integrator’s responsibility to ensure that any
changes made do not affect the bootloader’s correct functionality.

4.7.1 FBL: Memory Layout Adaptation

To integrate the FBL in your application the first step to do is decide how to set up your
memory regions. This is done using the configuration tool as described in Section 4.3.2. The
allowed memory range depends on your target.

An example of a typical memory layout is depicted in Figure 31.

Figure 31: Sample memory layout

4.7.2 FBL: User Functions

This port provides some functions that need to be adapted by the integrator.

Few of them must be filled correctly to be fully compliant with FCA norms, while others are
optionals. These can be found in
"<generated_location>/Fbl/INFRA/Port/src/FBL_PortUserCode.c.”:

4.7.3 Initialization

During system initialization, user has two callouts that could be used for ECU init, useful in
case specific hardware initialization is needed (e.g. enable a CAN transceiver or manage the
operating mode of a SBC)

Prototype void Fbl_Port_UserConfigInitOne (void)

Parameter none

Return Code none

Functional Description Called at system startup during Flash Bootloader
initialization, before the NvM has loaded the data flash.

Pre-Conditions none

Prototype void Fbl_Port_UserConfigInitTwo (void)

ETAS RTA-FBL FCA PORT – User Manual

42

Parameter none

Return Code none

Functional Description Called at system startup during Flash Bootloader
initialization, after the NvM has loaded the data flash (thus
only if the application is not executed)

Pre-Conditions none

4.7.4 Shutdown

The user function Fbl_Port_GoToSleep should be filled to put the ECU in sleep mode,

according to the ECU hardware configuration and sleep strategy. The callout is triggered

according to [REF-01] when the timers of section 5.2.6 Bootloader Sleep/Wakeup Mechanism
are expired

Prototype void Fbl_Port_GoToSleep (void)

Parameter none

Return Code none

Functional Description Called to put the system in shutdown

Pre-Conditions none

4.7.5 Application validation

At the end of the download the callout Fbl_Port_UserValidApplication is triggered to

verify that the application is valid and compatible. The callout should be filled with application
specific checks.

When requesting the routine $FF01 – Check Programming Dependencies the callout is
executed only if the signature or CRC check on the blocks has been positive, otherwise a
negative response is returned without triggering the user callback.

 Please note that when bit # 1 of DID 2010 is not set, the DTC P0602-00 is returned by FBL.
 The same should be done by the application if it is executed in limp mode.

Prototype boolean Fbl_Port_UserValidApplication (uint8

* isSwHwCompatible, uint8 *

isSwDataCompatible)

Parameter isSwHwCompatible: pointer to software validity flag, it is

used to update bit #1 and bit #5 of DID 2010

Bit 1 Programming Status - Application

Bit 5 Software not Compatible with Hardware

isSwDataCompatible: pointer to data validity flag, it is

used to update bit #2 and bit #6 of DID 2010

Bit 2 Programming Status - Data

Bit 6 Software not Compatible with Application Data

Return Code TRUE: the application will be executed; this value should be

returned to execute a valid application or an application in
limp mode

FALSE: the application will not be executed and the ECU will

remain in boot mode

ETAS RTA-FBL FCA PORT – User Manual

43

Functional Description Called after an application software download, to verify the
application validity and compatibility.

Pre-Conditions none

4.7.6 Software Identification Update

After an application software update is successfully performed, the callout
Fbl_Port_DownloadSuccess is triggered to execute user specific code. This callout could

be used to update software identification values in NVM with the newer values, or to store the
odometer for the last flash programming, or any other ECU specific use case.

The callout is executed at the end of the download only if the signature check has been
positive and the application has been considered valid.

Prototype void Fbl_Port_UserDownloadSuccess (void)

Parameter none

Return Code none

Functional Description Called after a successful download to execute user code (e.g.
update software identification)

Pre-Conditions none

4.7.7 FBL: BSW adaptation

The BSW modules needed by RTA-FBL and generated in the generated BSW project are listed
in Table 9. This list is the minimum setup needed for the basic FBL. The integrator could
modify the generated BSW project, but should not modify any of the modules of the Dcm or
memory stack except as described in this section. As with the MCAL, the integrator must test
the complete FBL after making any modifications to the generated BSW project.

Table 9: MCAL modules list

BSW Module(s) Notes

Dcm The diagnostic communication module

Mem/IF; Fee; NvM Memory stack modules for the NVM

CanIf; CanSM; CanTp; ComM;
ComStack; PduR

Communication stack modules

Crc Uses for CRC calculation when verifying the
downloaded application/calibration.

4.7.8 FBL: MCAL adaptation

The MCAL modules needed by RTA-FBL are listed in Table 10. The list is the minimum setup
needed for the basic FBL functionalities (i.e. communication, flashing, etc.). The list does not
include customer specific adaptations like external watchdog, external transceivers, external
EEPROM, etc. If the integrator also wishes to implement additional user function , then other
modules such as the ADC would likely be required. The integrator is then responsible for
testing of the complete FBL after the MCAL integration.

Table 10: MCAL modules list

ETAS RTA-FBL FCA PORT – User Manual

44

MCAL Module Notes

Can CAN driver

Flash Driver Driver for FLASH erase and programming. This
includes the handling of PFLASH and DFLASH, so
in some cases could be made by two different

modules (i.e. IFX MCALs use Fls for DFLASH and
FlsLoader for PFLASH).

Mcu Provides core functionality such as clock
handling, mcu reset, etc.

Port Provides interface to port pin peripheral.

4.7.9 FBL: OS adaptation

The OS provided with this port is based on a simple cyclic scheduler. This OS does not support
interrupts and is non-preemptive. If you need to integrate additional code to the bootloader,
you will likely need to adapt this OS. This might involve adding co-routines to the existing
tasks or adding new tasks. Adding a new co-routine simply requires adding the function call
with the relevant task body in "Fbl/INFRA/Os/src/Os_Tasks.c". If you need to add a new task
with a different frequency then follow these steps:

1. Add the task to the task list in "Fbl/INFRA/Os/inc/Os_Tasks.h"

2. Add the task to Os_TaskTable in Os_SchTbl in "Fbl/INFRA/Os/inc/Os_Tasks.c"

3. Create the task body in "Fbl/INFRA/Os/inc/Os_Tasks.c"

The frequency used to derive the task periods is defined by SYSTEM_FREQ_HZ in
"Fbl/INFRA/Os/inc/Os.h". You can change this value to match your clock frequency in order
to ensure that the tasks are executed at the correct rate. The timer used is target dependent,
but you can also change this by adapting the function OsPort_InitOsTimerResource in
"Fbl/INFRA/Os/inc/Os_Port.c" and the macro GET_SYSTEM_TIMER in
"Fbl/INFRA/Os/inc/Os_Port.h".

IMPORTANT: The integrator is responsible for ensuring that any modifications made to the
OS are tested to ensure that the FBL continues to operate as expected. In particular, moving
the existing co-routines into a different order or within other tasks will likely result in incorrect
behavior.

4.7.10 FBL: BLSM adaptation

The BLSM is used primarily to initialize the BSW and MCAL modules and to start the bootloader.
An integrator may need to adapt the BLSM to make the initialization calls for additional
modules. This will involve modifying one or more of the Fbl_Port_BLSM_DriverInit functions
in "Fbl/INFRA/BLSM/src/BLSM_CallOuts.c". It is strongly recommended that while additional
init functions can be added, the existing init functions calls are not moved from their current
location with the Fbl_Port_BLSM_DriverInit calls.

In choosing where to add your init functions, note that the NvM is only set up at the end of
Fbl_Port_BLSM_DriverInitOne. Therefore, if your integrated code requires the NVM, you
should add it in Fbl_Port_BLSM_DriverInitTwo.

IMPORTANT: The integrator is responsible for ensuring that any modifications made to the
BLSM are tested to ensure that the FBL continues to operate as expected.

ETAS RTA-FBL FCA PORT – User Manual

45

4.7.11 ASW: NvM layout adaptation

Adaptation of the NvM is usually required as the application would rarely already incorporate
the FBL NvM layout. This is because the NvM is the interaction mechanism between application
and FBL. In particular, the application writes a flag in NvM and then resets, in order to allow
the FBL to handle the reprogramming request and to know that it has been issued. Moreover,
the FBL could have other internal NvM blocks that need to be copied in case of a page swap
by the application. Therefore, the correct integration of NvM layout comprise the complete
copy of FBL NvM blocks on the application NvM layout. In order for the layout to be consistent,
the Fee persistent IDs of the blocks must match between the application and FBL:

ETAS RTA-FBL FCA PORT – User Manual

46

Figure 32: FBL NvM blocks subset on the Application NvM layout

ETAS RTA-FBL FCA PORT – User Manual

47

Figure 33: Persistent ID of a block

This completes the update of the BSW, so it could be re-generated now in order to allow
the update of SWC Description of service components. Note that if you already are using the
Persistent IDs generated by fblgen, you can change these values as long as you keep them
consistent with the values in the Application.

4.7.12 ASW: Boot Jump Handling

Once memory layout, Dcm and NvM configuration are compatible between Application and
FBL, the two entities are compatible and can “communicate”. What is missing at this stage is
to integrate the Application to the FBL jump logic. This can be done in multiple ways, but in
the end, apart from other OEM-specific steps, it can be done with the sequence highlighted in
Figure 34.

Before jumping into bootloader, the application has to be sure that the needed data is saved
in NvM. The data shared between the FBL and the application to manage the boot jump are
the reprogramming request flag and the Dcm reprogramming conditions. The flag is checked
at startup by the FBL to decide if jumping in application or remaining in boot mode, while the
Dcm reprogramming conditions are used to send the final response to $10 02 request, if the
application wants to send only a NRC $78 and the FBL is in charge of sending the final
response.

The reprogramming request flag is a uint32 and it shall be set by the application to

FBL_BOOTM_REPROGRAMMING_REQUEST_FLAG_STATE_ON. For details on Dcm reprogramming
conditions structure, please refer to AUTOSAR specification of the structure of type
Dcm_ProgConditionsType

ETAS RTA-FBL FCA PORT – User Manual

48

Figure 34: Handling of jump logic

ETAS RTA-FBL FCA PORT – User Manual

49

5 How to Flash the ECU with INCA and the ProF Script

This section explains how to perform the download process with INCA.

Step1: Install INCA and ES58x driver

Before starting the actual download process, INCA and the HW interface driver must be
installed on the machine that will be used to flash the ECU. In this example, we will use an
ES58x as HW interface.

1. Please make sure you are using the official released INCA V7.2.x version package,
and make sure the valid node-locked license is also installed on your testing PC,

2. Make sure that the used HW interface driver is installed correctly.

Step2: Setup the environment

Launch INCA and add a new database using the “New” button on the toolbar and name it with
your preferred db name.

Figure 35: New database creation

Right-click on the created top folder (“DEFAULT”) and select AddWorkspace.

Figure 36: Adding a workspace

Then, right-click again from the “DEFAULT” folder and select AddECU-Project (A2L):

ETAS RTA-FBL FCA PORT – User Manual

50

Figure 37: Adding an ECU project

From the dialog window navigate to the where the ProF script is located in your delivery and
select the file “ECU_dummy.a2l”, and following this, from the same path, choose the file
“ECU_dummy.hex”.

Left-click on the newly created Workspace and select the HW icon on the bottom-right window.

Figure 38: HW icon

ETAS RTA-FBL FCA PORT – User Manual

51

From the newly opened window select the “Search for connected devices” option on the
toolbar, then select USB (and click OK), then UDS (and click OK) and finally associate the
ECU_dummy project, as shown in Figure 41.

Figure 39: Search of HW interface

ETAS RTA-FBL FCA PORT – User Manual

52

Figure 40: Selection of UDS interface

Figure 41: Association of ECU_dummy project

Now you can click the “Initialize Hardware” button on the toolbar and the devices should
initialize and appear as connected on the left

ETAS RTA-FBL FCA PORT – User Manual

53

Figure 42: Device connection

Step3: Install ProF script

Now you can click the “Manage Memory Page” icon on the toolbar.

Figure 43: Manage memory page selection

From the “Utilities” menu of the popup window, select the option “Configure PROF”.

Figure 44: ProF configuration selection

ETAS RTA-FBL FCA PORT – User Manual

54

In the new window, select Install and navigate to the path
<generated_location>\Tools\Prof\Install\CAN or
<generated_location>\Tools\Prof\Install\CANFD, depending on the needed bus type.

Figure 45: Install ProF script

Figure 46: Selection of ProF script to install

When you click “OK”, the ProF script will be installed.

ETAS RTA-FBL FCA PORT – User Manual

55

Figure 47: ProF script installation confirmation

Step4: Flash the ECU

To start the download process switch to the “Enhanced” tab on the “Manage memory page”
window, select “Flash Programming” as Action and click on “Do It”.

Figure 48: Download Process Start

From the new dialog window, select the .hex file you want to download and click on “Open”.

ETAS RTA-FBL FCA PORT – User Manual

56

From the ProF mask that is displayed select the option you want to use and click “OK” to start
the download process.

Figure 49: Option Selection

ETAS RTA-FBL FCA PORT – User Manual

57

Figure 50: Start Download

ETAS RTA-FBL FCA PORT – User Manual

58

Figure 51: Download in progress

ETAS RTA-FBL FCA PORT – User Manual

59

Figure 52: Download Completed

ETAS RTA-FBL FCA PORT – User Manual

60

6 Privacy

6.1 Privacy Statement

Your privacy is important to ETAS so we have created the following Privacy Statement that

informs you which data are processed in RTA-FBL, which data categories RTA-FBL uses, and
which technical measure you have to take to ensure the users privacy. Additionally, we provide
further instructions where this product stores and where you can delete personal or personal-
related data.

6.2 Data Processing

Note that personal or personal-related data respectively data categories are processed when
using this product. The purchaser of this product is responsible for the legal conformity of
processing the data in accordance with Article 4 No. 7 of the General Data Protection
Regulation (GDPR). As the manufacturer, ETAS GmbH is not liable for any mishandling of this
data.

6.3 Data and Data Categories

When using the ETAS License Manager in combination with user-based licenses, particularly
the following personal or personal-related data respectively data categories can be recorded
for the purposes of license management:

 Communication data: IP address,

 User data: UserID, WindowsUserID.

6.4 Technical and Organizational Measures

This product does not itself encrypt the personal or personal-related data respectively data
categories that it records. Ensure that the data recorded are secured by means of suitable
technical or organizational measures in your IT system. Personal or personal-related data in
log files can be deleted by tools in the operating system.

ETAS RTA-FBL FCA PORT – User Manual

61

7 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany WWW: www.etas.com

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team and product

hotlines, take a look at the ETAS website:

ETAS subsidiaries WWW: www.etas.com/en/contact.php

