
ETAS RTA Lightweight Hypervisor

User Manual

2

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-

ment. The software described in it can only be used if the customer is in possession of a
general license agreement or single license. Using and copying is only allowed in concur-
rence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmit-
ted, stored in a retrieval system or translated into another language without the express
written permission of ETAS GmbH.

© Copyright 2020 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document LightweightHypervisorUserManual v1.1.0 R01 EN – 11.2020

ETAS Contents

ETAS RTA Lightweight Hypervisor User Manual 3

Contents

1 Introduction.. 9

1.1 Safety Notice .. 9
1.2 Definitions and Abbreviations .. 10
1.3 Conventions ... 10

2 Installation ... 12

3 ETAS RTA Lightweight Hypervisor Concepts... 13

3.1 Time-Slicing ... 14
3.2 Master Software and VM Separation... 14
3.3 The Master Software Controls the System ... 16
3.4 Pseudo-Interrupts ... 17
3.5 APIs .. 17

4 Master Software .. 18

4.1 Configuring RTA-OS... 18
4.2 Building the RTA-LWHVR with the Master Software .. 19
4.2.1 Locating the RTA-LWHVR Sections... 19
4.2.2 Locating the RTA-LWHVR Vector Table ... 20
4.3 Initialising the Master Core ... 20
4.4 Setting up the C Execution Environment ... 20
4.5 Starting Application Cores and the RTA-LWHVR ... 20
4.6 Stopping and Re-starting the RTA-LWHVR .. 21
4.7 Re-Starting the RTA-LWHVR on Individual Application Cores.. 21
4.8 Clock-Tick Interrupt Source .. 22
4.8.1 Clock-Tick Frequency and Ticks ... 22
4.8.2 Clock-Tick Initialization... 22
4.8.3 Clock-Tick Reset.. 22
4.8.4 Ideal Clock-Tick Sources... 22
4.9 RTA-LWHVR Stack Usage on Application Cores .. 23
4.10 Controlling the RTA-LWHVR and VMs ... 23
4.11 Communicating with and between VMs... 23
4.12 Restrictions on the Master Software ... 23

5 Virtual Machines .. 24

5.1 What VMs Can and Cannot Do .. 24
5.2 Scheduling VMs... 24
5.2.1 Example of Scheduling ... 25
5.3 VM Identifiers ... 26
5.4 Building VMs... 26
5.5 Entry-Point ... 26
5.6 VM Errors... 26
5.7 VM Status Block .. 26
5.7.1 ticksSinceStart (offset 0) .. 27
5.7.2 ticksLeftInTimeslice (offset 4) ... 27
5.7.3 psIntEnabled (offset 8) .. 27
5.7.4 psIntPending (offset 12) .. 27

ETAS Contents

ETAS RTA Lightweight Hypervisor User Manual 4

5.7.5 psIntResumeAddress (offset 16).. 27
5.7.6 psIntReason (offset 20) ... 27
5.7.7 psIntPreviousEnabled (offset 24) ... 27
5.7.8 psIntRestoreRegister (offset 28) .. 28
5.7.9 psIntGenerateOnTick (offset 32) ... 28
5.7.10 ticksWhileRunning (offset 36) .. 28
5.8 Pseudo-Interrupts ... 28
5.8.1 Pseudo-Interrupt Numbers and Priorities .. 28
5.8.2 Pending and Enabled Pseudo-Interrupts ... 28
5.8.3 Pseudo-Interrupt Injection.. 29
5.8.4 When Pseudo-Interrupts are injected ... 29
5.8.5 Pseudo-Interrupts used by the RTA-LWHVR .. 29
5.8.6 Pseudo-Interrupt Handlers.. 30
5.8.7 Responding to a Shutdown Pseudo-Interrupt... 30
5.8.8 Pseudo-Interrupts on VM (Re-) Start .. 31

6 Configuration .. 32

6.1 Concepts.. 32
6.2 Running the Configuration Generator Tool .. 33
6.3 LWHVR_Configuration.h ... 33
6.3.1 General.. 33
6.3.2 Application Cores .. 34
6.3.3 Assigning Application Cores to Physical Processor Cores .. 34
6.3.4 Configuring VMs.. 34
6.3.5 Schedule Table ... 36
6.3.6 Example .. 36

7 Types and Constants .. 40

7.1 LWHVR_BooleanType .. 40
7.2 LWHVR_UInt32Type .. 40
7.3 LWHVR_RegisterType .. 40
7.4 LWHVR_InterruptIdType .. 40
7.5 LWHVR_MemoryCopyExtentType... 40
7.6 LWHVR_VmIdType .. 40
7.7 LWHVR_ErrorType... 40
7.8 LWHVR_VMStatusBlockType ... 42

8 Master Software API .. 43

8.1 LWHVR_Init ... 43
8.2 LWHVR_Start.. 43
8.3 LWHVR_AllHaveStarted .. 44
8.4 LWHVR_Stop .. 44
8.5 LWHVR_StopVM.. 45
8.6 LWHVR_ShutdownVM .. 46
8.7 LWHVR_RestartVM .. 46
8.8 LWHVR_RequestExtraTimeForVM .. 47

9 Master Software Call-back Functions... 52

9.1 LWHVR_StartTimerCallback .. 52
9.2 LWHVR_ClockCallback.. 52
9.3 LWHVR_UnexpInterruptCallback.. 53
9.4 LWHVR_UnexpInterruptHook .. 53
9.5 LWHVR_ErrorCallback .. 54
9.6 LWHVR_StoppedVMCallback ... 54
9.7 LWHVR_ShutdownVMCallback ... 55
9.8 LWHVR_VMErrorCallback.. 55
9.9 LWHVR_GlobalUnlockCallback ... 56
9.10 LWHVR_GlobalRelockCallback ... 57
9.11 LWHVR_CoreUnlockCallback ... 58

ETAS Contents

ETAS RTA Lightweight Hypervisor User Manual 5

9.12 LWHVR_CoreRelockCallback ... 59
9.13 Restrictions on all Call-back Functions .. 59
9.14 Restrictions on Call-back Functions that run on an Application Core 60

10 Configuration Variables... 61

10.1 LWHVR_CoreConfigWord.. 61

11 VM API... 62

11.1 LWHVR_VMAPI_SYNC_PS_INTS .. 62
11.2 LWHVR_VMAPI_RETURN_FROM_PS_INT .. 62
11.3 LWHVR_VMAPI_INJECT_PS_INT ... 63
11.4 LWHVR_VMAPI_SHUTDOWN .. 63
11.5 LWHVR_VMAPI_REQUEST_EXTRA_TIME .. 64
11.6 LWHVR_VMAPI_ATOMIC_MEMORY_COPY .. 67

12 Avoiding Schedule Timing Issues ... 69

12.1 Schedule Drift... 69
12.2 Interrupt Blocking by VMs .. 70
12.3 Dealing with Interrupt Blocking ... 71
12.3.1 VM API Service Calls .. 72
12.3.2 Error Handling... 73
12.3.3 Stopping a VM... 74

13 ETAS Contact Addresses ... 76

ETAS Figures

ETAS RTA Lightweight Hypervisor User Manual 6

Figures
Figure 1: A RTA-LWHVR System .. 13

Figure 2: Separate Master Software and VM Memory Images... 15

Figure 3: Virtual Machine Memory Regions.. 16

Figure 4: APIs in a RTA-LWHVR System .. 17

Figure 5: Master Software ... 18

Figure 6: A Schedule Table... 24

Figure 7: Simple Scheduling ... 25

Figure 8: Schedule Drift... 69

Figure 9: Interrupt Blocking by VMs .. 70

Figure 10: Worst-case Interrupt Blocking ... 71

ETAS Document History

ETAS RTA Lightweight Hypervisor User Manual 7

Document History
Date Summary State

25 March 2016 First draft Draft

15 March 2017 First complete version Draft

04 April 2017 Updated after review Released

V1.0.0 R01

07 September 2017 Separated into core manual (this document) and target specific
manual.

Added support for multiple application cores in the
configuration (see section 6.3.2).

Added support for mapping application cores to physical cores
in the configuration (see section 6.3.3).

Added descriptions of LWHVR_GlobalUnlockCallback(),

LWHVR_GlobalRelockCallback(),

LWHVR_CoreUnlockCallback() and

LWHVR_CoreRelockCallback().

Updated section 7.7 to include target specific error codes.

Draft

08 November 2017 Updated section 7.7 to include LWHVR_ErrorStackInvalid

error code.

Draft

08 December 2017 Updated section 7.7 to include LWHVR_ErrorInitializing

error code.

Updated section 8.1 (LWHVR_Init) to explain that

LWHVR_Init() must be called again before re-starting the

RTA-LWHVR when it has been stopped with LWHVR_Stop().

Updated section 8.2 (LWHVR_Start) to mention re-starting

individual application cores.

Added note about LWHVR_ErrorCallback() being called

with the LWHVR_ErrorInitializing error code to sections

8.5 (LWHVR_StopVM), 8.6 (LWHVR_ShutdownVM), 8.7

(LWHVR_RestartVM) and 8.8

(LWHVR_RequestExtraTimeForVM).

Added restriction about APIs running without pre-emption to
sections 8.5 (LWHVR_StopVM), 8.6 (LWHVR_ShutdownVM),

8.7 (LWHVR_RestartVM) and 8.8

(LWHVR_RequestExtraTimeForVM).

Removed restriction about master software API functions being
called before LWHVR_AllHaveStarted() returns

LWHVR_TRUE.

Update section 4.6 with the need to re-call LWHVR_Init().

Added section 4.7 about re-starting individual application

cores.

Draft

30 January 2018 Fixed some spelling mistakes. Draft

20 March 2018 Added section 5.8.8 and a note to section 8.6 about pseudo-
interrupts being disabled and pending pseudo-interrupts being
cleared when a VM is re-started.

Draft

8 October 2020 Updated ETAS address. Draft

19 October 2020 Updated section 9.13 to note that Draft

ETAS Document History

ETAS RTA Lightweight Hypervisor User Manual 8

LWHVR_RequestExtraTimeForVM() may be called by

LWHVR_ClockCallback().

16 November 2020 Updated after review: fixed UK vs US spelling inconsistencies. Released
v1.1.0 R01

ETAS Introduction

ETAS RTA Lightweight Hypervisor User Manual 9

1 Introduction

This document is the user manual for the ETAS RTA Lightweight Hypervisor (RTA-LWHVR).
The intended audience for this document is the integrator who builds the RTA-LWHVR into
an ECU and the application developer who creates virtual machines (VMs) to be run under
the control of the RTA-LWHVR.

This document describes the target independent features of the RTA-LWHVR. Please see the
target specific user manual for your target, “LightweightHypervisorUserManual-
<target>.pdf”, for target specific details.

1.1 Safety Notice

WARNING!

The use and application of this product can be dangerous. It is
critical that you carefully read and follow the instructions and
warnings below and in all associated user manuals.

This ETAS product fulfills standard quality management requirements. If requirements of
specific safety standards (e.g. IEC 61508, ISO 26262) need to be fulfilled, these

requirements must be explicitly defined and ordered by the customer. Before use of the
product, customer must verify the compliance with specific safety standards.

This ETAS product enables a user to influence or control the electronic systems in a vehicle
or in a test-bench. THE PRODUCT IS SPECIFICALLY DESIGNED FOR THE EXCLUSIVE USE BY
PERSONNEL WHO HAVE SPECIAL EXPERIENCE AND TRAINING.

Improper use or unskilled application of this ETAS product may alter the vehicle
performance or system performance in a manner that results in death, serious personal
injury or property damage.

 Do not use this ETAS product if you do not have the proper experience and training.

 Also, if a product issue develops, ETAS will prepare a Known Issue Report (KIR) and
post it on the internet. The report includes information regarding the technical impact
and status of the solution. Therefore you must check the KIR applicable to this ETAS
product version and follow the relevant instructions prior to operation of the product.

The Known Issue Report (KIR) can be found here: http://www.etas.com/kir

 Any data acquired through the use of this ETAS product must be verified for reliability,
quality and accuracy prior to use or distribution. This applies both to calibration data
and to measurements that are used as a basis for calibration work.

 When using this ETAS product with vehicle systems that influence vehicle behavior
and can affect the safe operation of the vehicle, you must ensure that the vehicle can
be transitioned to a safe condition if a malfunction or hazardous incident should occur.

 When using this ETAS product with test-bench systems that influence system behavior
and can affect the safe operation of the system, you must ensure that the test-bench
can be transitioned to a safe condition if a malfunction or hazardous incident should
occur.

 All legal requirements, including regulations and statutes regarding motor vehicles and
test-benches, must be strictly followed when using this product.

 It is recommended that in-vehicle use of the ETAS product be conducted on enclosed
test tracks.

 Use of this ETAS product on a public road should not occur unless the specific
calibration and settings have been previously tested and verified as safe.

http://www.etas.com/kir

ETAS Introduction

ETAS RTA Lightweight Hypervisor User Manual 10

DANGER!

IF YOU FAIL TO FOLLOW THESE INSTRUCTIONS, THERE MIGHT
BE A RISK OF DEATH, SERIOUS INJURY OR PROPERTY DAMAGE.

THE ETAS GROUP OF COMPANIES AND THEIR REPRESENTATIVES, AGENTS AND
AFFILIATED COMPANIES DENY ANY LIABILITY FOR THE FUNCTIONAL IMPAIRMENT OF
ETAS PRODUCTS IN TERMS OF FITNESS, PERFORMANCE AND SAFETY IF NON-ETAS
SOFTWARE OR MODEL COMPONENTS ARE USED WITH ETAS PRODUCTS OR DEPLOYED TO
ACCESS ETAS PRODUCTS. ETAS PROVIDES NO WARRANTY OF MERCHANTABILITY OR
FITNESS OF THE ETAS PRODUCTS IF NON-ETAS SOFTWARE OR MODEL COMPONENTS ARE
USED WITH ETAS PRODUCTS OR DEPLOYED TO ACCESS ETAS PRODUCTS.

THE ETAS GROUP OF COMPANIES AND THEIR REPRESENTATIVES, AGENTS AND
AFFILIATED COMPANIES SHALL NOT BE LIABLE FOR ANY DAMAGE OR INJURY CAUSED BY
IMPROPER USE OF THIS PRODUCT. ETAS PROVIDES TRAINING REGARDING THE PROPER
USE OF THIS PRODUCT.

1.2 Definitions and Abbreviations

API

Application Programmer’s Interface.

Application core

A processor core that runs application software.

Application software

Software that runs inside a virtual machine on an application core.

Integrator

The person who integrates the RTA-LWHVR into an ECU system.

RTA-LWHVR

ETAS RTA Lightweight Hypervisor

Master core

The processor core that controls the ECU system and performs most of the I/O.

Master software

All software, except for the RTA-LWHVR itself, that does not run inside VMs.

Pseudo-interrupt

An asynchronous interrupt-like event injected into a VM.

Time-slicing

A method of sharing a processor’s time between multiple VMs.

Virtual Machine (VM)

A container or “sandbox” that runs application software in a way that the application
software cannot interfere with application software running in another virtual machine
or the master software.

VM Status Block

A block of memory that is used to communicate information between the RTA-LWHVR
and a VM.

1.3 Conventions

The following typographical conventions are used in this document:

ETAS Introduction

ETAS RTA Lightweight Hypervisor User Manual 11

OCI_CANTxMessage msg0 = Code snippets are presented on a gray background and in
the Courier font.

Meaning and usage of each command are explained by
means of comments. The comments are enclosed by the
usual syntax for comments.

Choose File  Open. Menu commands are shown in boldface.

Click OK. Buttons are shown in boldface.

Press <ENTER>. Keyboard commands are shown in angled brackets.

The "Open File" dialog box is
displayed.

Names of program windows, dialog boxes, fields, etc. are
shown in quotation marks.

Select the file setup.exe Text in drop-down lists on the screen, program code, as
well as path- and file names are shown in the Courier font.

A distribution is always a one-
dimensional table of sample
points.

General emphasis and new terms are set in italics.

ETAS Installation

ETAS RTA Lightweight Hypervisor User Manual 12

2 Installation

The contents of the RTA-LWHVR distribution are as follows:

Hypervisor\

This directory contains the source code for the embedded hypervisor.

Configuration Generator\

This directory contains the configuration generator tool executable.

Documentation\

This directory contains documentation.

There is no installation process beyond copying files to a Windows PC.

To use the RTA-LWHVR a LWHVR_Configuration.h file should be created – see section 6

– and then the source code compiled and linked into your system – see section 4.

ETAS ETAS RTA Lightweight Hypervisor Concepts

ETAS RTA Lightweight Hypervisor User Manual 13

3 ETAS RTA Lightweight Hypervisor Concepts

This chapter explains what the ETAS RTA Lightweight Hypervisor is and provides
background information to help understand later chapters.

The ETAS RTA Lightweight Hypervisor (RTA-LWHVR) is used in ECUs with multicore
processors where one core, the master core, runs software directly on the hardware – e.g.
RTA-OS and other AUTOSAR software - and other, application cores, run independent
applications contained inside virtual machines (VMs).

Figure 1: A RTA-LWHVR System

The software running on the master core is called the master software. The master software
is responsible for all interaction with hardware. The master software contains device drivers
and their interrupt handlers. VMs do not access hardware1 or contain hardware interrupt
handlers. When an application running in a VM needs to access a peripheral, the access is
carried out by the master software on behalf of the VM.

A VM is a container for some software. A VM provides an execution environment that is
almost the same as the environment provided by the application core if the RTA-LWHVR
were not present. The RTA-LWHVR is agnostic to what the software is that runs inside a VM.
For example, a VM could run hand written assembler, a simple C code program, or an
AUTOSAR system with RTA-OS, an RTE and Application Software Components.

The software running inside a VM is isolated from the master software and other VMs except
where explicit communication (via shared memory) occurs. Each VM is assigned a portion of
the system’s memory and the processor’s memory protection unit (MPU) is used to ensure
that a VM can only access the memory it has been assigned.

VMs execute code in one of the processor’s less privileged modes (e.g. “user” mode) to
ensure that the code in a VM cannot damage the master software, RTA-LWHVR or another
VM.

1 In fact a VM could directly access a hardware register if the register were memory mapped and the VM were
given permission to access the register’s memory address. However this would not be the normal way of using
the RTA-LWHVR.

 Application Core

VM VM VM

Master Core

RTA-OS

AUTOSAR

BSW
CDD

RTE

SWC in

trusted

Appl

S
W
C

SWC in

trusted

Appl

SWC in

trusted

Appl

SWC in

trusted

Appl

SWC in

trusted

Appl

 Lightweight Hypervisor

 RTE RTE

CDD
CDD

RTA-OS RTA-OS

RTE

CDD

RTA-OS

VM

None

AUTO-

SAR

Code

Communication

ETAS ETAS RTA Lightweight Hypervisor Concepts

ETAS RTA Lightweight Hypervisor User Manual 14

One application core may support multiple VMs. This is done by sharing the core between
VMs by using time-slicing. A time-slice is a period of time for which a VM runs. The RTA-
LWHVR scheduler runs a VM for a time-slice, then suspends the VM and runs another VM for
a time-slice.

The master software and the RTA-LWHVR code are compiled and linked into a single
memory image (e.g. elf, Intel hex or Motorola SRec). The software that will run in a VM is
compiled and linked into a memory image that is separate from the master software and the
other VMs. A complete system therefore has multiple separate memory images; one for the

master software/RTA-LWHVR and one for each VM. These images may be merged into a
single image (e.g. Intel hex or Motorola SRec) file and flashed to the ECU or may be flashed
separately.

3.1 Time-Slicing

Each application core may support multiple VMs. This is done by sharing the core’s time

between the VMs using time-slicing. For each application core the RTA-LWHVR’s
configuration contains a schedule table. Each entry in a schedule table defines a time-slice.
A time-slice definition specifies the length (duration) of the time-slice and either the identity
of the VM that should run in the time-slice or an indication that the time-slice is spare and
can be assigned to VMs dynamically.

The RTA-LWHVR contains a scheduler for each application core that is invoked by a clock-
tick interrupt. Normally a scheduler decides on the order in which to run VMs by iterating
though schedule table entries in the order they occur in the schedule table (returning to the
first entry when it reaches the end of the table) and running the specified VMs for the
specified durations, or idling if a time-slice is spare. However, limited dynamic scheduling of
VMs is also support – please see section 8.8 and section 11.5.

When a scheduler runs a VM it does the following:

1. Loads the VM’s execution context. The VM’s execution context consists of the core’s
general-purpose registers, user-mode accessible system registers, program counter,
and the MPU configuration.

2. Executes the VM’s code.

3. Saves the VM’s execution context.

3.2 Master Software and VM Separation

The master software/RTA-LWHVR and each VM is compiled and linked separately into its
own separate memory image.

ETAS ETAS RTA Lightweight Hypervisor Concepts

ETAS RTA Lightweight Hypervisor User Manual 15

Figure 2: Separate Master Software and VM Memory Images

The master software and VMs may communicate via shared memory but they cannot call
each other’s functions or access each other’s variables.

The RTA-LWHVR provides a VM with a virtual processor consisting of registers and a portion
of the real processor’s memory. The RTA-LWHVR is agnostic about what the code running in
the VM does with this virtual processor. A combination of memory protection, time-slicing

and running code in a less privileged mode ensures that a VM cannot damage the master
software, RTA-LWHVR or another VM.

Figure 3 shows how the processor’s MPU might be configured for a system with two VMs.
Areas of Flash and RAM are reserved for the master software. Each VM also has private
areas of flash and RAM reserved for it, and there is an area of RAM shared by the VMs.
When VM0 is running the processor’s MPU is configured so that VM0 can only access its
private areas of flash and RAM, and the shared area of RAM. Likewise when VM1 is running
the processor’s MPU is configured so that VM1 can only access its private areas of flash and
RAM, and the shared area of RAM.

Flash

Start-up code

RTA-OS Code

AUTOSAR BSW Code

RTE Code

AUTOSAR Application Component Code

LW HVR Code

 Start-up code

(Para-Virtualized) RTA-OS Code

 AUTOSAR BSW Code

 RTE Code

 AUTOSAR Application Component Code

Non-AUTOSAR Application Code

 Start-up code

Master Software and

LW HVR

Entry Point

VM0

Entry Point

VM1

Entry Point

Separately compiled/linked memory image

ETAS ETAS RTA Lightweight Hypervisor Concepts

ETAS RTA Lightweight Hypervisor User Manual 16

Figure 3: Virtual Machine Memory Regions

3.3 The Master Software Controls the System

The master software is in overall control of the system. When the processor starts, the

master core will start executing code (e.g. from the reset vector) and then carry out a
sequence of actions something like:

Setup the stack-pointer

Call the C start-up code.

Call main().

Initialize the master core’s hardware (peripherals).

Call LWHVR_Init().

Start the application core(s).

Wait until the application cores have started the RTA-LWHVR by polling
LWHVR_HaveAllStarted().

Start RTA-OS.

When an application core is started it carries out a sequence of actions something like:

Setup the stack-pointer.

Call the C start-up code (not always required).

Call main().

Initialize the application core’s hardware (peripherals).

Call LWHVR_Start() to start the RTA-LWHVR.

User mode MPU regions when

VM1 is running

Master SW/LW HVR Code

VM0 Code

VM1 Code

Master SW/LW HVR Stack

VM0 Stack

VM1 Stack

Master SW/LW HVR Data

VM0 Data

VM1 Data

Shared Data

R
A

M

Flash

User mode MPU regions when

VM0 is running

ETAS ETAS RTA Lightweight Hypervisor Concepts

ETAS RTA Lightweight Hypervisor User Manual 17

Once this start-up sequence has completed the application cores will start running VMs
according to their schedule tables. The master software can control the behaviour of the
RTA-LWHVR and VMs by using the master software API – see sections 4.10 and 8.

3.4 Pseudo-Interrupts

Although VMs do not handle interrupts generated by hardware, VMs need to be able to
handle asynchronous events such as timer ticks and shut down requests. This is done
through the pseudo-interrupt mechanism. Pseudo-interrupts are similar to hardware
interrupts except they are generated and controlled by the RTA-LWHVR software – see
section 5.8).

3.5 APIs

The RTA-LWHVR provides two APIs, one to allow the master software to control the RTA-
LWHVR and VMs, and one to allow VMs to request services from the RTA-LWHVR.

Figure 4: APIs in a RTA-LWHVR System

Since the master software and RTA-LWHVR are compiled and linked into a single memory
image the API provided to the master software uses normal C function calls and call-backs –

see chapters 8 and 9.

The VMs and the RTA-LWHVR are in different memory images however. The API provided to
VMs therefore uses “trap” instructions to transfer control to the RTA-LWHVR via an interrupt
– see chapter 11.

 Application Core

VM

Master Core

RTA-OS

AUTOSAR

BSW
CDD

RTE

SWC in

trusted

Appl

S
W
C

SWC in

trusted

Appl

SWC in trusted Appl

 Lightweight Hypervisor

 RTE

CDD

RTA-OS

VM

None AUTO-SAR

Code

API API

A

P

I

ETAS Master Software

ETAS RTA Lightweight Hypervisor User Manual 18

4 Master Software

The master software consists of

 The code that runs when the master core comes out of reset.

 C start-up code and libraries.

 Possibly an operating system that runs on the master core (e.g. RTA-OS).

 Any other software that must run on the master core - e.g. AUTOSAR Basic
Software, an RTE and AUTOSAR Application Software Components.

 Some call-back functions used by the RTA-LWHVR (these run on the master core
and application cores).

 Code that runs on the application cores to initialize the cores and start the RTA-
LWHVR running on the cores.

Please see chapter 3 for information about how the master software fits into a RTA-LWHVR
system. Chapter 8 provides details of the RTA-LWHVR API functions used by the master
software, and chapter 9 describes the call-back functions used by the RTA-LWHVR.

Please note that the call-back functions must be implemented by the integrator who
integrates the RTA-LWHVR into the ECU system.

Master Core Application Core

Master Software

Master Software

LWHVR

VM VM VM

LWHVR_Start() Call-backs

First instruction
executed when

core starts

First instruction
executed when

core starts

Call-
backs

LWHVR

API Calls LWHVR_ErrorCallback()

Call-
back

Figure 5: Master Software

4.1 Configuring RTA-OS

The master core does not have to run an operating system, however in most cases it will.
This section assumes that the master core runs RTA-OS (that is a normal port of RTA-OS
that directly manages the core’s interrupts etc.) as part of the master software.

Although the RTA-LWHVR manages the application cores, RTA-OS must be aware of the
application cores. To achieve this the RTA-OS configuration must contain the total number
of cores under OsInfo/OsNumberOfCores, but OS applications must only be assigned to

the master core.

For example, on a two core processor one might specify the total number of processors like:

ETAS Master Software

ETAS RTA Lightweight Hypervisor User Manual 19

<ECUC-CONTAINER-VALUE>

 <SHORT-NAME>OsInfo</SHORT-NAME>

 <DEFINITION-REF DEST='ECUC-PARAM-CONF-CONTAINER-

DEF'>/ETAS_RTAOS/Os/OsOS</DEFINITION-REF>

 <PARAMETER-VALUES>

 <ECUC-NUMERICAL-PARAM-VALUE>

 <DEFINITION-REF DEST='ECUC-INTEGER-PARAM-

DEF'>/ETAS_RTAOS/Os/OsOS/OsNumberOfCores</DEFINITION-REF>

 <VALUE>2</VALUE>

 </ECUC-NUMERICAL-PARAM-VALUE>

 </PARAMETER-VALUES>

 …

And then assign OS applications to the master core (AUTOSAR core 0) like:

<ECUC-CONTAINER-VALUE>

 <SHORT-NAME>Application0</SHORT-NAME>

 <DEFINITION-REF DEST='ECUC-PARAM-CONF-CONTAINER-

DEF'>/ETAS_RTAOS/Os/OsApplication</DEFINITION-REF>

 <PARAMETER-VALUES>

 <ECUC-NUMERICAL-PARAM-VALUE>

 <DEFINITION-REF DEST='ECUC-BOOLEAN-PARAM-

DEF'>/ETAS_RTAOS/Os/OsApplication/OsTrusted</DEFINITION-REF>

 <VALUE>true</VALUE>

 </ECUC-NUMERICAL-PARAM-VALUE>

 <ECUC-NUMERICAL-PARAM-VALUE>

 <DEFINITION-REF DEST='ECUC-INTEGER-PARAM-

DEF'>/ETAS_RTAOS/Os/OsApplication/OsApplicationCoreAssignment</DEFINITION-

REF>

 <VALUE>0</VALUE>

 </ECUC-NUMERICAL-PARAM-VALUE>

 …

This results in the application cores being non-AUTOSAR cores.

4.2 Building the RTA-LWHVR with the Master Software

The RTA-LWHVR source code should be compiled and linked together with the components
of the master software so that the RTA-LWHVR is part of the same memory image as the
master software. The same compiler and linker options used to build the master software
should be used to build the RTA-LWHVR. (Please see the RTA-LWHVR release notes for
details of the toolchain and compiler options used for testing.)

4.2.1 Locating the RTA-LWHVR Sections

The sections containing RTA-LWHVR code and data must be located when the master
software and RTA-LWHVR are linked. The section names are target specific.

ETAS Master Software

ETAS RTA Lightweight Hypervisor User Manual 20

4.2.2 Locating the RTA-LWHVR Vector Table

The RTA-LWHVR’s interrupt vector tables used for application cores must also be located
when the master software is linked. Details of the interrupt vector table are target specific.

4.3 Initialising the Master Core

The RTA-LWHVR does not carry out any hardware initialisation on master cores. Therefore,
before any RTA-LWHVR APIs are called on a master core the hardware must be initialized.
For example, processor and peripheral clocks must be configured, data/code caches must be
configured, and interrupts may need to be initialized.

4.4 Setting up the C Execution Environment

On both master and application cores the RTA-LWHVR assumes that a valid C execution
environment exists when any of its APIs are called. This includes a valid stack, initialized
small data-area registers, and initialized data in initialized data sections. Typically, such
setup would be done by calling the compiler’s C start-up code.

4.5 Starting Application Cores and the RTA-LWHVR

The API function LWHVR_Init() must be called by the master software on the master

core before any other RTA-LWHVR API is used.

Once LWHVR_Init() has been called, the master software running on the master core is

responsible for starting the application cores that run the RTA-LWHVR. (Since the application

cores are non-AUTOSAR cores they must be started with the RTA-OS function
StartNonAutosarCore().)

Once an application core is running it should carry out any target specific initialization
needed and then call the API function LWHVR_Start(). LWHVR_Start() will configure

the MPU and configure the interrupt controller to route the configured clock-tick interrupt to
the RTA-LWHVR (including setting up the interrupt vector table for the application core).
However, the RTA-LWHVR will not carry out any other hardware initialisation.

WARNING!

Whilst initializing the RTA-LWHVR on an application core,
LWHVR_Start()will configure the interrupt controller to route the
clock-tick interrupt to the RTA-LWHVR. To avoid contention when
configuring the interrupt controller, once LWHVR_Start() has
been called by any application core, no other software may change
the configuration of the interrupt controller until the API function
LWHVR_AllHaveStarted() returns LWHVR_TRUE.

If you are using RTA-OS the following rules must be followed:

 Application cores must not call any RTA-OS functions, including
Os_InitializeVectorTable().

 Application cores must not call LWHVR_Start()until after the master core has called
Os_InitializeVectorTable().

Once LWHVR_Start() has completed initialisation the RTA-LWHVR will start running time-

slices as defined by the application core’s schedule table. LWHVR_Start() will only return

when the RTA-LWHVR has been stopped by calling the API LWHVR_Stop().

ETAS Master Software

ETAS RTA Lightweight Hypervisor User Manual 21

WARNING!

It is recommended that the API function
LWHVR_HaveAllStarted() be used by the master software to
determine when the application cores have called
LWHVR_Start() and completed sufficient initialization to allow
other RTA-LWHVR APIs to be called without error.

A typical start-up sequence for a two core system would be:

OS_MAIN() {

 StatusType Status;

 if (OS_CORE_ID_MASTER == GetCoreID()) {

 /* Initialze the master core – calls Os_InitializeVectorTable(). */

 InitTargetMaster();

 LWHVR_Init();

 StartCore(OS_CORE_ID_0, &Status);

 StartNonAutosarCore(OS_CORE_ID_1, &Status);

 while (LWHVR_HaveAllStarted() != LWHVR_TRUE) { /* Idle. */ }

 StartOS(OSDEFAULTAPPMODE);

 }

 else {

 /* Initialize the application core –

 * does not call Os_InitializeVectorTable(). */

 InitTargetApplication();

 LWHVR_Start();

 }

}

4.6 Stopping and Re-starting the RTA-LWHVR

The RTA-LWHVR may be stopped using the RTA-LWHVR API LWHVR_Stop() – see section

8.4.

To re-start the RTA-LWHVR after it has been stopped with LWHVR_Stop() the following

should be done:

1. The master software must wait until all application cores have returned from
LWHVR_Start().

2. Then, the master software must call LWHVR_Init() again.

3. Next, the applications cores should call LWHVR_Start() again.

4. Finally, master software should wait until LWHVR_AllHaveStarted() returns

LWHVR_TRUE before using any RTA-LWHVR API functions.

4.7 Re-Starting the RTA-LWHVR on Individual Application Cores

There may be situations when it is necessary to re-start the RTA-LWHVR on one application
core without stopping and re-starting the RTA-LWHVR on all cores as described in section
4.6. For example, a trap occurs (resulting in LWHVR_UnexpInterruptHook or

LWHVR_UnexpInterruptCallback() being invoked) that can only be resolved by re-

starting the application core. In this case the application core can call LWHVR_Start()

again to re-start the RTA-LWHVR on itself without affecting other application cores.

For example, the following may take place:

1. LWHVR_UnexpInterruptHook is invoked due to an unrecoverable trap occurs.

2. LWHVR_UnexpInterruptHook forces a core reset.

3. The core re-starts.

4. The core sets up a C environment.

ETAS Master Software

ETAS RTA Lightweight Hypervisor User Manual 22

5. The core calls LWHVR_Start().

WARNING!

LWHVR_Start() may only be used to re-restart the RTA-LWHR
on an individual application core if the LWHVR’s memory is not
modified by resetting/re-starting the application core.

4.8 Clock-Tick Interrupt Source

The RTA-LWHVR scheduler is driven by a timer interrupt referred to as the clock-tick
interrupt. The clock-tick interrupt source used for each application core must be specified in
the configuration of the application core (see section 6.3.2) and the master software must
provide two call-back functions to manage the clock-tick interrupt.

4.8.1 Clock-Tick Frequency and Ticks

The RTA-LWHVR does not care what at what frequency the clock-tick interrupt occurs. The
RTA-LWHVR works entirely in ticks – a tick being the interval between two clock-tick
interrupts.

4.8.2 Clock-Tick Initialization

The master software is responsible for initialising the peripheral that generates the clock-tick
interrupt. The RTA-LWHVR will call the call-back function LWHVR_StartTimerCallback()

on each application core to configure and start the clock-tick interrupt source for that
application core.

4.8.3 Clock-Tick Reset

When a clock-tick interrupt occurs, the RTA-LWHVR will call the call-back function
LWHVR_ClockCallback() to reset the clock-tick interrupt source so that it generates

another interrupt in one tick.

4.8.4 Ideal Clock-Tick Sources

The ideal clock-tick source is something like a programmable interval timer (PIT) that
generates interrupts at a fixed frequency. This has the advantage of avoiding drift in VM
time-slicing. The RTA-LWHVR will call LWHVR_ClockCallback() very quickly after the

clock-tick interrupt arrives, but there will still be a short delay between the clock-tick
interrupt arriving and LWHVR_ClockCallback()being called. This means that if a clock-

tick interrupt source is used that generates another interrupt one tick after
LWHVR_ClockCallback() is called, the ticking of the RTA-LWHVR scheduler will drift with

respect to “wall-clock time”. This type of timer may also introduce jitter into time-slicing
because interrupts are disabled when the RTA-LWHVR is handling VM API calls.

WARNING!

Please see section 12 for more information about avoiding timing
issues

ETAS Master Software

ETAS RTA Lightweight Hypervisor User Manual 23

4.9 RTA-LWHVR Stack Usage on Application Cores

When running on an application core the RTA-LWHVR will use stack. It is not possible to say
how much stack will be needed as this depends on exactly how the RTA-LWHVR was
compiled and how much stack is used by call-backs such as LWHVR_ClockCallback() or

LWHVR_VMErrorCallback(). It is highly recommended that the integrator uses a

technique such as stack colouring to work out the maximum amount of stack needed by the
RTA-LWHVR and call-backs on an application core and allocates stack accordingly.

4.10 Controlling the RTA-LWHVR and VMs

The RTA-LWHVR provides API functions that the master software may call to control the

behaviour of the RTA-LWHVR and VMs:

LWHVR_Stop() can be used to stop the whole RTA-LWHVR from running.

LWHVR_ShutdownVM() can be used to inject a shutdown interrupt into a VM.

LWHVR_StopVM() can be used to forcibly stop a VM.

LWHVR_RestartVM() can be used to re-start a VM that has been shut down,

forcibly stopped or is in error.

LWHVR_RequestExtraTimeForVM() can be used to request that a VM be given

extra execution time.

Please see chapter 8 for details.

The call-back functions LWHVR_StoppedVMCallback(), LWHVR_StoppedVMCallback()

and LWHVR_VMErrorCallback() are called by the RTA-LWHVR to inform the master

software about the state of VMs. Please see chapter 9 for details.

4.11 Communicating with and between VMs

Communication between the master software and VMs and between VMs should be done via
shared memory. The RTA-LWHVR does not mandate any particular shared-memory protocol

or implement any particular protocol. The RTA-LWHVR does provide API functions to allow
memory to be copied atomically to support shared-memory communication. Please see 11.6
for details.

4.12 Restrictions on the Master Software

The master software (including call-backs) must not:

 Modify the configuration of the processor’s interrupt controller that is associated

with routing clock-tick interrupts to application cores.

 Modify an application core’s MPU configuration.

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 24

5 Virtual Machines

This chapter provides details of virtual machines (VMs). Please see chapter 3 for information
about how VMs fit into a RTA-LWHVR system, and chapter 11 for the API services that may
be called by VMs.

5.1 What VMs Can and Cannot Do

In general a VM should be thought of in the same way as the software that would run on a
processor core in the absence of a hypervisor. The RTA-LWHVR is agnostic to the operation
of the software in a VM with the following restrictions:

 Memory regions that a VM can access are specified in the VM’s configuration. If the
VM tries to access memory outside of one of these regions, or access memory in
one of these regions in a way that is not allowed (e.g. write to a region for which it
only has read permission) then the VM will be in error (see section 5.6).

 If the VM tries to execute instructions that would allow it to threaten the integrity of
the RTA-LWHVR or another VM then the VM will be in error. Generally this means
that the VM cannot execute “privileged” instructions.

 If the VM tries to modify processor configuration that would allow it to threaten the
integrity of the RTA-LWHVR or another VM then the VM will be in error. Generally
this means that the VM cannot access “privileged” registers.

5.2 Scheduling VMs

The RTA-LWHVR configuration specifies a schedule table for each application core (see
section 6.3.5). A schedule table is composed of one more entries. Each entry describes a
time-slice. A time-slice identifies a VM that should be executed, or an indication that the
time-slice is spare, and the duration of the time-slice it ticks.

The RTA-LWHVR contains a scheduler for each application core that is invoked by a clock-
tick interrupt. Normally a scheduler decides on the order in which to run VMs by iterating

though schedule table entries in the order they occur in the application core’s schedule table
(returning to the first entry when it reaches the end of the table) and running the specified
VMs for the specified durations, or idling if a time-slice is spare. However, limited dynamic
scheduling of VMs is also supported – please see section 8.8 and section 11.5.

VM Identifier or Spare Duration

VM Identifier or Spare Duration

VM Identifier or Spare Duration

VM Identifier or Spare Duration

VM Identifier or Spare Duration

Entry 0

Entry 1

Entry 2

Entry N-1

Entry N

Sch
ed

u
ler p

rocesses e
ntries in

 o
rde

r

Sch
ed

u
lin

g restarts fro
m

 th
e be

gin
ning on

ce
 the

 en
d

 o
f

the ta
ble is rea

ch
ed

Figure 6: A Schedule Table

When a scheduler runs a VM it does the following:

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 25

1. Loads the VM’s execution context. The VM’s execution context consists of the core’s
general-purpose registers, user-mode accessible system registers, program counter,
and the MPU configuration.

2. Executes the VM’s code.

3. Saves the VM’s execution context.

The RTA-LWHVR carries out scheduling separately for each application core.

5.2.1 Example of Scheduling

Consider the following example of a schedule table:

VM Duration

VM0 1

VM1 1

Spare 1

VM2 2

VM1 1

VM3 1

The VMs will be executed as follows:

1. When the first clock-tick interrupt occurs VM0 will be executed for 1 clock-tick.

2. When the second clock-tick interrupt occurs VM1 will be executed for 1 clock-tick.

3. When the third clock-tick interrupt occurs the RTA-LWHVR will find the spare time-
slice and will idle for 1 clock-tick.

4. When the fourth clock-tick interrupt occurs VM2 will be executed for 1 clock-tick.

5. When the fifth clock-tick interrupt occurs VM2 will be executed for another 1 clock-
tick.

6. When the sixth clock-tick interrupt occurs VM1 will be executed again for 1 clock-
tick.

7. When the seventh clock-tick interrupt occurs VM3 will be executed for 1 clock-tick.

8. When the eighth clock-tick interrupt occurs the scheduler will return to the start of
the schedule table and VM0 will be executed for 1 clock-tick.

This is illustrated in Figure 7.

VM0 VM1
Spare

(LWHVR
Idles)

VM2 VM3

Tick 0

Tick 1

Tick 2

Tick 3

Tick 4

Tick 5

VM1

Tick 6

VM0

Tick 7

Figure 7: Simple Scheduling

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 26

5.3 VM Identifiers

A VM identifier is a small integer that corresponds to the VM’s number in the configuration.
That is, the VM described by macros LWHVR_VM<N>_XXXX in LWHVR_Configuration.h

would have identifier <N> (see section 6.3.4).

For example, the VM described by macros LWHVR_VM0_XXXX would have identifier 0, the

VM described by macros LWHVR_VM1_XXXX would have identifier 1, the VM described by

macros LWHVR_VM2_XXXX would have identifier 2, and so on.

5.4 Building VMs

Each VM has a separate executable image and is compiled and linked separately from every
other VM. The VM’s image must contain all code that the VM needs; e.g. C start-up code
and libraries (in general VMs will not share executable code - although this could be done
with appropriate configuration of memory regions.).

The RTA-LWHVR configuration (see section 6) specifies each VM and the memory regions
that code running in the VM may accesses. The VM must be linked so that its memory usage
matches what is in its configuration.

5.5 Entry-Point

A VM’s entry-point is the address in the VM’s code where execution of the VM starts. Every
time the RTA-LWHVR (re-) starts a VM it starts executing the code at the VM’s entry-point.

The code at a VM’s entry-point must set up the run-time environment for the code that runs
in the VM. This includes:

 Setting up the stack.

 Setting up the heap.

 Copying initialization data from flash into RAM.

For C code this would normally be done by calling the compiler provided C start-up code.

A VM’s entry-point must be declared in the VM’s configuration.

5.6 VM Errors

If a VM tries to do something, that if allowed, would threaten the integrity of the RTA-
LWHVR or another VM (e.g. accessing memory for which the VM does not have permission),
or causes an unrecoverable error (e.g. calling a VM API service with invalid arguments) then
the VM is said to be in error. When a VM is in error it stops running and will not be run
again until the master software re-starts it. As soon as a VM goes into error the RTA-LWHVR
calls the LWHVR_VMErrorCallback() function to inform the master software. To re-start

the VM the master software should call the LWHVR_RestartVM() API function.

5.7 VM Status Block

Each VM has a status block. This is a collection of 32-bit fields in a region of memory that
can be read and written by the VM. A VM status block is used to communicate information
between the RTA-LWHVR and the VM. The fields of a VM status block fulfil the same role as
special function or system registers do when code is not running in a VM. That is the fields
contain information about enabled and pending pseudo-interrupts and the address of the

instruction at which to resume execution after a pseudo-interrupt handler terminates.

The address of a VM’s status block must be specified in the VM’s configuration.

The type definition LWHVR_VMStatusBlockType type in LWHVR_VMAPI.h defines the

layout of a VM status block. The fields are also documented in the subsections below.

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 27

5.7.1 ticksSinceStart (offset 0)

This field contains the number of clock-ticks that have elapsed since the VM was started.
Note that code running in the VM may observe this field being incremented by more than 1
because this field continues to increment whilst the VM is not running in a time-slice. See
also section 5.7.10.

The VM should treat this field as read-only. This field is set by the RTA-LWHVR at the start
of each clock-tick during which the VM runs, but is never read by the RTA-LWHVR.
Therefore if the VM does modify this field it will have no effect on the operation of the RTA-
LWHVR.

5.7.2 ticksLeftInTimeslice (offset 4)

This fields contains the number of clock-ticks left in the current time-slice.

The VM should treat this field as read-only. This field is set by the RTA-LWHVR at the start
of each clock-tick during which the VM runs, but is never read by the RTA-LWHVR.
Therefore if the VM does modify this field it will have no effect on the operation of the RTA-
LWHVR.

5.7.3 psIntEnabled (offset 8)

This field contains a bit-mask of pseudo-interrupts that are currently enabled. The bit for
pseudo-interrupt number n is (1 << n).

This field may be read and written by the VM.

5.7.4 psIntPending (offset 12)

This field contains a bit-mask of pseudo-interrupts that are currently pending. The bit for
pseudo-interrupt number n is (1 << n).

The VM must treat this field as read-only. This field must not be written by the VM
otherwise pseudo-interrupts may be lost and not injected into the VM. However, such loss of
pseudo-interrupts will only affect this VM, it will not affect other VMs or the RTA-LWHVR.

5.7.5 psIntResumeAddress (offset 16)

When a pseudo-interrupt is injected into a VM and the VM’s pseudo-interrupt handler runs
this field contains the address of the instruction where execution (in the VM) should resume

when the pseudo-interrupt handler terminates (using the VM API service
LWHVR_VMAPI_RETURN_FROM_PS_INT).

This field may be read and written by the VM.

5.7.6 psIntReason (offset 20)

When a pseudo-interrupt is injected into a VM and the VM’s pseudo-interrupt handler runs
this fields contains the number of the pseudo interrupt that has been injected. The numbers
(reasons) of pseudo-interrupts normally used by the RTA-LWHVR can be found in
LWHVR_VMAPI.h.

The VM should treat this field as read-only. This field is set by the RTA-LWHVR just before a
pseudo-interrupt is injected into to the VM, but is never read by the RTA-LWHVR. Therefore

if the VM does modify this field it will have no effect on the operation of the RTA-LWHVR.

5.7.7 psIntPreviousEnabled (offset 24)

When a pseudo-interrupt is injected into a VM and the VM’s pseudo-interrupt handler runs

the psIntEnabled field will have been set to zero to disable further pseudo-interrupts. The

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 28

psIntPreviousEnabled field will contain the value that was in psIntEnabled before it

was set to zero. When the VM API service LWHVR_VMAPI_RETURN_FROM_PS_INT is used

to terminate a pseudo-interrupt handler the RTA-LWHVR copies the value in
psIntPreviousEnabled back into psIntEnabled.

This field may be read and written by the VM.

5.7.8 psIntRestoreRegister (offset 28)

This field is used to restore the value of a register that would otherwise be corrupted by
making a LWHVR_VMAPI_RETURN_FROM_PS_INT VM API call. The details are target

specific, please see section 11.2.

This field may be read and written by the VM.

5.7.9 psIntGenerateOnTick (offset 32)

This field contains a bit-mask of pseudo-interrupts that the RTA-LWHVR will make pending
on each clock-tick. That is on each clock-tick psIntPending = psIntPending |

psInGenerateOnTick.

This field may be read and written by the VM.

5.7.10 ticksWhileRunning (offset 36)

This field contains the number of ticks for which the VM has been running. Note that this
field does not increment when the VM is not running in a times-slice. See also section 5.7.1.

The VM should treat this field as read-only. This field is incremented by the RTA-LWHVR at
the start of each clock-tick during which the VM runs, but is never read by the RTA-LWHVR.
Therefore if the VM does modify this field it will have no effect on the operation of the RTA-
LWHVR.

5.8 Pseudo-Interrupts

VMs cannot handle real hardware generated interrupts (where the term “interrupts” includes
traps and exceptions). To support ticking RTA-OS counters and passing asynchronous
shutdown signals into VMs, the RTA-LWHVR can inject pseudo-interrupts into VMs.

Each VM has a pseudo-interrupt handler which is the code run to handle pseudo-interrupts
injected into the VM. The address of a VM’s pseudo-interrupt handler must be specified in
the VM’s configuration.

5.8.1 Pseudo-Interrupt Numbers and Priorities

There are 32 possible pseudo-interrupts, numbered 0 to 31. The higher the pseudo-
interrupt’s number the higher its priority.

5.8.2 Pending and Enabled Pseudo-Interrupts

Injection of pseudo-interrupts is controlled by the psIntPending and psIntEnabled

fields in a VM’s status block. For pseudo-interrupt number psIntNum, if bit (1 << psIntNum)
is set in psIntPending then the pseudo-interrupt is pending, and if bit (1 << psIntNum) is

set in psIntEnabled then the pseudo-interrupt is enabled.

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 29

5.8.3 Pseudo-Interrupt Injection

A pseudo-interrupt behaves much like a real hardware interrupt. When the RTA-LWHVR
injects a pseudo-interrupt into a VM the following occurs (where VMStatusBlock is the VM

status block for the VM and psIntNum is the number of the pseudo-interrupt):

1. VMStatusBlock.psIntReason = psIntNum

2. VMStatusBlock.psIntPreviousEnabled = VMStatusBlock.psIntEnabled

3. VMStatusBlock.psIntEnabled = 0

4. VMStatusBlock.psIntPending = VMStatusBlock.psIntPending & ~(1 << psIntNum)

5. VMStatusBlock.psIntResumeAddress = address of instruction in VM that was about to

execute.

6. Execution starts at the address of the VM’s pseudo-interrupt handler.

When the VM’s pseudo-interrupt handler terminates by calling the VM API service
LWHVR_VMAPI_RETURN_FROM_PS_INT the following occurs:

1. VMStatusBlock.psIntEnabled = VMStatusBlock.psIntPreviousEnabled

2. Possibly restore a register from VMStatusBlock.psIntRestoreRegister

3. Execution resumes at the address in VMStatusBlock.psIntResumeAddress

5.8.4 When Pseudo-Interrupts are injected

The RTA-LWHVR injects the highest priority pseudo-interrupt that is both pending and
enabled into the currently running VM at the following times:

 When the RTA-LWHVR processes a clock-tick interrupt (this includes the clock-tick
interrupt that results in the VM starting a time-slice, but does not include the clock-
tick interrupt that results in the VM finishing a time-slice).

 When the VM calls the VM API service LWHVR_VMAPI_RETURN_FROM_PS_INT.

 When the VM calls the VM API service LWHVR_VMAPI_SYNC_PS_INTS.

 When the VM calls the VM API service LWHVR_VMAPI_INJECT_PS_INT.

5.8.5 Pseudo-Interrupts used by the RTA-LWHVR

The following pseudo-interrupts are used by the RTA-LWHVR. Interrupt number (reason)
and pending/enabled mask constants can be found in the header file LWHVR_VMAPI.h.

Timer0

Number: LWHVR_PS_INT_REASON_TIMER0 (3)

Pending/Enabled Mask: LWHVR_PS_INT_MASK_TIMER0

Description:

By convention pseudo-interrupt number 3 is used as a low priority timer. If the
LWHVR_PS_INT_MASK_TIMER0 bit is set in the psInGenerateOnTick field of the VM’s

status block then this pseudo-interrupt is made pending every time the RTA-LWHVR

processes a clock-tick interrupt and the VM is running in a time-slice (this includes the clock-
tick interrupt that results in the VM starting a time-slice, but does not include the clock-tick
interrupt that results in the VM finishing a time-slice).

In fact any pseudo-interrupt can be made pending on a clock-tick by setting the pseudo-
interrupt’s bit in psInGenerateOnTick. Use of the LWHVR_PS_INT_MASK_TIMER0 and

LWHVR_PS_INT_MASK_TIMER1 bits is just convention.

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 30

Timer 1

Number: LWHVR_PS_INT_REASON_TIMER1 (7)

Pending/Enabled Mask: LWHVR_PS_INT_MASK_TIMER1

Description:

By convention pseudo-interrupt number 7 is used as a high priority timer. If the
LWHVR_PS_INT_MASK_TIMER1 bit is set in the psInGenerateOnTick field of the VM’s

status block then this pseudo-interrupt is made pending every time the RTA-LWHVR
processes a clock-tick interrupt and the VM is running in a time-slice (this includes the clock-
tick interrupt that results in the VM starting a time-slice, but does not include the clock-tick
interrupt that results in the VM finishing a time-slice).

In fact any pseudo-interrupt can be made pending on a clock-tick by setting the pseudo-

interrupt’s bit in psInGenerateOnTick. Use of the LWHVR_PS_INT_MASK_TIMER0 and

LWHVR_PS_INT_MASK_TIMER1 bits is just convention.

Shutdown

Number: LWHVR_PS_INT_REASON_SHUTDOWN (11)

Pending/Enabled Mask: LWHVR_PS_INT_MASK_SHUTDOWN

Description:

This is a signal that the VM should gracefully shutdown. It is made pending when the master
software calls the LWHVR_ShutdownVM() API for the VM.

5.8.6 Pseudo-Interrupt Handlers

A pseudo-interrupt handler has a similar form to a normal interrupt handler. It should do
something like:

1. Save necessary (i.e. volatile) processor registers.

2. Save VMStatusBlock.psIntPreviousEnabled.

3. Save VMStatusBlock.psIntResumeAddress.

4. Make a local copy of VMStatusBlock.psIntReason.

5. Enable pseudo-interrupts by writing to VMStatusBlock.psIntEnabled.

6. Use the local copy of VMStatusBlock.psIntReason to decide what to do.

7. Disable pseudo-interrupts by writing 0 to VMStatusBlock.psIntEnabled.

8. Restore VMStatusBlock.psIntResumeAddress.

9. Restore VMStatusBlock.psIntPreviousEnabled.

10. Write to VMStatusBlock.psIntRestoreRegister if required.

11. Restore processor registers.

12. Call the VM API service LWHVR_VMAPI_RETURN_FROM_PS_INT.

5.8.7 Responding to a Shutdown Pseudo-Interrupt

When the master software calls the API function LWHVR_ShutdownVM() for a VM the

shutdown pseudo-interrupt will be become pending in the VM and will eventually be injected
into the VM.

When this occurs the VM should gracefully stop processing and call the VM API
LWHVR_VMAPI_SHUTDOWN.

ETAS Virtual Machines

ETAS RTA Lightweight Hypervisor User Manual 31

5.8.8 Pseudo-Interrupts on VM (Re-) Start

When a VM first starts, or is re-started, the psIntEnabled, psIntPending and

psIntGenerateOnTick fields of its VM status block are all set to 0. This means that when

a VM is started, or re-started, all pseudo-interrupts are disabled, pending pseudo-interrupts
are cleared, and the VM will not receive any simulated timer-tick interrupts
(psIntGenerateOnTick).

Note: this also means that the effect of any calls of LWHVR_ShutdownVM() that are made

after a VM has been forcibly stopped, shut down or has caused an error

(LWHVR_VMErrorCallback() called), but before the VM has re-started will be lost.

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 32

6 Configuration

When the RTA-LWHVR is compiled it expects its configuration to be defined in a header file
called LWHVR_Configuration.h. This header file may be generated by hand or by using

the RTA-LWHVR configuration generator tool. The configuration generator tool is provided
with the RTA-LWHVR configuration in an XML file and outputs the configuration in a
LWHVR_Configuration.h header file.

IMPORTANT

The RTA-LWHVR configuration generator tool is only provided as a
convenience utility. The integrator is responsible for ensuring that

the LWHVR_Configuration.h header file generated by the RTA-

LWHVR configuration generator tool is correct.

This chapter is in three parts. First it provides an introduction to the logical concepts in an
RTA-LWHVR configuration. Second it describes how to run the RTA-LWHVR configuration
generator tool. Finally it describes the contents of a LWHVR_Configuration.h header file

and how it must be checked for correctness.

6.1 Concepts

The RTA-LWHVR configuration describes one or more application cores. The configuration
contains the following information for each application core:

 The hardware core number. This is a target specific number that maps the
application core in the configuration to a physical processor core.

 Clock-tick interrupt number. This is a target specific number that identifies the
interrupt source that will be used for clock-tick interrupts.

 Size of the extra-time request queue. This is the number of entries in the queue
used when the master software requests extra execution time for a VM (see section
8.8). 0 is a valid value.

 A schedule table for the VMs that run on the application core.

The configuration contains the following information for each VM:

 The name of the VM.

 The application core on which the VM runs. A VM only runs on a single application

core. (In the XML consumed by the configuration generator tool the link between a
VM and an application core is implied from the VM being in the application core’s
VMs container.)

 Entry-point address. This is the address in memory where execution of the VM will
start. This address must be in memory that the VM has permission to execute.

 Pseudo-interrupt handler address. This is the address in memory of the VM’s
pseudo-interrupt handler. This address must be in memory that the VM has

permission to execute.

 Status block address. This is the address in memory where the VM’s status block will
be located. This address must be in memory that the VM has permission to read and
write.

 Optional target specific information.

 One or more memory regions. Each memory region describes an extent of memory
that the VM has permission to access. The configuration of a memory region
contains:

o Start address.

o End address.

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 33

o Access permissions: readable, writeable, executable.

There must be between 1 and 40 (inclusive) VMs.

The configuration for an application core’s schedule table contains one or more schedule
entries. Each entry describes a time-slice. When the RTA-LWHVR starts running on an
application core it starts at the first entry in the core’s schedule table, when the time-slice
described by this entry has completed the RTA-LWHVR moves to the next entry in the
schedule table, and so on. When the end of the schedule table is reached the RTA-LWHVR
starts at the beginning of the schedule table again. Each schedule table entry contains the

following information:

 The identity of the VM to be scheduled or an indicator that means this is a spare
time-slice.

 The duration of the time-slice in clock-ticks. This must be greater than 0 and must 1
if the entry is spare.

There must be between 1 and 256 (inclusive) entries in a schedule table.

6.2 Running the Configuration Generator Tool

If the RTA-LWHVR configuration generator tool is used the RTA-LWHVR configuration must
be provided in an XML file.

 The schema for this XML file can be found in LWHVRConfiguration.xsd.

 The documentation for the XML schema can be found in the file
LWHVRConfiguration.html inside the ZIP archive
LWHVRConfigurationXMLDocumentation.zip.

 A structural view of the XML schema can be found in LWHVRConfiguration.png.

The configuration generator tool is run as follows:

RTA-LWHVRConfigGenerator.exe <xml-name>

Where <xml-name> is the path to an XML file containing the RTA-LWHVR configuration.
The tool will generate a LWHVR_Configuration.h header file in the current directory.

6.3 LWHVR_Configuration.h

The actual RTA-LWHVR configuration used when compiling the RTA-LWHVR is stored in a
header file called LWHVR_Configuration.h. This header file is included by the other RTA-

LWHVR source files. The LWHVR_Configuration.h header file specifies the RTA-LWHVR

configuration using #defines. This section describes those #defines and provides

guidance on how to ensure that the configuration is correct.

IMPORTANT

The safety requirements of the RTA-LWHVR assume that it is
provided with a valid configuration. Therefore the integrator must
ensure that the contents of LWHVR_Configuration.h are

correct.

In this section text prefixed with check: contains important checks that must be carried out
to ensure the correctness of LWHVR_Configuration.h.

6.3.1 General

Check: when the RTA-LWHVR source is compiled, the compiler must not generate any

diagnostic messages related to LWHVR_Configuration.h or the use of its contents.

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 34

Check: all numbers and addresses on the right-hand-side of #defines must be unsigned

integers and be surrounded by brackets. For example, the number 101 would be specified as
(101U) and the memory address 0x0400b000 would be specified as (0x0400b000U).

6.3.2 Application Cores

Define LWHVR_NUM_APPLICATION_CORES to be the number of application cores to use.

For each application core the following values must be specified. In the following <A> is the

application core number. This is a decimal integer in the range 0 to
LWHVR_NUM_APPLICATION_CORES – 1 inclusive.

Define LWHVR_CORE<A>_NUM_VMS to be the number of VMs that run on the

application core. This must be at least 1. The total number of VMs (across all

application cores) must not exceed 40.

Define LWHVR_CORE<A>_CLOCK_TICK_INT to be the target specific number of the

clock-tick interrupt source.

Define LWHVR_CORE<A>_EXTRA_TIME_Q_SIZE to be the size of the queue on the

application core used for extra-time requests by the master software (see section
8.8). This number must be between 0 and 256 (inclusive).

Check: each application core must run at least one VM.

Check: there must not be more than 40 VMs across all application cores.

Check: the clock-tick interrupt source specified for an application core must correspond to
the clock-tick interrupt source enabled when the RTA-LWHVR calls
LWHVER_StartTimerCallback() on the application core.

6.3.3 Assigning Application Cores to Physical Processor Cores

Application cores must be assigned to physical processor (hardware) cores. To assign
application core number <A> to physical core number <P> define

LWHVR_HARDWARE_CORE<P> to be LWHVR_CORE<A>.

The number of physical cores, and hence the values of <P> is target specific.

Check: every application core must be assigned to a physical core.

Check: an application core must not be assigned to multiple physical cores.

Check: that an application core is assigned to a physical core that is present in your
processor.

6.3.4 Configuring VMs

Each VM in the system is configured as described in the following sub-sections. In what
follows <N> is the number of the VM being configured, where <N> is in the range 0 to <total

number of VMs> – 1.

Symbolic Identifier

Define LWHVR_<name>_ID <N> to create a symbolic identifier for the VM. For example if

you want VM number 0 to be called “Wombat” and VM number 1 to be called “Kangaroo”
then you would define LWHVR_Wombat_ID to be (0U) and LWHVR_Kangaroo_ID to be

(1U). Symbolic identifiers are used to refer to VMs in the schedule table (see below) and

can be used in API functions whenever a parameter has the type LWHVR_VmIdType.

Core Identifier

Assign the VM to an application core by defining LWHVR_VM<N>_CORE to be

LWVHR_CORE<A>. This specifies that the VM runs on application core number <A>.

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 35

Check: every VM must be assigned to exactly one application core using a
LWHVR_VM<N>_CORE definition.

Check: the value of <A> must be in the range 0 to LWHVR_NUM_APPLICATION_CORES-1

inclusive.

Entry-Points and Status Block

Define LWHVR_VM<N>_ENTRY_POINT to be the address of the VM’s entry-point.

Define LWHVR_VM<N>_PS_INT_HANDLER to be the address of the VM’s pseudo-interrupt

handler.

Define LWHVR_VM<N>_STATUS_BLOCK to be the address of the VM’s status block.

Check: the VM’s entry-point must be in memory that the VM has permission to execute.

Check: the VM’s pseudo-interrupt handler must be in memory that the VM has permission to
execute.

Check: the VM’s status block must be entirely contained within in memory that the VM has
permission to read and write. The status block is 40 bytes long.

Memory Regions

A VM is only allowed to access memory inside the memory regions specified in the VM’s
configuration. To prevent VMs from being able to damage other VMs, the RTA-LWHVR, or
software that does not run in VMs, each VM must be assigned its own private subset of the
processor’s memory.

Define LWHVR_VM<N>_NUM_MPU_REGIONS to be the number of memory regions that the

VM may access. This must be between 1 and 12 (inclusive).

In what follows <P> is the number of the memory region being configured, where <P> is in

the range 0 to LWHVR_VM<N>_NUM_MPU_REGIONS – 1. For each memory region:

Define LWHVR_VM<N>_MPU_REGION<P>_PERMS to be the permissions granted to

the VM when accessing the memory region. The possible values are:

LWHVR_MPU_REGION<P>_EXEC – the memory in the region may be executed.

LWHVR_MPU_REGION<P>_RW – the memory in the region may be read and

written.

LWHVR_MPU_REGION<P>_RDONLY – the memory in the region may only be

read.

LWHVR_MPU_REGION<P>_WRONLY – the memory in the region may only be

written.

Define LWHVR_VM<N>_MPU_REGION<P>_END to be the end address for the memory

region.

Define LWHVR_VM<N>_MPU_REGION<P>_START to be the start address for the

memory region.

Check: LWHVR_VM<N>_MPU_REGION<P>_PERMS is only defined to be one of

LWHVR_MPU_REGION<P>_EXEC, LWHVR_MPU_REGION<P>_RW,

LWHVR_MPU_REGION<P>_RDONLY or LWHVR_MPU_REGION<P>_WRONLY.

Check: a memory region’s start address must be before its end address.

Check: unless a memory region is being used for communication between VMs, memory
regions assigned to different VMs must not overlap.

Check: each VM must have at least one memory region.

Check: a VM must not have more than 12 memory regions.

Check: when defining the permissions for a memory region make sure that the <P> in

LWHVR_VM<N>_MPU_REGION<P>_PERMS matches the <P> in

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 36

LWHVR_MPU_REGION<P>_EXEC, LWHVR_MPU_REGION<P>_RW,

LWHVR_MPU_REGION<P>_RDONLY or LWHVR_MPU_REGION<P>_WRONLY.

Check: unless a memory region is being used for communication between a VM and the
master software, the memory region must not overlap with memory used by any software
that does not run in a VM (this includes the master software and the RTA-LWHVR).

6.3.5 Schedule Table

An application core’s schedule table is used to specify in what order and for how long VMs

are run. For each application core number <A> a schedule table must be specified as

follows:

Define LWHVR_NUM_CORE<A>_SCHED_ENTRIES to be the number of entries in the

schedule table. This must be between 1 and 256 (inclusive).

Each entry in the schedule table represents a time-slice. The entry specifies the length of the
time-slice in ticks and either the VM that should run in the time-slice or an indication that the
time-slice is spare and can be used to run a VM that requests extra time. In what follows

<T> is the number of the schedule table entry, where <T> is in the range 0 to

LWHVR_NUM_CORE<A>_SCHED_ENTRIES – 1.

For each schedule table entry:

Define LWHVR_CORE<A>_SCHED<T>_VM to be the symbolic identifier of the VM to

run in the time-slice or LWHVR_SPARE if the time-slice is spare.

Define LWHVR_CORE<A>_SCHED<T>_DURATION to be the length of the time-slice in

ticks as an unsigned integer. If the times-slice is spare then the duration must be 1.
Otherwise the duration must be 1 or greater.

Check: there must be a schedule table for every application core.

Check: a schedule table must contain between 1 and 256 (inclusive) entries.

Check: the schedule table for an application core must only contain VMs that run on that
application core. I.e. All VMs in the schedule table for application core number <A> must

have defined LWHVR_VM<N>_CORE to be LWVHR_CORE<A>.

Check: a LWHVR_CORE<A>_SCHED<T>_VM definition must only specify the symbolic name

of a VM or the spare time-slice indicator LWHVR_SPARE.

Check: every VM must appear in a schedule table.

Check: if a schedule table entry is spare then the duration must be 1.

Check: if a schedule table entry is not spare then the duration must be 1 or greater.

6.3.6 Example

In the following example configuration:

 There are two application cores.

 There are three VMs. The VMs are called “VmZero”, “VmOne” and “VmTwo”. The
VMs have a region of memory that they share for communication. “VmZero” and
“VmOne” run on application core 0 and “VmTwo” runs on application core 1.

 Application core 0 is assigned to physical core 2.

 Application core 1 is assigned to physical core 4.

/* The number of application cores. */

#define LWHVR_NUM_APPLICATION_CORES (2U)

/* Assign application cores to physical cores. */

#define LWHVR_HARDWARE_CORE2 LWHVR_CORE0

#define LWHVR_HARDWARE_CORE4 LWHVR_CORE1

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 37

/**** Application core number 0. ****/

#define LWHVR_CORE0_NUM_VMS (2U)

#define LWHVR_CORE0_EXTRA_TIME_Q_SIZE (2U)

#define LWHVR_CORE0_CLOCK_TICK_INT (908U)

/**** Application core number 1. ****/

#define LWHVR_CORE1_NUM_VMS (1U)

#define LWHVR_CORE1_EXTRA_TIME_Q_SIZE (1U)

#define LWHVR_CORE1_CLOCK_TICK_INT (912U)

/**** Virtual machine number 0 – called ‘VmZero’ ****/

#define LWHVR_VmZero_ID (0U)

/* The VM runs on application core 0. */

#define LWHVR_VM0_CORE LWHVR_CORE0

#define LWHVR_VM0_ENTRY_POINT (0x01000000U)

#define LWHVR_VM0_PS_INT_HANDLER (0x01000004U)

#define LWHVR_VM0_STATUS_BLOCK (0x40010000U)

#define LWHVR_VM0_NUM_MPU_REGIONS (5U)

/* Memory region for executable code in FLASH. */

#define LWHVR_VM0_MPU_REGION0_PERMS LWHVR_MPU_REGION0_EXEC

#define LWHVR_VM0_MPU_REGION0_START (0x01000000U)

#define LWHVR_VM0_MPU_REGION0_END (0x010ffff7U)

/* Memory region for constants in FLASH. */

#define LWHVR_VM0_MPU_REGION1_PERMS LWHVR_MPU_REGION1_RDONLY

#define LWHVR_VM0_MPU_REGION1_START (0x01000000U)

#define LWHVR_VM0_MPU_REGION1_END (0x010ffff7U)

/* Memory region for variable data in RAM. */

#define LWHVR_VM0_MPU_REGION2_PERMS LWHVR_MPU_REGION2_RW

#define LWHVR_VM0_MPU_REGION2_START (0x40010000U)

#define LWHVR_VM0_MPU_REGION2_END (0x4001fff7U)

/* Memory region for stack in RAM. */

#define LWHVR_VM0_MPU_REGION3_PERMS LWHVR_MPU_REGION3_RW

#define LWHVR_VM0_MPU_REGION3_START (0x40020000U)

#define LWHVR_VM0_MPU_REGION3_END (0x4002fff7U)

/* Memory region shared with other VM for communication. */

#define LWHVR_VM0_MPU_REGION4_PERMS LWHVR_MPU_REGION4_RW

#define LWHVR_VM0_MPU_REGION4_START (0x400f0000U)

#define LWHVR_VM0_MPU_REGION4_END (0x400ffff7U)

/**** Virtual machine number 1 called 'VmOne' ****/

#define LWHVR_VmOne_ID (1U)

/* The VM runs on application core 0. */

#define LWHVR_VM1_CORE LWHVR_CORE0

#define LWHVR_VM1_ENTRY_POINT (0x01100000U)

#define LWHVR_VM1_PS_INT_HANDLER (0x01100004U)

#define LWHVR_VM1_STATUS_BLOCK (0x40030000U)

#define LWHVR_VM1_NUM_MPU_REGIONS (5U)

/* Memory region for executable code in FLASH. */

#define LWHVR_VM1_MPU_REGION0_PERMS LWHVR_MPU_REGION0_EXEC

#define LWHVR_VM1_MPU_REGION0_START (0x01100000U)

#define LWHVR_VM1_MPU_REGION0_END (0x011ffff7U)

/* Memory region for constants in FLASH. */

#define LWHVR_VM1_MPU_REGION1_PERMS LWHVR_MPU_REGION1_RDONLY

#define LWHVR_VM1_MPU_REGION1_START (0x01100000U)

#define LWHVR_VM1_MPU_REGION1_END (0x011ffff7U)

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 38

/* Memory region for variable data in RAM. */

#define LWHVR_VM1_MPU_REGION2_PERMS LWHVR_MPU_REGION2_RW

#define LWHVR_VM1_MPU_REGION2_START (0x40030000U)

#define LWHVR_VM1_MPU_REGION2_END (0x4003fff7U)

/* Memory region for stack in RAM. */

#define LWHVR_VM1_MPU_REGION3_PERMS LWHVR_MPU_REGION3_RW

#define LWHVR_VM1_MPU_REGION3_START (0x40040000U)

#define LWHVR_VM1_MPU_REGION3_END (0x4004fff7U)

/* Memory region shared with other VM for communication. */

#define LWHVR_VM1_MPU_REGION4_PERMS LWHVR_MPU_REGION4_RW

#define LWHVR_VM1_MPU_REGION4_START (0x400f0000U)

#define LWHVR_VM1_MPU_REGION4_END (0x400ffff7U)

/**** Virtual machine number 2 called 'VmTwo' ****/

#define LWHVR_VmTwo_ID (2U)

/* The VM runs on application core 1. */

#define LWHVR_VM2_CORE LWHVR_CORE1

#define LWHVR_VM2_ENTRY_POINT (0x01200000U)

#define LWHVR_VM2_PS_INT_HANDLER (0x01200004U)

#define LWHVR_VM2_STATUS_BLOCK (0x40050000U)

#define LWHVR_VM2_NUM_MPU_REGIONS (5U)

/* Memory region for executable code in FLASH. */

#define LWHVR_VM2_MPU_REGION0_PERMS LWHVR_MPU_REGION0_EXEC

#define LWHVR_VM2_MPU_REGION0_START (0x01200000U)

#define LWHVR_VM2_MPU_REGION0_END (0x012ffff7U)

/* Memory region for constants in FLASH. */

#define LWHVR_VM2_MPU_REGION1_PERMS LWHVR_MPU_REGION1_RDONLY

#define LWHVR_VM2_MPU_REGION1_START (0x01200000U)

#define LWHVR_VM2_MPU_REGION1_END (0x012ffff7U)

/* Memory region for variable data in RAM. */

#define LWHVR_VM2_MPU_REGION2_PERMS LWHVR_MPU_REGION2_RW

#define LWHVR_VM2_MPU_REGION2_START (0x40050000U)

#define LWHVR_VM2_MPU_REGION2_END (0x4005fff7U)

/* Memory region for stack in core local RAM. */

#define LWHVR_VM2_MPU_REGION3_PERMS LWHVR_MPU_REGION3_RW

#define LWHVR_VM2_MPU_REGION3_START (0x40060000U)

#define LWHVR_VM2_MPU_REGION3_END (0x4006fff7U)

/* Memory region shared with other VM for communication. */

#define LWHVR_VM2_MPU_REGION4_PERMS LWHVR_MPU_REGION4_RW

#define LWHVR_VM2_MPU_REGION4_START (0x400f0000U)

#define LWHVR_VM2_MPU_REGION4_END (0x400ffff7U)

/**** Application core 0 schedule table. ****/

#define LWHVR_NUM_CORE0_SCHED_ENTRIES (6U)

#define LWHVR_CORE0_SCHED0_VM LWHVR_VmZero_ID

#define LWHVR_CORE0_SCHED0_DURATION (2U)

#define LWHVR_CORE0_SCHED1_VM LWHVR_VmOne_ID

#define LWHVR_CORE0_SCHED1_DURATION (2U)

#define LWHVR_CORE0_SCHED2_VM LWHVR_SPARE

#define LWHVR_CORE0_SCHED2_DURATION (1U)

#define LWHVR_CORE0_SCHED3_VM LWHVR_VmZero_ID

#define LWHVR_CORE0_SCHED3_DURATION (1U)

#define LWHVR_CORE0_SCHED4_VM LWHVR_VmOne_ID

#define LWHVR_CORE0_SCHED4_DURATION (1U)

ETAS Configuration

ETAS RTA Lightweight Hypervisor User Manual 39

#define LWHVR_CORE0_SCHED5_VM LWHVR_SPARE

#define LWHVR_CORE0_SCHED5_DURATION (1U)

/**** Application core 1 schedule table. ****/

#define LWHVR_NUM_CORE1_SCHED_ENTRIES (1U)

#define LWHVR_CORE1_SCHED0_VM LWHVR_VmTwo_ID

#define LWHVR_CORE1_SCHED0_DURATION (2U)

ETAS Types and Constants

ETAS RTA Lightweight Hypervisor User Manual 40

7 Types and Constants

This chapter describes the types and constants used in the RTA-LWHVR APIs.

7.1 LWHVR_BooleanType

LWHVR_BooleanType is a target specific type used to represent a Boolean value. The

constant LWHVR_TRUE is used to represent true and the constant LWHVR_FALSE is used to

represent false.

7.2 LWHVR_UInt32Type

LWHVR_UInt32Type is a target specific type used to represent an unsigned 32-bit value.

7.3 LWHVR_RegisterType

LWHVR_RegisterType is a target specific type used to represent a processor register.

7.4 LWHVR_InterruptIdType

LWHVR_InterruptIdType is a target specific type used to represent an interrupt source.

7.5 LWHVR_MemoryCopyExtentType

LWHVR_MemoryCopyExtentType is used to describe a memory extent to be copied – see

section 11.6.

7.6 LWHVR_VmIdType

LWHVR_VmIdType is used to represent a VM identifier. A VM identifier is a small integer

that corresponds to the VM’s number in the configuration. That is, the VM described by
macros LWHVR_VM<N>_XXXX in LWHVR_Configuration.h would have identifier <N> (see

section 6.3.4).

For example, the VM described by macros LWHVR_VM0_XXXX would have identifier 0, the

VM described by macros LWHVR_VM1_XXXX would have identifier 1, the VM described by

macros LWHVR_VM2_XXXX would have identifier 2, and so on.

7.7 LWHVR_ErrorType

LWHVR_ErrorType is used to represent an error cause. This is an enumeration with the

following values:

LWHVR_ErrorNone

No error.

LWHVR_ErrorInvalidVmId

An invalid VM identifier has been specified.

LWHVR_ErrorInvalidVmAPI

A VM has specified an invalid API service number when making a VM API call.

LWHVR_ErrorInvalidPsInterrupt

A VM has specified an invalid pseudo-interrupt number when making a VM API
call.

LWHVR_ErrorMemoryPermission

ETAS Types and Constants

ETAS RTA Lightweight Hypervisor User Manual 41

A VM has tried to access memory for which it does not have permission. Either
the VM does not have permission to access the memory at all, or it has tried to
access the memory in a way that does not match the VM’s MPU configuration.
E.g. the VM has tried to write to memory for which it only has read permission.

LWHVR_ErrorMemoryAlignment

A VM has made an unaligned memory access.

LWHVR_ErrorInstruction

A VM has executed an invalid instruction or an instruction that it is not allowed
to execute (e.g. a privileged instruction).

LWHVR_ErrorTooManyExtents

A VM has called the atomic memory-copy VM API specifying too many memory
extents to be copied.

LWHVR_ErrorExtentTooLarge

A VM has called the atomic memory-copy VM API specifying a memory extent
that is too large.

LWHVR_ErrorExtraTimeQueueFull

The queue of VMs for which extra-time has been requested was full when the
LWHVR_RequestExtraTimeForVM() API function was called.

LWHVR_ErrorNotApplicationCore

The LWHVR_Start() API function was called on a core that is not an

application core.

LWHVR_ErrorInitializing

The LWHVR_StopVM(), LWHVR_ShutdownVM(), LWHVR_RestartVM() or

LWHVR_RequestExtraTimeForVM() master software API function has

been called for a VM on an application core that has not completed
initialisation or has stopped running the LWHVR.

The following values are not used on all targets. See the target specific documentation for
which values are used on your target.

LWHVR_ErrorRegisterPermission

A VM has tried to access a register for which it does not have permission.

LWHVR_ErrorStackOverflow

A VM has overflowed its stack.

LWHVR_ErrorStackUnderflow

A VM has underflowed its stack.

LWHVR_ErrorStackInvalid

The VM’s stack is not in a valid state for the instruction being executed by the

VM.

LWHVR_ErrorMemoryAddress

A VM has tried to execute an instruction whose operand is not a valid
memory address.

LWHVR_ErrorInstrFetch

A VM has tried to execute an instruction that has caused a synchronous
instruction fetch error.

LWHVR_ErrorInstrFetchAsync

A VM has tried to execute an instruction that has caused an asynchronous

instruction fetch error.

LWHVR_ErrorProgramMemory

A VM has tried to execute an instruction that has caused a synchronous error
in the program memory.

ETAS Types and Constants

ETAS RTA Lightweight Hypervisor User Manual 42

LWHVR_ErrorProgramMemoryAsync

A VM has tried to execute an instruction that has caused an asynchronous
error in the program memory.

LWHVR_ErrorDataAccess

A VM has tried to access a memory location that has caused a synchronous
data access error.

LWHVR_ErrorDataAccessAsync

The VM has tried to access a memory location that has caused an
asynchronous data access error.

LWHVR_ErrorDataMemory

A VM has tried to access a memory location that has caused a synchronous
data memory error.

LWHVR_ErrorDataMemoryAsync

A VM has tried to access a memory location that has caused an asynchronous
data memory error.

LWHVR_ErrorCoprocessor

A co-processor has caused a synchronous error.

LWHVR_ErrorCoprocessorAsync

A co-processor has causes an asynchronous error.

LWHVR_ErrorTemporal

A synchronous temporal error has occurred.

LWHVR_ErrorTemporalAsync

An asynchronous temporal error has occurred.

LWHVR_FatalInterruptDecode

The RTA-LWHVR is not able to decode an interrupt/trap. This is a fatal error
and if seen the RTA-LWHVR is in an invalid state.

LWHVR_FatalMemoryRegionIndex

The RTA-LWHVR has tried to set an invalid MPU region. This is a fatal error
and if seen the RTA-LWHVR is in an invalid state.

LWHVR_FatalMemoryRegionConfig

The memory region configuration is invalid. This is a fatal error and if seen
the RTA-LWHVR is in an invalid state.

7.8 LWHVR_VMStatusBlockType

LWHVR_VMStatusBlockType defines the layout of a VM’s status block. See section 5.7.

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 43

8 Master Software API

The RTA-LWHVR provides an API for use by the master software. This chapter describes this
API.

The master software API consists of a collection of C functions that can be called by the
master software to control the RTA-LWHVR and VMs.

To make use of this API the master software should include the header file LWHVR.h.

Since the RTA-LWHVR is linked into the master software image, the API functions are called
as normal C functions.

8.1 LWHVR_Init

Prototype:

void LWHVR_Init(void);

Purpose:

Called by the master software to carry out RTA-LWHVR initialisation that must be done
before any other API call (including LWHVR_Start() and LWHVR_AllHaveStarted()) is

used.

If the RTA-LWHVR is stopped by calling LWHVR_Stop() then this API must be called again

before application cores call LWHVR_Start() to re-start the RTA-LWHVR.

Parameters:

None.

Returns:

Nothing.

Restrictions:

 This function must not be called until integrator code has initialized the hardware (e.g.
configured PLLs and clocks, enabled/disabled data-caches).

 This function must not be called until a suitable environment has been created to run C

code – e.g. by running the compiler C start-up code.

 This function is not re-entrant. That is, once this function has been called on any core, it
must not be called again (e.g. on a different core, in an interrupt handler or in a higher
priority task) until the first call has returned.

 This function must not be called whilst any application is running the RTA-LWHVR – i.e.
the application core is executing in the LWHVR_Start() function.

8.2 LWHVR_Start

Prototype:

void LWHVR_Start(void);

Purpose:

Called by an application core to start the RTA-LWHVR running on that core.

This function may be called by an application core that is running the RTA-LWHVR to re-start
the RTA-LWHVR on that application core without the RTA-LWHVR being stopped with
LWHVR_Stop() – see section 4.7.

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 44

Parameters:

None.

Returns:

Nothing.

Restrictions:

 This function must not be called until integrator code has initialized the hardware (e.g.
configured PLLs and clocks, enabled/disabled data-caches).

 This function must not be called until a suitable environment has been created to run C
code – e.g. by running the compiler C start-up code.

 This function must not be called until the master software has called LWHVR_Init().

 Whilst initialising the RTA-LWHVR on an application core, LWHVR_Start()will configure

the interrupt controller to route the clock-tick interrupt to the RTA-LWHVR. To avoid
contention when configuring the interrupt controller, once LWHVR_Start() has been

called by any application core, no other software may change the configuration of the
interrupt controller until LWHVR_AllHaveStarted() returns LWHVR_TRUE.

Notes:

1. This function only returns when the RTA-LWHVR has shut down.

2. If this function is called on a core that is not an application core then
LWVHR_ErrorCallback() will be called with an error of

LWHVR_ErrorNotApplicationCore and the RTA-LWHVR will not be started.

8.3 LWHVR_AllHaveStarted

Prototype:

LWHVR_BooleanType LWHVR_AllHaveStarted(void);

Purpose:

Called by the master software to determine if all application cores have called
LWHVR_Start() and completed sufficient initialisation to allow other RTA-LWHVR APIs to

be called.

Parameters:

None.

Returns:

LWHVR_TRUE if all application cores have called LWHVR_Start() and completed

initialisation. LWHVR_FALSE otherwise.

Restrictions:

 This function must not be called until the master software has called LWHVR_Init().

8.4 LWHVR_Stop

Prototype:

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 45

void LWHVR_Stop(void);

Purpose:

Called by the master software to stop the RTA-LWHVR running on all application cores. After
this call has been made application cores will return from LWHVR_Start().

The RTA-LWHVR will stop running on an application core at the start of the next scheduled
time-slice. That is, just before the next time-slice in the schedule would be run, but after any
VMs for which the master software has requested extra time have run.

No master software API functions may be called after LWHVR_Stop() has been called

unless the RTA-LWHVR has been re-started.

Parameters:

None.

Returns:

Nothing.

Restrictions:

 This function must not be called until the master software has called LWHVR_Init().

8.5 LWHVR_StopVM

Prototype:

void LWHVR_StopVM(LWHVR_VmIdType vmId);

Purpose:

Called by the master software to request that a VM be forcibly stopped.

The VM will be stopped at the start of its next time-slice.

Immediately after the VM has been stopped LWHVR_StoppedVMCallback() will be called.

Parameters:

vmId The identifier of the VM to be stopped.

Returns:

Nothing.

Restrictions:

 This function must not be called until the master software has called LWHVR_Init().

 If the RTA-LWHVR may be re-started on an individual application core (see section 4.7)
then this function must run to completion without being pre-empted by any other code –
e.g. a higher priority task or ISR.

Notes:

1. If vmId is not valid then LWHVR_ErrorCallback() will be called with an error of

LWHVR_ErrorInvalidVmId.

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 46

2. If this function is called for a VM on an application core that has not yet called
LWHVR_Start(), or where LWHVR_Start() is carrying out initialisation, or where the

RTA-LWHVR has stopped running, then LWHVR_ErrorCallback() will be called with

an error of LWHVR_ErrorInitializing.

8.6 LWHVR_ShutdownVM

Prototype:

void LWHVR_ShutdownVM(LWHVR_VmIdType vmId);

Purpose:

Called by the master software to request that a VM be shut down.

The VM will have a shutdown pseudo-interrupt injected at the start of its next time-slice.

Immediately after the VM has called the VM API service LWHVR_VMAPI_SHUTDOWN,

LWHVR_ShutdownVMCallback() will be called.

Parameters:

vmId The identifier of the VM to be shut down.

Returns:

Nothing.

Restrictions:

 This function must not be called until the master software has called LWHVR_Init().

 If the RTA-LWHVR may be re-started on an individual application core (see section 4.7)
then this function must run to completion without being pre-empted by any other code –
e.g. a higher priority task or ISR.

Notes:

1. If vmId is not valid then LWHVR_ErrorCallback() will be called with an error of

LWHVR_ErrorInvalidVmId.

2. If this function is called for a VM on an application core that has not yet called
LWHVR_Start(), or where LWHVR_Start() is carrying out initialisation, or where the

RTA-LWHVR has stopped running, then LWHVR_ErrorCallback() will be called with

an error of LWHVR_ErrorInitializing.

3. When a VM is re-started, the mask of pending pseudo-interrupts in its status block is set
to 0. Therefore the effect of any calls of LWHVR_ShutdownVM() that are made after

the VM has been forcibly stopped, shut down or has caused an error
(LWHVR_VMErrorCallback() called), but before the VM has re-started will be lost.

8.7 LWHVR_RestartVM

Prototype:

void LWHVR_RestartVM(LWHVR_VmIdType vmId);

Purpose:

Called by the master software to request that a VM be re-started after being forcibly
stopped, shut down, or after it has caused an error.

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 47

This API must only be used to re-start a VM during or after the
LWHVR_VMErrorCallback(), LWHVR_StoppedVMCallback() or

LWHVR_ShutdownVMCallback() call-back has been made for the VM.

This call has no effect if the VM is running.

Parameters:

vmId The identifier of the VM to be re-started.

Returns:

Nothing.

Restrictions:

 This function must not be called until the master software has called LWHVR_Init().

 If the RTA-LWHVR may be re-started on an individual application core (see section 4.7)
then this function must run to completion without being pre-empted by any other code –
e.g. a higher priority task or ISR.

Notes:

1. If vmId is not valid then LWHVR_ErrorCallback() will be called with an error of

LWHVR_ErrorInvalidVmId.

2. If this function is called for a VM on an application core that has not yet called
LWHVR_Start(), or where LWHVR_Start() is carrying out initialisation, or where the

RTA-LWHVR has stopped running, then LWHVR_ErrorCallback() will be called with

an error of LWHVR_ErrorInitializing.

8.8 LWHVR_RequestExtraTimeForVM

Prototype:

void LWHVR_RequestExtraTimeForVM(LWHVR_VmIdType vmId);

Purpose:

Called by the master software to request that a VM be executed for an extra clock-tick. The
VM will be added to a high-priority FIFO queue of VMs requiring extra-time on the VM's
application core. (Note that this is a different queue to the low-priority queue used for extra-
time requests made by VMs themselves – see section 11.5.) Execution of VMs in this extra-
time queue pre-empts normal scheduling on the application core. That is, on a clock-tick, if
this extra-time queue is not empty, then rather than selecting which VM to execute based on
the application core’s schedule table, the RTA-LWHVR scheduler will remove the VM at the
front of the extra-time queue and execute it.

A VM may be in a high-priority extra-time queue multiple times.

The size of an application core’s high-priority extra-time queue is specified in the RTA-

LWHVR configuration.

When an application core starts, the number of free entries in its high-priority extra-time
queue is set to the size of the queue. When this API adds a VM to the queue it decrements
by one the number of free entries in the queue. A VM can only be added to the queue when
there is at least one free entry (otherwise LWHVR_ErrorCallback() is called and the VM

is not added to the queue).

When the scheduler removes a VM from an application core’s high-priority extra-time queue
in order to execute it, the scheduler does not increment the number of free entries in the
queue. Instead, when the scheduler encounters a spare time-slice in the application core’s

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 48

schedule table, and the number of free entries is less than the queue size, the scheduler
skips the spare time-slice and increments by one the number of free entries in the queue.
(Note that a skipped spare time-slice is not available for running a VM that has requested
extra time for itself.)

In this way, we only allow the master software to use spare time that exists in the schedule,
but in advance of when the spare time occurs in the schedule. The size of the queue limits
how much spare time the master software can "borrow" from the future.

For example, consider the following RTA-LWHVR configuration. The schedule table has 6

entries, two of which are spare time. The extra-time queue has two entries.

VM0 VM1 Spare VM2 VM3 Spare

Tick o
ffset 0

Schedule Table

Free Free

Extra time queue

Fro
n

t

1 tick 1 tick 1 tick 1 tick 1 tick 1 tick

Tick o
ffset 1

Tick o
ffset 2

Tick o
ffset 3

Tick o
ffset 4

Tick o
ffset 5

Assume that while VM0 is executing during clock-tick 0
LWHVR_RequestExtraTimeForVM() is called for VM2 and then VM3. VM2 and VM3 would

be added to the extra-time queue.

VM0

T
ick

 0

VM Execution History 1

Extra time queue

LWHVR_RequestExtraTimeForVM()
called for VM2 and VM3

VM2 VM3

At clock-tick 1 the RTA-LWHVR scheduler would notice that VM2 is at the front of the extra-
time queue and execute it instead of looking at the next entry in the schedule table.

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 49

VM0

Tick 0

VM Execution History 2

VM3 In Use

Extra time queue

VM2

Tick 1

At clock-tick 2 the scheduler would notice that that VM3 is at the front of the extra-time
queue and execute it instead of looking at the next entry in the schedule table. At clock-tick
3 the scheduler would return to executing VMs in schedule order and would execute VM1 (at
clock-tick offset 1 in the schedule).

VM0

T
ick

 0

VM Execution History 3

In Use In Use

Extra time queue

VM2 VM3

T
ick

 1

T
ick

 2

VM1

T
ick

 3

At clock-tick 4 the scheduler would find a spare time-slice in the schedule (at clock-tick
offset 2 in the schedule). Therefore it would free up an entry in the extra-time queue and
skip the spare time-slice. The scheduler would then find VM2 in the schedule (at clock-tick
offset 3 in the schedule) and execute it.

VM0

T
ick

 0

VM Execution History 4

Free In Use

Extra time queue

VM2 VM3

T
ick

 1

T
ick

 2

VM1

T
ick

 3

VM2

T
ick

 4

At clock-tick 5 the scheduler would find VM3 in the schedule (at clock-tick offset 4 in the

schedule) and execute it.

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 50

VM0

T
ick

 0

VM Execution History 5

Free In Use

Extra time queue

VM2 VM3

T
ick

 1

T
ick

 2

VM1

T
ick

 3

VM2

T
ick

 4

VM3

T
ick

 5

At clock-tick 6 the scheduler would find a spare time-slice in the schedule (at clock-tick
offset 5 in the schedule). Therefore it would free up an entry in the extra-time queue and
skip the spare time-slice. The scheduler would now be at the end of the schedule so it would
return to the start of the schedule and execute VM0.

VM0

T
ick

 0

VM Execution History 6

Free

Extra time queue

VM2 VM3

T
ick

 1

T
ick

 2

VM1

T
ick

 3

VM2
T

ick
 4

VM3

T
ick

 5

VM0

T
ick

 6

Free

Parameters:

vmId The identifier of the VM for which extra-time is being requested.

Returns:

Nothing.

Restrictions:

 This function must not be called until the master software has called LWHVR_Init().

 This function is not re-entrant. That is, once this function has been called on any core, it
must not be called again (e.g. on a different core, in an interrupt handler or in a higher
priority task) until the first call has returned.

 If the RTA-LWHVR may be re-started on an individual application core (see section 4.7)
then this function must run to completion without being pre-empted by any other code –
e.g. a higher priority task or ISR.

Notes:

1. If vmId is not valid then LWHVR_ErrorCallback() will be called with an error of

LWHVR_ErrorInvalidVmId.

ETAS Master Software API

ETAS RTA Lightweight Hypervisor User Manual 51

2. If the extra-time queue is full then LWVHR_ErrorCallback() will be called with an

error of LWHVR_ErrorExtraTimeQueueFull.

3. If this function is called for a VM on an application core that has not yet called
LWHVR_Start(), or where LWHVR_Start() is carrying out initialisation, or where the

RTA-LWHVR has stopped running, then LWHVR_ErrorCallback() will be called with

an error of LWHVR_ErrorInitializing.

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 52

9 Master Software Call-back Functions

This chapter describes the call-back functions that the master software provides to support
the RTA-LWHVR and receive status information from the RTA-LWHVR.

Since the RTA-LWHVR is linked into the master software image, the call-back functions are
called as normal C functions (except for LWHVR_UnexpInterruptHook).

Unless stated otherwise, except for LWHVR_ErrorCallback(), when these call-back

functions are called:

 The call-back function will be executed by an application core.

 The same stack will be in use as when LWHVR_Start() was called on the calling
application core.

 The small-data area register values will be the same as when LWHVR_Start() was
called on the calling application core.

 Volatile registers will have been saved by the caller (the call-back must preserve any
non-volatile registers required by the compiler/EABI).

 Interrupts will disabled. The call-back must not enable interrupts.

9.1 LWHVR_StartTimerCallback

Prototype:

void LWHVR_StartTimerCallback(void);

Purpose:

Called by the RTA-LWHVR to configure and start the clock-tick interrupt source on the
application core on which the call-back is called – see section 4.8.

Parameters:

None.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

9.2 LWHVR_ClockCallback

Prototype:

void LWHVR_ClockCallback(void);

Purpose:

Called by the RTA-LWHVR during the clock-tick interrupt handler to acknowledge and re-
enable the clock-tick interrupt source, on the application core on which the call-back is
called, to generate another interrupt on the next clock-tick – see section 4.8.

Parameters:

None.

Returns:

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 53

Nothing.

Restrictions:

See sections 9.13 and 9.14.

9.3 LWHVR_UnexpInterruptCallback

Prototype:

void LWHVR_UnexpInterruptCallback(LWHVR_InterruptIdType cause);

Purpose:

Called by the RTA-LWHVR when an unexpected interrupt occurs on an application core. If
the integrator can deal with the unexpected interrupt then this function may return normally
to resume execution of the RTA-LWHVR.

See the target specific documentation for the situations in which this call-back will be called.

Parameters:

cause The target specific cause of the interrupt.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

9.4 LWHVR_UnexpInterruptHook

Prototype:

void LWHVR_UnexpInterruptHook(LWHVR_InterruptIdType cause);

Purpose:

Jumped to when an unexpected interrupt occurs on an application core. If the integrator can
deal with the unexpected interrupt then they may execute code that resumes execution after
the interrupt (e.g. execute an rfi instruction).

This is not a normal C function, it is jumped to directly from the interrupt vector, therefore:

 The stack is undefined.

 Small-data area registers are undefined.

 If this hook will resume execution it must preserve any registers it uses.

See the target specific documentation for the situations in which this hook will be invoked.

Parameters:

cause The target specific cause of the interrupt.

Returns:

Nothing.

Restrictions:

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 54

See sections 9.13 and 9.14.

9.5 LWHVR_ErrorCallback

Prototype:

void LWHVR_ErrorCallback(LWHVR_ErrorType error);

Purpose:

Called by the RTA-LWHVR when the master software calls an API function in an invalid way.
This function is called directly by the master software API function. Therefore it executes on
the same core and in the same environment as the caller of the API function.

Parameters:

Error The error that has occurred.

Returns:

Nothing.

Error Reasons:

The master software may be notified of the following errors via this call-back:

LWHVR_ErrorInvalidVmId

LWHVR_ErrorExtraTimeQueueFull

LWHVR_ErrorNotApplicationCore

LWHVR_ErrorInitializing

In case of the above error the call-back may return.

See the target specific documentation for any additional situations in which this call-back
may be called.

9.6 LWHVR_StoppedVMCallback

Prototype:

void LWHVR_StoppedVMCallback(LWHVR_VmIdType vmId);

Purpose:

Called by the RTA-LWHVR when a VM has stopped as the result of a previous
LWHVR_StopVM() API call.

Parameters:

vmId The identifier of the VM that has stopped.

Returns:

Nothing.

Restrictions:

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 55

See sections 9.13 and 9.14.

9.7 LWHVR_ShutdownVMCallback

Prototype:

void LWHVR_ShutdownVMCallback(LWHVR_VmIdType vmId);

Purpose:

Called by the RTA-LWHVR when a VM has shut itself down by calling the VM API
LWHVR_VMAPI_SHUTDOWN.

Parameters:

vmId The identifier of the VM that has shutdown.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

9.8 LWHVR_VMErrorCallback

Prototype:

void LWHVR_VMErrorCallback(

 LWHVR_VmIdType vmId,

 LWHVR_ErrorType error,

 LWHVR_UInt32Type data);

Purpose:

Called by the RTA-LWHVR when a VM goes into error (see section 5.6).

When this call-back is called the VM will have been forcibly stopped and will no-longer be
scheduled. To re-start the VM use the LWHVR_RestartVM() API.

Parameters:

vmId The identifier of the VM that is in error.

error The error the VM caused.

data Target and error specific.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

Error Reasons:

The master software may be notified of the following errors via this call-back:

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 56

LWHVR_ErrorInvalidVmAPI

LWHVR_ErrorInvalidPsInterrupt

LWHVR_ErrorMemoryPermission

LWHVR_ErrorMemoryAlignment

LWHVR_ErrorInstruction

LWHVR_ErrorToManyExtents

LWHVR_ErrorExtentTooLarge

See the target specific documentation for any additional situations in which this call-back
may be called.

9.9 LWHVR_GlobalUnlockCallback

Prototype:

void LWHVR_GlobalUnlockCallback(void);

Purpose:

Called to enable access to configuration registers that require unlocking globally.

An application core will always call LWHVR_GlobalUnlockCallback() shortly followed by

LWHVR_GlobalRelockCallback(). On any one application core calls to

LWHVR_GlobalUnlockCallback() and LWHVR_GlobalRelockCallback() will never

be nested - i.e. we always see:

 LWHVR_GlobalUnlockCallback() // Application core X

 LWHVR_GlobalRelockCallback() // Application core X

 LWHVR_GlobalUnlockCallback() // Application core X

 LWHVR_GlobalRelockCallback() // Application core X

 and NEVER:

 LWHVR_GlobalUnlockCallback() // Application core X

 LWHVR_GlobalUnlockCallback() // Application core X

 LWHVR_GlobalRelockCallback() // Application core X

 LWHVR_GlobalRelockCallback() // Application core X

However, since application cores run in parallel you may see nested calls. E.g. you might see
the following:

 LWHVR_GlobalUnlockCallback() // Application core X

 LWHVR_GlobalUnlockCallback() // Application core Y

 LWHVR_GlobalRelockCallback() // Application core X

 LWHVR_GlobalRelockCallback() // Application core Y

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 57

Therefore, if the unlocking operation uses a resource shared between cores it will be
necessary to use some sort of lock to a stop a new call of
LWHVR_GlobalUnlockCallback() from running until a previous call of

LWHVR_GlobalUnlockCallback() has been completed with a call of

LWHVR_GlobalRelockCallback(). E.g.

void LWHVR_GlobalUnlockCallback(void)

{

 <claim spin-lock>

 <unlock access to configuration registers>

}

void LWHVR_GlobalRelockCallback(void)

{

 <relock access to configuration registers>

 <release spin-lock>

}

See the target specific documentation for which configuration registers must be unlocked by
this function.

Parameters:

None.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

9.10 LWHVR_GlobalRelockCallback

Prototype:

void LWHVR_GlobalRelockCallback(void);

Purpose:

Called to disable access to configuration registers that require unlocking globally.

See section 9.9 for details.

See the target specific documentation for which configuration registers must be relocked by
this function.

Parameters:

None.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 58

9.11 LWHVR_CoreUnlockCallback

Prototype:

void LWHVR_CoreUnlockCallback(void);

Purpose:

Called to enable access to configuration registers that require unlocking for the calling
application core.

An application core will always call LWHVR_CoreUnlockCallback() shortly followed by

LWHVR_CoreRelockCallback(). On any one application core calls to

LWHVR_CoreUnlockCallback() and LWHVR_CoreRelockCallback() will never be

nested - i.e. we always see:

 LWHVR_CoreUnlockCallback() // Application core X

 LWHVR_CoreRelockCallback() // Application core X

 LWHVR_CoreUnlockCallback() // Application core X

 LWHVR_CoreRelockCallback() // Application core X

 and NEVER:

 LWHVR_CoreUnlockCallback() // Application core X

 LWHVR_CoreUnlockCallback() // Application core X

 LWHVR_CoreRelockCallback() // Application core X

 LWHVR_CoreRelockCallback() // Application core X

However, since application cores run in parallel you may see nested calls. E.g. you might see
the following:

 LWHVR_CoreUnlockCallback() // Application core X

 LWHVR_CoreUnlockCallback() // Application core Y

 LWHVR_CoreRelockCallback() // Application core X

 LWHVR_CoreRelockCallback() // Application core Y

Therefore, if the unlocking operation uses a resource shared between cores it will be
necessary to use some sort of lock to a stop a new call of
LWHVR_CoreUnlockCallback() from running until a previous call of

LWHVR_CoreUnlockCallback() has been completed with a call of

LWHVR_CoreRelockCallback(). E.g.

void LWHVR_CoreUnlockCallback(void)

{

 <claim spin-lock>

 <unlock access to configuration registers>

}

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 59

void LWHVR_CoreRelockCallback(void)

{

 <relock access to configuration registers>

 <release spin-lock>

}

See the target specific documentation for which configuration registers must be unlocked by
this function.

Parameters:

None.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

9.12 LWHVR_CoreRelockCallback

Prototype:

void LWHVR_CoreRelockCallback(void);

Purpose:

Called to disable access to configuration registers that require unlocking for the calling
application core.

See section 9.11 for details.

See the target specific documentation for which configuration registers must be relocked by

this function.

Parameters:

None.

Returns:

Nothing.

Restrictions:

See sections 9.13 and 9.14.

9.13 Restrictions on all Call-back Functions

The following restrictions apply to all call-back functions.

 Apart from the exceptions listed below, call-back functions must not call functions in the
master software API.

The exceptions to this rule are:

o LWHVR_StoppedVMCallback(), LWHVR_ShutdownVMCallback() and

LWHVR_VMErrorCallback()may call LWHVR_RestartVM().

o LWHVR_ClockCallback() may call LWHVR_RequestExtraTimeForVM().

ETAS Master Software Call-back Functions

ETAS RTA Lightweight Hypervisor User Manual 60

See also section 4.12.

9.14 Restrictions on Call-back Functions that run on an Application Core

The following restrictions apply to call-back functions running on application cores - that is
all call-backs except for LWHVR_ErrorCallback() when it results from the master core

calling LWHVR_Start(), LWHVR_StopVM(), LWHVR_ShutdownVM(),

LWHVR_RestartVM() or LWHVR_RequestExtraTimeForVM():

 No traps or interrupts may be generated (other than the clock-tick interrupt managed by

LWHVR_StartTimerCallback() and LWHVR_ClockCallback()). If the call-back

does generate a trap or interrupt then the LWHVR_UnexpInterruptCallback() call-

back will be called or the LWHVR_UnexpInterruptHook hook will be invoked

depending on the type of trap or interrupt.

 Since the call-back executes with interrupts disabled, scheduling of VMs is stalled during

its execution. Therefore call-backs must execute as quickly as possible. Please see
section 12 for more information about the effects of call-back function execution on
scheduling.

 Call-backs must not enable interrupts or change the processor’s interrupt priority level.

ETAS Configuration Variables

ETAS RTA Lightweight Hypervisor User Manual 61

10 Configuration Variables

This chapter describes global configuration variables that may be used by the master
software to affect the behaviour of the RTA-LWHVR.

10.1 LWHVR_CoreConfigWord

Declaration:

extern LWHVR_RegisterType LWHVR_CoreConfigWord;

Purpose:

This variable may be used to control the configuration of an application core whilst VMs are
running. Its value is target specific.

LWHVR_CoreConfigWord will have a default value that will allow correct operation of the

RTA-LWHVR. If LWHVR_CoreConfigWord needs to be changed, it must be changed before

LWHVR_Init() is called and it must not be changed again after LWHVR_Init() has been

called.

ETAS VM API

ETAS RTA Lightweight Hypervisor User Manual 62

11 VM API

VMs are able to call a small number of API services from the RTA-LWHVR. This chapter
describes this VM API.

Typically calling a VM API service will involve the VM executing a trap instruction to transfer
control to the RTA-LWHVR. (Each VM is in a separate memory image and is not linked
together with the master software, so a VM cannot call a C function in the RTA-LWHVR in
the normal way.)

Each API service has a number used to identify the service being called and may have
additional arguments. How the service number and arguments are specified is target
specific. The header file LWHVR_VMAPI.h contains constants for the service numbers. The

constant names are used here to refer to the API services.

If an invalid service number is used the calling VM will be in error (see section 5.6) and
LWHVR_VMErrorCallback() will be called with the error LWHVR_ErrorInvalidVmAPI.

11.1 LWHVR_VMAPI_SYNC_PS_INTS

Service Number: 0

Purpose:

This API service is used to inject pending and enabled pseudo-interrupts into the calling VM.
Pending and enabled pseudo-interrupts are automatically injected into the running VM when
the RTA-LWHVR processes a clock-tick interrupt or when a VM makes a
LWHVR_VMAPI_RETURN_FROM_PS_INT API service call to return from a pseudo-interrupt

handler.

VMs will only normally need to use this API if they disable interrupts by clearing bits in their
status block’s psIntEnabled field and then later re-enable the interrupts. To avoid the

overhead of an unnecessary call to the RTA-LWHVR, a VM should only use this call if it has
pending and enabled pseudo-interrupts (i.e. the bitwize-and of the VM status block
psIntPending and psIntEnabled fields is not 0).

For example, assume that the VM status block can be accessed with the token

VMStatusBlock:

/* Disable pseudo-interrupts. */

LWHVR_UInt32Type prevEnabled = VMStatusBlock.psIntEnabled;

VMStatusBlock.psIntEnabled = 0U;

/* Code that must not be interrupted. */

/* Re-enable pseudo-interrupts. */

VMStatusBlock.psIntEnabled = prevEnabled;

/* Inject any pending and enabled pseudo-interrupts. */

if ((VMStatusBlock.psIntPending & VMStatusBlock.psIntEnabled)!= 0U)

{

 VMSynchronisePseudoInterrupts();

}

11.2 LWHVR_VMAPI_RETURN_FROM_PS_INT

Service Number: 1

Purpose:

This API service is used to terminate execution of a pseudo-interrupt handler (see section
5.8.6) and resume execution of the interrupted code.

ETAS VM API

ETAS RTA Lightweight Hypervisor User Manual 63

This API service does not take any arguments, however it is affected by the contents of the
calling VM status block (see section 5.7). When this API call is made:

1. The VM’s status block psIntEnabled field is set to the value of the VM status block

psIntPreviousEnabled field.

2. A target specific register may be restored from the VM status block
psIntRestoreRegister field.

3. Execution is resumed at the address stored in the VM status block
psIntResumeAddress field.

Parameters:

None.

11.3 LWHVR_VMAPI_INJECT_PS_INT

Service Number: 2

Purpose:

This API allows the calling VM to explicitly inject a pseudo-interrupt into itself. That is:

1. The VM specifies the number of a pseudo-interrupt to be injected (0-31) in the first

parameter.

2. The RTA-LWHVR sets the corresponding bit (1 << pseudo-interrupt number) in the VM
status block psIntPending field.

3. If the pseudo-interrupt is also enabled in the VM status block psIntEnabled field then

the pseudo interrupt is immediately injected into the calling VM.

Parameters:

First the number of the pseudo-interrupt to be injected.

Errors:

Calling this API with an invalid argument will result in the VM being in error and
LWHVR_VMErrorCallback()being called with the following error:

LWHVR_ErrorInvalidPsInterrupt

Notes:

This API service is not intended for normal use. Its intended purpose is to support testing of

RTA-OS. However it is documented here as it may have some other unforeseen applications.

11.4 LWHVR_VMAPI_SHUTDOWN

Service Number: 3

Purpose:

This API service is used by a VM when it wishes to stop executing; either in response to a

shutdown pseudo-interrupt or for some other reason. A call to this API service does return.

After the VM has made this call it is marked as not runnable and will not be scheduled by
the RTA-LWHVR. The only way that the VM will run again is if the master software calls
LWHVR_RestartVM() for the VM.

ETAS VM API

ETAS RTA Lightweight Hypervisor User Manual 64

Parameters:

None.

11.5 LWHVR_VMAPI_REQUEST_EXTRA_TIME

Service Number: 4

Purpose:

This API service is used by a VM to request extra execution time. Normally a VM runs in the
time-slices assigned to it in a schedule table (see section 6.3.5). If a VM calls this API service
it is added to a low-priority FIFO queue of VMs that have requested extra time on the calling
VM’s application core. (Note that this is a different queue to the high-priority queue used for
extra-time requests made by the master software – see section 8.8.) If the RTA-LWHVR’s
scheduler encounters a spare time-slice entry in an application core’s schedule table (that
has not been skipped due to extra-time requests made by the master software – see section

8.8) it will remove the VM at the front of the application core’s extra-time queue and then
run it in the spare time-slice.

A VM may only be in a low-priority extra-time queue once. This API service may be called
multiple times, but only those calls made when the VM is not already in a extra-time queue
will have any effect. This means that spare time-slices are shared out fairly between
requesting VMs. However, please note that spare time-slices are also consumed when the
master software requests extra execution time for a VM.

For example, consider the following schedule table that has 6 entries, two of which are
spare time.

VM0 VM1 Spare VM2 VM3 Spare

Start

Schedule Table

Free Free

Extra time queue

Free Free

Fro
n

t

1 tick 1 tick 1 tick 1 tick 1 tick 1 tick

At clock-tick 0 the RTA-LWHVR would select the first entry in the schedule table, and
therefore execute VM0. Assume that while VM0 is executing it requests extra-time. VM0
would be added to the extra-time queue.

ETAS VM API

ETAS RTA Lightweight Hypervisor User Manual 65

VM0

Tick 0

VM Execution History 1

Extra time queue

VM0 requests extra time

VM0 Free Free Free

At clock-tick 1 the RTA-LWHVR would select the second entry in the schedule table, and
therefore execute VM1. Assume that while VM1 is executing it requests extra-time twice.
VM1 would be added to the extra-time queue but only once.

VM0

Tick 0

VM Execution History 2

Extra time queue

VM1

Tick 1

VM1 requests extra time

VM0 VM1 Free Free

At clock-tick 2 the RTA-LWHVR would discover that the third entry in the schedule is spare.
Therefore it would remove VM0 from the front of the extra-time queue and execute it.

VM0

Tick 0

VM Execution History 3

Extra time queue

VM1

Tick 1

Tick 2

VM0

VM1 Free Free Free

At clock-tick 3 the RTA-LWHVR would select the fourth entry in the schedule table, and
therefore execute VM2. Then at clock-tick 4 the RTA-LWHVR would select the fifth entry in
the schedule table, and therefore execute VM3. Assume that while VM3 is executing it
requests extra-time. VM3 would be added to the extra-time queue.

ETAS VM API

ETAS RTA Lightweight Hypervisor User Manual 66

VM0

Tick 0

VM Execution History 4

Extra time queue

VM1 VM0

Tick 1

Tick 2

VM2

Tick 3

VM3

Tick 4

VM1 Free Free

VM3 requests extra time

VM3

At clock-tick 5 the RTA-LWHVR would discover that the sixth entry in the schedule is spare.
Therefore it would remove VM1 from the front of the extra-time queue and execute it.
Assume that while VM1 is executing it requests extra-time. VM1 would be added to the
extra-time queue.

Tick 0

VM Execution History 5

Extra time queue

Tick 1

Tick 2

Tick 3

Tick 4

Tick 5

VM0 VM1 VM0 VM2 VM3 VM1

FreeVM3 Free

VM1 requests extra time

VM1

At clock-tick 6 the RTA-LWHVR would return to the start of the schedule and therefore
execute VM0 again and then execute VM1 again at clock-tick 7. At clock-tick 8 the LHWVR
would again find that the third schedule table entry is spare, so it would remove VM3 from
the front of the extra-time queue and execute it.

VM0

Tick 0

VM Execution History 6

Extra time queue

VM3

Tick 1

Tick 2

Tick 3

Tick 4

Tick 5

VM0

Tick 6

VM1 VM0 VM2 VM3 VM1 VM1

Tick 7

Tick 8

Free FreeVM1 Free

At clock-ticks 9 and 10 the RTA-LWHVR would execute VM2 and VM3 again. At clock-tick 11

LHWVR would again find that the sixth schedule table entry is spare, so it would remove
VM1 from the front of the extra-time queue and execute it.

ETAS VM API

ETAS RTA Lightweight Hypervisor User Manual 67

VM0

Tick 0

VM Execution History 7

Extra time queue

VM3

Tick 1

Tick 2

Tick 3

Tick 4

Tick 5

VM0

Tick 6

VM1 VM0 VM2 VM3 VM1 VM1

Tick 7

Tick 8

Free Free Free

VM2 VM3 VM1

Tick 9

Tick 1
0

Tick 1
1

Free

Parameters:

None.

11.6 LWHVR_VMAPI_ATOMIC_MEMORY_COPY

Service Number: 5

Purpose:

This API service is used to copy memory in a way that cannot be interrupted by time-slicing.

The memory to be copied is specified using an array of LWHVR_MemoryCopyExtentType

structures. Each structure specifies an extent of memory to be copied as follows:

LWHVR_MemoryCopyExtentType.fromAddress

The source address.

LWHVR_MemoryCopyExtentType.toAddress

The destination address.

LWHVR_MemoryCopyExtentType.size

The number of bytes to copy from source to destination.

To stop a VM from “stealing” time from another VM by disabling time-slicing for an extended
period of time the number and size of extents is limited as follows:

 By default the maximum size of a memory extent that may be copied is 256 bytes.
To override this default value define the C macro
LWHVR_MAX_COPY_EXTENT_SIZE to be the maximum extent size.

 By default the maximum number of memory extents that may be copied is 8. To

override this default value define the C macro LWHVR_MAX_NUM_COPY_EXTENTS to

be the maximum number of extents.

This API service can only be used to copy from memory that the VM’s configuration allows it
to read to memory that the VM’s configuration allows it to write. Otherwise a
LWHVR_ErrorMemoryPermission error will occur. Likewise the array of

LWHVR_MemoryCopyExtentType structures must be in memory the VM is allowed to read.

Parameters:

First The address of an array of LWHVR_MemoryCopyExtentType structures

specifying the memory extents to be copied.

Second The number of memory extents to be copied.

ETAS VM API

ETAS RTA Lightweight Hypervisor User Manual 68

Errors:

Calling this API with invalid arguments will result in the VM being in error and
LWHVR_VMErrorCallback()being called with one of the following errors:

LWHVR_ErrorMemoryPermission

LWHVR_ErrorToManyExtents

LWHVR_ErrorExtentTooLarge

ETAS Avoiding Schedule Timing Issues

ETAS RTA Lightweight Hypervisor User Manual 69

12 Avoiding Schedule Timing Issues

This chapter discusses two inter-related issues that can affect the scheduling of VMs:
schedule drift and interrupt blocking by VMs.

12.1 Schedule Drift

Consider a RTA-LWHVR configuration that contains a schedule table that is L ticks long (e.g.
a schedule table with a 1 tick-time slice, followed by a 2 tick-time slice, followed by a 1 tick
time-slice would be 4 ticks long).

Assume that a tick is T micro-seconds long.

Let t be the current time in micro-seconds.

Assume that the first clock-tick arrives at time t = 0.

- The schedule does not drift if at the start of every cycle of the schedule t % (L * T) = 0.

- The schedule does drift if at the start of any cycle of the schedule t % (L * T) ≠ 0.

Consider the following case where the schedule has a 1 tick time-slice for VM0 followed by a
1 tick time-slice for VM1.

LWHVR

VM0

L
W
H
V
R
_
C
l
o
c
k
C
a
l
l
b
a
c
k
(
)

Time

VM1

A B

t3

t0

Figure 8: Schedule Drift

At time A a clock-tick interrupt arrives and control passes from VM0 to the RTA-LWHVR. The
RTA-LWHVR processes the interrupt during time interval t0 and then calls the

LWHVR_ClockCallback() call-back function to re-arm the clock-tick interrupt source.

After LWHVR_ClockCallback() returns the RTA-LWHVR carries out some more

processing during time interval t12 and then VM1 starts execution. Sometime later at time B
another clock-tick interrupt arrives and the RTA-LWHVR runs again – and presumably selects
another VM to execute.

2 Note that the length of t1 will depend on how many memory regions VM1 has and thus how long it takes the
RTA-LWHVR to program the processor’s MPU.

ETAS Avoiding Schedule Timing Issues

ETAS RTA Lightweight Hypervisor User Manual 70

The effect of the delay t0 depends on the kind of timer used to generate clock-tick
interrupts:

a) If the clock-tick interrupt source uses a timer that generates an interrupt at a fixed
frequency (e.g. a programmable interval timer) then the schedule will not drift because
two timer-ticks will always occur at an interval of t3 irrespective of the time t0 before
LWHVR_ClockCallback()is called.

b) If the clock-tick interrupt source uses a timer that generates an interrupt at a fixed
interval after being (re-)armed (such as a counter with a compare register) then care
must be taken to avoid schedule drift - if it is required that the schedule does not drift.
If a tick length of t3 is required then when LWHVR_ClockCallback() is called the

interrupt source must be set to generate an interrupt after time interval t2. t0, and
hence t2, can be calculated in LWHVR_ClockCallback(). For example, if an interrupt

source that uses a counter and a compare register is used, t0 is the difference between

the value of the compare register and the current value of the counter when
LWHVR_ClockCallback() is called (i.e. the amount that the counter has advanced

beyond the value in the compare register). Note however, the value of t0 may vary due
to interrupt blocking by VMs - see below – so t2 may not be fixed but may need to be
calculated dynamically.

12.2 Interrupt Blocking by VMs

When the RTA-LWHVR executes a service call for a VM (see section 11), or a VM enters an
error state, interrupts are blocked for the duration of the service call or error processing.
This means that handling of a clock-tick interrupt will be delayed until the end of the service
call or error processing. Consider the following case where VM0 either makes a service call
or causes an error just before the end of its time-slice.

LWHVR

VM0

L
W
H
V
R
_
C
l
o
c
k
C
a
l
l
b
a
c
k
(
)

Time

VM1

A B

t3

t0

VM
Service
Call /
Error

processing

A’

t4

Interrupt
Blocking

Figure 9: Interrupt Blocking by VMs

At time A a clock tick-interrupt arrives, but control does not pass to the RTA-LWHVR
immediately because the RTA-LWHVR is processing a service call or handing an error and
interrupts are disabled. The handling of the interrupt is delayed for the interval t4 to time A’.
The effect of this interrupt blocking depends on how timer-ticks are generated:

ETAS Avoiding Schedule Timing Issues

ETAS RTA Lightweight Hypervisor User Manual 71

a) If a fixed frequency interrupt source (e.g. a programmable interval timer) is used then
the amount of time for which VM1 actually executes in the next time-slice will be
shortened by t4. We shall refer to this effect as time-slice shortening.

b) If an interrupt source is used that generates an interrupt at a fixed interval after being
(re-)armed (such as a counter with a compare register) then there is more choice over
what happens:

 If the interrupt source is re-armed with an interval t2 that is calculated dynamically

by measuring t0 then the effect is the same as using a fixed frequency timer – i.e.
the amount of time for which VM1 actually executes in the next time-slice will be
shortened by t4.

 If the timer is re-armed with a fixed interval t2 calculated by measuring t0 in the
absence of interrupt blocking then the next time-slice will not be shortened, but the
schedule will drift by t4.

Which of these behaviours is most appropriate depends on the application.

12.3 Dealing with Interrupt Blocking

As described in section 12.2 interrupt blocking by VMs will potentially lead to time-slice
shortening or schedule drift. Which of these is more acceptable depends on the application.
Either the schedule must be constructed so that the system is robust against time-slice
shortening or robust against schedule drift.

To construct a robust schedule it may be necessary to know the worst-case time for which
interrupts can be blocked and hence the largest potential interval t4 in Figure 10.

LWHVR

VM0

L
W
H
V
R
_
C
l
o
c
k
C
a
l
l
b
a
c
k
(
)

Time

VM1

A B

t3

t0

VM
Service
Call /
Error

processing

A’

Longest potential
interrupt blocking

Figure 10: Worst-case Interrupt Blocking

Unfortunately the worst-case blocking time depends on how the RTA-LWHVR has been
compiled and the execution time of the call-back functions
LWHVR_StoppedVMCallback(), LWHVR_ShutdownVMCallback() and

LWHVR_VMErrorCallback(). This section provides guidance on how the worst-case

blocking time can be measured.

ETAS Avoiding Schedule Timing Issues

ETAS RTA Lightweight Hypervisor User Manual 72

12.3.1 VM API Service Calls

The duration of a VM API service call can be measured as follows:

A. Create a RTA-LWHVR configuration that:

 Contains a single VM.

 Contains a schedule table that contains one single-tick time-slice that executes the
single VM.

 Allows the VM to read a high precision time source – e.g. configure the VM’s
memory so that it can read a high precision timer.

B. In the VM use code something like:

1. Loop until the ticksWhileRunning field of the VM’s status block changes value.

(We now know that we are at the start of a time-slice.)

2. Read the high precision time source and store the value read in tS.

3. Call the VM service.

4. Read the high precision time source and store the value read in tE.

5. The duration of the service call is tE – tS.

The above must be done for every VM service call (see section 11). The longest duration
measured is the worst-case interrupt blocking due to VM service calls.

Note: at step 1 above the code waits until it is at the start of a time-slice. This is done to
avoid a clock-tick interrupt occurring during the VM service call and being handled as soon
as the service call returns but before the timer is read at step 4. (Of course, if you have a
very short tick length this may still happen.)

When carrying out such measurement the following are important:

1. It must be arranged that the call-back function LWHVR_ShutdownVMCallback()

executes for its worst-case execution time.

2. When calling the LWHVR_VMAPI_ATOMIC_MEMORY_COPY service the maximum number

of extents must be used and the extents must be of maximum size.

3. If the system contains memory of different speeds, then when calling the
LWHVR_VMAPI_ATOMIC_MEMORY_COPY service the list of memory extents and the

memory extents to be copied must be in the slowest memory that can be copied by the
VM.

4. When calling the LWHVR_VMAPI_ATOMIC_MEMORY_COPY service the memory extents

should not be aligned on a 4-byte boundary (since unaligned copying is usually slower).

5. When the LWHVR_VMAPI_ATOMIC_MEMORY_COPY service determines if a VM has

permission to read or write memory it checks memory regions in the order they appear
in the VM’s configuration (e.g. LWHVR_VM0_MPU_REGION0_XXX, then

LWHVR_VM0_MPU_REGION1_XXX, then LWHVR_VM0_MPU_REGION2_XXX etc.) until

either it finds a region that allows the read/write or it exhausts the regions. Therefore to
be sure that the worst-case duration of the LWHVR_VMAPI_ATOMIC_MEMORY_COPY

service is measured, the list of memory extents and the memory extents must be in the
memory region that appears last in the VM’s configuration. (The number of memory
regions a VM will have in its configuration will depend on the system. Carry out
measurement using the maximum number of regions that VMs in your system will have.)

Note that the maximum duration of the LWHVR_VMAPI_ATOMIC_MEMORY_COPY service can

be changed by modifying the maximum number and size of extents that can be copied. See
section 11.6.

ETAS Avoiding Schedule Timing Issues

ETAS RTA Lightweight Hypervisor User Manual 73

12.3.2 Error Handling

There are two ways that a VM can enter an error state and thus require error handling by
the RTA-LWHVR:

a) The VM attempts to carry out a privileged operation or access memory without
permission. This leads to the processor generating a trap that causes the RTA-

LWHVR to start error handling immediately.

b) The VM makes a service call with an invalid argument. This is detected by the RTA-
LWHVR, which then starts error handling.

Measuring the worst-case interrupt blocking due to error handling is similar to measuring the
worst-case interrupt blocking due to VM service calls except that after the VM has triggered
an error, control does not return to the VM; instead the RTA-LWHVR executes in an “idle
context” for the remainder of the time-slice. When executing in the idle context the RTA-
LWHVR loops calling the macro LWHVR_IDLE(). Normally this macro expands to a

sequence of no-operation instructions. To measure error-handling time we measure the time

between triggering the error and the LWHVR_IDLE() macro running.

Error handling duration can be measured as follows:

A. Create a RTA-LWHVR configuration that:

 Contains a single VM.

 Contains a schedule table that contains one single-tick time-slice that executes the
single VM.

 Allows the VM to read a high precision time source – e.g. configure the VM’s

memory so that it can read a high precision timer.

B. Create variable tS that is in memory that can be read and written by the master

software and the VM.

C. Create variable errorTriggered in memory that can be read and written by the

master software and the VM. Initialize errorTriggered to 0 in the master software

before the RTA-LWHVR is started.

D. In the VM use code something like:

1. Loop until the ticksWhileRunning field of the VM’s status block changes value.

(We now know that we are at the start of a time-slice.)

2. Set errorTriggered to 1.

3. Read the high precision source and store the value read in tS.

4. Trigger the error.

E. Override the LWHVR_IDLE() macro. This is defined in

LWHVR_TargetDefinitions.h and is surrounded by #ifndef LWHR_IDLE so it can

be overridden either by modifying LWHVR_TargetDefinitions.h or by using a

compiler option (usually –D) to provide a definition of LWHVR_IDLE().

The override version of LWHR_IDLE() should do the following:

If errorTriggered is 1 then:

Read the high precision time source and store the value read in tE.

The duration of the error handling is tE – tS.

Set errorTriggered back to 0.

ETAS Avoiding Schedule Timing Issues

ETAS RTA Lightweight Hypervisor User Manual 74

The errorTiggered flag is needed because the idle context may execute at times

other than immediately after error handing so we need to be able to distinguish the case
when an error has occurred.

The following errors must be triggered and the error handling duration measured using the
above method. The longest error handling duration measured is the worst-case interrupt
blocking due to error handling.

 Access memory to which the VM does not have access permission (((int *) 0)

= 0; will usually trigger such an error).

 Execute a privileged instruction.

 Call the VM API service with an invalid service number. It does not matter what
number is used as long as it is not a valid service number listed in

LWHVR_VMAPI.h. E.g. use service number 99.

 Call the LWHVR_VMAPI_INJECT_PS_INT service with a pseudo-interrupt number

greater than 31.

 Call the LWHVR_VMAPI_ATOMIC_MEMORY_COPY service with too many extents.

 Call the LWHVR_VMAPI_ATOMIC_MEMORY_COPY with an extent list that is in

memory that the VM does not have permission to read.

 Call the LWHVR_VMAPI_ATOMIC_MEMORY_COPY with the maximum number of

extents. All extents but the last must be valid. The last extend must be too large.

 Call the LWHVR_VMAPI_ATOMIC_MEMORY_COPY with the maximum number of

extents. All extents but the last must be valid. The last extent must have a
toAddress field that addresses memory to which the VM does not have permission

to write.

When carrying out such measurement the following are important:

1. It must be arranged that the call-back function LWHVR_VMErrorCallback() executes

for its worst-case execution time.

2. When the LWHVR_VMAPI_ATOMIC_MEMORY_COPY service determines if a VM has

permission to read or write memory it examines memory regions in the order they
appear in the VM’s configuration (e.g. LWHVR_VM0_MPU_REGION0_XXX, then

LWHVR_VM0_MPU_REGION1_XXX, then LWHVR_VM0_MPU_REGION2_XXX etc.) until

either it finds a region that allows the read/write or it exhausts the regions. Therefore to
be sure that the worst-case error handling duration resulting from the

LWHVR_VMAPI_ATOMIC_MEMORY_COPY service is measured, the list of extents and the

valid extents must be in the memory region that appears last in the VM’s configuration.
(The number of memory regions a VM will have in its configuration will depend on the
system. Carry out measurement using the maximum number of regions that VMs in your
system will have.)

12.3.3 Stopping a VM

When a VM is forcibly stopped (see section 8.5) the RTA-LWHVR calls the call-back function
LWHVR_StoppedVMCallback() at the start of the time-slice when the stopped VM would

next have run. Since it is called at the start of a time-slice, as long as
LWHVR_StoppedVMCallback() executes in less than 1 tick its execution should not result

in time-slice shortening or schedule drift. However, the time for which
LWHVR_StoppedVMCallback() can result in interrupt blocking can be determined as

follows:

A. Create a RTA-LWHVR configuration that:

 Contains a single VM.

 Contains a schedule table that contains one single-tick time-slice that executes the

single VM.

ETAS Avoiding Schedule Timing Issues

ETAS RTA Lightweight Hypervisor User Manual 75

B. Initialize variable stopTriggered to 0 in the master software before the RTA-LWHVR is

started.

C. In the master software call LWHVR_StopVM() to forcibly stop the VM.

D. At the start of LWHVR_StoppedVMCallback()use code that does:

1. Read a high precision time source and store the value read in tS.

2. Set stopTriggerred to 1.

E. Override the LWHVR_IDLE() macro. This is defined in

LWHVR_TargetDefinitions.h and is surrounded by #ifndef LWHR_IDLE so it can

be overridden either by modifying LWHVR_TargetDefinitions.h or by using a

compiler option (usually –D) to provide a definition of LWHVR_IDLE().

The override version of LWHR_IDLE() should do the following:

If stopTriggered is 1 then:

Read the high precision time source and store the value read in tE.

The duration of the forcible stop handling is tE – tS.

Set stopTriggered back to 0.

The stopTiggered variable is needed because the idle context may execute at times

other than immediately after a VM has been forcibly stopped so we need to be able to
distinguish the case when a forcible stop has occurred.

ETAS ETAS Contact Addresses

ETAS RTA Lightweight Hypervisor User Manual 76

13 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany WWW: www.etas.com

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team and product
hotlines, take a look at the ETAS website:

ETAS subsidiaries WWW: www.etas.com/en/contact.php

ETAS technical support WWW: www.etas.com/en/hotlines.php

http://www.etas.com/en/contact.php
http://www.etas.com/en/hotlines.php

	1 Introduction
	1.1 Safety Notice
	1.2 Definitions and Abbreviations
	1.3 Conventions

	2 Installation
	3 ETAS RTA Lightweight Hypervisor Concepts
	3.1 Time-Slicing
	3.2 Master Software and VM Separation
	3.3 The Master Software Controls the System
	3.4 Pseudo-Interrupts
	3.5 APIs

	4 Master Software
	4.1 Configuring RTA-OS
	4.2 Building the RTA-LWHVR with the Master Software
	4.2.1 Locating the RTA-LWHVR Sections
	4.2.2 Locating the RTA-LWHVR Vector Table

	4.3 Initialising the Master Core
	4.4 Setting up the C Execution Environment
	4.5 Starting Application Cores and the RTA-LWHVR
	4.6 Stopping and Re-starting the RTA-LWHVR
	4.7 Re-Starting the RTA-LWHVR on Individual Application Cores
	4.8 Clock-Tick Interrupt Source
	4.8.1 Clock-Tick Frequency and Ticks
	4.8.2 Clock-Tick Initialization
	4.8.3 Clock-Tick Reset
	4.8.4 Ideal Clock-Tick Sources

	4.9 RTA-LWHVR Stack Usage on Application Cores
	4.10 Controlling the RTA-LWHVR and VMs
	4.11 Communicating with and between VMs
	4.12 Restrictions on the Master Software

	5 Virtual Machines
	5.1 What VMs Can and Cannot Do
	5.2 Scheduling VMs
	5.2.1 Example of Scheduling

	5.3 VM Identifiers
	5.4 Building VMs
	5.5 Entry-Point
	5.6 VM Errors
	5.7 VM Status Block
	5.7.1 ticksSinceStart (offset 0)
	5.7.2 ticksLeftInTimeslice (offset 4)
	5.7.3 psIntEnabled (offset 8)
	5.7.4 psIntPending (offset 12)
	5.7.5 psIntResumeAddress (offset 16)
	5.7.6 psIntReason (offset 20)
	5.7.7 psIntPreviousEnabled (offset 24)
	5.7.8 psIntRestoreRegister (offset 28)
	5.7.9 psIntGenerateOnTick (offset 32)
	5.7.10 ticksWhileRunning (offset 36)

	5.8 Pseudo-Interrupts
	5.8.1 Pseudo-Interrupt Numbers and Priorities
	5.8.2 Pending and Enabled Pseudo-Interrupts
	5.8.3 Pseudo-Interrupt Injection
	5.8.4 When Pseudo-Interrupts are injected
	5.8.5 Pseudo-Interrupts used by the RTA-LWHVR
	Timer0
	Timer 1
	Shutdown

	5.8.6 Pseudo-Interrupt Handlers
	5.8.7 Responding to a Shutdown Pseudo-Interrupt
	5.8.8 Pseudo-Interrupts on VM (Re-) Start

	6 Configuration
	6.1 Concepts
	6.2 Running the Configuration Generator Tool
	6.3 LWHVR_Configuration.h
	6.3.1 General
	6.3.2 Application Cores
	6.3.3 Assigning Application Cores to Physical Processor Cores
	6.3.4 Configuring VMs
	Symbolic Identifier
	Core Identifier
	Entry-Points and Status Block
	Memory Regions

	6.3.5 Schedule Table
	6.3.6 Example

	7 Types and Constants
	7.1 LWHVR_BooleanType
	7.2 LWHVR_UInt32Type
	7.3 LWHVR_RegisterType
	7.4 LWHVR_InterruptIdType
	7.5 LWHVR_MemoryCopyExtentType
	7.6 LWHVR_VmIdType
	7.7 LWHVR_ErrorType
	7.8 LWHVR_VMStatusBlockType

	8 Master Software API
	8.1 LWHVR_Init
	8.2 LWHVR_Start
	8.3 LWHVR_AllHaveStarted
	8.4 LWHVR_Stop
	8.5 LWHVR_StopVM
	8.6 LWHVR_ShutdownVM
	8.7 LWHVR_RestartVM
	8.8 LWHVR_RequestExtraTimeForVM

	9 Master Software Call-back Functions
	9.1 LWHVR_StartTimerCallback
	9.2 LWHVR_ClockCallback
	9.3 LWHVR_UnexpInterruptCallback
	9.4 LWHVR_UnexpInterruptHook
	9.5 LWHVR_ErrorCallback
	9.6 LWHVR_StoppedVMCallback
	9.7 LWHVR_ShutdownVMCallback
	9.8 LWHVR_VMErrorCallback
	9.9 LWHVR_GlobalUnlockCallback
	9.10 LWHVR_GlobalRelockCallback
	9.11 LWHVR_CoreUnlockCallback
	9.12 LWHVR_CoreRelockCallback
	9.13 Restrictions on all Call-back Functions
	9.14 Restrictions on Call-back Functions that run on an Application Core

	10 Configuration Variables
	10.1 LWHVR_CoreConfigWord

	11 VM API
	11.1 LWHVR_VMAPI_SYNC_PS_INTS
	11.2 LWHVR_VMAPI_RETURN_FROM_PS_INT
	11.3 LWHVR_VMAPI_INJECT_PS_INT
	11.4 LWHVR_VMAPI_SHUTDOWN
	11.5 LWHVR_VMAPI_REQUEST_EXTRA_TIME
	11.6 LWHVR_VMAPI_ATOMIC_MEMORY_COPY

	12 Avoiding Schedule Timing Issues
	12.1 Schedule Drift
	12.2 Interrupt Blocking by VMs
	12.3 Dealing with Interrupt Blocking
	12.3.1 VM API Service Calls
	12.3.2 Error Handling
	12.3.3 Stopping a VM

	13 ETAS Contact Addresses
	ETAS HQ
	ETAS Subsidiaries and Technical Support

