ETAS

RTA-FBL FCA PORT
USER MANUAL
Status: RELEASED

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-
ment. The software described in it can only be used if the customer is in possession of a
general license agreement or single license. Using and copying is only allowed in concur-
rence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmit-
ted, stored in a retrieval system or translated into another language without the express
written permission of ETAS GmbH.

© Copyright 2019 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging

to the respective owners.

Document : RTA_FBL_FCA_PORT_UserManual.docx

ETAS RTA-FBL FCA PORT — User Manual

Contents

gL Ta (8Tt u o] o PP PPPRRN 5
A Yy T I 111) PN 5
1.2 Definition and Abbreviationsoiiiiiiiiii i 5
I 2T {1 £ o [0l PPN 6
1.4 ADbOUL thisS DOCUMENT ...ceuuiiiiiicii e e e e e e e e e s e e s e aaeeean 6
1.5 Chapter DeSCHPLION ...c.uuiiieiiei e e e e e e e e s e e e e e e e e rna e e e nennnnes 6

2 Introduction t0 ETAS RTA-FBL ...iiiuiiiiiiiiiiii ittt e s e s e a s e s e ea e e an s 7
2.1 What is @ Flash BoOIOader?.........ciiiuiiiiiii it 7
B AT T L o 2 I - N 8
2.3 The FIash TOOI (TESEEI) vuuuuiiiiriiiieiirae e eeeis s e erie e e e e s e e re s s e e rra s s s ersa s s e e ennneaeeananeeeeenen 9
2.4 The OEM-defined Programming SEQUENCEcuuuiiirirruieieririaeeeernneesersnseesennseseesnneeeeenes 9
2.5 Target Dependencies and the FIash DriVer...........ciiiiiiiiiiiiiiie e 9
2.6 Interaction with the Application USING NVMcc.uiiiiiiiiiiiiiiiie e eea 9
2.7 One and TWO-Stage BOOLIOAAErSuuiiiiiriiiieiiies et e e r e e e e s e e e e e e e rn e eeenas 9
2.8 FBL generation with the RTA-FBL ISOLAR-AB PIUGINccvvvveiiieiiineeeeeieeeeeene s e eenneeeeens 10
2.9 General architecture Of RTA-FBL.......ciiiiiiiii i erre e s e s rn s s e e e e enas 12
2.10Setting up your environment to generate an RTA-FBL instancec.covvevviiiiiiicnncenn e, 13
INSEAllING RTA-FBLiiuii i e s e e s e e e e s s e e e s e e e e e e an e e n s ennsenns 14

N N 4 T= T O oo o PSPPI 18
4.1 FCA RTA-FBL ArChiteCEUIE. . cvvuiiiieriie e et e et erre e e e s e e e e e re e s e e e e e eeenen 18
4.2 FCA DOWNIOAA SEQUENCE .. .euiruieriei ettt st st s st s et s e s e a s e s e s s e s ene s eaeseasensennannnas 19
4.3 Creating and building an RTA-FBL iNStANCE........ciiuiiiiiiiiiic e 21
4.3.1 ProjeCt Creation ... v i 21
4.3.2 Configuration and Generation of FBL and BSW........c.coieuiiiiiiiiiiin e ceene e enas 24
4.3.3 Files created during generationccciiiiiiiii e 37
4.3.4 Building the RTA-FBL INSTANCE.ttt e 37
4.3.5 The RTA-FBL instance for the Dummy Targetccooiiiiiiieiiiiein e 37
YT o K] YT PROPTPR 39
4.5 Replace the Security StUD FleS..... v 39
4.6 SUPPOMEA TargES cuu ittt 40
4.7 Integrator GUIAEIINES.t s e s s e s s e e e annas 40
4.7.1 FBL: Memory Layout Adaptation.........ccieuiiiiiii 41
4.7.2 FBL: USEr FUNCHIONS ...uiiiriiissiieie s s s s s s s es s ens s en s s sn s s snnnssnn s s rnnnsennsennnssnnnnsns 41
0 T U o 1 =1 2= 1 T o 1 41
e S 1111 (o 11 o IR 42
4.7.5 Application validationc.ciiuiiiiiii 42
4.7.6 Software Identification Updatecuu i 43
4.7.7 FBL: BSW adaptationc..icuiiiiiiiiiii it e et s ea s s e e e nans 43
AR T o = 1 B @ =T =T o) = T o 43
4.7.9 FBL: OS adaptation......ccuuiiiiiiiiiiii i 44
4.7.10 FBL: BLSM adaptalion......cccuiiiiiiiiiiii e 44
4.7.11 ASW: NvM layout adaptationccceiiuiiiiii e 45
4.7.12 ASW: Boot JUMP Handling........coveeuiiimniiiiinien e sesssses s ees s e nns s enns s snnsseennsennnnes 47

ETAS RTA-FBL FCA PORT — User Manual

5 How to Flash the ECU with INCA and the ProF SCrpt......c..oiiieiiiiieiii e 49
T 17 oy 60
6.1 Privacy Statement.o 60
L = = T o 01011] o T 60
6.3 Data and Data CategoriEscuu i ieieeuiieeeeie e eeeete e e e e e e e e e s e e e eene e e e een s e e eeenn e e eeenn e eeenns 60
6.4 Technical and Organizational MEASUIESceuuiiieirruieieerre e eere e e e e eene e e eenn e eeenns 60
7 ETAS CONTACE AQAIESSES.uuieieruiieierinieeeereaeernaseeeern s s eerenssaeeenaasaresnnsaerennsaesnnnnseennnnnnns 61

ETAS RTA-FBL FCA PORT — User Manual

Introduction

This user manual introduces the RTA-FBL port for FCA. It provides an overview of the RTA-
FBL architecture and software design. It also provides detailed information of the FCA port for
users developing ECUs that will be reprogrammed with RTA-FBL. This includes information
about how to configure RTA-FBL, as well as how to integrate the Application Software on the
ECU.

1.1 Revision History

Version Author Date Change (Why, What)

0.1 Francesco Ficili 29/11/2018 First version.

1.0 Andrew Borg 03/02/2019 First release.

1.1 Daniele Cloralio 29/05/2020 FCA Port version

1.2 Daniele Cloralio 15/07/2020 Minor changes

1.3 Daniele Cloralio 22/10/2020 Typo and minor changes

1.4 Francesco Sfragara 05/11/2020 Minor changes in section
4.3 and 3

1.2 Definition and Abbreviations

Term/Abbreviation Definition

ADC Analogue to Digital Convertor

AR AUTOSAR

Application Software This is the software that executes the control logic of the

(ASW) ECU

AUTOSAR AUTomotive Open System Architecture

BLSM Bootloader State Manager

BSW Basic Software

CAN Controller Area Network

CAN FD CAN Flexible Datarate

CRC Cyclic Redundancy Code — a CRC module is provided in
RTA-BSW

Dcm Diagnostic Communication Manager

DID Data IDentifier

DLL Dynamic Link Library

ECU Electronic Control Unit

FBL Flash Bootloader

Fee Flash EEPROM Emulation

FW Firmware

HW Hardware

ISR Interrupt Service Routine

MCAL Micro-Controller Abstraction Layer

NvM Non-Volatile Memory

(O Operative System

ETAS RTA-FBL FCA PORT — User Manual

Term/Abbreviation Definition
RTA-x The ETAS suite of embedded SW products
S&K Seed And Key
SW Software
uDS Unified Diagnostic Services
1.3 References
Ref. Document Name Ver.
[1] CS.00101_ECU FLASH Rev. C
Reprogramming Requirements
2] CS.00102_Standardized Diag Data Rev. D
[3] CS.00099_Diag Regs UDS Rev. C
[4] CS.00100_Diagnostic Services Rev. C
[5] ISO 14229-1:2013 Ed.: 2
Road vehicles -- Unified diagnostic
services (UDS)

1.4 About this Document

This document provides a detailed description of ETAS’ RTA-FBL Port for FCA OEM. It provides
a reference for ECU developers that will allow reprogramming of their ECU using RTA-FBL.

1.5 Chapter Description

Chapter Description

Chapter 1 This is the document introductory chapter.

Chapter 2 This chapter introduces ECU reprogramming in general and
associated tooling, including RTA-FBL.

Chapter 3 This chapter explains how RTA-FBL must be installed in order to
allow you to create a complete RTA-FBL bootloader instance.

Chapter 4 This chapter introduces the RTA-FBL Port for FCA. It includes

important integration steps required for integrating RTA-FBL with
your Application Software.

Chapter 5 This chapter explains how to flash an ECU with an RTA-FBL
bootloader using INCA.

Chapter 6 This chapter contains important privacy information.

Chapter 7 This chapter contains ETAS references for customer support.

ETAS

2.1

RTA-FBL FCA PORT — User Manual
Introduction to ETAS RTA-FBL

This section introduces basic FBL concepts independently of a particular OEM port or hardware
target. It also introduces ETAS’ FBL product, RTA-FBL, and provides information that is
common to all ports and targets. Specific information about your port and the targets
supported in this port are detailed in Section 4

What is a Flash Bootloader?

A Flash Bootloader (FBL) is embedded SW that allows the reprogramming of an ECU with new
Application SW using a standard communication channel. The FBL works in combination with
an external tool that runs as a desktop application (often called a Flash Tool or Tester Tool).
This tool communicates with the FBL executing on the ECU to transfer the new Application
SW. The FBL updates the ECU’s non-volatile memory with this new Application SW.

ECU

Application SW

CAN, LIN, etc T

Flash Bootloader

Figure 1: High level flashing process

The FBL is a standalone program. It has a separate run-time with respect to the Application
SW, and so the FBL and the Application SW never run concurrently. After startup, the FBL
always runs first as it needs to decide whether it is to wait for new Application SW to be sent
from a tester, or if it is to start the Application SW already present in the ECU. This decision
depends on two items of state in the ECU: whether a reprogramming request flag has been
set by the Application SW before the last reset, and whether the Application SW currently
programmed in the ECU is valid.

A classic boot loading sequence showing this decision is depicted in Figure 2. Note that the
Application SW is only started if the Application SW is valid and the reprogramming request
flag is not set. In any other case, the FBL enters the Bootloader state and communicates with
the tester to reprogram the ECU.

ETAS

2.2

RTA-FBL FCA PORT — User Manual

Always

v

Reprogam?

YES

NO

y

YES—— App valid? —— NO—p

Application ‘w Bootloader

Running Running

Reprogramming Request Reprogramming Completed

Figure 2: Boot loading flowchart

What is RTA-FBL?

RTA-FBL is ETAS' bootloader product offering. It allows integrators to create Flash Bootloader
software according to a specific OEM specification. RTA-FBL generates source code (flash boot
loader modules and basic software) from user configuration. This significantly reduces the
user effort required to get the flash bootloader up and running and integrated with the
application software.

RTA-FBL leverages the following layers defined by the AUTOSAR standard architecture:
. MCAL.: provided by silicon vendor
. BSW: provided by ETAS (RTA-BSW)

Although RTA-FBL ports currently support CAN and CAN-FD, basing the underlying SW
architecture on AUTOSAR allows support of other communication protocols such as Ethernet,
FlexRay, LIN.

RTA-FBL satisfies requirements from different OEMs for different HW architectures by creating
ports that integrate with the core RTA-FBL product. The clear separation between core (which
is OEM independent and target independent) and port (which is OEM-dependent with support
for one or more targets) makes it possible to support a wide range of OEM FBL requirements
and allows quick porting to new targets.

RTA-FBL generates source code and BSW files through the following components:
o rtafblgen: an executable for FBL generation

o RTA-FBL GUI: a user interface for configuring the parameters used by rtafblgen for
generation. The configuration options depend on the OEM port and selected target.

ETAS
2.3

2.4

2.5

2.6

2.7

RTA-FBL FCA PORT — User Manual
The Flash Tool (Tester)

The Flash Tool, or Tester, is a desktop application that handles the PC-side of the flashing
process. In general, the tester is used when the bootloader is in production and access to the
ECU is limited to non-debug communication protocols such as CAN, Ethernet and FlexRay.

The OEM-defined Programming Sequence

The tester communicates with the ECU by sending messages over a communication bus
according to a defined protocol. The ETAS FBL supports the UDS on the CAN protocol. This
means that requests are made to the ECU over a CAN bus, and the messages sent and received
comply with the UDS standard ISO 14229-1[2]. The allowed message sequence sent to the
ECU, as well as the expected response from the ECU differs across OEMs. Therefore, the ETAS
FBL supports different OEM standards for ECU reprogramming. These are called “"OEM ports”
or just “ports”. This guide specifically addresses the RTA-FBL port that implements the
reprogramming standard described in [1]. Each port supports one or more hardware “targets”.
For example, the RTA-FBL port that implements [1] supports all the targets described in
Section 4.6.

Target Dependencies and the Flash Driver

An FBL will naturally contain several dependencies on the underlying microcontroller target.
In addition to the typical drivers such as communication, port and timer drivers is the driver
used by the bootloader to write the FLASH memory of the ECU. This is target dependent code
(usually provided by the silicon vendor), because each different target could have different
flash memory properties (i.e. different technology, layout, endurance, etc.). The flash driver
typically forms part of the MCAL.

Interaction with the Application using NvM

A Bootloader and the Application Software may need to share data. For example, a Tester
may read or write data such as the ECU serial number both when the ECU is running in boot-
loader mode and when running its Application Software (e.g. by using UDS
ReadDataByIndentifier and WriteDataByIdentifier commands). Typically, this will mean that
both the Bootloader and the Application Software will need to be able to read and write the
same non-volatile memory. Where non-volatile memory is implemented by EEPROM emulation
in flash such sharing may introduce technical challenges because the Bootloader and
Application Software must use the same algorithms and data-structures when emulating
EEPROM. (For example, if the application uses an Autosar Fee module for EEPROM emulation
then the Bootloader may need to use the same Fee module). The requirements for
compatibility between the FBL and Application Software for your port are detailed in Section
4,

One and Two-Stage Bootloaders

There are two broad models for bootloaders and the model type for the bootloader described
in [1] is described in more detail in Section 4.

e Single-stage: In this model, the complete Bootloader is stored on the ECU (in flash),
including the code used to write a new application to flash.

e Two-stage: In this model, a Primary Bootloader is stored in the ECU. This Primary
Bootloader is able to start the application running or download a Secondary Bootloader
into RAM. The Primary Bootloader is not able to write to the flash used to store the
application. Programming flash with a new application is done by the Secondary
Bootloader. There are three advantages to the two-stage approach:

1. The Primary Bootloader can in principal be smaller because it does not need
to include the code to write to flash (although space savings will be limited in

ETAS

RTA-FBL FCA PORT — User Manual

practice if the Primary Bootloader also needs to include a flash driver to write
to non-volatile memory implemented with flash).

2. Since the Primary Bootloader does not contain the code to write to flash, the
application is less likely to corrupt itself or the bootloader because faulty code
in the application cannot jump to the flash reprogramming driver.

3. The Secondary Bootloader can be used to work around bugs in the bootloader
installed on the ECU when it was manufactured.

Rather than an independent Secondary Bootloader, some OEMs use a single-stage Bootloader
that only excludes the flash driver used to write to the flash that stores the application.
Instead, the driver used to write to flash is downloaded and stored in RAM during the
programming sequence. This is sometimes referred to as a software “interlock”.

2.8 FBL generation with the RTA-FBL ISOLAR-AB plugin

10

An instance of ETAS’s FBL is generated based on the chosen OEM specification that defines
the reprogramming sequence, the chosen hardware target, and the specific configurations
that are allowed within the scope of the OEM specification. The tool for generating this FBL
instance is an ISOLAR-AB plugin, which is included with your purchased core license. An FBL
generated using this plugin is described as “an instance of RTA-FBL". The plugin creates
bootloader code as well as a full RTA-BSW project with configuration that is needed to support
the bootloader functionality. In the same generation process, the plugin therefore optionally
also invokes RTA-BSW to generate an instance of the BSW. Alternatively, the user can open
the RTA-BSW project created by the RTA-FBL plugin to inspect the generated configuration.
FBL generation also results in some ports in the generation of an MCAL project that can be
adapted. Further details relevant to your port are provided in Section 4.

ETAS

11

RTA-FBL FCA PORT — User Manual

User creates RTA-FBL

configuration in an Integrator changes possible
ISOLAR-AB project

but strictly limited to those
specified for Port D/

< generate request to >

ISOLAR-AB with RTA-FBL
< generates

plugin

< generates >

[[

MCAL Project FBL Code BSW Project

< generate request to > < generaterequest to >

2

A
0q
[}
=1
@
=
@
=
@
1
\

3r Party MCAL generator ISOLAR-AB with RTA-BSW
plugin

< generates > < generates >

MCAL Code BSW Code

'4_

3" party and
additional
Integrator Code

Integrator’s build tooling or sample
build tooling provided with RTA-FBL

mi

port installation (scons based)

< compile and link >

Figure 3: The process of generating an RTA-FBL instance

The tool process for generating an RTA-FBL instance is shown in Figure 3. ETAS-provided
tooling allows the integrator to create the bootloader-specific application code (through the
RTA-FBL plugin for ISOLAR-AB), and the BSW code (through the RTA-BSW plugin for ISOLAR-
AB). The MCAL code must be created using a 3™ party tool, typically provided by the silicon
vendor.

Note that the RTA-FBL ISOLAR-AB plugin generates source code that includes some sample
code that may require modification by the integrator. The integrator also has the option to
add further integration code. Finally, all source code needs to be integrated and built using
either the sample build scripts provided with RTA-FBL (and based on scons) or the integrator’s
own build toolchain.

IMPORTANT: RTA-FBL tests are carried out by ETAS for various FBL configurations that
create for each configuration different bootloader code, an MCAL project and a BSW project.
Since the integrator can make adaptations to specified sample code, the generated MCAL
project and the generated BSW project, this may result in a final software stack that is not
tested. For this reason, it is ultimately the integrator’s responsibility to test that the complete
bootloader works with any changes made to any code or projects generated by RTA-FBL.
Please read the important integrator guidelines provided in Section 4 for information relevant
to your port.

ETAS RTA-FBL FCA PORT — User Manual
2.9 General architecture of RTA-FBL

An instance of RTA-FBL consists of five types of module as shown within the complete RTA-
FBL architecture in Figure 4. These are:

1. Core bootloader modules (in blue): these are generated from the RTA-FBL ISOLAR-
AB plugin and must not be modified.

2. BSW modules (in orange): these are standard AUTOSAR BSW modules generated by
RTA-BSW and must not be modified.

3. Port-specific bootloader modules (in yellow): these are generated by the RTA-FBL
ISOLAR-AB plugin and must not be modified. They implement the bootloader features
that are specific to an OEM.

4. Port-specific bootloader modules (in green) generated from the RTA-FBL ISOLAR-AB
plugin that can be modified by the integrator as discussed in Section 4.7. For example,
the scheduler with callouts to main functions is provided in all ports as a sample OS,
and can be modified. Most ports will also include integration code that can be used as
provided in samples or completed by the integrator.

5. 3"-party modules, and in particular the MCAL.

As noted in Section 2.8, you will need to install a humber of tools in order to generate a
complete instance of RTA-FBL with all required modules as shown in Figure 4. A number of
integration steps will also be required to build your software. Details for your specific OEM
port and target are also given in Section 4, including the folder structure of a generated RTA-
FBL instance that contains the code for the modules in Figure 4.

ASW

BSW
Dcm Memlf
COMMUNICATION MEMORY P?]RT (no
STACK STACK changes
allowed)

MCAL

Figure 4: General architecture of an RTA-FBL instance

12

ETAS RTA-FBL FCA PORT — User Manual

2.10 Setting up your environment to generate an RTA-FBL instance

In order to generate an instance of RTA-FBL, you will need to install:

1. ISOLAR-AB; the supported version depends on the BSW used by the Port, and it is
8.0.1.

2. The RTA-FBL installation package that contains the RTA-FBL plugin for ISOLAR-AB
that drives the FBL generation process, and includes the core RTA-FBL modules and
the correct RTA-BSW version, that for this port is 5.1.

Section 3 explains how to install package (3). Please see the installation guides for ISOLAR-
AB and RTA-BSW for information on how to install these packages.

Once you have the above packages, you will be able to generate an instance of RTA-FBL. In
order to build the instance, you will also need to have installed the 3" party MCAL as well as
the relevant compiler toolchain. See Section 4.6 for further information specific to your target.

13

ETAS

14

RTA-FBL FCA PORT — User Manual
Installing RTA-FBL

This section describes the installer for RTA-FBL. As noted in Section 2.10, you need to install
this package in addition to ISOLAR-AB. This installer is described further in this section.

In order to install RTA-FBL, follow the instructions below. At the end of this installation, the
PC needs to restart.

Step 1: Execute the file setup.exe from the root folder of the installation CD. When the
destination location window is displayed, select your preferred folder and click “Next”.

v# Setup - ISOLAR-AB integrations for RTA-FBL 1.0.0 — *
i
Select Destination Location FEL /™
Where should ISOLAR-AB integrations for RTA-FBL be installed? ’w J‘

Setup will install ISOLAR-AB integrations for RTA-FBL into the following folder.

To continue, click Mext. If you would like to select a different folder, click Browse.

C:\ETAS\RTA-FBL_1.0.0 Browse...

At least 40,0 MB of free disk space is required.

Figure 5: Welcome window

ETAS RTA-FBL FCA PORT — User Manual
Step 2: Select the ISOLAR version you want to install the plugin into and click “"Next”.

¥# Setup - ISOLAR-AB integrations for RTA-FBL 1.0.0 —

x>
Select an ISOLAR-AB instance %}‘(

Select the ISOLAR-AB version to install into:
8.0.1.114 o

< Back Cancel

Figure 6: ISOLAR integration

15

ETAS RTA-FBL FCA PORT — User Manual
Step 3: Wait for the software required for RTA-FBL to be installed.

W& Setup - ISOLAR-AB integrations for RTA-FBL 1.0.0 — by
Installing FBL
Please wait while Setup installs ISOLAR-AB integrations for RTA-FBL on your computer.

Installing FBL Plugin...

Cancel

Figure 7: Installation Ongoing

Step 5: Once the installation completes, click on “Finish” to close the installer.

16

ETAS RTA-FBL FCA PORT — User Manual

%% Setup - ISOLAR-AB integrations for RTA-FBL 1.0.0 —

Completing the ISOLAR-AB
sTAS integrations for RTA-FBL Setup
Wizard

Setup has finished installing ISOLAR-AB integrations for RTA-FBL on your
computer. The application may be launched by selecting the installed
shortcuts.

Click Finish to exit Setup.

Figure 8: Installation finished

17

ETAS

4.1

18

RTA-FBL FCA PORT — User Manual
The FCA Port

This chapter describes the FCA Port of RTA-FBL. It provides specific information relevant to
this port that expands on the general RTA-FBL features described in Chapter 2. This chapter
assumes that the reader is familiar with the FCA Bootloader Specification in [1] and all relevant
referenced specifications therein. Reference is therefore made to [1] only in describing the
configuration and implementation-specific features of RTA-FBL.

FCA RTA-FBL Architecture

Figure 9 provides a high-level view of RTA-FBL architecture for FCA. The communication,
memory and diagnostic stacks are based on RTA-BSW and support the AUTOSAR architecture
and methodology for source code configuration and generation. The rest of the components,
except for the MCAL, are provided by ETAS and Escrypt. The modules that comprise the RTA-
FBL instance for a FCA port are:

1. Core bootloader modules (in blue): these are generated from the RTA-FBL ISOLAR-
AB plugin and must not be modified by the integrator.

2. Standard AUTOSAR BSW modules (in orange): these are generated by RTA-BSW and
should not be modified by the integrator.

3. The FCA-specific port module (in yellow): this is generated by the RTA-FBL ISOLAR-
AB plugin when the FCA port is selected. This module implements the bootloader
features that are specific to the FCA specification [1].

4. The FCA-specific sample modules (in green): these are generated by the RTA-FBL
ISOLAR-AB plugin when the FCA port is selected and may be modified by the
integrator:

o The OSis a basic cyclic scheduler that can be replaced by any other scheduler
(e.g. a fully-configured RTA-OS) as long as the calls to the relevant main
functions are made at the correct periods as in the provided samples. See
Section 4.7.9 for further details on how to adapt this module.

o The BLSM contains code for initializing the Bootloader. Changes can be made
here by the integrator if other modules are to be integrated (e.g. other BSW
modules) but changes should not be made to the functions that interact with
the core FBL modules. See Section 4.7.10 for further details on how to adapt
this module.

5. Third-party software modules (in red): these are security modules provided by Escrypt
that should not be modified by the integrator. These modules are not generated with
RTA-FBL and shall be added manually. If Escrypt solution (CycurHSM and FCA
Wrapper) is not used, the integrator shall add a compatible security stack with the
right integration code.

6. The MCAL modules (in black); the modules shown are those required by the FCA port
of RTA-FBL. The integrator may add additional modules required for a specific ECU.
For example, the ADC module would likely be required if the integrator wishes to
check the battery voltage or other system operating conditions required for the
specific ECU.

ETAS

RTA-FBL FCA PORT — User Manual

ASW

BSW
Dcm Memif
,_
: NvM
COM STACK MEM STACK FCA
MCAL

Fls

Figure 9: FCA architecture of an RTA-FBL instance

4.2 FCA Download Sequence

The download sequence is according to [1] and depicted below:

19

ETAS RTA-FBL FCA PORT — User Manual

Ntalic: Services are checked for seguence. Seguence
|&[Ignition On I means that the bold italic services have to be sent in
} order but if is permissible to insert other services

|a] Read ECU Identification DID (22 F1 AD hex)] Bh I

¢ Rewitlng Control Ph
Check Prog Preconditions (31 01 D0 02 hex)

.

! | o | DlagnostcSessionCaontrol extendedDiagnoatic - I |

sapsion (10 83 hex '

E Ere-PTega_m {) |

i | 1

' c ContolDTCSetting . !

! DTCSettingTypa = off (85 82 hax) 1

)

! 1
L]

! F Routine Control : '

i Disabile Fall-Sale raaction (31 81 DO 01 hax) :

! 1

! 1
L]

: c CammunicationContiol - :

V disabla message transmission(28 81 01 hax) H

! i

.
Diagnostic SessionControl Nao suq uence condltions forcing
H | programming sesslon (10 02 hex) | P negative -im:r;:in;uﬁﬂe $24 are
i SecurityAccess Fh
readSeed (2T 01 hex) /sendKey (27 02 hex)
I J | Rewline Control I P l
Logieal Block Hash (31 01 DO 00 xx)

g T3
witte boor&oﬂ'mnl-’h rint (FT 83 hox)

WriteDataByldentifier
K writeapplicationSoftwareFingerprint (F1 84 Ph
hex

WiiteDa tifier
writeapplicationDataFingerprint (F1 85 hex)

- Y _ _ _
._ Download SWIL 1 (Optional)

" Routine Control
Erase Flash (31 01 FF 00)

Dewnload SWIL 2 (Optional)

e

Figure 10 - Flash Download Sequence Part 1

20

ETAS RTA-FBL FCA PORT — User Manual

)
'

Iralic: Services are chechked for
o Request Down Load (34 hex) Ph sequence
= P Transfer Data (36 hex) Fh
@ Reguest Transfer Exit (37 hex) Ph

Foutine Controfl
R Check program Ph
(31 01 FO 00 hex)

()=, é)*‘- @

M

" Ro(mnelaxl;_rm! . |

check reprogramimin noencies —

s pvggd:are] %fc:ggn Fh

(31 01 FF 07 hex)
h 4

ECUResat
T HardResst (11 01 hex) Ph

1 second delay

u Communication Control Enable F
Transmission (23 80 01 hex)

Paost- +

|
|
|
1 |
| |
|
| Program v | Reutine Control Enable Fail Safe Reaction £l
| Sequence {31 62 DD 01 hex) \
1 |
! |
| |
! |
|
|

v

Control DTC Setting DTC Setting Type =
w O (28 B1 Ry D YPE F

___________ e —— e

® restors pmwﬁﬁ_um!.bn data, verify new
identm cation data,stc.

L]

Y Erase all faults from vehicle

Figure 11 - Flash Download Sequence Part 2

4.3 Creating and building an RTA-FBL instance

This section explains how to create an ISOLAR-AB project in order to configure and generate
an instance of RTA-FBL compliant with the FCA bootloader specification. The tooling described
in this section has been tested with Windows 10.

4.3.1 Project creation

A new FBL project is created in ISOLAR-AB. As shown in Figure 12, create a new RTA-CAR
project by clicking the “New Project” dropdown button and selecting "RTA-CAR Project”.

21

ETAS RTA-FBL FCA PORT — User Manual

B workspace - ISOLAR-A/B 8.0.1
File Edit Navigate Search Project RTE Run Build Generator Window Help

| New (Alt+ShiftsN > @ AUTOSAR Project b1+
Open File.. e ”‘{QS"M 2
(3 Open Projects from File System... 9 Project —
Recent Files > @ AUTOSAR File
Close Ctrl+W n Ll:ﬂked File
Close All Ctri+Shiftsw & Linked Folder
(9 Folder
Save Cul+S ° File
Save As...
Save All Cirieshiftes [Example
Revert S Other.. Crri+N
Move..
Rename...)
& Refresh 13
Print. Culsp
s Import..
wx Export..
Properties Alt+Enter
Switch Workspace >
Restart
Exit

Figure 12: RTA-CAR project creation

Il RTA-CAR Project is not present, select “Project” and search for "RTA-CAR Project” in the
new window, as shown in Figure 13.

E';: New Project O X
Select a wizard ,E'C‘
- _I
Wizards:
| type filter text
> [= General
o= CfCe+
~w [|SOLAR-A
igi AUTOSAR Project
% RTA-CAR Project
» = Examples
[Show All Wizards.

Figure 13: RTA-CAR project

22

ETAS

23

RTA-FBL FCA PORT — User Manual

In the New RTA-CAR Project window, choose a name for your project and select the 1.0.0.FCA
plugin under RTA Tools as shown in Figure 14.

{&% New RTA-CAR Project O %
RTA-CAR Project E
@ please configure the additional settings for 'RTA-FBL'

Project name: | MyProject |

Use default location

CA\ETASData\ISOLAR-AB\workspace\MyProject Browse...
RTA Tools
RTA-FBL | 1.0.0.FCA - m
@' < Back Next = Einish Cancel

Figure 14: New RTA-FBL Project

Next, click on the three dots icon to open the window “Additional Project Settings” and select
the target from the dropdown list as shown in Figure 15.

ETAS RTA-FBL FCA PORT — User Manual

'

RTA-CAR Project E
Create a new RTA-CAR project.

Project name: | MyProject

Use default location

{5 Additional Project settings O X

Please configure one of the following target

CAETASData\IS §TC233 v Wse...

RTA Tools

RTA-FBL 10.0FCA Cancel »

'f?)' < Back MNext > Cancel

Figure 15: Select Target

Once complete, clicking the Finish button will result in the creation of the FBL project.

Figure 16 shows the result of a successful project creation in the console window.

[Properties| % Problems Log | "I Workflow | 2 Console i3
RTA-CAR Console - MyProject

Deploying FBL static artifacts

Command: [C:\ETAS\RTA-FBL_1.8.8/bin/fblgen.exe, -fblconfig, --target=TC233, --output_location=C:/ETASData/ISOLAR-AB/workspace/MyProject]

XOBORXKXKICOCOOOOXKOCOCXXXXXOCOKXKX
200000OOCACOOC0NNK ETAS RTA-FBL X00000COCOA0ACOCOMXX

[Configuration Logger | 83 Script Library| -5 Modules Explorer | &3 Variant Overview| T2 Model API View IR

0OOACACOCOCOOCOCOCOONXKOCCIOOCOOCKKXKX
Target TC233 deployed under C:/ETASData/ISOLAR-AB/workspace/MyProject

Figure 16: Console window upon successful project creation

4.3.2 Configuration and Generation of FBL and BSW

Next, complete the base configuration parameters. In the AR Explorer view, double click on
FblConfigSet under Bsw > Bsw Module Description > FBL, as shown in Figure 17.

24

ETAS

RTA-FBL FCA PORT — User Manual

= AR Explorer 33

< ECU Navigat | % Filesystem N| = O |

SleewBes -
v 22 MyProject ~
> T Software
» It System
~ mm Bsw
> B Bsw Module Definitions
v @ Bsw Module Descriptions
v [Ecuc Module Configuration Values
»] ComStack
~ [FBL
» 3 Application
» [0 Bootloader
» [0 Calibration
~ [FblConfigSet
» 3 FblCan
3 FblCore
£2 FbIDid
3 FblGeneral
3 FblSec

720 Devar KAA+

Figure 17: FblConfigSet

The user can now edit the base configuration parameters in the RTA-FBL Editor window.
Figure 18 shows as an example the configuration parameters for CAN communication. An
explanation of each parameter is provided in Section 4.3.2.

(] FbiConfigSet =2

BSW Editor
|FB" Eantents - ‘ [FBL"FBL" » & FbiConfigSet "FblConfigSet” » B3 FbiCan "FhiCan” » <& v & v [‘
type filter text
« [FBL “FBL" General ﬁ
~ [I3 FbiConfigSet "FblConfigSet” ShortName* | FblCan |
~ [FblCan "FblCan"
@ FblCanFdIdRxFunc - 417070834 LongName [FOR-ALL v | |®~
() FolCanFdIdRxPhy - 416948978 T .
{# FblCanFdIdTxPhy - 417002018
(@ FblCanldRxFunc - 417070833 FblCanldRxPhy™* |4169489?? | ® -
&) FolCanldRxPhy - 416948977 FbiCanldRxFunc | 417070833 |®~
) FbICanldTxPhy - 417001762
> 3 FblCore "FbiCore” FbiCanldTxPhy* | 417001762 |® -
> (3 FbiDid “FbIDid"
» (3 FblGeneral "FblGeneral” FhiCanFdIdRxPh | 416948978 | ®~
> B3 FblSec “FbiSec” FbiCanFdidRxFu | 417070834 |®~
~ [FbiRegions [3]
» 8 FbiRegion “Bootioader” FbiCanFdidTxPh, | 417002018 |®~
> [3 FblRegion "Application”
» (3 FblRegion "Calibration”

Figure 18: Edit Base Configuration Parameters

25

ETAS

RTA-FBL FCA PORT — User Manual

Once complete, the user can generate the RTA-FBL instance first by clicking on “"Open RTA

Code Generator dialog...” as shown in Figure 19 and then, in the opened RTA Code Generator
window, by clicking Run as shown in Figure 20.

= workspace - MyProject/fbl/input/RulesMConfig/FBL_EcucValues.arxml - ISOLAR-A/B 8.0.1

Eile Edit Navigate Search Project Model Form Editor RTE Run Build Generator Window Help

il g N% OO E-vR 0000 & Rm: @ 0~ L
= AR Explorer 2 “._<» ECU Navi Generate RTA-FBL

- v’t::l - -

i B3
= Generate Al
« & MyProject i3 Open RTA Code Generator dialog... .
= Software | FBL Colatents EABEE
* System type filter text
w ram Bsw J—_—
& Bsw Module Definitions v [F:ITL FBL o o
~ @ Bsw Module Descriptions ¥ FblConflgSﬂet FbIC“onﬂgSet
~ 3 Ecuc Module Configuration Values v

[o F R

(1) FblCanFdIdRxFunc - 417070834
Figure 19: Open RTA Code Generator Dialog

F;: RTA Code Generator

— | x
Project Name MyProject ~
Ecu Instance | fARPackage/FBL ~
Root Qutput Path | {PROJECT_LOC} Browse...
Select the tool(s) for code generation
RTA-FBL - 1.0.0.FCA]
M Fbl Main RTA-BSW CodeGen
Fbl Log Path | {OUTPUT_LOC}/ log/ Browse...
[] Generate BSW
Fbl Command
Restore Defaults Apply
@ Restore All Defaults Apply All Run

Figure 20: RTA Code Generator

On clicking Run, the RTA-FBL instance is generated. Figure 21 shows the result of a successful
generation in the console window.

ETAS

27

RTA-FBL FCA PORT — User Manual

P

[Properties | % Problems Log | I WorkFlow | @ Console 2 [Configuration Logger |02 Script Library | L) Modules Explorer| &) Vari

RTA-CAR Console - MyProject

Generated at 2020-11-04 16:09:15.535
Execution of action RTA_FBL_GEN successfully completed

e s 35 3 s s 3 e s sk o s o s o e o s e o s s e o o s e o oo o o e o o o o o e o o o o o e o o o o o e o o oo e o o o o e ol o o sk sk s ok

Build Summary

e s 35 3 s s 3 e s sk o s o s o e o s e o s s e o o s e o oo o o e o o o o o e o o o o o e o o o o o e o o oo e o o o o e ol o o sk sk s ok

- RTA_FBL_GEN --> Success (Executed for 00:00:43:026 hh:mm:ss:ms)

Time taken for the complete build: 00:00:43:834

Figure 21: Console Window on Successful Generation

To complete the FBL instance, the user must generate the BSW code by selecting the BSW
modules for which the code should be generated in the RTA-BSW CodeGen tab of the RTA

Code Generator window, as shown in Figure 22.

(:' RTA Code Generator

Project Name | MyProject

Ecu Instance | /ARPackage/FBL

Root Qutput Path | {PROJECT_LOC} Browse...
Select the tool(s) for code generation
RTA-FBL-100.5CA Fbl Main RTA-BSW CodeGen
BSW Qutput Path | {OUTPUT_LOC}/fbl/output/Fbl/BSW/Project/src/bsw/ Browse...
Modules:
Generate Dynamic BSW Code
v [&] Common ~ Generate ARXML
L Bfx Generate Static BSW Code
ComStack i
) [Generate Integration Code
[] Compiler e I
[Cre un Validators only
1 ml
] mfx [[]select All Modules
[] Platform
7] Dhm Al an s
Restore Defaults Apply
‘/?) Restore All Defaults Apply All Run

Figure 22: RTA-BSW CodeGen tab

Once complete, check the box Generate BSW in Fbl Main tab of the RTA Code Generator

window and click Run.

The user can re-generate the BSW code by dlicking on Generate RTA-FBL as shown in Figure

23. Upon successful generation, the popup message in Figure 24 is shown.

ETAS

RTA-FBL FCA PORT — User Manual

{2 workspace - ISOLAR-A/B 8.0.1

File Edit Navigate Search Project RTE Run Build Generator Window L

M @I %O~
= *AR Explore &2 . <» ECU Nav ™

~ I MyProject
T Software
o System
rn Bsw
4 Bsw Mdt

Tda

v A QOO0 R R B O
Generate RTA-FBL [
Generatd All

[IEFE-

=nn ==pn
[z

Open RTA Code Generator dialog...

Figure 23: Generate RTA-FBL

= Message

'0 RTA-FBL successfully generated..!
w

] Do not show this dialog again

OK

Figure 24: Successful generation

The following paragraphs describe the base configuration parameters that the user can
configure. The column Requires BSW Re-Gen in the following tables indicates whether the
BSW needs to be re-generated in case that parameter has been changed.

For each new region define the parameters as shown in Table 1.

Table 1: Configuration parameters FblGeneral of the FCA port of RTA-FBL

Parameter

Description Requires
BSW
Re-Gen
FbIRegionAddressLow Specifies the low address of the region Yes
FbIRegionAddressHigh Specifies the high address of the region Yes
FbIRegionMaxAttemptCounter | Specifies the maximum number of reprogramming Yes
attempts for the region. When the number of attempts
reaches this threshold, it will not be possible to
reprogram this block anymore.
FbIRegionType Specifies the region type: Yes
- 0 - Boot region
- 1 -> App region
- 2 - Data region
FbIRegionExternalFlashSupport | Specifies if erasing and writing the region should be Yes
handled using MCAL APIs or it is an external region

28

ETAS

RTA-FBL FCA PORT — User Manual

and it is handled by the user.

FblRegionID

Specifies the index of the region. The index uniquely Yes
identifies the region, and it is used by CDA tool to

address the block during download

29

) AR Explorer 23 < ECU Navigat | %2 Fil N| = O (a3 FoiConfigset i
8% @ e Blels - -
BSW Editor
> [CanTp ~
> 1 ComM FBL Contents A i} ‘ I FBL"FBL" » & 131 & F c-o-0 ‘
> M ComStack [type filter text |
> O Crc
oo ~ [FBL“FBL" Ganee =
5 1 EcuC > : FblConfigSet "FbIConfigSet” ShortName* | Bootloader |
~ FblRegions [3]
~ LIFBL -
P > [FbIRegion "Bootloader” LongName ‘FOR ALL B H ‘ ®~
3 Application . o
& Bootloader > (2 FbIRegion "Application Attributes -
" N > [FblRegion "Calibration”
@ Calibration ‘ 2147483648 ‘ ® -
> [3 FblConfigSet
> [Fee FbIRegionAddressHigh* ‘ 2147713023 ‘ (OB
> [Memif
i un [1000 @~
> I PduR FbIRegionType* [o |®~
> [rba_AnxmiGen fal
> (3 Bsw Mat [fatse Vi@~
» @ Variant Info FbiRegionld* [0 | &~
> @ Timing Extensions
> (4 Standardization
> & _log
> [= ecu_config
» & fbl
> & src w

Figure 25: RTA-FBL FCA regions configuration

Table 2 provides a description of each parameter for the container FblGeneral together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the

Description for exceptions.
Figure 26 shows the FBL Editor window for FblGeneral.

(] FbIConiigSet 5

BSW Editor

cvo -0 ‘

7]

FBL Contents ABEE | g e » & EbiConfigSet "FbiConfigSet” ¥ 85 FbiGeneral “FblGeneral®
| type filter text |
« [FBL "FBL" EizE
~ [FbiConfigSet "FblConfigSet" ShortName* | FblGeneral
5 3 FblCan "FbiCan”
» €3 FbiCore "FbiCore" LongName [FORALL v || ® -
> {3 FbIDid "FbIDid" pre—

~ [FblGeneral "FblGeneral”

(D FblCompiler - Hightec FbIMcalSourceFolde

| CAMCALS\IFX\TC23X_AB_Step_V501\TC23x| & ~

@ FblCompilerFolder - CAHIGH

FblCompiler | Hightec

| ®~

() FblEcuType - 1

(T FbIMcalSourceFalder - CAMC FblCompilerFolder

| CAHIGHTEC\toolchains\tricore\v4.6.5.0\bin| & +

@ FblSleepWakeup - true

> @2 FblSec "FblSec” FhlEcuType K | ®~
» 3 FblRegions [3] FbiSleepWakeup* |true v | ® -
FolBlockSize | | ®

Figure 26: FblGeneral

ETAS

RTA-FBL FCA PORT — User Manual

Table 2: Configuration parameters FblGeneral of the FCA port of RTA-FBL

Parameter

Oo/M

Description

Requires
BSW
Re-Gen

FblIMcalSourceFolder

Specifies the folder where target specific MCAL is
installed.

No

FblCompiler

Specifies which compiler to use when generating the
sample scons build scripts. If this parameter is not
specified, then these sample scripts are not created. In
this case, you are responsible for creating the build
scripts required for creating your bootloader. In most
cases, you would initially specify this parameter to
create these scripts, but if you then integrate
additional code in your FBL and manually modify these
scripts, you might want to remove this parameter in
order to avoid overwriting your changes. If the
compiler you are using is not available, you will have to
create your own build scripts. Note that RTA-FBL
supports any compiler that is supported by the MCAL,
but each target only provides a small set of sample
build scripts for a limited set of compilers and is tested
only using the compilers and versions as described in
Section 4.6.

No

FblCompilerFolder

The bin path where the compiler is installed.

No

FblEcuType

This parameter indicates which ECU Type is selected. As
per FCA specification [1] three different ECU types are
supported:

- ECU Type A (FblEcuType = 0): no specific
security support, the Download is unlocked by
a security level Ox1 (Seed&Key). The FW blocks
are not protected with authenticity check
(signature verification) but only against
consistency (CRC check).

- ECU Type B (FblEcuType = 1): partial security
support, the Download is unlocked by a
security level 0x1 (Seed&Key). The FW blocks
are protected with authenticity check
(signature verification). To accomplish this the
ECU must maintain an internal certificate
database (TrustStore).

- ECU Type C (FblEcuType = 2): full security
support, the Download is unlocked by a
security level 0x11 (ADA — Challenge-
Response). The FW blocks are protected with
authenticity check (signature verification). To
accomplish this the ECU must maintain an
internal certificate database (TrustStore).

Yes

FbiSleepWakeup

Specifies whether the ECU is a +15 or +30 node and it
shall support the Bootloader Sleep/Wakeup Mechanism
of [1].

No

FblBlockSize

Allows the user to configure the download block size in
bytes.

No

30

ETAS RTA-FBL FCA PORT — User Manual
Table 3 provides a description of each parameter for the container FblCore together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the
Description for exceptions.

Figure 27 shows the FBL Editor window for FbiCore.
[FblConfigSet it
BSW Editor
UL S ABEE ‘ [FBL"FBL" * B3 FblConfigSet "FblConfigSet” » €3 FbCore “FbiCore” * cvo-@
| type filter text
~ L FBL "FBL" General &
~ (I3 FbiConfigSet "FblConfigSet” ShortName* | FblCore |
» [3 FblCan "FblCan”
« £ FblCore “FblCore” LongName [FOR-ALL v || |®~
(@ EraseTimeout - 1500 TS 2
(@ StartAddress - 2148401664
@ VerifyTimeout - 1500 EraseTimeout | 1500 @~
() WriteTimeout - 1500 WriteTimeou: | 1500 | ® v
» (3 FbIDid "FbIDid"
> [FblGeneral "FblGeneral” VerifyTimeou | 1500 | -
» [3 FblSec "FblSec”
& FbiRegions [3] StartAddress’ | 2148401664 @~
Figure 27: FblCore
Table 3: Configuration parameters FblCore of the FCA port of RTA-FBL
Parameter O/M | Description Requires
BSW
Re-Gen
EraseTimeout M Allows to configure the maximum time in microseconds No
for erase flash operation before timing out.
StartAddress M The start address of the application software. The No
bootloader will jump to this address if the application is
valid and no reprogramming request has been made.
VerifyTimeout M Allows to configure the maximum time in microseconds No
for flash verification operation before timing out.
WriteTimeout M Allows to configure the maximum time in microseconds No
for write on flash operation before timing out.

31

Table 4 provides a description of each parameter for the container FblCan together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the

Description for exceptions.

Figure 28 shows the FBL Editor window for FbiCan.

ETAS

RTA-FBL FCA PORT — User Manual

O FblConfigSet &

Figure 28: FblCan

Table 4: Configuration parameters FbilCan of the FCA port of RTA-FBL

BSW Editor
FBL Contents EABEE | g - » & FolConfigset "FolConfigSet” ¥ 9 FbiCan “FoiCan® » PR |
type filter text
~ L FBL"FBL" General H
~ [FblConfigSet "FblConfigSet” ShortName* FblCan |
~ [FblCan "FblCan" FORALL
- W -
@ FblCanFdldRxFunc - 4170708, LongName | ®
@ FbiCanFdidRuPhy - 41694897 [T o A
@ FbICanFdIdTxPhy - 41700201
@ FbICanldRxFunc - 417070833 FblCanldRxPhy™ |415948977 | ® -
@ FolCanidRxPhy - 416948977 FbiCanidRxFunc | 417070833 @~
@ FbiCanldTxPhy - 417001762
> 3 FblCore “FblCore” FbiCanldTxPhy* | 417001762 |® -
» & FolDid "FbiDia” FbiCanFdidRxPh | 416948978 | ®
> [20 FblGeneral "FblGeneral” n
> B9 FblSec "FblSec” FbiCanFdidRxFu | 417070834 |®~
» 3 FblRegions [3]
FbiCanFdidTxPh, | 417002018 |® -
£ >

Parameter O/M | Description Requires
BSW
Re-Gen

FblCanIdRxPhy M The physical receive Can ID. Yes
It is an integer between 1 and Ox1FFFFFFF.
Only addressing mode 29 bits is supported.

FblCanIdRxFunc M The functional receive Can ID. Yes
It is an integer between 1 and Ox1FFFFFFF.
Only addressing mode 29 bits is supported.

FblCanIdTxPhy M The physical trasmit Can ID. Yes
It is an integer between 1 and Ox1FFFFFFF.
Only addressing mode 29 bits is supported.

FblCanFdIdRxPhy | M The physical receive Can FD ID. Yes
It is an integer between 1 and Ox1FFFFFFF.
Only addressing mode 29 bits is supported.

FblCanFdIdRxFunc | M The functional receive Can FD ID. Yes
It is an integer between 1 and Ox1FFFFFFF.
Only addressing mode 29 bits is supported.

FblCanFdIdTxPhy | M The physical transmit Can FD ID. Yes
It is an integer between 1 and Ox1FFFFFFF.
Only addressing mode 29 bits is supported.

32

Table 5 provides a description of each parameter for the container FblSec together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the

Description for exceptions.
Figure 29 shows the FBL Editor window for FblSec.

ETAS RTA-FBL FCA PORT — User Manual

1 FblConfigSet &2
BSW Editor
= =
FBCEOmentS SABEEE | i mi- » e roiconfiaset FhiConfiaset » 8 Fhisec “Fbisec” » cvo~-0
type filter text
2
~ [FBL "FBL" e
~ [3 FbiConfigSet "FblConfigSet” ShortName* FblSec |
> [3 FblCan "FblCan" FORALL
- v
> 83 FbiCore "FbiCore™ LongName |®~
> {3 FbIDid "FbIDid” — 2
> [3 FblGeneral "FblGeneral”
. 3 FblSec “FhlSec” FbiSecCycurHsmintegrat | true v E -
» B FblRegions [3] FblSecSk1 | 2103107943 @~
FblSecsk2 | 355408048 |® -
FblSecTsMainAddress | 2148007936 | ® -
FblSecTsBackupAddress | 2148073472 | ®~
FblSecTsCapacity 130 |®~
FhlSecCsCapacity |7 |®~
FolSecCriCapacity [100 @~
FbiSecCsCriBlackld 2 @~
FblSecTargetName | Dummy_TN12245678 |®~

Figure 29: FblSec

Table 5: Configuration parameters FblSec of the FCA port of RTA-FBL

Parameter O/M | Description Requires
BSW
Re-Gen

FblSecCycurHsmIntegration M Allows to enable or disable the integration No

code for CycurHSM 2.x
This parameter must be configured for ECU
Type B and ECU Type C

FblSecSk1, FblSecSk2 M* Security constants for Seed&Key algorithm to No
unlock level 0x01, mandatory for ECU Type A
and ECU Type B.

FblSecTargetName M* Specifies the Target Name for Signed Firmware | No
Blocks, for details refer to [1].

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

FblSecTsMainStartAddress 0 Specifies the address of the main Trustore No
Block.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

33

ETAS RTA-FBL FCA PORT — User Manual

FblSecTsBackup StartAddress | O Specifies the address of the second Trustore No
Block, the backup copy.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

FblSecTsCapacity 0 Specifies the maximum number of certificates | No
that could be stored in the Trustore.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

FblSecCsCapacity 0] Specifies the number of certificates that could | No
be stored in the CertStore.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

FblSecCriCapacity 0] Specifies the number certificates that could be | No
stored in the Certificate Revocation List.

This parameter must be configured if
CycurHSM sample code is enabled.

This parameter is not present, hence not
configurable, if CycurHSM sample code is not
provided for the selected target.

FblSecCsCrlBlocklId 0 Specifies the index of the region that should be | No
the CertStore and CRL. The chosen index
should be configured in the memory regions as
a data region.

This parameter must be configured for ECU
Type B and ECU Type C

Table 6 provides a description of each parameter for the container FbIDid together with
whether that parameter is Optional or Mandatory (O/M). If O* or M* is specified, then see the
Description for exceptions.

Figure 30 shows the FBL Editor window for FbIDid.

34

ETAS

[FblConfigSet &2
BSW Editor

FBL Contents EABEEE

type filter text

~ [FBL "FBL"
~ [0 FbiConfigSet "FblConfigSet”

(3 FblCan "FblCan”

2 FblCore "FblCore”

2 FbIDid "FbiDid"

3 FblGeneral "FblGeneral”
3 FblSec "FblSec”

22 FblRegions [3]

RTA-FBL FCA PORT — User Manual

I EBL "FBL" » @ FblConfigSet "FblConfigSet” » £ FblDid "FbiDid" » CREAE |

General 2
ShortName* FbIDId |
LongName FOR-ALL v ®

Attributes &
FbIDidBootSwVersion* | 01030330313233343536373820 | @
FbIDidEcuDiagnosticVariant' | 65534 | ®~
FbIDidSupplierld* | 50 | ®~
FbIDidEcuDiagnosticVersion | 123 | ® -
FbIDidFdn* [15 @~
FbIDidAlgorithm...ogrammi |43910 | @~
FbIDidPtEsimHardwareNum | 1234567890 |)~
FbIDidEbomEcuPartNumber | 1234567890 | =~
FbiDidCodepEcuPartNumbe: | 12345678910 | ® -
FbIDidElsmEcuSoftwareNurr | 12345678901 | ® -
FbIDidElsmEcuswC...onNum | 1234567890 | ® -
FbIDidElsmEcuSwA...onNum | 1234567890 | ® -
FbiDidCodepAsse...artNumhb | 12345678910 | ®~
FbIDidElsmEcuHardwareNur | 12345678910 | =~
FbIDidSupplierEcuH...Numb« | 12345678910 | -

Figure 30: FbIDid

Table 6: Configuration parameters FbIDid of the FCA port of RTA-FBL

Parameter O/M | Description Requires
BSW
Re-Gen
FbIDidBootSwVersion M String of 13 hexadecimal bytes value for DID $F180 Yes
The format shall be according to [2]
Byte Boot SW Version Hex Range
Information
0 SW - Year 00-3F
1 SW — Week 01-34
2 SW — Patch Level 00-FF
3-12 | SW Identification 00-FF
FbIDidEcuDiagnosticVariant M Specifies Diagnostic Variant value for DID $F110, it Yes
should be in range 0x01 - OXFFFE
FbIDidSupplierld M Specifies Supplier ID value for DID $F110, it should be Yes
in range 0x00 - OxFFFF

35

ETAS

RTA-FBL FCA PORT — User Manual

FbIDidEcuDiagnosticVersion M Specifies Diagnostic Version value for DID $F110, it Yes
should be in range 0x00 - OxFFFFFFFF

FbIDidFdn M Specifies Flash Definition Number value for DID $F110, Yes
it should be in range 0x00 - OxXFFFF

FbIDidAlgorithmIdReprogramming M Specifies value for DID $F1A4, it should be in range Yes
0x00 - OxFFFF

FbIDidPtEsImHardwareNumber M Specifies value for DID $F188, it should be an 11 bytes | Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidEbomEcuPartNumber M Specifies value for DID $F132, it should be a 10 bytes Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidCodepEcuPartNumber M Specifies value for DID $F187, it should be a 11 bytes Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidEIsmEcuSoftwareNumber M Specifies value for DID $F188, it should be an 11 bytes | Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidEIsmEcuSwApplicationNumber M Specifies value for DID $F18B, it should be a 10 bytes Yes
value.

FbIDidEIsmEcuSwCalibrationNumber M Specifies value for DID $F18A, it should be a 10 bytes Yes
value.

FbIDidCodepAssemblyPartNumber M Specifies value for DID $F188, it should be an 11 bytes | Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidEIsmEcuHardwareNumber M Specifies value for DID $F191, it should be an 11 bytes | Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidSupplierEcuHardwarePartNumber | M Specifies value for DID $F192, it should be an 11 bytes | Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidSupplierEcuSoftwarePartNumber M Specifies value for DID $F194, it should be an 11 bytes | Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidEbomAssemblyPartNumber M Specifies value for DID $F194, it should be a 10 bytes Yes
value. Each byte should be in range 20; 30-39; 41-5A

FbIDidHwSupplierld M Specifies value for DID $F154, it should be in range Yes
0x00 - OxFFFF

FbIDidSwSupplierld M Specifies value for DID $F155, it should be in range Yes
0x00 - OxFFFF

FbIDidEcuSerialNumber M Specifies value for DID $F18C, it should be a 15 bytes Yes
value. Each byte should be in range 30-39; 41-5A

FbIDidSupplierManEcuSwVersion M Specifies value for DID $F195, it should be in range Yes
0x00 - OxFFFF

FbIDidSupplierManEcuHwVersion M Specifies value for DID $F193, it should be in range Yes
0x00 - OxFF

FbIDidPolicyType M* Specifies value for DID $2954, it should be in range Yes
0x00 - OxFF. It is mandatory for ECU Type B and ECU
Type C.

FbIDidErotan 0 Specifies value for DID $F196, it should be a 15 bytes Yes
value. If the parameter is not filled, the DID will not be
created.

FbIDIDF122Size 0] Specifies a particular size for DID $F122. If not Yes

configured, DID $F122 and its corresponding NvM bock
will be generated with default size.

36

ETAS
4.3.3

4.34

4.3.5

37

Files created during generation

RTA-FBL FCA PORT — User Manual

When you generate an instance of the FCA RTA-FBL using the RTA-FBL plugin for ISOLAR-AB,
files are created within a number of folders that you then use to build your RTA-FBL instance.
Table 7 summarizes the folder structure created for the FCA port.

Table 7: Files created by RTA-FBL generation

L1 Folder

Description

. (files in this location)

This contains the root of the project.

./fbl/output/Fbl/Bootloader

This contains the core (port-independent and core-
independent) modules.

./fbl/output/Fbl/BSW

This contains the BSW modules.

./fbl/output/Fbl/INFRA/BLSM

The BLSM contains code for initializing the Bootloader. The
functions in ./src/BLSM_CallOuts.c can be changed as
described in Section 4.7.10, but the functions in
BLSM_Main.c should not be changed. It is the integrator’s
responsibility to ensure that any changes made in the
BLSM do not affect the bootloader’s correct functionality.

./fbl/output/Fbl/INFRA/OS

The OS contains the cyclic scheduler that calls the module
main functions. The OS is provided as a fully functioning
and tested sample, but the integrator may replace the OS
as described in Section 4.7.9. For example, the integrator
may wish to use RTA-OS in order to more easily configure
interrupts for other software integrated with RTA-FBL. It is
the integrator’s responsibility to ensure that any changes
made to the OS do not affect the bootloader’s correct
functionality.

./fbl/output/Fbl/INFRA/Port

This folder contains the code that implements port-specific
functionality.

./fbl/output/Fbl/Tools/Prof

This folder contains the Prof to execute a download using
INCA, for details refer to Section 5.

Building the RTA-FBL instance.

Sample build scripts are provided for a limited set of compilers. See Section 4.6 for more

details on this topic.

If you have the compiler for which sample build scripts are supported on your target, then
you can build the RTA-FBL instance, by running the batch file Build_FBL.bat. In order to first
clean the output directory before building the FBL, use CleanAndBuild_FBL.bat. If you do not
have a compiler for which sample build scripts can be generated, then you will need to create
these yourselves. It is recommended in this case that you first create the sample build scripts
for any supported compiler, and then adapt these scripts.

The RTA-FBL instance for the Dummy Target

The user can select a dummy target when creating a new project (please refer to section
4.3.1). The dummy target provided with the FCA Port cannot be built. You can only use the
generated code as a reference to explore how different parameters change the generated

FBL instance.

The FBL for your target will have undergone an in-depth testing using the compiler and
MCAL that you have chosen. All targets use a common base that require the tools as

described in section 2.10.

ETAS RTA-FBL FCA PORT — User Manual

Note that although different compilers supported by your MCAL, as well as other MCAL
versions for this target should work, these have not been tested. If you do need to generate
your bootloader for a different MCAL/compiler combination than that listed above, it is
recommended that you first contact ETAS support team.

Dummy Target Memory Layout

In order to allow the user to experiment with different memory space configurations, the
dummy target is set up to mimic the memory layout of Infineon’s TC233 processor. This
processor has a memory layout as shown in Table 8. Memory regions of a space must begin
on sector boundaries and the bootloader reserves the first sector (i.e. the memory between
0xA0000000 and OxAO1FFFFF). You can experiment with different configurations of
Application, Calibration and Bootloader space if you have not yet received your Target
package. For example, if you configure a space that uses a memory region that is not on a
region boundary or that enters enter a disallowed space and note the error returned by the
FBL generator.

38

Table 8: Memory layout of the Dummy Target

Bank Sector Start End Comment
0 0xA0000000 | OxAOOO3FFF | Reserved for FBL
1 0xA0004000 | OxAOOO7FFF | Available for
2 0xA0008000 | OxAO00BFFF | Application/Calibration
3 0xA000C000 | OxAOOOFFFF
4 0xA0010000 | OxAOO13FFF
5 0xA0014000 | OxAOO17FFF | Not available for
6 0xA0018000 | OxAO01BFFF | Application/Calibration
7 0xA001C000 | OxAOOLFFFF | Available for
8 0xA0020000 | OxA0027FFF | Application/Calibration
0 9 0xA0028000 | OxAOO2FFFF
10 0xA0030000 | OxAOO37FFF
11 0xA0038000 | OxAOO3FFFF
12 0xA0040000 | OxAOO47FFF
13 0xA0048000 | OxAOO4FFFF
14 0xA0050000 | OxAOOS7FFF
15 0xA0058000 | OxAOOSFFFF
16 0xA0060000 | OxAOO6FFFF | Not available for
17 0xA0070000 | OxAO07FFFF | Application/Calibration
18 0xA0080000 | OxAOOSFFFF | Available for
19 0xA0090000 | OxAO09FFFF | Application/Calibration
1 20 0xAOOAO000 | OxAOOBFFFF
21 0xA00C0000 | OxAOODFFFF
22 OXAOOEO000 | OxAOOFFFFF
23 0xA0100000 | OxAO13FFFF
2 24 0xA0140000 | OxAOL7FFFF
3 25 0xA0180000 | OxAO1BFFFF

ETAS

4.4

4.5

RTA-FBL FCA PORT — User Manual

\ ‘ 26 0xA01C0000 | OXAO1FFFFF

Security

Depending on the configuration of the FBL created instance, the integrator may need to add
two security modules provided by Escrypt:

e FCA Security Manager (FSM)
o CycurHSM

The generated FBL contains stubs of this two stacks in order to allow the user to test the
others FBL functionalities. By default the stubs throw some compilation errors when the project
is build, in order to warn the user that the security functionalities are not present. To suppress
this errors the following define:

#define SUPPRESS_FBL_SEC_STUBS_ERROR_MSG STD_ON

must be set for the project (either at the highest level in the building chain or locally on the
stub files).

Replace the Security Stub Files

The security stack stubs file are located at the following path
"<generated_location>/Fbl/INFRA/Port/src/Security/Stubs”.

Stubs can be replaced with real security stacks by selecting the following option in file
fbl_settings.py:

Target as defined by the compiler
CPU_TARGET = 'tc23xx'

Building options for security stack
SEC STUB ENRBLED = True

If the Stub enabling option is set to True, stubs are used for security, while if are set to False
real stack are used (always use capital for first letter).

The generated code contains also the folders with needed building scripts for FSM!, HSM and
Cycurlib (FSM, HsmHost and Cycurlib folder). The user needs to copy and paste the correct
content from the FSM! and HSM deliveries into "<generated_location>/Fbl/INFRA/SecStack/”,
keeping the generated folder structure:

e Fsm folder structure:
o \inc (from fhwp)
o \src (from fhwp)
= \hsm_hw
= \hsm_sw
o \Cycurlib (from fhwp)
o Hsm folder structure:

1 Also called as FHWP

39

ETAS

4.6

4.7

40

RTA-FBL FCA PORT — User Manual
o CSAI (from ecy_hsm)

= \api
= \src

o Host_Applet (from ecy_hsm)
= \api
= \src

o Host_Mcal (from ecy_hsm_TC23x_HT)
= \api
= \src

o Host_Proxy (from ecy_hsm)
= \api
= \src

o Host_Storage from ecy_hsm
= \api
= \src

If the integrator does not use CycurHSM solution, the integration steps will be different and
he should refer to the security stack used.

Supported targets

RTA-FBL is a hardware independent FlashBootloader, using the abstraction layers provided by
AUTOSAR: the integrator could integrate any targets and MCALs, depending on the customer
needs.

This port has been developed and tested with different MCALs and compilers, please contact
ETAS if you are interested to know the targets already used.

Integrator guidelines

Section 4.3 demonstrated how an RTA-FBL project is created in the ISOLAR-AB plugin and the
RTA-FBL instance generated. This section explains how and where the integrator can modify
this generated instance, as well as integrate the control Application Software on the ECU. This
may require adaptation of the FBL as well as adaptations of your Applications Software.

The integrator may need to make the following changes to the default generated FBL.:
e Memory layout adaptation,
e Completion of user functions,
e BSW module adaptation (optional),
e (C-code startup and trap table updates (optional),
e MCAL adaptation (optional),
e OS adaptation (optional),
e BLSM adaptation (optional).

The integrator may need to make the following changes to the Application Software:
¢ NvM layout adaptation,
e Boot jump handling.

ETAS

4.7.1

4.7.2

4.7.3

41

RTA-FBL FCA PORT — User Manual

The integrator may need to make additional changes not described in this User Manual to
support specific use cases for his ECU. It is the integrator’s responsibility to ensure that any
changes made do not affect the bootloader’s correct functionality.

FBL: Memory Layout Adaptation

To integrate the FBL in your application the first step to do is decide how to set up your
memory regions. This is done using the configuration tool as described in Section 4.3.2. The
allowed memory range depends on your target.

An example of a typical memory layout is depicted in Figure 31.

0x80000000

0x8003FFFF

0x80080000

O0x8027FFFF

0x80040000
0x8007FFFF

Figure 31: Sample memory layout

FBL: User Functions

This port provides some functions that need to be adapted by the integrator.

Few of them must be filled correctly to be fully compliant with FCA norms, while others are
optionals. These can be found in
"<generated_location>/Fbl/INFRA/Port/src/FBL_PortUserCode.c.”:

Initialization

During system initialization, user has two callouts that could be used for ECU init, useful in
case specific hardware initialization is needed (e.g. enable a CAN transceiver or manage the
operating mode of a SBC)

Prototype void Fbl Port UserConfigInitOne (void)

Parameter none

Return Code none

Functional Description Called at system startup during Flash Bootloader
initialization, before the NvM has loaded the data flash.

Pre-Conditions none

Prototype void Fbl Port UserConfigInitTwo (void)

ETAS

4.7.4

4.7.5

42

RTA-FBL FCA PORT — User Manual

Parameter none
Return Code none
Functional Description Called at system startup during Flash Bootloader

initialization, after the NvM has loaded the data flash (thus
only if the application is not executed)

Pre-Conditions none

Shutdown

The user function Fbl Port GoToSleep should be filled to put the ECU in sleep mode,
according to the ECU hardware configuration and sleep strategy. The callout is triggered
according to [REF-01] when the timers of section 5.2.6 Bootloader Sleep/Wakeup Mechanism
are expired

Prototype void Fbl Port GoToSleep (void)
Parameter none

Return Code none

Functional Description Called to put the system in shutdown
Pre-Conditions none

Application validation

At the end of the download the callout Fbl Port UserValidApplication is triggered to
verify that the application is valid and compatible. The callout should be filled with application
specific checks.

When requesting the routine $FF01 — Check Programming Dependencies the callout is
executed only if the signature or CRC check on the blocks has been positive, otherwise a
negative response is returned without triggering the user callback.

Please note that when bit # 1 of DID 2010 is not set, the DTC P0602-00 is returned by FBL.
The same should be done by the application if it is executed in limp mode.

Prototype boolean Fbl Port UserValidApplication (uint$8
* isSwHwCompatible, uint8 *
isSwDataCompatible)

Parameter isSwHwCompatible: pointer to software validity flag, it is

used to update bit #1 and bit #5 of DID 2010
Bit 1 Programming Status - Application
Bit 5 Software not Compatible with Hardware

isSwDataCompatible: pointer to data validity flag, it is
used to update bit #2 and bit #6 of DID 2010

Bit 2 Programming Status - Data

Bit 6 Software not Compatible with Application Data

Return Code TRUE: the application will be executed; this value should be
returned to execute a valid application or an application in
limp mode

FALSE: the application will not be executed and the ECU will
remain in boot mode

ETAS

4.7.6

4.7.7

4.7.8

43

RTA-FBL FCA PORT — User Manual

Functional Description Called after an application software download, to verify the
application validity and compatibility.

Pre-Conditions none

Software Identification Update

After an application software update is successfully performed, the callout
Fbl Port DownloadSuccess is triggered to execute user specific code. This callout could
be used to update software identification values in NVM with the newer values, or to store the
odometer for the last flash programming, or any other ECU specific use case.

The callout is executed at the end of the download only if the signature check has been
positive and the application has been considered valid.

Prototype void Fbl Port UserDownloadSuccess (void)

Parameter none

Return Code none

Functional Description Called after a successful download to execute user code (e.g.
update software identification)

Pre-Conditions none

FBL: BSW adaptation

The BSW modules needed by RTA-FBL and generated in the generated BSW project are listed
in Table 9. This list is the minimum setup needed for the basic FBL. The integrator could
modify the generated BSW project, but should not modify any of the modules of the Dcm or
memory stack except as described in this section. As with the MCAL, the integrator must test
the complete FBL after making any modifications to the generated BSW project.

Table 9: MCAL modules list

BSW Module(s) Notes

Dcm The diagnostic communication module

Mem/IF; Fee; NvM Memory stack modules for the NVM

CanlIf; CanSM; CanTp; ComM,; Communication stack modules

ComStack; PduR

Crc Uses for CRC calculation when verifying the
downloaded application/calibration.

FBL: MCAL adaptation

The MCAL modules needed by RTA-FBL are listed in Table 10. The list is the minimum setup
needed for the basic FBL functionalities (i.e. communication, flashing, etc.). The list does not
include customer specific adaptations like external watchdog, external transceivers, external
EEPROM, etc. If the integrator also wishes to implement additional user function , then other
modules such as the ADC would likely be required. The integrator is then responsible for
testing of the complete FBL after the MCAL integration.

Table 10: MCAL modules list

ETAS

4.7.9

4.7.10

44

RTA-FBL FCA PORT — User Manual

MCAL Module Notes
Can CAN driver
Flash Driver Driver for FLASH erase and programming. This

includes the handling of PFLASH and DFLASH, so
in some cases could be made by two different
modules (i.e. IFX MCALs use Fls for DFLASH and
FlsLoader for PFLASH).

Mcu Provides core functionality such as clock
handling, mcu reset, etc.

Port Provides interface to port pin peripheral.

FBL: OS adaptation

The OS provided with this port is based on a simple cyclic scheduler. This OS does not support
interrupts and is non-preemptive. If you need to integrate additional code to the bootloader,
you will likely need to adapt this OS. This might involve adding co-routines to the existing
tasks or adding new tasks. Adding a new co-routine simply requires adding the function call
with the relevant task body in "Fbl/INFRA/Os/src/Os_Tasks.c". If you need to add a new task
with a different frequency then follow these steps:

1. Add the task to the task list in "Fbl/INFRA/Os/inc/Os_Tasks.h"
2. Add the task to Os_TaskTable in Os_SchTbl in "Fbl/INFRA/Os/inc/Os_Tasks.c"
3. Create the task body in "Fbl/INFRA/Os/inc/Os_Tasks.c"

The frequency used to derive the task periods is defined by SYSTEM_FREQ_HZ in
"Fbl/INFRA/Os/inc/Os.h". You can change this value to match your clock frequency in order
to ensure that the tasks are executed at the correct rate. The timer used is target dependent,
but you can also change this by adapting the function OsPort_InitOsTimerResource in
"Fbl/INFRA/Os/inc/Os_Port.c" and the macro GET_SYSTEM_TIMER in
"Fbl/INFRA/Os/inc/Os_Port.h".

IMPORTANT: The integrator is responsible for ensuring that any modifications made to the
OS are tested to ensure that the FBL continues to operate as expected. In particular, moving
the existing co-routines into a different order or within other tasks will likely result in incorrect
behavior.

FBL: BLSM adaptation

The BLSM is used primarily to initialize the BSW and MCAL modules and to start the bootloader.
An integrator may need to adapt the BLSM to make the initialization calls for additional
modules. This will involve modifying one or more of the Fbl_Port_BLSM_DriverInit functions
in "Fbl/INFRA/BLSM/src/BLSM_CallOuts.c". It is strongly recommended that while additional
init functions can be added, the existing init functions calls are not moved from their current
location with the Fbl_Port_BLSM_DriverInit calls.

In choosing where to add your init functions, note that the NvM is only set up at the end of
Fbl_Port_BLSM_DriverInitOne. Therefore, if your integrated code requires the NVM, you
should add it in Fbl_Port_BLSM_DriverInitTwo.

IMPORTANT: The integrator is responsible for ensuring that any modifications made to the
BLSM are tested to ensure that the FBL continues to operate as expected.

ETAS
4.7.11

45

RTA-FBL FCA PORT — User Manual
ASW: NvM layout adaptation

Adaptation of the NvM is usually required as the application would rarely already incorporate
the FBL NvM layout. This is because the NvM is the interaction mechanism between application
and FBL. In particular, the application writes a flag in NvM and then resets, in order to allow
the FBL to handle the reprogramming request and to know that it has been issued. Moreover,
the FBL could have other internal NvM blocks that need to be copied in case of a page swap
by the application. Therefore, the correct integration of NvM layout comprise the complete
copy of FBL NvM blocks on the application NvM layout. In order for the layout to be consistent,
the Fee persistent IDs of the blocks must match between the application and FBL:

ETAS

~ [NvM "NviM™

~ [0 NvMBlockDescriptors [39]

> [0 NvMBlockDescriptor ©

> [0 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *

» 3 NvMBlockDescriptor *
» [0 NvMBlockDescriptor *

RTA-FBL FCA PORT — User Manual

NvM_MultiBlock” FBL NvMM data subset copied on
NvM_Configld" application NvM layout
MNvMBlockDescriptor_MativeBlock2”
NvMBlockDescriptor_MativeBlock3"
MNvMBlockDescriptor_Dem_GenericMvData”

> B3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor ©
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor *
> [0 NvMBlockDescriptor *
> 3 NvMBlockDescriptor ©
» 3 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *
» 3 NvMBlockDescriptor *
>3 NyMBlockDescriptor ”

MY_ReprogrammingRequestFlagglock”

MNvM_FblDataBlock”

MNvM_HsmMirrorBlockBlock™

MNvM_AuthBootTblinitStsBlock™

SeedKeyAttemptCountBlock™
MNvM_ProgrammingConditionsBlockBlock™
DID2002_OdometerReprogrammingBlock”
DID2010_ProgrammingStatusBlock”
DID201A_ApplSwReprogrammingCounterBlock”
DID201B_DataSwReprogrammingCounterBlock™
DIDF10D_DiagnosticSpecificationBlock”
DIDF110_ECUDiagnosticldentificationBlock”
DIDF112_ESLMHardwareNumberBlock™
DIDF122_SoftwareEBOMPartNumberBlock™
DIDF132_EBOMEcuPartNumberBlock”
DIDF133_EBOMAssemblyPartMumberBlock”
DIDF134_CODEPAssemblyPartNumberBlock”
DIDF154_HardwareSupplierldentificationBlock”
DIDF155_SoftwareSupplierldentificationBlock”
DIDF180_BootSoftwareVersionBlock”
DIDF187_CODEPECUPartNumberBlock”
DIDF188_VehicleManufacturerECUSoftwareNumberBlock”
DIDF18A_VehicleSwManufacturerECUCalibrationNumberBlock”
DIDF18B_VehicleSwManufacturerECUApplicationMumberBlock™
DIDF18C ECUSerialNumberBlock”
DIDF191_VehicleManufacturerECUHardwareNumberBlock”
DIDF192_SupplierManufacturereCUHardwarePartNumberBlock”
DIDF193_SupplierManufacturerECUHardwareVersionMumberBlock”
DIDF194_SupplierManufacturereCUSoftwarePartNumberBlock”
DIDF195_SupplierManufacturerECUSoftwareVersionNumberBlock”
DIDF1A4_AlgaorithmlIDReprogrammingBlock™
DIDF1B4_ApplFingerprintBlock”
DIDF1B5_DataFingerprintBlock”

DID2954 PolicyTypeBlock”

Figure 32: FBL NvM blocks subset on the Application NvM layout

46

ETAS

4.7.12

47

RTA-FBL FCA PORT — User Manual

FeeBlockSize® i -
FeelmmediateData™ fa - ¥

FeeMumberOfWritelycles® 1 -

FecRbBlockPersistentld” 1 -

FesRbCallbackEnd dULL_PTF {
EpefthallbackErms / MULL PTR ¥
FesRbDataF .

T parsistentiDimustimatch

FeeRbMaFallback ra ' -

FeeRbOrigin® MV - -

Figure 33: Persistent ID of a block

This completes the update of the BSW, so it could be re-generated now in order to allow
the update of SWC Description of service components. Note that if you already are using the
Persistent IDs generated by fblgen, you can change these values as long as you keep them
consistent with the values in the Application.

ASW: Boot Jump Handling

Once memory layout, Dcm and NvM configuration are compatible between Application and
FBL, the two entities are compatible and can “communicate”. What is missing at this stage is
to integrate the Application to the FBL jump logic. This can be done in multiple ways, but in
the end, apart from other OEM-specific steps, it can be done with the sequence highlighted in
Figure 34.

Before jumping into bootloader, the application has to be sure that the needed data is saved
in NvM. The data shared between the FBL and the application to manage the boot jump are
the reprogramming request flag and the Dcm reprogramming conditions. The flag is checked
at startup by the FBL to decide if jumping in application or remaining in boot mode, while the
Dcm reprogramming conditions are used to send the final response to $10 02 request, if the
application wants to send only a NRC $78 and the FBL is in charge of sending the final
response.

The reprogramming request flag is a uint32 and it shall be set by the application to
FBL_BOOTM REPROGRAMMING REQUEST FLAG STATE oN. For details on Dcm reprogramming

conditions structure, please refer to AUTOSAR specification of the structure of type
Dcm_ ProgConditionsType

ETAS

48

RTA-FBL FCA PORT — User Manual

App Running

51002 Req?

YES

Send NRC $78

Store
Reprogramming
Flag and Reqg
Info

Data
nersisted?

YES

Figure 34: Handling of jump logic

ETAS

49

RTA-FBL FCA PORT — User Manual
How to Flash the ECU with INCA and the ProF Script

This section explains how to perform the download process with INCA.

Step1: Install INCA and ES58x driver

Before starting the actual download process, INCA and the HW interface driver must be
installed on the machine that will be used to flash the ECU. In this example, we will use an
ES58x as HW interface.

1. Please make sure you are using the official released INCA V7.2.x version package,
and make sure the valid node-locked license is also installed on your testing PC,

2. Make sure that the used HW interface driver is installed correctly.

Step2: Setup the environment

Launch INCA and add a new database using the “New"” button on the toolbar and name it with
your preferred db name.

(Z1INCA V7.2.4 Build 137
Database Edit View Options Utilities

I H Lo

1 Database Objects

Figure 35: New database creation

Right-click on the created top folder ("DEFAULT") and select Add->Workspace.

ujm_ Add top folder

Add folder Insert
[
X Delete Delete -Experlment Ctrl+T
B ECU-Project (A2I)... Ctrl+P
Ijj o Crle C aw COM-Configuration Alt+C
Cal Scenanic-Configuration
B canDBC..
Rename F2 %Measure—[atalog...
@ ECU Documentation...
% Import Ctrl+M AUTOSAR
& Export Ctrl+E J1939—DBC...
Write ' List of CAM Messages
Read CAN Message Log File...
Convert Experiment] [If

Figure 36: Adding a workspace

Then, right-click again from the “"DEFAULT” folder and select Add—>ECU-Project (A2L):

ETAS

50

RTA-FBL FCA PORT — User Manual

. DEFAULI || I@! t-JE?
— SIS

- Add folder Insert
Beplace i Workspace Ctrl+W
X Delete Delete Experiment Ctrl+T —
dp cut Cirle X T ECU-Project (A21}... Ctrl+P
B Capy Chlec %5 com-Configuration Alt+C
Paste Chrl 4 Cal Scenario-Configuration
. L canDBC..
Rename F2 % Measure-Catalog... —
Edit Return @ ECU Documentation...
& Import Ctrl+M @ AUTOSAR
% Export Ctrl+E 4 n939-DEC.. o
Key Wariable List
Write Y| List of CAN Messages
Read anly Read CAN Message Log File...
Convert Experiment 3 I

Figure 37: Adding an ECU project

From the dialog window navigate to the where the ProF script is located in your delivery and

select the file “ECU_dummy.a2l”, and following this, from the same path, choose the file
“ECU_dummy.hex".

Left-click on the newly created Workspace and select the HW icon on the bottom-right window.

39 al o | @S H D@ HE
| Database Objects

3¢

i %Fggll._l-_rDummy ?9

w Workspace |
4 Project/device

.

Figure 38: HW icon

ETAS

51

RTA-FBL FCA PORT — User Manual

From the newly opened window select the “Search for connected devices” option on the
toolbar, then select USB (and click OK), then UDS (and click OK) and finally associate the
ECU_dummy project, as shown in Figure 41.

% Hardware: >¥Workspace< Expenment: >Letault< T

File

Hardware

E)

1 Hardware devices

Device Channels View 7

ot

me

HWEK Workspace

-
L. Select the host interfaces you want to search ...

X

Use

@] USB

Virtual_Hostinterface

[Virtual_HostInterface [}

GPS

[C1GPs

12534

[]J2534

Ethernet

[T Ethernet

COM

[Fcom
[comz
[C]com3
O] comd
PCMCIA
[C] PCMCIA

Options
[T Skip host interface selection on next search.

Lo |

Cancel

Figure 39: Search of HW interface

ETAS RTA-FBL FCA PORT — User Manual

The following additional hardware modules were found,
the modules you want to add to the hardware
configuration.

Available HW devices

—— 5 CAN-Monitoring:
—— 58 cAN-Outputd

—— @ CCP

—— X5l 11939-Monitoring

—— e KWP2000:1

— o [IEE

—— @ XCP:1

—— @ KCPSimTimel %

Options

[7] Skip hest interface selection on next search.

Figure 40: Selection of UDS interface

-
Select project and working data for UDS:

Edit View Dataset
I 1 Projects Add 3 Datasets
||= ¢ perauLT = ¢ FblDemoAppProject
"~ ECU Dummy L— @ FbiDemoAppProject <FIFSMI>

(19/02/2018 14:24:44.0) Ch: 0

Project - ECU_Dummy

2 Project Comment
ASAM-2MC file: C:\Data\ETAS\Products\RTA-FBL\Repo_Dev'30_Implementationitr =

4 Dataset Comment

the source of this dataset is the hexfile:

C:\Data\ETAS\Products\RTA-FBL\Repo_Devi30_Implementation\trunk\FblPorts\M
19/02/2018 14:24:44 216 KB

PROJECT NAME: ECU_Base_Prj_CAN3Mon_UdsFlashing

PROJECT LONGIDENTIFIER: Generated by ETAS from Project ECU_Base_Prj_CAN3Mc
HEADER VERSION: 000

HEADER PROJECT_NO: ASD

4 n b <

T | 3

[o][caneal

Figure 41: Association of ECU_dummy project

Now you can click the “Initialize Hardware” button on the toolbar and the devices should
initialize and appear as connected on the left

ETAS RTA-FBL FCA PORT — User Manual

eNoEY i IEEE 4 2113 |

1 Hardware devices

W
= @ E5581:1

SM: 37638

Figure 42: Device connection

Step3: Install ProF script
Now you can click the *Manage Memory Page” icon on the toolbar.

Device Channels View 7

"i JEER 4 -RE Y o L2

5

ce

Figure 43: Manage memory page selection

From the “Utilities” menu of the popup window, select the option “Configure PROF”.

5 Memory pages of ES582.1:T\CAN: 1\UDS:1 [Reference page] X
Dataset 1litl

15t Configure PROF... Doit
Action From Close

Download ~ | [File Working page

Apply to.. + Code page [Jauto close

Code & data e Reference page

+ Code page
Calibration access Device group active
Datasets

WP: ECU_Dummy_1
RP: PSFB_download

b =

ls es
File

150H

Checksum Datasets
Working page unknown
Reference page unknown
Code page unknown

EPROM ID ASAP2:(not available)
EPROM 1D DS: (not available)

Figure 44: ProF configuration selection

53

ETAS

54

RTA-FBL FCA PORT — User Manual

In the new window, select Install and navigate to
<generated_location>\Tools\Prof\Install\CAN

<generated_location>\Tools\Prof\Instal\CANFD, depending on the needed bus type.

)

Configurations 0K

| Install... I

Delete

Directory

Description

Figure 45: Install ProF script

the

path
or

Path Selection - Select ProF Configuration Directory
Select the directory of a ProF configuration to be installed.

ProF configuration: FBL_FCA_PORT_CAN_FD V1.0

w FCA_Port_TC233_ECU_A
Fbl

Output

Samples

site_scons

LV R VIR W

Tools
> DemoApp

w FroF

A" Install

w CAN
» FCA
> CANFD

> FCA_Port_TC233_ECU_C

AR ik

Cancel

Figure 46: Selection of ProF script to install

When you click "OK”, the ProF script will be installed.

ETAS

55

RTA-FBL FCA PORT — User Manual

& Browse ProF configurations >

Configurations OK

. nstall...

Delete

Directory | C\ETASDATA\PROF\FBL_FCA_PORT_CAN_FD |

Description | “FBL_FCA_PORT" |

Figure 47: ProF script installation confirmation

Step4: Flash the ECU

To start the download process switch to the “Enhanced” tab on the “Manage memory page”
window, select “Flash Programming” as Action and click on “Do It".

Dataset Utilities

1 Standard 2 Enhanced [Doit }
Action From Close |
Flash programm | |File ECU flash '

auto close
Apply to... L]

Code & data ~

Calibration access Device group active

[VWorking page | Datasets [
—s — WP: ECU_Dummy_1 [
= & RP: PSFB_download |

Datasets

File
Checksum Datasets
Working page unknown
Reference page unknown
Code page unknown

EPROM 1D ASAPZ2:(not available)
EPROM 1D Ds: (not available)

Figure 48: Download Process Start

From the new dialog window, select the .hex file you want to download and click on “*Open”.

ETAS RTA-FBL FCA PORT — User Manual

From the ProF mask that is displayed select the option you want to use and click "OK" to start
the download process.

t_‘?@ ProF settings / FBL_FCA_PORT_CAN_FD (V1.0} >

Parameters

Configuration FBL_FCA_PORT_CAN_FD (V1.0 ~ Configure...

Settings

Eilename‘: i lnectanecat B '\._Dﬂ L Toolc Dla Bropuco

Action: Flash All v
0K Cancel

Figure 49: Option Selection

56

ETAS

57

RTA-FBL FCA PORT — User Manual

sﬁ ProF settings / FBL_FCA_PORT_CAN_FD (V1.0

Parameters

Configuration FBL_FCA_PORT_CAN_FD (V1.0 ~
Settings

Filename: C\Instance\FCA_PO~1\Tools\De
Action: Flash MY_APP only

0K | Cancel

Configure...

Browse...

>

Figure 50: Start Download

ETAS

58

RTA-FBL FCA PORT — User Manual

PROF Control Flow Monitor

Date

et

ECU file name |C:\hstance\FCA_P0"1 \Tools\DemoApp\O

Iﬂ&.DB.ZﬂZﬂ

Device [Ess82.1:10077

Project [FBL_FCA_PORT

Baudrate |

Fill byte 0

Reading ...

Address < B800E0000 ignored (address: 80000000)
Sorting ... PASS 1

Sorting ... PASS 2

Writing binary file
Conversion successful
Programming block: MY APP

WriteDataByIdentifier:

HEX file: 200E0000 - 80150353
Binary file: 800E0000 - BOLlFFFEF

RoutineControl: Hash wvalue Match

RoutineControl: Erase Flash
ProgramMemory: TransferData

Programming from address S200EQ00Q0R to S80LFFFFFR ...
Progress
[9%
Programming from address 800E0000 to Bapsed time: 13.6

Figure 51: Download in progress

ETAS

59

RTA-FBL FCA PORT — User Manual

PROF Control Flow Monitor

Danice |Esssz.1 100797
Project [FBL_FCA_PORT Date
Baudrate |

et

ECU file name |C:\hstanc:e\FCA_P0"1 \Tools\DemoApp\O

|na.os.2nzn

WriteDataByIdentifier:

RoutineControl: Erase Flash

ProgramMemory: TransferData

Programming from address B800E0000h to B0LFFFFFh
RoutineControl: Check Program

RoutineControl: Check Programming dependencies
Verify OK

->Perform ECU hard reset

Reset OK

FBL Downloading Action finished Successfully!
Please Disconnect your client side PC or tester,
If Application Software is not running,
please do a power on reset manually again.
Thank you for using ETAS products.

Verifying from address BS00E0000h to 801lFFFFFh ...

0%

Close |

Figure 52: Download Completed

ETAS

6.1

6.2

6.3

6.4

60

RTA-FBL FCA PORT — User Manual

Privacy

Privacy Statement

Your privacy is important to ETAS so we have created the following Privacy Statement that
informs you which data are processed in RTA-FBL, which data categories RTA-FBL uses, and
which technical measure you have to take to ensure the users privacy. Additionally, we provide
further instructions where this product stores and where you can delete personal or personal-
related data.

Data Processing

Note that personal or personal-related data respectively data categories are processed when
using this product. The purchaser of this product is responsible for the legal conformity of
processing the data in accordance with Article 4 No. 7 of the General Data Protection
Regulation (GDPR). As the manufacturer, ETAS GmbH is not liable for any mishandling of this
data.

Data and Data Categories

When using the ETAS License Manager in combination with user-based licenses, particularly
the following personal or personal-related data respectively data categories can be recorded
for the purposes of license management:

e Communication data: IP address,
e User data: UserID, WindowsUserID.

Technical and Organizational Measures

This product does not itself encrypt the personal or personal-related data respectively data
categories that it records. Ensure that the data recorded are secured by means of suitable
technical or organizational measures in your IT system. Personal or personal-related data in
log files can be deleted by tools in the operating system.

ETAS

RTA-FBL FCA PORT — User Manual

7 ETAS Contact Addresses
ETAS HQ
ETAS GmbH
BorsigstraBe 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

ETAS Subsidiaries and Technical Support

61

For details of your local sales office as well as your local technical support team and product
hotlines, take a look at the ETAS website:

ETAS subsidiaries WWW: www.etas.com/en/contact.php

