RTA-OSEK

Binding Manual: PC

Contact Details

ETAS Group

Germany

ETAS GmbH
BorsigstraBe 14
70469 Stuttgart

Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106

Japan

ETAS K.K.

Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan

Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956

Korea

ETAS Korea Co. Ltd.

4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-889, Korea

Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120

USA

ETAS Inc.
3021 Miller Road
Ann Arbor, Ml 48103

Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49

France

ETASS.AS.

1, place des Etats-Unis
SILIC 307

94588 Rungis Cedex

Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51

Great Britain

ETAS UK Ltd.

Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ

Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67

Copyright Notice

© 2001 - 2006 LiveDevices Ltd. All rights reserved.
Version: RM00073-001

No part of this document may be reproduced without the prior written
consent of LiveDevices Ltd. The software described in this document is
furnished under a license and may only be used or copied in accordance with
the terms of such a license.

Disclaimer

The information in this document is subject to change without notice and
does not represent a commitment on any part of LiveDevices. While the
information contained herein is assumed to be accurate, LiveDevices assumes
no responsibility for any errors or omissions.

In no event shall LiveDevices, its employees, its contractors or the authors of
this document be liable for special, direct, indirect, or consequential damage,
losses, costs, charges, claims, demands, claim for lost profits, fees or expenses
of any nature or kind.

Trademarks

RTA-OSEK and LiveDevices are trademarks of LiveDevices Ltd.
Windows and MS-DOS are trademarks of Microsoft Corp.
OSEK/VDX is a trademark of Siemens AG.

All other product names are trademarks or registered trademarks of their
respective owners.

Issue RM00073-001 Copyright Notice 1

(R
o
)
=
@
>
—~
(%]

Contents
1 ADOUL this GUIAE ..., 5
1.1 Who Should Read this GUIdE?ooooiiiiiiiii 5
1.2 CONVENTIONS «.ieiieee e 5
2 TOOICNAIN ISSUBS ...t 7
2.1.1 Use of different toolchains for PC...........c..ooocoiiiiiiiiiiin 7
2.2 COMPIIET it 7
2.2.1 PC "assembler” fileccccooiiiiiiii 8
2.2.2 Control of RTA-OSEK and the virtual ECU...............c...c.... 8
2.3 ASSEMDIET Lo 9
2.4 LINKEr/LOCATON . .iiiiii i, 9
2.5 Application INKageooiiiiiiiieeeeee e, 9
2.6 DEDUQGET ... 10
2.6.1 Target debUgQgerscccviiiiiiiiieiee e 10
2.7 Toolchains used to build applications...............cccccoeeviinl 10

Issue RM00073-001 Contents 3

%)
L
c
[}
e}
<
o
O

3 Target Hardware ISSUBScooiiiiiiiiiiee e 11
3T INTEITUPES oo 11

3.1 1 Interrupt Levels....o.ovveeeiiiiieeecee e 11

3.1.2 Interrupt VeCTOrS. ... 11

3.1.3 Category 1 Handlerscooovviiiiiiiiiiieee e 11

3.1.4 Category 2 Handlersoooovviiiiiiieiieeee e 11

3.1.5 Vector Table ISSUESccooiiiiiiiiiie i 12

3.2 Register SEtTNGS ...cooiiiiiii e 12

3.3 StACK USAGE . i 12

3.3.1 Number of Stacksccooviiiiiiiiiii 12

3.3.2 Stack Usage within API Callsoooooiiiiiiii 13

3.3.3 Stack allocationeeeiiiiiiii 13

3.4 Floating POINT ...oiiii i 13

4 Parameters of Implementation............ccccccoviiiiiiii 15
4.1 FUNCHONAILY ..o 15

4.2 Hardware RESOUICESccouuiiieiiiiie et 16

4.2.1 Reserved Hardware ReSOUICESoeeveiiiiiiiiiiiiieieii 16

4 Contents Issue RM00073-001

1

About this Guide

1.1

This guide provides port specific information for the PC implementation of
LiveDevices' RTA-OSEK.

A port is defined as a specific target microcontroller/target toolchain pairing.
This guide tells you about integration issues with your target toolchain and
issues that you need to be aware of when using RTA-OSEK on your target
hardware. Port specific parameters of implementation are also provided,
giving the RAM and ROM requirements for each object in the RTA-OSEK
Component and execution times for each APl call to the RTA-OSEK
Component.

Who Should Read this Guide?

1.2

It is assumed that you are a developer. You should read this guide if you
want to know low-level technical information to integrate the RTA-OSEK
Component into your application.

Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any processor running the
RTA-OSEK Component.

In this guide you'll see that program code, header file names, C type names, C
functions and RTA-OSEK API call names all appear in the courier typeface.
When the name of an object is made available to the programmer the name
also appears in the courier typeface, so, for example, a task named Task
appears as a task handle called Task1.

Issue RM00073-001 About this Guide

2 Toolchain Issues

In this chapter, you'll see the important details that you need to know about
RTA-OSEK and your toolchain. A port of the RTA-OSEK Component is specific
to both the target hardware and the compiler toolchain. You must make sure
that you build your application with this toolchain.

If you are interested in using a different version of the same toolchain, you
should contact LiveDevices to confirm whether or not this is possible.

2.1.1 Use of different toolchains for PC

Most ports of RTA-OSEK are restricted to using a single toolchain to build an
application for specific target hardware.

The PC port, on the other hand, allows use of most popular C/C++ compilers
for the PC platform. In particular, it has been tested with gcc (as distributed
with MinGW 3.4.2), Borland bcc32 (version 5.5.1), and Microsoft Visual
Studio (version 5, and 2003).

2.2 Compiler

The RTA-OSEK Component was built using the following compiler:

Vendor Borland
Compiler bcc32
Version 5.5.1

The compulsory compiler options for application code are shown in the
following table:

Option Description
none

The prohibited compiler options for application code are shown in the
following table:

Option Description
none

The C file that RTA-OSEK generates from your OIL configuration file is called
osekdefs.c. This file defines configuration parameters for the RTA-OSEK
Component when running your application.

The compulsory compiler options for osekdefs.c are shown in the
following table:

Issue RM00073-001 Toolchain Issues 7

2.2

Option Description
none

The prohibited compiler options for osekdefs . c are shown in the following
table:

Option Description
none

2.2.1 PC "assembler” file

The RTA-OSEK build process generates a file which is a low-level interface to
the target hardware, containing, for instance, interrupt wrappers and a vector
table, which must be compiled and linked with your application.

This configuration file is called osgen.cpp. (This file is usually an assembler
file, but for the PC port, it is a C++ source code file). This file defines
configuration parameters for the RTA-OSEK Component when running your
application.

In the case of the PC port, it is also used to interface to the source code and
library code in DLLs, which provide the virtual ECU and its devices, as running
on the target PC.

This file #include's code from the folder <rta_root>\VRTA\inc which is
responsible for initializing the virtual ECU, and providing an interface between
RTA-OSEK and the virtual ECU.

Additionally, code to create virtual peripherals of common types is #include'd
unless VRTA_EXCLUDE_SAMPLE_DEVICES is #define'd.

If VRTA_INCLUDE_DEVICES is #define'd, a file devices.cpp in the application
folder is #include'd, which is a convenient way for the application to create
and control virtual peripherals such as counters.

See the virtual ECU documentation for more details of how peripherals for the
virtual ECU are defined and used.

2.2.2 Control of RTA-OSEK and the virtual ECU

Because the RTA-OSEK libraries are not directly linked to the application, the
user must specify when certain default routines in RTA-OSEK are to be over-
ridden by user supplied code.

The following symbols must be defined if the default routines are not
required:

Toolchain Issues Issue RM00073-001

Routine To Override
CloseCOM

INitCOM

Messagelnit

Symbol to be #define'd
OS_USER_CloseCOM
OS_USER_InitCOM
OS_USER_Messagelnit

RTA-OSEK generates a second configuration file called osgen.cpp. (This file
is usually an assembler file, but for the PC port, it is a C++ source code file).
This file defines configuration parameters for the RTA-OSEK Component

when running your application.

2.3 Assembler

The RTA-OSEK Component was built using the following assembler:

Vendor Borland
Assembler tasm32
Version 53

2.4 Linker/Locator

In addition to the sections used by application code, the following RTA-OSEK
sections must be located:

Sections

Rom/Ram

Description

no sections used

RAM

entire application linked as Windows executable

2.5 Application linkage

For most ports of RTA-OSEK, an application is linked directly with the
appropriate RTA-OSEK library, and possibly some start-up code and libraries
provided with the target toolchain. This forms the complete code for the
application, which is then loaded into a target ECU.

The PC port, on the other hand, creates an application that uses some
statically linked toolchain supplied libraries, and also uses DLLs which are
loaded when the Windows application starts. There is no need for static
linkage to the RTA-OSEK libraries.

This application startup code in vrtaCore.cpp and vrtaOSEKsupp.c is
incorporated automatically when osgen. cpp is compiled.

Issue RM00073-001 Toolchain Issues

2.6

2.6 Debugger

Information about ORTI for RTA-OSEK can be found in the RTA-OSEK ORTI
Guide

At the time of writing, we were not aware of any debuggers for the PC with
Windows with support for ORTI.

If you are using an ORTI version 2.0 aware debugger on this platform you can
use the “Unknown ORTI debugger” option in the RTA-OSEK GUI to generate
an ORTI output file. The ORTI generated will not have been tested on the
debugger and, therefore, is not guaranteed to work.

Please contact LiveDevices if you have any questions about ORTI support in
RTA-OSEK.

2.6.1 Target debuggers

An application built by RTA-OSEK for the PC port is a Windows executable. It
is expected that a debugger supplied with the chosen toolchain will be used
to debug the application.

There is no support for the use of ORTI debuggers with this port of RTA-OSEK.

2.7 Toolchains used to build applications

The example program is distributed with build instructions (compiler flags,
library names, etc) for all of these common toolchains; a particular toolchains
can be selected by using the target variant option within RTA-OSEK. This is an
aid if multiple toolchains are used, but the generated headers and code are
not affected. This application also illustrates how the build instructions may
be tailored to keep intermediate and final files from the build process in
different folders for each toolchain.

10 Toolchain Issues Issue RM00073-001

3 Target Hardware Issues

3.1 Interrupts

This section explains the implementation of RTA-OSEK's interrupt model. You
can find out more about configuring interrupts for RTA-OSEK in the RTA-
OSEK User Guide.

3.1.1 Interrupt Levels
In RTA-OSEK interrupts are allocated an Interrupt Priority Level (IPL). This is a
processor independent abstraction of the interrupt priorities that are available
on the target hardware. You can find out more about IPLs in the RTA-OSEK
User Guide. The hardware interrupt controller is explained in the Virtual ECU
Reference Manual.
The following table shows how RTA-OSEK IPLs relate to interrupt priorities on
the target hardware:
IPL Value Virtual ECU IPL Description
0 0 User level
1..32 1..32 Category 1 and 2 interrupts
3.1.2 Interrupt Vectors
RTA-OSEK does not impose any restrictions on which interrupt vectors may be
used.
3.1.3 Category 1 Handlers
Category 1 interrupt service routines (ISRs) must correctly handle the interrupt
context themselves, without support from the operating system. The Borland
C compiler can generate appropriate interrupt handling code for a C function
decorated with the void function qualifier. You can find out more in your
compiler documentation.
3.1.4 Category 2 Handlers

Category 2 ISRs are provided with a C function context by the RTA-OSEK
Component, since the RTA-OSEK Component handles the interrupt context
itself. The handlers are written using the OSEK OS standard ISR () macro,
shown in Code Example 3:1.

| #include “MyISR.h” |

Issue RM00073-001 Target Hardware Issues

3.2

ISR(MyISR) {
/* Handler routine */

}

Code Example 3:1 - Category 2 ISR Interrupt Handler

You must not insert a return from interrupt instruction in such a function.
The return is handled automatically by the RTA-OSEK Component.

3.1.5 Vector Table Issues

When you configure your application with the RTA-OSEK GUI you can choose
whether or not a vector table is generated within osgen. cpp.

If you choose to provide your own vector table, it must follow the format
specified in the Virtual ECU documentation.

In particular, it must contain an entry for each interrupt handler, including the
Category 2 interrupt handlers in RTA-OSEK.

The entries for Category 2 interrupt handlers must use osCat2Wrapper for
the name of the handler routine, give the IPL of the ISR, and a pointer to the
ISR’s control block as the ‘tag’ entry.

The ISR control blocks are defined in osgen. cpp, using names of the form
OS_LVWVV, where V is a hex digit. The control blocks can be identified by a
member initialization of the form:

(funcptr)osE_<isr_name>.

3.2 Register Settings

The RTA-OSEK Component does not require the initialization of registers
before calling startos ().

The RTA-OSEK Component does not reserve the use of any hardware
registers.

3.3 Stack Usage

3.3.1 Number of Stacks

A single stack is used. The first argument to StackFaultHook is always 0.

osStackOffsetType is a scalar, representing the number of bytes on the
stack, with C type: unsigned int .

12 Target Hardware Issues Issue RM00073-001

3.3.2

Stack Usage within API Calls

The maximum stack usage within RTA-OSEK API calls, excluding calls to hooks

and callbacks, is as follows:

Standard

APl max usage (bytes): 320

Timing

APl max usage (bytes): 320

Extended

APl max usage (bytes): 340

3.3.3

To determine the correct stack usage for tasks that use other library code, you
may need to contact the vendor to find out more about library call stack
usage.

Stack allocation

Because of the interaction of Windows and the virtual ECU code, and the
variety of toolchains that can be used to build an application, it is not possible
to give precise figures for stack use by the application and RTA-OSEK library
code.

It is recommended that a generous allowance is made in the declared stack
use of tasks and ISRs, above the value used by the task code.

During initialization of the virtual ECU, the user stack is pre-extended to a size
of 1 megabyte (the default stack size using Microsoft Devstudio’s linker).

3.4 Floating point

All Pentium-class PCs have hardware floating-point. RTA-OSEK supports the
use of floating point, using library code for default floating-point context save
and restore operations.

Issue RM00073-001 Target Hardware Issues

3.4

14

The user may over-ride these routines if required; the interface and the code
of the supplied default routines is provided is <rta-base>\VRTA\inc\osfptgt.c

and osfptgt.h.

If the user wishes to over-ride any of these routines, the following functions
must be called during initialization — each has a single parameter which is the
address of the over-riding function:

Routine To Override
os_fp_save
os_fp_restore
os_fp_save_to
os_fp_restore_from

Initialisation Function To Be Called
vrtaAssign_fp_save
vrtaAssign_fp_restore
vrtaAssign_fp_save_to
vrtaAssign_fp_restore_from

Here is a short example of a possible initialization to for user-supplied

routines:

OS_API (void) 1local_
OS_API (void) 1local_
OS_API (void) local__
OS_API (void) 1local_

save (void) ;

restore (void) ;
save_to (PTR (OS_CONTEXT) a);
restore_from (PTR (OS_CONTEXT) Db);

void setup_special_routines (void)

{

vrtaAssign_save (local_save);

vrtaAssign_restore (local_restore);

vrtaAssign_save_to (local_save_to);

vrtaAssign_restore_from(local_restore_from);

Target Hardware Issues

Issue RM00073-001

4 Parameters of Implementation

This chapter provides information on the functional limits of the RTA-OSEK
Component for PC.

Detailed information on the performance and memory demands of the RTA-
OSEK Component is not provided. Run-time performance obviously depends
on the specification of the PC running the Virtual ECU code. Measurements
on a particular PC would not be very useful; in general modern PCs have
execution speeds much faster than most target ECUs actually used in
production. Memory requirements for an application would depend of the
chosen toolchain as well as the supplied libraries. The design of RTA-OSEK for
PC, and of the Virtual ECU, has assumed that RAM memory will not be a
limiting resource.

4.1 Functionality

The OSEK Operating System Specification specifies four conformance classes.
These attributes apply to systems built with OSEK OS objects. The following
table specifies the number of OSEK OS and COM objects supported per
conformance class.

Configuration Application Uses
Events No Yes
Shared Task Priorities No Yes No Yes
Multiple Task Activations| No | Yes No | Yes
Maximum number of tasks 102411024]1024|1024 (1024|1024
Maximum number of not suspended tasks 10241102411024|1024 (1024|1024
Maximum number of priorities 1024(1024]11024(102411024|1024

Number of tasks per priority (for BCC2 and ECC2)| n/a|1024|1024| n/a|1024|1024
Upper I|m|‘; fqr number of basic task activations 1| 255| 255 11 255| 255
per task priority
Maximum number of events per task 0 0 0| 32| 32| 32
Limits for the number of alarm objects not limited by RTA-OSEK
(per system / per task)

Limits for the number of standard resources
(per system)

Limits for the number of internal resources
(per system)

Limits for the number of nested resources
(per system / per task)

Limits for the number of application modes 4294967295

255| 255| 255| 255| 255| 255

not limited by RTA-OSEK

255| 255| 255| 255| 255| 255

Issue RM00073-001 Parameters of Implementation 15

4.2

4.2 Hardware Resources
4.2.1 Reserved Hardware Resources
Timer units, interrupts, traps and other hardware resources are not reserved
by RTA-OSEK.
16 Parameters of Implementation Issue RM00073-001

Support

For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
WwWw.etasgroup.com.

Issue RM00073-001 Support 17

