
RTA-OS3.1
Getting Started Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2010 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10483-GS-1.0.0

2 Copyright

Contents

1 Introduction 5
1.1 About You . 5
1.2 Document Conventions . 6
1.3 References . 6

2 Installing RTA-OS3.x 8
2.1 Preparing to Install . 8

2.1.1 Hardware Requirements 8
2.1.2 Software Requirements 8

2.2 Installation . 9
2.2.1 Tools . 9
2.2.2 VRTA . 10
2.2.3 Embedded Port Plug-ins 11

2.3 What is Installed? . 11
2.4 Licensing . 12

2.4.1 Installing the ETAS License Manager 13
2.4.2 Licenses . 14
2.4.3 Installing a Concurrent License Server 15
2.4.4 Using the ETAS License Manager 16
2.4.5 Troubleshooting Licenses 18

2.5 Verifying your Installation . 20
2.6 Running RTA-OS3.x from a Network Drive 21

2.6.1 Using the Control Panel 21
2.6.2 Using the Command-line 22

3 Developing Applications with RTA-OS3.x 23
3.1 Configuration . 23

3.1.1 Using OSEK OIL Files for Configuration 23
3.2 Library Generation . 26

3.2.1 Preparing the Toolchain 26
3.2.2 Running rtaosgen . 27
3.2.3 Building the library . 27
3.2.4 Build Messages . 27
3.2.5 Generated Files . 28

3.3 Integration . 28
3.3.1 Accessing the OS in your Source Code 28
3.3.2 Implementing Tasks and ISRs 29
3.3.3 Interacting with the RTA-OS3.x Kernel 30
3.3.4 Compiling and Linking 30
3.3.5 Common Problems . 30
3.3.6 Downloading to your Target 30

Contents 3

4 Sample Applications 32
4.1 Getting Started . 32

4.1.1 Creating Sample Applications from the
Command-Line . 32

4.1.2 Creating Sample Applications from the GUI . . . 33
4.2 Sample Application Structure . 34

4.2.1 Configuration . 35
4.2.2 Application Code . 35
4.2.3 Target Support . 35

4.3 Hello World . 37
4.3.1 What does the “HelloWorld” example do? 37
4.3.2 Verifying Program Execution 38
4.3.3 Troubleshooting . 38

4.4 Clive Devices . 39
4.5 Pizza Pronto . 40
4.6 Integration with RTA-TRACE . 41
4.7 Using Target Options . 42

5 Finding out more 44
5.1 Related Reading . 45

5.1.1 OSEK . 45
5.1.2 AUTOSAR . 45

6 Contacting ETAS 47
6.1 Technical Support . 47
6.2 General Enquiries . 47

6.2.1 ETAS Global Headquarters 47
6.2.2 ETAS Local Sales & Support Offices 47

4 Contents

1 Introduction

Welcome to RTA-OS3.1!

This guide describes how to install RTA-OS3.1, how to check that your instal-
lation works and what RTA-OS3.1 can do.

RTA-OS3.x is a small and fast real-time operating system that conforms to
both the AUTOSAR OS R3.x and OSEK/VDX OS 2.2.3 standards. The operating
system is configured and built on a PC for use on a target hardware platform.

There are two major parts to RTA-OS3.x:

1. PC Tools

The RTA-OS3.x tools are target independent and include:

rtaoscfg a graphical configuration editor for configuring RTA-OS3.x.

rtaosgen a command-line tool for generating an RTA-OS3.x kernel li-
brary based on your configuration. This includes the parts of the
RTA-OS3.x kernel that are shared across all targets.

rtaosanvis a graphical schedulability analysis tool for modeling the
timing behavior of your OS and checking that deadlines can be
satisfied.

2. Port Plug-ins

RTA-OS3.x port plug-ins are used to customize RTA-OS3.x for different
target microcontroller and compiler combinations. The PC tools support
multiple port plug-ins and you can switch between ports at configura-
tion time.

Your RTA-OS3.x tools installation includes a port plug-in for a Virtual
Target called VRTA. VRTA allows you to build RTA-OS3.x applications that
run on your PC without the need for embedded target hardware.

1.1 About You

You are a trained embedded systems developer who wants to build real-time
applications using a preemptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling
and linking of C code for embedded applications with your chosen toolchain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows 2000,
Windows XP or Windows Vista operating systems, including installing soft-
ware, selecting menu items, clicking buttons, navigating files and folders.

Introduction 5

You should read this guide before you install RTA-OS3.x and before you read
any other manuals.

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options are printed in bold,
blue characters.

Click OK. Button labels are printed in bold
characters

Press <Enter>. Key commands are enclosed in an-
gle brackets.

The “Open file” dialog box appears The names of program windows,
dialog boxes, fields, etc. are en-
closed in double quotes.

Activate(Task1) Program code, header file names,
C type names, C functions and
API call names all appear in a
monospaced typeface.

See Section 1.2. Hyperlinks through the document
are shown in blue letters.

Functionality that is provided in
RTA-OS but may not be portable to
another AUTOSAR OS implementa-
tion is marked with the ETAS logo.

Caution! Notes like this contain im-
portant instructions that you must
follow carefully in order for things
to work correctly.

1.3 References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

http://www.osek-vdx.org

6 Introduction

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

Introduction 7

http://www.autosar.org

2 Installing RTA-OS3.x

2.1 Preparing to Install

Before installing RTA-OS3.x check that all the items have been delivered. You
should have been supplied with an RTA-OS3.x tools installation and, if you
plan to run RTA-OS3.x on embedded target hardware, one (or more) port
installations.

RTA-OS3.x is provided as a downloadable electronic installation image. You
will have been provided with access to the download when the product was
purchased. You may optionally have requested an installation CD which will
have been shipped to you. The downloadable image and installation CD con-
tain identical content.

The RTA-OS3.x tools are supplied as a single installer. Each embedded port is
supplied as a separate installer. A working version of RTA-OS3.x requires the
installation of the tools and at least one port.

2.1.1 Hardware Requirements

You should make sure that you are using at least the following hardware be-
fore installing and using RTA-OS on a host PC:

• 1GHz Pentium (or higher) IBM compatible PC.

• 512Mb RAM.

• 500Mb hard disk space.

• CD-ROM or DVD drive (Optional)

• Ethernet card.

2.1.2 Software Requirements

RTA-OS requires that your host PC has one of the following versions of Mi-
crosoft Windows installed:

• Windows 2000 (Service Pack 3 or later)

• Windows XP (Service Pack 2 or later)

• Windows Vista

The tools provided with RTA-OS require Microsoft’s .NET Framework
v2.0. You should ensure that this has been installed before installing
RTA-OS. The .NET framework is not supplied with RTA-OS but is freely
available from http://www.microsoft.com/net/Download.aspx.

You will need to obtain a license key to run RTA-OS3.x after installation. Li-
censing is managed by the ETAS License Manager. For further details see
Section 2.4.

8 Installing RTA-OS3.x

http://www.microsoft.com/net/Download.aspx

2.2 Installation

The RTA-OS3.x installer will install:

1. the PC tools for RTA-OS3.x.

2. (optional) RTA-OS3.x documentation.

2.2.1 Tools

You must install the RTA-OS3.x PC tools first before installing VRTA or any port
plug-ins - this will create the necessary folder structures.

1. Either

• Double click the executable image; or

• Insert the RTA-OS3.x CD into your CD-ROM or DVD drive.
If the installation program does not run automatically, start the in-
stallation manually by navigating to the root folder of your CD/DVD
drive and running autostart.exe.

2. Follow the on-screen instructions to install RTA-OS3.x.

The default location for an RTA-OS3.x installation is
C:\ETAS\<product name>. The location can be changed during the in-
stallation process.

Once installation is complete, you will be asked whether the following addi-
tional components should be installed:

1. a port plug-in for the VRTA Virtual Target. See Section 2.2.2.

2. the ETAS License Management software. See Section 2.4.

You must install at least one port plug-in to be able to use the RTA-OS3.x
development tools. It is recommended that you accept the default in-
stallation of the VRTA port plug-in.

Installation of the additional components can be carried out later by
running the installers found within sub-folders of the installation folder.

Installing RTA-OS3.x 9

2.2.2 VRTA

VRTA enables the creation of Windows-hosted applications which emulate the
behavior of applications running on embedded hardware. VRTA is an imple-
mentation of RTA-OS3.x for a PC, so you can develop, test and debug RTA-
OS3.x configurations without needing access to embedded tools or target
hardware. VRTA is pre-configured to work with several popular PC-hosted
C/C++ compilers.

A default installation of RTA-OS3.x installs a port plug-in for VRTA into
C:\ETAS\<product name>\Targets\VRTA_n.n.n. VRTA also installs a set of
run-time libraries and executables that provide run-time support for VRTA-
based applications into C:\ETAS\<product name>\Bin.

The default installation path for the port-plugin may be different from
the tools installation path! You may wish to change the installation path
for the port-plugin so that it matches that of the tools.

Port plug-ins can be installed into any location, but using a non-default folder
requires the use of the --target_include argument to both rtaosgen and
rtaoscfg. For example:

rtaosgen --target_include:<target_folder>

The VRTA run-time libraries and executables must be on your path
for VRTA applications to run. It is recommended that you add
<install dir>\Bin to your Windows PATH environment variable. If you
have installed RTA-OS3.x on a PC that also includes an installation of
RTA-OSEK then you must ensure that the path to RTA-OS3.x is placed
before the path to RTA-OSEK.

Compilers for VRTA

VRTA is configured to work with several popular PC C/C++ compilers, includ-
ing, but not limited to:

• MinGW / gcc

• Microsoft Visual Studio 2005

• Microsoft Visual Studio 2008

A full list of supported compilers is provided in the VRTA Port Guide.

These compilers are not supplied as part of the RTA-OS3.x installation.

The MinGW (Minimalist GNU for Windows) C compiler is available from http:
//www.mingw.org. This is the default compiler used for building VRTA-based
applications.

10 Installing RTA-OS3.x

http://www.mingw.org
http://www.mingw.org

Microsoft provides an ‘Express’ Edition of the Visual Studio C++ compiler
which is freely downloadable from http://www.microsoft.com/express/
vc.

2.2.3 Embedded Port Plug-ins

Embedded port plug-ins are installed in the same way as the tools:

1. Either

• Double click the executable image; or

• Insert the RTA-OS3.x CD into your CD-ROM or DVD drive.
If the installation program does not run automatically then you will
need to start the installation manually. Navigate to the root folder
of your CD/DVD drive and run autostart.exe to start the setup.

2. Follow the on-screen instructions to install the port plug-in.

The default installation path for the port-plugin may be different from
the tools installation path - RTA-OS3.x is fully compatible with RTAOS3.0
port plugins. You may wish to change the installation path for the port-
plugin so that it matches that of the tools.

Port plug-ins can be installed into any location, but using a non-default folder
requires the use of the --target_include argument to both rtaosgen and
rtaoscfg.

2.3 What is Installed?

After installing RTA-OS3.x, a number of new folders will be created. The loca-
tion of these folders depends on where you decided to install the files. The
default location is C:\ETAS\RTA-OS3.x.

Installing RTA-OS3.x 11

http://www.microsoft.com/express/vc
http://www.microsoft.com/express/vc

Folder Contents

Bin Executable programs.

Bin\Licenses License signature files that tell the ETAS License Man-
ager which license features are required for the in-
stalled programs. The licenses themselves are in-
stalled elsewhere, see Section 2.4.

Bin\plugins GUI plug-ins for the rtaoscfg configuration tool.

Documents User documentation.

Targets Port plug-ins - one per sub-folder. All port-specific
parts, including the Target/Compiler Port Guide for the
port, are included in the sub-folder.

VRTA This folder contains the installer for the VRTA port plug-
in.

LicenseManager This folder contains the installer for the ETAS License
Manager.

Each port plug-in is installed in its own sub-folder under Targets. The folder
contains the port plug-in DLL and all port-specific documentation.

All user documentation is distributed in PDF format and can be read using
Adobe Acrobat Reader. Adobe Acrobat Reader is not supplied with RTA-OS3.x
but is freely available from http://www.adobe.com.

The folders have the following naming convention:

<Target><CompilerVendor>_n.n.n1

The suffix n.n.n gives the version of the port plug-in. It is therefore possible
to have multiple different versions of a port plug-in installed at the same time.

If multiple versions of the same port plug-in are installed, then RTA-OS3.x will
use the latest version (i.e. the highest numbered version) unless a specific
version is given in the configuration file.

2.4 Licensing

RTA-OS is protected by FLEXnet licensing technology. You will need a valid
license key in order to use RTA-OS.

Licenses for the product are managed using the ETAS License Manager
which keeps track of which licenses are installed and where to find them.
The information about which features are required for RTA-OS and any port
plug-ins is stored as license signature files that are stored in the folder
<install_folder>\Bin\Licenses.

1The VRTA port plug-in is an exception to this naming convention, being called VRTA_n.n.n,
because it can support multiple compilers.

12 Installing RTA-OS3.x

http://www.adobe.com

Figure 2.1: The ETAS License manager

The ETAS License Manager can also tell you key information about your li-
censes including:

• which ETAS products are installed

• which license features are required to use each product

• which licenses are installed

• when licenses expire

• whether you are using a local or a server-based license

Figure 2.1 shows the ETAS License Manager in operation.

2.4.1 Installing the ETAS License Manager

The ETAS License Manager must be installed for RTA-OS to work. It is
highly recommended that you install the ETAS License Manager during
your installation of RTA-OS.

The installer for the ETAS License Manager contains two components:

1. the ETAS License Manager itself;

2. a set of re-distributable FLEXnet utilities. The utilities include the soft-
ware and instructions required to setup and run a FLEXnet license
server manager if concurrent licenses are required (see Sections 2.4.2
and 2.4.3 for further details)

Installing RTA-OS3.x 13

During the installation of RTA-OS you will be asked if you want to in-
stall the ETAS License Manager automatically once the installation
of RTA-OS is complete. The installer may also be run manually from
<install_folder>\LicenseManager\LicensingStandaloneInstallation.exe.

Once the installation is complete, the ETAS License Manager can be found in
C:\Program Files\Common Files\ETAS\Licensing.

Once installed, a link to the ETAS License Manager can be found in the Win-
dows Start menu under ProgramsÔ ETAS Ô License Management Ô

ETAS License Manager.

2.4.2 Licenses

When you install RTA-OS, or any port plug-in, for the first time the ETAS Li-
cense Manager will allow the software to be used in grace mode for seven
days. Once the grace mode period has expired, a license key will need to be
installed. If a license key is not available, please contact your local ETAS sales
representative. Contact details can be found in Chapter 6.

You should identify which type of license you need and then provide ETAS
with the appropriate information as follows:

Machine-named licenses allows RTA-OS to be used by any user logged
onto the PC on which RTA-OS and the machine-named license is in-
stalled.

A machine-named license can be issued by ETAS when you provide the
host ID (Ethernet MAC address) of the host PC

User-named licenses allow the named user (or users) to use RTA-OS on
any PC in the network domain.

A user-named license can be issued by ETAS when you provide the Win-
dows user-name for your network domain.

Concurrent licenses allow any user on any PC up to a specified number of
users to use RTA-OS. Concurrent licenses are sometimes called floating
licenses because the license can float between users.

A concurrent license can be issued by ETAS when you provide the fol-
lowing information:

1. The name of the server

2. The Host ID (MAC address) of the server.

3. The TCP/IP port over which your FLEXnet license server will serve
licenses. A default installation of the FLEXnet license server uses
port 27000.

14 Installing RTA-OS3.x

Figure 2.2: Obtaining License Information

You can use the ETAS License Manager to get the details that you must pro-
vide to ETAS when requesting a machine-named or user-named license and
(optionally) store this information in a text file.

Open the ETAS License Manager and choose Tools Ô Obtain License Info
from the menu. For machine-named licenses you can then select the network
adaptor which provides the Host ID (MAC address) that you want to use as
shown in Figure 2.2. For a user-based license, the ETAS License Manager
automatically identifies the Windows username for the current user.

Selecting “Get License Info” tells you the Host ID and User information and
lets you save this as a text file to a location of your choice.

2.4.3 Installing a Concurrent License Server

Concurrent licenses are allocated to client PCs by a FLEXnet license server
manager working together with a vendor daemon. The vendor daemon for
ETAS is called ETAS.exe. A copy of the vendor daemon is placed on disk
when you install the ETAS License Manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

To work with an ETAS concurrent license, a license server must be configured
which is accessible from the PCs wishing to use a license. The server must be
configured with the following software:

• FLEXnet license server manager;

• ETAS vendor daemon (ETAS.exe);

Installing RTA-OS3.x 15

Figure 2.3: Unlicensed RTA-OS Installation

It is also necessary to install your concurrent license on the license server.

In most organizations there will be a single FLEXnet license server manager
that is administered by your IT department. You will need to ask your IT
department to install the ETAS vendor daemon and the associated concurrent
license.

If you do not already have a FLEXnet license server then you will need to
arrange for one to be installed. A copy of the FLEXnet license server, the
ETAS vendor daemon and the instructions for installing and using the server
(LicensingEndUserGuide.pdf) are placed on disk when you install the ETAS
License manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

2.4.4 Using the ETAS License Manager

If you try to run RTA-OS without a valid license, you will be given the oppor-
tunity to start the ETAS License Manager and select a license.

When the ETAS License Manager is launched, it will display the RTA-OS license
state as NOT AVAILABLE and you will not be able to use any of the tools until
a valid license is installed. This is shown in Figure 2.3.

License Key Installation

License keys are supplied in an ASCII text file, which will be sent to you on
completion of a valid license agreement.

16 Installing RTA-OS3.x

If you have a machine-based or user-based license key then you can simply
install the license by opening the ETAS License Manager and selecting File Ô

Add License File menu.

If you have a concurrent license key then you will need to create a license
stub file that tells the client PC to look for a license on the FLEXnet server as
follows:

1. create a copy of the concurrent license file

2. open the copy of the concurrent license file and delete every line except
the one starting with SERVER

3. add a new line containing USE_SERVER

4. add a blank line

5. save the file

The file you create should look something like this:

SERVER <server name> <MAC address> <TCP/IP Port>¶
USE_SERVER¶
¶

Once you have create the license stub file you can install the license by open-
ing the ETAS License Manager and selecting File Ô Add License File menu
and choosing the license stub file.

License Key Status

When a valid license has been installed, the ETAS License Manager will dis-
play the license version, status, expiration date and source as shown in Fig-
ure 2.4.

When a license is installed by the ETAS License Manager it is placed in:
C:\Documents and Settings\All Users\Application Data\ETAS\FlexNet

Borrowing a concurrent license

If you use a concurrent license and need to use RTA-OS on a PC that will be
disconnected from the network (for example, you take a demonstration to
a customer site), then the concurrent license will not be valid once you are
disconnected.

To address this problem, the ETAS License Manager allows you to temporarily
borrow a license from the license server.

To borrow a license:

Installing RTA-OS3.x 17

Figure 2.4: Licensed features for RTA-OS

1. Right click on the license feature you need to borrow.

2. Select “Borrow License”

3. From the calendar, choose the date that the borrowed license should
expire.

4. Click “OK”

The license will automatically expire when the borrow date elapses. A bor-
rowed license can also be returned before this date. To return a license:

1. Reconnect to the network;

2. Right-click on the license feature you have borrowed;

3. Select “Return License”.

2.4.5 Troubleshooting Licenses

RTA-OS tools will report an error if you try to use a feature for which a correct
license key cannot be found. If you think that you should have a license
for a feature but the RTA-OS tools appear not to work, then the following
troubleshooting steps should be followed before contacting ETAS:

Can the ETAS License Manager see the license?

The ETAS License Manager must be able to see a valid license key for
each product or product feature you are trying to use.

18 Installing RTA-OS3.x

Figure 2.5: Licensed features that are due to expire

You can check what the ETAS License Manager can see by starting it
from the Help Ô License Manager. . . menu option in rtaoscfg or di-
rectly from the Windows Start Menu - Start Ô ETAS Ô License Man-
agement Ô ETAS License Manager.

The ETAS License Manager lists all license features and their status.
Valid licenses have status INSTALLED. Invalid licenses have status
NOT AVAILABLE.

Is the license valid?

You may have been provided with a time-limited license (for example,
for evaluation purposes) and the license may have expired. You can
check that the Expiration Date for your licensed features to check that
it has not elapsed using the ETAS License Manager.

If a license is due to expire within the next 30 days, the ETAS Li-
cense Manager will use a warning triangle to indicate that you need
to get a new license. Figure 2.5 shows that the license features
LD_RTA-OS3.0_VRTA and LD_RTA-OS3.0_SRC are due to expire.

If your license has elapsed then please contact your local ETAS sales
representative to discuss your options.

Does the Ethernet MAC address match the one specified?

If you have a machine based license then it is locked to a specific MAC
address. You can find out the MAC address of your PC by using the ETAS
License Manager (Tools Ô Obtain License Info) or using the Microsoft
program ipconfig /all at a Windows Command Prompt.

Installing RTA-OS3.x 19

You can check that the MAC address in your license file by opening your
license file in a text editor and checking that the HOSTID matches the
MAC address identified by the ETAS License Manager or the Physical
Address reported by ipconfig /all.

If the HOSTID in the license file (or files) does not match your MAC ad-
dress then you do not have a valid license for your PC. You should con-
tact your local ETAS sales representative to discuss your options.

Is your Ethernet Controller enabled?

If you use a laptop and RTA-OS stops working when you disconnect from
the network then you should check your hardware settings to ensure
that your Ethernet controller is not turned off to save power when a net-
work connection is not present. You can do this using Windows Control
Panel. Select System Ô Hardware Ô Device Manager then select
your Network Adapter. Right click to open Properties and check that
the Ethernet controller is not configured for power saving in Advanced
and/or Power Management settings.

Is the FlexNet License Server visible?

If your license is served by a FlexNet license server, then the ETAS Li-
cense Manager will report the license as NOT AVAILABLE if the license
server cannot be accessed.

You should contact your IT department to check that the server is work-
ing correctly.

Still not fixed?

If you have not resolved your issues, after confirming these points
above, please contact ETAS technical support. The contact address is
provided in Section 6.1. You must provide the contents and location of
your license file and your Ethernet MAC address.

2.5 Verifying your Installation

Now that you have installed RTA-OS3.x and have obtained and installed a
valid license key you can check that things are working. You can verify that
the PC tools installation has worked by running the RTA-OS3.x code generator
from the command line:

rtaosgen --target:?

If the installation has been successful, the tool will run and return a list of
available targets, their versions and their associated variants. For example:

20 Installing RTA-OS3.x

rtaosgen --target:?
RTA-OS3.x Code Generator
Version x.x.x.xxxx, Copyright © ETAS 2008-xxxx
Available targets:
PPCe200GHS_x.x.x

[MPC5516z1,MPC5516z0,SPC563M,MPC5514z1,MPC5514z0,MPC5534,MPC55
53,MPC5554,MPC5561,MPC5565,MPC5566,MPC5567,SPC560P,SPC560B,SPC560C,SPC560S]
TriCoreHighTec_x.x.x

[TC1732,TC1736,TC1762,TC1764,TC1766,TC1767,TC1782,TC1784,T
C1792,TC1796,TC1797]
VRTA_x.x.x [MinGW,VS2005,VS2008]

Errors: 0, Warnings: 0.

If the target port plug-ins have been installed to a non-default location, then
the --target_include argument must be used. The above example is then
rewritten as:

rtaosgen --target_include:<tgtDir> --target:?

2.6 Running RTA-OS3.x from a Network Drive

The RTA-OS3.x tools are Windows .NET applications. By default a .NET
assembly (application) cannot be run from a network drive due to the
default Windows security policy. This means that the RTA-OS3.x tools
will not run from network drive without additional configuration.

You can modify the Windows security policy to allow RTA-OS3.x to run from a
network in two ways using either:

• the Windows Control Panel; or

• the Microsoft command-line tool CasPol.exe which is distributed with the
Microsoft .NET framework Control Panel

The Control Panel method is simple, but offers less control than that provided
by the command-line method. You should consult your IT support depart-
ment for recommendations on what levels of security are allowed at your
workplace.

2.6.1 Using the Control Panel

Navigate to Control Panel Ô Administrative Tools Ô.NET Framework
Configuration x.x Ô Runtime Security Policy Ô Adjust Zone Security
and adjust the setting for “Local Intranet” to “Full”.

Installing RTA-OS3.x 21

2.6.2 Using the Command-line

The CasPol.exe program is used to change the security policy for
the share from which the application will be run. It can be found
in C:\WINDOWS\Microsoft.NET\Framework\v2.0.nnnnn\CasPol.exe. You
need to perform the following steps:

1. Disable policy change prompt using CasPol.exe -pp off. The -pp off
option disables the policy change prompt.

2. Change policy for share using CasPol.exe -m -ag 1.2 -url
"file:<share_name>/*" FullTrust where:

Argument Description

-m Operate on machine level

-ag 1.2 Add a code group under group 1.2. In the default policy,
Group 1.2 is the LocalIntranet group, so the new code
group that we’re creating will only be checked if the file
comes from the intranet.

-url:... Match any file within the specified URL, where
<share_name> should be replaced with the name of
the share, e.g. \networkdrive\ETAS\RTA-OS3.x.

FullTrust The permission set to grant assemblies that match the
code group. In this case, FullTrust.

3. Re-enable policy change prompt using CasPol.exe -pp on. The
-pp off option disables the policy change prompt.

22 Installing RTA-OS3.x

3 Developing Applications with RTA-OS3.x

The process for using RTA-OS3.x in your application involves three steps:

1. Configure the features of the OS you want to use

2. Generate a customized RTA-OS3.x kernel library

3. Use the OS in your application

The following sections explain these steps in more detail. However, if you are
eager to get started with RTA-OS3.x then you can skip ahead to Chapter 4
which explains how to build and run the sample applications provided with
each port plug-in.

3.1 Configuration

RTA-OS3.x is statically configured. This means that every task and interrupt
needed over the entire operation of your application must be declared at con-
figuration time, together with any critical sections, synchronization points,
counters etc.

Configuration data is stored in XML files that conform to the AUTOSAR ECU
Configuration Definition standard.

RTA-OS3.x includes a graphical configuration editor (shown in Figure 3.1)
called rtaoscfg to assist in the creation of RTA-OS3.x configuration files.
rtaoscfg accepts any AUTOSAR XML file as input and allows the OS-specific
parts of the configuration to be edited. If the input file contains both OS and
non-OS specific configuration then only the OS configuration will be modified.
Further details about how to use rtaoscfg are provided in the User Guide.

3.1.1 Using OSEK OIL Files for Configuration

To assist in the migration from existing RTA-OSEK applications, RTA-OS3.1
includes an OIL Import assistant, accessed from the Assistants menu of the
GUI, as shown in Figure 3.2

The OIL Import Assistant itself (shown in Figure 3.3) enables OIL files from a
previous RTA-OSEK application to be converted to AUTOSAR XML.

The only mandatory input to the OIL Import Assistant is the input OIL file. The
optional parameters are:

Output directory

Output will be generated in the directory containing the input OIL file
unless an optional output directory is supplied.

Developing Applications with RTA-OS3.x 23

Figure 3.1: The rtaoscfg configuration tool

Figure 3.2: The OIL Import Assistant Menu

24 Developing Applications with RTA-OS3.x

Figure 3.3: The OIL Import Assistant

Developing Applications with RTA-OS3.x 25

Project name

By default, the generated files are derived from the input filename, this
can be overridden here;

AUTOSAR version

The AUTOSAR OS version can be specified if compliance to a specific
version of the XML is required;

OIL include path

The input OIL file may make use of include directives which refer to OIL
files in other directories. This argument should be used to refer to the
directories including the referenced files. Multiple directories should be
separated by semicolons.

To convert an OIL file, the Convert button should be pressed - the results of
the conversion will be displayed in the Results area. Once an OIL file has been
converted, it can be loaded into the GUI by pressing the Ok button - pressing
Cancel will return to the GUI without loading the converted file.

3.2 Library Generation

Before RTA-OS3.x can be used in an application, an RTA-OS3.x kernel library
and associated header files must be generated. The kernel library is gener-
ated using the command-line tool rtaosgen which carries out the following
steps:

1. Analyze the XML configuration and automatically optimize the RTA-
OS3.x kernel so that it contains only those features which are used.
This makes RTA-OS3.x as small and efficient as possible.

2. Customize the optimized kernel for the chosen target using information
provided by the target plug-in.

3. Build the kernel library using the same third party toolchain used for
the application. This guarantees toolchain compatibility between the
RTA-OS3.x kernel library and the application code.

3.2.1 Preparing the Toolchain

To build a kernel library, rtaosgen needs access to the target toolchain.
rtaosgen knows how to run the target compiler, assembler, linker and librar-
ian as well as which options to use. You need only worry about two things:

1. Your toolchain must be accessible on your PATH.

2. Your toolchain must be compatible with RTA-OS3.x.

26 Developing Applications with RTA-OS3.x

You can find out if your compiler is on your PATH by opening a Windows Com-
mand Prompt and typing echo %PATH%. The compiler’s executable folder
should be listed. If the compiler’s executable folder is not listed, it can be
added by typing:

set PATH=%PATH%;<PathToCompilerExecutable>

To check whether the toolchain is compatible with RTA-OS3.x, consult the
Target/Compiler Port Guide for the your port.

3.2.2 Running rtaosgen

rtaosgen can be invoked from anywhere a Windows executable can be called
from (e.g. Windows command prompt, batch file, makefile, Ant script etc.).
rtaosgen can also be invoked from within the builder pane of rtaoscfg if
you prefer working within a graphical environment.

3.2.3 Building the library

As an AUTOSAR Basic Software Module, RTA-OS3.x requires access to the
standard AUTOSAR header files. You must therefore include the path to the
location of the AUTOSAR standard header files when invoking rtaosgen. For
example, to build a library for the Hello World example application for an
RTA-OS3.x target you should type:

rtaosgen --include:<PathToAutosarHeaderFiles> HelloWorld.xml

If you do not have access to AUTOSAR header files (for example, if you are
using RTA-OS3.x for application development outside of a full AUTOSAR sys-
tem) then rtaosgen can generate them automatically for you. You have to
tell RTA-OS3.x where the generated headers can be found, this is typically in
a folder named Samples\Includes. The command in this case would be:

rtaosgen --samples:[Includes] --include:Samples\Includes
HelloWorld.xml

3.2.4 Build Messages

rtaosgen generates four classes of messages during execution:

Information

These messages tell you useful things about the configuration, for ex-
ample how many tasks you have configured. rtaosgen will generate
output files.

Warning

These messages warn you that your configuration might not behave as
you expect. rtaosgen will generate output files.

Developing Applications with RTA-OS3.x 27

Error

These messages tell you that there is something wrong with your con-
figuration. rtaosgen will stop processing your configuration at a con-
venient point and no output files will be generated.

Fatal

You will get at most one fatal message. It tells you that there is some-
thing fundamentally wrong with either your configuration or rtaosgen.
rtaosgen stops immediately.

3.2.5 Generated Files

When rtaosgen runs without generating any errors or fatal messages the
following files will have been generated:

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured. This

is included by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by

RTA-OS to merge with the system-wide MemMap.h file.
RTAOS.<lib> The RTA-OS library for your application. The extension

<lib> depends on your target.
RTAOS.<lib>.sig A signature file for the library for your application.

This is used by rtaosgen to work out which parts of
the kernel library need to be rebuilt if the configura-
tion has changed. The extension <lib> depends on
your target.

There may be other files generated depending on your chosen port. Consult
the relevant Target/Compiler Port Guide for further information.

3.3 Integration

3.3.1 Accessing the OS in your Source Code

Each C source file must include Os.h if it makes calls to RTA-OS3.x. The
header file is protected against multiple-inclusion.

RTA-OS3.x makes no extra demands about source code organization (i.e. it is
possible to have more than one task and interrupt per source file).

28 Developing Applications with RTA-OS3.x

3.3.2 Implementing Tasks and ISRs

Tasks

There must be an implementation of each task declared at configuration time.
Each task needs to be marked using the TASK(x) macro. Tasks typically have
the following structure:

#include <Os.h>
TASK(MyTask){
/* Do something */
TerminateTask();

}

Category 2 ISRs

Each declared Category 2 ISR also needs to be implemented. These are
marked by the ISR(x) macro:

#include <Os.h>
ISR(MyISR){
/* Do something */

}

A Category 2 ISR handler must not execute a return from interrupt call -
RTA-OS3.x does this automatically. Depending on the behavior of inter-
rupt sources on your target hardware you may need to clear the inter-
rupt pending flag as part of your ISR. Please consult the hardware docu-
mentation provided by your target processor vendor for further details.

Category 1 ISRs

Each declared Category 1 ISR also needs to be implemented. Your compiler
will use a special convention for marking a C function as an interrupt. RTA-
OS3.x provides a macro that expands to the correct directive for your com-
piler. Your Category 1 handler will therefore look something this:

#include <Os.h>
CAT1_ISR(MyCat1ISR) {
/* Do something */

}

Starting the OS

RTA-OS3.x does not take control of your hardware after it comes out of reset
so any initialization which is required can be done without interference from
the OS - just as if you were developing an embedded application that doesn’t
use an operating system. Once hardware initialization is complete, the OS is
started by calling StartOS(). This call is usually made in the main() function.

Developing Applications with RTA-OS3.x 29

RTA-OS3.x provides the OS_MAIN() macro which can be optionally used to
mark the main() function in a portable way as shown in the following exam-
ple1.

#include <Os.h>
OS_MAIN(){
/* Initialize target hardware */
/* Do any mode management, pre-OS functions etc. */
StartOS();
/* Call does not return so you never reach here */

}

3.3.3 Interacting with the RTA-OS3.x Kernel

Interaction with RTA-OS3.x is through kernel API calls. You can find a complete
list of calls in the Reference Guide.

3.3.4 Compiling and Linking

When compiling an application, you must make sure that Os.h and Os_Cfg.h
are on your compiler include path. Similarly, when you link your application
RTAOS.<lib> must be on your linker library path.

You must also ensure that any tool options you use are compatible with those
expected by the RTA-OS3.x library. A full list of mandatory and prohibited
toolchain options is provided in the Target/Compiler Port Guide for your port.

3.3.5 Common Problems

If the compiler generates errors related to RTA-OS3.x then you should check
the following:

• Os.h and Os_Cfg.h are on the compiler include path;

• the kernel library has been rebuilt after making any changes to the con-
figuration;

• RTAOS.<lib> is on your linker’s library path.

3.3.6 Downloading to your Target

The output of the linker is typically a binary file in some well-known format
(e.g. a.out, COFF, ELF or IEEE695). These can typically be read by debug-
gers, in-circuit emulators or in-circuit programming equipment, although in
some cases it is necessary to convert the output from this to a form (such as
S-Records or Intel Hex) that can be transmitted to a simple boot monitor on

1For most ports, OS_MAIN will expand to void main(void). However some embedded com-
pilers do not allow the main program to return void so an alternative expansion may be re-
quired.

30 Developing Applications with RTA-OS3.x

the target over a serial link. Tools to do this are usually supplied with your
development environment. Consult the documentation on your target plat-
form and development toolchain for details of how to program applications
into non-volatile memory.

All ports of RTA-OS3.x will execute from ROM and are tested running on a
target CPU without any debugger or development equipment connected.

Developing Applications with RTA-OS3.x 31

4 Sample Applications

Each port plug-in is supplied with a set of ready-to-run sample applications
that demonstrate key features of RTA-OS3.x. The sample applications show
you how the OS is configured, the library is generated and how application
code is linked against the library.

The following applications are provided with each port plug-in1:

Application Contents

Hello World Basic tasks, interrupts, counters, alarms.
Clive Devices Basic tasks, interrupts, counters, alarms, schedule tables.
Pizza Pronto Extended tasks, interrupts, alarms, counters.

It is strongly recommended that you build and run at least the Hello
World example in order to verify that RTA-OS3.x can use your compiler
toolchain to generate an OS kernel and that a simple application can
run with that kernel.

4.1 Getting Started

The sample applications and rtaosgen need to use your compiler toolchain
and expect to find it on the Windows path. You can add the tools to your path
using the Windows command prompt as follows:

set PATH=%PATH%;<PathToCompilerExecutable>

It is also recommended that the RTA-OS3.x tools are also added to your path:

set PATH=%PATH%;<PathToRTAOS>\bin

4.1.1 Creating Sample Applications from the Command-Line

Sample applications can be generated for a specific target and target variant.
Recall from Section 2.5 that the list of supported targets and variants for your
installation can be obtained using the command:

rtaosgen --target:?

To access the sample applications:

1. Create a new working folder in which to build the sample applications;

2. Open a Windows command prompt in the new folder;

3. Execute the command:

rtaosgen --samples:[Applications]
--target:[<variant>]<target>

1There may be other applications provided by your port

32 Sample Applications

Figure 4.1: RTA-OS3.x Assistants Menu

The <variant> is optional - if it is omitted then sample applications will be
generated for the default target.

This generates a new sub-folder called Samples\Applications. Inside this
folder are sub-folders for each sample application using the default settings
for the chosen target and variant. If you ever need to get a clean set of
sample applications, then you can repeat this process in a new working folder.

For example, to generate the sample applications for the VRTA target using
the VS2008 variant, issue the command

rtaosgen --samples:[Applications] --target:[VS2008]VRTA

It is also possible to generate individual sample applications. The following
commmand will generate the PizzaPronto application for the MinGW variant
of VRTA

rtaosgen --samples:[Applications\PizzaPronto]
--target:[MinGW]VRTA

4.1.2 Creating Sample Applications from the GUI

The RTA-OS3.1 GUI is capable of generating the sample applications using
the Example Application Generator Assistant.

The Assistant is launched from the Assistants entry in the GUI’s menu; see
Figure 4.1. Choosing Assistants Ô Code Generation Ô Example Appli-
cation Generator will, after a short pause whilst information about installed
targets is looked up, show the Example Application Generator Assistant itself,
as shown in Figure 4.2.

After the target, variant and sample-application are selected and an output
directory is entered (for the generated code), the Generate button is en-
abled and the application can be created. Once the application has been

Sample Applications 33

Figure 4.2: RTA-OS3.x Example Application Generator Assistant

Figure 4.3: Sample Applications Folder Structure

created, it can be built (and subsequently run), loaded into the GUI, or simply
left on disk.

If your toolchain is not found When building an application, the path should
be added to the Additional Path argument.

4.2 Sample Application Structure

Figure 4.3 shows the structure of the sample applications folder for the
VRTA port assuming that the working folder you created was called
C:\GettingStarted. Note that other ports may contain different sample ap-
plications.

The sample applications use the default options for each target. However,
if you need to see how to use some of the target-specific options, then the

34 Sample Applications

sample applications can be generated which use these. Section 4.7 provides
further information.

Each sample application is self contained within its own sub-folder - all the
files necessary to build and run the sample application are provided. The
following sections provide a short overview of the typical files.

4.2.1 Configuration

The RTA-OS3.x configuration is typically contained in files named as follows:

Filename Description
<ApplicationName>.rtaos The RTA-OS3.x project file which refer-

ences the AUTOSAR OS R3.x XML files
defining the configuration.

<ApplicationName>.xml Target-neutral configuration. This file
describes all the tasks, interrupts,
alarms etc. used by the sample ap-
plication.

<ApplicationName>_Target.xml Target-specific configuration. This
file describes target-specific parts of
the configuration such as the priority
and vector for any interrupts, target-
specific configuration options, stack
sizes etc.

The RTA-OS3.x configuration can be viewed by opening
<ApplicationName>.rtaos using rtaoscfg.

4.2.2 Application Code

The *.h and *.c files contain the source code for the application. The source
code is split into target-specific and target-independent parts. The target-
specific parts are described in Section 4.2.3.

4.2.3 Target Support

RTA-OS3.x does not take control of any of microcontroller peripherals like
timers, counters, I/O ports etc. However if you want to use these devices
to drive scheduling in RTA-OS3.x then you will need to configure the appro-
priate peripherals on your target.

Configuration of the target microcontroller peripherals is your responsi-
bility as only you know how you want to use the microcontroller.

However, the sample applications require some minimal hardware configu-
ration to initialize the microcontroller and this is provided by target-specific

Sample Applications 35

source files. For example, many of the sample applications use a 1ms timer
interrupt to drive scheduling.

The following files are typically used to describe how the target is configured
and provide the source code to do this:

Filename Description

README.txt A description of the low-level details of the application, in-
cluding the target reference platform, what peripherals are
used, where the application is located, what debugger(s)
are supported for downloading the application, etc.

Target.c Target support code to initialize the hardware and program
the interrupt source(s).

Target.h Target support macros, including a macro to clear a pending
interrupt.

Additional files may be supplied for particular ports.

If your target hardware or compiler differs from that used by the reference
platform then you may need to modify the target-specific files.

Build and Run Support

The following files are provided to help you build and run (typically by down-
loading the example to your target hardware) the sample application.

Filename Description
build.bat A basic script to generate an RTA-OS3.x kernel library, com-

pile the example and link the example code with the library
to produce a downloadable executable image.

run.bat A sample script showing how to run the example application.

To build the application, open a Windows command prompt and run:

• build.bat if working with an embedded target; or

• build.bat Variant if working with VRTA where Variant is the name of
the target variant (i.e. compiler) you want to use to build the example
application.

If build.bat terminates successfully then an executable program called
<ApplicationName>.<target extension> will have been created in the
folder.

The application can be downloaded and/or executed using the run.bat script.

The following sections explain what each of the sample applications does and
what to look for in order to verify that they are working correctly.

36 Sample Applications

Figure 4.4: Execution of tasks in HelloWorld

4.3 Hello World

The “HelloWorld” sample application is used to verify that the end-to-end
build process is working correctly. This is provided so you can check that RTA-
OS3.x can build a kernel library with your toolchain and then use the library
in a small example application that does just enough to show that the kernel
is working correctly.

4.3.1 What does the “HelloWorld” example do?

“HelloWorld” shows preemption between two tasks, HighPriority and
LowPriority. Both tasks run for 2ms. Task HighPriority is the higher prior-
ity task and runs periodically every 50ms. Task LowPriority runs periodically
every 25ms.

The periodic running of the tasks is achieved using two alarms, Alarm50 and
Alarm25, which are attached to a counter called MillisecondCounter. The
counter is ticked using a 1ms timer interrupt that is handled by the Interrupt
Service Routine (ISR) MillisecondInterruptHandler. Both alarms are auto-
started. Alarm50 is offset by 1ms relative to Alarm25.

When the application runs, Alarm25 will expire after 1ms and activate task
LowPriority. Task LowPriority sets IO_PIN1 high and runs for 1ms before
being preempted by task HighPriority.

Task HighPriority saves the state of IO_PIN1 and then sets it low before
setting IO_PIN2 high. It then runs for 2ms before setting IO_PIN2 low. Finally,
it restores the state of IO_PIN1 and terminates, allowing task LowPriority to
continue from the point at which it was preempted. Task LowPriority then
runs for its remaining 1ms.

The pattern of execution is shown in Figure 4.4

Sample Applications 37

Figure 4.5: Oscilloscope Trace of HelloWorld

4.3.2 Verifying Program Execution

You can monitor task activation by connecting oscilloscope probes to the IO
pins defined by IO_PIN1 and IO_PIN2 in Target.h.

Figure 4.5 shows an oscilloscope trace of the state of the IO pins once the
program is running. Each vertical grid line represents 10ms of time.

4.3.3 Troubleshooting

If your application doesn’t appear to be running, you can use a debugger to
verify that the ISR is being called. Place a breakpoint on the first instruction
of the ISR(Os_Entry_MillisecondISR) and see if your application reaches
it.

If the ISR runs this means that the counter is being ticked. You can
then set breakpoints on the two tasks (Os_Entry_HighPriority and
Os_Entry_LowPriority) to see whether or not they run. If the tasks run,
but you do not see an output, check your hardware initialization.

If your oscilloscope does not show a trace, check the settings for IO_PIN1
and IO_PIN2 in Target.h. You should also check the IO_PIN control macros
to ensure that they all reference the same I/O port on your target hardware. If
the trace shows different timing behavior, check that your timer hardware is
configured correctly and that instruction rate on the target hardware matches
that specified in your configuration.

38 Sample Applications

4.4 Clive Devices

“Clive Devices” shows you a more advanced RTA-OS3.x configuration. The
application models the life of “Clive Devices”. Clive’s day is 24 hours long
and in this time he does the following tasks in descending order of priority:

Task Duration When

OnThePhone 15 mins Every hour between 7am and 7pm

Eating 1 hour Breakfast at 7am, Lunch at 12pm, Evening
meal at 8pm

Working 8 hours Once a day, starting at 8am.

Sleeping 8 hours Once a day, starting at 10pm.

Clive’s free time is modeled using the idle mechanism - Os_Cbk_Idle.

Tasks Eating, Sleeping and Working are activated from a schedule table
called DailyRoutine. The schedule table wraps every 24 ticks, representing
every 24 hours.

Task OnThePhone is driven by the alarm PhoneRings which runs every hour,
but only between 7:00 and 19:00 (this stops Clive from being woken up during
the night).

The schedule table and the alarm are both driven by a software counter
that is ticked using a 1ms timer interrupt that is handled by the ISR
MillisecondInterruptHandler. This means that one hour of Clive’s life is
mapped onto 1 millisecond of real-time.

Clive cannot be Eating and OnThePhone at the same time because both activ-
ities require his mouth. A standard resource called Mouth is used to protect
this critical section and is shared between tasks Eating and OnThePhone.
However, the Eating tasks only uses Mouth for the middle 30 minutes - Clive
spends 15 minutes preparing his meal before eating it and 15 minutes letting
it digest afterwards.

Clive’s life starts when RTA-OS3.x is started. However, he does not live for-
ever. There is a second alarm called GrimReaper which is set to expire 365
days after Clive is born. This alarm executes a callback called TimeToDie
which sets a flag indicating that Clive will die the next time he has free time,
i.e. the next time that Os_Cbk_Idle is resumed.

Both the alarms and the schedule table are auto-started 1ms from the time
at which RTA-OS3.x starts.

Sample Applications 39

4.5 Pizza Pronto

“Pizza Pronto” shows how extended tasks can be configured and used. In
particular, this sample application includes example stack usage values re-
quired to run extended tasks on your system (you can find out more about
stack configuration for extended tasks in the User Guide).

The application models a software developer who is working on projects.
Each project takes 100 minutes to develop and new projects arrive every
200 minutes.

The developer is always hungry, and every 20 minutes into every project
their hunger needs to be satisfied by ordering a pizza for delivery. This task
takes 5 minutes.

The time it takes the pizza to be delivered is random - it depends on how many
other orders are already being processed by the pizza delivery company and
how long it takes to make the delivery. In the best case, it will take 1 minute
and in the worst case 61 minutes.

Once the developer has ordered the pizza, work can resume on the project.
When the pizza delivery arrives, the developers doorbell is rung, the pizza is
received and eaten. This takes 20 minutes.

After the pizza has been consumed, the project can be finished.

The following tasks, in decreasing priority order, are defined:

Task Duration Type Period

OrderPizza 5 mins Basic Triggered by WriteCode

EatPizza 20 mins Extended

WriteCode 100 mins Basic 200 mins.

As with ‘CliveDevices” time is quantized onto milliseconds with 1 minute
being represented as 1 millisecond of real time. As before, a 1ms
timer interrupt that is handled by the Interrupt Service Routine (ISR)
MillisecondInterruptHandler is used.

Task WriteCode is activated every 200ms using an auto-started alarm called
Project. Each time WriteCode runs, it executes for 20ms then activates task
OrderPizza. OrderPizza will always preempt as it has higher priority than
WriteCode. WriteCode will resume after the pizza has been ordered and will
run for a further 80ms.

Task OrderPizza runs for 5ms and then sets up a single-shot alarm called
Doorbell. The alarm expiry is programmed as a random number between

40 Sample Applications

Figure 4.6: Example execution of tasks in PizzaPronto

1ms and 61ms. Each time the alarm expires, it sets an event called Delivery
to indicate the delivery of the pizza.

Task EatPizza is an extended task that waits for the Delivery of the pizza,
runs for 20ms and then waits for the next Delivery. EatPizza is imple-
mented in the common way for extended tasks: an infinite loop containing a
WaitEvent() call. The task is configured to auto-start when RTA-OS3.x starts.

Figure 4.6 shows an example of how the tasks would execute if the first pizza
delivery took 40ms and the second took 10ms.

As this sample application uses and extended task (EatPizza) it is necessary
to specify the stack usage for each task and ISR as well as the base stack
size. RTA-OS3.x uses this information to manage the stack at run-time. You
can see what values have been used for your port by looking at the General
Ô Target Ô Target Specific configuration in rtaoscfg.

4.6 Integration with RTA-TRACE

The Hello World, CliveDevices and PizzaPronto sample applications are each
supplied ready to work with RTA-TRACE if it is enabled in the configuration.
RTA-TRACE is not enabled by default, but a sample configuration is provided
in the RTA-TRACE-Configuration.xml file.

Embedded targets use a debugger or serial (RS232) data-link to transfer trace
data from the target to the host PC. For embedded targets, rtaosgen can
generate a sample serial link to use with your hardware.

The VRTA target uses a high speed TCP/IP data-link that transfers data directly
between the Virtual ECU and RTA-TRACE.

Sample Applications 41

If you want to integrate RTA-TRACE with one of these sample applications then
you need to:

1. Open the .rtaos project file in rtaoscfg;

2. Change to the RTA-TRACE Configuration workspace;

3. Set Enable Tracing to TRUE;

4. Save the project;

5. Re-build the sample application by running build.bat;

6. Run the sample application using run.bat.

To look at the trace data, you should do the following:

1. Start RTA-TRACE and from the main menu select File Ô New Connec-
tion.

2. In the dialog asking for the location of the target accept the “localhost”
default.

3. In the dialog asking you to select the OS interface choose either:

• “RTAOSEK-Debugger” if you are working with an embedded target;
or

• “RTAOSEK-VRTA” if you are working with VRTA.

4. In the file selection dialog, choose the file <ApplicationName>.rta
from the sample application’s folder

If you are using VRTA, the application should start after a short pause, and
you will see data appearing in the RTA-TRACE window. If an embedded target
is being used, the application will need to be started manually.

4.7 Using Target Options

Targets may also provide target-specific options, for example support for dif-
ferent memory models, running from different memory areas, debugging fea-
tures etc.

Sample applications can be generated which make use of these features by
specifying the relevant target option on the command line.

A list of available options for your target can be obtained using the command:

rtaosgen --target:<target> --target_option:?

The required options can be added to the command for generating the sam-
ple applications as follows:

42 Sample Applications

rtaosgen --samples:[Applications] --target:[<variant>]<target>
--target_option:option1=value1
--target_option:option2=value2 ...

Where target options contain spaces (i.e. Stack used for C-startup)
the option must be enclosed within double quotes, as follows:

rtaosgen --target:[MinGW]VRTA --target_option:"Stack used for
C-startup"=64 HelloWorld.rtaos --include:Samples\Includes

Sample Applications 43

5 Finding out more

Your RTA-OS3.x distribution includes the following manuals:

<install dir>\Documents

Getting Started Guide. The document that you are reading now. This
guide explains how to install the product and describes the underlying
principles of the operating system.

Release Note. This document provides information about the release, in-
cluding a list of changes from previous releases and a list of known
issues.

User Guide. This guide explains the concepts behind AUTOSAR OS R3.x and
shows you how to use RTA-OS3.x to configure the OS and integrate it
into your application.

Reference Guide. This guide provides a complete reference to the API and
programming conventions for RTA-OS3.x.

Analysis Visualizer User Guide. This guide explains the concepts behind
schedulability analysis and shows you how to build and analyze models
of your RTA-OS3.x-based system.

<install dir>\Targets\VRTA_n.n.n

VRTA Port Guide. This guide explains implementation-specific details for
the VRTA port plug-in.

VRTA Release Note. This document provides information about the VRTA
port plug-in release, including a list of changes from previous releases
and a list of known issues.

Virtual ECU User Guide. This guide explains how to use the Virtual ECU
environment included with the VRTA port plug-in.

<install dir>\Targets\<TargetCompiler>_n.n.n

Target/Compiler Port Guide. Each port of RTA-OS3.x is supplied with a
Port Guide. The Port Guide tells you specific information about the in-
teraction between RTA-OS3.x, your toolchain and your target hardware.
For example, valid compiler options, register settings, interrupt han-
dling etc. The Port Guide also gives performance and resource usage
information for the OS.

Target/Compiler Release Note. This document provides information
about the port plug-in release, including a list of changes from previous
releases and a list of known issues.

44 Finding out more

5.1 Related Reading

5.1.1 OSEK

OSEK/VDX Operating System (Version 2.2.3 17th February 2005) is the
OSEK OS specification and describes the behavior of the OS in detail.

OSEK/VDX Binding Specification (Version 1.4.2 15th July 2004) describes
how OSEK OS inter-operates with other OSEK standards.

OSEK Run-Time Interface (ORTI) (Part A: Language Specification Version
2.2 14th November 2005 and Part B: OSEK Objects and Attributes Ver-
sion 2.2 25th November 2005) defines the core ORTI debugging lan-
guage and the standard attributes supported by OSEK OS.

5.1.2 AUTOSAR

AUTOSAR SWS OS (R3.0 V3.0.1 Rev 0003 17.Apr.2008) is the AUTOSAR OS
specification and describes AUTOSAR’s extensions to OSEK OS in detail.

AUTOSAR SWS GPT Driver (R3.0 V2.2.0 Rev 0003 11.Dec.2007) explains
the AUTOSAR “General Purpose Timer” (Gpt) driver that the OS uses1

AUTOSAR SWS RTE (R3.0 V2.0.0 Rev 0001 20.Dec.2007) describes the AU-
TOSAR RTE. This is required reading if you want to know how an AU-
TOSAR RTE interacts with an AUTOSAR OS.

AUTOSAR SRS General (R3.0 V2.2.0 Rev 0001 10.Dec.2007) describes the
general properties that apply to all AUTOSAR basic software modules.
Note that the AUTOSAR OS document defines specific deviations from
this general SRS that apply to the OS

AUTOSAR SWS StandardTypes (R3.0 V1.2.0 Rev 0001 29.Nov.2007) de-
fines the standard AUTOSAR types and the include structure for basic
software modules like the OS.

AUTOSAR SWS PlatformTypes (R3.0 V2.2.0 Rev 0001 13.Nov.2007) de-
scribes how target platform characteristics are abstracted in AUTOSAR.

AUTOSAR SWS MemoryMapping (R3.0 V1.1.0 Rev 0001 12.Dec.2007)
describes how AUTOSAR handles memory mapping of software. RTA-
OS3.x uses this concept to place parts of the OS in user nominated
sections.

1Note - while the AUTOSAR OS specification requires that the OS uses the Gpt, in practice
the Gpt is not sufficiently powerful enough to be of any practical use. RTA-OS3.x therefore
does not make use of the Gpt driver directly. Please consult the Release Note for further
details.

Finding out more 45

AUTOSAR SWS CompilerAbstraction (R3.0 V2.0.0 Rev 0001
27.Nov.2007) describes how compiler properties such as type def-
initions, pointers, access to near and far memory are abstracted in
AUTOSAR. RTA-OS3.x uses this concept to ensure that all internal OS
code conforms to the AUTOSAR standard.

46 Finding out more

6 Contacting ETAS

6.1 Technical Support

Technical support is available to all users with a valid support contract. If you
do not have a valid support contract, please contact your regional sales office
(see Section 6.2.2).

The best way to get technical support is by email. Any problems or questions
about the use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you
call the support hotline on:

+44 (0)1904 562624.

The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the fol-
lowing information:

• your support contract number;

• your .xml and/or .rtaos configuration files;

• the command line which caused the error;

• the version of the ETAS tools you are using;

• the version of the compiler tool chain you are using;

• the error message you received (if any); and

• the file Diagnostic.dmp if it was generated.

6.2 General Enquiries

6.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-300
Germany WWW: www.etas.com

6.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team
(where available) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

Contacting ETAS 47

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

Symbols
.NET, 21

A
AUTOSAR Header Files, 27
AUTOSAR OS includes

Os.h, 28
Os_Cfg.h, 28
Os_MemMap.h, 28

C
Clive Devices, 39
Compilation, 30
Compiler, 26

D
Development Process, 23
Downloading to target, 30

E
ETAS License Manager, 12

Installation, 13

G
Generated Files, 28

H
Hardware

Requirements, 8
Hello World, 37

I
Installation, 9

MinGW, 10
Network Drive, 21
Port Plug-ins, 11
Pre-requisites, 8
Tools, 9
Verification, 20
Visual Studio, 10
VRTA, 10
VRTA Compiler, 10

Interrupts, 29

L
Library, 26

Name of, 28
License, 12

Borrowing, 17
Concurrent, 14
Grace Mode, 14
Installation, 16
Machine-named, 14
Status, 17
Troubleshooting, 18
User-named, 14

M
MinGW, 10

O
OIL, 23
OSEK, 23

P
Pizza Pronto, 40
Port Plug-ins, 5

R
rtaosanvis, 5
rtaoscfg, 5, 23
rtaosgen, 5, 27

S
Sample Applications, 32

Clive Devices, 39
Hello World, 37
Pizza Pronto, 40

Software
Requirements, 8

Starting RTA-OS3.x, 29

T
Tasks, 29
Toolchain, 26

V
VRTA, 9

W
Windows Security, 21

48 Index

	Introduction
	About You
	Document Conventions
	References

	Installing RTA-OS3.x
	Preparing to Install
	Hardware Requirements
	Software Requirements

	Installation
	Tools
	VRTA
	Embedded Port Plug-ins

	What is Installed?
	Licensing
	Installing the ETAS License Manager
	Licenses
	Installing a Concurrent License Server
	Using the ETAS License Manager
	Troubleshooting Licenses

	Verifying your Installation
	Running RTA-OS3.x from a Network Drive
	Using the Control Panel
	Using the Command-line

	Developing Applications with RTA-OS3.x
	Configuration
	Using OSEK OIL Files for Configuration

	Library Generation
	Preparing the Toolchain
	Running rtaosgen
	Building the library
	Build Messages
	Generated Files

	Integration
	Accessing the OS in your Source Code
	Implementing Tasks and ISRs
	Interacting with the RTA-OS3.x Kernel
	Compiling and Linking
	Common Problems
	Downloading to your Target

	Sample Applications
	Getting Started
	Creating Sample Applications from the Command-Line
	Creating Sample Applications from the GUI

	Sample Application Structure
	Configuration
	Application Code
	Target Support

	Hello World
	What does the ``HelloWorld'' example do?
	Verifying Program Execution
	Troubleshooting

	Clive Devices
	Pizza Pronto
	Integration with RTA-TRACE
	Using Target Options

	Finding out more
	Related Reading
	OSEK
	AUTOSAR

	Contacting ETAS
	Technical Support
	General Enquiries
	ETAS Global Headquarters
	ETAS Local Sales & Support Offices

