
RTA-OS3.0
Virtual ECU User Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10384(VRTA)-VEUG-1.0.0

2 Copyright

Contents

1 Welcome to the RTA-OS3.0 Virtual ECU! 20

1.1 Related Documents . 20

1.2 About You . 21

1.3 Document Conventions . 21

1.4 References . 22

2 Introduction to the Virtual ECU 23

2.1 What do I need? . 23

2.2 What is the Virtual Machine? 25

2.2.1 Device Manager 25

2.2.2 Interrupt Control Unit 27

2.2.3 Application Manager 27

2.2.4 Embedded GUI 28

2.2.5 Linkage Table . 28

2.3 What is in a Virtual ECU? 28

2.4 Managing Multiple Virtual ECUs 29

2.5 Interacting with a Virtual ECU 29

2.6 Debugging . 29

2.7 Possible Problem Areas . 31

3 Tutorial 33

3.1 Prerequisites . 33

3.1.1 RTA-TRACE . 33

3.2 Creating your first Virtual ECU: Part1 33

3.2.1 Configuring RTA-OS3.0 34

3.2.2 Building RTA-OS3.0 35

Contents 3

3.2.3 Writing Application Code 36

3.2.4 Writing VECU Code 37

3.2.5 Building the Virtual ECU 37

3.2.6 Building the Virtual ECU 38

3.3 Adding Devices . 38

3.3.1 Clocks, Counters and Compare Devices 39

3.3.2 Sensors . 40

3.3.3 Actuators . 41

3.3.4 IO . 42

3.3.5 Custom Devices 42

3.4 Creating your first Virtual ECU: Part2 42

3.4.1 Devices . 43

3.4.2 Logger . 44

3.4.3 Interfacing C code with C++ Devices 45

3.4.4 Device Initialization 46

3.4.5 The main() program 46

3.4.6 Trial Run 1 . 47

3.4.7 Summary so far 49

3.4.8 Adding Tasks and ISRs 50

3.4.9 Threads . 53

3.4.10 Trial run 2 . 55

3.4.11 Linking to Real Hardware 56

3.4.12 Non-volatile Data 58

3.4.13 RTA-TRACE . 60

3.5 Summary . 61

4 Contents

4 ECUs and Virtual Devices 63

4.1 Registering the Device . 63

4.2 Handling actions . 64

4.3 Handling State Queries . 64

4.4 Raising Events . 65

4.5 Raising Interrupts . 65

4.6 Parent/Child relationships 66

4.7 Threads . 68

5 Interacting with VECUs 69

5.1 Running vrtaServer . 69

5.1.1 Security issues 72

5.2 Using vrtaMonitor . 73

5.2.1 Actions . 75

5.2.2 Events . 75

5.3 Multiple instances of a VECU 77

5.4 Scripting using vrtaMonitor 78

5.4.1 Example Scripts 78

6 RTA-TRACE Integration 81

6.1 How it works . 81

6.1.1 The Virtual ECU 81

6.1.2 RTA-TRACE-Server 82

6.2 Tuning process and thread priorities 82

6.3 Controlling the trace at run-time 83

7 Windows Notes 84

7.1 Real-Time Behavior . 84

Contents 5

7.2 Calling the C/C++ Runtime and Windows 84

7.3 Virtual Machine Location 85

8 Migrating from a VECU to Real Hardware 86

8.1 XML file . 86

8.1.1 Target and variant 86

8.1.2 Interrupts . 86

8.1.3 Number of tasks 87

8.2 Hardware Drivers . 87

8.3 Initialization . 87

8.4 Interrupts . 88

8.5 Register Sets . 88

9 Virtual Machine API Reference 89

9.1 General notes . 89

9.1.1 API Header Files 89

9.1.2 Linkage . 89

9.2 Common Data Types . 89

9.2.1 vrtaActEvID . 89

9.2.2 vrtaAction . 89

9.2.3 vrtaActionID . 90

9.2.4 vrtaBoolean . 90

9.2.5 vrtaByte . 90

9.2.6 vrtaDevID . 91

9.2.7 vrtaDataLen . 91

9.2.8 vrtaEmbed . 91

9.2.9 vrtaErrType . 91

6 Contents

9.2.10 vrtaEvent . 92

9.2.11 vrtaEventID . 93

9.2.12 vrtaIntPriority . 93

9.2.13 vrtaISRID . 93

9.2.14 vrtamillisecond 93

9.2.15 vrtaOptStringlistPtr 93

9.2.16 vrtaStringlistPtr 93

9.2.17 vrtaTextPtr . 93

9.2.18 vrtaTimestamp 94

9.3 Data Format Strings . 94

9.3.1 Overview . 94

9.3.2 Definition . 94

9.3.3 Examples . 96

9.4 API Functions . 97

9.4.1 InitializeDevices() 99

9.4.2 OS_MAIN() . 100

9.4.3 vrtaEnterUninterruptibleSection() 102

9.4.4 vrtaEventRegister() 103

9.4.5 vrtaEventUnregister() 105

9.4.6 vrtaGetState() 106

9.4.7 vrtaHookEvent() 108

9.4.8 vrtaInitialize() . 110

9.4.9 vrtaIsAppFinished() 113

9.4.10 vrtaIsAppThread() 114

9.4.11 vrtaIsIdle() . 115

9.4.12 vrtaLeaveUninterruptibleSection() 116

Contents 7

9.4.13 vrtaLoadVM() . 117

9.4.14 vrtaRaiseEvent() 118

9.4.15 vrtaReadHPTime() 119

9.4.16 vrtaRegisterVirtualDevice() 120

9.4.17 vrtaReset() . 125

9.4.18 vrtaSendAction() 126

9.4.19 vrtaSpawnThread() 127

9.4.20 vrtaStart() . 128

9.4.21 vrtaTerminate() 129

10Standard Devices (vrtaStdDevices.h) 130

10.1 Action and Event Descriptions 130

10.2 Device Manager . 131

10.2.1 Action: EventRegister 131

10.2.2 Action: HookEvents 131

10.2.3 Action: ListAll . 132

10.2.4 Action: GetDeviceActions 132

10.2.5 Action: GetDeviceEvents 132

10.2.6 Action: GetDeviceInfo 132

10.2.7 Event: DeviceList 132

10.2.8 Event: DeviceActions 132

10.2.9 Event: DeviceEvents 133

10.2.10 Event: DeviceInfo 133

10.3 Interrupt Control Unit . 133

10.3.1 Action: Raise . 134

10.3.2 Action: Clear . 134

8 Contents

10.3.3 Action: Mask . 134

10.3.4 Action: Unmask 135

10.3.5 Action: GetPending 135

10.3.6 Action: GetIPL . 135

10.3.7 Action: SetIPL . 135

10.3.8 Event: Pending 135

10.3.9 Event: Start . 135

10.3.10 Event: Stop . 136

10.3.11 Event: IPL . 136

10.3.12 Event: EnabledVecs 136

10.4 Application Manager . 136

10.4.1 Action: Start . 136

10.4.2 Action: Terminate 136

10.4.3 Action: Pause . 137

10.4.4 Action: Restart 137

10.4.5 Action: Reset . 137

10.4.6 Action: GetInfo 137

10.4.7 Action: TestOption 137

10.4.8 Action: ReadOption 137

10.4.9 Action: ReadParam 138

10.4.10 Event: Started 138

10.4.11 Event: Paused . 138

10.4.12 Event: Restarted 138

10.4.13 Event: Reset . 138

10.4.14 Event: Terminated 138

10.4.15 Event: Info . 138

Contents 9

10.4.16 Event: Option . 139

10.4.17 Event: OptionText 139

10.4.18 Event: ParamText 139

10.4.19 Event: State . 139

11Sample Devices (vrtaSampleDevices.h) 140

11.1 Device Descriptions . 140

11.1.1 Methods . 140

11.1.2 Actions and Events 141

11.2 vrtaClock . 142

11.2.1 Method: vrtaClock() 142

11.2.2 Method: SetInterval() 142

11.2.3 Method: SetScale() 143

11.2.4 Method: Start() 143

11.2.5 Method: Stop() 144

11.2.6 Action: Interval 144

11.2.7 Action: Scale . 144

11.2.8 Action: Start . 144

11.2.9 Action: Stop . 144

11.2.10 Event: Interval 145

11.2.11 Event: Scale . 145

11.2.12 Event: Running 145

11.3 vrtaUpCounter . 146

11.3.1 Method: vrtaUpCounter() 146

11.3.2 Method: Min() . 146

11.3.3 Method: Max() 147

10 Contents

11.3.4 Method: Value() 147

11.3.5 Method: SetMin() 147

11.3.6 Method: SetMax() 148

11.3.7 Method: SetVal() 148

11.3.8 Method: Start() 149

11.3.9 Method: Stop() 149

11.3.10 Action: Minimum 150

11.3.11 Action: Maximum 150

11.3.12 Action: Set . 150

11.3.13 Action: Start . 150

11.3.14 Action: Stop . 150

11.3.15 Action: Report . 150

11.3.16 Event: Set . 151

11.4 vrtaDownCounter . 152

11.4.1 Method: vrtaDownCounter() 152

11.4.2 Method: Min() . 152

11.4.3 Method: Max() 153

11.4.4 Method: Value() 153

11.4.5 Method: SetMin() 153

11.4.6 Method: SetMax() 154

11.4.7 Method: SetVal() 154

11.4.8 Method: Start() 155

11.4.9 Method: Stop() 155

11.4.10 Action: Minimum 156

11.4.11 Action: Maximum 156

11.4.12 Action: Set . 156

Contents 11

11.4.13 Action: Start . 156

11.4.14 Action: Stop . 156

11.4.15 Action: Report . 156

11.4.16 Event: Set . 157

11.5 vrtaSensor . 158

11.5.1 Method: vrtaSensor() 158

11.5.2 Method: GetMax() 158

11.5.3 Method: Value() 159

11.5.4 Method: SetMax() 159

11.5.5 Method: SetVal() 159

11.5.6 Action: Value . 160

11.5.7 Action: Maximum 160

11.5.8 Event: Value . 160

11.5.9 Event: Maximum 160

11.6 vrtaSensorToggleSwitch . 161

11.6.1 Method: vrtaSensorToggleSwitch() 161

11.6.2 Method: Value() 161

11.6.3 Method: SetVal() 161

11.6.4 Action: Position 162

11.6.5 Event: Position 162

11.7 vrtaSensorMultiwaySwitch 163

11.7.1 Method: vrtaSensorMultiwaySwitch() 163

11.7.2 Method: GetMax() 163

11.7.3 Method: Value() 164

11.7.4 Method: SetMax() 164

11.7.5 Method: SetVal() 164

12 Contents

11.7.6 Action: Value . 165

11.7.7 Action: Maximum 165

11.7.8 Event: Value . 165

11.7.9 Event: Maximum 165

11.8 vrtaActuator . 166

11.8.1 Method: vrtaActuator() 166

11.8.2 Method: GetMax() 166

11.8.3 Method: Value() 167

11.8.4 Method: SetMax() 167

11.8.5 Method: SetVal() 167

11.8.6 Action: Value . 168

11.8.7 Action: Maximum 168

11.8.8 Event: Value . 168

11.8.9 Event: Maximum 168

11.9 vrtaActuatorLight . 169

11.9.1 Method: vrtaActuatorLight() 169

11.9.2 Method: Value() 169

11.9.3 Method: SetVal() 169

11.9.4 Action: Value . 170

11.9.5 Event: Value . 170

11.10 vrtaActuatorDimmableLight 171

11.10.1 Method: vrtaActuatorDimmableLight() 171

11.10.2 Method: GetMax() 171

11.10.3 Method: Value() 172

11.10.4 Method: SetMax() 172

11.10.5 Method: SetVal() 172

Contents 13

11.10.6 Action: Value . 173

11.10.7 Action: Maximum 173

11.10.8 Event: Value . 173

11.10.9 Event: Maximum 173

11.11 vrtaActuatorMultiColorLight 174

11.11.1 Method: vrtaActuatorMultiColorLight() 174

11.11.2 Method: GetMax() 174

11.11.3 Method: Value() 175

11.11.4 Method: SetMax() 175

11.11.5 Method: SetVal() 175

11.11.6 Action: Value . 176

11.11.7 Action: Maximum 176

11.11.8 Event: Value . 176

11.11.9 Event: Maximum 176

11.12 vrtaCompare . 177

11.12.1 Method: vrtaCompare() 177

11.12.2 Method: GetMatch() 178

11.12.3 Method: SetMatch() 178

11.12.4 Method: IncrementMatch() 179

11.12.5 Method: SetVector() 179

11.12.6 Action: Match . 179

11.12.7 Action: Vector . 180

11.12.8 Event: Match . 180

11.13 vrtaIO . 181

11.13.1 Method: vrtaIO() 181

11.13.2 Method: SetValue() 181

14 Contents

11.13.3 Method: SetValues() 181

11.13.4 Method: GetValue() 182

11.13.5 Method: GetValues() 182

11.13.6 Action: Value . 183

11.13.7 Action: Values . 183

11.13.8 Action: GetValue 183

11.13.9 Action: GetValues 183

11.13.10 Event: Value . 183

11.13.11 Event: Values . 184

11.14 Rebuilding from Source Code 184

12Command Line 185

12.1 <VirtualECU>.exe . 185

12.2 vrtaServer . 186

12.3 vrtaMonitor . 187

12.3.1 Global Options 188

12.3.2 Sequential Options 188

12.3.3 Command Files 190

13Virtual ECU Server Library 191

13.1 Using the DLL . 191

13.2 Using the Source Code . 191

13.3 Virtual ECU Aliases . 191

13.4 Types . 192

13.4.1 VesLibEcuInfoType 192

13.4.2 VesLibEcuAliasType 192

13.5 The API Call Template . 192

Contents 15

13.6 VesLibAttachToECU() . 194

13.7 VesLibCreateAlias() . 195

13.8 VesLibExit() . 196

13.9 VesLibFindECUs() . 197

13.10 VesLibFreeAlias() . 199

13.11 VesLibFreeMemory() . 200

13.12 VesLibGetAliases() . 201

13.13 VesLibGetInfo() . 203

13.14 VesLibInitialize() . 204

13.15 VesLibListAliases() . 205

13.16 VesLibListLoadedECUs() . 206

13.17 VesLibLoadECU() . 207

13.18 VesLibSelectServer() . 209

14COM Bridge Tutorial 211

14.1 Example . 211

14.1.1 CVcServer . 211

14.2 CVcECU . 213

14.2.1 CVcDevice, CVcAction and CVcEvent 215

14.3 Tutorial . 216

14.3.1 Setting up the project 217

14.3.2 Connecting to vrtaServer 217

14.3.3 Connecting to the VECU 218

14.3.4 Initializing the devices 219

14.3.5 Reacting to events 220

14.3.6 Sending actions 221

16 Contents

14.3.7 Summary . 221

15COM Bridge Reference 223

15.1 CVcServer . 224

15.2 ICVcServer . 225

15.2.1 Enum: IVcServer_DisplayMode 225

15.2.2 Enum: IVcServer_StartMode 225

15.2.3 Enum: IVcServer_Status 225

15.2.4 Method: AttachECU() 226

15.2.5 Method: Connect() 227

15.2.6 Method: CreateAlias() 228

15.2.7 Method: Disconnect() 229

15.2.8 Method: FindECUs() 230

15.2.9 Method: FreeAlias() 231

15.2.10 Method: GetAliases() 232

15.2.11 Method: GetInfo() 233

15.2.12 Method: ListAliases() 234

15.2.13 Method: ListLoadedAliases() 235

15.2.14 Method: LoadECU() 236

15.2.15 Method: ServerStatus() 237

15.3 CVcECU . 238

15.4 ICVcECU . 239

15.4.1 Enum: IVcECU_Status 239

15.4.2 Method: Connect() 240

15.4.3 Method: Disconnect() 241

15.4.4 Method: DoAction() 242

Contents 17

15.4.5 Method: GetDeviceByID() 243

15.4.6 Method: GetDeviceByName() 244

15.4.7 Method: GetDeviceCount() 245

15.4.8 Method: Hook() 246

15.4.9 Method: QueryEvent() 247

15.4.10 Method: QueryFormat() 248

15.4.11 Method: ReplyFormat() 249

15.4.12 Method: SendAction() 250

15.4.13 Method: SendFormat() 251

15.5 ICVcECUEvents . 252

15.5.1 Method: OnEventChange() 252

15.6 CVcDevice . 253

15.7 ICVcDevice . 254

15.7.1 Method: DeviceID() 254

15.7.2 Method: DoAction() 255

15.7.3 Method: GetActionByID() 256

15.7.4 Method: GetActionByName() 257

15.7.5 Method: GetActionCount() 258

15.7.6 Method: GetEventByID() 259

15.7.7 Method: GetEventByName() 260

15.7.8 Method: GetEventCount() 261

15.7.9 Method: Hook() 262

15.7.10 Method: Name() 263

15.7.11 Method: QueryEvent() 264

15.7.12 Method: QueryFormat() 265

15.7.13 Method: ReplyFormat() 266

18 Contents

15.7.14 Method: SendAction() 267

15.7.15 Method: SendFormat() 268

15.8 ICVcDeviceEvents . 269

15.8.1 Method: OnEventChange() 269

15.9 CVcAction . 270

15.10 ICVcAction . 271

15.10.1 Method: ActionID() 271

15.10.2 Method: Do() . 272

15.10.3 Method: Name() 273

15.10.4 Method: Send() 274

15.10.5 Method: SendFormat() 275

15.11 CVcEvent . 276

15.12 ICVcEvent . 277

15.12.1 Method: EventID() 277

15.12.2 Method: Hook() 278

15.12.3 Method: Name() 279

15.12.4 Method: Query() 280

15.12.5 Method: QueryFormat() 281

15.12.6 Method: ReplyFormat() 282

15.13 ICVcEventEvents . 283

15.13.1 Method: OnEventChange() 283

16Glossary 284

17Contacting ETAS 286

17.1 Technical Support . 286

17.2 General Enquiries . 287

Contents 19

1 Welcome to the RTA-OS3.0 Virtual ECU!

The RTA-OS3.0 Virtual ECU is a complete environment for developing AU-
TOSAR OS applications hosted on a Windows PC. Mostly you’ll be using it
to prototype a new application before migrating it on to the production hard-
ware, but you will also find that it is a good tool for learning how to use RTA-
OS3.0 to develop applications for embedded targets.

But you needn’t stop there. Because RTA-OS3.0 for the Virtual ECU is a com-
plete and fast implementation of OSEK, you also add inter-application com-
munication using a standard networking solution such as CAN. You can write
applications that sit on your CAN network as test or simulation units. You
can remotely monitor the state and progress of your applications using the
supplied Virtual ECU monitor program, or use ETAS’s RTA-TRACE or your PC-
based debugger. And of course the development turnaround time is tiny - just
recompile and run. No downloading of hex files to an emulator. No program-
ming Flash.

The guide is structured as follows:

Chapter 2 introduces you to the Virtual ECU, covering what tools are pro-
vided, which standards are supported by the kernel and gives a brief
overview of kernel features.

Chapter 3 takes you though a tutorial that explains how to build, run and
monitor a Virtual ECU.

Chapters 4 to 8 provide detailed information about how to work with a Vir-
tual ECU, including how to interface to RTA-TRACE and how to migrate
from a Virtual ECU to an embedded target.

Chapters 9 to 11 provide a technical reference for creating a Virtual ECU
and interacting with it from your application code. The sample devices
that are automatically provided for you are also documented here.

Chapters 12 to 15 provide a reference to vrtaMonitor and vrtaServer -
the tools that you can use to interact with a Virtual ECU at runtime,
and discuss how to write your own tools to interact with a Virtual ECU
and how write your own Windows applications to interact with the ECU
provide a complete technical reference to all aspects of Virtual ECU de-
velopment.

Chapter 16 explains commonly used terms.

1.1 Related Documents

This guide does not tell you how to configure and use RTA-OS3.0, this informa-
tion is provided in the RTA-OS3.0 User Guide. A complete technical reference

20 Welcome to the RTA-OS3.0 Virtual ECU!

to RTA-OS3.0 can be found in the RTA-OS3.0 Reference Guide. Both of these
documents can be found in the Documents folder of your RTA-OS3.0 instal-
lation. For a default installation, this will be C:\ETAS\RTA-OS3.0\Documents
but your local installation may differ.

Specific technical details about the implementation of RTA-OS3.0 for the Vir-
tual ECU is contained in the associated RTA-OS3.0 VRTA Port Guide.

1.2 About You

You are a trained software engineer who wants to build real-time applications
using a pre-emptive operating system. You should have knowledge of the
C and C++ programming languages, including the compilation and linking
of C and C++ code for PC-based applications with a PC-hosted development
environment. Advanced features of the RTA-OS3.0 Virtual ECU will require
knowledge about Windows COM Component Object Model) applications.

You should also be familiar with common use of the Microsoft Windows®2000,
Windows®XP or Windows®Vista operating systems, including installing soft-
ware, selecting menu items, clicking buttons, navigating files and directories.

1.3 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options are printed in bold,
blue characters.

Click OK. Button labels are printed in bold
characters

Press <Enter>. Key commands are enclosed in an-
gle brackets.

The “Open file” dialog box appears The names of program windows,
dialog boxes, fields, etc. are en-
closed in double quotes.

Activate(Task1) Program code, header file names,
C type names, C functions and
RTA-OS3.0. Component API call
names all appear in the courier
typeface.

See Section 1.3. Hyperlinks through the document
are shown in red letters.
Functionality that is provided in
RTA-OS3.0 but it may not be
portable to another AUTOSAR OS
implementation is marked with the
ETAS logo.

Welcome to the RTA-OS3.0 Virtual ECU! 21

Caution! Notes like this contain im-
portant instructions that you must
follow carefully in order for things
to work correctly.

1.4 References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

22 Welcome to the RTA-OS3.0 Virtual ECU!

http://www.osek-vdx.org
http://www.autosar.org

2 Introduction to the Virtual ECU

RTA-OS3.0 is commonly used in automotive environments where the term
ECU (Electronic Control Unit) is used to refer to the target hardware on which
the application runs. The ECU can be considered as a black box with inputs
and outputs that perform a specific set of functions.

In a typical modern car, ECUs will be found in the engine compartment, the
doors, the body etc. Many if not all will be running OSEK or AUTOSAR appli-
cations.

The RTA-OS3.0 VRTA port is different. It does not need any real hardware,
other than the host PC that you run it on. Instead, you create a Virtual ECU
(VECU) in software that simulates the real-life devices such as switches or
sensors that will be present in your physical ECU. These devices are built
around a core Virtual Machine (VM) that provides services such as the inter-
rupt controller, application control and diagnostic links as shown in Figure 2.1.

Within this document we will use the terms VM and VECU extensively. Re-
member that VM represents the ‘core’ of the simulated hardware, and that
VECU is the whole ‘black-box’, a little like a physical ECU which has a mi-
crocontroller as a ‘core’ and additional hardware either as microcontroller
peripherals or as special discrete devices inside the ECU itself.

The VM provides a diagnostic interface (via TCP/IP) that allows external pro-
grams to interact with a VECU. The VRTA port ships with a program called vr-
taMonitor that can monitor and manage VECUs. You can also build your own
applications to interact with VECUs using a Component Object Model (COM)
interface called the COM Bridge. The COM bridge allows COM clients to inter-
act with VECUs and is supplied as DLL called vrtaMSCOM.dll that ships with
your RTA-OS3.0 VRTA port

The string vrta is used to prefix executables such as vrtaMonitor.exe,
vrtaVM.dll and the source files generated by rtaosgen. “vrta” is an ab-
breviation for Virtual RTA-OS3.0.

2.1 What do I need?

The VECUs that you build run under Microsoft Windows 2000 or later (includ-
ing Windows XP and Windows Vista). They require a Pentium class processor.
The actual performance of a VECU will clearly be dependent on the power of
the processor, but you will find that a modern PC is capable of running a typi-
cal AUTOSAR OS R3.0 application many times faster that a typical embedded
target.

You will need a Windows C++ Compiler to generate Virtual ECUs (and the
associated debugger that comes with your compiler to debug your Virtual

Introduction to the Virtual ECU 23

Figure 2.1: Virtual ECU Architecture

24 Introduction to the Virtual ECU

ECU code). Supported compilers are listed in the RTA-OS3.0 VRTA Port Guide
and correspond to target variants for VRTA.

If you want to use an unsupported compiler then you should discuss your
requirements with ETAS1. Contact details can be found in Chapter 17.

2.2 What is the Virtual Machine?

The Virtual Machine is at the core of a Virtual ECU. It manages (virtual) in-
terrupts, startup and shutdown of the application, and routing of messages
between devices and the outside world. Figure 2.2 shows the components
that make up the VM. The components are explained in the following sub-
sections.

The Virtual Machine is provided in a DLL file called vrtaVM.dll. A VECU gets
dynamically linked to the Virtual Machine during initialization.

Applications built for a Virtual ECU must be able to find vrtaVM.dll
on the Windows DLL search path (See Section for details). It is highly
recommended that you add C:\ETAS\RTA-OS3.0\Bin to your Windows
PATH environment variable to ensure that every Virtual ECU application
can find the Virtual Machine.

2.2.1 Device Manager

Virtual ECUs use devices to get things done. Devices have actions and
events. You can tell a device to perform a particular action. A device can
inform you of some change in state by raising an event or interrupt as shown
in Figure 2.3.

A device can be a simple representation of a switch or an LED, or it can rep-

1While ETAS cannot guarantee that RTA-OS3.0 for VRTA will work any compiler you choose,
but there is a good chance that it will as long as the compiler obeys the following rules:

• The C/C++ char type is 8 bits.

• The C/C++ short type is 16 bits.

• The C/C++ int type is 32 bits.

• The C/C++ long type is 32 bits.

• The C/C++ float type is 32 bits.

• The C/C++ double type is 64 bits.

• The compiler includes header files and libraries to support the Windows API. e.g. the
header file windows.h is provided.

• Fields within a C struct are stored in memory in the order they occur in the structure
definition.

• Fields within a C struct are aligned on natural boundaries. i.e. a short is always
aligned on a 16 bit boundary, an int, a long and a float are always aligned on a 32
bit boundary and a double is always aligned on a 64 bit boundary.

Introduction to the Virtual ECU 25

Figure 2.2: VM Architecture

Figure 2.3: Virtual Devices

26 Introduction to the Virtual ECU

resent a complex component such as a PCMCIA-based CAN controller. Most
operations in a VECU are performed by sending actions to or responding to
events from devices.

The VM itself contains the three standard devices: the DeviceManager2, the
ICU and the ApplicationManager.

The Device Manager coordinates all devices in the VECU. Each device reg-
isters with the Device Manager during initialization of the application. The
Device Manager can then be queried to find what devices exist, what action-
s/events they support and the data used by the actions and events.

These services are not only available within the VECU: the Device Manager
includes a Diagnostic Interface that allows external applications, such as vr-
taMonitor (see Section 5.2) to inspect the state of the application’s devices.

2.2.2 Interrupt Control Unit

The Interrupt Control Unit (ICU) is a device within the VM that simulates multi-
level interrupts in the Virtual ECU.

The ICU supports 32 different interrupt vectors (1 to 32) and 33 interrupt
priorities (0 to 32). Each interrupt vector can be assigned a priority (1 to 32).

The ICU maintains a current Interrupt Priority Level (IPL). An interrupt that
has a priority <= the current IPL remains pending until the IPL drops below
the assigned priority.

When an interrupt is handled, the IPL is raised to match the interrupt’s as-
signed priority. When the interrupt handler completes, the IPL is taken back
to the value that was in effect when the interrupt was taken. Each interrupt
vector can be masked. A masked vector can still become pending, but its
interrupt handler will not run unless the vector is unmasked.

After reset of a VECU (i.e. when you start the <VECU>.exe program) all
interrupts are masked.

2.2.3 Application Manager

The Application Manager is a device within the VM that manages the state
of the overall VECU. It is responsible for controlling the Windows thread in
which your application code runs. Its actions can be used to start, pause,
resume, reset or terminate your application. The Application Manager can
also provide your application with access to any parameters present on the
command-line when the VECU was invoked.

2The Device Manager is itself also a device. You query it as device zero to find out what
other devices are present.

Introduction to the Virtual ECU 27

Figure 2.4: Embedded GUI

2.2.4 Embedded GUI

When it runs, your VECU probably doesn’t show much other than a boring
black empty console window. The VM can optionally display a simple GUI
window like that shown in Figure 2.4 that will give you a bit of confidence that
the application is actually alive.

You can perform some simple operations such as pause/resume/reset from
the menu of the GUI. For more complex options, just select menu option Ap-
plication/Monitor to launch vrtaMonitor.

2.2.5 Linkage Table

You’ve now seen that the VM is packaged in a DLL and will realize that this
means that your code has to somehow call into the DLL to make API calls. The
simple answer is “don’t worry” - the startup code provided with RTA-OS3.0
for VRTA will ensure that the DLL is loaded and that API for the VM is made
available.

2.3 What is in a Virtual ECU?

A Virtual ECU is the combination of the VM DLL and a Windows executable
containing your application code. Your application will usually contain:

• a program that creates the inputs and outputs that represent a physical
ECU using virtual devices that simulate real devices, or in some cases
connect to real hardware.

28 Introduction to the Virtual ECU

• startup and linkage code that glues your application to the VM (this is
generated for you automatically by rtaosgen).

• an RTA-OS3.0 element, namely the tasks and ISRs that you want to run
in the virtual environment, built for the VRTA target.

2.4 Managing Multiple Virtual ECUs

You can run several VECUs on the same PC at the same time. This causes
something of a problem for external monitor programs, because they need a
way to find out what VECUs are running, and how to connect to their diagnos-
tic links.

To solve this problem, a server program called vrtaSever is provided that
can run on the PC. VECUs can register with the server when they start up.
The vrtaMonitor can then ask the vrtaServer which VECUs exist, and how
to connect to them.

vrtaServer must be running in order for vrtaMonitor can connect to
a VECU.

If you want to use vrtaServer on a regular basis then it should be installed as
a Windows service so you do not have to start it yourself - a VECU or monitor
will start the server if required.

One useful benefit of having such a server is that monitor programs can also
attach to servers and VECUs that are on remote PCs. The monitor has all of
the features available when used on a local machine, including the ability to
reset, terminate and load VECUs.

2.5 Interacting with a Virtual ECU

The vrtaMonitor program is the quickest way to interact with a Virtual ECU.
All VECUs have a diagnostic link to which the monitor can connect, so no
special action is needed when building your application. The monitor allows
you to send actions and view events on local and remote PCs. Figure 2.5
shows the vrtaMonitor GUI - it is discussed in detail in Section 5.2.

2.6 Debugging

You can use the PC debugger that comes with your compiler tool chain to
debug a VECU at a line-by-line level. Simply ensure that your compile and
link options are set correctly, and then load the VECU into the debugger.

If you want to see how real-time interaction occurs then you can integrate an
RTA-OS3.0 application with RTA-TRACE as shown in Figure 2.6. A VECU has
to be built with RTA-TRACE enabled, but from then on the VECU will run as
normal, only sending trace data out if RTA-TRACE is connected. RTA-TRACE

Introduction to the Virtual ECU 29

Figure 2.5: vrtaMonitor

30 Introduction to the Virtual ECU

Figure 2.6: Tracing a Virtual ECU with RTA-TRACE

can monitor a VECU from a remote PC, a fact that can be used to minimize
the impact of the RTA-TRACE GUI on the execution of the VECU.

2.7 Possible Problem Areas

The following is a short list of problems that you might encounter when you
start developing VECU code:

• You must not make any non-VM or non-AUTOSAR API calls from your
application thread if virtual interrupts could occur. This includes ‘quick
hacks’ such as using printf() to display the content of some piece of
data. All non-VM and non-AUTOSAR API calls must be protected by an
uninterruptible section (see Section 9.4.3). See Section 7.2 for more
details.

• Your application seems to lock up. Provide StackFaultHook() and

Introduction to the Virtual ECU 31

ShutdownHook() handlers and print an error to the screen if they oc-
cur. (You can use printf() here.)

• You can run your VECU but you can’t see any tracing information? You
need to have vrtaServer installed as a Windows service.

• Nothing appears to be happening? Check that the vrtaVM.dll is on the
Windows DLL search path (see Section 7.3 for details).

• You cannot connect to a VECU using vrtaMonitor? Make sure that vr-
taServer is running, either as a Windows service or as a standalone
application.

32 Introduction to the Virtual ECU

3 Tutorial

The best way to get an understanding of RTA-OS3.0 for PC is to get something
running, so let’s set aside a couple of hours and see what we can come up
with.

3.1 Prerequisites

For this tutorial we will need a copy of RTA-OS3.0 for PC installed and licensed
on your computer. We will make use of RTA-TRACE if you have that. We also
need a C++ compiler.

RTA-OS3.0

If you have followed the instructions in the RTA-OS3.0 Getting Started
Guide then you have already installed the RTA-OS3.0 tools and the
VRTA port plug-in. You will have obtained and installed your license.
In this tutorial we will assume that you have installed RTA-OS3.0 to
C:\ETAS\RTA-OS3.0, so the route for the RTA executables and DLLs is
C:\ETAS\RTA-OS3.0\Bin. The files that are specific to RTA-OS3.0 for PC are
found at C:\ETAS\RTA-OS3.0\Targets\VRTA_n.n.n.

Compiler

This tutorial will use the MinGW compiler that is freely available under the
GNU license. See the “Installation” section of RTA-OS3.0 VRTA Port Guide.

In this tutorial we will assume that you have installed the compiler at
C:\Program Files\MinGW.513.

3.1.1 RTA-TRACE

RTA-TRACE is available as a separate product and provides a very detailed
graphical display showing in real-time the execution of all Tasks, ISRs and
processes in your application.

RTA-OS3.0 for PC comes complete with a special high-bandwidth virtual de-
vice that can be used to connect to RTA-TRACE. If you have installed RTA-
TRACE in the same location as RTA-OS3.0 then this link will be detected au-
tomatically. If not, then you must copy the file rtcVRTAlink.dll from RTA-
OS3.0’s Bin directory to RTA-TRACE’s Bin directory.

3.2 Creating your first Virtual ECU: Part1

Let’s go for the traditional ‘Hello World’ starter application - with an AUTOSAR
OS twist. The following steps are required:

1. Configure RTA-OS3.0

Tutorial 33

2. Build the RTA-OS3.0 kernel library

3. Write the application code

4. Write the VECU code

5. Build the Virtual ECU

3.2.1 Configuring RTA-OS3.0

Start rtaoscfg, the RTA-OS3.0 GUI1.

You are now looking at an empty gray window which we can brighten up a bit
by selecting menu option File Ô New Project. You can accept the default
project values.

Basic Configuration

We need to add enough basic RTA-OS3.0 configuration to generate an OS
kernel.

Step 1 In OS Configuration Ô General on the “General” tab:

Item Setting

Scalability Class SC1
Status STANDARD
Enable Stack Monitoring FALSE
Enable Time Monitoring FALSE

Step 2 In OS Configuration Ô General on the “Hooks” tab click “Clear
All”.

Step 3 In OS Configuration Ô General on the “Error Hook” tab click “Clear
All”.

Step 4 In OS Configuration Ô General Ô Target:

Item Setting

Target Selection Ô Name VRTA
Target Selection Ô Variant Set the compiler you

will be using to build
the application.

Clock Speeds Ô Instruction Cycle Rate (Hz) 1000000 (i.e. 1MHz).
Clock Speeds Ô Stopwatch Speed (Hz) 1000(i.e. 1kHz).

This has configured the target-specific aspects we need for RTA-OS3.0
for this tutorial.

1For a default installation of RTA-OS3.0 this will be located in C:\ETAS\RTA-OS3.0\Bin.

34 Tutorial

Step 5 In OS Configuration Ô General Ô Optimizations on the
“AUTOSAR” set “Use RES_SCHEDULER” to FALSE.

Step 6 In OS Configuration Ô Application modes Create a mode called
OSDEFAULTAPPMODE.

These settings create a basic, empty, application for VRTA. Now give the
project a name and save it. Select menu File Ô Save As and save the
project as something like C:\Play\Tutorial1\Tutorial1.rtaos. If you click
on “Check Now” then it should report “No errors”. If it doesn’t then you’ll need
to check that you’ve done the preceding steps correctly.

Hooks

We’ll use AUTOSAR OS R3.0’s StartupHook() and ShutdownHook() to say
‘Hello World!’ and ‘Goodbye World!’ so these need to be enabled in the RTA-
OS3.0 configuration.

Go back to OS Configuration Ô General and the “Hooks” tab and make
the following changes:

Item Setting

Call Startup Hook TRUE
Call Shutdown Hook TRUE

3.2.2 Building RTA-OS3.0

Select the Builder Ô Setup workspace and the “Samples” tab and make the
following changes.

Item Setting

Sample Header Files Check all the boxes.

You can now build the RTA-OS3.0 kernel. To build from rtaoscfg go to Builder
Ô Build and click “Run code-generator”. Building will create the following
RTA-OS3.0 files in the same directory as your RTA-OS3.0 project file:

Tutorial 35

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured. This

is included by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by

RTA-OS3.0 to merge with the system-wide MemMap.h
file.

RTAOS.<lib> The RTA-OS3.0 library for your application. The exten-
sion <lib> depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application. The
extension <lib> depends on your target.

You will also see a set of files whose name are prefixed vrta that have been
created to support VRTA.

3.2.3 Writing Application Code

You now need to implement your RTA-OS3.0 application. Code Example 3.1
shows the code you need.

#include <Os.h>
OS_MAIN(){
StartOS(OSDEFAULTAPPMODE);

}

FUNC(boolean,OS_APPL_CODE) Os_Cbk_Idle(void){
ShutdownOS(E_OK);
return TRUE; /* Never reached */

}

FUNC(void,OS_APPL_CODE) StartupHook(void){
vrtaEnterUninterruptibleSection();
printf("Hello World!\n");
vrtaLeaveUninterruptibleSection();

}

FUNC(void,OS_APPL_CODE) ShutdownHook(StatusType s){
vrtaEnterUninterruptibleSection();
printf("Goodbye World!\n");
vrtaLeaveUninterruptibleSection();
vrtaTerminate();

}

Code Example 3.1: The complete application

36 Tutorial

Save this as a file called Application.c in the same directory as
Tutorial1.rtaos

3.2.4 Writing VECU Code

Any AUTOSAR OS R3.0-based VECU that you build will need to initialize your
virtual devices. The VM doesn’t know how to initialize your devices, but it
knows when it needs to do this, so it makes a callback to your code. The
callback is named InitializeDevices() and it is a C++ function.

InitializeDevices() must always be present in any VECU application.

Code Example 3.2 shows a ‘dummy’ implementation.

#include "vrtaCore.h"
void InitializeDevices(void){
// Placeholder

}

Code Example 3.2: Virtual Device Initialization

Save this as a file called VirtualDevices.cpp in the same directory as
Tutorial1.rtaos

3.2.5 Building the Virtual ECU

All that remains is build the Virtual ECU:

• Compile the Application.c file, the VirtualDevices.cpp file. Make
sure that the working directory (.) and Samples\Includes on the in-
clude path.

• Link two object files with RTAOS.lib and your compiler’s Windows and
User32 libraries to create an executable called RTAOS.exe.

The following batch file shows how this can be done with the MinGW compiler:

rem Define locations
set CBASE=C:\Progra~1\MinGW.513
set CC=%CBASE%\bin\gcc.exe
set CPP=%CBASE%\bin\g++.exe
set LNK=%CBASE%\bin\g++.exe

rem Set options
set COPTS=-c -g -I. -ISamples\Includes -I%CBASE%\include
set CPPOPTS=-c -g -I. -ISamples/Includes

Tutorial 37

rem Compile application and virtual device code
%CC% %COPTS% Application.c
%CPP% %CPPOPTS% VirtualDevices.cpp

rem Link the application
%LNK% -O2 *.o RTAOS.lib -lwinmm -lws2_32 -o"RTAOS.exe"

3.2.6 Building the Virtual ECU

If everything has compiled and linked correctly then you can run your first
Virtual ECU! Open a Windows command shall (DOS box) and run the program
RTAOS.exe. Figure 3.1 shows what you should see.

Figure 3.1: A successful run of you first Virtual ECU

If you are having problems, then you can find a working version of this part of
the tutorial in the Examples directory of the target installation in the directory
Tutorial_Part1.

3.3 Adding Devices

Before we look at making the Virtual ECU more interesting, it is useful to look
at how virtual devices are provided.

In the same way that a real ECU contains hardware such as counters, com-
parators, switches and the like, a Virtual ECU will also need some devices to
work with. Virtual devices are software functions that can declare their name,
type, actions and events to the VM’s Device Manager, and then respond to
action requests, or event queries.

Virtual devices must be declared statically so that they can become known
to the Device Manager before entering the main program (i.e. OS_MAIN). Do
not attempt to create devices dynamically2.

2You wouldn’t expect a hardware counter to suddenly come into existence on a real ECU
either!

38 Tutorial

All of the repetitious ‘plumbing’ code needed to create a device is provided in
a C++ class called vrtaDevice that is defined in the file vrtaDevice.h which
is generated when you build the RTA-OS3.0 kernel library. You can use this as
a base class from which to create your own devices.

When the RTA-OS3.0 library is built a number of sample devices are automat-
ically generated for you and placed in the library. You can access these de-
vices though the header file vrtaSampleDevices.h. These sample devices
are automatically included into your VECU if you use them and are docu-
mented in detail in Chapter 11.

The following sections shown you how you might uses these devices in appli-
cation code.

3.3.1 Clocks, Counters and Compare Devices

The vrtaClock device represents a clock source in a real ECU. It can be
thought of as the oscillator. It ticks independently of the rest of the appli-
cation at up to 1000 times per second3. Code Example 3.3 shows you how to
declare a clock named “Clock” that ticks every 5ms like this:

#define MSECS_PER_TICK (5)
vrtaClock Clock("Clock", MSECS_PER_TICK);

Code Example 3.3: Declaring a clock

On its own, the clock source is not of much use. You can start it, stop it and
change its interval, but it does not maintain a value or raise any interrupts.
We need to connect a counter to this clock source. Two types of counter are
provided:

1. up-counting

2. down-counting

These lines of code declare two such counters attached to the clock source:

vrtaUpCounter CountUp("CountUp", Clock);
vrtaDownCounter CountDown("CountDown", Clock);

By default, a counter increments or decrements its current value within
the range zero to 232 − 1. You can reduce the range of the count us-
ing the SetMin() and SetMax() methods. The normal place to do this
is in the InitializeDevices() function as shown in Code Example 3.4.
InitializeDevices() is also a good place to enable the counter.

3The clock device uses Windows multimedia timers, which have a minimum interval of 1ms.

Tutorial 39

void InitializeDevices(void){
/* CountUp goes 0...999 then back to 0 */
CountUp.SetMax(999);
CountUp.Start();

/* CountDown goes 1999...1000 then back to 1999 */
CountDown.SetValue(1999);
CountDown.SetMin(1000);
CountDown.SetMax(1999);
CountDown.Start();

}

Code Example 3.4: Declaring counters

You can read the current value of a counter using counter.GetValue(). But
what we’d really like to do is to raise an interrupt when the counter reaches a
certain value. The vrtaCompare virtual device is provided to do exactly this
job

When you declare a compare device you can attach it to a counter and specify
an interrupt that fires when the value of the counter reaches a specific value.
Code Example 3.5 shows two comparators connected to the same counter.
The first one raises interrupt 1 when the counter reaches value 5. The second
raises interrupt 2 when the counter value reaches 15.

vrtaCompare Compare5("Compare5",CountUp,5,1);
vrtaCompare Compare15("Compare15",CountUp,15,2);

Code Example 3.5: Comparing counter values and raising interrupts

Hopefully it is clear from this that you can very easily construct a chain of tim-
ing elements of arbitrary complexity by simple combinations of clock, counter
and compare devices.

Note that vrtaClock sources run independently of the application. If
you use the ApplicationManager device to pause the application thread,
the clocks continue to run and any counter/compare devices that are
attached can continue to raise interrupts that will be serviced once the
application thread resumes.

3.3.2 Sensors

Sample ‘sensor’ devices are provided which are intended to represent inputs
to an ECU. Sensors in the real world could include switches, thermocouples,
pressure monitors and so on.

Sensors have a minimum value, a maximum value and a current value in
the same way as a counter. A basic vrtaSensor device has values range

40 Tutorial

from zero to 232 − 1, but you can change the upper limit for this using the
SetMax() method.

Two derivatives of vrtaSensor are:

• vrtaSensorToggleSwitch which can have a position value zero or one.

• vrtaSensorMultiwaySwitch which has multiple positions, with an up-
per limit specified in its declaration.

Code Example 3.6 shows how these three types of sensor are declared.

vrtaSensor Throttle("Throttle");
vrtaSensorToggleSwitch EjectSwitch("EjectSwitch");
vrtaSensorMultiwaySwitch Gear("Gear", 5); // 0 to 5

Code Example 3.6: Declaring sensors

The values of a sensor can be changed remotely using vrtaMonitor. You
can read the value of the sensor directly from your application using the
GetValue() method. Alternatively you can attach a vrtaCompare device to
the sensor and raise an event when a certain value is set as shown in Code
Example 3.7 which raises interrupt 3 when the EjectSwitch position is set to
1.

vrtaCompare Eject("Eject",EjectSwitch,1,3);

Code Example 3.7: Generating an interrupt from a sensor value

3.3.3 Actuators

Sample ‘actuators’ represent outputs from the Virtual ECU. The base
vrtaActuator device can be set to a value from zero to 232 − 1. Each ac-
tuator raises an event when its value changes, so external programs such as
vrtaMonitor can detect changes in the VECU’s output.

As with sensors, you can attach a vrtaCompare device to an actuator so that
you can raise an interrupt when a set value is reached4.

Three derivatives of vrtaActuator are:

• vrtaActuatorLight with values zero and one.

• vrtaActuatorDimmableLight with ‘levels’ zero to n.

4By our definition of an actuator, it is an output device so you wouldn’t expect it to be able
to raise an interrupt: that is really the role of a sensor attached to it. Nevertheless, you may
find this capability useful in certain cases.

Tutorial 41

• vrtaActuatorMultiColorLight (‘colors’ zero to n).

Code Example 3.8 shows how these three types of sensor are declared.

vrtaActuator Speedometer("Speedometer");
vrtaActuatorLight BrakeLight("BrakeLight");
vrtaActuatorDimmableLight InteriorLight("InteriorLight",20);
vrtaActuatorMultiColorLight FuelIndicator("FuelIndicator",4);

Code Example 3.8: Declaring actuators

3.3.4 IO

The vrtaIO virtual device is a more general purpose component. It simulates
a block of 32-bit values in an ECU’s IO or memory space. You (or an external
monitor) can set or inspect values in the individual elements. An event is
raised when a value is changed, but there is no ability to generate an interrupt
based on the value.

3.3.5 Custom Devices

The sample devices which are generated automatically by rtaosgen are a
good starting point when creating a VECU, but you will want to create your
own devices to reflect your own environment. Thanks to C++ inheritance this
is a straightforward process that is shown in Chapter 4.

3.4 Creating your first Virtual ECU: Part2

Reopen the Tutorial1.rtaos project then use File Ô Save As to make
a copy in a new directory as C:\Play\Tutorial2\Tutorial2.rtaos. Copy
Application.c and VirtualDevices.cpp from the Tutorial1 directory to
Tutorial2.

We are going to create a very artificial VECU to demonstrate the use of virtual
devices:

• There will be 4 input switches: Accelerate, Brake, Left and Right.

• There will be a speed setting actuator.

• There will be a direction indicating actuator.

• The Accelerate and Brake switches cause the speed to increase / de-
crease by one unit on each zero to one transition under interrupt con-
trol.

• The Left and Right switches are polled from an AUTOSAR task every
100ms and cause a one degree change in direction each time they are
sampled at ‘1’.

42 Tutorial

• The speed starts at zero and limits at 100. The speed is preserved if the
program resets, but not if the program restarts.

• The direction is from zero to 359 degrees. The direction is preserved
over reset AND program restart.

• There will be on-screen feedback of the current speed and direction.

3.4.1 Devices

Edit VirtualDevices.cpp so that it contains the code shows in Code Exam-
ple 3.9.

#include "vrtaCore.h"
#include "vrtaSampleDevices.h"
#include "vrtaLoggerDevice.h"

#define MSECS_PER_POLL (100)
#define ACCEL_ISR (1)
#define BRAKE_ISR (2)
#define POLL_ISR (3)

// Switches
vrtaSensorToggleSwitch Accelerate("Accelerate");
vrtaSensorToggleSwitch Brake("Brake");
vrtaSensorToggleSwitch Left("Left");
vrtaSensorToggleSwitch Right("Right");

// Actuators
vrtaActuator Speed("Speed");
vrtaActuator Direction("Direction");

// Comparators
vrtaCompare AccelDetect("AccelDetect",Accelerate,1,ACCEL_ISR);
vrtaCompare BrakeDetect("BrakeDetect",Brake,1,BRAKE_ISR);

// Clock
vrtaClock ClockSource("ClockSource",MSECS_PER_POLL);
vrtaUpCounter PollCounter("PollCounter", ClockSource);
vrtaCompare PollCompare("PollCompare", PollCounter, 0, POLL_ISR

);

// Data
#define DATA_SIZE (1)
#define DIR_DATA (0)
vrtaIO PersistentData("PersistentData",DATA_SIZE);

Tutorial 43

// Status
Logger Status("Status");

//--
int status_printf(const char* format, ...){
va_list argptr;
va_start(argptr, format);
int ret = Status.printf(format, argptr);
va_end(argptr);
return ret;

}

//--
void InitializeDevices(void){
Speed.SetMax(100);
Direction.SetMax(359);

PollCounter.SetMin(0);
PollCounter.SetMax(0);
PollCounter.Start();

ClockSource.Start();

Speed.PersistThroughReset(true);
PersistentData.PersistThroughReset(true);
Direction.SetValue(PersistentData.GetValue(DIR_DATA));

}

Code Example 3.9: Extending VirtualDevices.cpp

Hopefully the declarations for the switches, actuators, clock devices and IO
will be clear.

3.4.2 Logger

The Logger device is not included as part of the standard set of sample
devices, but you will find it very useful if you want to output diagnostic
text from an application. The Logger device is provided by the header file
vrtaLoggerDevice.h.

You can make printf() style calls to a Logger device and it can output the
text to the console window and/or a file. If you create a Logger device with
the special name Status, then the VM’s embedded GUI will display its last
line in its status bar. vrtaMonitor will do the same.

44 Tutorial

Use a Logger device to output text to the VECU’s console. Do not use
direct printf() calls. The Logger device has the interrupt protection
that is needed when making non VM or non-OSEK API calls from your
application thread.

Now we come to an interesting issue. Your logger device is a C++ object
with a nice set of methods for outputting text and saying where to place the
text. You can make calls such as Status.printf(‘‘Boo’’) so that you can
indicate to the outside world what is happening.

But your RTA-OS3.0 application is written in C not C++, so it does not under-
stand the Status object. How can it make use of it?

3.4.3 Interfacing C code with C++ Devices

There are two answers to this.

Using vrtaSendAction

Your C code can use the VM API call vrtaSendAction to send a string to the
device’s ‘Print’ action. You’ll see how to do this later, but the code would be
similar too that shown in Code Example 3.105.

vrtaAction act;
char * pText_to_send = ‘‘Boo’’;

act.devID = status_device_id;
act.devAction = 1;
act.devActionLen = strlen(pText_to_send);
act.devActionData = pText_to_send;
vrtaSendAction(act.devID, &act);

Code Example 3.10: Using the vrtaSendAction to print

Using C/C++ Interfacing

The alternative, and simpler, model is to write a C / C++ interface function.
This is what is done in Code Example 3.9. The function status_printf is a
simple wrapper function that is intended to be callable from C code so your
code becomes:

status_printf(‘‘Boo’’)

You must provide a prototype for this function that can be seen by both the C
and C++ source code that declares status_printf to be a C rather than C++
function. For this reason we need to add the file VirtualDevices.h which will

5This won’t work if the string length is less than 16 bytes because the string has to be copied
into the action’s embedded data area. This is discussed later.

Tutorial 45

export the C definitions for use in your C program. VirtualDevices.h needs
to contain the code shown in Code Example 3.11.

/* Interface between C and C++ */
#ifdef __cplusplus
extern "C" {
#endif

extern int status_printf(const char* format, ...);

#ifdef __cplusplus
}
#endif

Code Example 3.11: Interfacing C++ Devices to your C Application

The file VirtualDevices.h must be #included into C or C++ files that de-
fine or reference status_printf. For this tutorial application this means
yon need to have a #include "VirtualDevices.h" in Application.c and
VirtualDevices.cpp.

3.4.4 Device Initialization

The initialization code in our InitializeDevices() function sets both the
min and max values for the PollCounter to zero. You will note that
PollCompare is also set to match on zero. This has the effect of raising
an interrupt every clock tick, because each time the ClockSource ticks
the PollCounter is ‘incremented’. Incrementing past its maximum value
(0) causes the count to reset to the minimum value (0). Each time the
PollCounter gets ‘incremented’ the new value is passed to the PollCompare
- which matches on zero every time.

The calls to PersistThroughReset() tell the Speed and PersistentData de-
vices to preserve their data if the program resets. Note that a reset is not
the same as killing the program and restarting it manually. We do have a
requirement that the direction is preserved over a restart that is not satisfied
by this - but we will sort that out a bit later.

3.4.5 The main() program

We need to modify Application.c so that the program does not simply
start and stop by modifying what happens in Os_Cbk_Idle. We can also use
the new status_printf function to display our output. Code Example 3.12
shows the how Code Example 3.1 is has been modified

You will notice the use of status_printf(). vrtaIsAppFinished() returns
false normally or true if the VECU should terminate. vrtaIsIdle() waits

46 Tutorial

for the specified number of milliseconds. During this time the processor is
assigned to a different thread. Virtual interrupts can still occur during a call
to vrtaIsIdle().

#include <Os.h>
#include "VirtualDevices.h"

OS_MAIN(){
StartOS(OSDEFAULTAPPMODE);

}

FUNC(boolean,OS_APPL_CODE) Os_Cbk_Idle(void){
while(!vrtaIsAppFinished()){
vrtaIsIdle(5);

}
ShutdownOS(E_OK);
return TRUE; /* Never reached */

}

FUNC(void,OS_APPL_CODE) StartupHook(void){
status_printf("Hello World!\n");

}

FUNC(void,OS_APPL_CODE) ShutdownHook(StatusType s){
status_printf("Goodbye World!\n");
vrtaTerminate();

}

Code Example 3.12: Modifying the idle mechanism and using status_printf

3.4.6 Trial Run 1

Let’s check that was all entered correctly. Save your project and perform a
build. Hopefully the build will be successful. If not just go back and check that
you have entered everything correctly. We can run the program by running
RTAOS.exe

When you run your new VECU, you will get an empty console screen plus an
embedded GUI. The GUI is shown Figure 3.2. It shows a few details about
your VECU and gives you the ability to suspend <F6>, resume <F7>, reset
<Shift+F8> and terminate <F8> it. All these options are available from the
Application menu. You should also see “Hello World” on the GUI’s status bar.

If you press <Ctrl+M> when in the embedded GUI, then you will launch an in-
stance of vrtaMonitor that is connected to the VECU as shown in Figure 3.3.
Note that it too has “Hello World” in the status bar.

Tutorial 47

Figure 3.2: Trial Run 1 - Embedded GUI

Figure 3.3: Trial Run 1 - vrtaMonitor

48 Tutorial

Figure 3.4: Display of hierarchical devices

Take some time to explore the devices in the monitor. You should be able to
work out most of the features by checking out the main menu, clicking (and
especially right-clicking) on elements in the left hand navigation pane and
looking at the tabs on the right hand side. If you get stuck then Section 5.2
describes vrtaMonitor in more detail.

One thing that is worth pointing out is that the monitor has worked out that
the PollCompare device ‘belongs to’ the PollCounter, which in turn ‘belongs
to’ the ClockSource. It has therefore arranged these devices in a hierarchy as
shown in Figure 3.4. The same applies to the Accelerate and Brake compare
devices.

3.4.7 Summary so far

We haven’t really written much code yet, but a large part of the framework is
in place. In fact, we can even see that the clock chain is working. Drag the
‘Match’ Event of the PollCompare device from the left hand side over to the
right-hand side. This causes the monitor to hook all match events from the
device and display them in the “Monitor” tab. If you tick the “Show Times”

Tutorial 49

checkbox you will also see the time that each event was raised in the VECU6.

To stop monitoring an event, drag the event onto the “Stop” button. When
you are ready, close the monitor and VECU.

3.4.8 Adding Tasks and ISRs

We now create the OS elements that implement the required functionality.
Use rtaoscfg to add the following:

• A Task called DirectionPoll with Priority 1, Activations 1 and Preempt-
ability FULL

• A Category 2 ISR named isrAccelerate with Priority 1 and Vector 1.

• A Category 2 ISR named isrBrake with Priority 1 and Vector 2.

• A Category 2 ISR named isrPoll with Priority 2 and Vector 3.

• A Counter named AlarmCounter with:

– “Minimum Cycle” of 1

– “Maximum Value” of 65535

– “Ticks Per Base” of 1

– “Seconds Per Tick” of 0.1 (i.e. it is 100ms)

– “Type” of SOFTWARE

• An Alarm named Poller attached to AlarmCounter with Action/Activate
Task DirectionPoll, Auto start in OSDEFAULTAPPMODE with:

– “Type” of RELATIVE

– “Alarm Time” of 1

– “Cycle Time” of 1

We will now need to implement the tasks and ISRs. Edit Application.c to
add the three Category 2 ISRs and the task as shown in Code Example 3.13.

ISR(isrPoll){
IncrementCounter(AlarmCounter);

}

ISR(isrBrake){
change_speed(-1);

}

6Event times are recorded using the Windows API GetTickCount(). This typically has a
resolution of around 15ms.

50 Tutorial

ISR(isrAccelerate){
change_speed(+1);

}

TASK(DirectionPoll){
if (left_pressed()) {
change_direction(-1);

}
if (right_pressed()) {
change_direction(+1);

}
TerminateTask();

}

Code Example 3.13: Adding OS Objects

We need to get access to the VECUs devices. Add the lines shown in Code Ex-
ample 3.14 to VirtualDevices.h. These provide the C/C++ interface func-
tion prototypes that allow your RTA-OS3.0 application to get access to the
devices you’ll create in the VECU.:

#ifdef __cplusplus
extern "C" {
#endif

// The existing logger device
extern int status_printf(const char* format, ...);

// The new interfacing functions
extern void show_status(void);
extern int left_pressed(void);
extern int right_pressed(void);
extern void change_direction(int amount);
extern void change_speed(int amount);

#ifdef __cplusplus
}
#endif

Code Example 3.14: Exporting C function for the VirtualDevices.cpp

We now add the code shown in Code Example 3.15 to VirtualDevices.cpp
provide the C/C++ functions themselves. They are clearly quite simple wrap-
pers to the devices.

Tutorial 51

int left_pressed(void){
return Left.Value();

}

int right_pressed(void){
return Right.Value();

}

void show_status(void){
Status.printf("Speed %d, Direction %d",

Speed.Value(),
Direction.Value());

}

void change_direction(int amount){
int newvalue = Direction.Value() + amount;
while (newvalue < 0) {
newvalue += 360;

}
while (newvalue > 359) {
newvalue -= 360;

}
PersistentData.SetValue(DIR_DATA,newvalue);
Direction.SetValue(newvalue);
show_status();

}

void change_speed(int amount){
int newvalue = Speed.Value() + amount;
if ((newvalue >=0) && (newvalue <=100)) {
Speed.SetValue(newvalue);
show_status();

}
}

Code Example 3.15: Accessing the C++ devices

If you try to run this now, you’ll find that nothing much appears to respond
to the inputs. This is because we need to enable (or unmask) the 3 inter-
rupts that we are using. Add the code shown in Code Example 3.16 into
InitializeDevices(). It sends the Unmask action to the VM’s ICU device,
passing in each interrupt number in turn.

vrtaAction action;

52 Tutorial

action.devID = ICU_DEVICE_ID;
action.devAction = ICU_ACTION_ID_Unmask;
action.devActionLen = sizeof(action.devEmbeddedData.

uVal);
action.devActionData = NULL;

// Unmask the accelerator interrupt
action.devEmbeddedData.uVal = ACCEL_ISR;
vrtaSendAction(ICU_DEVICE_ID,&action);

// Unmask the brake interrupt
action.devEmbeddedData.uVal = BRAKE_ISR;
vrtaSendAction(ICU_DEVICE_ID,&action);

// Unmask the poll interrupt
action.devEmbeddedData.uVal = POLL_ISR;
vrtaSendAction(ICU_DEVICE_ID,&action);

Code Example 3.16: Unmasking the interrupt sources

Nearly there!

3.4.9 Threads

For no other reason than to show you some interesting stuff, we are now
going to add a ‘spring’ to the Accelerate and Brake switches so that they flip
back to zero after being pushed, but we will do this in a separate thread.

You can create any number of threads of execution that run independently
of your main application thread (the RTA-OS3.0 thread). These threads are
native Windows threads with a small amount of protection built in. You can
make Windows API calls from within a thread without having to protect them
from RTA-OS3.0 interrupts. You can access the VECU’s devices and even raise
interrupts from within a thread, which makes them an excellent choice for
interfacing to real hardware.

The basic shape of an RTA-OS3.0 for PC thread is usually something like this:

void AsyncThread(void) {
while (!vrtaIsAppFinished()) {
vrtaIsIdle(100); // Sleep 100ms

}
}

You should check vrtaIsAppFinished() regularly within a thread so that the
VECU can perform an orderly tidy up when asked to terminate. You should
use vrtaIsIdle() to yield control to other threads if you have no work to do.

Tutorial 53

In our thread, we want to hook event changes in the AccelDetect and
BrakeDetect compare devices. Whenever the Match event fires for one of
these, we know that the associated switch has been pressed. We then reset
the switch value to zero. Note that hooking the Accelerate and Brake Position
event will not work because events are raised before the compare devices
are informed. If you reset the switch in the event hook, the compare devices
only ever see the zero value.

To see a thread at work we need to add the thread and hook code is shown in
Code Example 3.17 to VirtualDevices.cpp before InitializeDevices():

static vrtaErrType ListenCallback(
const void *instance,
const vrtaEvent *event){

// Has ‘Accelerate’ become 1?
if ((event->devID == AccelDetect.GetID())

&& (event->devEmbeddedData.uVal == 1)) {
// Set directly
Accelerate.SetValue(0);

}

// Has ‘Brake’ become 1?
if ((event->devID == BrakeDetect.GetID())

&& (event->devEmbeddedData.uVal == 1)){
// Set via an action
vrtaAction act;
act.devAction = 1;
act.devActionLen = sizeof(unsigned);
act.devActionData = NULL;
act.devID = Brake.GetID();
act.devEmbeddedData.uVal = 0;
vrtaSendAction(act.devID, &act);

}

return RTVECUErr_NONE;
}

void AsyncThread(void)
{
// Create a listener and associate its callback
vrtaEventListener tListener = vrtaEventRegister(

ListenCallback, 0);

// Hook event 1 of AccelDetect into listener

54 Tutorial

vrtaHookEvent(tListener,
AccelDetect.GetID(),
1,
true);

// Hook event 1 of BrakeDetect into listener
vrtaHookEvent(tListener,

BrakeDetect.GetID(),
1,
true);

// Nothing else to do while app is running
while (!vrtaIsAppFinished()) {
vrtaIsIdle(100);

}

// Tidy up hooks on exit from thread
vrtaHookEvent(tListener,

AccelDetect.GetID(),
1,
false);

vrtaHookEvent(tListener,
BrakeDetect.GetID(),
1,
false);

}

Code Example 3.17: Implementing a Thread and Hooking events

We now need to make the thread run, so at the of InitializeDevices() add the
line:

vrtaSpawnThread(AsyncThread);

This tells the VM to spawn the thread called AsyncThread.

3.4.10 Trial run 2

Save your project and perform a build. Because you are getting good at this,
you will now have a (nearly) fully working VECU, so let’s run it.

We’ll need vrtaMonitor to feed some inputs and view the output, so start it
up using <Ctrl+M> from the embedded GUI.

Expand the “Accelerate” device and drag the “Position” event to the right
hand side. Double click the “Position” action (not the event) and enter ‘1’ as

Tutorial 55

Figure 3.5: Trial Run 2 - Seeing acceleration with vrtaMonitor

the data value. Press “OK”. You will see the position value change to one and
then zero in the monitor window. The status bar will show that the speed has
increased. Double-click on the “Position”s action a few times and you will see
the speed go up further as shown in Figure 3.5.

Do the same for the “Brake” device and notice the speed decrease.

Now expand the “Left” device and send its “Position” action value ‘1’. The
direction Value will count down and wrap at 0 degrees until you change it
back to zero.

The same applies to the “Right” device, though obviously that will make the
Value count up and wrap at 359 degrees.

3.4.11 Linking to Real Hardware

Just to prove that you can link to real hardware, you might like to change the
implementation of the AsyncThread as shown in Code Example 3.18. It just

56 Tutorial

peeks at the state of the arrow keys on your keyboard and makes calls to your
switches.

void AsyncThread(void) {
// Create a listener and associate its callback
vrtaEventListener tListener = vrtaEventRegister(

ListenCallback, 0);

// Hook event 1 of AccelDetect into listener
vrtaHookEvent(tListener,

AccelDetect.GetID(),
1,
true);

// Hook event 1 of BrakeDetect into listener
vrtaHookEvent(tListener,

BrakeDetect.GetID(),
1,
true);

// NOW! Peek at keys to control Accelerator, Brake and
Direction

while (!vrtaIsAppFinished()) {
if (GetAsyncKeyState(VK_LEFT) < 0) {
if (Left.GetValue() == 0) {
Left.SetValue(1);

}
} else {
if (Left.GetValue() == 1) {
Left.SetValue(0);

}
}
if (GetAsyncKeyState(VK_RIGHT) < 0) {
if (Right.GetValue() == 0) {
Right.SetValue(1);

}
} else {
if (Right.GetValue() == 1) {
Right.SetValue(0);

}
}
if (GetAsyncKeyState(VK_UP) < 0) {
Accelerate.SetValue(1);

}

Tutorial 57

if (GetAsyncKeyState(VK_DOWN) < 0) {
Brake.SetValue(1);

}
vrtaIsIdle(100);

}

// Tidy up hooks on exit from thread
vrtaHookEvent(tListener,

AccelDetect.GetID(),
1,
false);

vrtaHookEvent(tListener,
BrakeDetect.GetID(),
1,
false);

}

Code Example 3.18: Interfacing with ‘real’ hardware

3.4.12 Non-volatile Data

If you now reset the VECU (for example using the Application menu in vrta-
Monitor), the VECU console and GUI will flash off and then return. The speed
and direction will have persisted across the reset.

We have seen that the speed and direction values persist over a VECU reset.
But we don’t yet have a way to keep data between completely different runs
of the VECU.

We’d really like to have something that looks like Flash memory in a real ECU.
There is no direct support for nonvolatile memory so we will have to make our
own version.

We will do this by creating a vrtaFlash device that inherits from vrtaIO.
We can then change the type of PersistentData to vrtaFlash and the job is
done. The code to do this is shown below. Just replace the current declaration
for PersistentData in VirtualDevices.cpp:

vrtaIO PersistentData("PersistentData",DATA_SIZE);

with the lines shown in Code Example 3.19.

#include <stdio.h>
class vrtaFlash : public vrtaIO {

protected:
void Starting(void) {

58 Tutorial

vrtaIO::Starting();
FILE *f = fopen("VirtualECU.flash","rb");
if (f) {

char buffer[100];
if (GetPersistentDataSize() ==
fread(buffer,1,GetPersistentDataSize(), f)

) {
memcpy(

GetPersistentData(),
buffer,
GetPersistentDataSize());

}
fclose(f);
}

}

void Stopping(void) {
FILE *f = fopen("VirtualECU.flash","wb");
fwrite(

GetPersistentData(),
1,
GetPersistentDataSize(),
f);

fclose(f);
vrtaIO::Stopping();

}
public:

// Constructor
vrtaFlash(const vrtaTextPtr name, unsigned elements)

: vrtaIO(name, elements) {};

};
vrtaFlash PersistentData("PersistentData",DATA_SIZE);

Code Example 3.19: Adding persistence to vrtaIO to simulate NVRAM

You will now find that if you rebuild your VECU that it will remember the Value
of the direction it was last pointing in when it restarts. The data is stored in
the file called VirtualECU.flash which is read when the device starts and
written when the device stops. In a real-life application you might want to
move away from a hard-coded file name, to avoid conflicts where two appli-
cations try to access the same file.

Tutorial 59

3.4.13 RTA-TRACE

If you have RTA-TRACE installed, you can get a detailed view of the internal
operation of your VECU. Close any instances of the VECU and vrtaMonitor,
open the RTA-TRACE Configuration Ô Configuration in rtaoscfg and do
the following configuration:

Item Setting

Enable Tracing TRUE
Use Compact IDs TRUE
Use Compact Time TRUE
Enable Stack Recording FALSE
Run-Time Target Triggering FALSE
Auto-Initialize Comms TRUE
Set Trace Auto-repeat FALSE
Buffer Size 2000
Autostart Type FREE_RUNNING

Now try to rebuild.

You should get warnings about a missing Os_Cbk_GetStopwatch function.
RTA-TRACE needs to know about the time at which things happen, so we must
give it the help it needs. Code Example 3.20 shows the code you need to add
to Application.c.

void Os_GetStopwatch(void){
/* vrtaReadHPTime(x) returns the current time based on a

required number
of ’xticks’, where there are ’x’ xticks per second. We

use the macro
OSSWTICKSPERSECOND that defines the number of stopwatch

ticks we expect
per second.

*/
return (Os_StopwatchTickType)vrtaReadHPTime(

OSSWTICKSPERSECOND);
}

Code Example 3.20: Implementing Os_Cbk_GetStopwatch

You may remember that the project was set up initially with a 1kHz stopwatch.
Using the high-performance counter means that we can now do a lot better
than that, so select the rtaoscfg menu General Ô Target Ô Clock Speeds
and change both value to something more sensible like 100MHz.

Finally we must add some code to Os_Cbk_Idle to send trace data from the
application to RTA-TRACE. Edit Os_Cbk_Idle in Application.c so that looks

60 Tutorial

like Code Example 3.21.

boolean Os_Cbk_Idle(void){
show_status();
while(!vrtaIsAppFinished()) {
vrtaIsIdle(5);

#ifdef OS_TRACE
Os_CheckTraceOutput();

#endif
}
ShutdownOS(E_OK);
return TRUE; /* Never reach here */

}

Code Example 3.21: Implementing Os_Cbk_GetStopwatch

Now rebuild the VECU.

What you now need to do is to install vrtaServer as a Windows service. You
can do this easily by running vrtaServer -install from a command prompt.

Now start RTA-TRACE, connect to localhost and use the RTAOSEK-VRTA con-
nection. Open the RTAOS.rta file. RTA-TRACE will start up, read the VECU’s
configuration information and then launch it automatically for you. What ser-
vice! Your mileage will vary, but we get a trace looking like the one shown in
Figure 3.6.

If you are having problems, then you can find a working version of this part of
the tutorial in the Examples directory of the target installation in the directory
Tutorial_Part2.

3.5 Summary

If you have worked through this tutorial then you should have a good under-
standing of how to work with a Virtual ECU. In particular you should now have
an idea of how you can:

• create virtual devices and initialize them.

• access virtual devices from your C (RTA-OS3.0) application.

• print debugging data to the embedded GUI and to the status bar of
vrtaMonitor.

• interact with your virtual devices using

– vrtaMonitor

– an asynchronous thread to simulate some behavior

Tutorial 61

Figure 3.6: Tracing the tutorial VECU

– real hardware (like your keyboard!)

• how to integrate RTA-TRACE with your virtual ECU.

The remainder of this guide provides a technical reference to building and
interacting with a Virtual ECU.

62 Tutorial

4 ECUs and Virtual Devices

At its most basic level, a virtual device is simply an object that has a name
and provides functions that can be called to send it a command (action) or
query its status (event).

The ‘action’ callback function gets passed information through a vrtaAction
structure.

The ‘state’ callback function gets passed information through a vrtaEvent
structure.

Virtual devices can be written from scratch using C code, but we recommend
that they are implemented as C++ classes that derive from the vrtaDevice
class that is defined in vrtaDevice.h.

Many examples of how to write such classes are provided in the files gen-
erated by RTA-OS3.0 for VRTA, most notably in vrtaSampleDevices.h/.cpp.
This chapter covers some of the issues that you should understand when
writing your own devices.

4.1 Registering the Device

You have to tell the VM that your device exists by calling the
vrtaRegisterVirtualDevice() API. This must be done before vrtaStart()
is called. This done automatically if you are using a class that derives from
vrtaDevice.

When registering a device, you supply the following information:

name: This is the name that external monitor programs will see when ac-
cessing the device. Each device in a VECU must have a different name.
e.g. LeftWindowSwitch, EjectorSeatTrigger

info: This is a string containing information about the device in the form
<tag1>=<value1>\n<tag2>=<value2>. As a minimum the string should
contain Type and Version tags. This information is used by external
monitor programs. e.g. Type=Thruster\nVersion=1.2.3\n

list of events: This is a string in the same format as above that lists
the events that the device supports and the data format for each
event. The tags are the event names and the values are the data for-
mat descriptions. These are explained in detail in Section 9.3. e.g.
Value=%u,%u(%u)\nValues=%a\n

list of actions: This is a string in the same format as above that lists the
actions that the device supports and the data format for each ac-
tion. The tags are the action names and the values are the data for-

ECUs and Virtual Devices 63

mat descriptions. These are explained in detail in Section 9.3. e.g.
Value=%u,%u\nValues=%a\nGetValue=%u\nGetValues\n

action callback function: This is a reference to the C++ function that will
be called when an action is sent to the device. See Section 4.2 for how
to handle action requests.

state callback function: This is a reference to the C++ function that will
be called when a status query is sent to the device. See Section 4.3 for
how to handle status queries.

4.2 Handling actions

The action callback function that you register is called when code in the VECU
calls vrtaSendAction(), or when an external monitor sends data via the di-
agnostic interface.

The callback can be invoked from any thread; therefore the callback must
take care of any reentrancy issues.

Often you will raise an event as a result of receiving an action. If your device
is written as a C++ class that inherits from vrtaDevice, the action callback
is translated into a call to your OnAction method. Code Example 4.1 shows
the basic form of the OnAction method.

vrtaErrType mydev::OnAction(const vrtaAction *action)
{
switch (action->devAction) {
case 1:
/* respond to action 1 */
RaiseEvent(...);
break;

default:
return ErrorAction(action);

}
return OKAction(action);

}

Code Example 4.1: Handling a device action

4.3 Handling State Queries

The state callback function that you register gets called when code in the
VECU calls vrtaGetState(), or when an external monitor queries the device
via the diagnostic interface.

The callback can be invoked from any thread; therefore the callback must
take care of any reentrancy issues.

64 ECUs and Virtual Devices

If your device is written as a C++ class that inherits from vrtaDevice, the
event callback is translated into a call to your AsyncGetState method. The
basic form of the AsyncGetState method is shown in Code Example 4.2.

vrtaErrType mydev::AsyncGetState(vrtaEvent *event)
{

switch (event->devEvent) {
case 1:

/* Update *event */
break;

default:
return ErrorState(event);

}
return OKState(event);

}

Code Example 4.2: Responding to a state request

By convention, AsyncGetState returns the value of the most recent
RaiseEvent for the event in question so that the state of a device can be
tracked by either ‘hooking’ the events or polling them.

4.4 Raising Events

Any code can raise a device event directly via vrtaRaiseEvent(), but nor-
mally it is only code within the device that raises its events. The vrtaDevice
class provides a RaiseEvent() method that can be used by classes that in-
herit from it. Code Example 4.3 show you how to raise an event.

void mydev::NewValue(unsigned val)
{

m_Val = val;

vrtaEvent event;
ReadState(&event,1);
RaiseEvent(event);

}

Code Example 4.3: Raising an event

4.5 Raising Interrupts

Interrupts are raised by sending action ICU_ACTION_ID_Raise to the ICU de-
vice using code like that shown in Code Example 4.4.

void RaiseInterrupt(unsigned vector)
{

ECUs and Virtual Devices 65

vrtaAction action;
action.devID = ICU_DEVICE_ID;
action.devAction = ICU_ACTION_ID_Raise;
action.devActionLen =

sizeof(action.devEmbeddedData.uVal);
action.devEmbeddedData.uVal = vector;
action.devActionData = NULL;
SendAction(ICU_DEVICE_ID, action);

}

Code Example 4.4: Raising an interrupt

The vrtaDevice class provides a RaiseInterrupt() method that can be
used by classes that inherit from it. Code Example 4.5 shows how to raise
an interrupt if val has reached a specified value.

void mydev::NewValue(unsigned val)
{

m_Val = val;
if (val == m_Match) {

vrtaEvent event;
ReadState(&event,1);
if (m_Vector) {

RaiseInterrupt(m_Vector);
}
RaiseEvent(event);

}
}

Code Example 4.5: Using RaiseInterrupt()

4.6 Parent/Child relationships

Sometimes you want to create a device that somehow ‘belongs to’ another
device. An example is the vrtaCounter device that ‘belongs’ to a vrtaClock.

You can tell external programs such as vrtaMonitor about this relationship
by implementing an event called _Parent1 which returns the device ID of the
device that it belongs to. The program can then represent this relationship
visually and will normally hide the _Parent event from view. You have seen
this used already in the screenshot in Figure where PollCompare’s _Parent
is set to PollCounter and PollCounter’s _Parent is set to ClockSource.

1By convention this is the highest numbered event in the device.

66 ECUs and Virtual Devices

Figure 4.1: Viewing devices using vrtaMonitor

ECUs and Virtual Devices 67

Figure 4.2: Threads in a Virtual ECU application

4.7 Threads

A virtual device can spawn an RTA-OS3.0 for PC thread to perform operations
asynchronously from the main application thread. Such threads can, with
appropriate interlocks, access the device data and methods. They can cause
events and interrupts to be raised.

The vrtaDevice class provides the SpawnThread() method that can be used
by classes that inherit from it.

Figure 4.2 illustrates how threads are used within a VECU. The application
thread is the Windows thread that runs the application code, including ISRs
and RTA-OS3.0 tasks. This is the thread that calls OS_MAIN(). The root thread
is the thread created by Windows when the VECU was loaded. This is the
thread that executes main(). Virtual device drivers may be called by the
application thread but may also contain private threads.

68 ECUs and Virtual Devices

5 Interacting with VECUs

vrtaServer is a small program that can be installed as a Windows service
and will run unobtrusively on your PC coordinating the loading and locating
of your Virtual ECUs.

A VECU informs vrtaServer when it starts or terminates. External programs
such as vrtaMonitor can then ask vrtaServer what VECUs are loaded, and
attach to a VECU via its diagnostic interface. This means that vrtaMonitor
can be on a different PC to the server and its ECUs, so you can perform remote
monitoring and control of a bank of test PCs.

Figure 5.1 shows a vrtaMonitor attached to three VECUs. When the VE-
CUs load, they register with vrtaServer (dashed lines). vrtaMonitor then
queries vrtaServer to find out what VECUs are loaded on the local machine
and the TCP port numbers of their diagnostic interfaces (solid line). vrta-
Monitor then communicates with the VECUs via their diagnostic interfaces
(dotted lines).

Monitor programs also use vrtaServer to locate and load VECUs. This is nec-
essary because the monitor may be running on a remote PC without access
to files on the host PC. In the load dialog shown in Figure 5.2, vrtaMonitor is
accessing a remote PC, so the directory structure that you see reflects that
on the remote PC.

5.1 Running vrtaServer

To install vrtaServer as a service you need to run vrtaServer -install from
the command line. If you decide that you want to uninstall the service then
this is done using vrtaServer -uninstall. vrtaServer runs as a Windows
service under the ‘SYSTEM’ account. It therefore does not normally have any
user-visible element. If it encounters problems, it logs them with the Windows
Event Viewer.

If you are using Windows Vista then you must run vrtaServer -install
from a Windows Command Prompt that has administrator rights. To
obtain a Windows Command Prompt with administrator rights, right-
click on the Command Prompt icon and select “Run as administrator”.
When the dialogue shown in Figure 5.3 appears click Continue and
then run vrtaServer -install at the prompt.

You can alternatively run vrtaServer as a Windows system-tray application.
Close any VECUs or monitors on your PC then run the command ‘vrtaServer
-stop’ to stop the service1. Then run ‘vrtaServer -standalone’. You will see a
tabbed dialog-style window appear along with a new icon in your system tray
as shown in Figure 5.4.

1‘vrtaServer -start’ would start it again.

Interacting with VECUs 69

Figure 5.1: Interaction between vrtaServer, VECUs and vrtaMonitor

70 Interacting with VECUs

Figure 5.2: Accessing a remote PC with vrtaMonitor

Figure 5.3: Running the Windows Command Prompt in Windows Vista

Interacting with VECUs 71

Figure 5.4: Viewing ECUs with vrtaServer

The dialog will also give you information about the VECUs and monitors that
are connected to vrtaServer by selecting the “Connections” tab as shown in
Figure 5.5.

Note that closing this dialog window does not cause vrtaServer to quit - it
just minimizes back to the system tray. Select the Close Server menu item
from the system tray icon to quit the server (or use vrtaServer -stop from
the command line).

5.1.1 Security issues

vrtaServer allows remote monitor programs to launch VECUs on its host PC.
This means that there are security issues of whch you need to be aware.

vrtaServer does not allow a monitor program to copy any programs or data
to the host PC or allow a remote user to modify files via the load dialog.

In a controlled test environment, on a secure network, vrtaServer should not
pose any serious secutiry threat. However if you are worried about malicious
abuse of this feature, you should configure your firewall to block external
access to vrtaServer and ensure that vrtaServer and any VECUs run on the
same host PC. The default TCP ports used by vrtaServer (and RTA-TRACE)
are 26000, 31765 and 17185.

72 Interacting with VECUs

Figure 5.5: Viewing connections with vrtaServer

You could alternatively use the -p<n> command-line option to force vr-
taServer to listen on a non-standard TCP port number. A casual visitor would
find it difficult to guess what port a connection should be made, though a
port-scan would find the connection easily.

5.2 Using vrtaMonitor

The program vrtaMonitor can be used to inspect and control virtual ECUs on
local and remote PCs. Figure 5.6 shows vrtaMonitor connected to a VECU
called example2.exe running on the localhost (i.e. the same PC that is
running the vrtaMonitor).

vrtaMonitor can connect to multiple PCs (Hosts), and multiple VECUs within
each host. You can interact with vrtaMonitor in a number or ways including:

• The application’s main menu.

• Context menus (right-click on an element in the tree view).

• Shortcut keys (e.g. <Ctrl+L> to load an ECU).

• Double-clicking on an element in the tree view.

• Pressing <Enter> on an element in the tree view.

Interacting with VECUs 73

Figure 5.6: Using vrtaMonitor

74 Interacting with VECUs

For example, you can connect to a different PC by right-clicking the Hosts
element and selecting “Add Host” from the context menu. You can do the
same thing through the application’s File menu.

5.2.1 Actions

Actions are shown in vrtaMonitor using the following icon:

You can send an action to a virtual device in the following ways:

• Double-click on an action in the tree view. If the action does not require
any data then the action is sent immediately (e.g. ApplicationManager
Ô Pause). If the action requires input data (e.g. ICU Ô Raise) then
vrtaMonitor asks you to enter it the first time round, then re-sends
the same value on subsequent double-clicks. (If you want to change
the data that gets sent, select the “Params” option from the context or
main Device menu or press <Ctrl+Alt+S>).

• Press <Ctrl+S> when an action is selected. This is the same as a
double-click above.

• Right-click the action and select Send from the context menu.

• Select the main menu item Device Ô Current Action Ô Send.

• Go to the “Detail” tab on the right-hand side. You can enter data (where
needed) and send it by pressing the “Send Action” button.

Figure 5.7 shows the actions dialogue.

5.2.2 Events

Events are shown in vrtaMonitor using the following icon:

Query

You can query the state of any event in a virtual device in the following ways.

• Double-click on an event in the tree view. If the event does not require
any data then the current value of the event is read immediately (e.g.
ICU / Pending). If the event requires input data (e.g. DeviceManager Ô

DeviceInfo) then vrtaMonitor asks you to enter it the first time round,
then re-sends the same value on subsequent double-clicks. (If you want

Interacting with VECUs 75

Figure 5.7: vrtaMonitor actions dialogue

to change the data that gets sent, select the “Params” option from the
context or main Device menu or press <Ctrl+Alt+R>).

• Press <Ctrl+R> when an event is selected. This is the same as a
double-click above.

• Right-click the action and select Read from the context menu.

• Select the main menu item Device Ô Current Event Ô Read.

• Go to the “Detail” tab on the right-hand side. You can enter data (where
needed) and query the event by pressing the “Read” button.

Figure 5.8 shows the events dialogue.

It is also possible to ask vrtaMonitor to query all of the events of a device
automatically every second or so and update the values displayed in the tree
and detail views.

You do this by selecting Auto Refresh <Ctrl+A> for the device. A second
<Ctrl+A> will turn auto-refresh off again.

Monitor

You can alternatively specify that you want to monitor an event rather than
just querying it.

76 Interacting with VECUs

Figure 5.8: vrtaMonitor events dialogue

In this case, the VECU notifies vrtaMonitor whenever a monitored event is
‘raised’. Events are typically raised when some value in the virtual device
changes. All notifications are displayed in the monitor tab:

You can set up a monitor for an event using the normal application menu or
context menu mechanisms, but the simplest way is just to drag the event
from the tree view onto one of the right-hand side tab pages.

You can also drag a complete device across: this causes all of its events to be
monitored.

To stop monitoring an event, just drag it (or its device) to the Stop button.
Pressing the button on its own cancels all event monitors.

5.3 Multiple instances of a VECU

Each VECU that loads is assigned a name (or alias) by vrtaServer. Normally
this is just the file name of the VECU with the path information stripped off.
This ‘user-friendly’ alias is the name that gets shown in a monitor program.

If the same VECU is loaded twice, or if an ECU with the same name but in
a different directory is loaded, vrtaServer has to generate a different alias.
Typically it will do this by adding _2, _3 etc. to the default alias. vrtaServer
keeps a count of the ECUs and monitors that know about the different aliases.
It ‘frees’ an alias when no programs are using it.

Interacting with VECUs 77

5.4 Scripting using vrtaMonitor

The vrtaMonitor command-line options can be used to support a limited
form of scripting capability for VECUs.

The basic scripting operations include:

• Loading a VECU

• Attaching to an existing VECU

• Sending an action to a device

• Monitoring an event

• Pausing for a set amount of time

• Waiting for a termination condition

Scripting options can be entered directly on the vrtaMonitor command-line,
but you will probably find it easier to use a command-file using the form vr-
taMonitor commands.txt

A command file is a simple text file with one option per line. A line is treated
as a comment if it starts with a semi-colon, forward-slash, space or tab char-
acter. Command-files can be nested up to 5 times.

The command-line options are documented in detail in Chapter 12, but a few
useful examples are presented here.

5.4.1 Example Scripts

Load and run an application for a specified time

-k
-log=log.txt
-t1
VirtualECU.exe

The -k option tells vrtaMonitor to stop further processing of the script op-
tions if one of the following events occurs.

Event
Failure to connect to vrtaServer.
Cannot attach to an alias specified via -alias.
Cannot auto-load a specified Virtual ECU.
Closed as a result of a -t timeout.
Failed to load VECU.
Closed as a result of -f.
Failed to send an action or receive an event.

78 Interacting with VECUs

The -log option causes logging information to be written to the file log.txt.
The -t1 option tells vrtaMonitor to run for 1 second (after processing its
command-line options) before quitting.

The VirtualECU.exe parameter tells vrtaMonitor to load and run the VECU
VirtualECU.exe (without showing its embedded GUI).

Load the application and start the embedded GUI

By contrast, if you use the option -d before naming the VECU then the VECU
will load (and its devices become accessible), but the application thread will
not be started.

Similarly if you use the -g option then the VECU will show its embedded GUI:

-k
-log=log.txt
-t1
-d
-g
VirtualECU.exe

Attach vrtaMonitor to a loaded VECU

-k
-log=log.txt
-alias=VirtualECU.exe

Send an action to a device

These commands below will attach to an existing VECU and then terminate
it:

-k
-log=log.txt
-alias=VirtualECU.exe
-send=ApplicationManager.Terminate

Monitor Events

The example below runs VirtualECU.exe, monitors event
PollCompare.Match for 5000ms then terminates. The file log.txt con-
tains the results from the monitor window.

-k
-log=log.txt
-t10
VirtualECU.exe

Interacting with VECUs 79

-mon=PollCompare.Match
-wait=5000
-send=ApplicationManager.Terminate
-quit

80 Interacting with VECUs

6 RTA-TRACE Integration

RTA-TRACE, available as a separate product provides a very detailed graphical
display showing in real-time the execution of all Tasks, ISRs and processes in
your RTA-OS3.0 application.

VRTA is supplied with a special high-bandwidth virtual device that can be used
to connect Virtual ECU to RTA-TRACE. If you have installed RTA-TRACE in the
same location as RTA-OS3.0 then this link will be detected automatically. If
not you must copy the file rtcVRTAlink.dll from RTA-OS3.0’s Bin directory
to RTA-TRACE’s Bin directory.

Using RTA-TRACE with an RTA-OS3.0 for PC application is generally much eas-
ier than in other applications because the trace communications mechanism
is fast, efficient and ‘built-in’.

For most applications you simply enable RTA-TRACE support in the RTA-OS3.0
GUI, enable the trace communication link and call Os_CheckTraceOutput()
regularly, for example from the Os_Cbk_Idle callback. Code Example 6.1
shows the basic model.

boolean Os_Cbk_Idle(void) {
while(!vrtaIsAppFinished()) {
#ifdef OSTRACE_ENABLED
Os_CheckTraceOutput();

#endif
vrtaIsIdle(5);

}
}

Code Example 6.1: Using RTA-TRACE

6.1 How it works

6.1.1 The Virtual ECU

When you build a trace-enabled Virtual ECU, code is added to
your application to implement the RTA-TRACE communication APIs
Os_Cbk_TraceCommInitTarget() and Os_Cbk_TraceCommDataReady() plus
a virtual device named “RTA-TRACE”.

Whenever a block of trace data is ready to be sent, Os_UploadTraceData()
passes its address and size to the RTA-TRACE device. The device then simply
raises a ‘Trace’ event with this data attached.

The event can be ‘hooked’ by observers within the VECU or outside it (e.g.
vrtaMonitor), and each of them will get a notification when the event is
raised.

RTA-TRACE Integration 81

Thanks to the design of virtual devices, this mechanism is quick and efficient.
Once the call to RaiseEvent returns, the trace buffer can resume being filled,
so for most purposes emptying of the buffer appears to be instantaneous and
an RTA-OS3.0 for PC application can generate accurate traces without being
affected by ‘communication-interval gaps’ that affect other ports.

6.1.2 RTA-TRACE-Server

The RTA-TRACE communications driver rtcVRTAlink.dll adds the ability for
RTA-TRACE-Server to communicate directly with a RTA-TRACE device on a
VECU.

When you select a .rta file for a VECU from within the RTA-TRACE GUI, RTA-
TRACE will start the Virtual ECU, attach itself and hook the Trace event of its
RTA-TRACE device to collect trace data.

This functionality only works if the RTA-TRACE configuration file and the
Virtual ECU have identical names (with .rta and .exe extensions re-
spectively) and are located in the same directory. If the RTA-TRACE
file is called ProjectName.rta then the Virtual ECU must be called
ProjectName.exe. The vrtaServer must be also be installed as a ser-
vice.

6.2 Tuning process and thread priorities

The quality of the trace data that you see depends heavily on the interaction
between different processes in your PC. If there are other processor-intensive
applications running at the same time as tracing then you are likely to see
irregularities in the trace that correspond to the moments where other appli-
cations are running1.

You may find it useful to adjust the process or thread priority for the VECU
for best results. This can be done via the RTAOSEK-VRTA configuration dialog
that is accessible via RTA-TRACE-Server as shown in Figure 6.1.

GUI shows whether a VECU has its embedded GUI visible when started by
rtcVRTAlink.dll. This is set automatically when the VECU is started.

ECUThreadPriority affects the priority of the application (AUTOSAR OS)
thread within the VECU.

ProcessPriority affects the priority of the complete VECU.

1Note that this can include the RTA-TRACE GUI, which has to perform a very large amount
of processing to keep up with the trace data being fed to it. You may find it better to run the
RTA-TRACE GUI on a different PC to the one that is hosting the VECU.

82 RTA-TRACE Integration

Figure 6.1: RTA-TRACE Server priority Control

6.3 Controlling the trace at run-time

The RTA-TRACE virtual device has a few other tricks up its sleeve. In addition
to its Trace event, it has 4 actions that you can use to affect the run-time
trace behavior.

State. This action can be sent the values Stop, FreeRunning, Burst-
ing and Triggering. As long as your application is calling
Os_CheckTraceOutput() regularly, this action will cause the appro-
priate target API (Os_StopTrace(), Os_StartFreeRunningTrace(),
Os_StartBurstingTrace() or Os_StartTriggeringTrace()) to get
called.

Repeat. This is sent On or Off to set the Os_SetTraceRepeat() value in the
VECU. Again, you must call Os_CheckTraceOutput() regularly for this
to be acted upon.

ECUThreadPriority. This action can be used to change the application
thread’s priority in the same way as described in Section 6.2.

ProcessPriority. This action can be used to change the VECU’s process pri-
ority in the same way as described in Section 6.2.

RTA-TRACE Integration 83

7 Windows Notes

Although RTA-OS3.0 for PC tries very hard to simulate the behavior of a real
ECU, ultimately Virtual ECUs are running under Windows alongside other ap-
plications. This chapter contains notes about Windows related behavior that
may be useful.

7.1 Real-Time Behavior

When an embedded application runs on a real ECU the application is the
only code using the ECU’s processor. As a result the real-time behavior is
predictable. However an application running in a Virtual ECU has to share
the processor with other applications and Windows itself. As a result it is not
possible to completely predict the real-time behavior of applications running
in Virtual ECUs. Despite this, on the whole our experience has shown that
applications running in Virtual ECUs exhibit very close to real-time behavior.
This is due to the very fast processor speeds of Windows PCs.

For example, consider an embedded application that needs to read and then
process input from a sensor every 5 milliseconds. On a real ECU it might take
almost 5 milliseconds to carry out this activity. However on a Windows PC it
may only take 0.5 milliseconds. Thus even if Windows assigns the processor
to another application for 3 milliseconds the Virtual ECU application can still
carry out the necessary processing in the 5 milliseconds allowed.

If your application is not behaving as you expect for timing reasons you can
try the following:

• Shutdown other Windows applications so that more of the processor’s
time can be dedicated to the Virtual ECU.

• Increase the Windows process priority of the Virtual ECU - see the
-priority=<n> command line options.

7.2 Calling the C/C++ Runtime and Windows

In order to simulate interrupts in a Virtual ECU, the Virtual Machine has to
asynchronously manipulate the stack of the application thread (the thread
that calls OS_MAIN()). Few C/C++ runtime functions or Windows API func-
tions can cope with the stack being changed asynchronously. Therefore if
the application thread needs to call a C/C++ runtime function (including
printf()) or a Windows API function it must make the call in an uninterrupt-
ible section. See the descriptions of vrtaEnterUninterruptibleSection()
and vrtaLeaveUninterruptibleSection() calls in Chapter 9 for further de-
tails.

84 Windows Notes

7.3 Virtual Machine Location

When a Virtual ECU is started it tries to load the VM DLL (vrtaVM.dll). The
VECU first tries to load the VM DLL using the normal Microsoft DLL search
rules1. That is, it searches the following locations in the specified order:

1. The directory containing the VECU.

2. The 32-bit Windows system directory (C:\<windowsdir>\system32).

3. The 16-bit Windows system directory (C:\<windowsdir>\system).

4. The Windows directory (C:\<windowsdir>).

5. The current directory.

6. The directories listed in the PATH environment variable.

If the VECU fails to find the vrtaVM.dll then the application will fail to start.
You can fix this by making sure that vrtaVM.dll can be found on the DLL
search path.

It is highly recommended that you all the installation directory for RTA-
OS3.0 executables (by default C:\ETAS\RTA-OS3.0\Bin to your Win-
dows PATH environment variable to ensure that vrtaVM.dll can always
be found.

1http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx

Windows Notes 85

http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx

8 Migrating from a VECU to Real Hardware

Assume that you have developed a Virtual ECU application using RTA-OS3.0
and now need to migrate the application to your real hardware. We will as-
sume that you have obtained a version of RTA-OS3.0 that will run on your
target hardware. You also need a compatible compiler and some way to load
the compiled code onto your hardware. This chapter covers the migration
issues that you should expect to face.

8.1 XML file

Your VECU application is described by a combination of the C source code,
build scripts and the RTA-OS3.0 project file. The project file contains refer-
ences to XML configuration files that describe your RTA-OS3.0 configuration
using AUTOSAR XML and is called something like myproject.rtaos.

If you are migrating to a non-RTA-OS3.0 system, then you will have to refer to
its documentation to discover how to encode the extra information that you
might need.

Migrating to an RTA-OS3.0 based implementation is relatively easy because
you can switch between different targets within the RTA-OS3.0 GUI. Changing
targets removes any target-specific configuration from the XML file(s), for
example interrupt vectors and priorities, so you will need to configure these
attributes for the embedded target.

8.1.1 Target and variant

The target and variant will need to be changed. You can do this by opening
your XML configuration in rtaoscfg and selecting another target1.

8.1.2 Interrupts

RTA-OS3.0 for PC simulates an interrupt controller with 32 interrupt sources,
each with one of 32 priorities and attached to a vector number 1 to 32. It
allows you to decide in software how to map your (virtual) hardware to an
interrupt source.

The interrupt controller in your target hardware will have similar capabilities,
but will probably have different vectors and available priorities. Therefore
you will need to assign new target-based vector numbers and priorities for
each ISR in your application2.

1You must have another RTA-OS3.0 target installed to be able to do this.
2Unless you were far-sighted enough to configure your VECU to use the same interrupt

model as in your target ECU.

86 Migrating from a VECU to Real Hardware

8.1.3 Number of tasks

RTA-OS3.0 for VRTA ECUs can use up to 1024 tasks. Your embedded RTA-
OS3.0 port may support this many tasks, but you may find that fewer tasks
are supported. If the RTA-OS3.0 port can handle fewer tasks than your VECU
currently uses, you will have to do some re-engineering of your application.

8.2 Hardware Drivers

In the VECU, most if not all of your hardware is simulated via virtual devices.
These obviously need to be replaced in your real application. By a fortuitous
coincidence, the inability of C code to interact directly with the C++ code
has already meant that you will have written some C/C++ interface functions
such as the one shown in Code Example 8.1 (see Section 3.4.3 for a fuller
explanation).

int left_pressed(void)
{

return Left.Value();
}

Code Example 8.1: C/C++ Interface Routine

This means that the framework for interacting with your devices is already
there. You simply provide different implementations for each of these inter-
face functions so that they map onto your target hardware as shown in Code
Example 8.2

int left_pressed(void)
{

return input(0x1001);
}

Code Example 8.2: Re-implementing the routine in C

As long as you take care that each interface function has the same behavior
as in the virtual device, this part of the migration should be straightforward.

8.3 Initialization

You will need to add code to your application to initialize your ECU’s hard-
ware. In particular you may need to configure the interrupt controller and
any clock/compare devices. In effect you will need to provide a hardware
specific version of the InitializeDevices() function used in RTA-OS3.0 for
PC applications. You must refer to the user-guide for your hardware for the
best way to do this.

Migrating from a VECU to Real Hardware 87

8.4 Interrupts

Depending on your interrupt controller and the ECU hardware, you may need
to add code to your ISRs that tells the hardware that the interrupt source has
been serviced.

You could use C’s macro language to implement conditional compilation of
ISR code so that it can adapt to different platforms as shown in Code Exam-
ple ??.

ISR(isrAccel)
{

change_speed(1);

#ifdef TARGET_VRTA
// Nothing needed to clear interrupt for VRTA

#endif

#ifdef TARGET_HC12X
output(0x12,99);

#endif
}

Code Example 8.3: Conditional Compilation

8.5 Register Sets

RTA-OS3.0 can be configured to save and restore processor register sets for
tasks and ISRs that can preempt other tasks or ISRs which use the same
register set.

If you have used this feature in your Virtual ECU (for example, to save and
restore floating point context) then you will have written code to perform the
save and restore of x86 registers. You will need to replace this code with an
appropriate implementation for your chosen embedded target. Please read
the RTA-OS3.0 User Guide for further details.

88 Migrating from a VECU to Real Hardware

9 Virtual Machine API Reference

This chapter gives a detailed description of the Virtual Machine API calls,
listed in alphabetical order.

9.1 General notes

9.1.1 API Header Files

The file vrtaCore.hmust be included to use the API calls listed in this chapter.
vrtaCore.h contains prototype declarations for the API calls described here.
It also #includes the files vrtaTypes.h and vrtaVM.h.

9.1.2 Linkage

Unless specified otherwise all Virtual Machine API calls use C linkage (i.e. no
C++ name mangling) and so may be called from C or C++ source.

9.2 Common Data Types

These data types are all declared in vrtaTypes.h

9.2.1 vrtaActEvID

A scalar value that contains the ID of an action or event in a virtual Device.

9.2.2 vrtaAction

The vrtaAction structure is used to pass data value(s) to a specific action in
a virtual device. The fields in vrtaAction are:

Virtual Machine API Reference 89

Declaration (type and name) Description

vrtaDevID devID The ID of the device containing the ac-
tion.

rtaActionID devAction The ID of the action.

vrtaDataLen devActionLen The number of bytes of data. This can
be zero. If its value is from 1 to 16 in-
clusive, then the data is present in the
devEmbeddedData union. If it is more
than 16 then devEventData contains
the address of the data (see note be-
low).

const void * devActionData If devEventLen is from zero to 16 in-
clusive then devEventData must ei-
ther be NULL or the address of
devEmbeddedData.
If there are more than 16 bytes of data
then the storage for the input data
must be provided by the creator of the
vrtaAction and devActionData must
point to this storage.
Where vrtaSendAction() is called to
send data to an action, any data ref-
erenced by devActionData must not
change during the call.

vrtaEmbed devEmbeddedData The union that contains the data where
it is no larger than 16 bytes.

vrtaTimestamp devTimeStamp This field is updated by the VM just be-
fore passing the action to the device.

9.2.3 vrtaActionID

A scalar value that contains the ID of an action in a virtual device. Actions IDs
start at 1.

9.2.4 vrtaBoolean

The scalar type vrtaBoolean is used to represent boolean values. In this
document a vrtaBoolean type is taken to be ‘true’ when it is non-zero and
‘false’ when it is zero.

9.2.5 vrtaByte

Represents a single byte of data passed into or out of a device. Normally part
of an array of bytes.

90 Virtual Machine API Reference

9.2.6 vrtaDevID

A scalar value that contains the ID of a virtual device. Devices 0, 1 and 2
are the standard VM devices DeviceManager, ICU and ApplicationManager
respectively.

9.2.7 vrtaDataLen

A scalar that represents the size (in bytes) of some data being passed into or
out of a device. The maximum value that this can take is given by the value
of the macro vrtaDataLenMax. (Currently 0xffff.)

9.2.8 vrtaEmbed

vrtaEmbed is a C union containing the following fields:

Field Type Field Name

int iVal
unsigned uVal
double dVal
vrtaByte bVal[16]

vrtaEmbed is used to support data passing operations in and out of virtual
devices via vrtaAction and vrtaEvent (described in a moment). Both of
these data structures embed an instance of vrtaEmbed within themselves.

Whenever the amount of data passed in or out of an action or event will fit
inside an instance of vrtaEmbed, then the data must be passed in it.

In all common situations the data passed easily fits within the vrtaEmbed
instance, so low-overhead code such as this is common:

thisEvent.devEmbeddedData.uVal = 32;

It is only where larger amounts of data need to be passed that we need to
worry about allocating data buffers and data ownership issues.

9.2.9 vrtaErrType

This scalar value gets used as a status return type by many of the API func-
tions. It can take one of the values:

Value Description

RTVECUErr_NONE No error / success
RTVECUErr_Dev Device fault. Typically invalid device ID.
RTVECUErr_ID ID fault. Typically invalid action or event ID.
RTVECUErr_VAL Value fault. Typically value is out of range.
RTVECUErr_Conn Connection fault. Occurs with remote monitor applica-

tions if the link to the VECU fails.

Virtual Machine API Reference 91

9.2.10 vrtaEvent

The vrtaEvent structure is used to pass state information about a specific
event in a virtual device. The fields in vrtaEvent are:

Declaration (type and name) Description

vrtaDevID devID The ID of the device containing the
event.

vrtaEventID devEvent The ID of the event.
vrtaEventID devEventLen The number of bytes of data. This can

be zero. If its value is from 1 to 16 in-
clusive, then the data is present in the
devEmbeddedData union. If it is more
than 16 then devEventData contains
the address of the data (see note be-
low).

const void * devEventData If devEventLen is from zero to 16 in-
clusive then devEventData must ei-
ther be NULL or the address of
devEmbeddedData.
If there are more than 16 bytes of data
then the storage for the input data
must be provided by the creator of
the vrtaEvent and devEventData must
point to this storage. See the note be-
low on data ownership.

vrtaEmbed devEmbeddedData The union that contains the data where
it is no larger than 16 bytes.

vrtaTimestamp devTimeStamp This field is updated by the VM to
show one of: The time that a query
was made into vrtaGetState(). The
time that the data was passed to
vrtaRaiseEvent().

Ownership of devEventData

Where the current value of an event is being queried, data can be passed into
the event via vrtaGetState(). The caller of vrtaGetState() ensures that
any data referenced by devEventData does not change during the call.

Where the current value of an event is being queried via vrtaGetState(),
the data that is passed out of the event via devEventData may not change
from the time that the call returns up to the next time that vrtaGetState() is
called from the same thread. This can clearly be very complicated to achieve.
However this is almost never necessary in real applications. Most return
data fits within devEmbeddedData, and in most other cases the data does

92 Virtual Machine API Reference

not change anyway1.

Where an event is being raised via vrtaRaiseEvent(), the device may supply
data to its listeners. Listeners must take a copy of any data that they need,
so the caller of vrtaRaiseEvent() only has to ensure that the data does not
change during the call.

9.2.11 vrtaEventID

A scalar value that contains the ID of an event in a virtual device. Events IDs
start at 1.

9.2.12 vrtaIntPriority

A scalar value that contains an interrupt priority. Priorities from zero (no ISR)
to 32.

9.2.13 vrtaISRID

A scalar value that contains the number of an ISR. ISRs range from 1 to 32,
but a vrtaISRID can sometimes be set to zero to mean ‘no ISR’.

9.2.14 vrtamillisecond

A scalar representing an interval in milliseconds.

9.2.15 vrtaOptStringlistPtr

A pointer to an ASCIIZ string that comprises zero or more \n separated option
items each with the form <name>=<value>.

Example

vrtaOptStringlistPtr op =‘Name=Bill\nAge=51\nWife=Melinda’;

9.2.16 vrtaStringlistPtr

A pointer to an ASCIIZ string that comprises zero or more
n separated list items.

Example

vrtaStringlistPtr lp =‘One\nTwo\nThree’;

9.2.17 vrtaTextPtr

A pointer to a simple ASCIIZ string

Example
1For example the DeviceEvents event in the DeviceManager often returns string data that

is larger than 16 bytes. The strings that it returns are all allocated during initialization and do
not change during the application, so no special protection is necessary.

Virtual Machine API Reference 93

vrtaTextPtr tp = ‘Hello World’;

9.2.18 vrtaTimestamp

A scalar representing the current ECU time in milliseconds. This is normally
the number of milliseconds since (just before) OS_MAIN() was called2.

9.3 Data Format Strings

9.3.1 Overview

Virtual device actions and events commonly have some data associated with
them.

For example the ICU’s Raise action has to be passed an integer in the range 1
to 32. The ApplicationManager’s State event supplies a value that represents
the application thread state (Loaded|Running|Paused|Terminating|Resetting).

Within the VECU, all data is handled in native machine format, i.e. an ‘int’ for
an integer value. It is your responsibility in VECU code to send data of the
correct type between actions and events. As long as you trust your code to
pass the right type of data, you can choose to omit range checks within your
devices3.

While this is a reasonable assumption in the C and C++ code that gets com-
piled into the VECU, it clearly does not hold where external programs such
as vrtaMonitor access the data. For this reason a device must supply a de-
scription of the data that is used by its actions and events. This information
is used by remote programs to format the data sent to a device and interpret
the data it sends back. The VM performs size and range checking on data
from remote programs so that it does not have to be done by each device
itself.

9.3.2 Definition

A data format string consists of one or more data-item descriptors. If there
are multiple data-item descriptors then they are comma separated. The data-
item descriptors are as follows (text inside [] is optional):

2If a timestamp is taken before OS_MAIN(), then the time recorded is the number of mil-
liseconds since the VM was loaded. This allows events to be timed where a VECU is started in
slave mode.

3By all means add range checking code if you wish. Our design aim is to allow (but not
force) devices to have a very small run-time overhead.

94 Virtual Machine API Reference

Data-item descriptor Description

%d[:cons] The data-item is a signed number. By default
this is stored in 32 bits (a C int). The range is
determined by the data-item size unless there is
a constraint.

%u[:cons] The data-item is an unsigned number. By de-
fault this is stored in 32 bits (a C unsigned). The
range is determined by the data-item size unless
there is a constraint.

%f[:cons] The data-item is floating-point number. By de-
fault this is stored in 64 bits (a C double). The
range is determined by the data-item size unless
there is a constraint.

%x[:cons] The data-item is an unsigned number that
should represented in hexadecimal. By default
this is stored in 32 bits (a C unsigned). The
range is determined by the data-item size unless
there is a constraint.

%b[:con>] The data-item is an unsigned number that
should represented in binary. By default this is
stored in 32 bits (a C unsigned). The range is
determined by the data-item size unless there is
a constraint.

<a>||...[:cons] The data-item is an unsigned number that
should represented as a series of enumeration
values. Enumeration value <a> corresponds to
the number 0, enumeration value to the
number 1, and so on. By default this is stored
in 32 bits (a C unsigned).

%s[:size] The data-item is an ASCII string - which may or
may not have a trailing 0. If no size value is
given then the size of the string is inferred from
the length of the action or event data. If a size
value is given then it specifies the size of the
string (including a trailing 0 if there is one).

%a[:size] The data-item is an array of bytes. If no size
value is given then the size of the array is in-
ferred from the length of the action or event
data. If a size value is given then it specifies
the size of the array.

A data-item descriptor may optionally include a constraint <cons>. A con-
straint has the form: [bits[!width]][;min;max] where:

Virtual Machine API Reference 95

Constraint Item Description

bits The number of bits used to store a numeric value. This
can be 8, 16, 32 or 64.

width The number of bytes between the start of the data-
item and the start of the next data-item.

min The minimum and maximum values that may be
stored in a numeric data-item.

max The minimum and maximum values that may be
stored in a numeric data-item.

9.3.3 Examples

Example format strings are:

96 Virtual Machine API Reference

String Description

%d A single signed number that will be stored in
32 bits (a C int).

%d:;1;32 An integer that can take values 1 through
32.

%u:;1;10 An unsigned number in the range 1 to 10
inclusive that will be stored in 32 bits (a C
unsigned).

%b A 32-bit integer, normally represented in bi-
nary by a monitor program.

%x:16,%b:8 An unsigned number that will be stored in
16 bits (a C unsigned short) and should be
displayed in hexadecimal. This is immedi-
ately followed by an unsigned number that
will be stored in 8 bits (a C unsigned char)
and should be displayed in binary.

A|B|C|D|E A 32-bit value with values zero through 4
that is normally represented by a monitor
program as one of the | separated strings.

%d,%d,%d A structure comprising 3 32-bit signed inte-
gers.

%s:10,%u:8!4,%u:64;1;100 A composite format string:

• a 10 character string, followed by

• an unsigned number stored in 8 bits,
padded to 4 bytes (i.e. 3 bytes of
padding as the next data-item is stored
4 bytes after the start of the 8 bit
value), followed by

• an unsigned number in the range 1 to
100 inclusive stored in 64 bits.

9.4 API Functions

Each API call is described in this section using the following standard format:

The title gives the name of the API call.

A brief description of the API call is provided.

Function declaration

Interface in C syntax.

Virtual Machine API Reference 97

Parameters

Name Mode Description

Parameter Name Input/Output Description

Description

Explanation of the API call functionality.

Return values

Value Description

Return value Description

Notes

Usage restrictions and notes for the API call.

See also

List of related API calls.

Fields that are not relevant for the API call are omitted.

98 Virtual Machine API Reference

9.4.1 InitializeDevices()

Device initialization hook function.

Function declaration

void InitializeDevices(void)

Description

You must provide the InitializeDevices() hook function in your appli-
cation code. It is called by the application thread immediately before
it calls OS_MAIN(). InitializeDevices() is normally used to execute
code that carries out initialization of virtual devices. By the time that
InitializeDevices() is called, each virtual device will have been sent a
Reset action to inform it that the application thread is about to start.

Notes

This function has C++ linkage and so must be implemented in a C++ compi-
lation unit.

See also

OS_MAIN
vrtaStart

Virtual Machine API Reference 99

9.4.2 OS_MAIN()

The entry-point for the application thread.

Function declaration

OS_MAIN()

Description

The OS_MAIN() function is provided by the Virtual ECU application code and
is the entry-point for the application thread.

Typically an application will make some initialization calls and then start the
OS kernel via StartOS().

If the Virtual ECU has been loaded in auto start mode (the default) then the
complete Virtual Machine will terminate automatically.

If, however, the VECU was been loaded in slave mode then the Virtual Ma-
chine will wait for a Terminate action to be received by the Application Man-
ager. This allows the state of the VECU’s devices to be queried after the
application thread has terminated.

Notes

OS_MAIN() normally has the structure shown below in an RTA-OS3.0
application. You should also implement an Os_Cbk_idle that polls
vrtaIsAppFinished() so that external requests to terminate the program
get recognized promptly. If you don’t shutdown the application cleanly when
a termination request is made then the VM will forcibly terminate the appli-
cation thread after a few seconds.

Example

#include <Os.h>
OS_MAIN(){
/* Initialize target hardware */
StartOS(OSDEFAULTAPPMODE);

}

FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle(void) {

while(!vrtaIsAppFinished()) {
/* Yield for 5 milliseconds. Note that interrupts will

still be recognized if they occur */
they occur

vrtaIsIdle(5);
}

100 Virtual Machine API Reference

ShutdownOS(E_OK);

}

See also

InitializeDevices
vrtaStart
vrtaIsAppFinished
vrtaIsIdle

Virtual Machine API Reference 101

9.4.3 vrtaEnterUninterruptibleSection()

Enter a critical section that cannot be interrupted.

Function declaration

void vrtaEnterUninterruptibleSection(void)

Description

This function enters a critical section. Only one thread at a time may be in
the critical section. Calling vrtaEnterUninterruptibleSection() will block
the calling thread if another thread is already in the critical section.

If the application thread calls vrtaEnterUninterruptibleSection() then it
cannot be interrupted until it leaves the critical section.

If the application thread needs to call any Windows API function
or non-reentrant C/C++ runtime library function then it must call
vrtaEnterUninterruptibleSection() before making the call and
vrtaLeaveUninterruptibleSection() afterwards. Windows API func-
tions and non-reentrant C/C++ runtime library functions cannot cope
with the stack manipulation that occurs when an RTA-OS3.0 for VRTA
interrupt executes.

See also

vrtaLeaveUninterruptibleSection

102 Virtual Machine API Reference

9.4.4 vrtaEventRegister()

Register an event handler.

Function declaration
vrtaEventListener vrtaEventRegister

(vrtaEventCallback eCallback,
const void *tag)

Parameters

Name Mode Description

eCallback Input A pointer to an event handling function.
tag Input A caller provided value that will be passed as an ar-

gument to eCallback.

Description

This API call registers an event hook callback routine with the VM. The
vrtaEventListener handle is needed when calling vrtaHookEvent() so that
it can identify eCallback as the function to call when the specified event is
raised.

eCallback is of type vrtaEventCallback which is defined as follows:

typedef vrtaErrType (*vrtaEventCallback)(const void *instance,
const vrtaEvent *event);

When eCallback is called its instance argument will be set to the tag argu-
ment passed to vrtaEventRegister() and its event argument will contain
the event raised4. eCallback should always return RTVECUErr_NONE.

The content of the vrtaEvent structure pointed to byevent is only valid for
the duration of the call to eCallback. If you need to use this data after
eCallback has returned then you must take a copy of the data.

Return values

Value Description

<a handle> A handle for the event handler.

Notes

The event hook callback function gets called during the execution of
vrtaRaiseEvent(). Your function must be thread-safe because it is quite
normal for devices to raise events from threads that are independent of the
application thread. Any event that gets provoked from an external monitor
application will be in a different thread.

4See the description of vrtaGetState() for more information about the vrtaEvent type.

Virtual Machine API Reference 103

See also

vrtaEventUnregister
vrtaHookEvent
vrtaRaiseEvent

104 Virtual Machine API Reference

9.4.5 vrtaEventUnregister()

Unregister an event handler.

Function declaration

vrtaErrType vrtaEventUnregister
(vrtaEventListener listener)

Parameters

Name Mode Description

listener Input An event-handler handle returned by
vrtaEventRegister().

Description

This API call un-registers an event handler previously registered with
vrtaEventRegister(). Any events that have been hooked by the event han-
dler are unhooked.

Return values

Value Description

RTVECUErr_NONE The API call was successful.
RTVECUErr_VAL The listener argument is invalid.

Notes

This API cannot be called from within an event handler.

See also

vrtaEventRegister
vrtaHookEvent
vrtaRaiseEvent

Virtual Machine API Reference 105

9.4.6 vrtaGetState()

Query the current state (value) of an event.

Function declaration

vrtaErrType vrtaGetState
(vrtaDevID id,
vrtaEvent *ev)

Parameters

Name Mode Description

id Input The ID of the virtual device to be queried.
ev Input/Output A pointer to the structure that specifies the event

and its data.

Description

This API is used to obtain the current value of an event supported by a virtual
device. Virtual devices raise events at appropriate times and these can be
multicast to interested receivers. However, sometimes it is useful to be able
to discover the ‘current value’ of an event. This makes most sense for events
that contain data. For example, one may wish to discover the current inter-
rupt priority (IPL) level of the Virtual Machine’s interrupt control unit rather
than waiting for an event to be raised when the IPL changes. Events which do
not contain data but simply indicate that something has happened can still
be queried, but it is not really useful so to do.

When calling vrtaGetState(), you must set the correct device and event
IDs in ev. If the event needs to be passed some data as part of the query
(e.g. the name of the device for the DeviceManager’s DeviceAction event),
then the data must be set up before the call. If no data is needed, set the
devEventLen field to zero.

On successful return from vrtaGetState(), the data in ev now references
the current value of the event.

Return values

Value Description

RTVECUErr_NONE The API call was successful.
RTVECUErr_Dev The specified device ID is invalid.
RTVECUErr_ID The specified event ID is invalid.
RTVECUErr_VAL The data provided in the event is invalid (out of

range?).

106 Virtual Machine API Reference

Notes

During the call of vrtaGetState() the VM passes the vrtaEvent structure
to the device. The device determines the event’s value (possibly using the
input data) and either copies the event data into the devEmbeddedData field
or places the data in storage that it has allocated and sets the devEventData
field to point to this storage. The queried device is responsible for managing
any storage that it allocates. Refer to section 7.2.15 for details.

See also

vrtaEventRegister
vrtaEventUnregister
vrtaHookEvent
vrtaRaiseEvent
vrtaRegisterVirtualDevice

Virtual Machine API Reference 107

9.4.7 vrtaHookEvent()

Hook or unhook an event so that an event handler is or is not called when the
event is raised.

Function declaration

vrtaErrType vrtaHookEvent
(vrtaEventListener listener,
vrtaDevID dev,
vrtaEventID ev,
vrtaBoolean capture)

Parameters

Name Mode Description

listener Input An event-handler handle returned by
vrtaEventRegister().

dev Input The ID of the device.
ev Input The ID of the event.
capture Input Whether to hook the event or not. True to hook an

event. False to unhook an event.

Description

If capture is true then this call ‘hooks’ the event so that the event handler
associated with listener is called when the event gets raised.

If capture is false then this call unhooks one or more events previously
hooked with this API call. The behavior of the call when capture is false
depends on the values of dev and ev as follows:

dev ev Result

0 0 All event hooks are removed from listener.
Non-zero 0 All event hooks for events owned by the specified

device are removed from listener.
Non-zero Non-zero The event hook for the specified event is removed

from listener.

Return values

Value Description

RTVECUErr_NONE The API call was successful.
RTVECUErr_Dev The specified device ID is invalid.
RTVECUErr_ID The specified event ID is invalid.
RTVECUErr_VAL The listener argument is invalid or called from inside

an event handler.

108 Virtual Machine API Reference

Notes

This API may not be called from inside an event handler.

See also

vrtaEventRegister
vrtaEventUnregister
vrtaRaiseEvent

Virtual Machine API Reference 109

9.4.8 vrtaInitialize()

Initialize the Virtual Machine.

Function declaration

void vrtaInitialize
(int argc,
char* argv[],
const vrtaVectorTable* vecTable)

Parameters

Name Mode Description

argc Input The number of command line arguments on the Vir-
tual ECU’s command line.

argv Input The array of command line arguments from the Vir-
tual ECU’s command line.

vecTable Input A pointer to the interrupt vector table.

Description

This API call is used to initialize the Virtual Machine - it must be called after
vrtaLoadVM() and before vrtaStart().

For an RTA-OS3.0 VECU, this API is called automatically for you.

The argc and argv arguments should be taken directly from the argc and
argv arguments of the Virtual ECU’s main() entry-point.

vectTable points to a vrtaVectorTable structure containing the interrupt
vector table. vrtaVectorTable is defined as follows:

Example

#define RTVECU_NUM_VECTORS (32)

typedef struct {
unsigned numVectors;
vrtaIntVector vectors[RTVECU_NUM_VECTORS];

} vrtaVectorTable;

The numVectors field must be 32. This is checked by the Virtual Machine
during vrtaInitialize() and a fatal error generated if the value is not 32.
vectors[] is an array of 32 interrupt vectors. The Virtual Machine’s interrupt
control unit (ICU) numbers interrupt vectors from 1 to 32 (0 is used to mean
no interrupt). ICU interrupt vector number 1 corresponds to vectors[0], ICU
interrupt vector number 2 corresponds to vectors[1], and so on up to ICU
interrupt vector number 32 which corresponds to vectors[31].

110 Virtual Machine API Reference

Each interrupt vector is defined as follows:

typedef struct {
vrtaIntHandler handler;
vrtaIntPriority priority;
vrtaAppTag tag;

} vrtaIntVector;

The handler field points to the interrupt handler to be run when the corre-
sponding interrupt arrives. priority is the priority of the corresponding in-
terrupt - this must be a number in the range 1 to 32 inclusive (1 is the lowest
priority and 32 is the highest priority). tag is application data that is passed
to the interrupt handler when it is called.

An interrupt handler has the following definition:

typedef void (*vrtaIntHandler)(vrtaAppTag tag,
vrtaIntPriority oldIPL);

When an interrupt handler is called its tag argument is set to the tag argu-
ment in the corresponding interrupt vector and its oldIPL argument is set
to the priority of the interrupted code - zero for code not running in an inter-
rupt handler or the priority of the interrupt for code running in an interrupt
handler.

A trivial example of starting a Virtual ECU might look like:

void IntHandler(vrtaAppTag tag,
vrtaIntPriority oldIPL) {

/* Handle interrupt. */
}

vrtaVectorTable IntVectors =
{RTVECU_NUM_VECTORS,

{{IntHandler, 1, (vrtaTag) 1},
{IntHandler, 2, (vrtaTag) 2},
/* < ...snip... > */

{IntHandler, 32, (vrtaTag) 32}}
};

OS_MAIN() {
/* The application thread starts here. */
/* < ...snip... > */

}

Virtual Machine API Reference 111

void main(int argc, char * argv[]) {
vrtaLoadVM();
vrtaInitialize(argc, argv, &IntVectors);
vrtaStart();
/* Control returns here when the application thread

terminates. */
}

Notes

If a Virtual ECU is using RTA-OS3.0 then this API should not be called explicitly
as it is called automatically by the main() program.

See also

vrtaLoadVM
vrtaStart

112 Virtual Machine API Reference

9.4.9 vrtaIsAppFinished()

Determine if the application thread has terminated or is about to terminate.

Function declaration

vrtaBoolean vrtaIsAppFinished(void)

Description

This API call returns true if the application thread has terminated or is about
to terminate, or false otherwise. This API call may be used by the applica-
tion thread to discover if it is about to be forcibly terminated - e.g. because
another thread has called vrtaTerminate() or a Terminate action has been
sent to the ApplicationManager Device. This API may also be used in RTA-
OS3.0 for VRTA threads to discover if they should terminate themselves.

Return values

Value Description

true The application thread has terminated or is about to terminate.
false The application thread has not terminated and is not about to ter-

minate.

See also

vrtaSpawnThread

Virtual Machine API Reference 113

9.4.10 vrtaIsAppThread()

Determine if the calling thread is the application thread.

Function declaration

vrtaBoolean vrtaIsAppThread(void)

Description

This API call returns true if the calling thread is the application thread or false
if the calling thread is not the application thread.

Return values

Value Description

true The calling thread is the application thread.
false The calling thread is not the application thread.

114 Virtual Machine API Reference

9.4.11 vrtaIsIdle()

Yield the processor whilst idle.

Function declaration

void vrtaIsIdle
(vrtamillisecond msecs)

Parameters

Name Mode Description

msecs Input The number for milliseconds to yield for.

Description

This API call tells the Virtual Machine that the calling thread will be idle for the
specified number of milliseconds. Ideally a thread that is idle should call this
API rather than busy-waiting. Doing so allows the VM to suspend the thread
so that Windows can use the processor to run another thread.

The application thread will still respond to interrupts and run the correspond-
ing ISRs while inside a call of vrtaIsIdle(). For example, if at time t the
application thread calls vrtaIsIdle(100) and at time t+10 an interrupt ar-
rives, the corresponding ISR will be run by the application thread at, or shortly
after, t+10.

Virtual Machine API Reference 115

9.4.12 vrtaLeaveUninterruptibleSection()

Leave a critical section.

Function declaration

void vrtaLeaveUninterruptibleSection(void)

Description

This function leaves a critical section previously entered by calling
vrtaEnterUninterruptibleSection().

See also

vrtaEnterUninterruptibleSection

116 Virtual Machine API Reference

9.4.13 vrtaLoadVM()

Function declaration

void vrtaLoadVM(void)

Description

This API call loads the VM DLL and prepares its API for use.

Notes

This API must be called before any other Virtual Machine API is called.

The correct sequence of API calls to start a Virtual ECU running is:
vrtaLoadVM(), vrtaInitialize() and vrtaStart().

If a Virtual ECU is using RTA-OS3.0 this API does not need to be called
explicitly as it is called by the main program.

See also

vrtaInitialize
vrtaStart

Virtual Machine API Reference 117

9.4.14 vrtaRaiseEvent()

Raise an event.

Function declaration

vrtaErrType vrtaRaiseEvent
(vrtaDevID dev,
const vrtaEvent *ev)

Parameters

Name Mode Description

dev Input The ID of the virtual device raising the event.
ev Input A pointer to a structure that contains the event to be

raised.

Description

This API is used by a virtual device to raise an event.

Return values

Value Description

RTVECUErr_NONE The API call was successful.
RTVECUErr_Dev The specified device ID is invalid.
RTVECUErr_ID The specified event ID is invalid.
RTVECUErr_VAL The data provided in the event is invalid.

Notes

The VM calls any event handlers that have hooked the event during
vrtaRaiseEvent() and passes them the vrtaEvent structure as an argu-
ment.

See also

vrtaEventRegister
vrtaEventUnregister
vrtaGetState
vrtaHookEvent
vrtaRegisterVirtualDevice

118 Virtual Machine API Reference

9.4.15 vrtaReadHPTime()

Read the PC’s high-performance timer.

Function declaration

unsigned vrtaReadHPTime(unsigned desired_ticks_per_s)

Parameters

Name Mode Description

desired_ticks_per_s Input The number of ‘ticks’ required per sec-
ond.

Description

This API call returns the number of caller defined ‘ticks’ that have elapsed
since the Virtual ECU started. The value is derived by reading the PC’s high-
performance timer; therefore the resolution of the value returned depends
on the details of the PC. In practice this appears to be a low multiple of the
CPU clock speed on a typical PC.

Return values

Value Description

<number of ticks> The number of ‘ticks’ that have elapsed since
the Virtual ECU started. The number of ‘ticks’
in a second is set by the API call argument
desired_ticks_per_s.

Virtual Machine API Reference 119

9.4.16 vrtaRegisterVirtualDevice()

Register a virtual device.

Function declaration
vrtaDevID vrtaRegisterVirtualDevice

(const vrtaTextPtr name,
const vrtaOptStringlistPtr info,
const vrtaOptStringlistPtr events,
const vrtaOptStringlistPtr actions,
const vrtaActionCallback aCallback,
const vrtaStateCallback sCallback,
const void *tag)

Parameters

Name Mode Description

name Input A unique name for the virtual device.
info Input A ‘\n’ separated string containing information about

the virtual device.
events Input A ‘\n’ separated string containing descriptions of the

events supported by the virtual device.
actions Input A ‘\n’ separated string containing descriptions of the

actions supported by the virtual device.
aCallback Input A pointer to an action callback function called to han-

dle actions sent to the virtual device.
sCallback Input A pointer to a state callback function called to handle

vrtaGetState() requests.
tag Input Application data passed to the aCallback and

sCallback functions.

Description

This API call is used to register a virtual device.

The name argument specifies a unique name for the virtual device. If the
name is not unique the Virtual Machine will generate a fatal error.

The info argument describes the virtual device. This should be a string of
the form ‘Type=<type>\nVersion=<version>\n’ where:

• <type> is the type of device e.g. ‘clock’, ‘actuator’ or
‘CAN Channel’

• <version> is the version of the device.

The Virtual Machine does not prescribe the values of <type> and <version>

120 Virtual Machine API Reference

as these are simply information items that can be obtained by querying the
Virtual Machine’s device manager (e.g. with vrtaMonitor).

The events argument describes the events supported by the virtual device.
Each event supported is described by a string of one of the following forms:

Events Format

‘<name>’ Describes an event that does not have
any associated data. This would be
used for an event that simply happens
at some point in time.

‘<name>=<format>’ Describes an event that contains data
as described by <format>.

‘<name>=<format>(<format>)’ Describes an event that contains data
as described by <format> before the
‘()’ and input data when queried
by vrtaGetState() as described by
<format> inside the ‘()’.

<name> is the name of the event and <format> is a data format string as
defined in Section 9.3. Where device supports multiple events then the event
descriptions are separated using ‘\n’.

The first event in the list has event ID 1, the second has event ID 2, and so
on.

The actions argument describes the actions supported by device. Each ac-
tion supported is described by a string of one of the following forms:

Action Format

‘<name>’ Describes an action that does not have any associ-
ated data.

‘<name>=<format>’ Describes an action that contains data as described
by <format>.

Where <name> is the name of the action and <format> is a data format string
as defined in Section 9.3. Where device supports multiple actions then the
event descriptions are separated using ‘\n’.

The first action in the list has action ID 1, the second has action ID 2, and so
on.

The aCallback argument points to an action callback function that is called
to handle actions sent to the virtual device. The action callback function has
the type vrtaActionCallback with the following definition:

typedef vrtaErrType (*vrtaActionCallback)

Virtual Machine API Reference 121

(void *instance,
const vrtaAction *action);

When the action callback function is called its instance argument is set the
value of the tag argument passed to vrtaRegisterVirtualDevice() and
the action argument points to the vrtaAction structure containing the ac-
tion sent to the device (see Section 9.2.2 for a description of the contents of
the vrtaAction structure).

The action callback function should determine what action is to be carried
out by examining the devAction field of action. It should then extract any
data required from the devEmbeddedData or devActionData fields of action
(again see vrtaSendAction()).

The action callback function should return RTVECUErr_NONE on success,
RTVECUErr_ID if the action ID in the devAction field of action is invalid,
or RTVECUErr_VAL if the data in action is invalid.

The vrtaAction structure pointed to by action and any storage pointed to by
the devActionData field of action are only valid for the duration of the action
callback function. If the application wishes to use this data after the action
callback function has returned it must copy the data into its own storage.

In addition to handling actions described in the actions argument passed to
vrtaRegisterVirtualDevice() a virtual device will also been sent a special
Reset command with action ID zero. In this case the action data will be a copy
of a vrtaDevResetInfo structure defined as follows:

enum vrtaResetTypes {vrtaDevStart,
vrtaDevStop,
vrtaDevWriteToPersistentStorage,
vrtaDevReadFromPersistentStorage};

typedef struct {
vrtaDataLen *vPSLen;
vrtaByte **vPSAddr;
vrtaByte vResetType;

} vrtaDevResetInfo;

The vResetType field describes the reason for the ‘reset’ action as follows:

122 Virtual Machine API Reference

vResetType value Reason for ‘reset’ action

vrtaDevStart The application thread is about to
start running.

vrtaDevStop The Virtual Machine is about to
terminate.

vrtaDevWriteToPersistentStorage The Virtual ECU is about to be re-
set. The virtual device may wish
to arrange for data to be propa-
gated across the reset. If it does
it should set *vPSLen to the num-
ber of bytes of data to propagate
and *vPSAddr to point to the data
to propagate.

vrtaDevReadFromPersistentStorage The Virtual ECU has been reset.
The virtual device may have ar-
ranged to propagate data from
before the reset. If it did then

*vPSLen will contain the num-
ber of bytes of data propagated
and *vPSAddr will point to the
data propagated. The virtual de-
vice must copy the data from

*vPSAddr before the action call-
back handler returns.

The sCallback argument points to a state callback function that is called
when vrtaGetState() is called to query one of the events supported by the
virtual device. The state callback function has the type vrtaStateCallback
with the following definition:

typedef vrtaErrType (*vrtaStateCallback)(void *instance,
vrtaEvent *state);

When the state callback function is called its instance argument is set to the
value of the tag argument passed to vrtaRegisterVirtualDevice() and
the state argument points to the vrtaEvent structure containing the event
to be queried. There may be incoming data in the vrtaEvent structure. See
Section 9.2.10 for a description of the contents of the vrtaEvent structure.

The state callback function should determine what event is to be queried
by examining the devEvent field of state. It should then extract any input
data required from the devEmbeddedData or devEventData fields of state
and store the result of the query in the devEmbeddedData or devEventData
fields.

Virtual Machine API Reference 123

The function should return RTVECUErr_NONE on success, RTVECUErr_ID if the
event ID in the devEvent field of state is invalid, or RTVECUErr_VAL if the
data in state is invalid.

Return values

Value Description

<device ID> The ID of the virtual device.

Notes

The callback functions can be called from different threads, so they must be
thread-safe.

See also

vrtaEventRegister
vrtaEventUnregister
vrtaGetState
vrtaHookEvent
vrtaSendAction

124 Virtual Machine API Reference

9.4.17 vrtaReset()

Reset the Virtual Machine.

Function declaration

void vrtaReset(void)

Description

This API call instructs the VM to reset. It does this by creating a new Windows
process and running a new copy of the VECU in it. Certain information such as
command line options and connections to external programs are propagated
to the new process. This creates the effect of an ECU being reset and start-
ing execution from its reset vector. Since connections to external programs
are propagated to the new process, programs communicating with the VECU
(such as vrtaServer or vrtaMonitor) continue to be able to communicate
with the VECU after reset and don’t notice the handover of processes.

After vrtaReset() has been called the application thread is allowed approxi-
mately 10 seconds to terminate cleanly (either by returning from OS_MAIN()
or calling vrtaTerminate()). If the application thread does not terminate
within 10 seconds it is forcibly terminated.

Once the application thread has terminated the VM sends a Reset action to
each virtual device to inform it that the VECU is about to reset.

Next the VM saves certain state information (such as connections to external
programs) in a temporary file.

The call of vrtaStart() that started the application thread then returns.

Once this has happened the new Windows process starts running and the
main() entry-point of the VECU is called by the C/C++ start-up code.
This entry-point carries out the normal initialization sequence of call-
ing vrtaLoadVM(), vrtaInitialize() and vrtaStart(). However, when
vrtaInitialize() is called the VM determines that it has been reset and
restores state information from the temporary file created by the original
Windows process.

See also

vrtaStart
vrtaTerminate

Virtual Machine API Reference 125

9.4.18 vrtaSendAction()

Send an action to a virtual device.

Function declaration

vrtaErrType vrtaSendAction
(vrtaDevID id,
const vrtaAction *a)

Parameters

Name Mode Description

id Input The ID of the virtual device to which the action should be
sent.

a Input A pointer to a structure that contains the action to be
sent.

Description

This API call causes the data in the vrtaAction structure to be sent to the
virtual device.

Return values

Value Description

RTVECUErr_NONE The API call was successful.
RTVECUErr_Dev The specified device ID is invalid.
RTVECUErr_ID The specified event ID is invalid.
RTVECUErr_VAL The data provided in the action is invalid.

Notes

The action callback function of the target device is called by the same Win-
dows thread that calls vrtaSendAction().

See also

vrtaRegisterVirtualDevice

126 Virtual Machine API Reference

9.4.19 vrtaSpawnThread()

Create a new thread.

Function declaration

void vrtaSpawnThread(void (*func)(void))

Parameters

Name Mode Description

func Input The entry function for the new thread.

Description

This API call creates a new thread. This API is a wrapper around the Windows
CreateThread() function that allows the VM to keep track of the number of
threads running in the VECU.

A thread created with vrtaSpawnThread() should terminate itself as soon as
it discovers that the VECU is about to terminate. This is normally done by
polling vrtaIsAppFinished() regularly. If a thread does not do this it will
continue running until forcibly terminated as the VECU process terminates.

Notes

You will normally call this API during the initialization of your devices, before
OS_MAIN() starts.

If you call it from within the application thread after OS_MAIN() starts, you
must ensure that it cannot be interrupted.

See also

vrtaIsAppFinished
vrtaEnterUninterruptibleSection
vrtaLeaveUninterruptibleSection

Virtual Machine API Reference 127

9.4.20 vrtaStart()

Start the application thread.

Function declaration

void vrtaStart(void)

Description

This API call requests the VM to start the application thread.

If the VECU has been loaded in auto start mode (default) then the application
thread is started as soon as vrtaStart() is called. If the VECU has been
loaded in slave mode then the application thread is not started until a Start
action is sent to the ApplicationManager device.

The VM sends a Reset action to each virtual device just before the application
thread starts to inform them that the application thread starting.

This is followed by a call to the application-provided function
InitializeDevices() that should carry out any necessary virtual de-
vice initialization. Finally the main Virtual ECU application entry-point
function OS_MAIN() is called.

vrtaStart() does not return until the VM terminates (e.g. because the appli-
cation thread or another thread calls vrtaTerminate() or a Terminate action
is sent to the ApplicationManager device).

Notes

The correct sequence of API calls to start a Virtual ECU running is:
vrtaLoadVM(), vrtaInitialize() and vrtaStart().

If Virtual ECU is using RTA-OS3.0 then this API should not be called ex-
plicitly as it is called by the main program.

See also

InitializeDevices
OS_MAIN
vrtaLoadVM
vrtaInitialize

128 Virtual Machine API Reference

9.4.21 vrtaTerminate()

Terminate the Virtual Machine.

Function declaration

void vrtaTerminate(void)

Description

This API call instructs the VM to terminate. If this API is called by the applica-
tion thread then it never returns. If this API is called by any other thread then
it does return.

If vrtaTerminate() is called by a thread other than the application thread
then the application thread is allowed approximately 10 seconds to terminate
cleanly (either by returning from OS_MAIN() or calling vrtaTerminate()). If
the application thread does not terminate within 10 seconds it is forcibly ter-
minated.

Once the application thread has terminated the VM sends a Reset action to
each virtual device to inform it that the VECU is about to terminate.

Finally the call of vrtaStart() that started the application thread returns.

See also

vrtaStart
vrtaReset

Virtual Machine API Reference 129

10 Standard Devices (vrtaStdDevices.h)

Most of the functionality of the Virtual Machine is accessed through the VM’s
three standard devices:

1. Device Manager

2. Interrupt Control Unit (ICU)

3. Application Manager

These standard devices behave in the same way as devices that you create in
your application code. This chapter describes the purpose of these 3 devices
and the actions and events they support.

The header file vrtaStdDevices.h contains definitions of the device, action
and event IDs used by the internal devices. vrtaStdDevices.h is automati-
cally included if you include vrtaCore.h.

10.1 Action and Event Descriptions

Each action or event supported by an internal device is described by a stan-
dard table, as below, followed by text to explain the purpose of the action or
event.

ID Data Format

YYYY ZZZZ

The table contains the ID of the action or event (YYYY), and the format of the
action or event data (ZZZZ).

For actions, ZZZZ will be a data format string describing the format of the data
in the action (e.g. %s for string data).

For events that do not require any input data to be supplied when they are
queried, ZZZZ will be a data format string describing the format of the data in
the event (e.g. %u for a single unsigned numeric value).

For events that do require input data to be supplied when they are queried,
ZZZZ will be a data format string followed by a second data format string
enclosed in braces (). The first data format string describes the format of the
data in the event. The data second data format string describes the format of
the input data required when the event is queried (e.g. %s(%u) for an event
that contains string data and requires a single unsigned numeric value as
input data when queried).

Refer to Section 9.3 for a description of data format strings.

130 Standard Devices (vrtaStdDevices.h)

10.2 Device Manager

The Device Manager (DM) is the internal device that manages all devices.
The DM is identified as follows:

Device ID Constant Name

DM_DEVICE_ID DeviceManager

10.2.1 Action: EventRegister

Action ID Constant Data Format

DM_ACTION_ID_EventRegister %s

This action is only available for use via the diagnostic interface and is
only used by external monitor programs.

This action registers a TCP/IP port wishing to hook events. The data is a string
containing a list of ‘\n’ separated values. The first value is the IP address of
the listener - e.g. 192.168.0.100 or localhost. The second value is the TCP
port number in decimal - e.g. 2034.

This action causes the diagnostic interface to open a network connection to
the specified TCP/IP port and then associate a ‘listener’ instance with it. Each
diagnostic connection can have at most one such listener.

The listener is removed if the connection breaks or if another EventRegister
action is received.

10.2.2 Action: HookEvents

Action ID Constant Data Format

DM_ACTION_ID_HookEvents %s

This action is only available for use via the diagnostic interface and is
only used by external monitor programs.

This action specifies which events to hook for the diagnostic interface connec-
tion on which the action is received. The data is a ‘\n’ separated list of items
of the form <device>=<event1>,<event2>,...,<eventN>. Where <device>
is a device ID in decimal and <eventi> is an event ID in decimal. Such an i.e.
means hook the events with IDs <event1>...<eventN> for the device with ID
<device> - e.g. 3=1,3,6\n5=2\n7=2,3.

The data forms the complete list of events to hook for the diagnostic connec-
tion. Subsequent HookEvents actions replace the events hooked rather than
add to them. An empty list means that no events will be hooked.

Standard Devices (vrtaStdDevices.h) 131

10.2.3 Action: ListAll

Action ID Constant Data Format

DM_ACTION_ID_ListAll <none>

This action causes the DM to raise a DeviceList event.

10.2.4 Action: GetDeviceActions

Action ID Constant Data Format

DM_ACTION_ID_GetDeviceActions %s

This action causes the DM to raise a DeviceActions event for the device
named by the action data.

10.2.5 Action: GetDeviceEvents

Action ID Constant Data Format

DM_ACTION_ID_GetDeviceEvents %s

This action causes the DM to raise a DeviceEvents event for the device named
by the action data.

10.2.6 Action: GetDeviceInfo

Action ID Constant Data Format

DM_ACTION_ID_GetDeviceInfo %s

This action causes the DM to raise a DeviceInfo event for the device named
by the action data.

10.2.7 Event: DeviceList

Event ID Constant Data Format

DM_EVENT_ID_DeviceList %s

The data is a ‘\n’ separated list of all of the devices registered with the Virtual
Machine.

10.2.8 Event: DeviceActions

Event ID Constant Data Format

DM_EVENT_ID_DeviceActions %s(%s)

The data is a ‘\n’ separated list of all of the actions supported by the named
device in the same form as used for specifying the list of actions supported
by a virtual device in the vrtaRegisterVirtualDevice()call. If the event
is raised in response to a GetDeviceActions action then the device is named
by the action data. If the event is queried the device is named by the event

132 Standard Devices (vrtaStdDevices.h)

input data.

10.2.9 Event: DeviceEvents

Event ID Constant Data Format

DM_EVENT_ID_DeviceEvents %s(%s)

The data is a ‘\n’ separated list of all of the events supported by the named
device in the same form as used for specifying the list of events supported
by a virtual device in the vrtaRegisterVirtualDevice()call. If the event
is raised in response to a GetDeviceEvents action then the device is named
by the action data. If the event is queried the device is named by the event
input data.

10.2.10 Event: DeviceInfo

Event ID Constant Data Format

DM_EVENT_ID_DeviceInfo %s(%s)

The data is information about the named device in the same form as used for
specifying virtual device information in the vrtaRegisterVirtualDevice()
call. If the event is raised in response to a GetDeviceInfo action then the
device is named by the action data. If the event is queried the device is
named by the event input data.

10.3 Interrupt Control Unit

The Interrupt Control Unit (ICU) is the internal device that manages interrupts
within the Virtual Machine and arranges for interrupt handlers to be invoked
within the application thread.

The ICU implements a multilevel interrupt controller. There are 32 interrupts
numbered 1 to 32 inclusive. Interrupt number n corresponds to interrupt
vector number n. Each interrupt has a priority in the range 1 to 32 inclusive.
The priority of an interrupt is set in the corresponding interrupt vector table
entry. See the vrtaInitialize() call for a description of the interrupt vector
table.

The ICU maintains the current interrupt priority level (IPL). This is a number in
the range zero to 32 inclusive. If an interrupt handler is running then the cur-
rent IPL is equal to the priority of the corresponding interrupt. If non interrupt
code is running the current IPL is zero.

Each interrupt has a pending flag and may be masked (disabled) or unmasked
(enabled). An interrupt is made pending (i.e. its pending flag is set) by send-
ing a Raise action to the ICU. The ICU invokes the interrupt handler for the
highest priority pending and unmasked interrupt that has a priority higher

Standard Devices (vrtaStdDevices.h) 133

than the current IPL. If an interrupt is pending but is masked its handler will
not be invoked until the interrupt is unmasked. If an interrupt is pending but
the current IPL is higher or equal to the priority of the interrupt then its han-
dler will not be invoked until the IPL drops below the priority of the interrupt.

An interrupt’s pending flag is cleared just before its handler is invoked. There-
fore if the handler for an interrupt sends a Raise action to the ICU for the same
interrupt the interrupt will become pending again and a second instance of
the interrupt handler will run as soon as the first ends.

A higher priority interrupt handler can pre-empt a lower priority interrupt han-
dler.

If two interrupts of the same priority are pending then the one with the lower
interrupt vector number is handled first.

When the Virtual ECU starts all interrupts are masked (disabled) and the cur-
rent IPL is zero.

The ICU is identified as follows:

Device ID Constant Name

ICU_DEVICE_ID ICU

10.3.1 Action: Raise

Action ID Constant Data Format

ICU_ACTION_ID_Raise %d:;1;32

This action makes the specified interrupt number pending (i.e. sets the inter-
rupt’s pending flag).

10.3.2 Action: Clear

Action ID Constant Data Format

ICU_ACTION_ID_Clear %d:;1;32

This action clears the specified interrupt number’s pending flag. Note that it
is not necessary to send this action to the ICU in an interrupt handler to clear
the pending flag of the interrupt being handled since an interrupt’s pending
flag is cleared just before its handler is invoked.

10.3.3 Action: Mask

Action ID Constant Data Format

ICU_ACTION_ID_Mask %d:;1;32

This action masks (disables) the specified interrupt number.

134 Standard Devices (vrtaStdDevices.h)

10.3.4 Action: Unmask

Action ID Constant Data Format

ICU_ACTION_ID_Unmask %d:;1;32

This action unmasks (enables) the specified interrupt number.

10.3.5 Action: GetPending

Action ID Constant Data Format

ICU_ACTION_ID_GetPending <none>

This action causes a Pending event to be raised.

10.3.6 Action: GetIPL

Action ID Constant Data Format

ICU_ACTION_ID_GetIPL <none>

This action causes an IPL event to be raised.

10.3.7 Action: SetIPL

Action ID Constant Data Format

ICU_ACTION_ID_SetIPL %d:;0;32

This action sets the IPL to the specified value.

10.3.8 Event: Pending

Event ID Constant Data Format

ICU_EVENT_ID_Pending %b

This event contains a list of all of the currently pending interrupts. Bit n is
set in the event if interrupt number n is pending (where bit 1 is the least
significant bit).

The event is raised in response to a GetPending action or when the list of
pending interrupts changes.

10.3.9 Event: Start

Event ID Constant Data Format

ICU_EVENT_ID_Start %d

This event is raised just before an interrupt handler is invoked. The number
of the interrupt is specified in the event data.

Standard Devices (vrtaStdDevices.h) 135

10.3.10 Event: Stop

Event ID Constant Data Format

ICU_EVENT_ID_Stop %d

This event is raised just after an interrupt handler has ended. The number of
the interrupt is specified in the event data.

10.3.11 Event: IPL

Event ID Constant Data Format

ICU_EVENT_ID_IPL %d

This event contains the current IPL. The event is raised in response to a GetIPL
action or when the current IPL changes.

10.3.12 Event: EnabledVecs

Event ID Constant Data Format

ICU_EVENT_ID_MASKS %b

This event contains a list of all of the currently enabled (unmasked) interrupts.
Bit n is set in the event if interrupt number n is enabled (where bit 1 is the
least significant bit).

The event is raised when the list of enabled interrupts changes.

10.4 Application Manager

The Application Manager (AM) is the internal device that manages the Virtual
ECU application

The AM is identified as follows:

Device ID Constant Name

AM_DEVICE_ID ApplicationManager

10.4.1 Action: Start

Action ID Constant Data Format

AM_ACTION_ID_Start <none>

This action starts the application thread running in a Virtual ECU that was
loaded in <i>slave</i> mode.

10.4.2 Action: Terminate

Action ID Constant Data Format

AM_ACTION_ID_Terminate <none>

136 Standard Devices (vrtaStdDevices.h)

This action tells the Virtual Machine to terminate. It has the same effect as
the vrtaTerminate() call.

10.4.3 Action: Pause

Action ID Constant Data Format

AM_ACTION_ID_Pause <none>

This action tells the Virtual Machine to suspend execution of the application
thread.

10.4.4 Action: Restart

Action ID Constant Data Format

AM_ACTION_ID_Restart <none>

This action tells the Virtual Machine to restart execution of the application
thread after it has previously been suspended.

10.4.5 Action: Reset

Action ID Constant Data Format

AM_ACTION_ID_Reset <none>

This action tells the Virtual Machine to reset. It has the same effect as the
vrtaReset() call.

10.4.6 Action: GetInfo

Action ID Constant Data Format

AM_ACTION_ID_GetInfo <none>

This action causes an Info event to be raised.

10.4.7 Action: TestOption

Action ID Constant Data Format

AM_ACTION_ID_TestOption %s

This action causes an Option event to be raised to signal if the named
command-line option exists. The option prefix (‘-‘ or ‘/’) is not specified.

10.4.8 Action: ReadOption

Action ID Constant Data Format

AM_ACTION_ID_ReadOption %s

This action causes an OptionText event to be raised containing the full text of
the command-line option that starts with the specified string.

Standard Devices (vrtaStdDevices.h) 137

10.4.9 Action: ReadParam

Action ID Constant Data Format

AM_ACTION_ID_ReadParam %u

This action causes a ParamText event to be raised containing the full text of
the specified command-line parameter. The first command line parameter
(the executable name) is number zero, the second parameter is number one,
and so on.

10.4.10 Event: Started

Event ID Constant Data Format

AM_EVENT_ID_Started <none>

This event is raised to indicate that the application thread has started.

10.4.11 Event: Paused

Event ID Constant Data Format

AM_EVENT_ID_Paused <none>

This event is raised to indicate that the application thread has been sus-
pended.

10.4.12 Event: Restarted

Event ID Constant Data Format

AM_EVENT_ID_Restarted <none>

This event is raised to indicate that the application thread has been restarted.

10.4.13 Event: Reset

Event ID Constant Data Format

AM_EVENT_ID_Reset <none>

This event is raised to indicate that the Virtual ECU has been reset.

10.4.14 Event: Terminated

Event ID Constant Data Format

AM_EVENT_ID_Terminated <none>

This event is raised to indicate that the Virtual Machine is about to terminate.

10.4.15 Event: Info

Event ID Constant Data Format

AM_EVENT_ID_Info %s

138 Standard Devices (vrtaStdDevices.h)

This event contains version information about the Virtual ECU application and
the Virtual Machine.

10.4.16 Event: Option

Event ID Constant Data Format

AM_EVENT_ID_Option %u(%s)

This event contains the number 1 if the named option is present on the com-
mand line or zero if it is not. If the event is raised in response to a TestOption
action then the option is named in the action data. If the event is queried
then the option is named in the input data. The option prefix (‘-‘ or ‘/’) is not
included in the name.

10.4.17 Event: OptionText

Event ID Constant Data Format

AM_EVENT_ID_OptionText %s(%s)

This event contains an empty string if a command line options starting with
the specified prefix does not exist. If a command line option starting with the
specified prefix does exist then the event contains the full text of the option.
If the event is raised in response to a ReadOption action then the prefix is the
action data. If the event is queried then the prefix is the input data.

10.4.18 Event: ParamText

Event ID Constant Data Format

AM_EVENT_ID_ParamText %s(%u)

This event contains the full text of the specified command-line parameter.
The first command line parameter (the executable name) is zero, the second
parameter is number one, and so on. If the specified command line parame-
ter does not exist the event contains the empty string. If the event is raised in
response to a ReadParam action then the parameter number is in the action
data. If the event is queried then the parameter number is in the input data.

10.4.19 Event: State

Event ID Constant Data Format

AM_EVENT_ID_State Loaded|Running|Paused|Terminating|Resetting

This event contains the current state of the Virtual ECU.

Standard Devices (vrtaStdDevices.h) 139

11 Sample Devices (vrtaSampleDevices.h)

The Virtual ECU includes a collection of sample virtual devices that imple-
ment commonly used devices such as clocks, counters, comparators, actu-
ators and sensors. These are contained in the kernel library and exported
through vrtaSampleDevices.h. All of the sample virtual devices make use
of (i.e. are derived from) the C++ virtual device framework provided by the
vrtaDevice base class (see the file vrtaDevice.h).

The following sample devices are provided:

Device Description

vrtaClock A clock source for counter devices.

vrtaUpCounter A counter that counts upwards.

vrtaDownCounter A counter that counts downwards.

vrtaSensor A generic sensor.

vrtaSensorToggleSwitch A two position ‘toggle’ switch.

vrtaSensorMultiwaySwitch A multi-position switch.

vrtaActuator A generic actuator.

vrtaActuatorLight A light that can be on or off.

vrtaActuatorDimmableLight A light that can be set to different levels
of brightness.

vrtaActuatorMultiColorLight A light that can be set to different col-
ors.

vrtaCompare A comparator that can generate an
interrupt when other another device
reaches a specified value.

vrtaIO An I/O space.

11.1 Device Descriptions

Each sample device is described in the same way. The description starts with
an introduction to the purpose and operation of the device. This is followed
by a description of the C++ methods exported by the device class and then
the actions and events supported by the device.

11.1.1 Methods

Each C++ method is described in a standard form as follows:

The title gives the name of the method.

A brief description of the method is provided.

Method declaration

Interface in C++ syntax.

140 Sample Devices (vrtaSampleDevices.h)

Parameters

Parameter Input/Output Description

Parameter Name Input/Output Description of the parameter.

Description

Explanation of the functionality of the method.

Return values

Value Description

Value Description of the return value.

11.1.2 Actions and Events

Each action or event supported by a sample device is described by a standard
table, as below, followed by text to explain the purpose of the action or event.

ID Data Format

XXXX YYYY

The table contains the numeric ID of the action or event (XXXX), and the for-
mat of the action or event data (YYYY).

Sample Devices (vrtaSampleDevices.h) 141

11.2 vrtaClock

A vrtaClock device provides a time source for vrtaUpCounter and
vrtaDownCounter counter devices. A vrtaClock device uses a Windows
multi-media timer to provide a source of very-close-to 1 millisecond ticks.

A vrtaClock device ticks an attached counter every T milliseconds. T is cal-
culated by multiplying the vrtaClock device’s clock tick interval by its scaling
factor. The scaling factor has a multiplier and a divisor. If the clock tick inter-
val (set in the constructor or with the SetInterval() method) is interval,
and the scaling factor (set with the SetScale() method) is mult / div, then
an attached counter would be ticked every (interval * mult / div) milliseconds.
By default the scale factor is 1 / 1.

Multiple counters may be attached to the same vrtaClock device.

If using a vrtaClock device in a VECU, the VECU executable will need
to be linked with the Windows multi-media library. (This might be done
automatically depending on your compiler.)

11.2.1 Method: vrtaClock()

The constructor.

Method declaration

vrtaClock(const vrtaTextPtr name, unsigned interval)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

interval Input The number of milliseconds in one clock
tick.

Description

This is the constructor used to create an instance of a vrtaClock device.

Return values

None.

11.2.2 Method: SetInterval()

Set the tick interval.

Method declaration

void SetInterval(unsigned interval)

142 Sample Devices (vrtaSampleDevices.h)

Parameters

Parameter Input/Output Description

interval Input The number of milliseconds in one clock
tick.

Description

This method is used to change the number of milliseconds in one clock tick.

Return values

None.

11.2.3 Method: SetScale()

Set the scaling factor.

Method declaration

void SetScale(unsigned mult, unsigned div)

Parameters

Parameter Input/Output Description

mult Input The multiplier for the scaling factor.

div Input The divisor for the scaling factor.

Description

This method sets the scaling factor for the clock.

Return values

None.

11.2.4 Method: Start()

Start the clock ticking.

Method declaration

void Start(void)

Parameters

None.

Description

This method starts the clock device ticking any attached counters.

Return values

None.

Sample Devices (vrtaSampleDevices.h) 143

11.2.5 Method: Stop()

Stop the clock ticking.

Method declaration

void Stop(void)

Parameters

None.

Description

This method stops the clock device ticking any attached counters.

Return values

None.

11.2.6 Action: Interval

Action ID Data Format

1 %u

This action sets the number of milliseconds in a clock tick. The action data
is the number of milliseconds in a clock tick. This action is equivalent to the
SetInterval() method.

11.2.7 Action: Scale

Action ID Data Format

2 %u,%u

This action sets the device’s scaling factor. The first number in the action
data is the scaling factor multiplier and the second number is the divisor.
This action is equivalent to the SetScale() method.

11.2.8 Action: Start

Action ID Data Format

3 <none>

This action starts the clock device ticking any attached counters. This action
is equivalent to the Start() method.

11.2.9 Action: Stop

Action ID Data Format

4 <none>

This action stops the clock device ticking any attached counters. This action

144 Sample Devices (vrtaSampleDevices.h)

is equivalent to the Stop() method.

11.2.10 Event: Interval

Event ID Data Format

1 %u

This event is raised when the clock device’s tick interval changes. The event
data is the new tick interval.

11.2.11 Event: Scale

Event ID Data Format

2 %u,%u

This event is raised when the clock device’s scaling factor changes. The event
data is the new scaling factor multiplier followed by the new divisor.

11.2.12 Event: Running

Event ID Data Format

3 %u:;0;1

This event is raised when the clock is started or stopped. The event data is
1 if the clock is now running (i.e. has been started) or zero if the clock is not
now running (i.e. has been stopped).

Sample Devices (vrtaSampleDevices.h) 145

11.3 vrtaUpCounter

A vrtaUpCounter is a counter device that is driven by a vrtaClock device.
It has a minimum value, a maximum value and a current value. When a
vrtaUpCounter device is ticked by a vrtaClock device and its current value
is less than its maximum value then its current value is incremented. When
the vrtaUpCounter is ticked and its current value is equal to its maximum
value then its current value is set back to its minimum value. The cyclic
period of a vrtaUpCounter is thus (maximum - minimum) + 1.

By default the minimum value is zero, the maximum value is 4294967295,
and the current value starts at zero.

11.3.1 Method: vrtaUpCounter()

The constructor.

Method declaration

void vrtaUpCounter (const vrtaTextPtr name, vrtaClock &clock)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

clock Input The vrtaClock device that will be used to
drive the counter.

Description

This is the constructor used to create an instance of a vrtaUpCounter device.

Return values

None.

11.3.2 Method: Min()

Get the minimum value.

Method declaration

unsigned Min(void)

Parameters

None.

Description

This method is used to get the minimum value of the counter.

146 Sample Devices (vrtaSampleDevices.h)

Return values

Value Description

<a value> The minimum value of the counter.

11.3.3 Method: Max()

Get the maximum value.

Method declaration

unsigned Max(void)

Parameters

None.

Description

This method is used to get the maximum value of the counter.

Return values

Value Description

<a value> The maximum value of the counter.

11.3.4 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the counter.

Return values

Value Description

<a value> The current value of the counter.

11.3.5 Method: SetMin()

Set the minimum value.

Method declaration

void SetMin(unsigned v)

Sample Devices (vrtaSampleDevices.h) 147

Parameters

Parameter Input/Output Description

v Input The new minimum value for the counter.

Description

This method is used to set the minimum value of the counter. If the current
value of the counter is smaller than the new minimum value then the current
value is set to the new minimum value.

Return values

None.

11.3.6 Method: SetMax()

Set the maximum value.

Method declaration

void SetMax(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new maximum value for the counter.

Description

This method is used to set the maximum value of the counter. If the current
value of the counter is greater than the new maximum value then the current
value is set to the minimum value.

Return values

None.

11.3.7 Method: SetVal()

Set the current value.

Method declaration

void SetVal(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new value for the counter.

148 Sample Devices (vrtaSampleDevices.h)

Description

This method is used to set the current value of the counter. If the new current
value of the counter is smaller than the minimum value or greater than the
maximum value then the current value is set to the minimum value.

Return values

None.

11.3.8 Method: Start()

Start the counter counting.

Method declaration

void Start(void)

Parameters

None.

Description

This method is used to start the counter counting when ticked by the attached
vrtaClock device.

Return values

None.

11.3.9 Method: Stop()

Stop the counter counting.

Method declaration

void Stop(void)

Parameters

None.

Description

This method is used to stop the counter counting when ticked by the attached
vrtaClock device.

Return values

None.

Sample Devices (vrtaSampleDevices.h) 149

11.3.10 Action: Minimum

Action ID Data Format

1 %u

This action sets the minimum value of the counter. It is the equivalent of the
SetMin() method.

11.3.11 Action: Maximum

Action ID Data Format

2 %u

This action sets the maximum value of the counter. It is the equivalent of the
SetMax() method.

11.3.12 Action: Set

Action ID Data Format

3 %u

This action sets the current value of the counter. It is the equivalent of the
SetVal() method.

11.3.13 Action: Start

Action ID Data Format

4 <none>

This method is used to start the counter counting when ticked by the attached
vrtaClock device. It is the equivalent of the Start() method.

11.3.14 Action: Stop

Action ID Data Format

5 <none>

This method is used to stop the counter counting when ticked by the attached
vrtaClock device. It is the equivalent of the Stop() method.

11.3.15 Action: Report

Action ID Data Format

6 <none>

This action causes a Set event to be raised.

150 Sample Devices (vrtaSampleDevices.h)

11.3.16 Event: Set

Event ID Data Format

1 %u

This event contains the current value of the counter. It is raised in response
to a Report action.

Sample Devices (vrtaSampleDevices.h) 151

11.4 vrtaDownCounter

A vrtaDownCounter is a counter device that is driven by a vrtaClock de-
vice. It has a minimum value, a maximum value and a current value. When
a vrtaDownCounter device is ticked by a vrtaClock device and its current
value is greater than its minimum value then its current value is decre-
mented. When the vrtaDownCounter is ticked and its current value is equal
to its minimum value then its current value is set back to its maximum value.
The cyclic period of a vrtaDownCounter is thus (maximum - minimum) + 1.

By default the minimum value is zero, the maximum value is 4294967295,
and the current value starts at zero.

11.4.1 Method: vrtaDownCounter()

The constructor.

Method declaration
void vrtaDownCounter(const vrtaTextPtr name,

vrtaClock &clock)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

clock Input The vrtaClock device that will be used to
drive the counter.

Description

This is the constructor used to create an instance of a vrtaDownCounter de-
vice.

Return values

None.

11.4.2 Method: Min()

Get the minimum value.

Method declaration

unsigned Min(void)

Parameters

None.

Description

This method is used to get the minimum value of the counter.

152 Sample Devices (vrtaSampleDevices.h)

Return values

Value Description

<a value> The minimum value of the counter.

11.4.3 Method: Max()

Get the maximum value.

Method declaration

unsigned Max(void)

Parameters

None.

Description

This method is used to get the maximum value of the counter.

Return values

Value Description

<a value> The maximum value of the counter.

11.4.4 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the counter.

Return values

Value Description

<a value> The current value of the counter.

11.4.5 Method: SetMin()

Set the minimum value.

Method declaration

void SetMin(unsigned v)

Sample Devices (vrtaSampleDevices.h) 153

Parameters

Parameter Input/Output Description

v Input The new minimum value for the counter.

Description

This method is used to set the minimum value of the counter. If the current
value of the counter is smaller than the new minimum value then the current
value is set to the new minimum value.

Return values

None.

11.4.6 Method: SetMax()

Set the maximum value.

Method declaration

void SetMax(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new maximum value for the counter.

Description

This method is used to set the maximum value of the counter. If the current
value of the counter is greater than the new maximum value then the current
value is set to the minimum value.

Return values

None.

11.4.7 Method: SetVal()

Set the current value.

Method declaration

void SetVal(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new value for the counter.

154 Sample Devices (vrtaSampleDevices.h)

Description

This method is used to set the current value of the counter. If the new current
value of the counter is smaller than the minimum value or greater than the
maximum value then the current value is set to the minimum value.

Return values

None.

11.4.8 Method: Start()

Start the counter counting.

Method declaration

void Start(void)

Parameters

None.

Description

This method is used to start the counter counting when ticked by the attached
vrtaClock device.

Return values

None.

11.4.9 Method: Stop()

Stop the counter counting.

Method declaration

void Stop(void)

Parameters

None.

Description

This method is used to stop the counter counting when ticked by the attached
vrtaClock device.

Return values

None.

Sample Devices (vrtaSampleDevices.h) 155

11.4.10 Action: Minimum

Action ID Data Format

1 %u

This action sets the minimum value of the counter. It is the equivalent of the
SetMin() method.

11.4.11 Action: Maximum

Action ID Data Format

2 %u

This action sets the maximum value of the counter. It is the equivalent of the
SetMax() method.

11.4.12 Action: Set

Action ID Data Format

3 %u

This action sets the current value of the counter. It is the equivalent of the
SetVal() method.

11.4.13 Action: Start

Action ID Data Format

4 <none>

This method is used to start the counter counting when ticked by the attached
vrtaClock device. It is the equivalent of the Start() method.

11.4.14 Action: Stop

Action ID Data Format

5 <none>

This method is used to stop the counter counting when ticked by the attached
vrtaClock device. It is the equivalent of the Stop() method.

11.4.15 Action: Report

Action ID Data Format

6 <none>

This action causes a Set event to be raised.

156 Sample Devices (vrtaSampleDevices.h)

11.4.16 Event: Set

Event ID Data Format

1 %u

This event contains the current value of the counter. It is raised in response
to a Report action.

Sample Devices (vrtaSampleDevices.h) 157

11.5 vrtaSensor

A vrtaSensor device models a sensor. That is, a device which takes input
from one source, stores that input and then allows the input to be read by an
application.

vrtaSensor represents a generic sensor; vrtaSensorToggleSwitch and
vrtaSensorMultiwaySwitch are derived from vrtaSensor and represent
more specialized sensors.

A sensor has a current value and a maximum value. The current value of the
sensor can be set to a value between zero and the maximum value inclusive.
Events are raised whenever the current value or maximum value changes.

When a sensor is created the current value is zero and the maximum value is
4294967295.

11.5.1 Method: vrtaSensor()

The constructor.

Method declaration

vrtaSensor(const vrtaTextPtr name)

Parameters

Parameter Input/Output Description

Name Input The name of the virtual device.

Description

This is the constructor used to create an instance of a vrtaSensor device.

Return values

None.

11.5.2 Method: GetMax()

Get the maximum value.

Method declaration

unsigned GetMax(void)

Parameters

None.

Description

This method is used to get the maximum value of the sensor.

158 Sample Devices (vrtaSampleDevices.h)

Return values

Value Description

<a value> The maximum value of the sensor.

11.5.3 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the sensor.

Return values

Value Description

<a value> The current value of the sensor.

11.5.4 Method: SetMax()

Set the maximum value.

Method declaration

void SetMax(unsigned v)

Parameters

Parameter Input/Output Description

V Input The new maximum value for the sensor.

Description

This method is used to set the maximum value of the sensor. If the current
value of the sensor is greater than the new maximum value then the current
value is set to zero.

Return values

None.

11.5.5 Method: SetVal()

Set the current value.

Sample Devices (vrtaSampleDevices.h) 159

Method declaration

void SetVal(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new value for the sensor.

Description

This method is used to set the current value of the sensor. If the new current
value of the sensor is greater than the maximum value then the current value
is not set.

Return values

None.

11.5.6 Action: Value

Action ID Data Format

1 %u

This action sets the current value of the sensor. It is the equivalent of the
SetVal() method.

11.5.7 Action: Maximum

Action ID Data Format

2 %u

This action sets the maximum value of the sensor. It is the equivalent of the
SetMax() method.

11.5.8 Event: Value

Event ID Data Format

1 %u

This event contains the current value of the sensor. It is raised whenever the
value of the sensor changes.

11.5.9 Event: Maximum

Event ID Data Format

2 %u

This event contains the maximum value of the sensor. It is raised whenever
the maximum value of the sensor changes.

160 Sample Devices (vrtaSampleDevices.h)

11.6 vrtaSensorToggleSwitch

A vrtaSensorToggleSwitch is a special form of a sensor that has only two
possible values, zero and one, corresponding to ‘off’ and ‘on’.

When a vrtaSensorToggleSwitch is created its current value is zero.

11.6.1 Method: vrtaSensorToggleSwitch()

The constructor.

Method declaration

vrtaSensorToggleSwitch(const vrtaTextPtr name)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

Description

This is the constructor used to create an instance of a
vrtaSensorToggleSwitch device.

Return values

None.

11.6.2 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the sensor.

Return values

Value Description

<a value> The current value of the sensor.

11.6.3 Method: SetVal()

Set the current value.

Sample Devices (vrtaSampleDevices.h) 161

Method declaration

void SetVal(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new value for the sensor.

Description

This method is used to set the current value of the sensor. If the new current
value of the sensor is greater than 1 then the current value is not set.

Return values

None.

11.6.4 Action: Position

Action ID Data Format

1 %u:;0;1

This action sets the current value (position) of the sensor. It is the equivalent
of the SetVal() method.

11.6.5 Event: Position

Event ID Data Format

1 %u:;0;1

This event contains the current value (position) of the sensor. It is raised
whenever the value of the sensor changes.

162 Sample Devices (vrtaSampleDevices.h)

11.7 vrtaSensorMultiwaySwitch

A vrtaSensorMultiwaySwitch is a special form of a sensor that represents
a switch with a number of possible positions. The number of positions is set
when the device is created (but can be changed later).

When a vrtaSensorMultiwaySwitch is created its current value is zero.

11.7.1 Method: vrtaSensorMultiwaySwitch()

The constructor.

Method declaration
vrtaSensorMultiwaySwitch(const vrtaTextPtr name,

unsigned ways)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

ways Input The number of positions the switch may
take minus 1.

Description

This is the constructor used to create an instance of a
vrtaSensorMultiwaySwitch device. The sensor may have a value in
the range zero to ways inclusive.

Return values

None.

11.7.2 Method: GetMax()

Get the maximum value.

Method declaration

unsigned GetMax(void)

Parameters

None.

Description

This method is used to get the maximum value of the sensor.

Return values

Value Description

<a value> The maximum value of the sensor.

Sample Devices (vrtaSampleDevices.h) 163

11.7.3 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the sensor.

Return values

Value Description

<a value> The current value of the sensor.

11.7.4 Method: SetMax()

Set the maximum value.

Method declaration

void SetMax(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new maximum value for the sensor.

Description

This method is used to set the maximum value of the sensor (i.e. to override
the value of the ways argument used in the constructor). If the current value
of the sensor is greater than the new maximum value then the current value
is set to zero.

Return values

None.

11.7.5 Method: SetVal()

Set the current value.

Method declaration

void SetVal(unsigned v)

164 Sample Devices (vrtaSampleDevices.h)

Parameters

Parameter Input/Output Description

v Input The new value for the sensor.

Description

This method is used to set the current value of the sensor. If the new current
value of the sensor is greater than the maximum value then the current value
is not set.

Return values

None.

11.7.6 Action: Value

Action ID Data Format

1 %u

This action sets the current value of the sensor. It is the equivalent of the
SetVal() method.

11.7.7 Action: Maximum

Action ID Data Format

2 %u

This action sets the maximum value of the sensor. It is the equivalent of the
SetMax() method.

11.7.8 Event: Value

Event ID Data Format

1 %u

This event contains the current value of the sensor. It is raised whenever the
value of the sensor changes.

11.7.9 Event: Maximum

Event ID Data Format

2 %u

This event contains the maximum value of the sensor. It is raised whenever
the maximum value of the sensor changes.

Sample Devices (vrtaSampleDevices.h) 165

11.8 vrtaActuator

A vrtaActuator device models an actuator. That is, a device which has its
value set by an application and then signals that value to entities outside of
the ECU. vrtaActuator represents a generic actuator; vrtaActuatorLight,
vrtaActuatorDimmableLight and vrtaActuatorMultiColorLight are de-
rived from vrtaActuator and represent more specialized actuators.

An actuator has a current value and a maximum value. The current value
of the actuator can be set to a value between zero and the maximum value
inclusive. Events are raised whenever the current value or maximum value
changes.

When an actuator is created the current value is zero and the maximum value
is 4294967295.

11.8.1 Method: vrtaActuator()

The constructor.

Method declaration

vrtaActuator(const vrtaTextPtr name)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

Description

This is the constructor used to create an instance of a vrtaActuator device.

Return values

None.

11.8.2 Method: GetMax()

Get the maximum value.

Method declaration

unsigned GetMax(void)

Parameters

None.

Description

This method is used to get the maximum value of the actuator.

166 Sample Devices (vrtaSampleDevices.h)

Return values

Value Description

<a value> The maximum value of the actuator.

11.8.3 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the actuator.

Return values

Value Description

<a value> The current value of the actuator.

11.8.4 Method: SetMax()

Set the maximum value.

Method declaration

void SetMax(unsigned v)

Parameters

Parameter Input/Output Description

V Input The new maximum value for the actuator.

Description

This method is used to set the maximum value of the actuator. If the current
value of the actuator is greater than the new maximum value then the current
value is set to zero.

Return values

None.

11.8.5 Method: SetVal()

Set the current value.

Sample Devices (vrtaSampleDevices.h) 167

Method declaration

void SetVal(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new value for the actuator.

Description

This method is used to set the current value of the actuator. If the new current
value of the actuator is greater than the maximum value then the current
value is not set.

Return values

None.

11.8.6 Action: Value

Action ID Data Format

1 %u

This action sets the current value of the actuator. It is the equivalent of the
SetVal() method.

11.8.7 Action: Maximum

Action ID Data Format

2 %u

This action sets the maximum value of the actuator. It is the equivalent of
the SetMax() method.

11.8.8 Event: Value

Event ID Data Format

1 %u

This event contains the current value of the actuator. It is raised whenever
the value of the actuator changes.

11.8.9 Event: Maximum

Event ID Data Format

2 %u

This event contains the maximum value of the actuator. It is raised whenever
the maximum value of the actuator changes.

168 Sample Devices (vrtaSampleDevices.h)

11.9 vrtaActuatorLight

A vrtaActuatorLight is a special form of an actuator that represents a light.
A vrtaActuatorLight has two possible values zero and one, representing
‘off’ and ‘on’.

When a vrtaActuatorLight is created its current value is zero.

11.9.1 Method: vrtaActuatorLight()

The constructor.

Method declaration

vrtaActuatorLight(const vrtaTextPtr name)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

Description

This is the constructor used to create an instance of a vrtaActuatorLight
device.

Return values

None.

11.9.2 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the actuator.

Return values

Value Description

<a value> The current value of the actuator.

11.9.3 Method: SetVal()

Set the current value.

Sample Devices (vrtaSampleDevices.h) 169

Method declaration

void SetVal(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new value for the actuator.

Description

This method is used to set the current value of the actuator. If the new current
value of the actuator is greater than 1 then the current value is not set.

Return values

None.

11.9.4 Action: Value

Action ID Data Format

1 %u

This action sets the current value of the actuator. It is the equivalent of the
SetVal() method.

11.9.5 Event: Value

Event ID Data Format

1 %u

This event contains the current value of the actuator. It is raised whenever
the value of the actuator changes.

170 Sample Devices (vrtaSampleDevices.h)

11.10 vrtaActuatorDimmableLight

A vrtaActuatorDimmableLight is a special form of an actuator that repre-
sents a light whose brightness can be set. The number of possible brightness
levels is set when the actuator is created (but can be changed later).

When a vrtaActuatorDimmableLight is created its current value is zero.

11.10.1 Method: vrtaActuatorDimmableLight()

The constructor.

Method declaration

<p class=CodeNormal>vrtaActuatorDimmableLight(const vrtaTextPtr name,
unsigned levels)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

levels Input The number of brightness levels minus 1

Description

This is the constructor used to create an instance of a
vrtaActuatorDimmableLight device. The actuator may have a value
in the range zero to levels inclusive.

Return values

None.

11.10.2 Method: GetMax()

Get the maximum value.

Method declaration

unsigned GetMax(void)

Parameters

None.

Description

This method is used to get the maximum value of the actuator.

Return values

Value Description

<a value> The maximum value of the actuator.

Sample Devices (vrtaSampleDevices.h) 171

11.10.3 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the actuator.

Return values

Value Description

<a value> The current value of the actuator.

11.10.4 Method: SetMax()

Set the maximum value.

Method declaration

void SetMax(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new maximum value for the actuator.

Description

This method is used to set the maximum value of the actuator (i.e. to override
the value of the levels argument used in the constructor). If the current
value of the actuator is greater than the new maximum value then the current
value is set to zero.

Return values

None.

11.10.5 Method: SetVal()

Set the current value.

Method declaration

void SetVal(unsigned v)

172 Sample Devices (vrtaSampleDevices.h)

Parameters

Parameter Input/Output Description

v Input The new value for the actuator.

Description

This method is used to set the current value of the actuator. If the new current
value of the actuator is greater than the maximum value then the current
value is not set.

Return values

None.

11.10.6 Action: Value

Action ID Data Format

1 %u

This action sets the current value of the actuator. It is the equivalent of the
SetVal() method.

11.10.7 Action: Maximum

Action ID Data Format

2 %u

This action sets the maximum value of the actuator. It is the equivalent of
the SetMax() method.

11.10.8 Event: Value

Event ID Data Format

1 %u

This event contains the current value of the actuator. It is raised whenever
the value of the actuator changes.

11.10.9 Event: Maximum

Event ID Data Format

2 %u

This event contains the maximum value of the actuator. It is raised whenever
the maximum value of the actuator changes.

Sample Devices (vrtaSampleDevices.h) 173

11.11 vrtaActuatorMultiColorLight

A vrtaActuatorMultiColorLight is a special form of an actuator that rep-
resents a light whose color can be set. The number of possible colors is set
when the actuator is created (but can be changed later).

When a vrtaActuatorMultiColorLight is created its current value is zero.

11.11.1 Method: vrtaActuatorMultiColorLight()

The constructor.

Method declaration

vrtaActuatorMultiColorLight(const vrtaTextPtr name,
unsigned colors)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

colors Input The number of colors minus 1

Description

This is the constructor used to create an instance of a
vrtaActuatorMultiColorLight device. The actuator may have a value in
the range zero to colors inclusive.

Return values

None.

11.11.2 Method: GetMax()

Get the maximum value.

Method declaration

unsigned GetMax(void)

Parameters

None.

Description

This method is used to get the maximum value of the actuator.

Return values

Value Description

<a value> The maximum value of the actuator.

174 Sample Devices (vrtaSampleDevices.h)

11.11.3 Method: Value()

Get the current value.

Method declaration

unsigned Value(void)

Parameters

None.

Description

This method is used to get the current value of the actuator.

Return values

Value Description

<a value> The current value of the actuator.

11.11.4 Method: SetMax()

Set the maximum value.

Method declaration

void SetMax(unsigned v)

Parameters

Parameter Input/Output Description

v Input The new maximum value for the actuator.

Description

This method is used to set the maximum value of the actuator (i.e. to override
the value of the colors argument used in the constructor). If the current
value of the actuator is greater than the new maximum value then the current
value is set to zero.

Return values

None.

11.11.5 Method: SetVal()

Set the current value.

Method declaration

void SetVal(unsigned v)

Sample Devices (vrtaSampleDevices.h) 175

Parameters

Parameter Input/Output Description

v Input The new value for the actuator.

Description

This method is used to set the current value of the actuator. If the new current
value of the actuator is greater than the maximum value then the current
value is not set.

Return values

None.

11.11.6 Action: Value

Action ID Data Format

1 %u

This action sets the current value of the actuator. It is the equivalent of the
SetVal() method.

11.11.7 Action: Maximum

Action ID Data Format

2 %u

This action sets the maximum value of the actuator. It is the equivalent of
the SetMax() method.

11.11.8 Event: Value

Event ID Data Format

1 %u

This event contains the current value of the actuator. It is raised whenever
the value of the actuator changes.

11.11.9 Event: Maximum

Event ID Data Format

2 %u

This event contains the maximum value of the actuator. It is raised whenever
the maximum value of the actuator changes.

176 Sample Devices (vrtaSampleDevices.h)

11.12 vrtaCompare

A vrtaCompare device represents a comparator that may be attached to any
of the following devices

• vrtaUpCounter

• vrtaDownCounter

• vrtaSensor

• vrtaSensorToggleSwitch

• vrtaSensorMultiwaySwitch

• vrtaActuator

• vrtaActuatorLight

• vrtaActuatorDimmableLight

• vrtaActuatorMultiColorLight

It will generate an interrupt when the current value of the attached device
reaches a specified match value.

Multiple vrtaCompare devices may be attached to the same device.

11.12.1 Method: vrtaCompare()

The constructor.

Method declaration

vrtaCompare(const vrtaTextPtr name,
vrtaComparable &source,
unsigned match,
unsigned vector)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

source Input The device to which to attach.

match Input The match value.

vector Input The interrupt vector number to be gener-
ated or zero for no interrupt.

Sample Devices (vrtaSampleDevices.h) 177

Description

This is the constructor used to create an instance of a vrtaCompare device.
The vrtaCompare device will raise interrupt number vector when the cur-
rent value of the device specified by source reaches the value match. (Note
that vrtaCompare will not enable the interrupt vector. This must be done by
sending an Unmask action to the ICU device.)

Return values

None.

11.12.2 Method: GetMatch()

Get the match value.

Method declaration

unsigned GetMatch(void)

Parameters

None.

Description

This method is used to get the current match value of the device.

Return values

Value Description

<a value> The current match value.

11.12.3 Method: SetMatch()

Set the match value.

Method declaration

void SetMatch(unsigned val)

Parameters

Parameter Input/Output Description

val Input The new match value.

Description

This method is used to set the match value.

Return values

None.

178 Sample Devices (vrtaSampleDevices.h)

11.12.4 Method: IncrementMatch()

Increment the match value.

Method declaration

unsigned IncrementMatch(unsigned val)

Parameters

Parameter Input/Output Description

val Input The amount by which the match value
should be incremented.

Description

This method is used to increment the match value.

Return values

Value Description

<a value> The new match value.

11.12.5 Method: SetVector()

Set the interrupt vector number.

Method declaration

void SetVector(unsigned val)

Parameters

Parameter Input/Output Description

val Input The new interrupt vector number.

Description

This method is used to set the interrupt vector number. If the interrupt vector
number is set to zero then no interrupted will be generated.

Return values

None.

11.12.6 Action: Match

Action ID Data Format

1 %u

This action sets the match value. It is the equivalent of the SetMatch()
method.

Sample Devices (vrtaSampleDevices.h) 179

11.12.7 Action: Vector

Action ID Data Format

2 %u

This action sets the interrupt vector number. It is the equivalent of the
SetVector() method.

11.12.8 Event: Match

Event ID Data Format

1 %u

This event contains the match value. It is raised whenever the current value
of the attached device reaches the match value of the vrtaCompare device.

180 Sample Devices (vrtaSampleDevices.h)

11.13 vrtaIO

A vrtaIO device represents an array of 32-bit I/O cells that may be written
and read by an application.

11.13.1 Method: vrtaIO()

The constructor.

Method declaration

vrtaIO(const vrtaTextPtr name, unsigned elements)

Parameters

Parameter Input/Output Description

name Input The name of the virtual device.

elements Input The number of I/O cells to be used.

Description

This is the constructor used to create an instance of a vrtaIO device. The
vrtaIO device will contain an array of elements I/O cells. The I/O cells will
have offsets in the range zero to elements - 1 inclusive.

Return values

None.

11.13.2 Method: SetValue()

Set the value of an I/O cell.

Method declaration

void SetValue(unsigned offset, unsigned value)

Parameters

Parameter Input/Output Description

offset Input The offset of the I/O cell to be set.

value Input The value to write.

Description

This method is used to set the value of an I/O cell.

Return values

None.

11.13.3 Method: SetValues()

Set the value of multiple I/O cells.

Sample Devices (vrtaSampleDevices.h) 181

Method declaration

void SetValues(unsigned offset,
const unsigned *values,
unsigned number)

Parameters

Parameter Input/Output Description

offset Input The offset of the first I/O cell to be set.

values Input An array of values to write.

number Input The number of values to write.

Description

This method is used to set the values of multiple I/O cells. The number values
from values[] are written to the array of I/O cells starting at offset.

Return values

None.

11.13.4 Method: GetValue()

Get the value of an I/O cell.

Method declaration

unsigned GetValue(unsigned offset) const

Parameters

Parameter Input/Output Description

offset Input The offset of the I/O cell get.

Description

This method is used to get the value of an I/O cell.

Return values

Value Description

<a value> The value of the specified I/O cell.

11.13.5 Method: GetValues()

Get the values of all I/O cells.

Method declaration

const unsigned *GetValues(void) const

182 Sample Devices (vrtaSampleDevices.h)

Parameters

None.

Description

This method is used to get the values of all I/O cells.

Return values

Value Description

<a pointer> A pointer to the array of I/O cells.

11.13.6 Action: Value

Action ID Data Format

1 %u,%u

This action sets the value of an I/O cell. The first number in the action data is
the I/O cell offset and the second number is the value to write. This action is
equivalent to the SetValue() method.

11.13.7 Action: Values

Action ID Data Format

2 %a

This action sets the values of multiple I/O cells. The action data is an array
of values to write to the I/O cell array starting at offset zero. This action
is equivalent to the SetValues() method with the offset argument set to
zero.

11.13.8 Action: GetValue

Action ID Data Format

3 %u

This action causes a Value event to be raised for the offset specified in the
action data.

11.13.9 Action: GetValues

Action ID Data Format

4 <none>

This action causes a Values event to be raised.

11.13.10Event: Value

Event ID Data Format

1 %u,%u(%u)

Sample Devices (vrtaSampleDevices.h) 183

This event contains the value of an I/O cell. The first number is the offset of
the I/O cell. The second number is the value of the I/O cell. If the event is
raised in response to a Value action then the I/O cell offset is in the action
data. If the event is queried then the I/O cell offset is in the input data.

11.13.11Event: Values

Event ID Data Format

2 %a

This event contains the values of all of the I/O cells.

11.14 Rebuilding from Source Code

vrtaSampleDevices.h is provided automatically for you and the sample de-
vices themselves are integrated into the RTA-OS3.0 library.

If you prefer, you can rebuild the sample devices from source code by gener-
ating the source code for the devices and compiling it yourself.

To do this, you should call rtaosgen with the −−samples:[Devices] option
to generate sample source code and follow any instructions you are given.

184 Sample Devices (vrtaSampleDevices.h)

12 Command Line

This chapter provides a list of the command line options that are supported
by Virtual ECU executables, vrtaServer and vrtaMonitor.

12.1 <VirtualECU>.exe

The command line options listed below can be used when a Virtual ECU exe-
cutable (the executable you create when building an application using VRTA)
is run to control the behavior of the Virtual ECU. Note that options other than
those listed below may be used with a Virtual ECU executable and they will
be ignored by the Virtual Machine but can be recovered by your code by
querying the ApplicationManager.

Option Description

-alias=name Override the default alias.
When a Virtual ECU registers with vrtaServer
it is normally assigned an alias that is simply
the name of the Virtual ECU’s executable (e.g.
RTAOS.exe). The option -alias=name causes
the token name to be used as the Virtual ECU’s
alias (if possible).

-priority=<n> Set the Windows priority.
By default a Virtual ECU runs at the Window’s
priority NORMAL_PRIORITY_CLASS. If you wish
to run a Virtual ECU at a different Windows pri-
ority the -priority=int option can be used;
where int is:
int Windows Priority Class

0 IDLE_PRIORITY_CLASS

1 BELOW_NORMAL_PRIORITY_CLASS

2 NORMAL_PRIORITY_CLASS

3 ABOVE_NORMAL_PRIORITY_CLASS

4 HIGH_PRIORITY_CLASS

5 REALTIME_PRIORITY_CLASS
Increasing the priority of a Virtual ECU will im-
prove how closely it approximates “real-time”
behavior but will negatively affect the perfor-
mance of other applications running in the
same PC.

Command Line 185

Option Description
-silent Select silent or GUI mode.

The -silent option causes a Virtual ECU to be
loaded in silent mode. In silent mode the Vir-
tual ECU does not display its own (embedded)
GUI (it is assumed that vrtaMonitor or a simi-
lar program will be used to control the Virtual
ECU).
If the -silent option is not used then the Vir-
tual ECU is loaded in GUI mode. In <i>GUI</i>
mode the Virtual ECU displays its own GUI.

-slave Select slave or auto start mode.
The -slave option causes a Virtual ECU to be
loaded in slave mode. In slave mode the appli-
cation thread is not started immediately after
the vrtaStart() Virtual Machine API has been
called. Instead the Virtual Machine waits until
a Start action is sent to the Application Man-
ager before starting the application thread.
In slave mode the Virtual Machine does not
terminate immediately after the application
thread returns from OS_MAIN(). Instead the
Virtual Machine waits until a Terminate action
is sent to the Application Manager.
If the -slave option is not used then the Vir-
tual ECU loads in auto start mode. In auto
start mode the application thread starts im-
mediately after the vrtaStart() Virtual Ma-
chine API has been called.
In auto start mode the Virtual Machine termi-
nates immediately after the application thread
returns from OS_MAIN().

12.2 vrtaServer

vrtaServer supports the command line options listed below.

Option Description

-install Install as a service.
The -install option causes vrtaServer to in-
stall itself as a Windows service. Unless the
-silent option is also specified a confirmation
message will be displayed.

186 Command Line

Option Description
-p<n> Specify the TCP port.

vrtaServer searches a pre-defined set of TCP
ports for an empty port on which to listen
for connections. The -p<n> option forces vr-
taServer to listen on TCP port <n> for connec-
tions. <n> can be a decimal or hexadecimal
(0x prefix) number.

-silent Silent install or uninstall.
Installation and un-installation as a Windows
service normally generates a confirmation
message. The -silent option stops the
confirmation message being displayed. See
-install and -uninstall.

-standalone Run in standalone mode.
The -standalone option causes vrtaServer
to run as a standalone Windows application
rather than as a service. If you want to manu-
ally run vrtaServer rather than installing it as
a service then use the -standalone option.

-start Start the vrtaServer service.
If vrtaServer is installed as service but has
not been started then the -start option will
cause the service to be started. You do not
normally have to start the service yourself - a
VECU or vrtaMonitor will start the service if it
needs to.

-stop Stop the vrtaServer service.
If vrtaServer is installed as service and has
been started then the -stop option will cause
the service to be stopped.

-uninstall Un-install as a service.
The -uninstall option causes vrtaServer to
uninstall itself as a Windows service. If the
-silent option is not also specified a confir-
mation message will be displayed.

12.3 vrtaMonitor

vrtaMonitor supports two sets of command line options:

Global options affect the overall operation of vrtaMonitor. It does not mat-
ter where the global options appear in the command line.

Command Line 187

Sequential options are processed in the order they appear on the command
line.

12.3.1 Global Options

The following options affect the overall operation of vrtaMonitor.

Option Description

-f<filename> Close when <filename> appears.
The -f<filename> options tells vrtaMonitor
to run until the file <filename> appears and
then to terminate.

-k Terminate with specific error level.
The -k option causes vrtaMonitor to termi-
nate with a specific error level when certain
events occur.

-log=<file> Write to a log file.
The -log=<file> options causes
vrtaMonitor to log activity to the file <file>.

-scripter=<name> Select a scripting engine.
The -scripter=<name> option se-
lects the scripting engine called
rtaScript<name>.dll.

-t<n> Close after <n> seconds.
The -t<n> options tells vrtaMonitor to run for
<n> seconds and then terminate.

12.3.2 Sequential Options

The following options are processed in the order they appear on the command
line.

Option Description

<VirtualECU>.exe Auto-load the named <VirtualECU>.exe.
If vrtaMonitor encounters the name of a Vir-
tual ECU executable on its command line it at-
tempts to load the named Virtual ECU. The Vir-
tual ECU executable may be on the local PC or
a remote PC depending on whether or not the
-host option has been used. The -d, -r, -n
and -g options affect how the Virtual ECU is
auto-loaded.

188 Command Line

Option Description
-alias=<name> Connect to VECU.

The -alias=<name> option tells vrtaMonitor
to try and connect to an existing (loaded) Vir-
tual ECU that has the alias <name>. By default
vrtaMonitor assumes the Virtual ECU is on
the local PC. If it is not the -host option should
be used.

-d Load but not start a Virtual ECU.
The -d options causes the next Virtual ECU
auto-loaded to be loaded but not started.

-g Load with a GUI.
The -g options causes the next Virtual ECU
auto-loaded to run with an embedded GUI (i.e.
run in GUI mode).

-host=<hostname> Select a remote PC.
The -host=<hostname> option selects the re-
mote PC for the -alias and auto-load options.
<hostname> is the host name of the remote
PC.

-mon=<dev>.<event> Monitor event.
The -mon=<dev>.<event> options tells
vrtaMonitor to monitor the event called
<event> from the device called <dev> in the
Virtual ECU to which vrtaMonitor has most
recently attached (-alias) or auto-loaded.

-n Load without a GUI.
The -n options causes the next Virtual ECU
auto-loaded to run without an embedded GUI
(i.e. run in silent mode). This is the default
when auto-loading a Virtual ECU.

-p<n> Select TCP port.
The -p<n> option tells vrtaMonitor that vr-
taServer is listening on port <n>. By default
vrtaMonitor looks for vrtaServer on a set of
pre-defined TCP port numbers. <n> may be a
decimal or hexadecimal (0x prefix) number.

-quit Terminate.
The -quit option causes vrtaMonitor to ter-
minate.

Command Line 189

Option Description
-r Load and start a VECU.

The -r options causes the next Virtual ECU
auto-loaded to be loaded and started. This is
the default when auto-loading a Virtual ECU.

-script=<file> Use a script file.
The -script=<file> option causes
vrtaMonitor to run the script in the file
<file>. Please contact ETAS if you need
information on monitor scripts.

-send=<dev>.<act> Send an action.
The -send=<dev>.<act> options tells
vrtaMonitor to send the data-less action
called <act> to the device called <dev> in the
Virtual ECU to which vrtaMonitor has most
recently attached (-alias) or auto-loaded.

-send=<dev>.<act>(<str>) Send an action with data.
The -send=<dev>.<act>(<str>) options tells
vrtaMonitor to send the action called <act>
to the device called <dev> in the Virtual ECU
to which vrtaMonitor has most recently at-
tached (-alias) or auto-loaded. The string
<str> is sent as action data.

-start Start a VECU.
The -start option tells vrtaMonitor to send a
Start action to the Application Manager of the
next Virtual ECU auto-loaded.

-wait=<n> Wait.
The -wait=<n> option causes vrtaMonitor to
wait for approximately <n> milliseconds before
processing the next command line option.

12.3.3 Command Files

Command line options can be passed to vrtaMonitor in a command file. If
vrtaMonitor encounters a statement of the form @<file> on its command
line it will start processing command line options from the file <file>. Each
option in <file> must be on a separate line.

190 Command Line

13 Virtual ECU Server Library

The Virtual ECU Server library is a library that provides a C programming API
for communication with vrtaServer. This chapter describes, in alphabetic
order, the API calls provided by this library.

13.1 Using the DLL

The server library is provided as a DLL called VesLib.dll. An import library
is not provided for the DLL since the format of import libraries varies be-
tween compilers. If you wish to use VesLib.dll you will need to use the
Windows LoadLibrary() function to load the DLL and then the Windows
GetProcAddress() function to get pointers to the library API functions within
the DLL.

13.2 Using the Source Code

If required, you can rebuild the library by generating the source code for the
devices and compiling it yourself.

To do this, you should call rtaosgen with the −−samples:[Interfaces] op-
tion to generate sample source code and follow any instructions you are
given. Prototypes for all of the library API functions can be found in VesLib.h.
Any source files that wish to use the library should include the VesLib.h
header file.

The VesLib.dll supplied with VRTA was produced by compiling VesLib.cpp
with the C++ macro VESLIB_DLL defined.

13.3 Virtual ECU Aliases

vrtaServer makes use of aliases to keep track of Virtual ECUs. When a Vir-
tual ECU registers with vrtaServer it is assigned an alias. The default alias
for a VECU is simply the name of its executable. However if multiple VECUs
with the same executable name register with vrtaServer then a numeric suf-
fix is applied to the executable name to generate a unique alias. For example,
if a VECU with the executable vecu.exe is loaded then it will be assigned the
alias “vecu.exe”. If a second instance of vecu.exe is loaded then it will be
assigned the alias “vecu.exe_2”.

It is also possible for a VECU’s alias to be set on the command line of the
VECU by using the “--alias” command line option. Again vrtaServer will
apply numeric suffixes to the specified aliases to ensure that all aliases are
unique.

Virtual ECU Server Library 191

13.4 Types

13.4.1 VesLibEcuInfoType

The VesLibEcuInfoType type is used to identify Virtual ECU executables to
the server library. VesLibEcuInfoType has the definition:

typedef struct {
char path[VESLIB_MAX_PATH];

} VesLibEcuInfoType;

The path field should contain the full path of the Virtual ECU executable.

13.4.2 VesLibEcuAliasType

The VesLibEcuAliasType type is used to contain Virtual ECU aliases.
VesLibEcuAliasType has the definition:

typedef struct {
char name[VESLIB_MAX_PATH];

} VesLibEcuAliasType;

13.5 The API Call Template

Each API call is described in this chapter using the following standard format:

The title gives the name of the API call.

A brief description of the API call is provided.

Function declaration

Interface in C syntax.

Parameters

Parameter Mode Description

Parameter Name Input/Output Description.

Description

Explanation of the functionality of the API call.

Return values

Value Description

Return values Description of return value.

Notes

Usage restrictions and notes for the API call.

192 Virtual ECU Server Library

See also

List of related API calls.

Virtual ECU Server Library 193

13.6 VesLibAttachToECU()

Attach to a loaded Virtual ECU.

Function declaration

VesLibStatusType VesLibAttachToECU
(VesLibEcuAliasType * alias,
int * port)

Parameters

Parameter Mode Description

alias Input A pointer to a VesLibEcuAliasType structure
specifying the alias of a loaded Virtual ECU.

port Output A pointer to a variable that on successful return will
contain the TCP port number of the Virtual ECU’s
diagnostic port.

Description

This function is used to connect to a Virtual ECU that has already been loaded.
On successful return *port contains the port number of the Virtual ECU’s
diagnostic interface.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with
vrtaServer.

VESLIB_STATUS_NO_ECU The alias does not exist.

VESLIB_STATUS_ECU_NOT_LOADED The alias is not loaded.

Notes

None.

See also

VesLibListLoadedECUs
VesLibLoadECU

194 Virtual ECU Server Library

13.7 VesLibCreateAlias()

Create an alias for a Virtual ECU.

Function declaration

VesLibStatusType VesLibCreateAlias
(VesLibEcuInfoType * ecu,
VesLibEcuAliasType * alias)

Parameters

Parameter Mode Description

ecu Input A pointer to a VesLibEcuInfoType structure that
identifies the Virtual ECU executable.

alias Output A pointer to a VesLibEcuAliasType structure that
will contain the new alias.

Description

This API call creates an alias for a Virtual ECU. ecu identifies a Virtual ECU
executable. alias points to a VesLibtEcuAliasType structure allocated by
the caller. On successful return *alias contains a new alias for the Virtual
ECU. The reference count for the alias will have been set to 1.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

VESLIB_STATUS_NO_ECU The Virtual ECU executable does not ex-
ist.

Notes

None.

See also

VesLibFreeAlias
VesLibLoadECU

Virtual ECU Server Library 195

13.8 VesLibExit()

Shutdown the library.

Function declaration

VesLibStatusType VesLibExit(void)

Parameters

Parameter Mode Description

<none>

Description

This API call is used to disconnect from vrtaServer and release any re-
sources allocated within VesLibInitialize() and subsequent API calls
(but it does not release any memory that should have been freed via
VesLibFreeMemory()).

VesLibInitialize() can be called subsequently to re-attach to the vr-
taServer.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

Notes

None.

See also

VesLibInitialize
VesLibSelectServer

196 Virtual ECU Server Library

13.9 VesLibFindECUs()

Find out what Virtual ECU executables are present.

Function declaration

VesLibStatusType VesLibFindECUs
(char * dir,
char * * results)

Parameters

Parameter Mode Description

dir Input The path of the directory to be searched for Virtual
ECU executables.

results Output A pointer to a variable which on successful return
will point to a list of Virtual ECU executables.

Description

This API call is used to discover the Virtual ECU executables present on the
local PC (or remote PC if VesLibSelectServer() has been used to select vr-
taServer running on a remote PC). dir contains the path of the directory to
be searched - either as an absolute path or a path relative to the directory
containing the vrtaServer executable. On successful return *results points
to a ‘\n’ separated list of the Virtual ECUs executables found in the speci-
fied directory plus directory information that allows remote navigation of the
directories available on vrtaServer’s PC.

On successful return the ‘\n’ separated list pointed to by *results contains
the following items in the order specified below:

1. The current path.

2. A comma separated list of drives that are readable.

3. The subdirectories of dir (one per line), including ‘..’ for a non-root
directory.

4. A blank line.

5. A list of files in dir that may be valid Virtual ECU applications.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

Virtual ECU Server Library 197

Notes

*results points to memory allocated by the server library. The memory
should be released by calling VesLibFreeMemory().

See also

VesLibFreeMemory

198 Virtual ECU Server Library

13.10 VesLibFreeAlias()

Free a Virtual ECU alias.

Function declaration

VesLibStatusType VesLibFreeAlias(
VesLibEcuAliasType * alias)

Parameters

Parameter Mode Description

alias Input A pointer to a VesLibEcuAliasType structure spec-
ifying an alias.

Description

This API call decrements the reference count of the specified Virtual ECU alias.
An alias is removed when its reference count reaches zero. If the application
that is using the library terminates without freeing aliases then vrtaServer
will automatically decrement the reference counts of aliases appropriately.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

VESLIB_STATUS_NO_ECU The alias does not exist.

Notes

None.

See also

VesLibCreateAlias
VesLibGetAliases
VesLibListAliases
VesLibListLoadedECUs

Virtual ECU Server Library 199

13.11 VesLibFreeMemory()

Free memory allocated by the server library.

Function declaration

void VesLibFreeMemory(void * results)

Parameters

Parameter Mode Description

results Input A pointer the memory to be freed

Description

This API call is used to free memory returned from other library functions.

Return values

Value Description

<none>

Notes

None.

See also

VesLibFindECUs
VesLibGetAliases
VesLibGetInfo
VesLibListAliases
VesLibListLoadedECUs

200 Virtual ECU Server Library

13.12 VesLibGetAliases()

Get a list of the aliases that exist for a Virtual ECU executable.

Function declaration

VesLibStatusType VesLibGetAliases(
VesLibEcuInfoType * ecu,
VesLibEcuAliasType * * results,
int * count)

Parameters

Parameter Mode Description

ecu Input A pointer to a VesLibEcuInfoType structure that
identifies the Virtual ECU executable.

results Output A pointer to a variable which on successful return
will point to a list of VesLibEcuAliasType struc-
tures containing the aliases for the specified Vir-
tual ECU executable.

count Output A pointer to a variable which on successful return
will contain the number of aliases in *results.

Description

This API call gets a list of all the aliases that exists for a specified Vir-
tual ECU executable. The aliases may have been created explicitly with
VesLibCreateAlias() or have been created when the Virtual ECU registered
with vrtaServer. ecu identifies the Virtual ECU executable. On successful
return *results points to an array of VesLibEcuAliasType structures con-
taining all aliases for the Virtual ECU executable and *count contains the
number of aliases in the array. If no alias exists for the specified Virtual ECU
executable, one will be created. The reference count of each alias returned
is incremented by 1.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

ESLIB_STATUS_NO_ECU The Virtual ECU executable does not ex-
ist.

Notes

*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory().

Virtual ECU Server Library 201

See also

VesLibFreeMemory
VesLibFreeAlias
VesLibLoadEECU
VesLibListAliases

202 Virtual ECU Server Library

13.13 VesLibGetInfo()

Get version information about a Virtual ECU.

Function declaration

VesLibStatusType VesLibGetInfo(
VesLibEcuAliasType * alias,
char * * results)

Parameters

Parameter Mode Description

alias Input A pointer to a VesLibEcuAliasType structure
specifying an alias.

results Output A pointer to a variable which on successful return
will point to version information.

Description

This API call returns version information about the specified Virtual ECU alias.
On successful return *results points to a “\n” separated list containing ver-
sion number information as a series of “key=value” pairs.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

VESLIB_STATUS_NO_ECU The alias does not exist.

Notes

*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory().

See also

None.

Virtual ECU Server Library 203

13.14 VesLibInitialize()

Initialize the library.

Function declaration

VesLibStatusType VesLibInitialize(void)

Parameters

Parameter Mode Description

<none>

Description

This API call is used to prepare the library for use. This API must be called
before all other API calls except for VesLibSelectServer().

By default the server library communicates with vrtaServer running on the
local PC. This can be changed by calling VesLibSelectServer().

If vrtaServer is not already running on the selected PC then the server li-
brary will attempt to start vrtaServer as a service on the selected PC when
VesLibInitialize() is called. This will only succeed if vrtaServer has been
installed as a service on the selected PC.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_START vrtaServer cannot be started.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

Notes

None.

See also

VesLibExit
VesLibSelectServer

204 Virtual ECU Server Library

13.15 VesLibListAliases()

Get a list of all aliases that exist.

Function declaration

VesLibStatusType VesLibListAliases(
VesLibEcuAliasType * * results,
int * count)

Parameters

Parameter Mode Description

results Output A pointer to a variable which on successful return
will point to a list of VesLibEcuAliasType struc-
tures containing all aliases.

count Output A pointer to a variable which on successful return
will contain the number of aliases in *results.

Description

This API call gets a list of all aliases that have been created. The aliases
may have been created explicitly with VesLibCreateAlias() or have been
created when Virtual ECUs registered with vrtaServer. On successful return

*results points to an array of VesLibEcuAliasType structures containing all
aliases that have been created and *count contains the number of aliases in
the array. The reference count of each alias returned is incremented by 1.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

Notes

*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory().

See also

VesLibFreeMemory
VesLibFreeAlias
VesLibGetAliases
VesLibLoadECU

Virtual ECU Server Library 205

13.16 VesLibListLoadedECUs()

Get a list of the Virtual ECUs that have been loaded.

Function declaration

VesLibStatusType VesLibListLoadedECUs(
VesLibEcuAliasType * * results,
int * count)

Parameters

Parameter Mode Description

results Output A pointer to a variable which on successful return
will point to a list of VesLibEcuAliasType struc-
tures containing the aliases of loaded Virtual ECUs.

count Output A pointer to a variable which on successful return
will contain the number of aliases in *results.

Description

This API call is used to discover the aliases of Virtual ECUs that have been
loaded (i.e. the Virtual ECU executables are running). On successful return

*results points to an array of VesLibEcuAliasType structures containing
the aliases of all loaded Virtual ECUs and *count contains the number of
aliases in the array. The reference count of each alias returned is incremented
by 1.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

Notes

*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory().

See also

VesLibFreeMemory
VesLibFreeAlias
VesLibLoadECU

206 Virtual ECU Server Library

13.17 VesLibLoadECU()

Load a Virtual ECU.

Function declaration
VesLibStatusType VesLibLoadECU(

VesLibEcuAliasType * alias,
VesLibStartMode startMode,
VesLibDisplayMode displayMode,
char * cmd,
int * port)

Parameters

Parameter Mode Description

alias Input A pointer to a VesLibEcuAliasType structure
specifying the alias of the Virtual ECU executable
to load.

startMode Input The start mode for the Virtual ECU.

displayMode Input The display mode for the Virtual ECU.

cmd Input The command line for the Virtual ECU.

port Output A pointer to a variable that on successful return
will contain the TCP port number of the Virtual
ECU’s diagnostic port.

Description

This API call is used to load and connect to a Virtual ECU alias specified
by alias (i.e. to run the Virtual ECU executable identified by alias). If
startMode is VesLibSMAuto then the alias is loaded in autostart mode. If
startMode is VesLibSMSlave then the alias is loaded in slave mode. If
displayMode is VesLibDMSilent then the alias is loaded in silent mode. If
displayMode is VesLibDMGui then the alias is loaded in GUI mode. cmd spec-
ifies additional command line parameters. On successful return *port con-
tains the port number of the Virtual ECU’s diagnostic interface.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

VESLIB_STATUS_NO_ECU The alias does not exist.

VESLIB_STATUS_ECU_LOADED The alias is already loaded.

Notes

None.

Virtual ECU Server Library 207

See also

VesLibCreateAlias
VesLibListLoadedECUs
VesLibAttachToECU

208 Virtual ECU Server Library

13.18 VesLibSelectServer()

Select the vrtaServer to use.

Function declaration

VesLibStatusType VesLibSelectServer(
const char *host,
int port)

Parameters

Parameter Mode Description

host Input The host name of the PC running vrtaServer.

port Input The number of the TCP port being used by vr-
taServer.

Description

The server library is normally used to communicate with vrtaServer running
on the local PC. This API call can direct the server library to communicate with
vrtaServer running on a remote PC by passing the hostname of the remote
PC as host. If host is NULL then the server library will communicate with
vrtaServer running on the local PC (it internally defaults host to “localhost”).

Similarly vrtaServer is normally found by searching three pre-defined TCP
port numbers. If vrtaServer is set to use a different port number then you
can specify this number with the port argument. If port is zero then the
server library will search for vrtaServer on the pre-defined port numbers.

VesLibSelectServer() should normally be called before
VesLibInitialize(). If it is called after VesLibInitialize() but be-
fore VesLibExit() then the function will itself call VesLibExit() then
VesLibInitialize() to reset the connection.

Return values

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_START vrtaServer cannot be started.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with vr-
taServer.

Notes

None.

Virtual ECU Server Library 209

See also

VesLibInitialize
VesLibExit

210 Virtual ECU Server Library

14 COM Bridge Tutorial

The COM Bridge provides services to COM enabled clients such as Microsoft
Visual Basic to allow them to interact with Virtual ECUs. The COM Bridge is
implemented as a DLL COM Server. It will be loaded into the process of any
client wishing to use it. The DLL is vrtaMSCOM.dll.

A reference to the COM bridge is provided in Chapter 15.

This chapter assumes familiarity with COM programming and is a tuto-
rial on the use of the Virtual ECU COM bridge only.

14.1 Example

The section shows code snippets written in Microsoft Visual Basic that demon-
strate how to use the COM Bridge.

14.1.1 CVcServer

The CVcServer object is used to connect to vrtaServer so that you can load
or attach to VECUs. The code below shows how to create a CVcServer named
local_Server, connect to the local vrtaServer, create an alias for the VECU
named by ourexe, then load it.

’ Declare a server component
Private local_Server As CVcServer

’ Create the server component in form load
Private Sub Form_Load()

Set local_Server = New CVcServer
< ... snip ...>

End Sub

’ Release the server component in form unload
Private Sub Form_Unload(Cancel As Integer)

Set local_Server = Nothing
< ... snip ...>

End Sub

’ A helper function that checks the server component
’ return codes
Private Sub CheckServerStatus(location, val)

If val = STATUS_OK Then
Exit Sub

ElseIf val = SERVER_START Then
ret = "SERVER_START"

ElseIf val = SERVER_COMMS Then

COM Bridge Tutorial 211

ret = "SERVER_COMMS"
ElseIf val = NO_ECU Then

ret = "NO_ECU"
ElseIf val = ECU_LOADED Then

ret = "ECU_LOADED"
ElseIf val = ECU_NOT_LOADED Then

ret = "ECU_NOT_LOADED"
ElseIf val = ECU_SLAVE Then

ret = "ECU_SLAVE"
ElseIf val = ECU_ALIASED Then

ret = "ECU_ALIASED"
ElseIf val = NOT_LOADED Then

ret = "NOT_LOADED"
Else

ret = "** UNKNOWN **"
End If
AddLine (location + " return status: " + ret)
AddLine ("Test failed")

’ Quit program
Unload fTest

End Sub

Private Sub DoSomething()

Call CheckServerStatus(
"Connect to server",
local_Server.Connect("localhost", 0)

)

Dim ouralias As String
Call CheckServerStatus(

"Create alias",
local_Server.CreateAlias(ourexe, ouralias)

)

Dim diagport As Long
Call CheckServerStatus("LoadECU",

local_Server.LoadECU(
ouralias, AUTO, GUI, "", diagport)

)

< ... snip ...>

212 COM Bridge Tutorial

Call CheckServerStatus("FreeAlias",
local_Server.FreeAlias(ouralias)

)
local_Server.Disconnect

End Sub

14.2 CVcECU

The CVcECU object is used to connect to a VECU so that you can interact
with its devices. The code below shows how to create a CVcECU named
monitored_ECU, connect it to a VECU, hook and display an event then ter-
minate the VECU.

’ Declare an ECU component that has events
Private WithEvents monitored_ECU As CVcECU

’ Create the ECU component in form load
Private Sub Form_Load()

Set monitored_ECU = New CVcECU
< ... snip ...>

End Sub

’ Release the ECU component in form unload
Private Sub Form_Unload(Cancel As Integer)

Set monitored_ECU = Nothing
< ... snip ...>

End Sub

’ A helper function that checks the ECU component
’ return codes
Private Sub CheckECUStatus(location As String, val As Integer)

Dim ret As String

If val = ECU_OK Then
Exit Sub

ElseIf val = ECU_DevErr Then
ret = "ECU_DevErr"

ElseIf val = ECU_IDErr Then
ret = "ECU_IDErr"

ElseIf val = ECU_ValErr Then
ret = "ECU_ValErr"

Else
ret = "** UNKNOWN **"

End If
AddLine (location + " return status: " + ret)

COM Bridge Tutorial 213

AddLine ("Test failed")
’ Quit program
Unload fTest

End Sub

’ This gets called each time an event hooked by
’ monitored_ECU gets raised in the VECU
Private Sub monitored_ECU_OnEventChange(ByVal dev As Long,

ByVal id As Long, ByVal value As String)
hook_count = hook_count + 1
AddLine (

"** Device " + Str(dev) +
", Event " + Str(id) +
", Value " + value)

End Sub

’ This waits for at least one event to be hooked
’ It is only here for test purposes - normally we
’ just allow events to arrive asynchronously
Private Sub WaitOnEvents()

Do
hook_count = 0
PauseTime = 0.5 ’ Set duration.
Start = Timer ’ Set start time.
Do While Timer < Start + PauseTime

DoEvents ’ Yield to other processes.
Loop

Loop Until (hook_count = 0)
End Sub

Private Sub DoSomething()

< ... snip ...>
Call CheckECUStatus("Connect",

monitored_ECU.Connect("localhost", diagport)
)

AddLine ("Loaded ok")

Call CheckECUStatus("Hook ecu",
monitored_ECU.Hook(

a_device_ID,
an_event_ID,
1

)

214 COM Bridge Tutorial

)

WaitOnEvents

Call CheckECUStatus("Terminate",
monitored_ECU.DoAction(2, 2)

) ’ Terminate

Call CheckECUStatus("Disconnect",
monitored_ECU.Disconnect

)

< ... snip ...>
End Sub

14.2.1 CVcDevice, CVcAction and CVcEvent

The CVcDevice, CVcAction and CVcEvent components represent a VECU de-
vice, action and event respectively. They cannot be created via ‘New’ like
CVcServer or CVcECU because they must be bound to a parent CVcECU or
CVcDevice.

A CVcDevice object is obtained by calling the CVcECU’s GetDeviceByName
or GetDeviceByID method. A CVcAction object is obtained by calling the
CVcDevice’s GetActionByName or GetActionByID method. A CVcEvent ob-
ject is obtained by calling the CVcDevice’s GetEventByName or GetEventByID
method. The code below shows how to create these objects, hook and display
events.

Private WithEvents monitored_Device As CVcDevice
Private monitored_Action As CVcAction
Private WithEvents monitored_Event As CVcEvent

’ This gets called each time an event hooked by
’ monitored_Device gets raised in the VECU
Private Sub monitored_Device_OnEventChange(ByVal id As Long,

ByVal value As String)
hook_count = hook_count + 1
AddLine (" Event " + Str(id) + ", Value " + value)

End Sub

’ This gets called each time an event hooked by
’ monitored_Event gets raised in the VECU
Private Sub monitored_Event_OnEventChange(ByVal value As String

)

COM Bridge Tutorial 215

hook_count = hook_count + 1
AddLine ("-- Value " + value)

End Sub

Private Sub DoSomething()
< ... snip ...>

Set monitored_Device =
monitored_ECU.GetDeviceByName("Test")

Set monitored_Action =
monitored_Device.GetActionByName("f01")

Set monitored_Event =
monitored_Device.GetEventByName("f01")

Call CheckECUStatus("Hook device",
monitored_Device.Hook(

monitored_Event.EventID, 1)
)

Call CheckECUStatus("Hook event",
monitored_Event.Hook(1)

)

monitored_Action.Send ("1.01")
monitored_Action.Send ("2.02")
monitored_Action.Send ("3.03")
monitored_Action.Send ("4.04")
monitored_Action.Send ("5.05")

WaitOnEvents

< ... snip ...>

End Sub

14.3 Tutorial

This tutorial gives an example of how to use the COM Bridge in Microsoft
Visual Basic. You will create a simple application that can monitor and control
a VECU. The example is developed using Visual Basic version 5.0, but should
be easily transferable to later versions.

The tutorial creates a program that interacts with the ‘VirtualCar’ VECU that

216 COM Bridge Tutorial

ships with RTA-OS3.0 for PC. You should be able to find this in the examples
directory for the VRTA port plug-in. The application is very simplistic: it will
only attach to the VECU if it is already running, and there will be very little
error handling done. This is because the main aim of the tutorial is to show
you how to interface between Visual Basic and VECUs.

14.3.1 Setting up the project

Firstly create a new empty Visual Basic application, renaming Form1 to fCar
with the caption Car. Ensure that you have ProgressBar and Slider compo-
nents available (you may need to add the Microsoft Windows Common Con-
trols to the Project Components), then use the screenshot below as a refer-
ence to:

• add a TextBox eAlias with the default content ‘Example2.exe’.

• add a Button bConnect alongside it.

• add a ProgressBar pSpeed with a range 0 to 100.

• add a Sliders sThrottle and sBrake, again with range 0 to 100.

Save the project as ‘Car.vbp’.

14.3.2 Connecting to vrtaServer

You will now add the code to connect to vrtaServer. Firstly ensure that the
vrtaMSCOM Library is selected in the Project References:

You now have access to the CVcServer object, so add the following lines to
the project:

Private server As CVcServer
Private Sub Form_Load()

Set server = New CVcServer
End Sub
Private Sub Form_Unload(Cancel As Integer)

Set server = Nothing
End Sub

As you can see, server gets set to a new instance of CVcServer as the form
loads. It gets released as the form unloads. Before you can use server to ac-
cess VECUs, you must connect it to vrtaServer running on a specified PC. For
this example we will assume that vrtaServer is on the same PC (“localhost”).
Add the ‘connect’ code to the button’s Click event:

Private Sub bConnect_Click()

COM Bridge Tutorial 217

If Not (STATUS_OK = server.Connect("localhost", 0))Then
MsgBox ("Did not connect to VRTA Server")
Exit Sub

End If
MsgBox ("Connected to VRTA Server")
End Sub

If you run the program at this point, then you should see the connection suc-
ceed. From this point on, server can be used to access and control VECUs on
the local PC.

14.3.3 Connecting to the VECU

The CVcECU object is used to communicate with a specific VECU. You can
obtain the details needed to use such an object via CVcServer.

Modify your code to add the declaration for ecu:

Private server As CVcServer
Private ecu As CVcECU
Private Sub Form_Load()

Set server = New CVcServer
Set ecu = New CVcECU

End Sub
Private Sub Form_Unload(Cancel As Integer)

Set server = Nothing
Set ecu = Nothing

End Sub

In the ‘Connect’ button event, add:

Dim diagport As Long
If Not (STATUS_OK = server.AttachECU(eAlias.Text, diagport)

) Then
server.Disconnect
MsgBox ("ECU is not running")
Exit Sub

End If

If Not (ECU_OK = ecu.Connect("localhost", diagport)) Then
server.Disconnect
MsgBox ("Cannot connect to ECU")
Exit Sub

End If

218 COM Bridge Tutorial

The first clause asks server for the diagnostic port number of the VECU whose
alias is the same as the text in eAlias. The connection will fail if there is no
such VECU, so you will have to start Example2.exe before you can get much
further. The second clause simply binds ecu to the VECU by specifying the PC
name and diagnostic port number. Try it and see that it works as expected.

14.3.4 Initializing the devices

The next task is to create objects to link to the VECU’s device Throttle, Brake
and Speedometer devices. They should be declared thus:

Private dSpeed As CVcDevice
Private aSpeed As CVcAction
Private WithEvents eSpeed As CVcEvent
Private dThrottle As CVcDevice
Private aThrottle As CVcAction
Private WithEvents eThrottle As CVcEvent
Private dBrake As CVcDevice
Private aBrake As CVcAction
Private WithEvents eBrake As CVcEvent

Now, when the ecu connects the application can read the current value of the
Speedometer and initialize ProgressBar pSpeed. This is done with the code
below, added to the bottom of the ‘Connect’ handler:

Dim res As String
Set dSpeed = ecu.GetDeviceByName("Speedometer")
Set eSpeed = dSpeed.GetEventByName("Value")
res = ""
If ECU_OK = eSpeed.Query(res) Then

pSpeed.value = res
End If

This shows that dSpeed gets bound to the Speedometer device, and eSpeed
gets bound to its Value event. eSpeed.Query() takes an in/out String value.
This must be empty on entry because the VECU knows that no data should
be passed ‘in’ to this event. eSpeed.Query() returns its result in the String
res. This String can be passed directly in to the ProgressBar’s value. You can
also initialize the sliders from the current values from the VECU by adding:

Set dThrottle = ecu.GetDeviceByName("Throttle")
Set aThrottle = dThrottle.GetActionByName("Value")
Set eThrottle = dThrottle.GetEventByName("Value")
res = ""
If ECU_OK = eThrottle.Query(res) Then

sThrottle.value = res

COM Bridge Tutorial 219

End If
Set dBrake = ecu.GetDeviceByName("Brake")
Set aBrake = dBrake.GetActionByName("Value")
Set eBrake = dBrake.GetEventByName("Value")
res = ""
If ECU_OK = eBrake.Query(res) Then

sBrake.value = res
End If

14.3.5 Reacting to events

You have seen how to read the value of an event to initialize the control val-
ues, so it is an easy step to set up a timer to poll for changes.

But we don’t want to do that!

It is clearly more efficient to be informed by the VECU that an event has
changed, so we simply enable the event hook mechanism and respond to
‘OnEventChange’. Modify the code above to enable the hooks:

Dim res As String

Set dSpeed = ecu.GetDeviceByName("Speedometer")
Set eSpeed = dSpeed.GetEventByName("Value")
res = ""
If ECU_OK = eSpeed.Query(res) Then

pSpeed.value = res
eSpeed.Hook (1)

End If

Set dThrottle = ecu.GetDeviceByName("Throttle")
Set aThrottle = dThrottle.GetActionByName("Value")
Set eThrottle = dThrottle.GetEventByName("Value")
res = ""
If ECU_OK = eThrottle.Query(res) Then

sThrottle.value = res
eThrottle.Hook (1)

End If

Set dBrake = ecu.GetDeviceByName("Brake")
Set aBrake = dBrake.GetActionByName("Value")
Set eBrake = dBrake.GetEventByName("Value")
res = ""
If ECU_OK = eBrake.Query(res) Then

sBrake.value = res
eBrake.Hook (1)

220 COM Bridge Tutorial

End If

Also add the event handlers:

Private Sub eBrake_OnEventChange(ByVal value As String)
sBrake.value = value

End Sub

Private Sub eSpeed_OnEventChange(ByVal value As String)
pSpeed.value = value

End Sub

Private Sub eThrottle_OnEventChange(ByVal value As String)
sThrottle.value = value

End Sub

Easy! The application will now automatically update the sliders and progress
bar whenever the associated events change in the VECU. You can use vrta-
Monitor to change the Brake and Throttle values, and your application will
respond automatically.

14.3.6 Sending actions

The final step links the sliders to the Brake and Throttle. The code is laughably
simple:

Private Sub sBrake_Change()
aBrake.Send (sBrake.value)

End Sub

Private Sub sThrottle_Change()
aThrottle.Send (sThrottle.value)

End Sub

14.3.7 Summary

Clearly in a ‘real’ application you will wish to go a lot further than this. Points
to note are:

• Run-time error checking is necessary

• You may wish to load an ECU rather than simply attach to an existing
one. You must remember that the name of the VECU executable that
gets passed to vrtaServer in LoadECU must be a path that is visible to
the server. You cannot specify a file on machine ‘a’ if the server is on
machine ‘b’.

COM Bridge Tutorial 221

• Data sent between your application and VECU actions/events is in the
form of Strings. Multiple values are \n separated.

222 COM Bridge Tutorial

15 COM Bridge Reference

The Component Object Model (COM) Bridge provides services to COM-
enabled clients such as Microsoft Visual Basic to interact with Virtual ECUs.
The COM Bridge translates between COM protocols on the client-side and the
TCP/IP protocols used by vrtaServer and VECUs.

The COM objects hosted by the COM Bridge support dual interfaces to enable
access from as wide a variety of COM clients as possible. The COM Bridge can
create worker threads and therefore the objects hosted by the COM Bridge
use the Multi-Threaded Apartment (MTA).

This chapter describes the objects and interfaces provided by the COM
Bridge. A tutorial on the use of the COM bridge is provided in Chapter 14.

Each interface method is described in a standard form as follows:

The title gives the name of the method.

A brief description of the method is provided.

Method declaration

Interface in IDL syntax.

Parameters

Parameter Mode Description

Parameter Name Input/Output Description.

Description

Explanation of the functionality of the method.

Return values

Value Description

Return values Description of return value.

COM Bridge Reference 223

15.1 CVcServer

A client must create one or more instances of the CVcServer object for each
vrtaServer with which they wish to communicate.

CVcServer provides the capability to load Virtual ECUs, find out what ECUs
are loaded / running and discover the information needed to create a CVcECU
instance.

CVcServer implements the interface ICVcServer.

224 COM Bridge Reference

15.2 ICVcServer

This is the interface to vrtaServer. ICVcServer’s constants and API are
based on those in the Virtual ECU Server Library (VesLib).

15.2.1 Enum: IVcServer_DisplayMode

This enumeration provides values that determine whether a VECU is started
with or without its embedded GUI visible.

IVcServer_DisplayMode Name

SILENT

GUI

15.2.2 Enum: IVcServer_StartMode

This enumeration provides values that determine whether a VECU is auto-
started or started in slave mode

IVcServer_StartMode Name

AUTO

SLAVE

15.2.3 Enum: IVcServer_Status

This enumeration provides the return values for all ICVcServer methods.

IVcServer_Status Name

STATUS_OK

SERVER_START

SERVER_COMMS

NO_ECU

ECU_LOADED

ECU_NOT_LOADED

ECU_SLAVE

ECU_ALIASED

NOT_LOADED

COM Bridge Reference 225

15.2.4 Method: AttachECU()

Attach to a loaded Virtual ECU.

Method declaration

HRESULT _stdcall AttachECU(
[in] BSTR alias,
[out] int * diagport,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

alias Input A Virtual ECU alias.

diagport Output The TCP port number used by the Virtual ECU’s di-
agnostic interface.

status Output The return value.

Description

This method is used to connect to a Virtual ECU that has already been loaded.
On successful return *diagport contains the port number of the virtual ECU’s
diagnostic interface.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

NO_ECU If the alias does not exist.

ECU_NOT_LOADED If the alias has not been loaded.

226 COM Bridge Reference

15.2.5 Method: Connect()

Connect to a vrtaServer instance.

Method declaration

HRESULT _stdcall Connect(
[in, defaultvalue(‘‘localhost’’)] BSTR hostname,
[in, defaultvalue(0)] long port,
[out, retval] IVcServer_Status *status

Parameters

Parameter Mode Description

hostname Input The hostname of the PC running vrtaServer.

port Input The TCP port being used by vrtaServer.

status Output The return value.

Description

This method connects to vrtaServer on the PC named hostname using TCP
port number port.

hostname can be a name (e.g. yok50123) or IP address (e.g. 127.0.0.1).

port is normally set to zero, in which case the object will search for vr-
taServer in its default location. A non-zero value can be used to force the
object to check only the specified port.

All subsequent methods apply to the instance of vrtaServer to which the ob-
ject is connected.

Return values

Value Description

STATUS_OK Success.

SERVER_START If vrtaServer cannot be started.

SERVER_COMMS If the object cannot communicate with vrtaServer.

COM Bridge Reference 227

15.2.6 Method: CreateAlias()

Create an alias for a Virtual ECU.

Method declaration

HRESULT _stdcall CreateAlias(
[in] BSTR app,
[out] BSTR * alias,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

app Input The full path (on the PC running vrtaServer) of a
virtual ECU executable.

alias Output A new alias for the virtual ECU.

status Output The return value.

Description

This method creates a new alias for a virtual ECU. On successful return, alias
contains a new alias for the virtual ECU. The reference count for the alias will
have been set to 1.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

NO_ECU If the Virtual ECU executable does not exist.

228 COM Bridge Reference

15.2.7 Method: Disconnect()

Disconnect from vrtaServer.

Method declaration

HRESULT Disconnect(void)

Parameters

None.

Description

This method is used to disconnect from vrtaServer. This method should be
called prior to termination of the application, or before connecting to a differ-
ent instance of vrtaServer.

Return values

None.

COM Bridge Reference 229

15.2.8 Method: FindECUs()

Find out what Virtual ECU executables are present.

Method declaration

HRESULT _stdcall FindECUs(
[in] BSTR srchpath,
[out] BSTR * path,
[out] BSTR * drives,
[out] BSTR * subdirs,
[out] BSTR * apps,
[out, retval] IVcServer_Status * status,

Parameters

Parameter Mode Description

srchpath Input The path of the directory to be searched for Virtual
ECU executables.

path Output The current absolute search path.

drives Output A comma-separated list of the drives that are read-
able.

subdirs Output A Ś\n’ separated list of the subdirectories of path,
including ‘..’ for a non-root directory.

apps Output A Ś\n’ separated list of the names of files in path
that could be Virtual ECU executables.

status Output The return value.

Description

This method is used to discover the virtual ECU executables on vrtaServer’s
PC.

srchpath contains the path of the directory to be searched - either as an
absolute path or a path relative to the directory containing vrtaServer.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

230 COM Bridge Reference

15.2.9 Method: FreeAlias()

Free a Virtual ECU alias.

Method declaration

HRESULT _stdcall FreeAlias(
[in] BSTR alias,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

alias Input A Virtual ECU alias.

status Output The return value.

Description

This method decrements the reference count of the specified virtual ECU
alias. An alias is removed when its reference count reaches zero. (If the con-
nection to vrtaServer terminates without freeing aliases then vrtaServer
will automatically decrement the reference counts of aliases appropriately.)

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

NO_ECU If the alias does not exist.

COM Bridge Reference 231

15.2.10 Method: GetAliases()

Get a list of the aliases that exist for a Virtual ECU executable.

Method declaration

HRESULT _stdcall GetAliases(
[in] BSTR app,
[out] BSTR * aliases,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

app Input The full path (on the PC running vrtaServer) of a
virtual ECU executable.

aliases Output A Ś\n’ separated list of all aliases that exist for the
Virtual ECU executable.

status Output The return value.

Description

This method gets a list of all aliases that have been created for a virtual ECU
executable.

On successful return aliases contains a Ś\n’ separated list of all aliases that
exist for the Virtual ECU executable. If no alias exists then one will be created.
The reference count of each alias returned is incremented by 1.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

NO_ECU If the Virtual ECU executable does not exist.

232 COM Bridge Reference

15.2.11 Method: GetInfo()

Get version information about a Virtual ECU.

Method declaration

HRESULT _stdcall GetInfo(
[in] BSTR alias,
[out] BSTR *info,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

alias Input A Virtual ECU alias.

info Output Virtual ECU version information.

status Output The return value.

Description

This function returns version information about the specified alias. On suc-
cessful return, info contains a Ś\n’ separated list of ‘key=value’ pairs.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

NO_ECU If the alias does not exist.

COM Bridge Reference 233

15.2.12 Method: ListAliases()

Get a list of all aliases that exist.

Method declaration

HRESULT _stdcall ListAliases(
[out] BSTR * aliases,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

aliases Output A Ś\n’ separated list of all aliases that exist

status Output The return value.

Description

This method gets a list of all aliases that exist.

On successful return aliases contains a Ś\n’ separated list of the aliases. The
reference count of each alias returned is incremented by 1.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

234 COM Bridge Reference

15.2.13 Method: ListLoadedAliases()

Get a list of the Virtual ECUs that have been loaded.

Method declaration

HRESULT _stdcall ListLoadedAliases(
[out] BSTR * aliases,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

aliases Output A Ś\n’ separated list of the aliases of all loaded
Virtual ECUs.

status Output The return value.

Description

This method gets a list of the aliases for all loaded Virtual ECUs.

On successful return aliases contains a Ś\n’ separated list of the aliases. The
reference count of each alias returned is incremented by 1.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

COM Bridge Reference 235

15.2.14 Method: LoadECU()

Load a Virtual ECU.

Method declaration

HRESULT _stdcall LoadECU(
[in] BSTR alias,
[in] IVcServer_StartMode startmode,
[in] IVcServer_DisplayMode displaymode,
[in] BSTR command,
[out] int * diagport,
[out, retval] IVcServer_Status * status

Parameters

Parameter Mode Description

alias Input A Virtual ECU alias.

startmode Input The start mode for the Virtual ECU.

displaymode Input The display mode for the Virtual ECU.

command Input The command line for the Virtual ECU.

diagport Output The TCP port number used by the Virtual ECU’s
diagnostic interface.

status Output The return value.

Description

This method is used to load and connect to a virtual ECU specified by alias.

If startmode is AUTO then the alias is loaded in autostart mode.

If startmode is SLAVE then the alias is loaded in slave mode.

If displaymode is SILENT then the alias is loaded in silent mode.

If displaymode is GUI then the alias is loaded in GUI mode.

command specifies additional command line parameters for the Virtual ECU.

On successful return *diagport contains the port number of the Virtual ECU’s
diagnostic interface.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

NO_ECU If the alias does not exist.

ECU_LOADED If the alias has already been loaded.

236 COM Bridge Reference

15.2.15 Method: ServerStatus()

Check if the server is still connected.

Method declaration

HRESULT ServerStatus(
[out, retval] IVcServer_Status *status

Parameters

Parameter Mode Description

status Output The return value.

Description

This method is used to check if the object is (still) connected to vrtaServer.

Return values

Value Description

STATUS_OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.

COM Bridge Reference 237

15.3 CVcECU

A CVcECU object represents a connection to a Virtual ECU. It can be connected
to (and disconnected from) local and remote Virtual ECUs. It provides access
to the Virtual ECU’s devices, events and actions.

CVcECU implements the interface ICVcECU.

238 COM Bridge Reference

15.4 ICVcECU

This is the interface to a Virtual ECU.

15.4.1 Enum: IVcECU_Status

This enumeration provides the return values for all ICVcECU methods.

IVcECU_Status Name

ECU_OK

ECU_DevErr

ECU_IDErr

ECU_ValErr

ECU_ConErr

COM Bridge Reference 239

15.4.2 Method: Connect()

Connect to a Virtual ECU.

Method declaration

HRESULT _stdcall Connect(
[in] BSTR hostname,
[in] long port,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

hostname Input The hostname of the PC running the Virtual ECU.

port Input The TCP port of the Virtual ECU’s diagnostic inter-
face.

status Output The return value.

Description

This method causes the object to connect to a Virtual ECU whose diagnostic
interface is using port port and that is loaded on the PC named hostname.
hostname can be a name (e.g. yok50123) or IP address (e.g. 127.0.0.1).

This method causes the object to disconnect from any existing connection.

Return values

Value Description

ECU_OK Success.

ECU_ValErr If the connection cannot be made.

240 COM Bridge Reference

15.4.3 Method: Disconnect()

Disconnect from a Virtual ECU.

Method declaration

HRESULT _stdcall Disconnect(
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

status Output The return value.

Description

This method disconnects from a Virtual ECU. All interfaces supplied via
GetDevicexxx(), GetActionxxx() and GetEventxxx() become invalid.

Return values

Value Description

ECU_OK Success.

ECU_ValErr If the object is not connected to a Virtual ECU.

COM Bridge Reference 241

15.4.4 Method: DoAction()

Send a data-less action to a virtual device.

Method declaration

HRESULT _stdcall DoAction(
[in] long dev,
[in] long id,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

dev Input The device ID.

id Input The action ID.

status Output The return value.

Description

This method sends the action with ID id to the device with ID dev. Only use
this method where the action requires no data.

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_DevErr If the device ID is invalid.

ECU_IDErr If the action ID is invalid.

ECU_ValErr If the sent data is invalid i.e. there should have been some.

242 COM Bridge Reference

15.4.5 Method: GetDeviceByID()

Get an interface to a virtual device by device ID.

Method declaration

HRESULT _stdcall GetDeviceByID(
[in] long id,
[out, retval] ICVcDevice ** device

Parameters

Parameter Mode Description

id Input The device ID.

device Output The return value.

Description

This method returns an ICVcDevice interface corresponding to the device with
the specified device ID. NULL is returned if the ID is invalid. The first device
has ID zero.

Return values

Value Description

<an interface> An ICVcDevice interface corresponding to the specified
device.

COM Bridge Reference 243

15.4.6 Method: GetDeviceByName()

Get an interface to a virtual device by device name.

Method declaration

HRESULT _stdcall GetDeviceByName(
[in] BSTR id,
[out, retval] ICVcDevice ** device

Parameters

Parameter Mode Description

id Input The device name.

device Output The return value.

Description

This method returns an ICVcDevice interface corresponding to the device with
the specified device name. NULL is returned if the name is invalid.

Return values

Value Description

<an interface> An ICVcDevice interface corresponding to the specified
device.

244 COM Bridge Reference

15.4.7 Method: GetDeviceCount()

Get the number of virtual devices.

Method declaration

HRESULT _stdcall GetDeviceCount(
[out, retval] long * count

Parameters

Parameter Mode Description

count Output The return value.

Description

This method gets the number of virtual devices in the Virtual ECU.

Return values

Value Description

<a value> The number of virtual devices in the Virtual ECU.

COM Bridge Reference 245

15.4.8 Method: Hook()

Hook or unhook an event.

Method declaration

HRESULT _stdcall Hook(
[in] long dev,
[in] long id,
[in] long value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

dev Input The device ID.

id Input The event ID.

value Input 1 to hook an event or zero to unhook an event.

status Output The return value.

Description

This method controls whether the event with ID id belonging to the device
with ID dev is hooked or unhooked. If the event is hooked then when the de-
vice raises the event a COM event is fired (via the event sink ICVcECUEvents).
If value is one the specified event is hooked, if value is zero the specified
event is unhooked. By default all events are unhooked.

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_DevErr If the device ID is invalid.

ECU_IDErr If the event ID is invalid.

246 COM Bridge Reference

15.4.9 Method: QueryEvent()

Query (poll) the value of an event.

Method declaration

HRESULT _stdcall QueryEvent(
[in] long dev,
[in] long id,
[in, out] BSTR * value,
[out, retval],IVcECU_Status * status

Parameters

Parameter Mode Description

dev Input The device ID.

id Input The event ID.

value Input/Output Event input data on call and the value of the
event on return.

status Output The return value.

Description

This method queries the event with ID id belonging to the device with ID dev.
If the event requires input data then this is passed in value. On successful
return the value of the event is in value.

The data passed to and from the object is in string form. It can be converted
from/to the native values by reference to the format specifiers that can be
obtained via QueryFormat() and ReplyFormat().

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_DevErr If the device ID is invalid.

ECU_IDErr If the event ID is invalid.

ECU_ValErr If the sent data is invalid.

COM Bridge Reference 247

15.4.10 Method: QueryFormat()

Get the data format for an event’s input data.

Method declaration

HRESULT _stdcall QueryFormat(
[in] long dev,
[in] long id,
[out, retval] BSTR * value

Parameters

Parameter Mode Description

dev Input The device ID.

id Input The event ID.

value Output The return value.

Description

This method returns the input data-format string for the event with ID id
belonging to the device with ID dev. The return value is empty if dev or id is
invalid. This data format string describes the format of the data that should
be provided as input to >QueryEvent(). (Many events have no input data, so
this is often empty.)

Return values

Value Description

<a string> The input data format string for the specified event.

248 COM Bridge Reference

15.4.11 Method: ReplyFormat()

Get the data format for an event’s value.

Method declaration

HRESULT _stdcall ReplyFormat(
[in] long dev,
[in] long id,
[out, retval] BSTR * value

Parameters

Parameter Mode Description

dev Input The device ID.

id Input The event ID.

value Output The return value.

Description

This method returns the data-format string for the value of the event with ID
id belonging to the device with ID dev. The return value is empty if dev or
id is invalid. This data format string describes the format of the data that is
returned by QueryEvent().

Return values

Value Description

<a string> The data format string for the value of the specified event.

COM Bridge Reference 249

15.4.12 Method: SendAction()

Send an action containing data to a virtual device.

Method declaration

HRESULT _stdcall SendAction(
[in] long dev,
[in] long id,
[in] BSTR value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

dev Input The device ID.

id Input The action ID.

value Input Action data.

status Output The return value.

Description

This method sends the action with ID id to the device with ID dev. The
data passed to the object is in string form. It can be converted from the
native values by reference to the format specifier that can be obtained via
SendFormat().

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_DevErr If the device ID is invalid.

ECU_IDErr If the action ID is invalid.

ECU_ValErr If the sent data is invalid.

250 COM Bridge Reference

15.4.13 Method: SendFormat()

Get the data format for an action.

Method declaration

HRESULT _stdcall SendFormat(
[in] long dev,
[in] long id,
[out, retval] BSTR * value

Parameters

Parameter Mode Description

dev Input The device ID.

Id Input The action ID.

value Output The return value.

Description

This method returns the data format string for the action with ID id belonging
to the device with ID dev. This shows the format of the data that is passed to
SendAction(). The return value is empty if dev or id is invalid.

Return values

Value Description

<a string> The data format string for the specified action.

COM Bridge Reference 251

15.5 ICVcECUEvents

This interface is implemented by a client that wishes to receive COM events
when a virtual device raises an event. Note that the event hook must have
been activated via ICVcECU.Hook(). Hooking or unhooking the same event
via ICVcDevice or ICVcEvent does not affect ICVcECUEvents.

15.5.1 Method: OnEventChange()

Event hook callback.

Method declaration

HRESULT OnEventChange(
[in] long dev,
[in] long id,
[in] BSTR value

Parameters

Parameter Mode Description

dev Input The device ID.

id Input The event ID.

value Input The event’s value.

Description

This method is called when a hooked event is raised. The format of the data
in value is the same as the data returned by ICVcECU method QueryEvent().

Return values

None.

252 COM Bridge Reference

15.6 CVcDevice

A CVcDevice object represents a single device in a Virtual ECU. A CVcDevice
object must only be obtained via the CVcECU method GetDevice(). It cannot
be created via CoCreateInstance(). This is to maintain the link between the
Virtual ECU and the device.

A CVcDevice object provides the ability to access the actions and events of a
specific device in a Virtual ECU.

CVcDevice implements the interface ICVcDevice.

COM Bridge Reference 253

15.7 ICVcDevice

This is the interface to a virtual device.

15.7.1 Method: DeviceID()

Get the device’s ID.

Method declaration

HRESULT _stdcall DeviceID(
[out, retval] long * id

Parameters

Parameter Mode Description

id Output The return value.

Description

This method returns the ID of the device. This is the number by which the
device is known within its Virtual ECU. The first device has ID zero.

Return values

Value Description

<a value> The ID of the device.

254 COM Bridge Reference

15.7.2 Method: DoAction()

Send a data-less action.

Method declaration

HRESULT _stdcall DoAction(
[in] long id,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

id Input The action ID.

status Output The return value.

Description

This method sends the action with ID id to this device. Only use this method
where the action requires no data.

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_IDErr If the action ID is invalid.

ECU_ValErr If the sent data is invalid i.e. there should have been some.

COM Bridge Reference 255

15.7.3 Method: GetActionByID()

Get an interface to an action by action ID.

Method declaration

HRESULT _stdcall GetActionByID(
[in] long id,
[out, retval] ICVcAction ** action

Parameters

Parameter Mode Description

id Input The action ID.

action Output The return value.

Description

This method returns an ICVcAction interface corresponding to the action with
the specified action ID. NULL is returned if the ID is invalid. The first action
has ID 1.

Return values

Value Description

<an interface> An ICVcAction interface corresponding to the specified
action.

256 COM Bridge Reference

15.7.4 Method: GetActionByName()

Get an interface to an action by name.

Method declaration

HRESULT _stdcall GetActionByName(
[in] BSTR id,
[out, retval] ICVcAction ** action

Parameters

Parameter Mode Description

id Input The action name.

action Output The return value.

Description

This method returns an ICVcAction interface corresponding to the action with
the specified name. NULL is returned if the name is invalid.

Return values

Value Description

<an interface> An ICVcAction interface corresponding to the specified
action.

COM Bridge Reference 257

15.7.5 Method: GetActionCount()

Get the number of actions supported by the device.

Method declaration

HRESULT _stdcall GetActionCount(
[out, retval] long * count

Parameters

Parameter Mode Description

count Output The return value.

Description

This method returns the number of actions supported by the device.

Return values

Value Description

<a value> The number of actions supported by the device.

258 COM Bridge Reference

15.7.6 Method: GetEventByID()

Get an interface to an event by event ID.

Method declaration

HRESULT _stdcall GetEventByID(
[in] long id,
[out, retval] ICVcEvent ** event

Parameters

Parameter Mode Description

id Input The event ID.

event Output The return value.

Description

This method returns an ICVcEvent interface corresponding to the event with
the specified event ID. NULL is returned if the ID is invalid. The first event has
ID 1.

Return values

Value Description

<an interface> An ICVcEvent interface corresponding to the specified
event.

COM Bridge Reference 259

15.7.7 Method: GetEventByName()

Get an interface to an event by name.

Method declaration

HRESULT _stdcall GetEventByName(
[in] BSTR id,
[out, retval] [out, retval] ICVcEvent ** event

Parameters

Parameter Mode Description

id Input The event name.

event Output The return value.

Description

This method returns an ICVcEvent interface corresponding to the event with
the specified name. NULL is returned if the name is invalid.

Return values

Value Description

<an interface> An ICVcEvent interface corresponding to the specified
event.

260 COM Bridge Reference

15.7.8 Method: GetEventCount()

Get the number of events supported by the device.

Method declaration

HRESULT _stdcall GetEventCount(
[out, retval] long * count

Parameters

Parameter Mode Description

count Output The return value.

Description

This method returns the number of events supported by the device.

Return values

Value Description

<a value> The number of events supported by the device.

COM Bridge Reference 261

15.7.9 Method: Hook()

Hook or unhook an event.

Method declaration

HRESULT _stdcall Hook(
[in] long id,
[in] long value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

id Input The event ID.

value Input 1 to hook an event or zero to unhook an event.

status Output The return value.

Description

This method controls whether the event with ID id is hooked or unhooked.
If the event is hooked then when the device raises the event a COM event
is fired (via the event sink ICVcDeviceEvents). If value is one the specified
event is hooked, if value is zero the specified event is unhooked. By default
all events are unhooked.

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_IDErr If the event ID is invalid.

262 COM Bridge Reference

15.7.10 Method: Name()

Get the device’s name.

Method declaration

HRESULT _stdcall Name(
[out, retval] BSTR * name

Parameters

Parameter Mode Description

name Output The return value.

Description

This method returns the name of the device.

Return values

Value Description

<a value> The name of the device.

COM Bridge Reference 263

15.7.11 Method: QueryEvent()

Query (poll) the value of an event.

Method declaration

HRESULT _stdcall QueryEvent(
[in] long id,
[in, out] BSTR * value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

id Input The event ID.

value Input/Output Event input data on call and the value of the
event on return.

status Output The return value.

Description

This method queries (polls) the event with ID id. If the event requires input
data then this is passed in value. On successful return the value of the event
is in value.

The data passed to and from the object is in string form. It can be converted
from/to the native values by reference to the format specifiers that can be
obtained via QueryFormat() and ReplyFormat().

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_IDErr If the event ID is invalid.

ECU_ValErr If the sent data is invalid.

264 COM Bridge Reference

15.7.12 Method: QueryFormat()

Get the data format for an event’s input data.

Method declaration

HRESULT _stdcall QueryFormat(
[in] long id,
[out, retval] BSTR * value

Parameters

Parameter Mode Description

id Input The event ID.

value Output The return value.

Description

This method returns the input data-format string for the event with ID id.
The return value is empty if id is invalid. This data format string describes
the format of the data that should be provided as input to QueryEvent().
(Many events have no input data, so this is often empty.)

Return values

Value Description

<a string> The input data format string for the specified event.

COM Bridge Reference 265

15.7.13 Method: ReplyFormat()

Get the data format for an event’s value.

Method declaration

HRESULT _stdcall ReplyFormat(
[in] long id,
[out, retval] BSTR * value

Parameters

Parameter Mode Description

id Input The event ID.

value Output The return value.

Description

This method returns the data-format string for the value of the event with ID
id. The return value is empty if id is invalid. This data format string describes
the format of the data that is returned by QueryEvent().

Return values

Value Description

<a string> The data format string for the value of the specified event.

266 COM Bridge Reference

15.7.14 Method: SendAction()

Send an action containing data.

Method declaration

HRESULT _stdcall SendAction(
[in] long id,
[in] BSTR value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

id Input The action ID.

value Input Action data.

status Output The return value.

Description

This method sends the action with ID id to this device. The data passed to
the object is in string form. It can be converted from the native values by
reference to the format specifier that can be obtained via SendFormat().

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_IDErr If the action ID is invalid.

ECU_ValErr If the sent data is invalid.

COM Bridge Reference 267

15.7.15 Method: SendFormat()

Get the data format for an action.

Method declaration

HRESULT _stdcall SendFormat(
[in] long id,
[out, retval] BSTR * value

Parameters

Parameter Mode Description

id Input The action ID.

value Output The return value.

Description

This method returns the data format string for the action with ID id. This
shows the format of the data that is passed to SendAction(). The return
value is empty if id is invalid.

Return values

Value Description

<a string> The data format string for the specified action.

268 COM Bridge Reference

15.8 ICVcDeviceEvents

This interface is implemented by a client that wishes to receive COM events
when a virtual device raises an event. Note that the event hook must have
been activated via ICVcDevice.Hook(). Hooking or unhooking the same
event via ICVcECU or ICVcEvent does not affect ICVcDeviceEvents.

15.8.1 Method: OnEventChange()

Event hook callback.

Method declaration

HRESULT OnEventChange(
[in] long id,
[in] BSTR value

Parameters

Parameter Mode Description

id Input The event ID.

value Input The event’s value.

Description

This method is called when a hooked event is raised. The format of the
data in value is the same as the data returned by ICVcDevice method
QueryEvent().

Return values

None.

COM Bridge Reference 269

15.9 CVcAction

A CVcAction object represents a single action on a specific device in a Virtual
ECU. A CVcAction object must only be obtained via the CVcDevice method
GetActionxxx(). It cannot be created via CoCreateInstance(). This is to
maintain the link between the device and the action.

A CVcAction object provides the ability to send an action to a Virtual ECU.

CVcAction implements the interface ICVcAction.

270 COM Bridge Reference

15.10 ICVcAction

This is the interface to a virtual device action.

15.10.1 Method: ActionID()

Get the action’s ID.

Method declaration

HRESULT _stdcall ActionID(
[out, retval] long * id

Parameters

Parameter Mode Description

id Output The return value.

Description

This method returns the ID of the action. This is the number by which the
action is known within its device. The first action has ID 1.

Return values

Value Description

<a value> The ID of the action.

COM Bridge Reference 271

15.10.2 Method: Do()

Send a data-less action.

Method declaration

HRESULT _stdcall Do (
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

status Output The return value.

Description

This method sends the action. Only use this method where the action re-
quires no data.

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_ValErr If the sent data is invalid i.e. there should have been some.

272 COM Bridge Reference

15.10.3 Method: Name()

Get the action’s name.

Method declaration

HRESULT _stdcall Name(
[out, retval] BSTR * name

Parameters

Parameter Mode Description

name Output The return value.

Description

This method returns the name of the action.

Return values

Value Description

<a value> The name of the action.

COM Bridge Reference 273

15.10.4 Method: Send()

Send an action containing data.

Method declaration

HRESULT _stdcall SendAction(
[in] BSTR value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

value Input Action data.

status Output The return value.

Description

This method sends the action. The data passed to the object is in string
form. It can be converted from the native values by reference to the format
specifier that can be obtained via SendFormat().

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_ValErr If the sent data is invalid.

274 COM Bridge Reference

15.10.5 Method: SendFormat()

Get the data format for an action.

Method declaration

HRESULT _stdcall SendFormat(
[out, retval] BSTR * value

Parameters

Parameter Mode Description

value Output The return value.

Description

This method returns the data format string for the action. This shows the
format of the data that is passed to Send().

Return values

Value Description

<a string> The data format string for the specified action.

COM Bridge Reference 275

15.11 CVcEvent

A CVcEvent object represents a single event on a specific device in a Virtual
ECU. A CVcEvent object must only be obtained via the CVcDevice method
GetEventxxx(). It cannot be created via CoCreateInstance(). This is to
maintain the link between the device and the event.

A CVcEvent object provides the ability to query the current value of an event.
It can also enable and disable the raising of COM events for events raised by
virtual devices.

CVcEvent implements the interface ICVcEvent.

276 COM Bridge Reference

15.12 ICVcEvent

This is the interface to a virtual device event.

15.12.1 Method: EventID()

Get the events’s ID.

Method declaration

HRESULT _stdcall EventID(
[out, retval] long * id

Parameters

Parameter Mode Description

id Output The return value.

Description

This method returns the ID of the event. This is the number by which the
event is known within its device. The first event has ID 1.

Return values

Value Description

<a value> The ID of the event.

COM Bridge Reference 277

15.12.2 Method: Hook()

Hook or unhook the event.

Method declaration

HRESULT _stdcall Hook(
[in] long value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

value Input 1 to hook the event or zero to unhook the event.

status Output The return value.

Description

This method controls whether the event is hooked or unhooked. If the event
is hooked then when the device raises the event a COM event is fired (via the
event sink ICVcEventEvents). If value is one the event is hooked, if value is
zero the event is unhooked. By default all events are unhooked.

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

278 COM Bridge Reference

15.12.3 Method: Name()

Get the event’s name.

Method declaration

HRESULT _stdcall Name(
[out, retval] BSTR * name

Parameters

Parameter Mode Description

name Output The return value.

Description

This method returns the name of the event.

Return values

Value Description

<a value> The name of the event.

COM Bridge Reference 279

15.12.4 Method: Query()

Query the value of an event.

Method declaration

HRESULT _stdcall QueryEvent(
[in, out] BSTR * value,
[out, retval] IVcECU_Status * status

Parameters

Parameter Mode Description

value Input/Output Event input data on call and the value of the
event on return.

status Output The return value.

Description

This method queries the event. If the event requires input data then this is
passed in value. On successful return the value of the event is in value.

The data passed to and from the object is in string form. It can be converted
from/to the native values by reference to the section on data format speci-
fiers.

Return values

Value Description

ECU_OK Success.

ECU_ConErr If the connection is invalid.

ECU_ValErr If the sent data is invalid.

280 COM Bridge Reference

15.12.5 Method: QueryFormat()

Get the data format for an event’s input data.

Method declaration

HRESULT _stdcall QueryFormat(
[out, retval] BSTR * value

Parameters

Parameter Mode Description

value Output The return value.

Description

This method returns the input data-format string for the event. This data
format string describes the format of the data that should be provided as
input to Query(). (Many events have no input data, so this is often empty.)

Return values

Value Description

<a string> The input data format string for the event.

COM Bridge Reference 281

15.12.6 Method: ReplyFormat()

Get the data format for an event’s value.

Method declaration

HRESULT _stdcall ReplyFormat(
[out, retval] BSTR * value

Parameters

Parameter Mode Description

value Output The return value.

Description

This method returns the data-format string for the value of the event. This
data format string describes the format of the data that is returned by
Query().

Return values

Value Description

<a string> The data format string for the value of the event.

282 COM Bridge Reference

15.13 ICVcEventEvents

This interface is implemented by a client that wishes to receive COM events
when a virtual device raises an event. Note that the event hook must have
been activated via ICVcEvent.Hook(). Hooking or unhooking the same event
via ICVcECU or ICVcDevice does not affect ICVcEventEvents.

15.13.1 Method: OnEventChange()

Event hook callback.

Method declaration

HRESULT OnEventChange(
[in] BSTR value

Parameters

Parameter Mode Description

value Input The event’s value.

Description

This method is called when a hooked event is raised. The format of the data
in value is the same as the data returned by ICVcEvent method Query().

Return values

None.

COM Bridge Reference 283

16 Glossary

Action An action is a command sent to a virtual device.

ApplicationManager (AM) The virtual device that controls aspects of the
application thread.

Application thread This is the Windows thread that runs the Virtual ECU
application code - including OSEK tasks. The application thread is cre-
ated when the vrtaStart() API is called. The application thread’s entry
point is the function called OS_MAIN().

AUTOSAR AUTOSAR is a partnership that is seeking to establish an open
standard for automotive E/E architecture. See http://www.autosar.
org

Autostart mode In autostart mode the application thread starts immedi-
ately after the vrtaStart() Virtual Machine API has been called and the
Virtual Machine terminates automatically after the application thread
returns from OS_MAIN().

Diagnostic interface A Virtual ECU has a diagnostic interface that can be
used by external applications to monitor and manage the Virtual ECU.
This diagnostic interface uses TCP/IP. The vrtaServer application keeps
track of the port numbers used by Virtual ECUs on its local PC.

ECU Electronic Control Unit.

Event An event is a signal generated (raised) by a virtual device to inform
interested parties that something has happened. Events may or may
not contain data.

GUI mode In GUI mode the Virtual ECU displays its own GUI.

Interrupt Control Unit (ICU) The virtual device that controls aspects of
the application’s virtual interrupts.

OSEK OSEK is a registered trademark of Siemens AG. It was founded in May
1993 as a joint project in the German automotive industry. Its aims are
to provide an “industry standard for an open-ended architecture for dis-
tributed control units in vehicles.” OSEK is an abbreviation for "Offene
Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug",
which translates as Open Systems and the Corresponding Interfaces for
Automotive Electronics. See http://www.osek-vdx.org.

Silent mode In silent mode the Virtual ECU does not display its own GUI.

Slave mode In slave mode the application thread is not started immediately
after the vrtaStart() Virtual Machine API has been called. Instead the

284 Glossary

http://www.autosar.org
http://www.autosar.org
http://www.osek-vdx.org

Virtual Machine waits until a Start action is sent to the Device Man-
ager before starting the application thread. In slave mode the Virtual
Machine does not terminate immediately after the application thread
returns from OS_MAIN(). Instead the Virtual Machine waits until a Ter-
minate action is sent to the Device Manager.

Virtual devices Virtual devices are software components within Virtual
ECUs that simulate hardware devices. Virtual devices include: clocks,
counters, sensors, actuators and CAN controllers.

Virtual ECU (VECU) A Virtual ECU is composed of an application, the Virtual
Machine, virtual devices and possibly an RTA-OS3.0 kernel. A Virtual
ECU is the RTA-OS3.0 for PC analog of an application running on a real
ECU.

Virtual Machine (VM) The Virtual Machine is the component of RTA-OS3.0
for PC that simulates an ECU. The Virtual Machine simulates interrupts,
manages virtual devices, manages the application thread and manages
communication with external applications. The Virtual Machine is sup-
plied as a DLL. Virtual ECU start-up code links to the Virtual Machine
DLL at runtime.

vrtaMonitor The vrtaMonitor(.exe) program is an application supplied with
RTA-OS3.0 for PC that allows Virtual ECUs running on the same or a
remote PC to be monitored and managed.

VRTA Virtual RTA-OS3.0. used to describe the RTA-OS3.0 port plug-in for the
Virtual ECU.

vrtaServer The vrtaServer(.exe) program is an application supplied with
RTA-OS3.0 for PC that manages access to Virtual ECU. It runs as a nor-
mal application or as a Windows service.

Glossary 285

17 Contacting ETAS

17.1 Technical Support

Technical support is available to all RTA-OS3.0 users with a valid support con-
tract. If you do not have such a contract then please contact ETAS through
one of the addresses listed in Section 17.2.

The best way to get technical support is by email. Any problems or questions
should be sent to: rta.hotline.uk@etas.com

It is helpful if you can provide support with the following information:

• your support contract number.

• your .xml/.rtaos configuration files.

• the error message you received and the file Diagnostic.dmp if it was
generated.

• the command line that results in an error message.

• the version of the ETAS tools you are using.

• the version of your compiler tool chain you are using.

If you prefer to discuss your problem with the technical support team you can
contact them by telephone during normal office hours (0900-1730 GMT/BST).
The telephone number for the RTA-OS3.0 support hotline is: +44 (0)1904
562624.

286 Contacting ETAS

17.2 General Enquiries

Europe

Excluding France, Belgium, Luxembourg, United Kingdom and Scandinavia

ETAS GmbH
Borsigstrasse 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-300
Germany E-mail: sales.de@etas.com

WWW: www.etas.com

France, Belgium and Luxemburg

ETAS S.A.S.
1, place des États-Unis Phone: +33 1 56 70 00 50
SILIC 307 Fax: +33 1 56 70 00 51
94588 Rungis Cedex E-mail: sales.fr@etas.com
France WWW: www.etas.com

United Kingdom and Scandinavia

ETAS Ltd.
Studio 3, Waterside Court Phone: +44 1283 54 65 12
Third Avenue, Centrum 100 Fax: +44 1283 54 87 67
Burton-upon-Trent E-mail: sales.uk@etas.com
Staffordshire DE14 2WQ WWW: www.etas.com
United Kingdom

Contacting ETAS 287

www.etas.com
www.etas.com
www.etas.com

USA

ETAS Inc.
3021 Miller Road Phone: +1 888 ETAS INC
Ann Arbor Fax: +1 734 997-9449
MI 48103 E-mail: sales.us@etas.com
USA WWW: www.etas.com

Japan

ETAS K.K.
Queen’s Tower C-17F Phone: +81 45 222-0900
2-3-5, Minatomirai, Nishi-ku Fax: +81 45 222-0956
Yokohama 220-6217 E-mail: sales.jp@etas.com
Japan WWW: www.etas.com

Korea

ETAS Korea Co. Ltd.
4F, 705 Bldg. 70-5 Phone: +82 2 5747-016
Yangjae-dong, Seocho-gu Fax: +82 2 5747-120
Seoul 137-889 E-mail: sales.kr@etas.com
Korea WWW: www.etas.com

P.R.China

ETAS (Shanghai) Co., Ltd.
2404 Bank of China Tower Phone: +86 21 5037 2220
200 Yincheng Road Central Fax: +86 21 5037 2221
Shanghai 200120 E-mail: sales.cn@etas.com
P.R. China WWW: www.etas.com

India

ETAS Automotive India Pvt. Ltd.
No. 690, Gold Hill Square, 12F Phone: +91 80 4191 2585
Hosur Road, Bommanahalli Fax: +91 80 4191 2586
Bangalore, 560 068 E-mail: sales.in@etas.com
India WWW: www.etas.com

288 Contacting ETAS

www.etas.com
www.etas.com
www.etas.com
www.etas.com
www.etas.com

Index

A
Action, 63
Actuators, 41
Application Manager, 27, 136

Actions
GetInfo, 137
Pause, 137
ReadOption, 137
ReadParam, 138
Reset, 137
Restart, 137
Start, 136
Terminate, 136
TestOption, 137

Events
Info, 138
Option, 139
OptionText, 139
ParamText, 139
Paused, 138
Reset, 138
Restarted, 138
Started, 138
State, 139
Terminated, 138

AUTOSAR OS includes
Os.h, 36
Os_Cfg.h, 36
Os_MemMap.h, 36

C
C++

Exporting functions to C, 46
C/C++ Interfacing, 45
CAPCOM

seeCompare Devices, 39
Clocks, 39
Command Line, 185
Compare Devices, 39
Counters, 39
CVcAction, 215, 270
CVcDevice, 215, 253
CVcECU, 213, 238

CVcEvent, 215, 276
CVcServer, 211, 224

D
Data Format Strings, 94
Debugging, 31
Device Manager, 25, 131

Actions
EventRegister, 131
GetDeviceActions, 132
GetDeviceEvents, 132
GetDeviceInfo, 132
HookEvents, 131
ListAll, 132

Events
DeviceActions, 132
DeviceEvents, 133
DeviceInfo, 133
DeviceList, 132

Devices, 63
Actions, 64
Events, 65
Initialization, 37
Interrupts, 65
Logger, 44
Registration, 63
State, 64

DM, 25

E
ECU, 23
Embedded GUI, 28
Event, 63

I
ICU, 27
ICVcAction, 271
ICVcDevice, 254
ICVcDeviceEvents, 269
ICVcECU, 239
ICVcECUEvents, 252
ICVcEvent, 277
ICVcEventEvents, 283
ICVcServer, 225

Index 289

InitializeDevices, 37, 99
Interrupt Control Unit, 27, 133

Actions
Clear, 134
GetIPL, 135
GetPending, 135
Mask, 134
Raise, 134
SetIPL, 135
Unmask, 135

Events
EnabledVecs, 136
IPL, 136
Pending, 135
Start, 135
Stop, 136

Interrupts, 65, 88

L
Library

Name of, 36
Linkage Table, 28

N
Non-volatile Data, 58

O
OS_MAIN, 100
Oscillator, 39

P
Problem Solving, 31

R
Real hardware, 86
Register Sets, 88
RTA-TRACE, 29, 60, 81
rtcVRTAlink.dll, 81, 82

S
Samples Devices, 140
Security, 72
Sensors, 40
Standard Devices, 130

T

TCP/IP Ports, 72

Threads, 53, 68

VECU Priority, 82

Tutorial, 33

Prerequisites, 33

V

VECU, 23, 28

Library, 191

Using RTA-TRACE with, 29

VECU Interaction, 69

Real hardware, 56

Threads, 53

vrtaMonitor, 47

VesLib.dll, 191

VesLibAttachToECU, 194

VesLibCreateAlias, 195

VesLibEcuAliasType, 192

VesLibEcuInfoType, 192

VesLibExit, 196

VesLibFindECUs, 197

VesLibFreeAlias, 199

VesLibFreeMemory, 200

VesLibGetAliases, 201

VesLibGetInfo, 203

VesLibInitialize, 204

VesLibListAliases, 205

VesLibListLoadedECUs, 206

VesLibLoadECU, 207

VesLibSelectServer, 209

Virtual Devices, 25, see Devices

Virtual ECU, 23

Virtual Machine, 23, 25

API, 89

Application Manager, 27

Device Manager, 25

Embedded GUI, 28

Interrupt Control Unit, 27

Linkage Table, 28

Visual Basic, 216

VM, 23, 25

API, 89

Linking to, 28

VRTA, 23

290 Index

vrtaActEvID, 89

vrtaAction, 63, 89

vrtaActionID, 90

vrtaActuator, 41, 166

Actions

Maximum, 168

Value, 168

Events

Maximum, 168

Value, 168

Methods

GetMax, 166

SetMax, 167

SetVal, 167

Value, 167

vrtaActuator, 166

vrtaActuatorDimmableLight, 41, 171

Actions

Maximum, 173

Value, 173

Events

Maximum, 173

Value, 173

Methods

GetMax, 171

SetMax, 172

SetVal, 172

Value, 172

vrtaActuatorDimmableLight,
171

vrtaActuatorLight, 41, 169

Actions

Value, 170

Events

Value, 170

Methods

SetVal, 169

Value, 169

vrtaActuatorLight, 169

vrtaActuatorMultiColorLight, 42, 174

Actions

Maximum, 176

Value, 176

Events

Maximum, 176

Value, 176

Methods

GetMax, 174

SetMax, 175

SetVal, 175

Value, 175

vrtaActuatorMultiColorLight,
174

vrtaBoolean, 90

vrtaByte, 90

vrtaClock, 39, 142

Actions

Interval, 144

Scale, 144

Start, 144

Stop, 144

Events

Interval, 145

Running, 145

Scale, 145

Methods

SetInterval, 142

SetScale, 143

Start, 143

Stop, 144

vrtaCompare, 40, 177

Actions

Match, 179

Vector, 180

Events

Match, 180

Methods

GetMatch, 178

IncrementMatch, 179

SetMatch, 178

SetVector, 179

vrtaCompare, 177

Raising Interrupts, 40

with Actuators, 41

with Sensors, 41

vrtaDataLen, 91

vrtaDevice, 39

vrtaDevice.h, 39

Index 291

vrtaDevID, 91

vrtaDownCounter, 152

Actions

Maximum, 156

Minimum, 156

Report, 156

Set, 156, 157

Start, 156

Stop, 156

Methods

Max, 153

Min, 152

SetMax, 154

SetMin, 153

SetVal, 154

Start, 155

Stop, 155

Value, 153

vrtaEmbed, 91

vrtaEnterUninterruptibleSection, 102

vrtaErrType, 91

vrtaEvent, 92

vrtaEventID, 93

vrtaEventRegister, 103

vrtaEventUnregister, 105

vrtaGetState, 106

vrtaHookEvent, 108

vrtaInitialize, 110

vrtaIntPriority, 93

vrtaIO, 42, 181

Actions

GetValue, 183

GetValues, 183

Value, 183

Values, 183

Events

Value, 183

Values, 184

Methods

GetValue, 182

GetValues, 182

SetValue, 181

SetValues, 181

vrtaIO, 181

vrtaIsAppFinished, 46, 113

vrtaIsAppThread, 114

vrtaIsIdle, 46, 115

vrtaISRID, 93

vrtaLeaveUninterruptibleSection,
116

vrtaLoadVM, 117

vrtaLoggerDevice.h, 44

vrtamillisecond, 93

vrtaMonitor, 29, 69, 73

Monitoring events, 76

Scripting, 78

Sending actions, 75

Viewing events, 75

vrtaMSCOM.dll, 23, 211

vrtaOptStringlistPtr, 93

vrtaRaiseEvent, 118

vrtaReadHPTime, 119

vrtaRegisterVirtualDevice, 120

vrtaReset, 125

vrtaSampleDevices.h, 39, 140

vrtaSendAction, 126

vrtaSensor, 40, 158

Actions

Maximum, 160

Value, 160

Events

Maximum, 160

Value, 160

Methods

GetMax, 158

SetMax, 159

SetVal, 159

Value, 159

vrtaSensor, 158

vrtaSensorMultiwaySwitch, 41, 163

Actions

Maximum, 165

Value, 165

Events

Maximum, 165

Value, 165

Methods

GetMax, 163

292 Index

SetMax, 164

SetVal, 164

Value, 164

vrtaSensorMultiwaySwitch,
163

vrtaSensorToggleSwitch, 41, 161

Actions

Position, 162

Events

Position, 162

Methods

SetVal, 161

Value, 161

vrtaSensorToggleSwitch, 161

vrtaServer, 29, 69

Aliasing VECUs, 77

Installing as a Windows service,
69

Security, 72

vrtaSpawnThread, 127

vrtaStart, 128

vrtaStringlistPtr, 93

vrtaTerminate, 129

vrtaTextPtr, 93

vrtaTimestamp, 94

vrtaUpCounter, 146

Actions

Maximum, 150
Minimum, 150
Report, 150
Set, 150
Start, 150
Stop, 150

Events
Set, 151

Methods
Max, 147
Min, 146
SetMax, 148
SetMin, 147
SetVal, 148
Start, 149
Stop, 149
Value, 147

vrtaVM.dll, 25
Location, 85
Search path, 25, 85

W
Windows

Library Functions, 84
Real-Time behavior, 84

X
XML Configuration, 86

Index 293

	Welcome to the RTA-OS3.0 Virtual ECU!
	Related Documents
	About You
	Document Conventions
	References

	Introduction to the Virtual ECU
	What do I need?
	What is the Virtual Machine?
	Device Manager
	Interrupt Control Unit
	Application Manager
	Embedded GUI
	Linkage Table

	What is in a Virtual ECU?
	Managing Multiple Virtual ECUs
	Interacting with a Virtual ECU
	Debugging
	Possible Problem Areas

	Tutorial
	Prerequisites
	RTA-TRACE

	Creating your first Virtual ECU: Part1
	Configuring RTA-OS3.0
	Building RTA-OS3.0
	Writing Application Code
	Writing VECU Code
	Building the Virtual ECU
	Building the Virtual ECU

	Adding Devices
	Clocks, Counters and Compare Devices
	Sensors
	Actuators
	IO
	Custom Devices

	Creating your first Virtual ECU: Part2
	Devices
	Logger
	Interfacing C code with C++ Devices
	Device Initialization
	The main() program
	Trial Run 1
	Summary so far
	Adding Tasks and ISRs
	Threads
	Trial run 2
	Linking to Real Hardware
	Non-volatile Data
	RTA-TRACE

	Summary

	ECUs and Virtual Devices
	Registering the Device
	Handling actions
	Handling State Queries
	Raising Events
	Raising Interrupts
	Parent/Child relationships
	Threads

	Interacting with VECUs
	Running vrtaServer
	Security issues

	Using vrtaMonitor
	Actions
	Events

	Multiple instances of a VECU
	Scripting using vrtaMonitor
	Example Scripts

	RTA-TRACE Integration
	How it works
	The Virtual ECU
	RTA-TRACE-Server

	Tuning process and thread priorities
	Controlling the trace at run-time

	Windows Notes
	Real-Time Behavior
	Calling the C/C++ Runtime and Windows
	Virtual Machine Location

	Migrating from a VECU to Real Hardware
	XML file
	Target and variant
	Interrupts
	Number of tasks

	Hardware Drivers
	Initialization
	Interrupts
	Register Sets

	Virtual Machine API Reference
	General notes
	API Header Files
	Linkage

	Common Data Types
	vrtaActEvID
	vrtaAction
	vrtaActionID
	vrtaBoolean
	vrtaByte
	vrtaDevID
	vrtaDataLen
	vrtaEmbed
	vrtaErrType
	vrtaEvent
	vrtaEventID
	vrtaIntPriority
	vrtaISRID
	vrtamillisecond
	vrtaOptStringlistPtr
	vrtaStringlistPtr
	vrtaTextPtr
	vrtaTimestamp

	Data Format Strings
	Overview
	Definition
	Examples

	API Functions
	InitializeDevices()
	OS_MAIN()
	vrtaEnterUninterruptibleSection()
	vrtaEventRegister()
	vrtaEventUnregister()
	vrtaGetState()
	vrtaHookEvent()
	vrtaInitialize()
	vrtaIsAppFinished()
	vrtaIsAppThread()
	vrtaIsIdle()
	vrtaLeaveUninterruptibleSection()
	vrtaLoadVM()
	vrtaRaiseEvent()
	vrtaReadHPTime()
	vrtaRegisterVirtualDevice()
	vrtaReset()
	vrtaSendAction()
	vrtaSpawnThread()
	vrtaStart()
	vrtaTerminate()

	Standard Devices (vrtaStdDevices.h)
	Action and Event Descriptions
	Device Manager
	Action: EventRegister
	Action: HookEvents
	Action: ListAll
	Action: GetDeviceActions
	Action: GetDeviceEvents
	Action: GetDeviceInfo
	Event: DeviceList
	Event: DeviceActions
	Event: DeviceEvents
	Event: DeviceInfo

	Interrupt Control Unit
	Action: Raise
	Action: Clear
	Action: Mask
	Action: Unmask
	Action: GetPending
	Action: GetIPL
	Action: SetIPL
	Event: Pending
	Event: Start
	Event: Stop
	Event: IPL
	Event: EnabledVecs

	Application Manager
	Action: Start
	Action: Terminate
	Action: Pause
	Action: Restart
	Action: Reset
	Action: GetInfo
	Action: TestOption
	Action: ReadOption
	Action: ReadParam
	Event: Started
	Event: Paused
	Event: Restarted
	Event: Reset
	Event: Terminated
	Event: Info
	Event: Option
	Event: OptionText
	Event: ParamText
	Event: State

	Sample Devices (vrtaSampleDevices.h)
	Device Descriptions
	Methods
	Actions and Events

	vrtaClock
	Method: vrtaClock()
	Method: SetInterval()
	Method: SetScale()
	Method: Start()
	Method: Stop()
	Action: Interval
	Action: Scale
	Action: Start
	Action: Stop
	Event: Interval
	Event: Scale
	Event: Running

	vrtaUpCounter
	Method: vrtaUpCounter()
	Method: Min()
	Method: Max()
	Method: Value()
	Method: SetMin()
	Method: SetMax()
	Method: SetVal()
	Method: Start()
	Method: Stop()
	Action: Minimum
	Action: Maximum
	Action: Set
	Action: Start
	Action: Stop
	Action: Report
	Event: Set

	vrtaDownCounter
	Method: vrtaDownCounter()
	Method: Min()
	Method: Max()
	Method: Value()
	Method: SetMin()
	Method: SetMax()
	Method: SetVal()
	Method: Start()
	Method: Stop()
	Action: Minimum
	Action: Maximum
	Action: Set
	Action: Start
	Action: Stop
	Action: Report
	Event: Set

	vrtaSensor
	Method: vrtaSensor()
	Method: GetMax()
	Method: Value()
	Method: SetMax()
	Method: SetVal()
	Action: Value
	Action: Maximum
	Event: Value
	Event: Maximum

	vrtaSensorToggleSwitch
	Method: vrtaSensorToggleSwitch()
	Method: Value()
	Method: SetVal()
	Action: Position
	Event: Position

	vrtaSensorMultiwaySwitch
	Method: vrtaSensorMultiwaySwitch()
	Method: GetMax()
	Method: Value()
	Method: SetMax()
	Method: SetVal()
	Action: Value
	Action: Maximum
	Event: Value
	Event: Maximum

	vrtaActuator
	Method: vrtaActuator()
	Method: GetMax()
	Method: Value()
	Method: SetMax()
	Method: SetVal()
	Action: Value
	Action: Maximum
	Event: Value
	Event: Maximum

	vrtaActuatorLight
	Method: vrtaActuatorLight()
	Method: Value()
	Method: SetVal()
	Action: Value
	Event: Value

	vrtaActuatorDimmableLight
	Method: vrtaActuatorDimmableLight()
	Method: GetMax()
	Method: Value()
	Method: SetMax()
	Method: SetVal()
	Action: Value
	Action: Maximum
	Event: Value
	Event: Maximum

	vrtaActuatorMultiColorLight
	Method: vrtaActuatorMultiColorLight()
	Method: GetMax()
	Method: Value()
	Method: SetMax()
	Method: SetVal()
	Action: Value
	Action: Maximum
	Event: Value
	Event: Maximum

	vrtaCompare
	Method: vrtaCompare()
	Method: GetMatch()
	Method: SetMatch()
	Method: IncrementMatch()
	Method: SetVector()
	Action: Match
	Action: Vector
	Event: Match

	vrtaIO
	Method: vrtaIO()
	Method: SetValue()
	Method: SetValues()
	Method: GetValue()
	Method: GetValues()
	Action: Value
	Action: Values
	Action: GetValue
	Action: GetValues
	Event: Value
	Event: Values

	Rebuilding from Source Code

	Command Line
	<VirtualECU>.exe
	vrtaServer
	vrtaMonitor
	Global Options
	Sequential Options
	Command Files

	Virtual ECU Server Library
	Using the DLL
	Using the Source Code
	Virtual ECU Aliases
	Types
	VesLibEcuInfoType
	VesLibEcuAliasType

	The API Call Template
	VesLibAttachToECU()
	VesLibCreateAlias()
	VesLibExit()
	VesLibFindECUs()
	VesLibFreeAlias()
	VesLibFreeMemory()
	VesLibGetAliases()
	VesLibGetInfo()
	VesLibInitialize()
	VesLibListAliases()
	VesLibListLoadedECUs()
	VesLibLoadECU()
	VesLibSelectServer()

	COM Bridge Tutorial
	Example
	CVcServer

	CVcECU
	CVcDevice, CVcAction and CVcEvent

	Tutorial
	Setting up the project
	Connecting to vrtaServer
	Connecting to the VECU
	Initializing the devices
	Reacting to events
	Sending actions
	Summary

	COM Bridge Reference
	CVcServer
	ICVcServer
	Enum: IVcServer_DisplayMode
	Enum: IVcServer_StartMode
	Enum: IVcServer_Status
	Method: AttachECU()
	Method: Connect()
	Method: CreateAlias()
	Method: Disconnect()
	Method: FindECUs()
	Method: FreeAlias()
	Method: GetAliases()
	Method: GetInfo()
	Method: ListAliases()
	Method: ListLoadedAliases()
	Method: LoadECU()
	Method: ServerStatus()

	CVcECU
	ICVcECU
	Enum: IVcECU_Status
	Method: Connect()
	Method: Disconnect()
	Method: DoAction()
	Method: GetDeviceByID()
	Method: GetDeviceByName()
	Method: GetDeviceCount()
	Method: Hook()
	Method: QueryEvent()
	Method: QueryFormat()
	Method: ReplyFormat()
	Method: SendAction()
	Method: SendFormat()

	ICVcECUEvents
	Method: OnEventChange()

	CVcDevice
	ICVcDevice
	Method: DeviceID()
	Method: DoAction()
	Method: GetActionByID()
	Method: GetActionByName()
	Method: GetActionCount()
	Method: GetEventByID()
	Method: GetEventByName()
	Method: GetEventCount()
	Method: Hook()
	Method: Name()
	Method: QueryEvent()
	Method: QueryFormat()
	Method: ReplyFormat()
	Method: SendAction()
	Method: SendFormat()

	ICVcDeviceEvents
	Method: OnEventChange()

	CVcAction
	ICVcAction
	Method: ActionID()
	Method: Do()
	Method: Name()
	Method: Send()
	Method: SendFormat()

	CVcEvent
	ICVcEvent
	Method: EventID()
	Method: Hook()
	Method: Name()
	Method: Query()
	Method: QueryFormat()
	Method: ReplyFormat()

	ICVcEventEvents
	Method: OnEventChange()

	Glossary
	Contacting ETAS
	Technical Support
	General Enquiries

