RTA-OSEK

Renesas SH2A with the Green Hills Software Compiler

Closed-Loop Development

RTA-OSEK \ RTA-TRACE

Planner

RTA-OSEK
Builder

S
RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This data sheet describes the RTA-OSEK port for
the Renesas SH2A and Green Hills compiler of
the RTA-OSEK kernel and should be read in con-
junction with the Technical Product Overview
“Developing Embedded Real-Time Applications
with RTA-OSEK" available from LiveDevices.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

Features at a Glance

s OSEK/VDX OS v2.2 Certified OS

= RTOS overhead: 28 bytes RAM, 196
bytes ROM

= Category 2 interrupt latency: 59
CPU cycles

= Applications include: Engine Man-
agement, Transmission Control, In-
dustrial Equipment

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack — even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

= Green Hills Software Inc. ccsh.exe v4.0.8D

m Green Hills Software Inc. assh.exe v4.0.8D

ETAS

m Green Hills Software Inc. elxr.exe v4.0.8D
Memory Model

The Renesas SH-2A/SH2A-FPU has only one memory
model (a flat 32 bit address space) and so RTA OSEK uses
this memory model.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

m Lauterbach Trace32

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Renesas SH-2A/
SH2A-FPU family including the SH7206 and the SH72513.

Interrupt Model

RTA-OSEK for the SH2A supports 15 levels of interrupts.
Suitable initialization values for the Interrupt Priority
Registers are provided. RTA-OSEK can also generate a
vector table if required.

Floating Point Support

SH2A-FPU CPUs contain a single precision hardware
floating point arithmetic unit that is not part of a stan-
dard SH-2A CPU. The SH2A/GreenHills port of RTA OSEK
supports the SH2A-FPU hardware floating point. In or-
der to ensure correct functionality of floating point code
in tasks and Category 2 ISRs, "wrappers" are supplied to
save and restore the additional context. To enable this
functionality, configure the relevant tasks and Category
2 ISRs as floating point using the RTA OSEK GUI.

On a SH-2A CPU, RTA OSEK is designed to work with ful-
ly re-entrant software floating point libraries supplied
by Green Hills Software Inc. This allows floating point to
be used in tasks and ISRs without the need to save and
restore any additional context.

Evaluation Board Support

This port of RTA-OSEK can be used with any Renesas SH-
2A/SH2A-FPU evaluation board. An example application
is provided to run on the Renesas SDK72513 evaluation
board. This application can be adapted for other target
boards by adjusting the linker command file (e.g., to al-
ter the allocation of program sections) and one source
file (if alternative output pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by
RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 32 plus an idle task
Max tasks per priority 1 32 1 32
Max queued activations 1 255 1 255
Max events per task n/a n/a 32 32
Max nested resources 255
Max alarms Not limited by RTA-OSEK
Max standard resources 255
Max internal resources Not limited by RTA-OSEK
Max application modes 65535

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory Type Overhead (bytes)
RAM 28
ROM/Flash 196

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

Object RAM Bytes ROM Bytes
BCC1 task 0 36
BCC2 task 10 52
ECC1 task 60 60
ECC2 task 62 68
Category 1 ISR 0 0
Category 2 ISR 0 48
Resource 0 20
Internal Resource 0

Event 0

Alarm 12 50
Counter 4 22
Taskset (RW) 4 4

Object RAM Bytes ROM Bytes
Taskset (RO) 0 4

Schedule 16 36
Arrivalpoint (RW) 12 12
Arrivalpoint (RO) 0 12

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

Object Stack Bytes
Task priority level 76
Category 2 interrupt 48

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 56 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

Task Type Basic Extended Ref
Category 1 ISR Latency 39 39 K
Category 2 ISR Entry Latency 59 59 A
Category 2 ISR Exit Latency 252 400 E
Normal Termination 92 192 D
ChainTask 244 484 J
Pre-emption 200 356 C
Triggered by alarm 268 424 F
Schedule 192 340 Q
ReleaseResource 192 344 M
SetEvent n/a 500 S

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available

on request from LiveDevices.

InterruptAsserted

TRTA-OSEK activity

__J:K

Category 1 ISR

1
N
[}

—

. ‘ i

Figure 1 - Category 1 interrupt with return to interrupted task

l—éf[A

RTA-OSEK activity

Category 2 ISR

Task

T]terrupt Asserte%

Figure 2 - Category 2 interrupt with return to interrupted task

| RTA-OSEK activity

A E
ActivateTask(T2) ﬁ -

! Category 2 ISR

N

TerminateTask()

! Task T2

[Task T1

—

‘Task T2 ready to rLﬂ
L

|Interrupt Asserted

!

—

Figure 3 - Category 2 interrupt activates a higher priority task

I(—é{[c H{D S

T RTA-OSEK activity m’ I RTA-OSEK activity [

5 WaitEventE 1) l
Task T2 [— fTask T2 "

Vv SetEvent(TZ,Eﬂ——

| [Acivaetesk(T) | [f
Task T1 H fTask T1

] 41

Figure 4 - Task activates a higher priority task Figure 8 - Activation by SetEvent(
| F M
T RTA-OSEK activity [T RTA-OSEK activity H
| TerminateTask()
F ! = ReleaseResource(R1)
fTask T2 “Task T2 L
[AlarmactivatesT2 -
T Task T1 I Frask T1
Figure 5 - Alarm activates task Figure 9 - ReleaseResource()
Benchmarks
J The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
T . it ant applications. The applications have the following
= RTA-OSEK activity ’m‘ framework:
Brack T2 = 8 tasks plus the idle task
= m All basic tasks are lightweight tasks
“Task T1 | .
l = 1 Category 2 ISR with a 10ms minimum inter-arrival

Figure 6 - Task chaining time

m 1 Counter

= 7 or 8 alarms, all attached to the same counter

ﬁ[Q

T L] - = No resources or internal resources
'RTA-OSEK activity ' ’magm N
u
R — i |
Task T2 el < = No schedules
ml [= No tasksets

» Built using standard status
Figure 7 - Schedule() call
The following table shows the task priority configura-

tion for each benchmark application:

ECC1

= _ The ECC1 application uses 7 basic tasks and 1 extended
§ g task with unique priorities. Task H is the extended task
& = et and it waits on a single event that is set by basic tasks A-
= 3 £ O o 5 B G.
g & B B B &
This application has the following overheads:
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8 Memory Usage Bytes
B 20 20 7 7 7 7 OS ROM 2554
C 30 20 6 6 6 6 0OS RAM 920
D 40 30 5 5 5 5 comprising RAM data 188
E 50 50 4 4 4 4 comprising RAM stack 732
F 60 80 3 3 3 3
G 70 100 2 2 2 2 ECC2
H 80 150 1 1 1 2 The ECC2 application uses 6 basic tasks and 2 extended
idle 10 _ idle idle idle idle tasks. Tasks G and H are the extended tasks and share a

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown splitinto RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities. This application has the following overheads:

Memory Usage Bytes
0S ROM 1794
0S RAM 764
comprising RAM data 128
comprising RAM stack 636
BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

Memory Usage Bytes
0S ROM 2028
0S RAM 764
comprising RAM data 124
comprising RAM stack 640

priority. The extended tasks wait on a single event that

is set by tasks A-F.

This application has the following overheads:

Memory Usage Bytes
0S ROM 3054
0S RAM 1150
comprising RAM data 258
comprising RAM stack 892

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-

sources:

= "Tasks A, B and C
= "Tasks D, E and F
s "Tasks Gand H

The benefit of this optimization is shown in the follow-

ing table:

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2
Non-optimized 1016 1020 1112 1272
OS Overhead 636 640 732 892
Application Overhead 380 380 380 380
Optimized 436 436 532 532
OS Overhead 256 256 352 352
Application Overhead 180 180 180 180

Notes

ETAS/COM-EU_Fi/02.2006

	RTA-OSEK
	Renesas SH2A with the Green Hills Software Compiler
	Features at a Glance
	BCC1
	BCC2
	ECC1
	ECC2
	Memory Type
	Overhead (bytes)
	Object
	RAM Bytes
	ROM Bytes
	Object
	Stack Bytes
	Task Type
	Basic
	Extended
	Ref
	Figure 1 - Category 1 interrupt with return to interrupted task
	Figure 2 - Category 2 interrupt with return to interrupted task
	Figure 3 - Category 2 interrupt activates a higher priority task
	Figure 4 - Task activates a higher priority task
	Figure 5 - Alarm activates task
	Figure 6 - Task chaining
	Figure 7 - Schedule() call
	Figure 8 - Activation by SetEvent(
	Figure 9 - ReleaseResource()
	Task/ISR
	Stack (bytes)
	Period (ms)
	BCC1
	BCC2
	ECC1
	ECC2
	Memory Usage
	Bytes
	Memory Usage
	Bytes
	Memory Usage
	Bytes
	Memory Usage
	Bytes
	Total Stack Space (bytes)
	BCC1
	BCC2
	ECC1
	ECC2

