RTA-OSEK

Xilinx MicroBlaze with the GNU/Xilinx Compiler

Closed-Loop Development

RTA-OSEK

Planner

Builder

]
RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This port data sheet discusses the Xilinx Micro-
Blaze port of the RTA-OSEK kernel alone and
should be read in conjunction with the Techni-
cal Product Overview “Developing Embedded
Real-Time Applications with RTA-OSEK" avail-
able from LiveDevices.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

Features at a Glance

= OSEK/VDX OS v2.2 Certified OS

= RTOS overhead: 26 bytes RAM, 184
bytes ROM

= Category 2 interrupt latency: 717
CPU cycles

= Applications include: Body Electron-
ics, Communication Gateways

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack — even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

= GNU/Xilinx mb-gcc GNU v3.4.1/Xilinx EDK
v7.1.2 Build EDK_H.12.4

ETAS

m GNU/Xilinx mb-as GNU assembler v2.10.1/Xilinx EDK
v7.1.1 Build EDK_H.11.3

» GNU/Xilinx mb-Id.real GNU Id v2.10.1/Xilinx EDK
v7.1.1 Build EDK_H.11.3

Memory Model

RTA-OSEK for the Xilinx MicroBlaze for the GNU/Xilinx
compiler supports a single memory model, relying on
the MicroBlaze linker to “relax” the object code where
possible to provide near accesses.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface. Currently there are
no ORTI compatible debuggers supported by RTA-OSEK
for the Xinix MicroBlaze for the GNU/Xilinx compiler.

Hardware Environment

RTA-OSEK supports all variants of the Xilinx MicroBlaze
family.

Interrupt Model

RTA-OSEK for the Xilinx MicroBlaze with the GNU/Xilinx
compiler supports a nested interrupt scheme whereby
an interrupt service routine (ISR) may be interrupted at
any time by an ISR of higher priority. There is a fixed 1:1
relationship between vector and priority. ISRs are imple-
mented by the user as simple C functions of type void
isr_handler(void).

Floating Point Support

RTA-OSEK for the Xilinx MicroBlaze with the GNU/Xilinx
compiler uses software floating-point. In order to ensure
correct functionality of floating-point code in RTA-OSEK
tasks and Category 2 ISRs, "wrappers" are supplied to
save and restore the additional context. To enable this
functionality, configure the relevant tasks and Category
2 ISRs as floating-point using the RTA-OSEK Planner tool.

Evaluation Board Support

This port of RTA-OSEK can be used with any Xilinx Micro-
Blaze evaluation board. An example application is pro-
vided to run on the ZGW_A1_MB evaluation board. This
application can be adapted for other target boards by
adjusting the linker command file (to alter the RAM lo-
cations) and one source file (if alternative output pins
are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by

RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 32 plus an idle task
Max tasks per priority 1 32 1 32
Max queued activations 1 255 1 255
Max events per task n/a n/a 32 32
Max nested resources 255
Max alarms Not limited by RTA-OSEK
Max standard resources 255
Max internal resources Not limited by RTA-OSEK
Max application modes 65535

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory Type Overhead (bytes)
RAM 26
ROM/Flash 184

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

Object RAM Bytes ROM Bytes
BCC1 task 0 36
BCC2 task 10 52
ECC1 task 76 60
ECC2 task 78 68
Category 1 ISR 0 0
Category 2 ISR 0 52
Resource 0 20
Internal Resource 0

Event 0 4
Alarm 12 84
Counter 4

Taskset (RW) 4

Taskset (RO) 0

Schedule 16 36

Object RAM Bytes ROM Bytes
Arrivalpoint (RW) 12 12
Arrivalpoint (RO) 0 12

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

Object Stack Bytes
Task priority level 228
Category 2 interrupt 164

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 112 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

InterruptAsserted

I RTA-OSEK activity

- 4-.

ICa'tegory 1ISR

ITask .

—b_
s L%

Figure 1 - Category 1 interrupt with return to interrupted task

l—éf[A B

I RTA-OSEK activity

|Category 2 ISR

therruptAssertea
I rask | N 1
I i

Figure 2 - Category 2 interrupt with return to interrupted task

Task Type Basic Extended Ref A [E
Category 1 ISR Latency 585 585 K | RTA-OSEK activity ActvateTask(T2 -
Category 2 ISR Latency 717 717 A
; ; | TerminateTask()
Normal Termination 435 1009 D | category 11SR .
ChainTask 955 2115 J
Task T2 readyto rtﬂ

Pre-emption 949 1603 C [Task T2 = 1

i
Triggered by alarm 1339 1993 F E— |Interrupt Asserted
Schedule 829 1459 Q | Task T1
ReleaseResource 883 1513 M

Figure 3 - Category 2 interrupt activates a higher priority task

SetEvent n/a 3797 S
Category 2 exit switch latency 777 1407 E

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available
on request from LiveDevices.

Y

TerminateTask()

F RTA-OSEK activity

Brask 12

| 1 ActivateTask(T2)
Frask 71 i

Figure 4 - Task activates a higher priority task

I<_4U:

I RTA-OSEK activity

H{M

T RTA-OSEK activity]

| TerminateTask() —
| ReleaseR R
lTask - !Task - eleasel esource(I) —|
[Alarmactivates T2
Trask T i Frask T
Figure 5 - Alarm activates task Figure 9 - ReleaseResource()
Benchmarks
J The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
I . p— ant applications. The applications have the following
RTA-OSEK activity ChanTask) framework:
Frask T2 = 8 tasks plus the idle task
= All basic tasks are lightweight tasks
Frask 71

Figure 6 - Task chai

| RTA-OSEK activity

ning

. . TerminateTask()

ITask T2

ActivateTask(T2)

[schedule)] v

ITask T1 |

l_l [

Figure 7 - Schedule

() call

| RTA-OSEK activity

ITask 12

WaitEvent(E 1) l

v SetEvent(TZ,Eﬂ——

ITask 11

—':itl

Figure 8 - Activatio

n by SetEvent(

= 1 Category 2 ISR with a 10ms minimum inter-arrival
time

= 1 Counter

= 7 or 8 alarms, all attached to the same counter
= No resources or internal resources

= No hooks

= No schedules

= No tasksets

= Built using standard status

The following table shows the task priority configura-
tion for each benchmark application:

0 =

w
o > E
%) =
S ~ '8 - o~ - o~
= = = 9] (]] (]
(] - [7] 194 1% () ()
= w a o o w w
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8
B 20 20 7 7 7 7
C 30 20 6 6 6 6
D 40 30 5 5 5 5
E 50 50 4 4 4 4
F 60 80 3 3 3 3

v =

w
= & &
= ~ °
i~ ®] 2 AT o T N
s " = v 9] 9] ()
© - [} U |9}))
= (%] a.]] w w
G 70 100 2 2 2 2
H 80 150 1 1 1 2
Idle 10 - idle idle idle idle

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities.

This application has the following overheads:

Memory Usage Bytes
OS ROM 2916
0S RAM 2114
comprising RAM data 126

comprising RAM stack 1988

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

This application has the following overheads:

Memory Usage Bytes
OS ROM 4360
0S RAM 2358
comprising RAM data 202

comprising RAM stack 2156

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Memory Usage Bytes
0S ROM 5440
0S RAM 2996
comprising RAM data 288

comprising RAM stack 2708

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

m "Tasks A, Band C
m "Tasks D, Eand F
s "Tasks GandH

The benefit of this optimization is shown in the follow-
ing table:

Memory Usage Bytes Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2
0S ROM 3428 Non-optimized 2368 2416 2536 3088
OS RAM 2158 OS Overhead 1988 2036 2156 2708
comprising RAM data 122 Application Overhead 380 380 380 380
comprising RAM stack 2036 Optimized 1028 1028 1196 1196
OS Overhead 848 848 1016 1016
ECC1 Application Overhead 180 180 180 180

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G.

Notes

ETAS/COM-EU_Fi/02.2006

