RTA-OSEK

Texas Instruments TMS570 with the TI Compiler

Closed-Loop Development

RTA-OSEK

Planner

RTA-TRACE

RTA-OSEK

Builder

A
RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This port data sheet discusses the Texas Instru-
ments TMS570 port of the RTA-OSEK kernel
alone and should be read in conjunction with
the Technical Product Overview “Developing
Embedded Real-Time Applications with RTA-OS-
EK" available from ETAS.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

Features at a Glance

= OSEK/VDX OS v2.2 Certified OS

s RTOS overhead: 28 bytes RAM, 176
bytes ROM

= Category 2 interrupt latency: 214
CPU cycles

= Applications include: Chassis Con-
trol, Occupant Safety Systems, Gate-
ways

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack — even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

m Texas Instruments cl470.exe v4.4.0

= Texas Instruments cl470.exe.v4.4.0

ETAS




m Texas Instruments Ink470.exe v4.4.0
Memory Model

RTA-OSEK supports a flat 32-bit memory model. The
only restrictions placed on memory usage are that loca-
tions used by on-board peripherals cannot be used for
application code and the vector table must be located at
0x0.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debugger:

s Lauterbach Trace32

Further information about ORTI for RTA-OSEK can be
found in the ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Texas Instruments
TMS570 CPU family, including TMS470PSF761 and
TMS470PVF81x.

Interrupt Model

RTA-OSEK for the TMS570 supports multiple interrupt
priority levels. These correspond to values in the REQ-
MASK register of the VIM module. The two highest pri-
ority VIM channels that are hard wired to the FIQ
interrupt can only support Category 1 interrupts. All
other VIM channels can be either Category 1 or 2. Anin-
terrupt can also be attached to the phantom interrupt
(i.e. channel index 0). FIQ interrupts can be configured
using the FIRQPR register. It is the user's responsibility
to ensure this register is correctly configured for the pri-
ority scheme desired. Processor exceptions are only sup-
ported as Category 1 interrupts. When processing either
Category 1 or 2 interrupts, no stack is used in IRQ mode.
Instead, the processor mode is changed to Supervisor
mode prior to any stack use.

Floating Point Support

RTA-OSEK for the TMS570 is designed to work with fully
re-entrant software floating-point libraries supplied by
Texas Instruments Inc. This allows floating-point to be
used in RTA-OSEK tasks and ISRs without the need to
save and restore any additional context.

Evaluation Board Support

RTA-OSEK can be used with any Texas Instruments Inc.
TMS570 CPU evaluation board. An example application
is provided to run on the Texas Instruments Inc.
TMS470PSF761PZ Adapter Board evaluation board. This
application can be adapted for other target boards by

adjusting the linker command file (eg, to alter the allo-
cation of program sections) and one source file (if alter-
native output pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by

RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 32 plus an idle task
Max tasks per priority 1 32 1 32
Max queued activations 1 255 1 255
Max events per task n/a n/a 32 32
Max nested resources 255
Max alarms Not limited by RTA-OSEK
Max standard resources 255
Max internal resources Not limited by RTA-OSEK
Max application modes 65535

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory Type Overhead (bytes)
RAM 28
ROM/Flash 176

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

Object RAM Bytes ROM Bytes
BCC1 task 0 44

BCC2 task 10 60

ECC1 task 56 68

ECC2 task 58 76
Category 1 ISR 0 0
Category 2 ISR 0 120
Resource 0 20

Internal Resource 0 0




Object RAM Bytes ROM Bytes
Event 0 4

Alarm 12 36
Counter 4 40

Taskset (RW) 4

Taskset (RO) 0

Schedule 16 36
Arrivalpoint (RW) 12 12
Arrivalpoint (RO) 0 12

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

Object Stack Bytes
Task priority level 88
Category 2 interrupt 64

sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available
on request from ETAS.

K L
1) |

| |
T RTA-OSEK activity [ ]

N i
ICa‘tegory1 ISR ! i 1

—i -
Frask i i

Figure 1 - Category 1 interrupt with return to interrupted task

l—éf[A B

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 56 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

I RTA-OSEK activity

|Category 2 ISR

therrupt Assertea
ITask | i i

Figure 2 - Category 2 interrupt with return to interrupted task

A I j[E
l RTA-OSEK activity ActivateTask(T2) -

Task Type Basic Extended Ref
Category 1 ISR latency 90 90 K ) -
I TerminateTask()

Category 2 ISR entry latency 214 212 A | Category 2 ISR 1
Category 2 ISR exit latency 386 564 E I Task T2 ready to ru]
Normal Termination 312 562 D [Task T2 ' l
ChainTask 598 1220 J TRUPETEE a— [nterrupt Asserted N
Pre-emption 518 706 C | T T
Tri d by al 884 1074 F . . . . L

riggered by alarm Figure 3 - Category 2 interrupt activates a higher priority task
Schedule 486 664 Q
ReleaseResource 542 720 M
SetEvent n/a 1110 S

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-



|C /D S
T RTA-OSEK activity m’ I RTA-OSEK activity [ ]
WaitEvent(E 1) l
Frask 12 L fTask 12 $ "
— SetEvent(TZ,Eﬂ——
| AcivaeTaskT2) | f
!Task T1 I Irask 11 u l
Figure 4 - Task activates a higher priority task Figure 8 - Activation by SetEvent(
| F M
I RTA-OSEK activity [ ] T RTA-OSEK activity H
| TerminateTask() ——
| ReleaseResource(R1)
ITask T2 Frask 12 -
[Alarmactivates T2
Irask 11 T | T FTask T1

Figure 5 - Alarm activates task

P RTA-OSEK activity

IH/[D

ChainTask(T1)

Frask 12

Frask T

Figure 6 - Task chaining

|RTA-OSEK activity

R
' TerminateTask()

ITask T2

ActivateTask(T2)

[ schedule)| v

ITask T1 I

-

—

Figure 7 - Schedule() call

Figure 9 - ReleaseResource()

Benchmarks

The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
ant applications. The applications have the following
framework:

= 8 tasks plus the idle task
= All basic tasks are lightweight tasks

= 1 Category 2 ISR with a 10ms minimum inter-arrival
time

= 1 Counter

m 7 or 8 alarms, all attached to the same counter
= No resources or internal resources

= No hooks

= No schedules

= No tasksets

= Built using standard status

The following table shows the task priority configura-



tion for each benchmark application:

ECC1

a _ The ECC1 application uses 7 basic tasks and 1 extended
5‘;" £ task with unique priorities. Task H is the extended task
& =) et and it waits on a single event that is set by basic tasks A-
= 3 e T S 5 o G
" & = v 9] v U :
g & & B B & B
This application has the following overheads:
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8 Memory Usage Bytes
B 20 20 7 7 7 7 0S ROM 2552
C 30 20 6 6 6 6 0S RAM 1072
D 40 30 5 5 5 5 comprising RAM data 184
E 50 50 4 4 4 4 comprising RAM stack 888
F 60 80 3 3 3 3
G 70 100 2 2 2 2 ECC2
H 80 150 1 1 1 2 The ECC2 application uses 6 basic tasks and 2 extended
idle 10 - idle idle idle idle tasks. Tasks G and H are the extended tasks and share a

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities. This application has the following overheads:

Memory Usage Bytes
0S ROM 1928
0S RAM 920
comprising RAM data 128
comprising RAM stack 792
BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

Memory Usage Bytes
0S ROM 2134
0S RAM 924
comprising RAM data 124
comprising RAM stack 800

priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Memory Usage Bytes
OS ROM 2950
0S RAM 1298
comprising RAM data 250

comprising RAM stack 1048

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

m "Tasks A, Band C
m "TasksD, Eand F
s "Tasks GandH

The benefit of this optimization is shown in the follow-
ing table:

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2
Non-optimized 1172 1180 1268 1428
OS Overhead 792 800 888 1048
Application Overhead 380 380 380 380
Optimized 532 532 628 628
OS Overhead 352 352 448 448
Application Overhead 180 180 180 180




Notes

ETAS/MKT61_Fi/07.2007




