
RTA-OS3.0
VRTA Port Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10384(VRTA)-PG-1.0.0

2 Copyright

Contents

1 Introduction 6

1.1 About You . 6

1.2 Document Conventions . 7

1.3 References . 7

2 Installing the RTA-OS3.0 Port Plug-in 9

3 Verifying your Installation 11

3.1 Checking the Port . 11

3.2 Building the Example Application 11

3.2.1 Preparing the Toolchain 11

3.2.2 What does the “HelloWorld” example do? 11

3.2.3 Example Files . 12

3.2.4 Building “Hello World” 15

3.2.5 Verifying Program Execution 16

3.2.6 Troubleshooting 16

4 Port Characteristics 18

4.1 Parameters of Implementation 18

4.2 Configuration Parameters 18

4.2.1 Stack used for C-startup 18

4.2.2 Stack used when idle 18

4.2.3 Stack overheads for ISR activation 18

4.2.4 Stack overheads for ECC tasks 19

4.2.5 Stack overheads for ISR 19

4.3 Generated Files . 19

Contents 3

4.4 Type Definitions . 19

4.4.1 Os_StackSizeType 19

4.4.2 Os_StackTraceType 19

4.4.3 Os_StackValueType 19

5 Toolchain 20

5.1 Compiler (MinGW) . 20

5.2 Librarian (MinGW) . 20

5.3 Linker (MinGW) . 20

5.4 Compiler (VS2005) . 20

5.5 Librarian (VS2005) . 21

5.6 Linker (VS2005) . 21

5.7 Compiler (VS2008) . 21

5.8 Librarian (VS2008) . 21

5.9 Linker (VS2008) . 21

5.10 Debugger . 22

6 Hardware 23

6.1 Supported Devices . 23

6.2 Register Usage . 23

6.2.1 Initialization . 23

6.2.2 Modification . 23

6.3 Interrupts . 23

6.3.1 Interrupt Priority Levels 23

6.3.2 Allocation of ISRs to Interrupt Vectors 24

6.3.3 Vector Table . 24

6.3.4 Writing Category 1 Interrupt Handlers 24

4 Contents

6.3.5 Writing Category 2 Interrupt Handlers 25

6.3.6 Default Interrupt 25

6.4 Memory Model . 25

6.5 Processor Modes . 25

6.6 Stack Handling . 25

7 Performance 26

7.1 Measurement Environment 26

7.2 Memory Consumption . 26

7.2.1 OS Object RAM and ROM Usage 26

7.2.2 Stack Usage . 27

7.2.3 Library Module Sizes 27

7.3 Execution Time . 29

7.3.1 Context Switching Time 30

8 Finding Out More 33

9 Contacting ETAS 34

9.1 Technical Support . 34

9.2 General Enquiries . 35

Contents 5

1 Introduction

RTA-OS3.0 is a small and fast real-time operating system that conforms to
both the AUTOSAR OS R3.0 and OSEK/VDX 2.2.3 standards. The operating
system is configured and built on a PC for use on a target hardware platform.

This document describes the RTA-OS3.0 VRTA port plug-in that customizes the
RTA-OS3.0 development tools for the Microsoft Windows Virtual ECU with the
appropriate Windows C compiler. It supplements the more general informa-
tion you can find in the RTA-OS3.0 User Guide and the RTA-OS3.0 Reference
Guide.

The document has two parts. Chapters 2 to 3 help you understand the VRTA
port and cover:

• how to install the VRTA port plug-in;

• how to build an example application to check that the VRTA port plug-in
works;

• how to configure VRTA-specific attributes;

• how to build an example application to check that the VRTA port plug-in
works.

Chapters 4 to 7 provide reference information including:

• the number of OS objects supported;

• required and recommended toolchain parameters;

• how RTA-OS3.0 interacts with the Virtual ECU, including required regis-
ter settings, memory models and interrupt handling;

• memory consumption for each OS object;

• memory consumption of each API call;

• execution times for each API call.

For the best experience with RTA-OS3.0 it is essential that you read and un-
derstand this document.

1.1 About You

You are a trained embedded systems developer who wants to build real-time
applications using a pre-emptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling

6 Introduction

and linking of C code for embedded applications with your chosen tool chain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals as so on, is essential.

You should also be familiar with common use of the Microsoft Windows®2000,
Windows®XP or Windows®Vista operating systems, including installing soft-
ware, selecting menu items, clicking buttons, navigating files and directories.

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options are printed in bold,
blue characters.

Click OK. Button labels are printed in bold
characters

Press <Enter>. Key commands are enclosed in an-
gle brackets.

The “Open file” dialog box appears The names of program windows,
dialog boxes, fields, etc. are en-
closed in double quotes.

Activate(Task1) Program code, header file names,
C type names, C functions and
RTA-OS3.0. Component API call
names all appear in the courier
typeface.

See Section 1.2. Hyperlinks through the document
are shown in red letters.
Functionality that is provided in
RTA-OS3.0 but it may not be
portable to another AUTOSAR OS
implementation is marked with the
ETAS logo.
Caution! Notes like this contain im-
portant instructions that you must
follow carefully in order for things
to work correctly.

1.3 References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

http://www.osek-vdx.org

Introduction 7

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

8 Introduction

http://www.autosar.org

2 Installing the RTA-OS3.0 Port Plug-in

The VRTA port plug-in is installed by default as part of the RTA-OS3.0 tools
installation. If you did not to install VRTA when installing the tools, then you
will need to do the parts of the tools installation required to install VRTA.
Either:

• Double click the executable image; or

• Insert the RTA-OS3.0 CD into your CD-ROM or DVD drive.

If the installation program does not run automatically then you will need
to start the installation manually. Navigate to the root directory of your
CD/DVD drive and double click autostart.exe or open Index.htm in a
web-browser of your choice to start the setup.

When asked to “Select Components”, make sure that only the VRTA compo-
nent is selected as shown in Figure 2.1.

Please refer to the RTA-OS3.0 Getting Started Guide for further details re-
garding the installation of VRTA.

Installing the RTA-OS3.0 Port Plug-in 9

Figure 2.1: Selecting the VRTA installation

10 Installing the RTA-OS3.0 Port Plug-in

3 Verifying your Installation

Now that you have installed both the RTA-OS3.0 tool and an RTA-OS3.0 port
plug-in and have obtained and installed a valid license key you can check that
things are working.

3.1 Checking the Port

The first thing to check is that the RTA-OS3.0 tools can see the new port. You
can do this in two ways:

1. use the rtaosgen tool

You can run the command rtaosgen −−target:? to get a list of avail-
able targets, the versions of each target and the variants supported, for
example:

rtaosgen
Version x.y.z.revision, Copyright © ETAS 2008
Available targets:
TriCoreHighTec_n.n.n [TC1797]
VRTA_n.n.n [MinGW,VS2005,VS2008]

2. use the rtaoscfg tool

The second way to check that the port plug-in can be seen is by starting
rtaoscfg and selecting Help Ô About drop down menu. This will show
information about your complete RTA-OS3.0 configuration.

If the tools can see the port then you can move on to the next stage – check-
ing that you can build an RTA-OS3.0 library and use this in a real program that
will run on your target hardware.

3.2 Building the Example Application

Your RTA-OS3.0 port plug-in includes a “HelloWorld” example application that
is used to verify that the end-to-end build process is working correctly. This is
provided so that you can check that RTA-OS3.0 can build a kernel library with
your toolchain and then use the library in a small example application that
does just enough to show that the kernel is working correctly.

3.2.1 Preparing the Toolchain

RTA-OS3.0 will need to use your compiler toolchain and expects that all tools
are available on the Windows Path.

3.2.2 What does the “HelloWorld” example do?

The example application is a very simple program. It shows preemption be-
tween two tasks, HighPriority and LowPriority. Both tasks run for 2ms.

Verifying your Installation 11

Figure 3.1: Execution of tasks in HelloWorld

Task HighPriority is the higher priority task and runs periodically every
50ms. Task LowPriority runs periodically every 25ms.

The periodic running of the tasks is achieved using two alarms, Alarm50 and
Alarm25, which are attached to a counter called MillisecondCounter. The
counter is ticked using a 1ms timer interrupt that is handled by the Interrupt
Service Routine (ISR) MillisecondInterruptHandler. Both alarms are auto-
started. Alarm50 is offset by 1ms relative to Alarm25.

When the application runs, Alarm25 will expire after 1ms and activate task
LowPriority. Task LowPriority sets IO_PIN1 high and runs for 1ms before
being preempted by task HighPriority.

Task HighPriority saves the state of IO_PIN1 and then sets it low before
setting IO_PIN2 high. It then runs for 2ms before setting IO_PIN2 low. Finally,
it restores the state of IO_PIN1 and terminates, allowing task LowPriority to
continue from the point at which it was preempted. Task LowPriority then
runs for its remaining 1ms.

The pattern of execution is shown in Figure 3.1

3.2.3 Example Files

The “Hello World” example application can be found in the VRTA installation
directory:

<instdir>\Targets\VRTA_1.0.0\Examples\HelloWorld

Port-Independent Code

The following files are port independent - you should not need to modify
these. However, it is useful for you to know what the files contain so you
can see how a simple real-time application is constructed.

12 Verifying your Installation

Filename Contents

Task_HighPriority.c Source code for the high priority task.
Task_LowPriority.c Source code for the low priority task.
ISR_Millisecond.c Source code for the Category2 interrupt handler.
Idle.c The idle mechanism.
BusyWait.c A busy wait loop. This is used by the

HighPriority and LowPriority tasks so they
can execute for the required length of time.

Main.c The main program.

Port-Specific Code

The following files are specific to your target microcontroller and compiler
combination:

Filename Contents

<target>Def.h Register definitions for the target microcontroller.
Target.c Target support code to initialize the hardware and pro-

gram a 1ms interrupt source.
Target.h Target support macros, including a macro to clear a

pending interrupt.

You may also find other files (such as files containing code to handle a reset).

The example application is supplied ready to run on your target hardware.
If your target hardware differs from the reference platform, specified in the
README.txt file, you will need to modify the target-specific aspects defined
in Target.h, Target.c and <target>Def.h.

All of the port specific code needs to access the registers of the microcon-
troller. Sometimes a register definition file is supplied by the compiler vendor
to do this and sometimes it isn’t.

For commonality across RTA-OS3.0 ports, ETAS supplies a simple register def-
inition file and associated settings to program just the registers needed for
the example.

Target.h

The Target.h file defines macros for:

• configuring and initializing the I/O port

• setting and reading the state of port pins

• setting a timer for a millisecond interrupt

• dismissing the millisecond interrupt when it occurs

Verifying your Installation 13

If you want to change the port and/or the pins or change the interrupt source
you will need to modify these macros. Details of what configuration changes
are required are given in the source file. You may also have to provide addi-
tional register definitions through <target>Def.h or use a register definition
file supplied by your compiler vendor.

Macro Description

CLEAR_PENDING_INTERRUPT() Called from the interrupt handler to clear
the pending flag of the millisecond inter-
rupt and to reset an interrupt for another
millisecond. On some targets this may
be empty as the pending bit gets cleared
automatically and/or the millisecond com-
pare is reset automatically.

SET_PIN_HIGH(pin) Sets pin into the high state.
SET_PIN_LOW(pin) Sets the pin into the low state
GET_PIN_STATE(pin) Returns the current state of the pin.
INIT_PINS() Initializes the I/O register used
IO_PIN1 The location of pin 1. This is controlled by

the HighPriority task.
IO_PIN2 The location of pin 2. This is controlled by

the LowPriority task
IS_PIN_HIGH(state) Returns true if state is high and false oth-

erwise.
TIMER_MILLISECOND The number of ticks of the timer required

to reach 1ms.

Target.c

The Target.c file contains functions to initialize the target hardware and the
development environment, as well as stopwatch functions used for timing
measurements.

14 Verifying your Installation

Function Description

InitEnvironment() Called from the main program. Contains code
for environment initialization, such as setting
the bus clock for the development system.

InitTarget() Called from the main program. Contains code
to initialize the timer hardware on the target.

Os_Cbk_Stopwatch() Called to get the current value of a free run-
ning counter, called the “Stopwatch” which is
used for timing measurement needed to set up
the execution times of the HighPriority and
LowPriority tasks.

Os_Cbk_StartupHook() Called from StartOS() to enable the periodic in-
terrupt safely. For most targets, the speed of
the stopwatch is set to the same frequency as
the CPU instruction rate. However, this is not
always possible - you should look at the com-
ments in Target.c to find out what CPU instruc-
tion rate and Stopwatch rate have been used.

There may be additional functions provided.

Build Support

The remaining files are provided to help you build the application or to change
how the non-OS parts are configured.

Filename Description
README.txt A description of the low-level details of the appli-

cation, including the target reference platform,
what peripherals are used, where the application
is located etc.

build.bat A Windows command shell (DOS shell) script to
generate an RTA-OS3.0 kernel library, compile
the example and link the example code with the
library to produce a downloadable executable im-
age.

LinkerControl.<ext> A control file for the linker where <ext> depends
on your linker.

3.2.4 Building “Hello World”

To build the application, open a Windows command prompt and run
build.bat Variant.

Variant is the name of the target variant (i.e. compiler) you want to use to
build the example application. Valid options include:

Verifying your Installation 15

Figure 3.2: Oscilloscope Trace of HelloWorld

• MinGW

• VS2005

• VS2008

3.2.5 Verifying Program Execution

You can monitor task activation by connecting oscilloscope probes to the IO
pins defined by IO_PIN1 and IO_PIN2.

Figure 3.2 shows an oscilloscope trace of the state of the IO pins once the
program is running. Each vertical grid line represents 10ms of time.

3.2.6 Troubleshooting

If your application doesn’t appear to be running, you can use a debugger to
verify that the ISR is being called. Place a breakpoint on the first instruction
of the ISR(Os_Entry_MillisecondISR) and see if your application reaches
it.

If the ISR runs this means that the counter is being ticked. You can
then set breakpoints on the two tasks (Os_Entry_HighPriority and
Os_Entry_LowPriority) to see whether or not they run. If the tasks run,
but you do not see an output, check your hardware initialization.

If your oscilloscope does not show a trace, check the settings for IO_PIN1
and IO_PIN2 in Target.h. You should also check the IO_PIN control macros
to ensure that they all reference the same I/O port on your target hardware. If
the trace shows different timing behavior, check that your timer hardware is

16 Verifying your Installation

configured correctly and that instruction rate on the target hardware matches
that specified in your configuration.

Verifying your Installation 17

4 Port Characteristics

This chapter tells you about the charcteristics of RTA-OS3.0 for the VRTA port.

4.1 Parameters of Implementation

To be a valid OSEK or AUTOSAR OS, an implementation must support a mini-
mum number of OS objects. The following table specifies the minimum num-
bers of each object required by the standards and the maximum number of
each object supported by RTA-OS3.0 for the VRTA.

Parameter Required RTA-OS3.0

Tasks 16 1024
Tasks not in SUSPENDED state 16 1024
Priorities 16 1024
Tasks per priority - 1024
Queued activations per priority - 4294967296
Events per task 8 32
Software Counters 8 4294967296
Hardware Counters - 4294967296
Alarms 1 4294967296
Standard Resources 8 4294967296
Linked Resources - 4294967296
Nested calls to GetResource() - 4294967296
Internal Resources 2 no limit
Application Modes 1 4294967296
Schedule Tables 2 4294967296
Expiry Points per Schedule Table - 4294967296

4.2 Configuration Parameters

The following sections describe the port-specific configuration options for the
VRTA port. These settings are accessed on the “Target-Specific” tab that can
be found by navigating to the General Ô Target workspace of rtaoscfg.

4.2.1 Stack used for C-startup

The amount of stack already in use at the point that StartOS() is called.

4.2.2 Stack used when idle

The amount of stack used in the OS idle state (excluding the C-startup).

4.2.3 Stack overheads for ISR activation

The amount of stack overheads needed to activate a task from within an ISR.

18 Port Characteristics

4.2.4 Stack overheads for ECC tasks

The amount of stack overheads needed for an ECC task.

4.2.5 Stack overheads for ISR

The amount of stack overheads needed for a Category 2 ISR.

4.3 Generated Files

The following table lists the files that generated by rtaosgen for all ports:

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured. This

is included by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by

RTA-OS3.0 to merge with the system-wide MemMap.h
file.

RTAOS.<lib> The RTA-OS3.0 library for your application. The exten-
sion <lib> depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application. The
extension <lib> depends on your target.

4.4 Type Definitions

4.4.1 Os_StackSizeType

A value representting a size (in bytes) on the stack. As the stack grows in
size, these values increase.

Declaration

unsigned

4.4.2 Os_StackTraceType

An unsigned type used to represent values on the stack.

Declaration

unsigned

4.4.3 Os_StackValueType

A value representing the position of the stack (ESP). As the stack grows in
size, these value reduce.

Declaration

unsigned

Port Characteristics 19

5 Toolchain

This chapter contains important details about RTA-OS3.0 and the appropriate
Windows C toolchain. A port of the RTA-OS3.0 is specific to both the target
hardware and a specific version of the compiler toolchain. You must make
sure that you build your application with the supported toolchain.

In addition to the version of the toolchain, RTA-OS3.0 may use specific tool
options (switches). Each tool lists the options that are used by rtaosgen to
build the kernel. While it is recommended that you use the same options to
build application code, there are no restrictions on the use of any tool chain
options providing that they do not conflict with options used for RTA-OS3.0.

ETAS has developed and tested RTA-OS3.0 using the tool versions and
options indicated in the following sections. Correct operation of RTA-
OS3.0 is only covered by the warranty in the terms and conditions of
your deployment license agreement when using identical versions and
options. If you choose to use a different version of the toolchain or
an alternative set of options then it is your responsibility to check that
the system works correctly. If you require a statement that RTA-OS3.0
works correctly with your chosen tool version and options then please
contact ETAS to discuss validation possibilities.

5.1 Compiler (MinGW)

Name gcc.exe
Version Tested on 5.1.3

Options

-m32 32 bit i386 code

-O2 Optimization level

5.2 Librarian (MinGW)

Name ar.exe
Version GNU ar 2.11.2

5.3 Linker (MinGW)

Name g++.exe
Version Tested on 5.1.3

5.4 Compiler (VS2005)

Name cl.exe
Version Tested on Version 14.00.50727.762

20 Toolchain

Options

/Z7 Include debug information

/Od No optimizations

/EHsc Exception handling

/D_WIN32_WINNT=0x0400 Windows NT upwards

/D_CRT_SECURE_NO_DEPRECATE Eliminate deprecation warnings

5.5 Librarian (VS2005)

Name lib.exe
Version Tested on Version 8.00.50727.762

5.6 Linker (VS2005)

Name cl.exe
Version Tested on Version 8.00.50727.762

Options

winmm.lib user32.lib ws2_32.lib Advapi32.lib Libraries

5.7 Compiler (VS2008)

Name cl.exe
Version Tested on Version 15.00.30729.01

Options

/Z7 Include debug information

/Od No optimizations

/EHsc Exception handling

/D_WIN32_WINNT=0x0400 Windows NT upwards

/D_CRT_SECURE_NO_DEPRECATE Eliminate deprecation warnings

5.8 Librarian (VS2008)

Name lib.exe
Version Tested on Version 9.00.30729.01

5.9 Linker (VS2008)

Name cl.exe
Version Tested on Version 9.00.30729.01

Toolchain 21

Options

winmm.lib user32.lib ws2_32.lib Advapi32.lib Libraries

5.10 Debugger

An application built for the Virtual ECU port is a normal target executable.
Any compatible debugger may be used for debugging.

22 Toolchain

6 Hardware

6.1 Supported Devices

This port of RTA-OS3.0 has been developed to work with the following target:

Name: Microsoft Windows
Device: Virtual ECU

The following variants of the Virtual ECU are supported:

• MinGW

• VS2005

• VS2008

If you require support for a variant of Virtual ECU not listed above, please
contact ETAS.

6.2 Register Usage

6.2.1 Initialization

RTA-OS3.0 requires the following registers to be initialized to the indicated
values before StartOS() is called.

Register Setting

none Initialization is done by the VRTA startup code

6.2.2 Modification

The following registers must not be modified by user code after the call to
StartOS():

Register Notes

none Not applicable

6.3 Interrupts

This section explains the implementation of RTA-OS3.0’s interrupt model on
the Virtual ECU.

6.3.1 Interrupt Priority Levels

Interrupts execute at an interrupt priority level (IPL). RTA-OS3.0 standardizes
IPLs across all targets. IPL 0 indicates task level. IPL 1 and higher indicate
an interrupt priority. It is important that you don’t confuse IPLs with task
priorities. An IPL of 1 is higher than the highest task priority used in your
application.

Hardware 23

The IPL is a target-independent description of the interrupt priority on your
target hardware. The following table shows how IPLs are mapped onto the
hardware interrupt priorities of the Virtual ECU:

IPL ICU Description

0 0 User (task) level
1-255 1-255 Category 1 and 2 level

Even though a particular mapping is permitted, all Category 1 ISRs must have
equal or higher IPL than all of your Category 2 ISRs.

6.3.2 Allocation of ISRs to Interrupt Vectors

The following restrictions apply for the allocation of Category 1 and Category
2 interrupt service routines (ISRs) to interrupt vectors on the Virtual ECU. A
3 indicates that the mapping is permitted and a 7 indicates that it is not
permitted:

Address Category 1 Category 2

1-32 3 3

6.3.3 Vector Table

When “Supress Vector Table Generation” is undefined or is configured as
FALSE then rtaosgen generates an interrupt vector table for you automati-
cally. You will usually specify that RTA-OS3.0 generates the interrupt vector
table automatically.

You are responsible for placing the generated vector table at the correct base
address. The following table shows the section (or sections) that need to be
located and the associated valid base address:

Section Valid Addresses

none Initialization is done by the VRTA startup code.

6.3.4 Writing Category 1 Interrupt Handlers

Category 1 interrupt service routines (ISRs) must correctly handle the inter-
rupt context themselves. RTA-OS3.0 provides the macro CAT1_ISR that ex-
pands to the interrupt control directive required by the appropriate Windows
C compiler to indicate that a function requires appropriate code to save and
restore the interrupt context to be generated.

A Category 1 ISR therefore has the following structure:

CAT1_ISR(Category1Handler) {
/* Handler routine */
}

24 Hardware

6.3.5 Writing Category 2 Interrupt Handlers

Category 2 ISRs are provided with a C function context by RTA-OS3.0, since
the RTA-OS3.0 kernel handles the interrupt context itself. The handlers are
written using the ISR() macro as shown below:

#include <Os.h>
ISR(MyISR) {
/* Handler routine */

}

You must not insert a return from interrupt instruction in such a function. The
return is handled automatically by RTA-OS3.0.

6.3.6 Default Interrupt

The ’default interrupt’ is intended to be used to catch all unexpected in-
terrupts. All unused interrupts have their interrupt vectors directed to the
named routine that you specify. The routine you provide is not handled by
RTA-OS3.0 and must correctly handle the interrupt context itself. The han-
dler must use the CAT1_ISR macro in the same way as a Category 1 ISR (see
Section 6.3.4 for further details).

6.4 Memory Model

The following memory models are supported:

Model Description

32 bit VRTA is a 32-bit Windows application

6.5 Processor Modes

RTA-OS3.0 can run in the following processor modes:

Mode Notes

Standard VRTA runs as a standard Windows executable

6.6 Stack Handling

RTA-OS3.0 uses a single stack for all tasks and ISRs.

No special stack configuration is required for the VRTA port.

Hardware 25

7 Performance

This chapter provides detailed information on the functionality, performance
and memory demands of the RTA-OS3.0 kernel. RTA-OS3.0 is highly scalable.
As a result, different figures will be obtained when your application uses dif-
ferent sets of features. The figures presented in this chapter are representa-
tive for the VRTA port based on the following configuration:

• There are 32 tasks in the system

• Standard build is used

• Stack monitoring is disabled

• Time monitoring is disabled

• There are no calls to any hooks

• Tasks have unique priorities

• Tasks are not queued (i.e. tasks are BCC1 or ECC1)

• All tasks terminate/wait in their entry function

• Tasks and ISRs do not save any auxiliary registers (for example, floating
point registers)

• Resources are shared by tasks only

• The generation of the resource RES_SCHEDULER is disabled

7.1 Measurement Environment

The following hardware environment was used to take the measurements in
this chapter:

Device VS2008 on Pentium class PC
CPU Clock Speed 2000.0MHz
Stopwatch Speed 2000.0MHz

7.2 Memory Consumption

7.2.1 OS Object RAM and ROM Usage

Each OS object requires ROM and/or RAM. The following table gives the ROM
and/or RAM requirements (in bytes) for each OS object in the RTA-OS3.0 Com-
ponent. Note that object sizes will vary depending on the project configura-
tion and compiler packing issues.

26 Performance

Object ROM RAM

Alarm 2 12
Cat 2 ISR 8 0
Counter 20 4
CounterCallback 4 0
ExpiryPoint 3.5 0
Resource 8 4
ScheduleTable 16 16
Task 16 0

7.2.2 Stack Usage

The amount of stack used by each Task/ISR in RTA-OS3.0 is equal to the stack
used in the Task/ISR body plus the context saved by RTA-OS3.0. The size of
the run-time context saved by RTA-OS3.0 depends on the Task/ISR type and
the exact system configuration. The only reliable way to get the correct value
for Task/ISR stack usage is to call the Os_GetStackUsage() API function.

Note that because RTA-OS3.0 uses a single-stack architecture, the run-time
contexts of all tasks reside on the same stack and are recovered when the
task terminates. As a result, run-time contexts of mutually exclusive tasks
(for example, those that share an internal resource) are effectively overlaid.
This means that the worst case stack usage of the can be significantly less
than the sum of the worst cases of each object on the system. The RTA-OS3.0
tools automatically calculate the total worst case stack usage for you and
present this as part of the configuration report.

7.2.3 Library Module Sizes

The RTA-OS3.0 kernel is demand linked. This means that each API call is
placed into a separately linkable module. The following table lists the section
sizes for each module (in bytes) for RTA-OS3.0 in standard status.

You can ignore modules that start with test_ or target_ - these are an artefact
of the generation process.

Library Module .b
s
s

.d
a
ta

.r
d
a
ta

.t
e
x
t

ActivateTask 128
AdvanceCounter 7
CancelAlarm 106
ChainTask 106
ClearEvent 35
DisableAllInterrupts 4 25
DispatchTask 187
EnableAllInterrupts 19

Performance 27

Library Module .b
s
s

.d
a
ta

.r
d
a
ta

.t
e
x
t

GetActiveApplicationMode 10
GetAlarm 190
GetAlarmBase 56
GetCounterValue 47
GetElapsedCounterValue 105
GetEvent 35
GetExecutionTime 45
GetISRID 10
GetIsrMaxExecutionTime 45
GetIsrMaxStackUsage 45
GetResource 79
GetScheduleTableStatus 48
GetStackSize 20
GetStackUsage 45
GetStackValue 25
GetTaskID 18
GetTaskMaxExecutionTime 45
GetTaskMaxStackUsage 45
GetTaskState 61
GetVersionInfo 51
Idle 7
InShutdown 5
IncrementCounter 15
NextScheduleTable 187
Os_Cfg 617 648 314
Os_Cfg_Counters 728 6935
Os_SetJmp 60
Os_Stack 4 91
Os_fsb 4
Os_vectors 388
Os_wrapper 69
ReleaseResource 72
ResetIsrMaxExecutionTime 35
ResetIsrMaxStackUsage 35
ResetTaskMaxExecutionTime 35
ResetTaskMaxStackUsage 35
RestartOS
ResumeAllInterrupts 35
ResumeOSInterrupts 35
Schedule 87
SetAbsAlarm 175

28 Performance

Library Module .b
s
s

.d
a
ta

.r
d
a
ta

.t
e
x
t

SetEvent 35
SetRelAlarm 201
ShutdownOS 48
StackOverrunHook 15
StartOS 1 52
StartScheduleTableAbs 199
StartScheduleTableRel 158
StopScheduleTable 96
SuspendAllInterrupts 8 47
SuspendOSInterrupts 8 56
TerminateTask 7
TestErrorHook 13
ValidateCounter 58
ValidateISR 58
ValidateResource 58
ValidateScheduleTable 58
ValidateTask 58
WaitEvent 35
target 293
target_devices 41628 108 233 858
target_get_stopwatch 10
target_test_support 33 154
test_support 18 128
vrtaAppMain 38
vrtaCore 101 25 420 2663
vrtaLoggerDevice 46 259 3387
vrtaSampleDevices 393 1455 7263

7.3 Execution Time

The following tables give the execution times in CPU cycles, i.e. in terms of
ticks of the processor’s program counter. These figures apply irrespective of
the frequency at which you clock the CPU. To convert between CPU cycles
and SI time units the following formula can be used:

Time in microseconds = Time in cycles / CPU Clock rate in MHz

For example, an operation that takes 50 CPU cycles would be:

• at 20MHz = 50/20 = 2.5µs

• at 80MHz = 50/80 = 0.625µs

Performance 29

• at 150MHz = 50/150 = 0.333µs

While every effort is made to measure execution times using a stopwatch
running at the same rate as the CPU clock, this is not always possible on
the target hardware. If the stopwatch runs slower than the CPU clock, then
when RTA-OS3.0 reads the stopwatch, there is a possibility that the time read
is less than actual amount of time that has elapsed due to the difference
in resolution between the CPU clock and the stopwatch (the RTA-OS3.0 User
Guide provides further details on the issue of uncertainty in execution time
measurement).

The figures presented in Section 7.3.1 have an uncertainty of 0 CPU cycle(s).

7.3.1 Context Switching Time

Task switching time is the time between the last instruction of the previ-
ous task and the first instruction of the next task. The switching time dif-
fers depending on the switching contexts (e.g. an ActivateTask() versus a
ChainTask()).

Interrupt latency is the time between an interrupt request being recognized
by the target hardware and the execution of the first instruction of the user
provided handler function:

For Category 1 ISRs this is the time required for the hardware to recognize
the interrupt.

For Category 2 ISRs this is the time required for the hardware to recognize
the interrupt plus the time required by RTA-OS3.0 to set-up the context
in which the ISR runs.

Figure 7.1 shows the measured context switch times for RTA-OS3.0.

30 Performance

Switch Key Execution Time (CPU Cycles)

Task activation A - not yet available -
Task termination with resume B - not yet available -
Task termination with switch to
new task

C - not yet available -

Chaining a higher priority task D - not yet available -
Waiting for an event resulting in
transition to the WAITING state

E - not yet available -

Setting an event results in task
switch

F - not yet available -

Non-preemptive task offers a
preemption point (co-operative
scheduling)

G - not yet available -

Releasing a resource results in a
task switch

H - not yet available -

Entering a Category 2 ISR I - not yet available -
Exiting a Category 2 ISR and re-
suming the interrupted task

J - not yet available -

Exiting a Category 2 ISR and
switching to a new task

K - not yet available -

Entering a Category 1 ISR L - not yet available -

Performance 31

(a) Task activated. Termination resumes
preempted task.

(b) Task activated. Termination switches into new task.

(c) Task chained. (d) Task waits. Task is resumed when
event set.

(e) Task switch when re-
source is released.

(f) Request for scheduling made by non-
preemptive task.

(g) Category 2 interrupt entry. Interrupted
task resumed on exit.

(h) Category 2 interrupt entry. Switch to new task on exit. (i) Category 1 interrupt entry.

Figure 7.1: Context Switching

32 Performance

8 Finding Out More

Additional information about VRTA-specific parts of RTA-OS3.0 can be found
in the following manuals:

RTA-OS3.0 VRTA Release Note. This document provides information
about the VRTA port plug-in release, including a list of changes from
previous releases and a list of known issues.

RTA-OS3.0 Virtual ECU User Guide. This guide explains how to use the
Virtual ECU environment included with the VRTA port plug-in.

Information about the port-independent parts of RTA-OS3.0 can be found in
the following manuals:

RTA-OS3.0 Getting Started Guide. This document explains how to install
RTA-OS3.0 tools and describes the underlying principles of the operating
system

RTA-OS3.0 Reference Guide. This guide provides a complete reference to
the API, programming conventions and tool operation for RTA-OS3.0.

RTA-OS3.0 User Guide. This guide shows you how to use RTA-OS3.0 to
build real-time applications.

Finding Out More 33

9 Contacting ETAS

9.1 Technical Support

Technical support is available to all RTA-OS3.0 users with a valid support con-
tract. If you do not have such a contract then please contact ETAS through
one of the addresses listed in Section 9.2.

The best way to get technical support is by email. Any problems or questions
should be sent to: rta.hotline.uk@etas.com

It is helpful if you can provide support with the following information:

• your support contract number.

• your .xml/.rtaos configuration files.

• the error message you received and the file Diagnostic.dmp if it was
generated.

• the command line that results in an error message.

• the version of the ETAS tools you are using.

• the version of your compiler tool chain you are using.

If you prefer to discuss your problem with the technical support team you can
contact them by telephone during normal office hours (0900-1730 GMT/BST).
The telephone number for the RTA-OS3.0 support hotline is: +44 (0)1904
562624.

34 Contacting ETAS

9.2 General Enquiries

Europe

Excluding France, Belgium, Luxembourg, United Kingdom and Scandinavia

ETAS GmbH
Borsigstrasse 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-300
Germany E-mail: sales.de@etas.com

WWW: www.etas.com

France, Belgium and Luxemburg

ETAS S.A.S.
1, place des États-Unis Phone: +33 1 56 70 00 50
SILIC 307 Fax: +33 1 56 70 00 51
94588 Rungis Cedex E-mail: sales.fr@etas.com
France WWW: www.etas.com

United Kingdom and Scandinavia

ETAS Ltd.
Studio 3, Waterside Court Phone: +44 1283 54 65 12
Third Avenue, Centrum 100 Fax: +44 1283 54 87 67
Burton-upon-Trent E-mail: sales.uk@etas.com
Staffordshire DE14 2WQ WWW: www.etas.com
United Kingdom

Contacting ETAS 35

www.etas.com
www.etas.com
www.etas.com

USA

ETAS Inc.
3021 Miller Road Phone: +1 888 ETAS INC
Ann Arbor Fax: +1 734 997-9449
MI 48103 E-mail: sales.us@etas.com
USA WWW: www.etas.com

Japan

ETAS K.K.
Queen’s Tower C-17F Phone: +81 45 222-0900
2-3-5, Minatomirai, Nishi-ku Fax: +81 45 222-0956
Yokohama 220-6217 E-mail: sales.jp@etas.com
Japan WWW: www.etas.com

Korea

ETAS Korea Co. Ltd.
4F, 705 Bldg. 70-5 Phone: +82 2 5747-016
Yangjae-dong, Seocho-gu Fax: +82 2 5747-120
Seoul 137-889 E-mail: sales.kr@etas.com
Korea WWW: www.etas.com

P.R.China

ETAS (Shanghai) Co., Ltd.
2404 Bank of China Tower Phone: +86 21 5037 2220
200 Yincheng Road Central Fax: +86 21 5037 2221
Shanghai 200120 E-mail: sales.cn@etas.com
P.R. China WWW: www.etas.com

India

ETAS Automotive India Pvt. Ltd.
No. 690, Gold Hill Square, 12F Phone: +91 80 4191 2585
Hosur Road, Bommanahalli Fax: +91 80 4191 2586
Bangalore, 560 068 E-mail: sales.in@etas.com
India WWW: www.etas.com

36 Contacting ETAS

www.etas.com
www.etas.com
www.etas.com
www.etas.com
www.etas.com

Index

A
AUTOSAR OS includes

Os.h, 19
Os_Cfg.h, 19
Os_MemMap.h, 19

C
Compiler (MinGW), 20
Compiler (VS2005), 20
Compiler (VS2008), 21
Configuration Attributes, 18

E
Example Application, 11

F
Files, 19

H
Hello World, 11

I
Installation, 9

Verification, 11
Interrupts, 23

Category 1, 24
Category 2, 25
Default, 25

IPL, 23

L
Librarian (MinGW), 20
Librarian (VS2005), 21
Librarian (VS2008), 21
Library

Name of, 19
Linker (MinGW), 20
Linker (VS2005), 21
Linker (VS2008), 21

M

Memory Model, 25

O

Os_StackSizeType, 19

Os_StackTraceType, 19

Os_StackValueType, 19

P

Parameters of Implementation, 18

Performance, 26

Context Switching Times, 30

Library Module Sizes, 27

Memory Consumption, 26

Stack Usage, 27

Processor Modes, 25

Standard, 25

R

Registers

Initialization, 23

Non-modifiable, 23

none, 23

S

Stack, 25

T

Target, 23

Variants, 23

Toolchain, 20

Types, 19

V

Variants, 23

Vector Table

Base Address, 24

Index 37

	Introduction
	About You
	Document Conventions
	References

	Installing the RTA-OS3.0 Port Plug-in
	Verifying your Installation
	Checking the Port
	Building the Example Application
	Preparing the Toolchain
	What does the ``HelloWorld'' example do?
	Example Files
	Building ``Hello World''
	Verifying Program Execution
	Troubleshooting

	Port Characteristics
	Parameters of Implementation
	Configuration Parameters
	Stack used for C-startup
	Stack used when idle
	Stack overheads for ISR activation
	Stack overheads for ECC tasks
	Stack overheads for ISR

	Generated Files
	Type Definitions
	Os_StackSizeType
	Os_StackTraceType
	Os_StackValueType

	Toolchain
	Compiler (MinGW)
	Librarian (MinGW)
	Linker (MinGW)
	Compiler (VS2005)
	Librarian (VS2005)
	Linker (VS2005)
	Compiler (VS2008)
	Librarian (VS2008)
	Linker (VS2008)
	Debugger

	Hardware
	Supported Devices
	Register Usage
	Initialization
	Modification

	Interrupts
	Interrupt Priority Levels
	Allocation of ISRs to Interrupt Vectors
	Vector Table
	Writing Category 1 Interrupt Handlers
	Writing Category 2 Interrupt Handlers
	Default Interrupt

	Memory Model
	Processor Modes
	Stack Handling

	Performance
	Measurement Environment
	Memory Consumption
	OS Object RAM and ROM Usage
	Stack Usage
	Library Module Sizes

	Execution Time
	Context Switching Time

	Finding Out More
	Contacting ETAS
	Technical Support
	General Enquiries

