
RTA-OSEK

Infineon TriCore with the Green Hills Software Compiler

Features at a Glance

� OSEK/VDX OS v2.2 Certified OS
� RTOS overhead: 30 bytes RAM, 150
bytes ROM

� Category 2 interrupt latency: 29
CPU cycles

� Applications include: Engine Man-
agement, Integrated Starter Alter-
nators, Chassis Control

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This datasheet discusses the RTA-OSEK port for
the Infineon TriCore and GHS compiler and
should be read in conjunction with the Techni-
cal Product Overview “Developing Embedded
Real-Time Applications with RTA-OSEK” avail-
able from ETAS.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.3 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack – even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

� Green Hills Software CCTRI MULTI v5.1.3

� Green Hills Software ASTRI MULTI v5.1.3

� Green Hills Software ELXR MULTI v5.1.3

Memory Model

RTA-OSEK has a flat 32-bit memory model. RTA-OSEK
makes use of 24-bit relative addressing internally which
requires the library to be contained within a 1024K byte
memory block. 32-bit addressing is used externally pro-
viding no restrictions on placement of user code and da-
ta. Support for using direct calls is provided to improve
performance (when application memory configuration
permits). The RTA-OSEK code and the interrupt vector
table can also be placed in scratch pad RAM.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

� Lauterbach TRACE32

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Infineon TriCore
v1.3 and v1.3.1 CPU family, including the TC1796,
TC1792, TC1766, TC1762, TC1764, TC1797, TC1767 and
TC1736

Interrupt Model

RTA-OSEK supports 255 interrupt levels. Category 2 in-
terrupts may share priority levels or may have unique
multi-level priorities. Category 1 interrupts may share
the priority level 255 or may have unique multi-level pri-
orities.

Floating Point Support

RTA-OSEK is designed to work with software floating-
point libraries supplied by Green Hills Software. These
are mainly re-entrant and no special support is needed
when tasks and ISRs use floating point code. If non re-
entrant code is used (for example when accessing errno)
then the supplied "floating-point wrappers" must be
modified to save and restore the additional context.

Context Save Areas

All RAM figures quoted in this datasheet do not include
context save areas (CSAs).

Evaluation Board Support

This port of RTA-OSEK can be used with any Infineon Tri-
Core v1.3 and v1.3.1 CPU evaluation board. An example
application is provided to run on the Triboard
TC1796.300 evaluation board. This application can be

adapted for other target boards by adjusting the linker
command file (to alter the RAM locations) and one
source file (if alternative output pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by
RTA-OSEK.

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

BCC1 BCC2 ECC1 ECC2

Max no of tasks 32 plus an idle task

Max tasks per priority 1 32 1 32

Max queued activations 1 255 1 255

Max events per task n/a n/a 32 32

Max nested resources 255

Max alarms Not limited by RTA-OSEK

Max standard resources 255

Max internal resources Not limited by RTA-OSEK

Max application modes 65535

Memory Type Overhead (bytes)

RAM 30

ROM/Flash 150

Object RAM Bytes ROM Bytes

BCC1 task 0 36

BCC2 task 10 56

ECC1 task 28 60

ECC2 task 30 68

Category 1 ISR 0 0

Category 2 ISR 0 64

Resource 0 20

Internal Resource 0 0

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 16 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available
on request from ETAS.

Event 0 4

Alarm 12 40

Counter 4 80

ScheduleTable 16 84

ScheduleTable Expiry 0 12

Taskset (RW) 4 4

Taskset (RO) 0 4

Schedule 16 36

Arrivalpoint (RW) 12 12

Arrivalpoint (RO) 0 12

Object Stack Bytes

Task priority level 12

Category 2 interrupt 11

Task Type Basic Extended Ref

Category 1 ISR Latency 19 19 K

Category 2 ISR Entry Latency 29 29 A

Category 2 ISR Exit Latency 63 138 E

Normal Termination 40 101 D

ChainTask 72 195 J

Pre-emption 65 139 C

Triggered by alarm 106 182 F

Schedule 59 134 Q

ReleaseResource 65 139 M

SetEvent n/a 196 S

Object RAM Bytes ROM Bytes

Figure 1 - Category 1 interrupt with return to interrupted task

Figure 2 - Category 2 interrupt with return to interrupted task

Figure 3 - Category 2 interrupt activates a higher priority task

K L
Interrupt Asserted

 RTA-OSEK activity

 Category 1 ISR

 Task

A B

 RTA-OSEK activity

 Category 2 ISR

 Task
Interrupt Asserted

EA

 RTA-OSEK activity

 Category 2 ISR

 Task T2

 Task T1

TerminateTask()

Interrupt Asserted

Task T2 ready to run

ActivateTask(T2)

Benchmarks

The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
ant applications. The applications have the following
framework:

� 8 tasks plus the idle task

� All basic tasks are lightweight tasks

� 1 Category 2 ISR with a 10ms minimum inter-arrival
time

� 1 Counter

� 7 or 8 alarms, all attached to the same counter

� No resources or internal resources

� No hooks

� No schedules

� No tasksets

� Built using standard status

The following table shows the task priority configura-

Figure 4 - Task activates a higher priority task

Figure 5 - Alarm activates task

Figure 6 - Task chaining

Figure 7 - Schedule() call

C D

 RTA-OSEK activity

 Task T2

 Task T1

ActivateTask(T2)

TerminateTask()

F

 RTA-OSEK activity

 Task T2

 Task T1
A larm activates T2

TerminateTask()

J

 RTA-OSEK activity

 Task T1

ChainTask(T1)

 Task T2

Q

 RTA-OSEK activity

 Task T2

 Task T1

TerminateTask()

Schedule()

ActivateTask(T2)

Figure 8 - Activation by SetEvent(

Figure 9 - ReleaseResource()

S

 RTA-OSEK activity

 Task T2

 Task T1

WaitEvent(E1)

SetEvent(T2,E1)

M

 RTA-OSEK activity

 Task T2
ReleaseResource(R1)

 Task T1

tion for each benchmark application:

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities. This application has the following overheads:

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

ECC1

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G.

This application has the following overheads:

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

� Tasks A, B and C

� Tasks D, E and F

� Tasks G and H

The benefit of this optimization is shown in the follow-
ing table:

T
a
sk
/I
S
R

S
ta
ck
 (
b
y
te
s)

P
e
ri
o
d
 (
m
s)

B
C
C
1

B
C
C
2

E
C
C
1

E
C
C
2

ISR1 10 10 IPL1 IPL1 IPL1 IPL1

A 10 10 8 8 8 8

B 20 20 7 7 7 7

C 30 20 6 6 6 6

D 40 30 5 5 5 5

E 50 50 4 4 4 4

F 60 80 3 3 3 3

G 70 100 2 2 2 2

H 80 150 1 1 1 2

Idle 10 - idle idle idle idle

Memory Usage Bytes

OS ROM 2248

OS RAM 250

comprising RAM data 146

comprising RAM stack 100

Memory Usage Bytes

OS ROM 2516

OS RAM 247

comprising RAM data 142

comprising RAM stack 105

Memory Usage Bytes

OS ROM 3120

OS RAM 296

comprising RAM data 174

comprising RAM stack 122

Memory Usage Bytes

OS ROM 3798

OS RAM 360

comprising RAM data 212

comprising RAM stack 148

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2

Non-optimized 484 485 502 528

OS Overhead 104 105 122 148

Application Overhead 380 380 380 380

Optimized 224 224 242 242

OS Overhead 44 44 62 62

Application Overhead 180 180 180 180

ETAS/COM_Fi/07.2008

Contact Addresses

ETAS GmbH

70469 Stuttgart, Germany

Phone +49 711 89661-0

Fax +49 711 89661-106

sales.de@etas.com

ETAS S.A.S.

94588 Rungis Cedex, France

Phone +33 1 567000-50

Fax +33 1 567000-51

sales.fr@etas.com

ETAS Ltd.

Burton-upon-Trent

Staffordshire DE14 2WQ

Great Britain

Phone +44 1283 546512

Fax +44 1283 548767

sales.uk@etas.com

ETAS Inc.

Ann Arbor, MI 48103, USA

Phone +1 888 ETAS INC

Fax +1 734 997-9449

sales.us@etas.com

ETAS K.K.

Yokohama 220-6217, Japan

Phone +81 45 222-0900

Fax +81 45 222-0956

sales.jp@etas.com

ETAS Korea Co., Ltd.

Seoul 137-889, Korea

Phone +82 2 5747-016

Fax +82 2 5747-120

sales.kr@etas.com

ETAS (Shanghai) Co., Ltd.

Shanghai 200120, P.R. China

Phone +86 21 5037 2220

Fax +86 21 5037 2221

sales.cn@etas.com

ETAS Automotive India Pvt. Ltd.

Bangalore 560 068, India

Phone +91 80 4191 2585

Fax +91 80 4191 2586

sales.in@etas.com

www.etas.com

Subject to change (03/2009)

Notes

