RTA-OSEK for PC

User Guide

Contact Details

ETAS Group

Germany

ETAS GmbH
Borsigstral3e 14
70469 Stuttgart

Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106

Japan

ETAS K.K.

Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan

Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956

Korea

ETAS Korea Co., Ltd.

4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-899, Korea

Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120

USA

ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103

Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49

France

ETAS S.A.S.

1, place des Etats-Unis
SILIC 307

94588 Rungis Cedex

Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51

Great Britain

ETAS UK Ltd.

Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ

Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67

=
Sy
=
20
o=
]

Copyright Notice

© 2001 - 2006 LiveDevices Ltd. All rights reserved.
Version: RTA-OSEK for PC v5.0.0 (issue 1)

No part of this document may be reproduced without the prior written
consent of LiveDevices Ltd. The software described in this document is
furnished under a license and may only be used or copied in accordance with
the terms of such a license.

Disclaimer

The information in this document is subject to change without notice and
does not represent a commitment on any part of LiveDevices. While the
information contained herein is assumed to be accurate, LiveDevices assumes
no responsibility for any errors or omissions.

In no event shall LiveDevices, its employees, its contractors or the authors of
this document be liable for special, direct, indirect, or consequential damage,
losses, costs, charges, claims, demands, claim for lost profits, fees or expenses
of any nature or kind.

Trademarks

RTA-OSEK and LiveDevices are trademarks of LiveDevices Ltd.
Windows and MS-DOS are trademarks of Microsoft Corp.
OSEK/DX is a trademark of Siemens AG.

All other product names are trademarks or registered trademarks of their
respective owners.

Certain aspects of the technology described in this guide are the subject of
the following patent applications:

UK - 0209479.5 and USA - 10/146,654,
UK - 0209800.2 and USA - 10/146,239,
UK - 0219936.2 and USA - 10/242,482.

4 Copyright Notice RTA-OSEK for PC User Guide

Table of Contents

CoNtACE DEAIIS. ... 3
COPYIIGNT NOTICE ..., 4
DISCIAIMET ..., 4
Trademarksooooeiiie 4
Table Of CONTENTS.......veiiiiii e 5
1T AbOUL this GUIAEoooiiiiiii e 19
1.1 Who Should Read this Guide?ccco 19

1.2 CONVENTIONS. ..ooiiiiiiiiii 19

2 OVEIVIBW Lo 20
2.1 T BIIMNS e 20

2.2 Whatdo I need?ooiiiiiiiiie e 22

2.3 Whatis the Virtual Machine?.................coei e, 23

2.3.1 Device Manager ... 24

2.3.2 Interrupt Control Unit..........cooovviiiiiiiiiiiii 25

2.3.3 Application Managerccoooviiiiiiiiiiiii 26

2.3.4 Embedded GUI.......cooooiiiiiiiiii 26

2.3.5 RTA-OSEK Kernel........cccccceviiiiiiiiiiiiiieiiiiiee 27

2.3.6 Linkage Tablecccooiiiiiiiii 27

24 Whatisina Virtual ECU?. ..o 28

2.5 Managing Virtual ECUS..........cccvviiiiiiiiiiiieee e 28

2.6 Interacting with a Virtual ECU...........cccoiiiiiiii) 29

2.7 Possible Problem Areas..........ccccccvviiiiiiiiiiiiiiieee e 31

3 TULOTIAl Lo 32
3.1 Prer@QUISITES. ..o 32

3.1.1 RTA-OSEK ..o 32

312 COMPIIEN o 32

3.1.3 RTA-TRACE ... 35

3.2 Creating your first Virtual ECUoooviiiiieiec) 36

3.2.1 FIIOANEW. .. o 36

3.2.2 Build/ CustomBuildcoooiiiiiii 38

3.3 AddING dEVICES......oviiiiiiiieecc e 40

RTA-OSEK for PC User Guide Table of Contents

N
©]
>
=
@
>
=t
(%l

(%]
2
c
(7]
=
c
o
)

3.3.1 Clocks, counters and compare devices.................... 40

3.3.2 SENSOIS ettt 42

3.3.3 ACUBTOIS .o 42

334 O oo 43

3.3.5 CUStOM deVICES .. .vvvveiiiiiieeeeeeeee e 43

3.4 Tutorial2 ... 44
3.4.1 DBVICES. ..o 44

3.4.2 LOGgeT e 46

3.4.3 Interfacing C code with devices..............ccccvvvveee... 46

3.4.4 Device Initializationcccoovviiiiiiic 47

3.4.5 MAIN e 47

346 Trial run T . 48

3.4.7 Summary sofar...........ccoooiiiiiiii 50

3.4.8 Tasksand ISRS ... 51

3.4.9 Threads.....cccoooiiiiiiiiii e 54

3410 Trial rUN 2 oo 57

3.4.11 Non-volatiledata....................... 57

3.4.12 RTA-TRACE . ..o 59

3.4.13 Addendum ... 63

4 ECUs and Virtual DEVICESuuveeei e 64
4.1 Registering the deviCeoooviiiiiiiiiiiee e, 64
4.2 Handling aCtiONScooiiiiiiiiiiee e 65
4.3 Handling state qQUEereS...........cooviiiiiiiiiiiiee e 65
4.4 RaAISING EVENTS ...t 66
4.5 RaiSING INTEITUPTS wovviiiiiiiiie 67
4.6 Parent/ Child relationshipsccoccviiiiiiiiiiiiee 67
A7 TRIAUS. ... et 69
D VIEASEBIVET L. 70
5.1 Multiple instances of @ VECUccooviiiiiiiiiiiiiceeee, 71
5.2 Server status information..............c.ccoeiiiiii 71
5.3 SECUMLY ISSUBS ... 73
6 VITAMONITON ... 74
B.1 ACHIONS 1 oot 75
0.2 EVENTS . 76

6 Table of Contents RTA-OSEK for PC User Guide

6.2.1 QUETY e 76

6.2.2 MONITOT ..o 77

6.2.3 Scripting using vritaMonitor ... 78

6.2.4 PlUG-INS ...ooiiiiiiii 79

7 MIGration GUIAEcooiiiiiiiiee e, 80
T OIL AU e 80
7.1.1 Target and variantccooiiiiiii 80

7.1.2 INTEITUPTS o 80

7.1.3 Number of tasks.......cccciiiiiiiiii 81

7.2 Hardware drivVers............cooiiiiiiiiiieiie e 81
7.3 nitialization ... 82
7.4 INTITUPTS oo 82
7.5 Building the application..............cccoooiiiiiiiie) 82
8 RTA-TRACE REfEreNCE. .. .uviiiiiiiii e, 83
8.1 HOW It WOIKS ..o 83
8.1.1 The VECU. ..o, 83

8.1.2 RTA-TRACE-SEIVer.....ccccooeiiiiiiiiiiiiiieeceeee 84

8.2 Tuning process and thread priorities............cccccvvviiiieeeieiinn. 84
8.3 Controlling the trace at run-time 85
8.4 ROIlING YOUr OWN ... 85
9 Virtual Machine API Referencecc.vvvvviiiiiiiiiiee e, 86
9.1 GENEral NOES .. 86
9.1.1 APl Header FileS..........oooviiiiiiiiie e, 86

9.1.2 LINKAGE ..ooiiiiiiiii i 86

9.1.3 The API Call Template.........coooiiiiiiiiiiiii, 86

9.2 Common Data TYPeSiiiiiiiiiii e 88
9.2.1 vrtaDevID ... 88

9.2.2 VITAACTIONID ..o 88

9.2.3 vrtaEventID . ..o 88

9.24 vrtaAEVID...... 88

9.25 WrAISRID ..o 88

9.2.6 vrtalntPriority........cccooo 88

9.2.7 VITAEITTYPE oo 88

9.2.8 vrtamillisecond ... 89

RTA-OSEK for PC User Guide Table of Contents

N
©]
>
=t
@
>
=t
(%l

(%]
2
c
(7]
=
c
o
)

9.2.9 vrtaTimestamp......coooiiiiiiiiiei 89
9.2.10 vrtaBooleancc.evvviiiiiiiiii 89
9.2 11 vrtaByte.. .o 89
9.2.12 wvrtaDatalen........ccoooiiiiiiiii 89
9.2.13 vrtaEmbed..........ooo 89
9.2.14 VITAACHION ...t 90
9.2.15 wrtaBvent....... 91
9.2.16 vrtaTeXtPtr.....cooiiii 92
9.2.17 vrtaStringlistPr ... 92
9.2.18 vrtaOptStringlistPtrccooovvi 92
9.3 Data format StriNgSccvviiiiiiiiiiiee e 93
9.3.1 OVEIVIEW .. 93
9.3.2 Definitionoooiiii 94
9.4 APILFUNCLIONS ..o 96
9.4.1 INitializeDevices() ... v 96
9.4.2 OS_MAINQ ...ooiiiiiiiiiee e 96
943 vrtaEnterUninterruptibleSection()............................ 98
944 vrtaEventRegister().........ooovvvviiiiiiieiiiie e 98
945 vrtaEventUnregister()ccccccceiiiiiiiii 100
9.4.6 vrtaGetState) ... e 100
9.4.7 VITaHOOKEVENT() . e 102
9.4.8 vrtalnitialize() ... 103
949 vrtalnitializeOS().....ooeeieeee 105
9.4.10 vrtalsAppFinished().............ccoooiiiiiiiiii 105
9.4.11 vrtalsAppThread()cooovviiiiiiiiiiiiiiieee 106
9.4.12 vrtalsldlel) 107
9.4.13 vrtaLeaveUninterruptibleSection()......................... 107
9.4.14 vrtaloadVIMO).....ccoeee e 108
9.4.15 vrtaNoneUserThread()coveveoieieoe i 109
9.4.16 vrtaOSGetIPLO) .ooev e 109
9.4.17 vrtaOSSetlPLO) ... 110
9.4.18 vrtaRaiseEVeNnt() . ..o 110
9.4.19 vrtaReadHPTIME() ... oo oeeeeeiee e 111
9.4.20 vrtaRegisterVirtualDevice()........c.vvveveeeeiiiiiie 111
9.4.21 VrtaReSEt) oo 115

8 Table of Contents RTA-OSEK for PC User Guide

N
©]
>
=t
@
>
=t
(%l

9.4.22 vrtaSendACtioN() oo 116

9.4.23 vrtaSpawnThread()............cooevvvvviiiiieeeiiiiie 117

9.4.24 vrtaStart() ...ooooeee e 118

9.4.25 vrtaTerminate()oeee e 119

10 Standard Device Reference............oooiiviiiiiiiiiiiiice e 120
10.1 wvrtaStdDevices.N.. ... 120
10.2 Action and Event Descriptions...............cooevveviiiiieiiieeeiieinnn 120
10.3 Device Managercoviiiiiiiiiii 121
10.3.1 Action: EventRegister.........ccccccciiiii 121

10.3.2 Action: HookEventsccccooovviiiiiiiiiiiiii 121

10.3.3 Action: ListAlloooooo 122

10.3.4 Action: GetDeViceACtioNS...........ccovvvviiiiiiiiiiiinne. 122

10.3.5 Action: GetDevicekvents............ccccci 122

10.3.6 Action: GetDevicelnfo.............ccooeiiiiii 122

10.3.7 Event: DeviceList.........cccccoviiiiiii 122

10.3.8 Event: DeVviceACtiONS.........ccoovviiiiiiiiiiiiii 122

10.3.9 Event: DeviceEventscoveeeiiiiiiiiiiiiiiee e 123

10.3.10 Event: Devicelnfo.......c.c.oooevviiiiiiiiiiiieecce 123

10.4 Interrupt Control Unit..........ccooiiiii e 124
10.4.1 ACHON: RAISE ..oovvveiiie e 124

10.4.2 Action: Clear.......ccccvvviiiieiiiiieee e 125

10.4.3 Action: MasK ... 125

10.4.4 Action: Unmask...........ccoc 125

10.4.5 Action: GetPendingccooovvvviiiiiieeiiiiiii 125

10.4.6 Action: GetIPLcovvveiiiiieiiiie e 125

10.4.7 Action: SetIPL ... 125

10.4.8 Event: Pendingcc.ooovieiiiiiiiiiiiieee e 126

10.4.9 Event: Start. ... 126

10.4.10 Event: StOP....coovviiii i 126

104171 Event: IPL ..o 126

10.4.12 Event: EnabledVecs.............ccccc 126

10.5 Application Manager.............coooeviiiiiiiiiiieieicieee e 127
10.5.1 Action: Start.....ccoooeeiiiiii 127

10.5.2 Action: Terminate.........cccovvvviieieeeeeeeee e 127

RTA-OSEK for PC User Guide Table of Contents 9

(%]
2
c
(7]
=
c
o
)

10

10.5.3 ACtion: PauSecoooeiiiiiiiii 127

10.5.4 Action: Restart........cccccoiiii 127

10.5.5 ACtioN: RESEL . ..ovvvieiiiicciie e 128

10.5.6 Action: GetInfo........c.oooiiiiiiii 128

10.5.7 Action: TestOption..........ccccvvviiiiiiiii 128

10.5.8 Action: ReadOptioncooviiiiiiiiiiiiiiiiiiie 128

10.5.9 Action: ReadParamccocevvvviiiiieieiiiii 128

10.5.10 Event: Started..............ccc 128

10.5.11 Event: Paused..............ccccocoooiii 129

10.5.12 Event: Restartedcccoeeveviiviiiiiiieeeeeci 129

10.5.13 Event: ReSel.....coiiiiiiiiii e 129

10.5.14 Event: Terminated............ccccoevviiiiiiiiiieeeeece 129

10.5.15 Event: INfo. ..o 129

10.5.16 Event: Option ... 129

10.5.17 Event: OptionText.........ooooviiiiiiiiii 130

10.5.18 Event: ParamText..........cooviviiiiiiiieeiie 130

10.5.19 Event: State......ooooiiiiiiiiie e 130

11 Sample Device REFErENCEvvvviiiiiieii e 131
TTT SUMMAIY Lot 131
11.2 Compiling the Sample Devices..........cccccoevviiiiiiiiiiiiaiii 132
11.3 Device DeSCriptionsScuvviiiiiiiiiiiiiii 133
11.3.1 Methodsooooiiiie e 133

11.3.2 Actionsand Eventscoooooo 133

11.4 VrtaClOCK ...vvvviiciceec e 134
11.4.1 Method: vrtaClock()........oovvmeeeiiiee e 134

11.4.2 Method: Setinterval()oooeee e 134

11.4.3 Method: SetScale).... ..o 135

11.4.4 Method: Start().......ooooeeiiieeee i 135

11.4.5 Method: StOP()ovevereeeeeeee e, 136

11.4.6 Action: Interval..........cccoooeiiiiii 136

11.4.7 Action: Scaleccoooooiii 137

11.4.8 Action: Start......coooooii 137

11.4.9 ACiON: STOP coiiiiiiii 137

11.4.10 Event:Interval...................cooooooo 137

Table of Contents

RTA-OSEK for PC User Guide

N
©]
>
=t
@
>
=t
(%l

11.4.17 Event: Scale........ooooviviiiiiiiieeeee e 137
11.4.12 Event: RUNNINGooooiiiiiiiiii 137
115 VItaUPCOUNTET Lo 138
11.5.1 Method: vrtaUpCounter().........ccccoeveeeeeiiiiiinnnen. 138
11.5.2 Method: Min() ..o 139
11.5.3 Method: MaXx()ccvvvvveeieieiiiiiieee e 139
11.5.4 Method: Value()cooeeree e 140
11.5.5 Method: SetMIN()ccooviiieee e 140
11.5.6 Method: SetMax()........coovvmmoiieiie i 141
11.5.7 Method: SetVal()cooveree e 141
11.5.8 Method: Start()........oooooeiiee i 142
11.5.9 Method: StOP()ooeoveireeeeecee e, 142
11.5.10 Action: Minimum...........ccooeiiiiiii 143
11.5.11 Action: Maximum ..o 143
11.5.12 Action: Set ..o 143
11.5.13 Action: Start......cooo 143
11.5.14 ACtion: StOP cooiiiiiiiii 143
11.5.15 Action: Report ... 143
11.5.16 Event: Set.......oooiiiiiiiie e 144
11.6 vrtaDOWNCOUNTET oo 145
11.6.1 Method: vrtaDownCounter()........cc.ocoeveceiiii. 145
11.6.2 Method: Min().....ccovvvvieiiiiiieiee e 146
11.6.3 Method: Max()c.vvvvveiieeiiiiicieeeee e 146
11.6.4 Method: Value()oooee e 146
11.6.5 Method: SetMIN()ccooiiieee e 147
11.6.6 Method: SetMaX()......cveueeeee e 148
11.6.7 Method: SetVal() ..o 148
11.6.8 Method: Start().......ooooeeiiieeee i 149
11.6.9 Method: StOP()oovoveveeeeecee e, 149
11.6.10 Action: Minimum...........ccooeeiiiiiii 150
11.6.11 Action: Maximumooooiiiiiiiiiieeeeeee e 150
11.6.12 AcCtion: Set ..o 150
11.6.13 Action: Start......ccooeeiiiiiiie e 150
11.6.14 ACtiON: STOP cooiiiiiiiiii 150
11.6.15 Action: Report ... 150

RTA-OSEK for PC User Guide Table of Contents 11

(%]
2
c
(7]
=
c
o
)

11.6.16 Event: Set. .o 151
117 VIASENSOT .o 152
11.7.1 Method: vrtaSensor()coeeeeeieeeiiiiiiiieeeee 152
11.7.2 Method: GetMax()ooereee e 152
11.7.3 Method: Value()ooeeee e 153
11.7.4 Method: SetMax().......ccovveimieeeiiieee 153
11.7.5 Method: SetVal()ooevee e 154
11.7.6 Action: Value.................... 154
11.7.7 Action: Maximum ... 154
11.7.8 Event:Value.........oooovvviiiiiiiiiiiiieee e 155
11.7.9 Event: Maximumcccovviiieeieeee e 155
11.8 vrtaSensorToggleSWitch...........cooooiiiii e 156
11.8.1 Method: vrtaSensorToggleSwitch()....................... 156
11.8.2 Method: Value()ooooiiiiiee i 156
11.8.3 Method: SetVal() ..o 157
11.8.4 Action: POSITION ... 157
11.8.5 Event: POSITIONcooiiiiiiiiiiiee e 157
11.9 vrtaSensorMultiwaySWitch...........ccccciiiiiiii 158
11.9.1 Method: vrtaSensorMultiwaySwitch() 158
11.9.2 Method: GetMax().......coovveeeeei e 158
11.9.3 Method: Value() ..o 159
11.9.4 Method: SetMaXx().......ccovvvimeeeie i 159
11.9.5 Method: SetVal() ..o 160
11.9.6 Action: Value........ccooviiiiiiiiiiieee e 160
11.9.7 Action: Maximum ... 160
11.9.8 Event:Value........oooovvviiiiiiiiiiiieee e 161
11.9.9 Event: Maximumcccocviiiiiiiiii 161
1110 VIAACTUATON . ..o 162
11.10.1 Method: vrtaActuator()cooeeveieie e 162
11.10.2 Method: GetMax()coeeeeee e 162
11.10.3 Method: Value()ocooiiiie i 163
11.10.4 Method: SetMaX()......oveureeee e 163
11.10.5 Method: SetVal()ccc 164
11.10.6 Action: Value.................cco 164
11.10.7 Action: Maximumcccceviiiiiiiiiiiii 164

12 Table of Contents RTA-OSEK for PC User Guide

11.10.8 Event: Valueoooovvviiiiiiieiiiieee e 165
11.10.9 Event: Maximumccccceiiiiiiiiiiiii 165
11.171 vrtaActuatorLight ... 166
11.11.1 Method: vrtaActuatorLight()...............ccooevvnnnnn.n. 166
11.11.2 Method: Value()cooeee e 166
11.11.3 Method: SetVal()ccc 167
11.11.4 Action: Value........ccovvviiiiiiiiiiee e 167
11.11.5 BEvent: Value ... 167
11.12 vrtaActuatorDimmableLight............ccooooii 168
11.12.1 Method: vrtaActuatorDimmableLight() 168
11.12.2 Method: GetMax() ... 168
11.12.3 Method: Value()ooeeee e 169
11.12.4 Method: SetMaxX()......oveueeeee e 169
11.12.5 Method: SetVal() 170
11.12.6 Action: Value........cccooviiiiiiiiiiiee e 170
11.12.7 Action: Maximumccccoviiiiiiiiiii 170
11.12.8 Event: Valueccoooooooi 171
11.12.9 Event: Maximumcccccccviiiiiiiiiiii 171
11.13 vrtaActuatorMultiColorLightcccoooiii 172
11.13.1 Method: vrtaActuatorMultiColorLight()................. 172
11.13.2 Method: GetMax()oooe e 172
11.13.3 Method: Value()cooriie e 173
11.13.4 Method: SetMax()............o 173
11.13.5 Method: SetVal()veve e 174
11.13.6 Action: Value.................coo 174
11.13.7 Action: Maximumccccoeviiiiiiiiiiii 174
11.13.8 Event: Valueoooovvviiiiiiieiiceee e 175
11.13.9 Event: Maximumooooiiiiiiiiieee e 175
1114 VrtaCOmMPAIe ..o e 176
11.14.1 Method: vrtaCompare()cccoovvvvereeeeeiiiiiiinne. 176
11.14.2 Method: GetMatch()..........ooeeeeieiiiie 177
11.14.3 Method: SetMatch()........ooveeee L 177
11.14.4 Method: IncrementMatch()cooeeviviviiiiieeeeee. 178
11.14.5 Method: SetVector()ouueeeiieieeiiiieeeee 178
11.14.6 Action: Matchcccoooiiiiiii 179

RTA-OSEK for PC User Guide Table of Contents

13

N
©]
>
=t
@
>
=t
(%l

(%]
2
c
(7]
=
c
o
)

14

Table of Contents

11.14.7 Action: VeCtor ... 179

11.14.8 Event: Match.......cooooviiiiiiiiiii e 179
TTA5VHAIO 180
11.15.1 Method: vrtalO(0) ..o 180

11.15.2 Method: SetValue().......covveee i 180

11.15.3 Method: SetValues()oeeeiiiieeiiiieeee 181

11.15.4 Method: GetValue()cooovoeeee e 181

11.15.5 Method: GetValues()...........coeeeiiiieeiiiiiiieeie 182

11.15.6 Action: Value.................coc 182

11.15.7 Action: Valuescooeeiiiiiiiiiiiieeeeeec 182

11.15.8 Action: GetValue..............cccc 183

11.15.9 Action: GetValues.............cooovvuiiiiiiiiiiiiiii 183
11.15.10Event: Valueoooiiiiiiiieeecee e 183

11.15. 1 TEvent: Values..........coooo 183

12 Virtual ECU Server Library Reference..........cccccoooviiviiiiiiiicicc 184
12.1 Using the Source Code...........ccovviiiiiiiiiiiiiiiiiieeeee e 184
12.2 UsING the DLL....oooiiiiiiiece e 184
12.3 Virtual ECU AlI@SESovvviieiieeeieeceie e 184
12.4 VesLIbECUINTOTYPE......eiiiiiiiiiie e 185
12.5 VeSLIDECUANGSTYPE v 185
12.6 The API Call Templateccoooviiiiiiiiiiieeieeee e 185
12.7 VesLIbAttachTOECUQ).........oooviiii 186
12.8 VesLibCreateAlias().......ccoowimee e 187
12.9 VeSLIDEXITO) ... o 187
12.10 VeSLIbFINAECUS()oooeeeieeeieeee 188
12.17 VesLiBFre@Alas(). ... oo 189
12.12 VesLIbFreeMemOory()vvvveeeeeiiiiiieeeeee e 190
12.13 VeSLIDGEANASES()o 190
12.14 VesLibGetInTo() ..o 192
12.15 VesLiblnitialize() 192
12.16 VeSLIBLIStANASES()o 193
12.17 VesLibListLoadedECUS()nieee e, 194
12.18 VesLIbLOAdECU()ooveeeeeeeeee 195
12.19 VesLibSelectServer()o 196

RTA-OSEK for PC User Guide

N
©]
>
=t
@
>
=t
(%l

13 COM Bridge Tutorial and Referenceccoooiiiiii 198
131 OVEIVIEW. ..ot 198
13.2 Sample Of USEooiiiiiiiii e 198

13.2.1 CVCSEIVET i 198
13.2.2 CVCECU i 200
13.2.3 CVcDevice, CVcAction and CVcEvent................... 202
13.3 Ashorttutorial.........ccocvvviiiiiiiiii e 203
13.3.1 Setting up the project ..o 203
13.3.2 Connecting to vrtaServercccco. 204
13.3.3 Connectingtothe VECU.........cocovvvviiiiiiiiii 205
13.3.4 Initializing the devices...........coooviiiiiiiiiiiii 206
13.3.5 Reactingtoevents.........cccccceeiiiiiiiiii 207
13.3.6 Sending actionsSccoeeeviiiiiiiiiiiieeeeeiii 208
13.3.7 SUMMAIY ..o 208
13.4 Method DeSCription............ccooiiiiiiiiiiiiii e 209
135 CVCSBIVET e 210
13,6 TCVCSEIVEL oo, 210
13.6.1 Enum: IVcServer_DisplayModeccccuvvvenn... 210
13.6.2 Enum: IVcServer_StartMode................ccccooo 210
13.6.3 Enum: IVcServer_Statusoooiiviiiiiii 210
13.6.4 Method: AttachECUQ) ..o 211
13.6.5 Method: Connect()cooovvmoieeiiiiee e 211
13.6.6 Method: CreateAlias().........ccoovveveeeiiiiiiiieeieeee 212
13.6.7 Method: Disconnect()ooveeeeeeeiie i 213
13.6.8 Method: FINAECUS()coovvveeeieeeeeeeee 213
13.6.9 Method: FreeAlias().........oooeeeeoe e 214
13.6.10 Method: GetAliases()veveeeeeee e 215
13.6.11 Method: GetINfo().......ccovvieeee e 216
13.6.12 Method: ListANases()ooveeeeee e 216
13.6.13 Method: ListLoadedAliases()........ccoovvoeieeeieiini. 217
13.6.14 Method: LoadECUQ)coooiiiiiiiiiiieeecc 218
13.6.15 Method: ServerStatus()ooveeeeeeeii i 219
13.7 CVCECU ., 219
13.8 ICVCECU L. 219
13.8.1 Enum: IVCECU_STatusS . oovoveiiii e 219

RTA-OSEK for PC User Guide Table of Contents 15

(%]
2
c
(7]
=
c
o
)

13.8.2 Method: Connect()coveeeeeee e 220
13.8.3 Method: Disconnect()oveeeeeeeeiieie i 220
13.8.4 Method: DOACION()ccovveeee e 221
13.8.5 Method: GetDeviceByID()........cccovvvvveiieeeiiiii 222
13.8.6 Method: GetDeviceByName()ccceevvvvvvnnnnn. 222
13.8.7 Method: GetDeviceCount()cceeeveveeeceeeeeee... 223
13.8.8 Method: HOOK()oom e 223
13.8.9 Method: QueryEvent()...........ccoovvvveeeeiiiiii 224
13.8.10 Method: QueryFormat()ccoovvvvveiieeeiiiiin 225
13.8.11 Method: ReplyFormat()cccovvvvvirieeiiiiiiiiin. 226
13.8.12 Method: SendAction().........ccoeeeeveeiiiiiiieiiee 226
13.8.13 Method: SendFormat().......ccooveeeeeeeiiiii 227
13.9 ICVCECUEVENTS o.oviiii 228
13.9.1 Method: OnEventChange()ccccoooeeieiiinnnn... 228
13,70 CVEDBVICE. ... 229
13 1T ICVEDEVICE ..o 229
13.11.1 Method: DevicelD()cooouveeeeeiieeiceeeee 229
13.11.2 Method: DOACION) .. oveeeee e 229
13.11.3 Method: GetActionByID()..........ovvvveeeeeiiiiiiiie. 230
13.11.4 Method: GetActionByName()cccceevvvvnee.n. 231
13.11.5 Method: GetActionCount()covvveveviiiiii. 231
13.11.6 Method: GetEventByID()..........cccvvvveeieieiiiii 232
13.11.7 Method: GetEventByName()...............cceeeeuvvnnne... 232
13.11.8 Method: GetEventCount()........oveveieiiiiiei 233
13.11.9 Method: HOOK()ooeeeeieee i 233
13.11.10Method: Name()ooue e 234
13.11.11Method: QueryEvent()..........cccoovvvvieieeeiiiiin. 235
13.11.12Method: QueryFormat()ccooovvveeieeeiiiiin 235
13.11.13Method: ReplyFormat()cccovvvvveeieeiiiiiiiine. 236
13.11.14Method: SendACtion().... ..o veee e 237
13.11.15Method: SendFormat().........cccoovvveereiiiiiiieeieeeee 237
13.12 ICVCDEVICEEVENTS ..o 239
13.12.1 Method: OnEventChange()cccccoeevviiinnnn... 239
1313 CVCACHION. ...t 240
1314 ICVCACHION ..ot 240

16 Table of Contents RTA-OSEK for PC User Guide

13.14.1 Method: ActionID().......oveeeeee i 240

13.14.2 Method: DO ..ccu e 241

13.14.3 Method: Name()cooooiiiee e 241

13.14.4 Method: Send()oov e 242

13.14.5 Method: SendFormat().......cooeveeeeeeeiiiii 242

1315 CVCEVENT .o, 244
1316 ICVEEVENT Lo 244
13.16.1 Method: EventID()...........oooovviiiiii 244

13.16.2 Method: HOOK()ooeeeeeee i 244

13.16.3 Method: Name()veee e 245

13.16.4 Method: QUEIY().......vvvveeeeeiiiiieeeee e 246

13.16.5 Method: QueryFormat()cccoovvvviieeeiiiiinn. 246

13.16.6 Method: ReplyFormat()cccovvvvirieeiiiiiiiiinnn. 247

13.17 ICVCEVENTEVENTS ... 248
13.17.1 Method: OnEventChange()cccccoeveeiiiinnnne.. 248

14 Compiler Configurationcccoooiiiiiiii e 249
14.1 Modifying Toolinit.batcoooviiiii 250
14.2 Creatinganew Variant.............cccocooooiiiii 252
14.3 Floating-point Wrapperscooouuveiiiieaaiieieeee e 254
15 Command Line Option Reference..........cooovvvvveiiiiiciiiiieeeeeee 255
15.1 Virtual ECU Executables.............cooovvviiiiiiiiiie e, 255
15.1.1 -alias=name (override the default alias)................. 255

15.1.2 -lic=<licfile> (select a license file)ccccccevviiiii. 255

15.1.3 -priority=<n> (set the Windows priority)............... 255

15.1.4 -silent (select silent or GUI mode)cccooevveiinnnn. 255

15.1.5 -slave (select slave or autostart mode)................... 256

15,2 VITASEIVEI ..o 257
15.2.1 -install (install as a Service)..........ceeovvviicceeeene . 257

15.2.2 -lic=<licfile> (select a license file)c............. 257

15.2.3 -p<n> (specify the TCP port)ccccvevvveeeiiiiii 257

15.2.4 -silent (silent install or uninstall).............ccooeeiiiii. 257

15.2.5 -standalone (run in standalone mode) 257

15.2.6 -start (start the vrtaServer service)...........cccoeevviiii. 257

15.2.7 -stop (stop the vrtaServer service)cc.......... 258

RTA-OSEK for PC User Guide

Table of Contents

17

N
©]
>
=t
@
>
=t
(%l

(%]
2
c
(7]
=
c
o
)

15.2.8 -uninstall (un-install as a service)............cccoccceiii. 258

15.3 VrtaMONITOr . ..o 259
15.3.1 Command Files...........cccoc 259

15.4 vrtaMonitor Global Optionsc..evvviiiieiiiieee e 259
15.4.1 -f<filename> (close when <filename> appears).....259

15.4.2 -k (terminate with specific error level)................... 259

15.4.3 -lic=<licfile> (select a license file)c............. 260

15.4.4 -log=<file> (write to a log file)ccceoo 260

15.4.5 -scripter=<name> (select a scripting engine)......... 260

15.4.6 -t<n> (close after <n> seconds).........ccovveveeeee.... 260

15.5 vrtaMonitor Sequential OptioNSoooviiiiiiiiiiiiieeiiii 260
15.5.1 Virtual ECU Executable Name (auto-load) 260

15.5.2 -alias=<name> (connect to VECU).........cccoovii. 260

15.5.3 -d (load but not start a Virtual ECU) 260

15.5.4 -g(loadwitha GUI)cooovviiiiiiiiiieeee 261

15.5.5 -host=<hostname> (select a remote PC)............... 261

15.5.6 -mon=<dev>.<event> (monitor event).................. 261

15.5.7 —n (load without a GUI) ... 261

15.5.8 -p<n> (select TCP POrt).....ccovvveeieiiiiiiieiiiiieee 261

15.5.9 -quit (terminate)c.oeeeiieiiiiii e 261

15.5.10 —r(load andstarta VECU)........coveveiiiiiiiii . 261

15.5.11 =script=<file>.......ccccoooiiiiiiii 261

15.5.12 -send=<dev>.<act> (send action)ccc............ 262

15.5.13 -send=<dev>.<act>(<str>) (send action) 262

15.5.14 -start (start a VECU)oooovimiiiieiiee 262

15.5.15 -wait=<n> (Wait) ..o 262

16 WINAOWS NOTES ... 263
16.1 Real-Time Behavior.............cccccooooii 263
16.2 Calling the C/C++ Runtime and Windows..................cccevven... 263
16.3 vrtaVMxxxX.dll LoCation............cooovuvviiiiiiieiiiciieeeeeeee 263
GlOSSAIY .o 265
IAEX ..o 267

18 Table of Contents RTA-OSEK for PC User Guide

1 About this Guide

RTA-OSEK for PC consists of tools and libraries that enable the creation of
Windows-hosted applications that emulate the behavior of applications
running on microcontroller hardware - including the ability to run
automotive-style OSEK™ and AUTOSAR applications. This guide describes the
tools and libraries used to create and monitor such applications.

RTA-OSEK for PC includes a Windows port of the popular RTA-OSEK kernel.
You should consult the documents RTA-OSEK User Guide and RTA-OSEK
Reference Guide for general information on how to use RTA-OSEK.
The document RTA-OSEK Binding Manual PC provides specific notes about
using the RTA-OSEK kernel component in a Windows environment.

1.1 Who Should Read this Guide?

It is assumed that you are a developer who wants to know how to create and
monitor OSEK or AUTOSAR applications on Windows PCs. You should be
familiar with programming in C, and should have some knowledge of C++.

1.2 Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

In this guide you’ll see that program code, header file names, C/C++ type
names, C/C++ functions and APl call names all appear in the Courier
typeface.

RTA-OSEK for PC User Guide About this Guide 19

2 Overview

Congratulations on selecting RTA-OSEK for PC.

RTA-OSEK for PC is a complete environment for developing OSEK* and
AUTOSAR? applications. Mostly you'll be using it to prototype a new
application before migrating it on to the production hardware, but you will
also find that it is a good tool for learning how to develop applications for
embedded targets.

But you needn’t stop there. Because RTA-OSEK for PC is a complete and fast
implementation of OSEK, you also add inter-application communication using
a standard networking solution such as CAN®. You can write applications that
sit on your CAN network as test or simulation units. You can remotely
monitor the state and progress of your applications using the RTA-OSEK for
PC monitor, RTA-TRACE or your PC-based debugger. And of course the
development turnaround time is tiny — just recompile and run. No
downloading of hex files to an emulator. No programming Flash.

2.1 Terms

RTA-OSEK for PC is typically used in automotive environments where the term
ECU (Electronic Control Unit) is commonly used to refer to the target
hardware on which the application runs. The ECU can be considered as a
black box* with inputs and outputs that perform a specific set of functions.

In a typical modern car, ECUs will be found in the engine compartment, the
doors, the body and the boot. Many if not all will be running OSEK or
AUTOSAR applications.

Other than the PC that you run it on, an application built under RTA-OSEK for
PC does not need any real hardware. Instead, you create a Virtual ECU (VECU)
in software that simulates the real-life devices such as switches or sensors that
will be present in your ECU. These devices are built around a core Virtual
Machine (VM) that provides services such as the interrupt controller,
application control and diagnostic links.

Within this document we will use the terms VM and VECU extensively.
Remember that VM represents the ‘core’ of the simulated hardware, and that
VECU is the whole ‘black-box’.

The VM provides a diagnostic interface (via TCP/IP) that allows external
programs to interact with a VECU. vrtaMonitor is a program provided with
RTA-OSEK for PC that can monitor and manage VECUs. The COM Bridge is a
DLL provided with RTA-OSEK for PC that allows COM clients to interact with
VECUs.

! See http://Awww.osek-vdx.org/

2 See http://www.autosar.org

8 See SO standards 11898-1 and 11898-2
4 Also availablein silver

20 Overview RTA-OSEK for PC User Guide

3rd Party Monitor Application

vrtaMaonitor

COM Bridge

Diagnostic
Interface

Virtual ECU @
(VECU) Virtual Virlual
Actuator \ Machine
Device (VM)
Virtual
N Sensor
Application Device

CAN
Device

| | CAN Bus

The string “vrta” is used to prefix executables such as vrtaMonitor.exe,
vrtaVM.d1l1l and many of the supplied source files. “vrta” is an abbreviation

for (Virtual) RTA-OSEK for PC.

RTA-OSEK for PC User Guide Overview 21

2.2

What do | need?

22

RTA-OSEK for PC runs under Microsoft Windows 2000 or later (including
Windows XP). It requires a Pentium class processor. The actual performance of
a VECU will clearly be dependent on the power of the processor, but you will
find that a modern PC is capable of running a typical OSEK application many
times faster that a typical embedded target.

You can use ‘any’ Windows C++ Compiler to generate Virtual ECUs. RTA-
OSEK for PC has been tested with the following compiler variants:

MinGW / GCC. We test against version 3.4.2.
Microsoft Visual C++ 5.0

Microsoft Visual Studio 2003

Borland C++ 5.5.1 / Borland C++ Builder 5

Borland C++ 5.8.1/ Borland Developer Studio 2006

It is a straightforward process to support different compilers or compiler
versions; refer to chapter 14 for details.

You can use the debugger that comes with your compiler to debug your
VECU code.

Overview RTA-OSEK for PC User Guide

2.3 What is the Virtual Machine?

AN

Diagnostic

-

RTA-OSEK for PC User Guide

Interface
~
Virtual Machine (VM)
Application Embedded Device
Manager GUI Manager
Interrupt Controller
(ICU)
-/
Linkage Table
Application

The Virtual Machine is at the core of a Virtual ECU. It manages (virtual)
interrupts, startup and shutdown of the application, and routing of messages
between devices and the outside world. The VM may also contain the RTA-

OSEK kernel code.

The VM can be split into a number of components as explained in the

following sub-sections.

Overview 23

2.3.1 Device Manager

Virtual ECUs use devices to get things done. Devices have actions and events.
You can tell a device to perform a particular action. A device can inform you
of some change in state by raising an event or interrupt.

Action & Event é Interrupt

Yitual Device }

.~ Fealwoaorld device j
'\ (optional)
.

A device can be a simple representation of a switch or an LED, or it can
represent a complex component such as a PCMCIA-based CAN controller.

Most operations in a VECU are performed by sending actions or responding to
events.

The VM itself contains the three standard devices: the DeviceManager®, the
ICU and the ApplicationManager.

The Device Manager coordinates all devices in the VECU. Each device registers
with the Device Manager during initialization of the application. The Device
Manager can then be queried to find what devices exist, what actions/events
they support and the data used by the actions and events.

These services are not only available within the VECU: the Device Manager
includes a Diagnostic Interface that allows external applications, such as
vrtaMonitor (see chapter 6) to inspect the state of the application’s
devices.

5 Yes, the Device Manager isitself also adevice. You query it as device zero to find out what other devices are present.

24 Overview RTA-OSEK for PC User Guide

B] vrtaMonitor localhost:examplez.exe

File Host Application Dewice Script Help

g =

"]
'#E"# HEDSItS bou Host PC is localhost =
[ulw=]| gluk
o ladd)

H) The PC has one loaded application.
E|i exampleZ.exe : Running

= DeviceManager

----- 53 EventRegister <7

----- £ HookEverts <7

----- & Listall

----- & GetDevicetctions <7»
----- £ GetDeviceEvents <7
----- & GetDevicelnfo <75

----- \3 Devicelizt = DeviceManager & ICU & A
----- B Devicedotions <75

----- & DeviceEvents <7

----- B Devicelnfo <7

@@ IcU

@@ Applicationtdanager

L3 Screen

@ Status

L@ Characteristics

@ Audio

L& Thrattle

@@ Brake

Application Information

Aliag=example?.exs

Diate=08/08/2006 11:06:56

Whiv'ersion=1.0.0.0

WhProductversion=5.0.0.0

Wi Date=21/08/2006 16:07:14
WhiFileDescription=RTA Wirual Machine : viavhate
WiiCompanyMNames=LiveDevices Ltd.
WhACopyright=Copyright @ LiveDevices Ltd 2005-2006.
WhALocation=chrtalkin,

YidName=vriavMate. dll
O5%ersion=os_WRETA_e & 00 Rew

O5Status=ate

FullHostName=ywokh0133. ecn.etasgroup.com
HostMame=yok50133

DiagPor=1133

Application Varsion
Diate=08/08/2006 11:06:56

-
[H-
-
-
[H-
-
-
[H-
-
-
[H-
-
[H-
-
-
[H-

& HBVS_ The application has 21 dewvices.
3@ Steering
& Gear _ DeviceManager
& Brakelight Device type is "k Inbuilt Device'.
@ Speedometer Yarsion is 1.0.0.0. =
& Direction The device has b action and 4 events.
L@@ Clack -
G RTaTrace 4| | _>|J
« | v Summary [b gritor |
lm%, Gear=1, Steering=2 - Speed=14 Revs=7000 Directior=83 degrees S

2.3.2 Interrupt Control Unit

The Interrupt Control Unit (ICU) is a device within the VM that simulates
multi-level interrupts in the Virtual ECU.

The ICU supports 32 different interrupt vectors (1 to 32) and 33 interrupt
priorities (0° to 32). Each interrupt vector can be assigned a priority (1 to 32).
The ICU maintains a current Interrupt Priority Level (IPL). An interrupt that has
a priority <= the current IPL remains pending until the IPL drops below the
assigned priority.

When an interrupt is handled, the IPL is raised to match the interrupt’s
assigned priority. When the interrupt handler completes, the IPL is taken back
to the value that was in effect when the interrupt was taken.

Each interrupt vector can be masked. A masked vector can still become
pending, but its interrupt handler will not run unless the vector is unmasked.

After reset, all interrupts are masked.

RTA-OSEK for PC User Guide

€ Interrupt priority zero means ‘no interrupt’.

Overview

25

2.3.3 Application Manager

2.34

The Application Manager is a device within the VM that manages the state of
the overall VECU. It is responsible for controlling the Windows thread in which
your application code runs’. Its actions can be used to start, pause, resume,
reset or terminate your application.

The Application Manager can also provide your application with access to any
parameters present on the command-line when the VECU was invoked.

Embedded GUI

When it runs, your VECU probably doesn’t show much other than a boring
black empty console window. The VM can optionally display a simple GUI
window that will give you a bit of confidence that the application is actually

alive.

|==-! examplez.exe {ate) : Control Panel

File Application Help

=10l x|

Aliaz=example. exe

Date=08/08/2006 11:06:56

WY erzion=1.0.0.0

WA Productyerzsion=5.0.0.0

WD ate=21/08/2006 16:07:14

WhFileD ezcnption=R T4 Wirtual Machine : witavh ate
Wi Companyt ame=LiveD evices Lid.

WAL ocation=c: wtatbint,

WA arne=vrtat i ate. dil
OSWersion=oz_YRATA_e 5 00 Rev 0
055tatug=ate

FullHoztM ame=yak501.33. ech.etazgroup. com
HoztM ame=yok50133

DiagPaort=1144

Wi Copyright=Copyright € LiveD evices Lid 2005-2008.

=4

[«

1 Application |_2 Connections |

Running 19524 I5Rs |Throtble=10%, Brake=1| 0:00:15

You can perform some simple operations such as pause/resume/reset from the
menu of the GUI. For more complex options, just select menu option
Application/Monitor to launch vrtaMonitor.

’ Application code runsin its own thread, not the main Windows thread.

26

Overview

RTA-OSEK for PC User Guide

2.3.5 RTA-OSEK Kernel

The Virtual Machine is provided in a DLL file. A VECU gets dynamically linked
to the Virtual Machine during initialization.

Advantage is taken of this mechanism to support the different ‘build status’
variants of OSEK. RTA-OSEK for PC actually ships with 9 different Virtual
Machine DLLs. 8 of these contain the different flavors of the RTA-OSEK
kernel, and one has no RTA-OSEK kernel®.

VM Name Content

vrtavVM.dll VM only, no OSEK component

vrtaVMs.dll VM plus OSEK ‘s’ build.

vrtaVMt.dll VM plus OSEK ‘t" build.

vrtaVMe.dll VM plus OSEK ‘e’ build.

vrtaVMts.dll VM plus OSEK ‘s" build with simple RTA-TRACE
support.

vrtavVMtt.dll VM plus OSEK ‘t" build with simple RTA-TRACE
support.

vrtaVMte.dll VM plus OSEK ‘e’ build with simple RTA-TRACE
support.

vrtaVMatt.dll | VM plus OSEK ‘t" build with advanced RTA-TRACE
support.

vrtaVMate.dll | VM plus OSEK ‘e" build with advanced RTA-TRACE
support.

2.3.6 Linkage Table

You've now seen that the VM is packaged in a DLL and will realize that this
means that your code has to somehow call into the DLL to make API calls. The
simple answer is “don’t worry” — the startup code provided with RTA-OSEK
for PC will ensure that the correct DLL is loaded and that API stubs exist for all
VM and OSEK calls. Your application makes RTA-OSEK and other API calls just
as it would in normal embedded application code.

8t turns out that you can create some very effective ‘PC’ applications using the RTA-OSEK for PC framework without using OSEK

aal ;-)

RTA-OSEK for PC User Guide

Overview 27

2.4 Whatis in a Virtual ECU?

A Virtual ECU is the combination of the VM DLL and your application code to
create a program that has inputs and outputs that simulate a physical ECU.

Your application code can have an RTA-OSEK element, namely the tasks, ISRs
and processes.

It will also have RTA-OSEK for PC startup and linkage code® that glues your
application to the VM.

It will also contain virtual devices that connect to real hardware or simulate it.
Virtual devices are very easy to use, as you'll see in the next chapter.

2.5 Managing Virtual ECUs

RTA-OSEK for PC allows you to run several VECUs on the same PC at the
same time. This causes something of a problem for external monitor
programs, because they need a way to find out what VECUs are running, and
how to connect to their diagnostic links.

The solution chosen for RTA-OSEK for PC is to have a server program running
on the PC that VECUs register with when they start up. Monitor programs
then ask the server what VECUs exist, and how to connect to them.

The server program is vrtaServer.exe, and it normally runs unnoticed as a
Windows service. You do not have to start it yourself —a VECU or monitor will
start the server if required.

One useful benefit of having such a server is that monitor programs can also
attach to servers and VECUs that are on remote PCs. The monitor has all of
the features available when used on a local machine, including the ability to
reset, terminate and load VECUs.

® All provided with RTA-OSEK for PC

28 Overview RTA-OSEK for PC User Guide

2.6 Interacting with a Virtual ECU

The vrtaMonitor program is the quickest way to interact with a Virtual
ECU. All VECUs have a diagnostic link to which the monitor can connect, so
no special action is needed when building your application. The monitor
allows you to send actions and view events on local and remote PCs. It is
discussed in detail in chapter 6.

E-! vrtaMonitor localhost:exampleZ.exe _ | O | 1'

File Host Application Dewice Script Help

.gf., Huosts
-5 localhost ! |
E A W Show times Stop
E|i exampled.exe : Running
-G DeviceManager
- 10U 00:05:04.031 RewsWalue: 7500 -l
- Applicationtanager 000504953 Rews Value: 7000
00:05:105%4 RewsMalue: 7500
00:05:11.500 Rews Walue: 7000
00:05:17.172 RewsWalue: 7500
: I 00:05:18.078 RewsMalue: 7000
R T it 00:05:24.891 RewvsWalue: 7500
00:05:25.735 Rews.Walue: 7000
E-G Revs 00:05:33.344 RewsWalue: 7500
- Walue <> 000534188 Rews Value: 7000
- Masimum < 00:05:41.578 RewsValue: 7500
i Yalue = 7000 00:05:42.406 Rews.Yalue: 7000
Lo Masimum = 4294967295 000549688 Rews Value: 7500
& Steering 00:05:50.547 Rewsalue: 7000
L@ Gear 00:05:57.938 Rews Walue: 7500
[#- 38 BrakeLight 00:05:58.813 RewsWalue: 7000
& Speedometer 00:06:00.047 RewsValue: 6500
-5 Direction 00:06:00.219 Rews Walue: 6000
[#-5@ Clock 00:06:00.375 RewsWalue: 5500
-G8 RTA-Trace 00:06:00516 Rewsalue: 5000
00:06:00.828 RewsWalue: 4500
00:06:01.219 Rews Walue: 4000
00:06:01.625 RewsWalue: 3500
00:06:02.360 RewsWalue: 3000
00:06:03.641 Rews\alue: 2500
000607141 Rews Value: 2000 —
Summary Monito_rl
Throttle=1%, Erake=1%, Gear=1, Steering=2Z - = Speed=4 Reys=2000 Direction=76 degrees v

RTA-OSEK for PC User Guide Overview

29

An RTA-OSEK application can also be traced using RTA-TRACE. A VECU has to
be built with the tracing option enabled, but from then on the VECU will run
as normal, only sending trace data out if RTA-TRACE is connected. RTA-
TRACE can monitor a VECU from a remote PC, a fact that can be used to
minimize the impact of the RTA-TRACE GUI on the execution of the VECU™.

E' localhost.RTAOSEK-¥RTA:C:\ test' virtual', Tests' 30.2% MinGW" app' ¥traceable. - |EI|5|
File Trace Bookmarks Window Help

®© G @D W@ 100 O

0d 00:00:00 B75ms 70ms 725ms 7SS 77Sms @0ms 625ms 85ms 875ms 90ms
= 0l [«]

Stack activity _'_l_]_[_
HISERODEANEAMEARN +H SHEHICRN SR B -+ +ED <HL +H0 <50 <D B +50 <80 -+ <50 <30 ¥

B

ﬂuncuntISR

| .
SCatZ ISR isrl

=== - —
.

+
JTaskC
4|
JTaskD --
“Task A I I

A pl

pd

po

[t}

A_default_prafile Ll

Ereck = |IIIIIIIIIIIIIIIIIIII1Tﬂ
||- Frozen | Laff =MNot set, Fipfif =Mot zet, Maked Durafior =Incomplete, Catwafior Duafion =Entire trace; 00:00;04 BBl

Graphical wisw of race events I

@ | ——
WOO® &t @ e

_@ |< Mo trigger » jl j
R I R —

Bookmarks (0]

@E®

You can also use the PC debugger that comes with your compiler toolchain to
debug a VECU at a line-by-line level. Simply ensure that your compile and link
options are set correctly, and then load the VECU into the debugger.

101 RTA-TRACE runs on aremote PC, then the processor cycles that are used to process its data and draw its graphs do not have to

be stolen from the VECU.

30

Overview

RTA-OSEK for PC User Guide

2.7 Possible Problem Areas

The following is a short list of problems that you might encounter when you
start developing VECU code:

e You must not make any non-VM or non-OSEK API calls from your
application thread if virtual interrupts could occur. This includes ‘quick
hacks’ such as using print£ () to display the content of some piece
of data. All non-VM and non-OSEK API calls must be protected by an
uninterruptible section (see section 9.4.3). See section 16.2 for more
details.

* Your application seems to lock up. Provide StackFaultHook () and
ShutdownHook () handlers and print an error to the screen if they
occur. (You can use printf () here.)

RTA-OSEK for PC User Guide Overview

31

3 Tutorial
The best way to get an understanding of RTA-OSEK for PC is to get something
running, so let's set aside a couple of hours and see what we can come up
with.

3.1 Prerequisites

32

For this tutorial we will need a copy of RTA-OSEK for PC installed and licensed
on your computer. We will make use of RTA-TRACE if you have that. We also
need a C++ compiler.

3.1.1 RTA-OSEK

If you have followed the instructions in the Getting Started Guide then you
have already installed the RTA-OSEK v5 tools CD and the RTA-OSEK for PC
target CD. You will have obtained and installed your license. In this tutorial we
will assume that you have installed RTA-OSEK to c:\rta, so the route for
the RTA executables and DLLs is c:\rta\bin. The files that are specific to
RTA-OSEK for PC are found at c: \rta\vrta.

3.1.2 Compiler

This tutorial will use the MinGW compiler that is freely available under the
GNU license. See the “Installation” section of “RTA-OSEK for PC Getting
Started Guide”.

In this tutorial we will assume that you have installed the compiler at
c:\MinGw.

You now need to tell RTA-OSEK about the compiler. We need to edit the file
c:\rta\vrta\toolinit.bat. This is the only configuration file that
you will normally need to edit.

toolinit.bat is a batch file that gets run during the build stage for a
VECU. It simply sets certain environment variables that tell RTA-OSEK where to
find the compiler elements, and sets up some default values. If you look in
toolinit.bat you will see that it is already set up to recognize a range of
compilers. The value of the environment variable VRTA is used to determine
which compiler to select:

Tutorial RTA-OSEK for PC User Guide

e.qg.
@echo off

< ...snip... >

if not @%1==@ set VRTA=%1

if @%VRTA%$@==@MinGW@ goto MINGW

if @%VRTA%$@==@BorlandCe@ goto BCPP

if @%VRTA%@==@BDS2006@ goto BDS 2006
if @%VRTA%@==@VisualC5@ goto VCPP5

if @%VRTA%@==@VS2003@ goto VS2003
echo !!llrrrrrr et

echo Compiler not specified in environment variable VRTA
echo Valid settings are:

echo MinGW

echo BorlandC

echo BDS2006

echo VisualCs

echo VvVS2003

echo !!trrrrrrrrrrrrrrrrrrrrrrrrrrrnd

goto exit

You should edit the MINGW section so that it looks something like this:

:MINGW
rem tools installation directory
set CBASE=c:\mingw

rem location of C compiler
set CC=%CBASE%\bin\gcc.exe

rem location of C++ compiler
set AS=%CBASE%\bin\gcc.exe

rem location of linker
set LNK=%CBASE%\bin\g++.exe

rem location of Archiver / librarian
set AR=%CBASE%\bin\ar.exe

rem Set location of C include files
set CBASE_INC=%CBASE%\include

rem Default settings
SET LIBS=-lwinmm -lws2 32
SET _OBJ=o0

goto check

RTA-OSEK for PC User Guide Tutorial 33

Now open a console window and execute c:\rta\vrta\toolinit
MinGw", followed by $cc% --version. Your results should be like this:

C:\>c:\rta\vrta\toolinit MinGW

C:\>%cc% --version

gcc.exe (GCC) 3.4.2 (mingw-special)

Copyright (C) 2004 Free Software Foundation, Inc.

This is free software; see the source for copying
conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

C:\>

"toolinit .bat will usethefirst command-line parameter passed to it if the environment variable VRTA is not set.

34 Tutorial RTA-OSEK for PC User Guide

3.1.3 RTA-TRACE

RTA-TRACE is available as a separate product and provides a very detailed
graphical display showing in real-time the execution of all Tasks, ISRs and
processes in your application.

RTA-OSEK for PC comes complete with a special high-bandwidth virtual
device that can be used to connect to RTA-TRACE. If you have installed RTA-
TRACE in the same location as RTA-OSEK then this link will be detected
automatically. If not you must copy the file rtcVRTAlink.d11l from RTA-
OSEK’s "bin’ to RTA-TRACE’s "bin’.

E' localhost.RTADSEK-¥RTA:C:\test' virtual, Tests' 30.2MinGVW' . app' vtraceable.r ;|g|5|
File Trace Bookmarks ‘Window Help

®Eee0 e @ @M 100 0

0d 00:00:00 B75ms 70ms 725ms ?5{"8 775ms &0ms &25ms 85ms &75ms 90ms

= 1 <]
!Stack activity —.—L_]_[_
=

HTSEERADT AT MEAR: -+ ARSI I D -+ ST D 30 ST S50 S SHH D 3 3 D

!ad\f“y ||| ||||||||||||||||||
El

.+
o]
o
[
)
s
z
|| =) || || |==

_|Task C
JTask [e LR LR LR D
S Task A [-
A pl
pd
pS
ph
A _default_pratile L
Exnrs l _ rrrrrrrrrrrrrrrrrrr 1~
" Frozen | Laff =MNat set, Sight =Not set, Marked Durafion =|ncomplete, Calwdafion Duration = Entire trace: 00:00:04 66
Graphical view of trace events I
@ Iﬁ @ |< Ma trigger > jl j Bookmarks (0]
rfidth
@OO® @ @S @®» @ | @O
e Trigger

RTA-OSEK for PC User Guide Tutorial

35

3.2

Creating your first Virtual ECU

36

3.2.1

Let's go for the traditional ‘Hello World" starter application — with an OSEK
twist.

File\New...

Start the RTA-OSEK GUI (c: \rta\bin\RTA-OSEK. exe).

You are now looking at a rather drab empty grey window which we can
brighten up a bit by selecting menu option File / New... , then entering the
values shown in the dialog below.

Ayailable T argets I‘»-"irtuaIEI zEk j

Variant [MirGiw =]

Instruction Fate [MHz] |1 non

Stopwatch Speed (MHz] [0.007]

ok Cancel |

You now have a new empty application.

Select menu option Application / OS configuration (or use the navigation bar
on the left hand side to get to the same place).

Select the Hooks Button and select Startup and Shutdown hooks.

v Startup Hook

'' ook
[~ Emaor Hook
[T Ere Task Hook

[T Post Task Hook

0k Cancel

Tutorial RTA-OSEK for PC User Guide

Select the OS Status button to change the OS status to standard.

05 Status

ztandard

ok Cancel

If you now look at the hints that RTA-OSEK provides about implementation
details (Menu option View / Implementation or Ctrl+M) then you will see that
we will need to supply the code for these two callback functions.

Hook functions

The application must implement:
OS_HOOK(void) StartupHook(void);
OS_HOOK(void) ShutdownHook(StatusType s);

We are now ready to write some code.

Because we like to keep things tidy, we first tell RTA-OSEK where to look for,
and generate, files. Select menu option File / Options... and set the location of
files as shown here*3.

options 21|
Application Settings |.-’-'-.u5iliar_l,l Filesl Global SEttingsl I:icensingl
i —Location of file
Show ISR vector description: v & Files I
Ilse hemadecimal for timings [hFiles Im
Show Extended OIL in wvigw v Aszembler Files I$Warian[]'\agm
Usze h_'eperll.nks | | v Object Files I$[ﬁvfariant].m:I
Seek to object in OIL wiew [+ _
Intermediate Files|$[‘vfarlant]'\tmp
Application Files I$[‘Jariant]‘xapp
—Build —Analyzi
K.eep intermediate build files [K.eep intermediate analyzis files [
Stop build on warnings [Analyziz Depth IE! 'I
Friority Pack Depth |1

ak. Cancel |

121t you really like these settings you can also put them on the Global Setting tab. That way your next project will pick up these
values too.

¥ RTA-OSEK supports a number of macros such as“$(Variant)”. “$(Variant)” expands out to be the name of the current compiler
variant. The compiler variant was selected when you created the application with File / New ... See chapter 14 for more information
on compiler variants. In this case, “$(Variant)” will expand out to “MinGW".

RTA-OSEK for PC User Guide Tutorial 37

The first entry says that . c files will be located in the same directory as the
project OIL file.

The next entry says that .h files will be placed 2 levels down from that in
directory $(Variant)\h, which is .\MinGwW\h in our case.

The remaining entries perform the same role for assembler, object, temporary
and application files.

Now give the project a name and save it. Select menu File / Save As.. and
save the project as something like
c:\Play\Tutoriall\Tutoriall.OIL.

3.2.2 Build / Custom Build

Select menu option Build / Custom Build or navigate to it via the GUI tab
2 Builder.

Press the Create Templates button. RTA-OSEK will display the template code
for ‘main’ and offer to save it as c: \play\Tutoriall\main.c. Accept its
offer.

Press the Quick Edit button which will allow you to open main.c in your
favorite editor™.

Add in the two callbacks that we need to the existing code so that you end up
with the content shown below.

/* Template code for 'main' in project: Tutoriall*/
#include "osekmain.h"
0S_MAIN ()

StartOS (OSDEFAULTAPPMODE) ;

ShutdownOS (E_OK) ;

}

OS_HOOK (void) StartupHook (void)
vrtaEnterUninterruptibleSection() ;
printf ("Hello World\n") ;
vrtaLeaveUninterruptibleSection () ;

}

OS_HOOK (void) ShutdownHook (StatusType s)
vrtaEnterUninterruptibleSection () ;
printf ("Goodbye World\n") ;
vrtalLeaveUninterruptibleSection() ;
vrtaTerminate () ;

Any OSEK-based VECU that you build will use at least one virtual device, so
RTA-OSEK for PC expects there to be a . cpp file (devices.cpp by default)
that contains your device declarations. RTA-OSEK for PC expects it to contain
the function InitializeDevices () in which you initialize them. At the

14 Notepad isn’t your favourite editor? Use the Global Settings tab in the File\Options dialog to change it.

38 Tutorial RTA-OSEK for PC User Guide

moment, we don’t have any devices, but we should create a placeholder
devices.cpp.

Press the Quick Edit button again and Create
c:\play\Tutoriall\devices.cpp with the following content™.

void InitializeDevices (void)
{

// Placeholder
}

All that remains is to tell RTA-OSEK to include devices.cpp and what files
to link. Go back to the RTA-OSEK GUI and press the Configure button on the
Custom Build pane. The Build Script tab already contains a call to
rtkbuild.bat. Add the APP_AOPT and link steps to script as below.

set APP_AOPT=-DVRTA INCLUDE DEVICES -D$ (name)
call $(DestDir obj)rtkbuild.bat
$LNK% -02 $(Variant)\o*.$ (objext) % LIBS% -o"$(DestDir app) $ (name) .exe"

Press the Build Now button and RTA-OSEK will check that you want to create
the file c:\Play\Tutoriall\MinGW\o\rtkbuild.bat. This is the file
that controls the part of the build process that RTA-OSEK knows about or can
infer, so say ‘Yes'.

RTA-OSEK now creates the low-level files for the OSEK component of your
application, and then runs the build script. If you have entered the code as
shown above you should see the script complete without errors®,

If you now look into the directory C:\Play\Tutoriall\MinGW\o, you will
see 3 object files: main.o, osgen.o and osekdefs.o. The osgen and
osekdefs files contain the code needed to support the OSEK side of your
application. So far, so good.

If you've already peeked in the ‘app’ directory, you will also see
Tutoriall.exe. If you run this by clicking from within Windows, you might
see a quick flash as it runs. A better option is to run it from a command
window, where the results will be, as expected"”:

C:\>\Play\Tutoriall\MinGW\app\Tutoriall.exe

Hello World
Goodbye World

Now save your project and close RTA-OSEK.

5 You don't need any #include linesfor now, because devices . cpp will itsdf be #included into another . cpp
file as part of the build process.

1 MinGW is alarmingly quiet when compiling source that has no warnings or errors. Other compilers will usually output a bit more
progress information during the build so you can see the progress of the build on the RTA-OSEK display.

17 1f you did not install to c:\rta\bin then you may have to add your ‘bin’ directory to the path.

RTA-OSEK for PC User Guide Tutorial 39

3.3 Adding devices

In the same way that a real ECU contains hardware such as counters,
comparators, switches and the like, a Virtual ECU will also need some devices
to work with.

Virtual devices are software components that can declare their name, type,
actions and events to the VM's Device Manager, and then respond to action
requests, or event queries.

Virtual devices must be declared statically in RTA-OSEK for PC so that they can
become known to the Device Manager before entering ‘main’. Do not
attempt to create devices dynamically™.

RTA-OSEK for PC wraps all of the repetitious ‘plumbing’ code needed to
create a device in a C++ class called vrtabevice that is defined in the file
vrtaDevice.h. You can use this as a base class from which to create your
own devices.

RTA-OSEK for PC also supplies a number of sample devices in the files
vrtaSampleDevices.h and vrtaSampleDevices.cpp. These sample
devices are automatically included into your VECU if you use them. The
sample devices are documented in detail in chapter 11, but for now let’s just
see how to use them.

3.3.1 Clocks, counters and compare devices

The vrtaClock device represents a clock source in a real ECU. It ticks
independently of the rest of the application at up to 1000 times per second™.
You can declare a clock named “Clock” that ticks every 5ms like this:

#define MSECS_PER TICK (5)
vrtaClock Clock("Clock", MSECS PER TICK) ;

On its own, the clock source is not of much use. You can start it, stop it and
change its interval, but it does not maintain a value or raise any interrupts.
Think of it as the oscillator in a real ECU.

We need to connect a counter to this clock source. RTA-OSEK for PC supplies
two sorts of counter; one that counts upwards and one that counts
downwards. These lines of code declare two such counters attached to the
clock source:

vrtaUpCounter CountUp ("CountUp", Clock) ;
vrtaDownCounter CountDown ("CountDown", Clock) ;

By default, a counter increments or decrements its current value within the
range zero to 2°*-1. You can reduce the range of the count using the
SetMin () and SetMax () methods. The normal place to do this is in the

18y ou wouldn’t expect a hardware counter to suddenly come into existence on areal ECU either!
¥ The clock device uses Windows multimedia timers, which have aminimum interval of 1ms.

40 Tutorial RTA-OSEK for PC User Guide

InitializeDevices () function we saw earlier. It's also a good place to
enable the counter.

void InitializeDevices (void)
/* CountUp goes 0...999 then back to 0 */
CountUp.SetMax (999) ;
CountUp.Start () ;

/* CountDown goes 1999...1000 then
back to 1999 */
CountDown.SetValue (1999) ;
CountDown.SetMin (1000) ;
CountDown.SetMax (1999) ;
CountDown.Start () ;

You can read the current value of a counter using
<counters>.GetValue (). But what we’'d really like to do is to raise an
interrupt when the counter reaches a certain value.

Enter the vrtaCompare virtual device.

When you declare a compare device you can attach it to a counter and specify
an interrupt that fires when the value of the counter reaches a specific value.
In the example below there are two comparators connected to the same
counter. The first one raises interrupt 1 when the counter reaches value 5. The
second raises interrupt 2 when the counter value reaches 15.

vrtaCompare Compare5 ("Compare5",CountUp,5,1) ;
vrtaCompare Comparel5 ("Comparel5", CountUp,15,2) ;

Hopefully it is clear from this that you can very easily construct a chain of
timing elements of arbitrary complexity by simple combinations of clock,
counter and compare devices.

One point worth emphasizing is that vrtaClock sources run independently
of the application. If you use the ApplicationManager device to pause the
application thread, the clocks continue to run and any counter/compare
devices that are attached can continue to raise interrupts that will be serviced
once the application thread resumes.

RTA-OSEK for PC User Guide Tutorial 41

3.3.2

Sensors

3.33

RTA-OSEK for PC provides sample ‘sensor’ devices that are intended to
represent inputs to an ECU. Sensors in the real world could include switches,
thermocouples, pressure monitors and so on.

Sensors have a minimum value, a maximum value and a current value in the
same way as a counter. The vanilla vrtaSensor device values range from
zero to 231, but you can change the upper limit for this using the
SetMax () method.

Two derivatives of vrtaSensor are vrtaSensorToggleSwitch and
vrtaSensorMultiwaySwitch. The toggle switch can have a position
value zero or 1. The multiway switch can have an upper limit specified in its
declaration.

e.g.

vrtaSensor Throttle ("Throttle") ;

vrtaSensorToggleSwitch EjectSwitch("EjectSwitch") ;
vrtaSensorMultiwaySwitch Gear ("Gear", 5); // 0 to 5

The values of a sensor can be changed remotely from programs such as
vrtaMonitor and the COM Bridge (see chapter 13). You can read the value
of the sensor directly from your application via the Getvalue () method.

Alternatively you can attach a vrtaCompare device to the sensor and raise
an event when a certain value is set.

e.g.
|vrtaCompare Eject ("Eject",EjectSwitch,1,3); |

This compare device causes interrupt 3 to be raised when the EjectSwitch
position becomes 1.

Actuators

RTA-OSEK for PC ‘actuators’ represent outputs from an ECU. The base
vrtaActuator device can be set to a value from zero to 2%?-1. It raises an
event when its value changes, so external programs such as vrtaMonitor
can detect changes in the VECU's output.

As previously, you can attach a vrtaCompare device to an actuator so that
you can raise an interrupt when a set value is reached®.

Trivial specializations of vrtaActuator are vrtaActuatorLight (values
zero and 1), vrtaActuatorDimmableLight ('levels’ zero to n) and
vrtaActuatorMultiColorLight (‘colors’ zero to n).

2 By our definition of an actuator, it is an output device so you wouldn't expect it to be able to raise an interrupt: that is really the

role of asensor attached to it. Nevertheless, you may find this capability useful in certain cases.

42

Tutorial RTA-OSEK for PC User Guide

e.q.

vrtaActuator Speedometer ("Speedometer") ;
vrtaActuatorLight BrakeLight ("BrakeLight") ;
vrtaActuatorDimmableLight

InteriorLight ("InteriorLight",20) ;
vrtaActuatorMultiColorLight

FuelIndicator ("FuelIndicator",4) ;

334 10

The vrtaTIo virtual device is a more general purpose component. It simulates
a block of 32-bit values in an ECU’s IO or memory space. You (or an external
monitor) can set or inspect values in the individual elements. An event is
raised when a value is changed, but there is no ability to generate an interrupt
based on the value.

3.3.5 Custom devices

The sample devices provided with RTA-OSEK for PC are a good starting point
when creating a VECU, but you will want to create your own devices to reflect
your own environment. Thanks to C++ inheritance this is a straightforward
process that we will cover shortly — see section 3.4.11 and chapter 4.

RTA-OSEK for PC User Guide Tutorial

43

3.4 Tutorial2
Reopen the Tutorial1 project then use File / Save As.. to make a copy in a
new directory as c:\Play\Tutorial2\Tutorial2.0IL. Copy main.c
and devices.cpp from the Tutoriall directory to Tutorial2.
We are going to create a very artificial VECU to demonstrate the use of virtual
devices:

» There will be 4 input switches: Accelerate, Brake, Left and Right.

» There will be a speed setting actuator.

» There will be a direction indicating actuator.

e The Accelerate and Brake switches cause the speed to increase /
decrease by one notch on each zero to one transition under interrupt
control.

* The Left and Right switches are polled from an OSEK task every 100ms
and cause a one degree change in direction each time they are
sampled at ‘1",

* The speed starts at zero and limits at 100. The speed is preserved if the
program resets, but not if the program restarts.

* The direction is from zero to 359 degrees. The direction is preserved
over reset AND program restart.

e There will be on-screen feedback of the current speed and direction.

3.4.1 Devices

44

Edit devices. cpp so that it contains the following code.

#include <devices.h>

#define MSECS PER POLL (100)
#define ACCEL_ISR (1)
#define BRAKE ISR (2)
#define POLL_ ISR (3)

// Switches

vrtaSensorToggleSwitch Accelerate ("Accelerate") ;
vrtaSensorToggleSwitch Brake ("Brake") ;
vrtaSensorToggleSwitch Left ("Left");
vrtaSensorToggleSwitch Right ("Right") ;

// Actuators
vrtaActuator Speed("Speed") ;
vrtaActuator Direction("Direction") ;

// Comparators
vrtaCompare
AccelDetect ("AccelDetect",Accelerate,1,ACCEL_ISR) ;

Tutorial

RTA-OSEK for PC User Guide

vrtaCompare
BrakeDetect ("BrakeDetect",Brake,1,BRAKE ISR) ;

// Clock

vrtaClock ClockSource ("ClockSource",MSECS PER POLL) ;
vrtaUpCounter PollCounter ("PollCounter", ClockSource) ;
vrtaCompare PollCompare ("PollCompare", PollCounter, O,
POLL_ISR) ;

// Data

#define DATA SIZE (1)

#define DIR_DATA (0)

vrtaIO PersistentData("PersistentData",DATA SIZE) ;

// Status
#include <vrtaloggerDevice.cpp>
Logger Status("Status") ;
T R EEEEEEEEEE
int status_printf (const char* format, ...)
{
va_list argptr;
va_start (argptr, format) ;
int ret = Status.printf (format, argptr);
va_end (argptr) ;
return ret;

void InitializeDevices (void)
Speed.SetMax (100) ;
Direction.SetMax (359) ;

PollCounter.SetMin(0) ;
PollCounter.SetMax (0) ;
PollCounter.Start () ;

ClockSource.Start () ;

Speed.PersistThroughReset (true) ;

PersistentData.PersistThroughReset (true) ;

Direction.SetValue (
PersistentData.GetValue (DIR_DATA)

Hopefully the declarations for the switches, actuators, clock devices and IO

will be clear.

RTA-OSEK for PC User Guide Tutorial

45

3.4.2 Logger

The Logger device is not included as part of the standard set of sample
devices, but you will find it very useful if you want to output diagnostic text
from an application. You can make printf () style calls to a Logger device
and it can output the text to the console window and/or a file. If you create a
Logger device with the special name “Status”, then the VM'’s embedded GUI
will display its last line in its status bar. vrtaMonitor will do the same.

Use a Logger device to output text to the VECU's console. Do not use direct
printf () calls. The Logger device has the interrupt protection that is
needed when making non VM or non-OSEK API calls from your application
thread.

Now we come to an interesting issue. Your logger device is a C++ object with
a nice set of methods for outputting text and saying where to direct the text
to. You can make calls such as Status.printf (“Boo”) so that you can
indicate to the outside world what is happening.

But your OSEK application is written in C not C++, so it does not understand
the Status object. How can it make use of it?

3.4.3 Interfacing C code with devices

There are two answers to this.

1) Your C code can use the VM API call vrtaSendAction to send a string
to the device’s 'Print’ action. You'll see how to do this later, but the code
would look something like this®:

vrtaAction act;

char * pText to send = “Boo”;
act.devID = status device id;
act.devAction = 1;

act.devActionLen = strlen(pText to_ send);
act.devActionData = pText to_send;
vrtaSendAction (act.devID, &act) ;

2) Write a C / C++ interface function. This is what is done in the code above.
The function status printf is a simple wrapper function that is
intended to be callable from C code so your code becomes:

|status_printf(“Boo") |

You must provide a prototype for this function that can be seen by both
the C and C++ source code that declares status printf to be a C
rather than C++ function. For this reason we need to add the file
devices.h, with the following contents.

2 Thiswon't work if the string length is less than 16 bytes because the string has to be copied into the action’s embedded data area.
Thisisdiscussed later.

46 Tutorial RTA-OSEK for PC User Guide

/* Interface between C and C++ */

#ifdef cplusplus
extern "C" {
#endif

extern int status_printf (const char* format, ...);
#ifdef cplusplus

}

#endif

This file must get #included into any C or C++ files that reference
status_printf.

3.4.4 Device Initialization

The initialization code in our InitializeDevices () function sets both the
min and max values for the PollCounter to zero. You will note that
PollCompare is also set to match on zero. This has the effect of raising an
interrupt every clock tick, because each time the ClockSource ticks the
PollCounter is ‘incremented’. Incrementing past its maximum value (0)
causes the count to reset to the minimum value (0). Each time the
PollCounter gets ‘incremented’ the new value is passed to the
PollCompare — which matches on zero every time.

The «calls to PersistThroughReset() tell the Speed and
PersistentData devices to preserve their data if the program resets. Note
that a reset is not the same as killing the program and restarting it manually.
We do have a requirement that the direction is preserved over a restart that is
not satisfied by this — but we will sort that out a bit later.

3.4.5 main()

We also need to modify main.c so that the program does not simply start
and stop. Enter the code below. You will notice the use of
status printf (). vrtaIsAppFinished () returns false normally or
true if the VECU should terminate. vrtaIsIdle () waits for the specified
number of milliseconds. During this time the processor is assigned to a
different thread. Virtual interrupts can still occur during a call to
vrtalsIdle().

/* Template code for 'main' in project: Tutorial2 */
#include "osekmain.h"
#include <devices.h>

0S_MAIN ()

{

StartOS (OSDEFAULTAPPMODE) ;

while (!vrtalsAppFinished()) {
vrtalIsIdle(5) ;

RTA-OSEK for PC User Guide Tutorial 47

48

}
{
}

{

OS_HOOK (void) StartupHook (void)

OS_HOOK (void) ShutdownHook (StatusType s)

}

ShutdownOS (E_OK) ;

status_printf ("Hello World");

status_printf ("Shutdown occurred") ;
vrtaTerminate () ;

3.4.6 Trial run 1

Let's check that was all entered correctly. Save your project and perform a

build (F9).

Hopefully the build will be successful. If not just go back and check that you
have entered everything correctly.

We can run the program by typing in its full path, but you'll probably find it
easier to run it directly from the RTA-OSEK GUI.

If you don’t already have the custom buttons below, press the Configure
button on the Custom Build page. Select the Custom Buttons tab in the
configure dialog and make the following entries:

Button 1

Name;:

Content;

Button 2

Name;:

Content;

Button 3

Name;:

Content;

Button 4

Name:

Content:

&Quick Edit

S (EDITOR) $ (OPENFILE)

&Run

$ (DestDir app) $ (name)

RTA-&Trace

$ (RTABase) \bin\rta-trace.exe
"localhost .RTAOSEK-VRTA: $ (destdir app) $ (name) .rta"

RTA-Trace &Server

$ (RTABase) \bin\rta-trace-server.exe

You can now use the Run button to launch Tutorial2.exe. The RTA-
TRACE entries will come in handy later.

When you run your new VECU, you will get an empty console screen plus an
embedded GUI. The GUI shows a few details about your VECU and gives you

Tutorial

RTA-OSEK for PC User Guide

the ability to pause, resume, reset and terminate it. You should see “Hello

World” on the GUI's status bar.

If you press Ctrl+M when in the embedded GUI, then you will launch an

instance of vrtaMonitor that is connected to the VECU.
Note that it too has “Hello World" in the status bar.

E! virtaMonitor localhost:Tutorial2 exe

File Host Application Device Script Help

s Hosts
EE localhost
@ [&dd)
- Tutonialz.exe : Furning
G DeviceM anager
- 10U
-G Applicationt anager
-G Accelerate
- Brake
-G Left
-G Right
G Speed
(-G Direction
£ ClockSource
----- ;_{,5.. Interval <%
----- & Scale <%
----- 5}} Start
..... 5‘5‘ Stop
----- a Interval =100
----- & Scale=1%1
----- & Rurning =1
=55 PollCounter
----- 5::‘, inimum <7
----- 5} b a7
----- & Sete?
----- & Start
..... a Stop
----- & Report

PersistentD ata
Status

Ve

-
H

=10l x]

Host PC is localhost
The PC has one loaded application.

Applicafion Informafion

Alias=TutorialZ.exe

Date=22/08/2006 11:43.15

“WhAWersion=1.0.0.0

WiProductversion=5.0.0.0

“WhADate=21/08/2006 16:00:32
YhAFileDescription=RTAYitual Machine . vriavhs
Y CompanyMName=LiveDevices Lid.

WCopyright=Copyright @ LiveDewvices Lid 2005-2006.

iLocation=chtalkhiny,

“WhAllame=wvraMs dll
O=version=os_VRETA_s_ 5 00 RewD
D55tatus=5

FullHostName=yvokb0133 ecn.etasgroup.com
HostName=yokb0133

DiagFort=1222

Appfication Version
Date=22/08/2006 11:49.18
The application has 16 devices.

PollCompara

Device type is 'Compare’.

Yersionis 1.0.0.

The dewvice has 2 action and 2 events.

Summa | pggnitgr |

|Heflo ol

4

Take some time to explore the devices in the monitor. You should be able to
work out most of the features by checking out the main menu, clicking (and
especially right-clicking) on elements in the left hand navigation pane and
looking at the tabs on the right hand side. If you get stuck, nip ahead to
chapter 6 which describes the monitor.

One thing that is worth pointing out is that the monitor has worked out that
the PollCompare device ‘belongs to’ the PollCounter, which in turn
‘belongs to” the ClockSource. It has therefore arranged these devices in a
hierarchy. The same applies to the Accelerate and Brake compare

devices.

RTA-OSEK for PC User Guide

Tutorial

49

3.4.7 Summary so far

We haven't really written much code yet, but a large part of the framework is
in place. In fact, we can even see that the clock chain is working. Drag the
‘Match’ Event of the PollCompare device from the left hand side over to
the right-hand side. This causes the monitor to hook all match events from
the device and display them in the Monitor tab. If you tick the Show Times
checkbox you will also see the time that each event was raised in the VECU%.

il

File Host Applcation Device Script Help

.5_‘.# Hosts =

EE locathost v Show times Stop |
@ [&dd]

E|i Tutonial2.exe : Running

1

L@ DeviceManager

-G 10U 00:00:56.500 PollCompare Match: 0 -]
(-G Applicationtd anage 00:00:56.609 PollCampare Match: 0
(3 Accelerats 00:00:56.703 PollCampare. Match: 0
43 Brake 000056812 PollCampare. Match: 0
-G Left 00:00:56.906 FollCompare.Match: 0
[+ Right 00:00:57.000 FollCompare. hatch: 0
- Spesd 00:00:57.109 PaollCompare Match: 0
[+1-GG Direction 00:00:57.203 PollCampare. Match: 0
-5 ClackSource 00:00:57.312 PollCompare Match: 0
---- £ Interval <7 00:00:57.406 PollCompare.batch: 0
----- & Scale <> 00:00:57.500 PollCompare Match: 0
----- & Start 00:00:57.609 PollCompare Match: 0
----- & Stop 00:00:57.703 PollCompare Match: 0
----- & Intereal =100 00:00:57.812 PollCampare Match: 0
----- & Scale =141 00:00:57.906 PollCampare Match: 0
----- & Funring =1 00:00:58.000 PolliCompare Match: 0
El-+& PollCounter 00:00:58.109 PolliCompare Match: 0
----- & Minimum < 00:00:58.203 PollCompare Match: 0
----- & Wawirum < 00:00:58.312 PollCompare Match: 0
----- & Sete?s 00:00:58.406 PollCompare Match: 0
----- & Start 00:00:58.500 PollCampare Match: 0
----- & Stop 00:00:58.609 PollCompare Match: 0
----- & Report 00:00:58.703 PollCompare Match: 0
----- & Set=0 00:00:58.872 PollCompare Match: 0
-5 PollCompa 00:00:58.906 FollCompare.Match: 0
5,5, Match = | | 00:00:53.000 PollCompare katch: 0

- Vechor 00:00:55.109 PollCampare. Match: 0 j

Summary Monitor |Qetail |

Heflo rorld

To stop monitoring an event, drag the event onto the Stop button.
When you are ready, close the monitor and VECU.

22 Eyent times are recorded using the Windows APl Get TickCount (). Thistypicaly has aresolution of around 15ms.

50

Tutorial

RTA-OSEK for PC User Guide

3.4.8 Tasks and ISRs

We now create the OSEK elements that implement the required functionality.
Using the ‘Basic Data Entry’ screen in RTA-OSEK, add the following:

A task called DirectionPoll

A Category 2 ISR named isrAccel with priority 1 and vector 1.
A Category 2 ISR named isrBrake with priority 1 and vector 2.
A Category 2 ISR named isrPoll with priority 2 and vector 3.

An OSEK Counter named AlarmCounter with a tick rate of 100 real
time ms driven by isrPoll.

An OSEK Alarm named Poller that activates task
DirectionPoll.

In the Startup tab, set Poller to Autostart.

In the Stimuli tab of the Planner section, set the alarm’s arrival pattern
to 1 counter tick and start offset 1%.

Go back to the Custom Build pane and press the Create Templates button.
DO NOT overwrite main.c, but do allow RTA-OSEK to create the remaining

files.

We will now add some code into the templates.

Edit main.c so that 0S MAIN () looks like this:

{

0S_MAIN ()

StartOS (OSDEFAULTAPPMODE) ;
show_status() ;

while (!vrtalsAppFinished()) {
vrtalsIdle(5) ;
}

ShutdownOS (E_OK) ;

Edit isrPoll.c thus:

{
}

/* Template code for 'isrPoll' in project:
Tutorial2 */

#include "isrPoll.h"

#include <devices.h>

ISR (isrPoll)

Tick AlarmCounter() ;

2 |f you leave the start offset as zero, the alarm will take along time to start because the counter is already at zero in
StartOS (), sothefirst offset you can get is 1.

RTA-OSEK for PC User Guide Tutorial

51

Edit isrBrake. c thus:

/* Template code for 'isrBrake' in project: Tutorial2 */
#include "isrBrake.h"

#include <devices.h>

ISR (isrBrake)

{
}

change speed(-1);

Edit isrAccel. c thus:

/* Template code for 'isrAccel' in project: Tutorial2 */
#include "isrAccel.h"

#include <devices.h>

ISR (isrAccel)

{
}

change speed(+1) ;

Edit DirectionPoll. c thus:

/* Template code for 'DirectionPoll' in project:
Tutorial2 */
#include "DirectionPoll.h"
#include <devices.h>
TASK (DirectionPoll)
{

if (left pressed()) ({

change direction(-1);
}

if (right pressed()) {
change direction (+1);
}

TerminateTask () ;

Update devices.h to add the C / C++ interface function prototypes:

extern int show_status(void) ;

extern int left pressed(void);

extern int right pressed(void) ;

extern int change direction(int amount) ;
extern int change speed(int amount) ;

52 Tutorial RTA-OSEK for PC User Guide

We now add the C / C++ functions to devices.cpp. They are clearly quite
simple wrappers to the devices.

[/ e
int left pressed(void)
{
return Left.Value () ;
}
e Rt
int right pressed(void)
{

return Right.Value () ;
}
J /= e
int show_status (void)
{

Status.printf ("Speed %d, Direction %d4d",
Speed.Value (),
Direction.Value()) ;

}

J /e
int change direction(int amount)

{

int newvalue = Direction.Value() + amount;

while (newvalue < 0) {
newvalue += 360;

}

while (newvalue > 359) {
newvalue -= 360;

}

PersistentData.SetValue (DIR_DATA,newvalue) ;

Direction.SetValue (newvalue) ;

show_status() ;

}

J]
int change speed(int amount)

{

int newvalue = Speed.Value() + amount;

if ((newvalue >=0) && (newvalue <=100))
Speed.SetValue (newvalue) ;
show_status() ;

}

}

RTA-OSEK for PC User Guide Tutorial 53

If you try to run this now, you'll find that nothing much appears to respond to
the inputs. This is because we need to enable (or unmask) the 3 interrupts
that we are using. Add the code below into InitializeDevices (). It
sends the Unmask action to the VM’s ICU device, passing in each interrupt
number in turn.

vrtaAction action;
action.devID = ICU DEVICE ID;
action.devAction = ICU ACTION_ ID Unmask;
action.devActionLen =

sizeof (action.devEmbeddedData.uval) ;
action.devActionData = NULL;
action.devEmbeddedData.uVal = ACCEL ISR;
vrtaSendAction (ICU DEVICE ID, &action) ;
action.devEmbeddedData.uVal = BRAKE ISR;
vrtaSendAction (ICU DEVICE ID, &action) ;
action.devEmbeddedData.uVal = POLL_ISR;
vrtaSendAction (ICU DEVICE ID, &action) ;

Nearly there.

For no other reason than to show you some interesting stuff, we are now
going to add a ‘spring’ to the Accelerate and Brake switches so that they flip
back to zero after being pushed. We will do this in an RTA-OSEK for PC
Thread.

3.4.9 Threads

RTA-OSEK for PC allows you to create any number of threads of execution
that run independently of your application thread (the OSEK thread). These
threads are native Windows threads with a small amount of protection built
in. You can make Windows API calls from within a thread without having to
protect them from RTA-OSEK for PC interrupts. You can access the VECU's
devices and even raise interrupts from within a thread, which makes them an
excellent choice for interfacing to real hardware.

To see a thread at work add the following declaration just before
InitializeDevices():

‘extern void AsyncThread (void); // Forward declaration ‘

Then add this to the end of InitializeDevices ():

‘vrtaSpawnThread(AsyncThread); ‘

54 Tutorial RTA-OSEK for PC User Guide

The code for the thread can be added at the end of devices . cpp. The basic
shape of an RTA-OSEK for PC thread is usually something like this:

void AsyncThread (void)

{

while (!vrtalsAppFinished()) {
vrtaIsIdle (100) ; // Sleep 100ms
}

You should check vrtaIsAppFinished () regularly within a thread so that
the VECU can perform an orderly tidy up when asked to terminate. You
should use vrtaIsIdle () to yield control to other threads if you have no
work to do.

In our thread, we want to hook event changes in the AccelDetect and
BrakeDetect compare devices. Whenever the Match event fires for one of
these, we know that the associated switch has been pressed. We then reset
the switch value to zero. Note that hooking the Accelerate and Brake
Position event will not work because events are raised before the compare
devices are informed. If you reset the switch in the event hook, the compare
devices only ever see the zero value.

The code that we need to add to devices.cpp to implement the thread
and hook code is shown below.

static vrtaErrType ListenCallback (
const void *instance,
const vrtaEvent *event)

// Has ‘Accelerate’ become 17
if |
(event->devID == AccelDetect.GetID()) &&
(event - >devEmbeddedData.uvVal == 1)) {
// Set directly
Accelerate.SetValue (0) ;

// Has ‘Brake’ become 17?
if ((event->devID == BrakeDetect.GetID()) &&
(event - >devEmbeddedData.uvVal == 1)) {
// Set wvia an action
vrtaAction act;
act.devAction = 1;
act.devActionLen = sizeof (unsigned) ;
act.devActionData = NULL;
act.devID = Brake.GetID() ;
act .devEmbeddedData.uval = 0;
vrtaSendAction (act.devID, &act) ;

void AsyncThread (void)

{

// Create a listener and associate its callback
vrtaEventListener tListener =

RTA-OSEK for PC User Guide Tutorial 55

56

vrtaEventRegister (ListenCallback, 0);

// Hook event 1 of AccelDetect into listener
vrtaHookEvent (

tListener,

AccelDetect.GetID(), 1, true);

// Hook event 1 of BrakeDetect into listener
vrtaHookEvent (

tListener,

BrakeDetect.GetID(), 1, true);

// Nothing else to do while app is running

while (!vrtaIsAppFinished()) {
vrtaIsIdle(100) ;

}

// Tidy up hooks on exit from thread
vrtaHookEvent (

tListener,

AccelDetect.GetID(), 1, false);
vrtaHookEvent (

tListener,

BrakeDetect.GetID(), 1, false);

Notice that for illustration purposes, different methods are used to reset the

Accelerate and Brake devices.

Tutorial

RTA-OSEK for PC User Guide

3.4.10 Trial run 2

Save your project and perform a build (F9).

Because you are getting good at this, you will now have a (nearly) fully
working VECU, so let's run it.

We'll need vrtaMonitor to feed some inputs and view the output, so start
it up (Ctrl+M) from the embedded GUI.

Expand the Accelerate device and drag the Position event to the right
hand side. Double click the Position action (not the event) and enter ‘1’ as the
data value. Press OK. You will see the position value change to one and then
zero in the monitor window. The status bar will show that the speed has
increased. Double-click on the Position action a few times and you will see the
speed go up further.

Do the same for the Brake device and notice the speed decrease.

Now expand the Left device and send its Position action value ‘1’. The
direction will go East to West until you change it back to zero.

The same applies to the Right device, though obviously that will make the
direction go West to East.

If you now reset the VECU (for example using the Application menu in
vrtaMonitor), the VECU console and GUI will flash off and then return. The
speed and direction will have persisted across the reset.

3.4.11 Non-volatile data

We have seen that the speed and direction values persist over a VECU reset.
But we don’t yet have a way to keep data between completely different runs
of the VECU.

We'd really like to have something that looks like Flash memory in a real ECU.
In this release of RTA-OSEK for PC, there is no direct support for nonvolatile
memory so we will have to make our own version.

We will do this by creating a vrtaFlash device that inherits from vrtazo.
We can then change the type of PersistentData to vrtaFlash and the
job is done.

The code to do this is shown below. Just replace the current declaration for
PersistentData with these lines.

// Add some persistence to vrtalIO to simulate nvram.
// In this version we store the data in the file

// "VECU.flash". The file gets read in when the device
// starts, and written when the device is stopped.
#include <stdio.h>

class vrtaFlash : public vrtaIO {

protected:
void Starting(void) {
vrtalIO::Starting() ;
FILE *f = fopen("VECU.flash","rb");
if (£) |

RTA-OSEK for PC User Guide Tutorial 57

char buffer[100];
if (GetPersistentDataSize() ==
fread (buffer,1,GetPersistentDataSize (), f)
) A

memcpy (
GetPersistentDatal(),
buffer,
GetPersistentDataSize()) ;

}
fclose(f) ;
}

}

void Stopping(void) {
FILE *f = fopen("VECU.flash", "wb") ;
fwrite (
GetPersistentDatal(),
ll
GetPersistentDataSize (),
£);
fclose(f) ;
vrtalO::Stoppingl() ;

}

public:
// Constructor

vrtaFlash (const vrtaTextPtr name, unsigned elements)
vrtalO(name, elements) {};

Vi

vrtaFlash PersistentData ("PersistentData",DATA SIZE) ;

You will now find that if you rebuild your VECU that it will remember the
direction it was last pointing in when it restarts.

In a real-life application you might want to move away from a hard-coded file
name, to avoid conflicts where two applications try to access the same file.

58 Tutorial RTA-OSEK for PC User Guide

3.4.12 RTA-TRACE

If you have RTA-TRACE installed, you can get a detailed view of the internal
operation of your VECU.

Close any instances of the VECU and monitors, and select the 3 RTA-TRACE
tab in the RTA-OSEK GUI.

Use the Configuration pane to set the trace type to Advanced. Set the
autostart values to Free running / enable trace link.

—Autogtart Setting

[~ Settrace repeat
O

" Bursting

% Free running

[v Enable trace comms link

Trigaer setup code

" Triggering .
ITnggerD nErmor[JSTRACE_TRIGGER

ok Cancel

Now try to rebuild.

You should get warnings about missing stopwatch and overrun functions. In
build status ‘s’, RTA-OSEK does not collect or police timing information, so we
have not yet needed to provide any time-related code.

RTA-TRACE of course does need to know about the time at which things
happen, so we must give it the help it needs. Add the code below to
devices.cpp.

OS_NONREENTRANT (StopwatchTickType) GetStopwatch (void)

{

/*
vrtaReadHPTime (x) returns the current time
in 'xticks', where there are ‘'‘x' xticks per
second. So the code below returns time in the
units defined as the stopwatch rate in the
RTA-OSEK GUI.

*/

return vrtaReadHPTime (
(1000000000 / OS_NS_PER_CYCLE) /
0S_CYCLES_PER SWTICK
) ;
}

#ifdef OSTRACE ENABLED

OS_NONREENTRANT (StopwatchTickType)
osTraceStopwatch (void)

RTA-OSEK for PC User Guide Tutorial 59

/*
Ensure that the trace stopwatch is the same
as the system stopwatch
*/
return GetStopwatch () ;

#endif
#if defined(0OS_ET MEASURE)

OS_NONREENTRANT (StopwatchTickType)
GetStopwatchUncertainty (void)

{

return (StopwatchTickType) 1U;
/* Not really relevant for this target */

}

#endif

0S_HOOK (void) OverrunHook (void) {
status_printf ("Overrun occurred") ;

You may remember that the project was set up initially with a 1kHz
stopwatch. Using the high-performance counter means that we can now do a
lot better than that, so select the RTA-OSEK menu Target / Timing data and
change the clocks to something more sensible.

Change clock speeds ed A

Current target I"v"irtuaIEI zek, j
Variant [i =
Instruction Fate [MHz] IW
Stopwatch Speed [MHz] IW

LCancel |

60 Tutorial RTA-OSEK for PC User Guide

Finally we must add some code in the idle task to pump the trace data out of
the application. Edit main.c so that it now looks like this:

/* Template code for 'main' in project: Tutorial2 */
#include "osekmain.h"
#include <devices.h>

0S_MAIN ()
{

StartOS (OSDEFAULTAPPMODE) ;

show_status() ;

while (!vrtalsAppFinished()) {
#ifdef OSTRACE_ENABLED
CheckTraceOutput () ;
UploadTraceData() ;

#endif
vrtaIsIdle(5) ;

}

ShutdownOS (E_OK) ;

}

OS_HOOK (void) StartupHook (void)

{
}

OS_HOOK (void) ShutdownHook (StatusType s)

{

status_printf ("Hello World") ;

status_printf ("Shutdown occurred") ;
vrtaTerminate () ;

Now rebuild the VECU (F9).

Start the RTA-TRACE Server from the custom button you set up earlier, and
then press the RTA-TRACE button. RTA-TRACE will start up, read the
VECU'’s configuration information and then launch it automatically for you.
What service!

RTA-OSEK for PC User Guide Tutorial 61

Your mileage will vary, but we get a trace looking like the one below.

E' localhost.RTAOSEK-YRTA:C: Play’, Tutorial2yMinGW", app’, Tutorial2.rta - RTA-TRACE - IEI|5|

File Trace Bookmarks Window Help

@O0 @@ @@ 100 @

0d 00:00:00 100ps 200ps 300ps 400ps S00ps GO0ps 7OOps BO0ps O00ps 1118
| | I N || Il I B n I N IH -

. |] I
|!OS activity rSSDEFAULTAF'F'MDDE

=
!Stack activity

172 +334+5225+1240-100 +Z34+53TG +1240-100 +224+532 + 25+ 4 ARTELS 4 0000234 + 52T + 124010024
=

~ [] [

Error Hook TE_DS_LIMIT ’H
RisrPal r = T — WH

e | 0
fome | E

i

vl vl vl N vl
|!AIarmCDun... 1 5 5 4 = ’_
H . I ™
lerectanPDII I T \ m ’H
£ .
Jusek_ldle_t... = = H
- ﬁ -
| [™ Frozen | e =Mat set, Fight =MNot zat, Maked Durafior =Incomplete, Caiuiaionr Duwafkion =Entie trace: 50ms 557ps

¢ Graphical view of frage events |

@ ﬁ _@ |< Ma trigger » jl j Bookmarks (0]
@OO® @ @ @® @ _— @00

Hmm... that's interesting. The trace is showing E_0S LIMIT during the
fourth instance of 1srPo11%. We weren't expecting that!

It's over to you now. You have all the tools and knowledge that you need to
sort this one out yourself®,

24 Depending upon the speed of your machine, this may occur in a different position.
% Yesindeed, an ‘exercise for the reader’.

62

Tutorial RTA-OSEK for PC User Guide

3.4.13 Addendum

Just to prove that you can link to real hardware, you might like to change the
implementation of the AsyncThread as shown below. It just peeks at the
state of the arrow keys on your keyboard and makes calls to your switches.

void AsyncThread (void)

{

vrtaEventListener tListener =
vrtaEventRegister (ListenCallback, 0);

vrtaHookEvent (
tListener, AccelDetect.GetID(), 1, true);
vrtaHookEvent (
tListener, BrakeDetect.GetID(), 1, true);
while (!vrtalsAppFinished()) {
if (GetAsyncKeyState (VK LEFT) < 0)
if (Left.GetValue() == 0) {
Left.SetValue (1) ;
} else {

if (Left.GetValue() 1) {

Left.SetValue (0) ;
}
}

if (GetAsyncKeyState (VK _RIGHT) < 0) {
if (Right.GetvValue() == 0) {

Right.SetValue (1) ;

}

} else {

if (Right.GetValue() ==
Right.SetValue (0) ;
}
}

if (GetAsyncKeyState (VK UP) < 0) {
Accelerate.SetValue (1) ;
}

if (GetAsyncKeyState (VK DOWN) < 0) {
Brake.SetValue (1) ;
}

vrtaIsIdle (100) ;

1) {

}

vrtaHookEvent (

tListener, AccelDetect.GetID(), 1, false);
vrtaHookEvent (

tListener, BrakeDetect.GetID(), 1, false);

RTA-OSEK for PC User Guide Tutorial 63

4

ECUs and Virtual Devices

4.1

At its most basic level, a virtual device is simply a software component that
has a name and provides functions that can be called to send it a command
(action) or query its status (event).

The ‘action’ callback function gets passed information through a
vrtaAction structure.

The ‘state’ callback function gets passed information through a vrtaEvent
structure.

Virtual devices can be written from scratch using C code, but we recommend
that they are implemented as C++ classes that derive from the vrtaDevice
class that is defined in vrtaDevice.h.

Many examples of how to write such classes are provided with RTA-OSEK for
PC, most notably in vrtaSampleDevices.h/.cpp. This chapter covers
some of the issues that you should understand when writing your own
devices.

Registering the device

64

You have to tell the VM that your device exists by calling the
vrtaRegisterVirtualDevice () APl This must be done before
vrtaStart () is called. (It is done automatically for you if you are using a
class that derives from vrtaDevice.)

When registering a device, you supply the following information:

name: This is the name that external monitor programs will see when accessing
the device. Each device in a VECU must have a different name.
e.g. "LeftWindowSwitch”, “EjectorSeatTrigger”

info: This is a string containing information about the device in the form

“<tagl>=<valuel1>\n<tag2>=< value 2>...”. As a minimum the string should
contain Type and Version tags. This information is used by external monitor
programs.

e.g. “Type=Thruster\nVersion=1.2.3\n"

list of events: This is a string in the same format as above that lists the events
that the device supports and the data format for each event. The tags are the
event names and the values are the data format descriptions. These are
explained in detail in section 9.3.

e.g. "Value=%u, % u(%u)\nValues=%a\n"

list of actions: This is a string in the same format as above that lists the actions
that the device supports and the data format for each action. The tags are the
action names and the values are the data format descriptions. These are
explained in detail in section 9.3.

e.g. “Value=%u,%u\nValues=%a\nGetValue=%u\nGetValues\n”

ECUs and Virtual Devices RTA-OSEK for PC User Guide

4.2

action callback function: This is a reference to the C function that will be called
when an action is sent to the device. See the section below on how to handle
action requests.

state callback function: This is a reference to the C function that will be called
when a status query is sent to the device. See the section below on how to
handle status queries.

Handling actions

4.3

The action callback function that you register gets called when code in the
VECU calls vrtaSendAction (), or when an external monitor sends data via
the diagnostic interface.

The callback can be invoked from any thread; therefore the callback must take
care of any reentrancy issues.

Often you will raise an event as a result of receiving an action.

If your device is written as a C++ class that inherits from vrtaDevice, the
action callback is translated into a call to your OnAction method. The basic
form of the OnAction method is shown below.

switch (action->devAction) {
case 1:
/* respond to action 1 */
RaiseEvent (...);
break;

default:
return ErrorAction (action) ;

}

return OKAction (action) ;

}

Handling state queries

The state callback function that you register gets called when code in the
VECU calls vrtaGetState (), or when an external monitor queries the
device via the diagnostic interface.

The callback can be invoked from any thread; therefore the callback must take
care of any reentrancy issues.

If your device is written as a C++ class that inherits from vrtaDevice, the
event callback is translated into a call to your AsyncGetState method. The
basic form of the AsyncGetState method is shown below.

RTA-OSEK for PC User Guide ECUs and Virtual Devices

65

- i i EPEL
vrtaErrType mydev::AsyncGetState (vrtaEvent *event)
s
switch (event->devEvent) ({
case 1:
/* Update *event */
break;
default:
return ErrorState (event) ;
return OKState (event) ;

By convention, AsyncGetState returns the value of the most recent
RaiseEvent for the event in question so that the state of a device can be
tracked by either ‘hooking’ the events or polling them.

4.4 Raising events

Any code can raise a device event directly via vrtaRaiseEvent (), but
normally it is only code within the device that raises its events. The
vrtaDevice class provides a RaiseEvent () method that can be used by
classes that inherit from it.

e.g.

m Val = val;

vrtaEvent event;
ReadState (&event, 1) ;
RaiseEvent (event) ;

}

66 ECUs and Virtual Devices RTA-OSEK for PC User Guide

4.5 Raising interrupts
Interrupts get raised by sending action ICU ACTION ID Raise to the ICU
device using code like this:
S ..
void RaiseInterrupt (unsigned vector)
{
vrtaAction action;
action.devID = ICU DEVICE ID;
action.devAction = ICU ACTION_ ID Raise;
action.devActionLen =
sizeof (action.devEmbeddedData.uval) ;
action.devEmbeddedData.uvVal = vector;
action.devActionData = NULL;
SendAction (ICU DEVICE ID, action);
}
The vrtaDevice class provides a RaiseInterrupt () method that can be
used by classes that inherit from it.
e.g.
/] === oo
void mydev: :NewValue (unsigned val)
s,
{
m Val = val;
if (val == m Match) {
vrtaEvent event;
ReadState (&event, 1) ;
if (m_Vector) {
RaiseInterrupt (m_Vector) ;
}
RaiseEvent (event) ;
}
}
4.6 Parent/ Child relationships

Sometimes you want to create a device that somehow ‘belongs to’ another

device.
An example is the vrtaCounter device that ‘belongs’ to a vrtaClock.

You can tell external programs such as vrtaMonitor about this relationship
by implementing an event called “_Parent”® which returns the device ID of
the device that it belongs to. The program can then represent this relationship
visually and will normally hide the _Parent event from view. This feature is
demonstrated in the screenshot below — where PollCompare’s _Parent is
set to PollCounter and PollCounter'’s Parentis set to ClockSource.

RTA-OSEK for PC User Guide

% By convention thisis the highest numbered event in the device.

ECUs and Virtual Devices

67

B] vrtaMonitor localhost:Tutorial2.exe =]

File Host Application Dewvice Scripk Help

'aél# HEDS:S ot Host PC is localhost
(ulnt= || glnkod
2 fadd)

i ') The PC has one loaded application.
- TutorialZ.exe : Running

Gi Devicetd anager

[EaRRe= I | W

F-Ga Applicationtdanager
=38 Accelerate

G Brake

-G Left

-G Right

G Speed

=--Za Direction

=@ ClockSource

B Interval <7

Application Information

Alias=TutorialZ exe

Date=22/08/2006 11:43:18

“WhiW'ersion=1.0.0.0

WhiProductv'ersion=5.0.0.0

WhADate=21/08/2006 16:00:32
WhiFileDescription=RTA “irtual Machine : vrtah'hs
WhdCompanyMName=LiveDewvices Lid.

WhACopyright=Copyright © LiveDewices Lid 2005-2006.

WhALocation=chiakkbin,
WhdMame=wrahis. dll

% Seale <7 OSVersion=os_%RTA_s_5_00Rev0

s Start DS Status=s

&5 Stop FullHostName=ywokb0133.ecn.etasgroup.com
A Interval = 100 Hosthame=yokb0133

g ;Zi':i;; \11 DiagPor=1222

EIG el B FluL Application Varsion

% Minirﬂum?; Date=22/08/2006 11:4%:18

5 Masimum <?> || Tha application has 16 devices.

& Set<?

% Start PollCompare

»5 Stop Dewice type is '"Compare’.

% Report “ersion is 1.0.0.

% e‘ . The dewvice has 2 action and 2 events.
- PersistentD ata
= Statusz

Summary [ponitar |

|Hel|o Whorld L

68 ECUs and Virtual Devices RTA-OSEK for PC User Guide

4.7

Threads

A virtual device can spawn an RTA-OSEK for PC thread to perform operations

asynchronously from the main application thread. Such threads can, with
appropriate interlocks, access the device data and methods. They can cause

events and interrupts to be raised.

The vrtaDevice class provides the spawnThread () method that can be

used by classes that inherit from it.

The diagram below illustrates how threads are used within a VECU. The

application thread is the Windows thread that runs the VECU application
code, including ISRs and RTA-OSEK tasks. This is the thread that calls
OS_MAIN (). The root thread is the thread created by Windows when the
VECU was loaded. This is the thread that executes main (). Virtual device

drivers may be called by the application thread but may also contain private
threads.

Virtual Machine (.dll) Diagnostic/Event Interface

P >
\ Root thread |
PR :
\ Application
\ thread
‘l
1 ’
\ 4
' ’
1 v
\ .
\ 7’
] ,’
T > - -
User Applicdtion - / oy
|| S I’ R I/
4 1 ’ ’ . . .
L J Virtual Virtual device
! ,,’)/ device OSEK Windows part
/ L part
r Thiead - P
- | I
l‘. _______ 4

RTA-OSEK for PC User Guide

ECUs and Virtual Devices

69

5 vrtaServer

vrtaServer.exe is a small program that runs unobtrusively on your PC
coordinating the loading and locating of your Virtual ECUs. It normally runs as
a Windows service.

A VECU informs vrtaServer when it starts or terminates. External programs
such as vrtaMonitor can then ask vrtaServer what VECUs are loaded,
and attach to a VECU via its diagnostic interface.

An important point to note is that vrtaMonitor can be on a different PC to
the server and its ECUs, so you can perform remote monitoring and control of
a bank of test PCs.

The figure below shows a vrtaMonitor attached to two VECUs. When the
VECUs load, they register with vrtaServer (dashed lines). vrtaMonitor
then queries vrtaServer to find out what VECUs are loaded on the local
machine and the TCP port numbers of their diagnostic interfaces (solid line).
vrtaMonitor then communicates with the VECUs via their diagnostic
interfaces (dotted lines).

Interface

1
: Control PC 1
. |
! 1
! 1
! 1
! 1
! 1
' vrtaMonitor !
! 1
1 1
! 1
: ﬂ A 1
1
O N 1
ittt it ettt ottt ittt \
1 g 1
1 1
| I ; :
|| Virtual ECU Diagnostic <~ - b Control vrtaServer !
. Interface i Interface '
| p |
: , Server loads virtual ECU and :
1)/ passes diagnostic interface port h
: ,/ numbers back to monitors :
1 /
! /, :
1 ,
i .4 » |
1 1
| Virtual ECU Diagnostic 1
1
| |
I |
I 1
I 1
| 1
1 1
1 1
! 1
! 1
1 1
1 1
1 1

Monitor programs also use vrtaServer to locate and load VECUs. This is
necessary because the monitor may be running on a remote PC without
access to files on the host PC. In the load dialog below, vrtaMonitor is
accessing a remote PC, so the directory structure that you see reflects that on
the remote PC.

70 vrtaServer RTA-OSEK for PC User Guide

Select target application il

Host “OK50133 ok

Dirive: I =l CA j Cancel

with GUI [

5.1 Multiple instances of a VECU

Each VECU that loads is assigned a name (or alias) by vrtaServer. Normally
this is just the file name of the VECU with the path information stripped off.
This ‘user-friendly” alias is the name that gets shown in a monitor program.

If the same VECU is loaded twice, or if an ECU with the same name but in a
different directory is loaded, vrtaServer has to generate a different alias.
Typically it will do this by adding _2, _3 etc. to the default alias.

vrtaServer keeps a count of the ECUs and monitors that know about the
different aliases. It ‘frees’ an alias when no programs are using it.

5.2 Server status information

vrtaServer normally runs as a Windows service under the ‘SYSTEM'
account. It therefore does not normally have any user-visible element. If it
encounters problems, it logs them with the Windows Event Viewer.

You can alternatively run vrtaServer as a Windows system-tray application.
Close any VECUs or monitors on your PC then run the command
'vrtaServer -stop’ to stop the service”. Then run ‘vrtaServer
-standalone’. You will see a tabbed dialog-style window appear along with
a new icon in your system tray.

This dialog will give you information about the VECUs and monitors that are
connected to vrtaServer.

ZryrtaServer -start’ would start it again.

RTA-OSEK for PC User Guide vrtaServer 71

] virtual RTA Server

x|
ECUs IEDﬂnECtiDHSI Irfo I
ECLI Ie:-:ample:Z.e:-:e j
Application iz ;I tonitar
C:htasWRTANzamplest dpplicationz\R TA-OSEF.
Example 2\MinGWapphexample? exe. Termi
Reference count = 2, Leminate

Eﬂ Yirtual RTA Server
ECU: Connections Ilnf.;. |

[T A EFA conitor on ocalhost: 1246

Client has connected. ;I
Attached o examplez. exe: 1244
Getting ECL informationD ate=08/03/2008 11:06:56

=
Bun... Cloze |

Note that closing this dialog window does not cause vrtaServer to quit — it

just minimizes back to the system tray. Select the Close Server menu item
from the system tray icon to quit the server (or ' vrtaServer -stop’).

72 vrtaServer RTA-OSEK for PC User Guide

5.3

Security issues

vrtaServer does not allow a monitor program to copy any programs or
data to the host PC.

vrtaServer does not allow a remote user to modify files via the load dialog.

However as we have seen, vrtaServer allows remote monitor programs to
launch VECUs on its host PC.

In a controlled test environment, this is probably the behavior that you want.
However if you are worried about malicious abuse of this feature, you should

configure your firewall to block external access to vrtaServer®.

The default TCP ports used by vrtaServer (and RTA-TRACE) are 26000,
31765 and 17185.

%y ou could alternatively use the -p<n> command-line option to force vrtaServer to listen on anon-standard TCP port
number. A casual visitor would find it difficult to guess what port to connect to.

RTA-OSEK for PC User Guide vrtaServer 73

6 vrtaMonitor

The program vrtaMonitor.exe can be used to inspect and control virtual
ECUs on local and remote PCs.

E-‘ vrtaMonitor localhost:exampleZ.exe - |Elli|
File Host Application Dewice Script Help
"]
¥y Hosts Host PC is localhost
=4 localhost
E‘E dd The PChas one loaded application.

- ICU

-G Applicationtdanager
-G Screen

L@ Statug

L@ Characteristicz

H- 58 Audio

7@ Thiotile

.

-8 Walue <7

& Maimum <7
-3 Walue =14
-8 Magirurn =100
@ Direction

- Clock

-G RTA-Trace

Application Information

Aliag=example?.exs

Diate=08/08/2006 11:06:56

Whiv'ersion=1.0.0.0

WhProductversion=5.0.0.0

Wi Date=21/08/2006 16:07:14
WhiFileDescription=RTA Wirual Machine : viavhate
WiiCompanyMNames=LiveDevices Ltd.

WhALocation=chrtalkin,

B Sleeing Wil ame=yrtat/hate.dll

E-G Gear DSWersion=ns_VRTA_g_5_00 RevD
G- BrakeLight O5Status=ate

=@ Speedometer

FullHostName=ywokh0133. ecn.etasgroup.com
HostMame=yok50133
DiagPor=1244

Application Varsion
Diate=08/08/2006 11:06:56
The application has 21 dewvices.

Spoadomaeiar

Device type is 'Actuatar'.

Yergion is 1.0.0.

The device has 2 action and 2 events.

WhACopyright=Copyright @ LiveDevices Ltd 2005-2006.

Summary | bl anitor |

Throktle=10%, Brake=0%, Gear=1, Steering=2Z - = Speed=14 Revs=7000 Direction=239 degrees

4

vrtaMonitor can connect to multiple PCs (Hosts), and multiple VECUs

within each host.

You can interact with vrtaMonitor in a number or ways including:
» The application’s main menu
e Context menus (right-click on an element in the tree view)
e Shortcut keys (e.g. Ctrl+L to load an ECU)
» Double-clicking on an element in the tree view
» Pressing Enter on an element in the tree view

For example, you can connect to a different PC by right-clicking the Hosts
element and selecting Add Host... from the context menu. You can do the
same thing through the application’s File menu.

74 vrtaMonitor RTA-OSEK for PC User Guide

6.1 Actions

You can send an action (53) to a virtual device in the following ways.

* Double-click on an action in the tree view. If the action does not
require any data then the action is sent immediately (e.g.
ApplicationManager / Pause). If the action requires input data (e.g
ICU / Raise) then vrtaMonitor asks you to enter it the first time
round, then re-sends the same value on subsequent double-clicks.

(If you want to change the data that gets sent, select the Params...
option from the context or main Device menu or press Ctrl+Alt+S).

e Press Ctrl+S when an action is selected. This is the same as a double-
click above.

* Right-click the action and select Send from the context menu.
» Select the main menu item Device / Current Action / Send.

* Go to the Detail tab on the right-hand side. You can enter data
(where needed) and send it by pressing the Send Action button.

&) vrtaMonitor localhost:example2.exe -0 =|

File Host Application Dewvice Script Help
2 Hosts = || —hction ICU:Raise

EE localhost Send Action |
- [Add)

L] .
Action parameters

Param 1
kin=1 b ax=32

----- & Clear <7
----- & Mazk <7
----- & Unmask <7
----- & GetPending
----- £ GellFL

----- & SetPL <™

----- & Pendng=0b0 T -
4| | » Summaryl bomitgr Detail

|Thru:utt|e=1lil°.-"o, Brake=0%, Gear=1, Skeering=2 -> Speed=14 Revs=7000 Direction=24 2

RTA-OSEK for PC User Guide vrtaMonitor 75

6.2 Events

6.2.1 Query

You can query the state of any event (%) in a virtual device in the following
ways.

* Double-click on an event in the tree view. If the event does not require
any data then the current value of the event is read immediately (e.g.
ICU / Pending). If the event requires input data (e.g DeviceManager
/Devicelnfo) then vrtaMonitor asks you to enter it the first time
round, then re-sends the same value on subsequent double-clicks.

(If you want to change the data that gets sent, select the Params...
option from the context or main Device menu or press Ctrl+Alt+R).

e Press Ctrl+R when an event is selected. This is the same as a double-
click above.

* Right-click the action and select Read from the context menu.
* Select the main menu item Device / Current Event / Read.

e Go to the Detail tab on the right-hand side. You can enter data
(where needed) and query the event by pressing the Read button.

&) vrtaMonitor localhost:example2.exe -0 =|

File Host Application Dewvice Script Help

..... & add) ;I —Event DeviceManagerDevicelnfo———
E|i exampled exe : Running { ;
=G Devicehd anager
----- & EventRegister <7 B! TR
----- & HookEverts <7 Param 1 |Status LI
----- S Listal
----- & GetDevicedctions ;I
----- & GetDeviceEvents
----- & GetDevicelnfo <7
----- ; Devicelist = Devi Event Values
----- & Devicetction: <7 Yalue 1 |Type=Loager ;I j
----- & DeviceEvents <7 version=1.0.0 LI
----- & Devicelrfo = Type hd
- IcU hd i
< | 3 Summary | Monitor D&tal |

|Thru:utt|e=1lil°.-"o, Brake=0%, Gear=1, Steering=2 -> Speed=14 Revs=7000 Direction=11 2

It is also possible to ask vrtaMonitor to query all of the events of a device
automatically every second or so and update the values displayed in the tree
and detail views.

You do this by selecting Auto Refresh (Ctrl+A) for the device®.

2 A second Ctrl+A will turn auto-refresh off again.

76 vrtaMonitor RTA-OSEK for PC User Guide

6.2.2 Monitor

You can alternatively specify that you want to monitor an event rather than

just querying it.

In this case, the VECU notifies vrtaMonitor whenever a monitored event is
. All notifications are displayed in the monitor tab:

‘raised*°

‘!_'J yvrtaMonitor localhost:example?.exe

File Host

|

[=]--Fa Steering

[+ Gear
53 Brakelight
[=-fa Speedometer

=53 Direction

=R Clock

Application Dewvice Scripk
- Revs :I

----- & value <7

----- & Marimum <73

----- -§ v alue = 7000

----- A Magimurn = 42345

Help

[T Show times

=10l i

Stop |

----- & angle <7
----- & Angle =2

----- & value <7

----- & Masimum <73
----- & Value =14

----- & Magimurm =100

----- & value <7

----- & Maimum <73
----- & Value = 237

----- & Mairmum = 359

----- & Interval <7
..... & Scale <7

Direction Value: 292
DirectionValue: 293
DirectionValue: 294
DirectionValue: 295
DirectionValue: 296
speedometervalue: 15
Fews Value: 7500
DirectionValue: 297
speedometervalue: 14
Fews Value: 7000
DirectionValue: 298
DirectionValue: 299
Directionvalue: 300
Direction.value: 301
Direction Value: 302
Directionvalue: 303
Direction value: 304
Direction value: 305

=

-

S ummary banitar Igetail I

|Thru:utt|e=1lil°f.:., Brake=0%, Gear=1, Steering=2 - Speed=14 Revs=7000 Direction==

You can set up a monitor for an event using the normal application menu or
context menu mechanisms, but the simplest way is just to drag the event from

the tree view onto one of the right-hand side tab pages.

You can also drag a complete device across: this causes all of its events to be
monitored.

To stop monitoring an event, just drag it (or its device) to the Stop button.

Pressing the button on its own cancels all event monitors.

RTA-OSEK for PC User Guide

% Events are typically raised when some value in the virtual device changes.

vrtaMonitor

77

78

6.2.3 Scripting using vrtaMonitor

The vrtaMonitor command-line options can be used to support a limited
form of scripting capability for VECUs. (See section 15.3 for a complete list of
command line options.)

The basic scripting operations include:
* Loading a VECU
» Attaching to an existing VECU
» Sending an action to a device
e Monitoring an event
e Pausing for a set amount of time
» Waiting for a termination condition

Scripting options can be entered directly on the vrtaMonitor command-
line, but you will probably find it easier to use a command-file using the form
vrtaMonitor @commands.txt.

A command file is a simple text file with one option per line. A line is treated
as a comment if it starts with a semi-colon, forward-slash, space or tab
character. Command-files can be nested up to 5 times.

The command-line options are documented in detail in chapter 15, but a few
useful examples are presented here. They assume that you have built
Tutorial2.exe and that you run ‘vrtaMonitor @commands.txt’ from the
directory c:\Play\Tutorial2\MinGW\app.

Enter the text below into commands . txt.

-k
-log=1log.txt
-tl
Tutorial2.exe

The —k option tells vrtaMonitor to stop further processing of the script
options if one of the following events occurs.

Event

Failure to connect to vrtaServer.

Cannot attach to an alias specified via ~alias.
Cannot auto-load a specified Virtual ECU.
Closed as a result of a -t timeout.

Failed to load VECU.

Closed as a result of —£.

Failed to send an action or receive an event.

The —log option causes logging information to be written to the file log.txt.

The —t1 option tells vrtaMonitor to run for 1 second (after processing its
command-line options) before quitting.

The Tutorial2.exe parameter tells vrtaMonitor to load and run the
VECU Tutorial2.exe (without showing its embedded GUI).

vrtaMonitor RTA-OSEK for PC User Guide

By contrast, if you use the option —d before naming the VECU then the VECU
will load (and its devices become accessible), but the application thread will
not be started.

Similarly if you use the —g option then the VECU will show its embedded GUI:
-k
-log=1log.txt
-tl

-d

-g

You can attach the monitor to a VECU that is already loaded by specifying its
alias:

-k

-log=log.txt
-alias=Tutorial2.exe

You can send an action to a device. The commands below will attach to an
existing VECU and then terminate it.

-k

-log=1log.txt

-alias=Tutorial2.exe
-send=ApplicationManager.Terminate

You can also monitor events. The example below runs Tutorial2.exe,
monitors event PollCompare.Match for 5000ms then terminates. The file
log. txt contains the results from the monitor window.
-k

-log=log.txt

-t10

Tutorial2.exe

-mon=PollCompare.Match

-wait=5000
-send=ApplicationManager.Terminate
-quit

6.2.4 Plug-ins

vrtaMonitor supports much more comprehensive scripting features by
using plug-in scripting DLLs. These are intended to allow you to write scripts
in high-level languages such a Java and Ruby. The RTA-OSEK for PC installer
does not currently provide any scripting DLLs. They may become available at a
later date as a purchased add-on.

RTA-OSEK for PC User Guide vrtaMonitor 79

7

Migration Guide

7.1

Assume that you have developed an application using RTA-OSEK for PC and
now need to migrate the application to your real hardware.

We will assume that you have obtained a version of RTA-OSEK that will run
on your target hardware. You also need a compatible compiler and some way
to load the compiled code onto your hardware.

This chapter covers the migration issues that you should expect to face.

OIL file

7.1.1

Your VECU application is described by a combination of the C source code,
build scripts and the RTA-OSEK project file. The project file contains the
project information encoded in OSEK’s OIL syntax and is called something like
myproject.oil.

If you are migrating to a non RTA-OSEK system, then you will have to refer to
its documentation to discover how to encode the extra information that you
might need.

Migrating to an RTA-OSEK based implementation is relatively easy. The
elements that you might have to modify in your OIL file are described next™.

Target and variant

7.1.2

Although you can modify a target variant within the RTA-OSEK GUI, you
cannot change the target type itself.

The target and variant are specified in the OIL file in lines like this:

//RTAOILCFG OS_TARGET "VirtualOsek";
//RTAOILCFG TYPE = "MinGW";

To change to a different target modify the target to something like this:,
\ //RTAOILCFG OS_TARGET "PIC18/IAR 16 task"; |

You can delete the variant line (//RTAOILCFG TYPE) because the variant
will be set to the target’s default variant when you next load the OIL file. You
can use the GUI if you need to select a non-default variant.

Interrupts

RTA-OSEK for PC simulates an interrupt controller with 32 interrupt sources,
each with one of 32 priorities and attached to a vector number 1 to 32. It
allows you to decide in software how to map your (virtual) hardware to an
interrupt source.

The interrupt controller in your target hardware will have similar capabilities,
but will probably have different vectors and available priorities.

31 At the time of writing, there is no automatic way to switch to different targets within the RTA-OSEK GUI, so some editing of the
OIL fileis unfortunately necessary. If thisworries you, contact our support department and we may be able to perform this work for
you.

80

Migration Guide RTA-OSEK for PC User Guide

Therefore you will need to assign new target-based vector numbers and
priorities for each ISR in your application®.

This has to be done by editing the ISR definitions in your OIL file, The priority
goes in the ISR's //RTAOILCFG PRIORITY line, and the vector goes in the
//RTAOILCFG ADDRESS line.

ISR isrl
CATEGORY = 2;
//RTAOILCFG PRIORITY = 22;
//RTAOILCFG ADDRESS = 0x11;
//RTAOILCFG OS_EXECUTION BUDGET OS_UNDEFINED;
//RTAOILCFG OS_BEHAVIOUR OS_SIMPLE;
//RTAOILCFG OS_USES FP FALSE;
//RTROILCFG OS STACK {OS UNDEFINED };

}i
As an option, you can simply delete the PRIORITY and ADDRESS lines for each

ISR. When you next load the OIL file into the RTA-OSEK GUI they will appear
as ‘'undefined’ and you can set the priority and vector in the normal way.

7.1.3 Number of tasks

RTA-OSEK for PC ECUs can use up to 1024 tasks (1025 if you count the idle
task). However there are very few ports of RTA-OSEK that support this many
tasks because the run-time overhead is just too great. Most RTA-OSEK ports
support 16 or 32 tasks. Although this seems to be a small, you will find that
this is more than you need in most applications — particularly if you make use
of features such as RTA-OSEK processes that allow you to pack multiple
executable-code elements into tasks and ISRs.

If the RTA-OSEK port can handle fewer tasks than your VECU currently uses,
you will have to do some re-engineering of your application.

7.2 Hardware drivers

In the VECU, most if not all of your hardware is simulated via virtual devices.
These obviously need to be replaced in your real application.

By a fortuitous coincidence, the inability of C code to interact directly with the
C++ code has already meant that you will have written some C / C++
interface functions such as the one below™®.

int left pressed(void)

{
}

You simply provide different implementations for each of these interface
functions so that they map onto your target hardware.

return Left.Value() ;

32 Unless you were far-sighted enough to configure your VECU to use the same interrupt model asin your target ECU.
% Refer to the tutorial chapter for a fuller explanation.

RTA-OSEK for PC User Guide Migration Guide 81

int left pressed(void)

{
}

As long as you take care that each interface function has the same behavior
as in the virtual device, this part of the migration should be straightforward.

return inp(0x1001) ;

7.3 Initialization
You will need to add code to your application to initialize your ECU’s
hardware. In particular you may need to configure the interrupt controller and
any clock/compare devices. In effect you will need to provide a hardware
specific version of the InitializeDevices () function used in RTA-OSEK
for PC applications. You must refer to the user-guide for your hardware for
the best way to do this.
7.4 Interrupts
Depending on your interrupt controller and the ECU hardware, you may need
to add code to your ISRs that tells the hardware that the interrupt source has
been serviced.
You can use RTA macros to implement conditional compilation of ISR code so
that it can adapt to different platforms.
e.g.
ISR (isrAccel)
{
change speed(+1) ;
#ifdef OS_TARGET VRTA
// Nothing needed to clear interrupt for VRTA
#endif
#ifdef OS_TARGET HC12X
outp (0x12,99) ;
#endif
}
7.5 Building the application
If you want to build your application from within the RTA-OSEK GUI then you
will have to modify the custom-build script that you are using. You should
refer to the script that is supplied in the standard example program provided
with the RTA-OSEK version for your target hardware.
82 Migration Guide RTA-OSEK for PC User Guide

8

RTA-TRACE Reference

8.1

Running RTA-TRACE on an RTA-OSEK for PC application is generally much
easier than in other applications because the trace communications
mechanism is fast, efficient and ‘built-in".

For most applications you simply enable RTA-TRACE support in the RTA-OSEK
GUI, enable the trace comms link and call CheckTraceOutput () and
UploadTraceData () regularly.

e.qg.
0S_MAIN ()
{
StartOS (OSDEFAULTAPPMODE) ;
while (!vrtalIsAppFinished()) {
#ifdef OSTRACE ENABLED
CheckTraceOutput () ;
UploadTraceDatal() ;
#endif
vrtalsIdle(5) ;
}
}

How it works

8.1.1 The VECU

When you build a trace-enabled VECU, code is added to your application to
implement the trace communication APIs TraceCommInit (),
osTraceCommInitTarget (), UploadTraceData () and
osTraceCommDataReady () plus a virtual device named “RTA-Trace”.

Whenever a block of trace data is ready to be sent, UploadTraceData ()
passes its address and size to the RTA-Trace device. The device then simply
raises a ‘Trace’ event with this data attached.

The event can be ‘hooked’ by observers within the VECU or outside it (e.g.
vrtaMonitor), and each of them will get a notification when the event is
raised.

Thanks to the design of virtual devices, this mechanism is quick and efficient.
Once the call to RaiseEvent returns, the trace buffer can resume being
filled, so for most purposes emptying of the buffer appears to be
instantaneous and an RTA-OSEK for PC application can generate accurate
traces without being affected by ‘communication-interval gaps’ that affect
other ports.

RTA-OSEK for PC User Guide RTA-TRACE Reference

83

8.1.2 RTA-TRACE-Server

The RTA-TRACE communications driver rtcVRTAlink.d11 adds the ability
for RTA-TRACE-Server to communicate directly with a RTA-Trace device on a
VECU.

When you select a . rta file for a VECU from within the RTA-TRACE GUI, this
DLL checks to see if there is already a VECU running with the same path and

name as the .rta file, but with a .exe extension. If so, it will attach to the
VECU and hook the Trace event of its RTA-Trace device.

e.g. For c:\Play\Tutorial2\MinGW\app\Tutorial2.rta the VECU
must be C:\Play\Tutorial2\MinGW\app\Tutorial2.exe.

Important: The .rta file for a VECU must be in the same directory as the
executable.

If the VECU is not already running, the DLL will load and start it before
hooking the event.

8.2 Tuning process and thread priorities

The quality of the trace data that you see depends heavily on the interaction
between different processes in your PC. If there are other processor-intensive
applications running at the same time as tracing then you are likely to see
irreqularities in the trace that correspond to the moments where other
applications are running®.

You may find it useful to adjust the process or thread priority for the VECU for
best results. This can be done via the RTAOSEK-VRTA configuration dialog
that is accessible via RTA-TRACE-Server.

&r Configure RTADSEK-¥RTA M=l E3

Drefault |
Option |‘v’alue | ﬂ Apply |
L GUI i
|| ECUThreadPriority Marmal
|| ProceszsPriority High

The ECUThreadPriority value affects the priority of the application (OSEK)
thread within the VECU.

The ProcessPriority value affects the priority of the complete VECU.

The astute reader will guess that the GUI value determined whether a VECU is
started with its embedded GUI visible when started by rt cVRTAlink.d11l.

3 Note that this can include the RTA-TRACE GUI, which has to perform avery large amount of processing to keep up with the trace
data being fed to it. You may find it better to run the RTA-TRACE GUI on adifferent PC to the one that is hosting the VECU.

84 RTA-TRACE Reference RTA-OSEK for PC User Guide

8.3 Controlling the trace at run-time

The RTA-Trace virtual device has a few other tricks up its sleeve. In addition to
its Trace event, it has 4 actions that you can use to affect the run-time trace
behavior.

= State. This action can be sent the values Stop, FreeRunning, Bursting and
Triggering. As long as your application is calling CheckTraceOutput ()
regularly, this action will cause the appropriate target APl (StopTrace (),
StartFreeRunningTrace (), StartBurstingTrace () Or
StartTriggeringTrace ()) to get called.

» Repeat. This is sent On or Off to set the setTraceRepeat () value in
the VECU. Again, you must call CheckTraceOutput () regularly for
this to be acted upon.

» ECUThreadPriority. This action can be used to change the application
thread’s priority in the same way as described in section 8.2.

» ProcessPriority. This action can be used to change the VCU’s process
priority in the same way as described in section 8.2.

8.4 Rolling your own

If you want to write the RTA-TRACE communications link yourself instead of
using the inbuilt version, simply define the macro
0S_OVERRIDE vrtaTraceDevice When compiling osgen.cpp. This macro
will prevent the trace communication APIS TraceCommInit (),
osTraceCommInitTarget (), UploadTraceData () and
osTraceCommDataReady () and the RTA-Trace device from being added.

RTA-OSEK for PC User Guide RTA-TRACE Reference 85

9 Virtual Machine API Reference

This chapter gives a detailed description of the RTA-OSEK for PC Virtual
Machine API calls, listed in alphabetical order.

9.1 General notes

9.1.1 API Header Files

The file vrtaCore.h must be included to use the API calls listed in this
chapter. vrtaCore.h contains prototype declarations for the API calls
described here. It also file #includes the files vrtaTypes.h and vrtavM.h.

9.1.2 Linkage

Unless specified otherwise all Virtual Machine API calls use C linkage (i.e. no
C++ name mangling) and so may be called from C or C++ source.

9.1.3 The API Call Template

Each API call is described in this chapter using the following standard format:

The title gives the name of the API call.
A brief description of the API call is provided.

Function declaration:

Interface in C syntax.

Parameters:
Parameter Input/Output Description
Parameter Name Input/Output Description.
Description:

Explanation of the functionality of the API call.

Return values:

Value Description
Return values. | Description of return value.

Notes:

Usage restrictions and notes for the API call.

86 Virtual Machine API Reference RTA-OSEK for PC User Guide

See also:
List of related API calls.

RTA-OSEK for PC User Guide Virtual Machine API Reference 87

9.2

Common Data Types

88

9.2.1

These data types are all declared in vrtaTypes.h.

vrtaDevID

9.2.2

A scalar value that contains the ID of a virtual device. Devices 0, 1 and 2 are
the standard VM devices DeviceManager, ICU and ApplicationManager
respectively.

vrtaActionID

9.2.3

A scalar value that contains the ID of an action in a virtual device. Actions IDs
startat 1.

vrtaEventID

9.24

A scalar value that contains the ID of an event in a virtual device. Events IDs
start at 1.

vrtaActEvID

9.2.5

A scalar value that contains the ID of an action or event in a virtual Device.

vrtalSRID

9.2.6

A scalar value that contains the number of an ISR. ISRs range from 1 to 32,
but a vrtaISRID can sometimes be set to zero to mean ‘no ISR’.

vrtalntPriority

9.2.7

A scalar value that contains an interrupt priority. Priorities from zero (no ISR)
to 32.

vrtaErrType

This scalar value gets used as a status return type by many of the API
functions. It can take one of the values:

e RTVECUErr_NONE : No error / success

e RTVECUErr_Dev : Device fault. Typically invalid device ID

e RTVECUErr_ID - ID fault. Typically invalid action or event ID
e RTVECUErr_VAL : Value fault. Typically value is out of range.

Virtual Machine API Reference RTA-OSEK for PC User Guide

e RTVECUErr_Conn : Connection fault. Occurs with remote
monitor applications if the link to the VECU
fails.

9.2.8 vrtamillisecond

A scalar representing an interval in milliseconds.

9.2.9 vrtaTimestamp

A scalar representing the current ECU time in milliseconds. This is normally the
number of milliseconds since (just before) 0S MAIN () was called®.

9.2.10 vrtaBoolean

The scalar type vrtaBoolean is used to represent boolean values. In this
document a vrtaBoolean type is taken to be “true” when it is non-zero
and “false” when it is zero.

9.2.11 vrtaByte

Represents a single byte of data passed into or out of a device. Normally part
of an array of bytes.

9.2.12 vrtaDatalen

A scalar that represents the size (in bytes) of some data being passed into or
out of a device. The maximum value that this can take is given by the value of
the macro vrtaDataLenMax. (Currently Oxffff.)

9.2.13 vrtaEmbed

vrtaEmbed is a ‘C’ union containing the following fields:

e int iVal

e unsigned uVal

» double dval

e vrtaByte bVal[16]

vrtaEmbed is used to support data passing operations in and out of virtual
devices via vrtaAction and vrtaEvent (described in a moment). Both of
these data structures embed an instance of vrtaEmbed within themselves.

Whenever the amount of data passed in or out of an action or event will fit
inside an instance of vrtaEmbed, then the data must be passed in it.

% If atimestamp is taken before OS_ MAIN (), then the time recorded is the number of milliseconds since the VM was loaded.
This allows events to be timed where a VECU is started in dave mode.

RTA-OSEK for PC User Guide Virtual Machine API Reference 89

In all common situations the data passed easily fits within the vrtaEmbed
instance, so low-overhead code such as this is common:

‘thisEvent.devEmbeddedData.uVal = 32; ‘

It is only where larger amounts of data need to be passed that we need to
worry about allocating data buffers and data ownership issues.

9.2.14 vrtaAction

The vrtaAction structure is used to pass data value(s) to a specific action in
a virtual device. The fields in vrtaAction are:

type and name description

vrtaDevID devID The ID of the device containing the
action.

vrtaActionID devAction The ID of the action.

vrtaDataLen devActionLen The number of bytes of data. This can be
zero.

If its value is from 1 to 16 inclusive, then
the data is present in the
devEmbeddedData union.

If it is more than 16 then devEventData
contains the address of the data (see note
below).

const void * devActionData If devEventLen is from zero to 16
inclusive then devEventData must
either be NULL or the address of
devEmbeddedData.

If there are more than 16 bytes of data
then the storage for the input data must
be provided by the creator of the
vrtaAction and devActionData
must point to this storage.

Where vrtaSendAction () is called to
send data to an action, any data
referenced by devActionData must not
change during the call.

vrtaEmbed devEmbeddedData The union that contains the data where it
is no larger than 16 bytes.
vrtaTimestamp devTimeStamp | This field is updated by the VM just before
passing the action to the device.

920 Virtual Machine API Reference RTA-OSEK for PC User Guide

9.2.15 vrtaEvent

The vrtaEvent structure is used to pass state information about a specific
event in a virtual device. The fields in vrtaEvent are:

type and name Description

vrtaDevID devID The ID of the device containing the event.

vrtaEventID devEvent The ID of the event.

vrtaEventID devEventLen The number of bytes of data. This can be
zero.

If its value is from 1 to 16 inclusive, then
the data is present in the
devEmbeddedData union.

If it is more than 16 then devEventData
contains the address of the data (see note
below).

const void * devEventData If devEventLen is from zero to 16

inclusive then devEventData must
either be NULL or the address of
devEmbeddedData.

If there are more than 16 bytes of data
then the storage for the input data must
be provided by the creator of the
vrtaEvent and devEventData must
point to this storage. See the note below
on data ownership.

vrtaEmbed devEmbeddedData The union that contains the data where it

is no larger than 16 bytes.

vrtaTimestamp devTimeStamp | This field is updated by the VM to show

one of:

e The time that a query was made
into vrtaGetState ().

e The time that the data was passed
1o vrtaRaiseEvent ().

Ownership of devEventData:

RTA-OSEK for PC User Guide

Where the current value of an event is being queried, data can be passed
into the event via vrtaGetState (). The caller of vrtaGetState ()
ensures that any data referenced by devEventData does not change
during the call.

Where the current value of an event is being queried via
vrtaGetState (), the data that is passed out of the event via
devEventData may not change from the time that the call returns up
to the next time that vrtaGetState ()is called from the same thread.
This can clearly be very complicated to achieve. However this is almost
never necessary in real applications. Most return data fits within

Virtual Machine API Reference

91

devEmbeddedData, and in most other cases the data does not change
anyway™®.

= Where an event is being raised via vrtaRaiseEvent (), the device may
supply data to its listeners. Listeners must take a copy of any data that

they need, so the caller of vrtaRaiseEvent () only has to ensure that
the data does not change during the call.

9.2.16 vrtaTextPtr

A pointer to a simple ASCIIZ string.

e.qg.
|vrtaTextPtr tp = “Hello World”;

9.2.17 vrtaStringlistPtr

A pointer to an ASCIIZ string that comprises zero or more \n separated list
items.

e.g.

‘vrtaStringlistPtr lp = “One\nTwo\nThree” ; ‘

9.2.18 vrtaOptStringlistPtr

A pointer to an ASCIIZ string that comprises zero or more \n separated option
items each with the form <name>=<value>.

e.g.

vrtaOptStringlistPtr op = “Name=Bill\nAge=51\nWife=
Melinda”;

% For example the DeviceEvents event in the DeviceManager often returns string data that is larger than 16 bytes. The strings that it

returns are all alocated during initialization and do not change during the application, so no specia protection is necessary.

92 Virtual Machine API Reference RTA-OSEK for PC User Guide

9.3 Data format Strings

9.3.1 Overview

Virtual device actions and events commonly have some data associated with
them.

For example the ICU’s Raise action has to be passed an integer in the range 1
to 32. The ApplicationManager’s State event supplies a value that represents
the application thread state (Loaded|Running|Paused|Terminating|Resetting).

Within the VECU, all data is handled in native machine format, i.e. an ‘int’ for
an integer value. It is your responsibility in VECU code to send data of the
correct type between actions and events. As long as you trust your code to
pass the right type of data, you can choose to omit range checks within your
devices®’.

While this is a reasonable assumption in the C and C++ code that gets
compiled into the VECU, it clearly does not hold where external programs
such as vrtaMonitor access the data. For this reason a device must supply a
description of the data that is used by its actions and events. This information
is used by remote programs to format the data sent to a device and interpret
the data it sends back. The VM performs size and range checking on data
from remote programs so that it does not have to be done by each device
itself.

Example format strings are:

String Description

%d 32-bit signed integer

%d:;1;32 Integer that can take values 1 through 32.

%b 32-bit integer, normally represented in binary by a

monitor program.
Loaded|Running|Paused|Ter | 32-bit value with values zero through 4 that is

minating|Resetting normally represented by a monitor program as one
of the | separated strings
%d,%d, %d A structure comprising 3 32-bit signed integers.

37 By all means add range checking code if you wish. Our design aim is to allow (but not force) devices to have a very small run-time
overhead.

RTA-OSEK for PC User Guide Virtual Machine API Reference 93

9.3.2 Definition

A data format string consists of one or more data-item descriptors. If there are
multiple data-item descriptors then they are separated by *,’s. The data-item
descriptors are as follows (text inside “ [1" is optional):

Data-item descriptor Description
$d[:<cons>] The data-item is a signed number. By default this is

stored in 32 bits (a C int). The range is determined
by the data-item size unless there is a constraint.

%ul:<cons>] The data-item is an unsigned number. By default this
is stored in 32 bits (a C unsigned). The range is
determined by the data-item size unless there is a
constraint.

$f [:<cons>] The data-item is floating-point number. By default
this is stored in 64 bits (a C double). The range is
determined by the data-item size unless there is a
constraint.

$x[:<cons>] The data-item is an unsigned number that should
represented in hexidecimal. By default this is stored in
32 bits (@ C unsigned). The range is determined by
the data-item size unless there is a constraint.
$b[:<cons>] The data-item is an unsigned number that should
represented in binary. By default this is stored in 32
bits (a C unsigned). The range is determined by the
data-item size unless there is a constraint.
<a>||..[:<cons>] The data-item is an unsigned number that should
represented as a series of enumeration values.
Enumeration value <a> corresponds to the number O,
enumeration value to the number 1, and so on.
By default this is stored in 32 bits (a C unsigned).

$sl:<size>] The data-item is an ASCII string — which may or may
not have a trailing ‘\0’. If no <size> value is given
then the size of the string is inferred from the length
of the action or event data. If a <size> value is given
then it specifies the size of the string (including a
trailing "\ 0" if there is one).

$al:<size>] The data-item is an array of bytes. If no <size> value
is given then the size of the array is inferred from the
length of the action or event data. If a <size> value
is given then it specifies the size of the array.

A data-item descriptor may optionally include a constraint <cons>. A
constraint has the form: [<bits>[!<width>]] [;<min>;<max>]. Where:

<bits> is the number of bits used to store a numeric value. This
can be 8, 16, 32 or 64.

94 Virtual Machine API Reference RTA-OSEK for PC User Guide

<width> is the number of bytes between the start of the data-
item and the start of the next data-item.
<min> and <max> are the minimum and maximum values that may be
stored in a numeric data-item.
For example:
\\%d\\
There is a single signed number that will be stored in 32 bits (a C int).
“$u:;1;10"
There is an unsigned number in the range 1 to 10 inclusive that will be
stored in 32 bits (@ C unsigned).
“$x:16,%b:8"
There is an unsigned number that will be stored in 16 bits (@ C
unsigned short) and should be displayed in hexidecimal. This is
immediately followed by an unsigned number that will be stored in 8 bits
(@ Cunsigned char) and should be displayed in binary.
“%$s:10,%u:8!4,%u:64;1;100"
There is a 10 character string. This is followed by an unsigned number
stored in 8 bits. There are then 3 bytes of padding; since the next data-
item is stored 4 bytes after the start of the 8 bit value. This padding is

followed by an unsigned number in the range 1 to 100 inclusive stored in
64 bits

RTA-OSEK for PC User Guide Virtual Machine API Reference

95

9.4 API Functions

9.4.1 InitializeDevices()

Device initialization hook function.

Function declaration:

void InitializeDevices (void)

Parameters:

Parameter | Input/Output | Description
<nomne>

Description:

You must provide the InitializeDevices () hook function in your
application code. It is called by the application thread immediately before it
calls 0S MAIN(). InitializeDevices () is normally used to execute
code that carries out initialization of virtual devices. By the time that
InitializeDevices () is called, each virtual device will have been sent a
Reset action to inform it that the application thread is about to start.

Return values:

Value Description
<none>
Notes:
This function has C++ linkage and so must be implemented in a C++ source
module, typically devices. cpp.
See also:

OS_MAIN(), vrtaStart ()

9.4.2 OS_MAIN()

The entry-point for the application thread.

Function declaration:
OS_MAIN ()

Parameters:

Parameter | Input/Output | Description
<none>

96 Virtual Machine API Reference RTA-OSEK for PC User Guide

Description:

The 0s_MAIN () function is provided by the Virtual ECU application code and
is the entry-point for the application thread.

Typically an application will make some initialization calls and then start the
OS kernel via Startos (). On the return from Startos () the code that
executes is deemed to be the ‘idle task’. That is, it is the code that runs when
no task or ISR is active.

Normally an OSEK application does not ‘return’ from 0S_MAIN () because
this has no meaning in a typical embedded system. Sometimes it might call
ShutdownOS (), which has implementation-dependent behavior.

For RTA-OSEK for PC, the application can return from 0sS _MAIN() or call
ShutdownOS () to cause the application to finish. This might be because the
ECU simulation is complete for example.

If the Virtual ECU has been loaded in autostart mode (the default) then the
complete Virtual Machine will terminate automatically.

If, however, the VECU was been loaded in slave mode then the Virtual
Machine will wait for a Terminate action to be received by the Application
Manager. This allows the state of the VECU's devices to be queried after the
application thread has terminated.

Return values:

RTA-OSEK for PC User Guide

Value Description
<nomne>
Notes:
0S_MAIN () normally has the structure shown below in an RTA-OSEK for PC
application. The call to vrtaIsAppFinished () should be made so that
external requests to terminate the program get recognized promptly. If you
don’t quit 0S_MAIN () when such a request occurs then the VM will forcibly
terminate the application thread after a few seconds.
0S_MAIN ()
{
initialize something() ;
StartOS (OSDEFAULTAPPMODE) ;
while (!vrtalIsAppFinished()) {
vrtalsIdle(5) ;
}
ShutdownOS (E_OK) ;
}
See also:

InitializeDevices (), vrtaStart(),vrtalsAppFinished(),
vrtalsIdle()

Virtual Machine API Reference

97

9.4.3 vrtaEnterUninterruptibleSection()

Enter a critical section that cannot be interrupted.

Function declaration:

void vrtaEnterUninterruptibleSection (void)

Parameters:

Parameter | Input/Output | Description
<none>

Description:

This function enters a critical section. Only one thread at a time may be in the
critical section. Calling vrtaEnterUninterruptibleSection () will
block the calling thread if another thread is already in the critical section.

If the application thread calls vrtaEnterUninterruptibleSection ()
then it cannot be interrupted until it leaves the critical section.

Important: if the application thread needs to call any Windows API function
or non-reentrant C/C++ runtime library function then it must call
vrtaEnterUninterruptibleSection () before making the call and
vrtaleaveUninterruptibleSection () afterwards. Windows API
functions and non-reentrant C/C++ runtime library functions cannot cope
with the stack manipulation that occurs when an RTA-OSEK for PC interrupt
executes.

Return values:

Value Description
<none>

Notes:

See also:

vrtaLeaveUninterruptibleSection ()

9.4.4 vrtaEventRegister()

Register an event handler.

Function declaration:

vrtaEventListener vrtaEventRegister (
vrtaEventCallback eCallback, const void *tag)

98 Virtual Machine API Reference RTA-OSEK for PC User Guide

Parameters:

Parameter | Input/Output | Description

eCallback | Input A pointer to an event handling function.

A caller provided value that will be passed as an
argument to eCallback.

tag Input

Description:

This API call registers an event hook callback routine with the VM. The
vrtaEventListener handle is needed when calling vrtaHookEvent ()
so that it can identify eCallback as the function to call when the specified
event is raised.

eCallback is of type vrtaEventCallback which is defined as follows:

typedef vrtaErrType (*vrtaEventCallback) (
const void *instance, const vrtaEvent *event) ;

When eCallback is called its instance argument will be set to the tag
argument passed to vrtaEventRegister () and its event argument will
contain the event raised®. ecallback should always return
RTVECUErr NONE.

The content of the vrtaEvent structure pointed to by event is only valid
for the duration of the call to eCcallback. If you need to use this data after
eCallback has returned then you must take a copy of the data.

Return values:

Value Description
<a handle> A handle for the event handler.
Notes:
The event hook callback function gets called during the execution of
vrtaRaiseEvent (). Your function must be thread-safe because it is quite
normal for devices to raise events from threads that are independent of the
application thread. Any event that gets provoked from an external monitor
application will be in a different thread.
See also:

vrtaEventUnregister (), vrtaHookEvent (), vrtaRaiseEvent ()

% See the description of vrtaGetState () for moreinformation about the vrtaEvent type.

RTA-OSEK for PC User Guide Virtual Machine API Reference 99

9.4.5 vrtaEventUnregister()

Unregister an event handler.

Function declaration:

vrtaErrType vrtaEventUnregister (
vrtaEventListener listener)

Parameters:

Parameter | Input/Output | Description
An event-handler handle returned by

vrtaEventRegister ().

listener | Input

Description:

This APl call unregisters an event handler previously registered with
vrtaEventRegister (). Any events that have been hooked by the event

handler are unhooked.

Return values:

Value Description
RTVECUErr NONE | The API call was successful.
RTVECUErr_ VAL | The listener argument is invalid.

Notes:
This API cannot be called from within an event handler.

See also:
vrtaEventRegister (), vrtaHookEvent (), vrtaRaiseEvent ()

9.4.6 vrtaGetState()

Query the current state (value) of an event.

Function declaration:
vrtaErrType vrtaGetState (vrtaDevID id, vrtaEvent *ev)

Parameters:
Parameter | Input/Output | Description
id Input The ID of the virtual device to be queried.
o Input/Output A pointer to the structure that specifies the event
and its data.

100 Virtual Machine API Reference RTA-OSEK for PC User Guide

Description:

This APl is used to obtain the current value of an event supported by a virtual
device. Virtual devices raise events at appropriate times and these can be
multicast to interested receivers. However, sometimes it is useful to be able to
discover the “current value” of an event. This makes most sense for events
that contain data. For example, one may wish to discover the current interrupt
priority (IPL) level of the Virtual Machine's interrupt control unit rather than
waiting for an event to be raised when the IPL changes. Events which do not
contain data but simply indicate that something has happened can still be
queried, but it is not really useful so to do.

When calling vrtaGetState (), you must set the correct device and event
IDs in ev. If the event needs to be passed some data as part of the query (e.g.
the name of the device for the DeviceManager’s DeviceAction event), then the
data must be set up before the call. If no data is needed, set the
devEventLen field to zero.

On successful return from vrtaGetState (), the data in ev now references
the current value of the event.

Return values:

Value Description
RTVECUErr NONE | The API call was successful.

RTVECUErr Dev | The specified device ID is invalid.
RTVECUErr ID The specified event ID is invalid.
RTVECUErr VAL | The data provided in the event is invalid (out of range?).

Notes:

During the call of vrtaGetState() the VM passes the vrtaEvent
structure to the device. The device determines the event's value (possibly
using the input data) and either copies the event data into the
devEmbeddedData field or places the data in storage that it has allocated
and sets the devEventData field to point to this storage. The queried device
is responsible for managing any storage that it allocates. Refer to section
9.2.15 for details.

See also:

vrtaRegisterVirtualDevice (), vrtaRaiseEvent (),
vrtaEventRegister (), vrtaEventUnregister (),
vrtaHookEvent ()

RTA-OSEK for PC User Guide Virtual Machine API Reference 101

9.4.7 vrtaHookEvent()

Hook or unhook an event so that an event handler is or is not called when the
event is raised.

Function declaration:

vrtaErrType vrtaHookEvent (vrtaEventListener listener,
vrtaDevID dev, vrtaEventID ev, vrtaBoolean capture)

Parameters:

Parameter | Input/Output | Description

. An event-handler ~ handle returned by
listener | Input .
vrtaEventRegister ().

dev Input The ID of the device.

ev Input The ID of the event.

capture Input True to hook an event, false to unhook an event.
Description:

If capture is true then this call 'hooks’ the event so that the event handler
associated with 1istener is called when the event gets raised.

If capture is false then this call unhooks one or more events previously
hooked with this APl call. The behavior of the call when capture is false
depends on the values of dev and ev as follows:

dev | ev Result

0 0 All event hooks are removed from listener.
Non- 0 All event hooks for events owned by the specified device are
zero removed from 1listener.
Non- | Non- | The event hook for the specified event is removed from
zero zero | listener.

Return values:

Notes:

102

Value

Description

RTVECUErr NONE | The API call was successful.

RTVECUErr Dev | The specified device ID is invalid.

RTVECUErr ID The specified event ID is invalid.

RTVECUErr VAL | The listener argument is invalid or called from inside an

event handler.

This APl may not be called from inside an event handler.

Virtual Machine API Reference

RTA-OSEK for PC User Guide

See also:

vrtaEventRegister (), vrtaEventUnregister (),
vrtaRaiseEvent ()

9.4.8 vrtalnitialize()

Initialize the Virtual Machine.

Function declaration:

void vrtalnitialize (int argc,
char* argv[], const vrtaVectorTable* vecTable)

Parameters:
Parameter | Input/Output | Description
arac Inout The number of command line arguments on the
J P Virtual ECU’s command line.
aray Inout The array of command line arguments from the
J P Virtual ECU’s command line.
vecTable | Input A pointer to the interrupt vector table.
Description:

This API call is used to initialize the Virtual Machine — it must be called after
vrtaLoadVvM () and before vrtaStart ().

For an RTA-OSEK VECU, this APl is called automatically for you.
The argc and argv arguments should be taken directly from the argc and
argv arguments of the Virtual ECU’s main () entry-point.

vectTable points to a vrtaVectorTable structure containing the
interrupt vector table. vrtavectorTable is defined as follows:

#define RTVECU NUM VECTORS (32)
typedef struct

unsigned numVectors;

vrtaIntVector vectors[RTVECU NUM VECTORS] ;
} vrtaVectorTable;

The numVectors field must be 32. This is checked by the Virtual Machine
during vrtaInitialize () and a fatal error generated if the value is not
32. vectors[] is an array of 32 interrupt vectors. The Virtual Machine’s
interrupt control unit (ICU) numbers interrupt vectors from 1 to 32 (0 is used
to mean no interrupt). ICU interrupt vector number 1 corresponds to
vectors [0], ICU interrupt vector number 2 corresponds to vectors[1],
and so on up to ICU interrupt vector number 32 which corresponds to
vectors[31].

RTA-OSEK for PC User Guide Virtual Machine API Reference 103

Each interrupt vector is defined as follows:

typedef struct
vrtalIntHandler handler;
vrtalntPriority priority;
vrtaAppTag tag;

} vrtalIntVector;

The handler field points to the interrupt handler to be run when the
corresponding interrupt arrives. priority is the priority of the
corresponding interrupt — this must be a number in the range 1 to 32 inclusive
(1 is the lowest priority and 32 is the highest priority). tag is application data
that that is passed to the interrupt handler when it is called.

An interrupt handler has the following definition:

typedef void (*vrtalIntHandler) (vrtaAppTag tag,
vrtalntPriority oldIPL) ;

When an interrupt handler is called its tag argument is set to the tag
argument in the corresponding interrupt vector and its o1dIPL argument is
set to the priority of the interrupted code — zero for code not running in an
interrupt handler or the priority of the interrupt for code running in an
interrupt handler.

A trivial example of starting a Virtual ECU might look like:

void IntHandler (vrtalAppTag tag,
vrtalntPriority oldIPL) {
/* Handle interrupt. */

}

vrtaVectorTable IntVectors = {
RTVECU NUM_ VECTORS,
{{IntHandler, 1, (vrtaTag) 1},
{IntHandler, 2, (vrtaTag) 2},
< ...snip... >
{IntHandler, 32, (vrtaTag) 32}}

}i

0S_MAIN() {
/* The application thread starts here. */
< ...snip... >

}

void main(int argc, char * argvl([]) {
vrtaLoadVM() ;
vrtalnitialize (argc, argv, &IntVectors);
vrtaStart () ;
/* Control returns here when the application
* thread terminates. */

}

Return values:

104

Value Description
<none>
Virtual Machine API Reference RTA-OSEK for PC User Guide

Notes:

Important: if a Virtual ECU is using OSEK this APl should not be called
explicitly as it is called by the main () entry-point in the support file
vrtaOSEKSupp. cpp that is #included via osgen. cpp.

See also:

vrtaLoadVM (), vrtaStart ()

9.4.9 vrtalnitializeOS()

Initialize the OS kernel within the Virtual Machine DLL.

Function declaration:

void vrtaInitializeOS(
vrtalLinkageTablePtr * osLinkageTablePtrPtr,
vrtalLinkageTablePtr * tracelinkageTablePtrPtr)

Parameters:

Not documented.

Description:

This API call is used from inside RTA-OSEK support files to initialize the OSEK
kernel within the Virtual Machine DLL. This API call is not for application
use.

Return values:

Not documented.
Notes:

See also:

9.4.10 vrtalsAppFinished()

Determine if the application thread has terminated or is about to terminate.

Function declaration:

vrtaBoolean vrtalsAppFinished (void)

Parameters:

Parameter | Input/Output | Description
<none>

RTA-OSEK for PC User Guide Virtual Machine API Reference 105

Description:

This API call returns true if the application thread has terminated or is about to
terminate, or false otherwise. This API call may be used by the application
thread to discover if it is about to be forcibly terminated — e.g. because
another thread has called vrtaTerminate () or a Terminate action has
been sent to the ApplicationManager Device. This APl may also be used in
RTA-OSEK for PC threads to discover if they should terminate themselves.

Return values:

Value Description

true The application thread has terminated or is about to
terminate.

false The application thread has not terminated and is not about
to terminate.

Notes:

See also:

vrtaSpawnThread ()

9.4.11 vrtalsAppThread()

Determine if the calling thread is the application thread.

Function declaration:

vrtaBoolean vrtalsAppThread (void)

Parameters:

Parameter | Input/Output | Description
<none>

Description:

This API call returns true if the calling thread is the application thread or false
if the calling thread is not the application thread.

Return values:

Value Description
true The calling thread is the application thread.
false The calling thread is not the application thread.

106 Virtual Machine API Reference RTA-OSEK for PC User Guide

Notes:

See also:

9.4.12 vrtalsldle()

Yield the processor whilst idle.

Function declaration:

void vrtaIsIdle (vrtamillisecond msecs)

Parameters:

Parameter | Input/Output | Description

msecs Input The number for milliseconds to yield for.

Description:

This API call tells the Virtual Machine that the calling thread will be idle for the
specified number of milliseconds. Ideally a thread that is idle should call this
API rather than busy-waiting. Doing so allows the VM to suspend the thread
so that Windows can use the processor to run another thread.

The application thread will still respond to interrupts and run the
corresponding ISRs while inside a call of vrtaIsIdle (). For example, if at
time t the application thread calls vrtaIsIdle (100) and at time t+10 an
interrupt arrives, the corresponding ISR will be run by the application thread
at, or shortly after, t+10.

Return values:

Value Description
<none>

Notes:

See also:

9.4.13 vrtaLeaveUninterruptibleSection()

Leave a critical section.

Function declaration:

void vrtalLeaveUninterruptibleSection (void)

Parameters:

Parameter | Input/Output | Description

<none>

RTA-OSEK for PC User Guide

Virtual Machine API Reference

107

Description:

This function leaves a critical section previously entered by calling
vrtaEnterUninterruptibleSection ().

Return values:

Value Description
<none>

Notes:

See also:

vrtaEnterUninterruptibleSection ()

9.4.14 vrtaLoadVM()

Load the Virtual Machine DLL.

Function declaration:

void vrtalLoadVM (void)

Parameters:

Parameter | Input/Output | Description
<none>

Description:

This API call loads the correct VM DLL and prepares its API for use.

Return values:

Value Description
<none>

Notes:

This APl must be called before any other Virtual Machine API is called.

The correct sequence of APl calls to start a Virtual ECU running is:
vrtalLoadVM (), vrtaInitialize () and vrtaStart ().

Important: if a Virtual ECU is using OSEK this API does not need to be called
explicitly as it is called by the main() entry-point in the support file
vrtaOSEKSupp . cpp that is #included by osgen. cpp

See also:

vrtalnitialize (), vrtaStart ()

108 Virtual Machine API Reference RTA-OSEK for PC User Guide

9.4.15 vrtaNoneUserThread()

Generate a fatal error when an RTA-OSEK API call is made by a thread other
than the application thread.

Function declaration:

void vrtaNoneUserThread (const char * funcName)

Parameters:

Not documented.

Description:

This API call is used from inside RTA-OSEK support files to generate a fatal
error when an RTA-OSEK APl call is made by a thread other than the
application thread. This API call is not for application use.

Return values:

Not documented.

Notes:

9.4.16 vrtaOSGetIPL()

Get the interrupt priority level within the VM.

Function declaration:

vrtalIntPriority vrtaOSGetIPL (void)

Parameters:

Not documented.

Description:

This API call is used from inside RTA-OSEK support files to get the interrupt
priority level within the RTA-OSEK for PC Virtual Machine. This API call is not
for application use.

Return values:

Not documented.

Notes:

RTA-OSEK for PC User Guide Virtual Machine API Reference 109

9.4.17 vrtaOSSetIPL()

Set the interrupt priority level within the VM.

Function declaration:
vrtalIntPriority vrtaOSSetIPL (vrtalIntPriority newIPL)

Parameters:

Not documented.

Description:

This API call is used from inside RTA-OSEK support files to set the interrupt
priority level within the RTA-OSEK for PC Virtual Machine. This API call is not

for application use.

Return values:

Not documented.

Notes:

9.4.18 vrtaRaiseEvent()

Raise an event.

Function declaration:

vrtaErrType vrtaRaiseEvent (vrtaDevID dev,
const vrtaEvent *ev)

Parameters:

Parameter | Input/Output | Description

dev Input The ID of the virtual device raising the event.
ev Inout A pointer to a structure that contains the event to
P be raised.
Description:

This APl is used by a virtual device to raise an event.

Return values:

Value Description

RTVECUErr NONE | The API call was successful.

RTVECUErr Dev | The specified device ID is invalid.

RTVECUErr ID The specified event ID is invalid.

RTVECUErr_ VAL | The data provided in the event is invalid.

110 Virtual Machine API Reference RTA-OSEK for PC User Guide

Notes:

The VM calls any event handlers that have hooked the event during
vrtaRaiseEvent () and passes them the vrtaEvent structure as an
argument.

See also:

vrtaRegisterVirtualDevice (), vrtaGetState (),
vrtaEventRegister (), vrtaEventUnregister (),
vrtaHookEvent ()

9.4.19 vrtaReadHPTime()

Read the PC’s high-performance timer.

Function declaration:

unsigned vrtaReadHPTime (unsigned desired ticks per s)

Parameters:
Parameter Input/Output | Description
desired ticks per s | Input The number of “ticks” required per
- — = second.

Description:

This API call returns the number of caller defined “ticks” that have elapsed
since the Virtual ECU started. The value is derived by reading the PC’s high-
performance timer; therefore the resolution of the value returned depends on
the details of the PC. In practice this appears to be a low multiple of the CPU
clock speed on a typical PC.

Return values:

Value Description

<number of ticks> | The number of “ticks” that have elapsed since the
Virtual ECU started. The number of “ticks” in a second is
set by the API call argument desired ticks per_s.

Notes:

See also:

9.4.20 vrtaRegisterVirtualDevice()

Register a virtual device.

RTA-OSEK for PC User Guide Virtual Machine API Reference 111

Function declaration:

vrtaDevID vrtaRegisterVirtualDevice (
const vrtaTextPtr name,
const vrtaOptStringlistPtr info,
const vrtaOptStringlistPtr events,
const vrtaOptStringlistPtr actions,
const vrtaActionCallback aCallback,
const vrtaStateCallback sCallback,
const void *tag)

Parameters:

Parameter | Input/Output | Description
name Input A unique name for the virtual device.

A ‘\n’ separated string containing information

inf . .
e Input about the virtual device.
A '\n’' separated string containing descriptions of
t , .
events Input the events supported by the virtual device.
sotions Input A “\n’ separated string containing descriptions of

the actions supported by the virtual device.

A pointer to an action callback function called to
handle actions sent to the virtual device.

A pointer to a state callback function called to
handle vrtaGetState () requests.

Application data passed to the acallback and
sCallback functions.

aCallback | Input

sCallback | Input

tag Input

Description:

This API call is used to register a virtual device.

name: the name argument specifies a unique name for the virtual device. If
the name is not unique the Virtual Machine will generate a fatal error.
info: the info argument describes the virtual device. This should be a string
of the form: “Type=<type>\nVersion=<versions>\n” where <type>
is the type of device e.g. “clock”, “actuator” or “CAN Channel”, and
<versions> is the version of the device. The Virtual Machine does not
prescribe the values of <type> and <versions as these are simply
information items that can be obtained by querying the Virtual Machine’s
device manager (e.g. with vrtaMonitor).
events: the events argument describes the events supported by the virtual
device. Each event supported is described by a string of one of the following
forms:

(@) “<name>"

(b) *<name>=<format>"

(C) “<name>=<format> (<formats) ”.
<name> is the name of the event and <formats> is a data format string as
defined in section 9.3. Where device supports multiple events then the event
descriptions are separated using ‘\n".

112 Virtual Machine API Reference RTA-OSEK for PC User Guide

The (a) form of event description describes an event that does not have any
associated data. This would be used for an event that simply happens at some
point in time. The (b) form describes an event that contains data as described
by <format>. The (c) form describes an event that contains data as described
by <formats> before the “()” and input data when queried by
vrtaGetState () as described by <format > inside the “ () ".

The first event in the list has event ID 1, the second has event ID 2, and so on.

actions: the actions argument describes the actions supported by device.
Each action supported is described by a string of one of the following forms:
(a) “<names>"
(b) “<name>=<format>"
<name> is the name of the action and <format> is a data format string as
defined in section 9.3. Where device supports multiple actions then the event
descriptions are separated using ‘\n".
The (a) form of action description describes an action that does not have any
associated data. The (b) form describes an action that contains data as
described by <format .
The first action in the list has action ID 1, the second has action ID 2, and so
on.
aCallback: the aCallback argument points to an action callback function
that is called to handle actions sent to the virtual device. The action callback
function has the type vrtaActionCallback with the following definition:

typedef vrtaErrType (*vrtaActionCallback) (
void *instance, const vrtaAction *action) ;

When the action callback function is called its instance argument is set the
value of the tag argument passed to vrtaRegisterVirtualDevice ()
and the action argument points to the vrtaAction structure containing
the action sent to the device (see vrtaSendAction () for a description of
the contents of the vrtaAction structure in section 9.2.14).

The action callback function should determine what action is to be carried out
by examining the devAction field of action. It should then extract any
data required from the devEmbeddedData or devActionData fields of
action (again see vrtaSendAction()).

The action callback function should return RTVECUErr NONE On Success,
RTVECUErr ID if the action ID in the devAction field of action is invalid,
or RTVECUErr VAL if the data in action is invalid.

The vrtaAction structure pointed to by action and any storage pointed
to by the devActionData field of action are only valid for the duration of
the action callback function. If the application wishes to use this data after the
action callback function has returned it must copy the data into its own
storage.

In addition to handling actions described in the actions argument passed to
vrtaRegisterVirtualDevice () a virtual device will also been sent a
special Reset command with action ID zero. In this case the action data will be
a copy of a vrtaDevReset Info structure defined as follows:

RTA-OSEK for PC User Guide Virtual Machine API Reference 113

114

enum vrtaResetTypes {
vrtaDevStart,
vrtaDevStop,

vrtaDevWriteToPersistentStorage,
vrtaDevReadFromPersistentStorage};

typedef struct
vrtaDatalLen * vPSLen;
vrtaByte ** vPSAddr;
vrtaByte vResetType;
} vrtaDevResetInfo;

The vResetType field describes the reason for the “reset” action as follows:

vResetType value

Reason for “reset” action

vrtaDevStart The application thread is about to
start running.
vrtaDevStop The Virtual Machine is about to

terminate.

vrtaDevWriteToPersistentStorage

The Virtual ECU is about to be reset.
The virtual device may wish to
arrange for data to be propagated
across the reset. If it does it should
set *vPSLen to the number of bytes
of data to propagate and
*vPSAddr to point to the data to
propagate.

vrtaDevReadFromPersistentStorage

The Virtual ECU has been reset. The
virtual device may have arranged to
propagate data from before the
reset. If it did then *vPSLen will
contain the number of bytes of data
propagated and *vPSAddr will
point to the data propagated. The
virtual device must copy the data
from *vPSAddr before the action
callback handler returns.

sCallback: the sCallback argument points to a state callback function
that is called when vrtaGetState () is called to query one of the events
supported by the virtual device. The state callback function has the type
vrtaStateCallback with the following definition:

typedef vrtaErrType (*vrtaStateCallback) (
void *instance, vrtaEvent *state);

When the state callback function is called its instance argument is set to
the value of the tag argument passed to
vrtaRegisterVirtualDevice () and the state argument points to the
vrtaEvent structure containing the event to be queried. There may be

Virtual Machine API Reference RTA-OSEK for PC User Guide

incoming data in the vrtaEvent structure. See section 9.2.15 for a
description of the contents of the vrtaEvent structure.

The state callback function should determine what event is to be queried by
examining the devEvent field of state. It should then extract any input
data required from the devEmbeddedData or devEventData fields of
state and store the result of the query in the devEmbeddedData or
devEventData fields.

The function should return RTIVECUErr NONE on success, RTVECUErr_ID if
the event ID in the devEvent field of state is invalid, or RTVECUErr VAL
if the data in state is invalid.

Return values:

Value Description
<device ID> The ID of the virtual device.
Notes:
The callback functions can be called from different threads, so they must be
thread-safe.
See also:

vrtaGetState (), vrtaRaiseEvent (), vrtaEventRegister (),
vrtaEventUnregister (), vrtaHookEvent (), vrtaSendAction ()

9.4.21 vrtaReset()

Reset the Virtual Machine.

Function declaration:

void vrtaReset (void)

Parameters:

Parameter | Input/Output | Description

<none>

Description:

RTA-OSEK for PC User Guide

This API call instructs the VM to reset. It does this by creating a new Windows
process and running a new copy of the VECU in it. Certain information such
as command line options and connections to external programs are
propagated to the new process. This creates the effect of an ECU being reset
and starting execution from its reset vector. Since connections to external
programs are propagated to the new process, programs communicating with
the VECU (such as vrtaServer or vrtaMonitor) continue to be able to
communicate with the VECU after reset and don’t notice the handover of
processes.

Virtual Machine API Reference

115

After vrtaReset () has been called the application thread is allowed
approximately 10 seconds to terminate cleanly (either by returning from
0S_MAIN() or calling vrtaTerminate ()). If the application thread does
not terminate within 10 seconds it is forcibly terminated.

Once the application thread has terminated the VM sends a Reset action to
each virtual device to inform it that the VECU is about to reset.

Next the VM saves certain state information (such as connections to external
programs) in a temporary file.

The call of vrtaStart () that started the application thread then returns.

Once this has happened the new Windows process starts running and the
main () entry-point of the VECU is called by the C/C++ start-up code. This
entry-point carries out the normal initialization sequence of «calling
vrtaLoadVM (), vrtalnitialize () and vrtaStart (). However, when
vrtalnitialize () is called the VM determines that it has been reset and
restores state information from the temporary file created by the original
Windows process.

Return values:

Value Description
<none>

Notes:

See also:

vrtaStart (), vrtaTerminate ()

9.4.22 vrtaSendAction()

Send an action to a virtual device.

Function declaration:

vrtaErrType vrtaSendAction (vrtaDevID id,
const vrtaAction *a)

Parameters:
Parameter | Input/Output | Description
. The ID of the virtual device to which the action
id Input
should be sent.
A pointer to a structure that contains the action to
a Input
be sent.
Description:

This API call causes the data

virtual device.

in the vrtaAction structure to be sent to the

116 Virtual Machine API Reference RTA-OSEK for PC User Guide

Return values:

Value Description
RTVECUErr NONE | The API call was successful.

RTVECUErr Dev | The specified device ID is invalid.
RTVECUErr ID The specified action ID is invalid.
RTVECUErr_ VAL | The data provided in the action is invalid.

Notes:

The action callback function of the target device is called by the same
Windows thread that calls vrtaSendaction ().

See also:

vrtaRegisterVirtualDevice ()

9.4.23 vrtaSpawnThread()

Create a new RTA-OSEK for PC thread.

Function declaration:

void vrtaSpawnThread (void (*func) (void))

Parameters:

Parameter | Input/Output | Description
func Input The entry function for the new thread.

Description:

This APl call creates a new RTA-OSEK for PC thread. This APl is a wrapper
around the Windows CreateThread () function that allows the VM to keep
track of the number of threads running in the VECU.

A thread created with vrtaSpawnThread () should terminate itself as soon
as it discovers that the VECU is about to terminate. This is normally done by
polling vrtaIsAppFinished () regularly. If a thread does not do this it will
continue running until forcibly terminated as the VECU process terminates.

Return values:

Value Description
<none>

Notes:

You will normally call this API during the initialization of your devices, before
0S_MAIN () starts.

If you call it from within the application thread after 0S_ MAIN () starts, you
must ensure that it cannot be interrupted.

RTA-OSEK for PC User Guide Virtual Machine API Reference 117

See also:

vrtalsAppFinished () ,vrtaEnterUninterruptibleSection(),
vrtaLeaveUninterruptibleSection ()

9.4.24 vrtaStart()

Start the application thread.

Function declaration:

void vrtaStart (void)

Parameters:

Parameter | Input/Output | Description
<nomne>

Description:

This API call requests the VM to start the application thread.

If the VECU has been loaded in autostart mode (default) then the application
thread is started as soon as vrtaStart () is called. If the VECU has been
loaded in slave mode then the application thread is not started until a Start
action is sent to the ApplicationManager device.

The VM sends a Reset action to each virtual device just before the application
thread starts to inform them that the application thread starting.

This is followed by a «call to the application-provided function
InitializeDevices () that should carry out any necessary virtual device
initialization. Finally the main Virtual ECU application entry-point function
0OS MAIN() is called.

vrtaStart () does not return until the VM terminates (e.g. because the
application thread or another thread calls vrtaTerminate () or a Terminate
action is sent to the ApplicationManager device).

Return values:

Value Description
<none>

Notes:

The correct sequence of APl calls to start a Virtual ECU running is:
vrtalLoadVM (), vrtaInitialize () and vrtaStart ().

Important: if a Virtual ECU is using OSEK this APl should not be called
explicitly as it is called by the main() entry-point in the support file
vrtaOSEKSupp . cpp that is #included by osgen. cpp.

118 Virtual Machine API Reference RTA-OSEK for PC User Guide

See also:

InitializeDevices (), OS _MAIN(), vrtaLoadVM(),
vrtalnitialize ()

9.4.25 vrtaTerminate()

Terminate the Virtual Machine.

Function declaration:

void vrtaTerminate (void)

Parameters:

Parameter | Input/Output | Description

<none>

Description:

This APl call instructs the VM to terminate. If this APl is called by the
application thread then it never returns. If this APl is called by any other
thread then it does return.

If vrtaTerminate () is called by a thread other than the application thread
then the application thread is allowed approximately 10 seconds to terminate
cleanly (either by returning from 0S_MAIN () or calling vrtaTerminate ()).
If the application thread does not terminate within 10 seconds it is forcibly

terminated.

Once the application thread has terminated the VM sends a Reset action to
each virtual device to inform it that the VECU is about to terminate.

Finally the call of vrtaStart () that started the application thread returns.

Return values:

Value

Description

<none>

Notes:

See also:

vrtaStart (), vrtaReset ()

RTA-OSEK for PC User Guide

Virtual Machine API Reference

119

10 Standard Device Reference

Most of the functionality of the Virtual Machine is accessed through the VM's
three standard devices which behave in just the same way as devices that you
create in your application code.

This chapter describes the purpose of these 3 devices and the actions and
events they support.

10.1 vrtaStdDevices.h

The header file vrtaStdDevices.h contains definitions of the device,
action and event IDs used by the internal devices. vrtaStdDevices.h is
automatically included if you include vrtaCore.h.

10.2 Action and Event Descriptions

Each action or event supported by an internal device is described by a
standard table, as below, followed by text to explain the purpose of the action

or event.
ID Data Format
YYYY 77727

The table contains the ID of the action or event (YYYY), and the format of the
action or event data (zzzZ).

For actions, zzzz will be a data format string describing the format of the
data in the action (e.g. “%s” for string data).

For events that do not require any input data to be supplied when they are
queried, zzzZ will be a data format string describing the format of the data
in the event (e.g. “%u” for a single unsigned numeric value).

For events that do require input data to be supplied when they are queried,
7727 will be a data format string followed by a second data format string
enclosed in “ () ”. The first data format string describes the format of the data
in the event. The data second data format string describes the format of the
input data required when the event is queried (e.g. “%s (%u) " for an event
that contains string data and requires a single unsigned numeric value as
input data when queried).

Refer to section 9.3 for a description of data format strings.

120 Standard Device Reference RTA-OSEK for PC User Guide

10.3 Device Manager

The Device Manager (DM) is the internal device that manages all devices. The

DM is identified as follows:

Device ID Constant

Name

DM_DEVICE_ID

DeviceManager

10.3.1 Action: EventRegister

Action ID Constant

Data Format

DM _ACTION_ID EventRegister

o
sS

This action is only available for use via the diagnostic interface and is only
used by external monitor programs.

This action registers a TCP/IP port wishing to hook events. The data is a string
containing a list of ‘\n' separated values. The first value is the IP address of
the listener - e.g. “192.168.0.100" or “localhost”. The second value is the
TCP port number in decimal - e.g. “2034".

This action causes the diagnostic interface to open a network connection to
the specified TCP/IP port and then associate a ‘listener” instance with it. Each
diagnostic connection can have at most one such listener.

The listener is removed if the connection breaks or if another EventRegister
action is received.

10.3.2 Action: HookEvents

Action ID Constant

Data Format

DM ACTION ID HookEvents

o
S

This action is only available for use via the diagnostic interface and is only
used by external monitor programs.

RTA-OSEK for PC User Guide

This action specifies which events to hook for the diagnostic interface
connection on which the action is received. The data is a ‘\n' separated list of
items of the form <devices=<eventls, <event2s, .., <eventN>. Where
<devices is a device ID in decimal and <eventis is an event ID in decimal.
Such an item means hook the events with IDs <event1s..<eventN> for the
device with ID <device>-e.g. “3=1,3,6\n5=2\n7=2,3".

The data forms the complete list of events to hook for the diagnostic
connection. Subsequent HookEvents actions replace the events hooked rather
than add to them. An empty list means that no events will be hooked.

Standard Device Reference

121

122

10.3.3 Action: ListAll

Action ID Constant

Data Format

DM_ACTION ID ListAll

<none>

This action causes the DM to raise a Devicelist event.

10.3.4 Action: GetDeviceActions

Action ID Constant

Data Format

DM _ACTION_ID GetDeviceActions

o
sS

This action causes the DM to raise a DeviceActions event for the device named

by the action data.

10.3.5 Action: GetDeviceEvents

Action ID Constant

Data Format

DM _ACTION_ID GetDeviceEvents

o
sS

This action causes the DM to raise a DeviceEvents event for the device named

by the action data.

10.3.6 Action: GetDevicelnfo

Action ID Constant

Data Format

DM ACTION ID GetDevicelInfo

o
S

This action causes the DM to raise a Devicelnfo event for the device named by

the action data.

10.3.7 Event: Devicelist

Event ID Constant

Data Format

DM _EVENT ID DeviceList

o
sS

The data is a ‘\n’ separated list of all of the devices registered with the Virtual

Machine.

10.3.8 Event: DeviceActions

Event ID Constant

Data Format

DM _EVENT ID DeviceActions

%$s (%s)

The data is a ‘\n' separated list of all of the actions supported by the named
device in the same form as used for specifying the list of actions supported by
a virtual device in the vrtaRegistervVirtualDevice () call. If the event is
raised in response to a GetDeviceActions action then the device is named by

Standard Device Reference

RTA-OSEK for PC User Guide

the action data. If the event is queried the device is named by the event input
data.

10.3.9 Event: DeviceEvents

Event ID Constant

Data Format

DM _EVENT ID DeviceEvents

%$s (%s)

The data is a ‘\n' separated list of all of the events supported by the named
device in the same form as used for specifying the list of events supported by
a virtual device in the vrtaRegisterVirtualDevice () call. If the event is
raised in response to a GetDeviceEvents action then the device is named by
the action data. If the event is queried the device is named by the event input

data.

10.3.10 Event: Devicelnfo

Event ID Constant

Data Format

DM EVENT ID Devicelnfo

%$s(%s)

The data is information about the named device in the same form as used for
specifying virtual device information in the
vrtaRegisterVirtualDevice () call. If the event is raised in response to
a GetDevicelnfo action then the device is named by the action data. If the
event is queried the device is named by the event input data.

RTA-OSEK for PC User Guide Standard Device Reference

123

10.4 Interrupt Control Unit

The Interrupt Control Unit (ICU) is the internal device that manages interrupts
within the Virtual Machine and arranges for interrupt handlers to be invoked
within the application thread.

The ICU implements a multilevel interrupt controller. There are 32 interrupts
numbered 1 to 32 inclusive. Interrupt number n corresponds to interrupt
vector number n. Each interrupt has a priority in the range 1 to 32 inclusive.
The priority of an interrupt is set in the corresponding interrupt vector table
entry. See the vrtaInitialize () call for a description of the interrupt
vector table.

The ICU maintains the current interrupt priority level (IPL). This is a number in
the range zero to 32 inclusive. If an interrupt handler is running then the
current IPL is equal to the priority of the corresponding interrupt. If non
interrupt code is running the current IPL is zero.

Each interrupt has a pending flag and may be masked (disabled) or unmasked
(enabled). An interrupt is made pending (i.e. its pending flag is set) by sending
a Raise action to the ICU. The ICU invokes the interrupt handler for the
highest priority pending and unmasked interrupt that has a priority higher
than the current IPL. If an interrupt is pending but is masked its handler will
not be invoked until the interrupt is unmasked. If an interrupt is pending but
the current IPL is higher or equal to the priority of the interrupt then its
handler will not be invoked until the IPL drops below the priority of the
interrupt.

An interrupt’'s pending flag is cleared just before its handler is invoked.
Therefore if the handler for an interrupt sends a Raise action to the ICU for
the same interrupt the interrupt will become pending again and a second
instance of the interrupt handler will run as soon as the first ends.

A higher priority interrupt handler can pre-empt a lower priority interrupt
handler.

If two interrupts of the same priority are pending then the one with the lower
interrupt vector number is handled first.

When the Virtual ECU starts all interrupts are masked (disabled) and the
current IPL is zero.

The ICU is identified as follows:

Device ID Constant Name
ICU DEVICE ID ICU

10.4.1 Action: Raise

Action ID Constant Data Format
ICU ACTION ID Raise $d:;1;32

This action makes the specified interrupt number pending (i.e. sets the
interrupt’s pending flag).

124 Standard Device Reference RTA-OSEK for PC User Guide

10.4.2 Action: Clear

Action ID Constant Data Format
ICU ACTION ID Clear $d:;1;32

This action clears the specified interrupt number’s pending flag. Note that it is
not necessary to send this action to the ICU in an interrupt handler to clear
the pending flag of the interrupt being handled since an interrupt’s pending
flag is cleared just before its handler is invoked.

10.4.3 Action: Mask

Action ID Constant

Data Format

ICU ACTION ID Mask

$d:;1;32

This action masks (disables) the specified interrupt number.

10.4.4 Action: Unmask

Action ID Constant

Data Format

ICU ACTION ID Unmask

$d:;1;32

This action unmasks (enables) the specified interrupt number.

10.4.5 Action: GetPending

Action ID Constant

Data Format

ICU ACTION ID GetPending

<none>

This action causes a Pending event to be raised.

10.4.6 Action: GetIPL

RTA-OSEK for PC User Guide

Action ID Constant

Data Format

ICU ACTION ID GetIPL

<none>

This action causes an IPL event to be raised.

10.4.7 Action: SetIPL

Action ID Constant

Data Format

ICU ACTION ID SetIPL

$d:;0;32

This action sets the IPL to the specified value.

Standard Device Reference

125

10.4.8 Event: Pending

Event ID Constant Data Format
ICU_EVENT_ ID Pending %b

This event contains a list of all of the currently pending interrupts. Bit n is set
in the event if interrupt number n is pending (where bit 1 is the least
significant bit).

The event is raised in response to a GetPending action or when the list of
pending interrupts changes.

10.4.9 Event: Start

Event ID Constant Data Format
ICU _EVENT ID Start %d

This event is raised just before an interrupt handler is invoked. The number of
the interrupt is specified in the event data.

10.4.10 Event: Stop

Event ID Constant Data Format
ICU EVENT ID Stop %d

This event is raised just after an interrupt handler has ended. The number of
the interrupt is specified in the event data.

10.4.11 Event: IPL

Event ID Constant Data Format
ICU EVENT ID IPL %d

This event contains the current IPL. The event is raised in response to a GetlPL
action or when the current IPL changes.

10.4.12 Event: EnabledVecs

Event ID Constant Data Format
ICU EVENT ID MASKS b

This event contains a list of all of the currently enabled (unmasked) interrupts.
Bit n is set in the event if interrupt number n is enabled (where bit 1 is the
least significant bit).

The event is raised when the list of enabled interrupts changes.

126 Standard Device Reference RTA-OSEK for PC User Guide

10.5 Application Manager

The Application Manager (AM) is the internal device that manages the Virtual
ECU application

The AM is identified as follows:

Device ID Constant Name
AM DEVICE_ ID ApplicationManager

10.5.1 Action: Start

Action ID Constant Data Format
AM_ACTION_ID Start <none>

This action starts the application thread running in a Virtual ECU that was
loaded in slave mode.

10.5.2 Action: Terminate

Action ID Constant Data Format
AM ACTION ID Terminate <nones>

This action tells the Virtual Machine to terminate. It has the same effect as the
vrtaTerminate () call.

10.5.3 Action: Pause

Action ID Constant Data Format
AM ACTION_ ID Pause <none>

This action tells the Virtual Machine to suspend execution of the application
thread.

10.5.4 Action: Restart

Action ID Constant Data Format
AM_ACTION_ID Restart <none>

This action tells the Virtual Machine to restart execution of the application
thread after it has previously been suspended.

RTA-OSEK for PC User Guide Standard Device Reference 127

10.5.5 Action: Reset

Action ID Constant

Data Format

AM_ACTION_ID Reset

<none>

This action tells the Virtual Machine to reset. It has the same effect as the

vrtaReset () call.

10.5.6 Action: GetIinfo

Action ID Constant

Data Format

AM ACTION ID GetInfo

<none>

This action causes an Info event to be raised.

10.5.7 Action: TestOption

Action ID Constant

Data Format

AM ACTION ID TestOption

o
sS

This action causes an Option event to be raised to signal if the named
command-line option exists. The option prefix (- or '/) is not specified.

10.5.8 Action: ReadOption

Action ID Constant

Data Format

AM ACTION ID ReadOption

o
S

This action causes an OptionText event to be raised containing the full text of

the command-line option that starts with the specified string.

10.5.9 Action: ReadParam

Action ID Constant

Data Format

AM ACTION ID ReadParam

o
su

This action causes a ParamText event to be raised containing the full text of
the specified command-line parameter. The first command line parameter (the
executable name) is number zero, the second parameter is number one, and
SO on.

10.5.10 Event: Started

128

Event ID Constant

Data Format

AM EVENT ID Started

<none>

This event is raised to indicate that the application thread has started.

Standard Device Reference

RTA-OSEK for PC User Guide

10.5.11 Event: Paused

Event ID Constant

Data Format

AM EVENT_ ID Paused

<none>

This event is raised to indicate that the application thread has been

suspended.

10.5.12 Event: Restarted

Event ID Constant

Data Format

AM EVENT ID Restarted

<none>

This event is raised to indicate that the application thread has been restarted.

10.5.13 Event: Reset

Event ID Constant

Data Format

AM_EVENT ID Reset

<none>

This event is raised to indicate that the Virtual ECU has been reset.

10.5.14 Event: Terminated

Event ID Constant

Data Format

AM _EVENT ID Terminated

<none>

This event is raised to indicate that the Virtual Machine is about to terminate.

10.5.15 Event: Info

Event ID Constant

Data Format

AM _EVENT ID Info

o
sS

This event contains version information about the Virtual ECU application and

the Virtual Machine.

10.5.16 Event: Option

Event ID Constant

Data Format

AM EVENT ID Option

)

$u(%s)

This event contains the number 1 if the named option is present on the
command line or zero if it is not. If the event is raised in response to a
TestOption action then the option is named in the action data. If the event is
queried then the option is named in the input data. The option prefix (=" or

‘") is not included in the name.

RTA-OSEK for PC User Guide

Standard Device Reference 129

10.5.17 Event: OptionText

Event ID Constant Data Format
AM EVENT ID OptionText $s(%s)

This event contains an empty string if a command line options starting with
the specified prefix does not exist. If a command line option starting with the
specified prefix does exist then the event contains the full text of the option. If
the event is raised in response to a ReadOption action then the prefix is the
action data. If the event is queried then the prefix is the input data.

10.5.18 Event: ParamText

Event ID Constant Data Format
AM EVENT ID ParamText s (%u)

This event contains the full text of the specified command-line parameter. The
first command line parameter (the executable name) is zero, the second
parameter is number one, and so on. If the specified command line parameter
does not exist the event contains the empty string. If the event is raised in
response to a ReadParam action then the parameter number is in the action
data. If the event is queried then the parameter number is in the input data.

10.5.19 Event: State

Event ID Constant Data Format

Loaded |
Running |

AM EVENT ID State Paused |

Terminating|

Resetting

This event contains the current state of the Virtual ECU.

130 Standard Device Reference RTA-OSEK for PC User Guide

1"

Sample Device Reference

11.1

RTA-OSEK for PC includes a collection of sample virtual devices that
implement commonly used devices such as clocks, counters, comparators,
actuators and sensors. These are contained in the files
vrtaSampleDevices.cpp and vrtaSampleDevices.h. All of the
sample virtual devices make use of (i.e. are derived from) the C++ virtual
device framework provided by the vrtaDevice base class (see the file
vrtaDevice.h).

Summary

The following sample devices are provided:

vrtaClock A clock source for counter
devices.

vrtaUpCounter A counter that counts upwards.

vrtaDownCounter A counter that counts
downwards.

vrtaSensor

A generic sensor.

vrtaSensorToggleSwitch A two position “toggle” switch.

vrtaSensorMultiwaySwitch A multi-position switch

vrtaActuator A generic actuator.
vrtahctuatorLight A light that can be on or off.
vrtaActuatorDimmableLight A light that can be set to
different levels of brightness.
vrtaActuatorMultiColorLig A light that can be set to
ht different colors.
vrtaCompare A comparator that can generate
an interrupt when other another
device reaches a specified value.
vrtalIO

An I/O space.

RTA-OSEK for PC User Guide Sample Device Reference

11.2 Compiling the Sample Devices

You must compile and link the file vrtaSampleDevices.cpp with your
application if you want to use any of the sample devices.

If you are creating an RTA-OSEK application, vrtaSampleDevices.cpp is
automatically #included within osgen.cpp unless you define the
preprocessor macro VRTA EXCLUDE SAMPLE DEVICES when compiling
osgen. cpp.

132 Sample Device Reference RTA-OSEK for PC User Guide

11.3 Device Descriptions

Each sample device is described in the same way. The description starts with
an introduction to the purpose and operation of the device. This is followed
by a description of the C++ methods exported by the device class and then
the actions and events supported by the device.

11.3.1 Methods

Each C++ method is described in a standard form as follows:

The title gives the name of the method.

A brief description of the method is provided.

Method declaration:

Interface in C++ syntax.

Parameters:
Parameter Input/Output Description
Parameter Name Input/Output Description.
Description:

Explanation of the functionality of the method.

Return values:

Value Description
Return values. | Description of return value.

11.3.2 Actions and Events

Each action or event supported by a sample device is described by a standard
table, as below, followed by text to explain the purpose of the action or

event.
ID Data Format
XXXX YYYY

The table contains the numeric ID of the action or event (XXxX), and the
format of the action or event data (YYYY).

RTA-OSEK for PC User Guide Sample Device Reference 133

11.4 vrtaClock

A vrtaClock device provides a time source for vrtaUpCounter and
vrtaDownCounter counter devices. A vrtaClock device uses a Windows
multi-media timer to provide a source of very-close-to 1 millisecond ticks.

A vrtaClock device ticks an attached counter every T milliseconds. T is
calculated by multiplying the vrtaClock device's clock tick interval by its
scaling factor. The scaling factor has a multiplier and a divisor. If the clock tick
interval (set in the constructor or with the SetInterval () method) is
interval, and the scaling factor (set with the SetScale () method) is
mult / div, then an attached counter would be ticked every (interval *
mult / div) milliseconds. By default the scale factoris 1/ 1.

Multiple counters may be attached to the same vrtaClock device.

Important: if using a vrtaClock device in a VECU, the VECU executable
will need to be linked with the Windows multi-media library. (This might be
done automatically depending on your compiler.)

11.4.1 Method: vrtaClock()

The constructor.

Method declaration:

vrtaClock (const vrtaTextPtr name, unsigned interval)

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
interval Input The number of milliseconds in
one clock tick.
Description:

This is the constructor used to create an instance of a vrtaClock device.

Return values:

Value Description
<none>

11.4.2 Method: Setinterval()

Set the tick interval.

134 Sample Device Reference RTA-OSEK for PC User Guide

Method declaration:

void SetInterval (unsigned interval)

Parameters:
Parameter Input/Output Description
interval Input The number of milliseconds in
one clock tick.
Description:

This method is used to change the number of milliseconds in one clock tick.

Return values:

Value Description

<none>

11.4.3 Method: SetScale()

Set the scaling factor.

Method declaration:

void SetScale (unsigned mult, unsigned div)

Parameters:
Parameter Input/Output Description
mult Input The multiplier for the scaling
factor.
div Input The divisor for the scaling factor.
Description:

This method sets the scaling factor for the clock.

Return values:

Value Description

<none>

11.4.4 Method: Start()

Start the clock ticking.

Method declaration:

void Start (void)

RTA-OSEK for PC User Guide

Sample Device Reference 135

Parameters:

Parameter Input/Output Description
<none>

Description:

This method starts the clock device ticking any attached counters.

Return values:

Value Description
<none>

11.4.5 Method: Stop()

Stop the clock ticking.

Method declaration:

void Stop (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method stops the clock device ticking any attached counters.

Return values:

Value Description
<none>

11.4.6 Action: Interval

Action ID | Data Format
1 $u

This action sets the number of milliseconds in a clock tick. The action data is
the number of milliseconds in a clock tick. This action is equivalent to the
SetInterval () method.

136 Sample Device Reference RTA-OSEK for PC User Guide

11.4.7 Action: Scale

Action ID | Data Format
2 %u, 5u

This action sets the device’s scaling factor. The first number in the action data
is the scaling factor multiplier and the second number is the divisor. This
action is equivalent to the SetScale () method.

11.4.8 Action: Start

Action ID | Data Format

3 <none>

This action starts the clock device ticking any attached counters. This action is
equivalent to the start () method.

11.4.9 Action: Stop

Action ID | Data Format

4 <nones>

This action stops the clock device ticking any attached counters. This action is
equivalent to the Stop () method.

11.4.10 Event: Interval

Event ID Data Format
1 $u

This event is raised when the clock device’s tick interval changes. The event
data is the new tick interval.

11.4.11 Event: Scale

Event ID Data Format
2 $u, su

This event is raised when the clock device's scaling factor changes. The event
data is the new scaling factor multiplier followed by the new divisor.

11.4.12 Event: Running

RTA-OSEK for PC User Guide

Event ID Data Format
3 $u:;0;1

This event is raised when the clock is started or stopped. The event data is 1 if
the clock is now running (i.e. has been started) or zero if the clock is not now
running (i.e. has been stopped).

Sample Device Reference

137

11.5 vrtaUpCounter

A vrtaUpCounter is a counter device that is driven by a vrtaClock
device. It has a minimum value, a maximum value and a current value. When
a vrtaUpCounter device is ticked by a vrtaClock device and its current
value is less than its maximum value then its current value is incremented.
When the vrtaUpCounter is ticked and its current value is equal to its
maximum value then its current value is set back to its minimum value. The
cyclic period of a vrtaUpCounter is thus (maximum — minimum) + 1.

By default the minimum value is zero, the maximum value is 4294967295,
and the current value starts at zero.

11.5.1 Method: vrtaUpCounter()

The constructor.

Method declaration:

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
clock Input The vrtaClock device that will
be used to drive the counter.
Description:

vrtaUpCounter (const vrtaTextPtr name, vrtaClock &clock)

This is the constructor used to create an instance of a vrtaUpCounter

device.

Return values:

138

Value

Description

<none>

Sample Device Reference

RTA-OSEK for PC User Guide

11.5.2 Method: Min()

Get the minimum value.

Method declaration:

unsigned Min (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the minimum value of the counter.

Return values:

Value Description
<a values> The minimum value of the counter.

11.5.3 Method: Max()

Get the maximum value.

Method declaration:

unsigned Max (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the maximum value of the counter.

Return values:

Value Description
<a values> The maximum value of the counter.

RTA-OSEK for PC User Guide Sample Device Reference 139

11.5.4 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the counter.

Return values:

Value Description
<a values> The current value of the counter.

11.5.5 Method: SetMin()

Set the minimum value.

Method declaration:

void SetMin (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new minimum value for the
counter.
Description:

This method is used to set the minimum value of the counter. If the current
value of the counter is smaller than the new minimum value then the current
value is set to the new minimum value.

Return values:

Value Description
<none>

140 Sample Device Reference RTA-OSEK for PC User Guide

11.5.6 Method: SetMax()

Set the maximum value.

Method declaration:

void SetMax (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new maximum value for the
counter.
Description:

This method is used to set the maximum value of the counter. If the current
value of the counter is greater than the new maximum value then the current
value is set to the minimum value.

Return values:

Value Description
<none>

11.5.7 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the counter.
Description:

This method is used to set the current value of the counter. If the new current
value of the counter is smaller than the minimum value or greater than the
maximum value then the current value is set to the minimum value.

Return values:

Value Description
<none>

RTA-OSEK for PC User Guide Sample Device Reference 141

11.5.8 Method: Start()

Start the counter counting.

Method declaration:

void Start (void)

Parameters:

Parameter

Input/Output

Description

<none>

Description:

This method is used to start the counter counting when ticked by the

attached vrtaCloc

Return values:

k device.

Value

Description

<none>

11.5.9 Method: Stop()

Stop the counter counting.

Method declaration:

void Stop (void)

Parameters:

Parameter

Input/Output

Description

<none>

Description:

This method is used to stop the counter counting when ticked by the attached

vrtaClock device.

Return values:

142

Value

Description

<none>

Sample Device Reference

RTA-OSEK for PC User Guide

11.5.10 Action: Minimum

Action ID | Data Format
1 $u

This action sets the minimum value of the counter. It is the equivalent of the
SetMin () method.

11.5.11 Action: Maximum

Action ID | Data Format
2 $u

This action sets the maximum value of the counter. It is the equivalent of the
SetMax () method.

11.5.12 Action: Set

Action ID | Data Format
3 $u

This action sets the current value of the counter. It is the equivalent of the
SetVval () method.

11.5.13 Action: Start

Action ID | Data Format
4 <none>

This method is used to start the counter counting when ticked by the
attached vrtaClock device. It is the equivalent of the Start () method.

11.5.14 Action: Stop

Action ID | Data Format
5 <none>

This method is used to stop the counter counting when ticked by the attached
vrtaClock device. It is the equivalent of the Stop () method.

11.5.15 Action: Report

Action ID | Data Format
6 <none>

This action causes a Set event to be raised.

RTA-OSEK for PC User Guide Sample Device Reference 143

11.5.16 Event: Set

Event ID Data Format
1 $u

This event contains the current value of the counter. It is raised in response to
a Report action.

144 Sample Device Reference RTA-OSEK for PC User Guide

11.6 vrtaDownCounter

A vrtaDownCounter is a counter device that is driven by a vrtaClock
device. It has a minimum value, a maximum value and a current value. When
a vrtaDownCounter device is ticked by a vrtaClock device and its
current value is greater than its minimum value then its current value is
decremented. When the vrtaDownCounter is ticked and its current value is
equal to its minimum value then its current value is set back to its maximum
value. The cyclic period of a vrtaDownCounter is thus (maximum -

minimum) + 1.

By default the minimum value is zero, the maximum value is 4294967295,
and the current value starts at zero.

11.6.1 Method: vrtaDownCounter()

The constructor.

Method declaration:

vrtaDownCounter (const vrtaTextPtr name,
vrtaClock &clock)

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
clock Input The vrtaClock device that will
be used to drive the counter.
Description:

This is the constructor used to create an instance of a vrtaDownCounter

device.

Return values:

Value

Description

<none>

RTA-OSEK for PC User Guide

Sample Device Reference

145

11.6.2 Method: Min()

Get the minimum value.

Method declaration:

unsigned Min (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the minimum value of the counter.

Return values:

Value Description
<a values> The minimum value of the counter.

11.6.3 Method: Max()

Get the maximum value.

Method declaration:

unsigned Max (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the maximum value of the counter.

Return values:

Value Description
<a values> The maximum value of the counter.

11.6.4 Method: Value()

Get the current value.

146 Sample Device Reference RTA-OSEK for PC User Guide

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the counter.

Return values:

Value Description
<a value> The current value of the counter.

11.6.5 Method: SetMin()

Set the minimum value.

Method declaration:

void SetMin (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new minimum value for the
counter.
Description:

This method is used to set the minimum value of the counter. If the current
value of the counter is smaller than the new minimum value then the current
value is set to the new minimum value.

Return values:

Value Description
<none>

RTA-OSEK for PC User Guide Sample Device Reference 147

11.6.6 Method: SetMax()

Set the maximum value.

Method declaration:

void SetMax (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new maximum value for the
counter.
Description:

This method is used to set the maximum value of the counter. If the current
value of the counter is greater than the new maximum value then the current
value is set to the minimum value.

Return values:

Value

Description

<none>

11.6.7 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the counter.
Description:

This method is used to set the current value of the counter. If the new current
value of the counter is smaller than the minimum value or greater than the
maximum value then the current value is set to the minimum value.

Return values:

Value

Description

<none>

148 Sample Device Reference

RTA-OSEK for PC User Guide

11.6.8 Method: Start()

Start the counter counting.

Method declaration:

void Start (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to start the counter counting when ticked by the
attached vrtaClock device.

Return values:

Value Description
<none>

11.6.9 Method: Stop()

Stop the counter counting.

Method declaration:

void Stop (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to stop the counter counting when ticked by the attached
vrtaClock device.

Return values:

Value Description
<none>

RTA-OSEK for PC User Guide Sample Device Reference 149

150

11.6.10 Action: Minimum

Action ID | Data Format
1 $u

This action sets the minimum value of the counter. It is the equivalent of the
SetMin () method.

11.6.11 Action: Maximum

Action ID | Data Format
2 $u

This action sets the maximum value of the counter. It is the equivalent of the
SetMax () method.

11.6.12 Action: Set

Action ID | Data Format
3 $u

This action sets the current value of the counter. It is the equivalent of the
SetVal () method.

11.6.13 Action: Start

Action ID | Data Format

4 <nones>

This method is used to start the counter counting when ticked by the
attached vrtaClock device. It is the equivalent of the Start () method.

11.6.14 Action: Stop

Action ID | Data Format

5 <nones>

This method is used to stop the counter counting when ticked by the attached
vrtaClock device. It is the equivalent of the Stop () method.

11.6.15 Action: Report

Action ID | Data Format

6 <nones>

This action causes a Set event to be raised.

Sample Device Reference

RTA-OSEK for PC User Guide

11.6.16 Event: Set

Event ID Data Format
1 $u

This event contains the current value of the counter. It is raised in response to
a Report action.

RTA-OSEK for PC User Guide Sample Device Reference 151

11.7 vrtaSensor

A vrtaSensor device models a sensor. That is, a device which takes input
from one source, stores that input and then allows the input to be read by an

application.

vrtaSensor represents a generic sensor; vrtaSensorToggleSwitch and
vrtaSensorMultiwaySwitch are derived from vrtaSensor and
represent more specialized sensors.

A sensor has a current value and a maximum value. The current value of the
sensor can be set to a value between zero and the maximum value inclusive.
Events are raised whenever the current value or maximum value changes.

When a sensor is created the current value is zero and the maximum value is

4294967295.

11.7.1 Method: vrtaSensor()

The constructor.

Method declaration:

vrtaSensor (const vrtaTextPtr name)

Parameters:

Parameter Input/Output Description

Name Input The name of the virtual device.
Description:

This is the constructor used to create an instance of a vrtaSensor device.

Return values:

Value

Description

<none>

11.7.2 Method: GetMax()

Get the maximum value.

Method declaration:

unsigned GetMax (void)

Parameters:

Parameter

Input/Output

Description

<none>

152 Sample Device Reference

RTA-OSEK for PC User Guide

Description:

This method is used to get the maximum value of the sensor.

Return values:

Value Description
<a value> The maximum value of the sensor.

11.7.3 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the sensor.

Return values:

Value Description
<a value> The current value of the sensor.

11.7.4 Method: SetMax()

Set the maximum value.

Method declaration:

void SetMax (unsigned v)

Parameters:
Parameter Input/Output Description
\Y Input The new maximum value for the
sensor.
Description:

This method is used to set the maximum value of the sensor. If the current
value of the sensor is greater than the new maximum value then the current
value is set to zero.

RTA-OSEK for PC User Guide Sample Device Reference 153

Return values:

Value Description
<nomne>

11.7.5 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the sensor.
Description:

This method is used to set the current value of the sensor. If the new current
value of the sensor is greater than the maximum value then the current value
is not set.

Return values:

Value Description
<none>

11.7.6 Action: Value

Action ID | Data Format
1 $u

This action sets the current value of the sensor. It is the equivalent of the
SetVal () method.

11.7.7 Action: Maximum

Action ID | Data Format
2 $u

This action sets the maximum value of the sensor. It is the equivalent of the
SetMax () method.

154 Sample Device Reference RTA-OSEK for PC User Guide

11.7.8 Event: Value

Event ID Data Format
1 $u

This event contains the current value of the sensor. It is raised whenever the
value of the sensor changes.

11.7.9 Event: Maximum

Event ID Data Format
2 $u

This event contains the maximum value of the sensor. It is raised whenever
the maximum value of the sensor changes.

RTA-OSEK for PC User Guide Sample Device Reference 155

11.8 vrtaSensorToggleSwitch

A vrtaSensorToggleSwitch is a special form of a sensor that has only
two possible values, zero and one, corresponding to “off” and “on”.

When a vrtaSensorToggleSwitch is created its current value is zero.

11.8.1 Method: vrtaSensorToggleSwitch()

The constructor.

Method declaration:

vrtaSensorToggleSwitch (const vrtaTextPtr name)

Parameters:

Parameter Input/Output Description

name Input The name of the virtual device.
Description:

This is the constructor wused to <create an instance of a
vrtaSensorToggleSwitch device.

Return values:

Value Description
<none>

11.8.2 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the sensor.

156 Sample Device Reference RTA-OSEK for PC User Guide

Return values:

Value Description
<a values> The current value of the sensor.

11.8.3 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the sensor.
Description:

This method is used to set the current value of the sensor. If the new current
value of the sensor is greater than 1 then the current value is not set.

Return values:

Value Description
<none>

11.8.4 Action: Position

Action ID | Data Format
1 $u:;0;1

This action sets the current value (position) of the sensor. It is the equivalent
of the setval () method.

11.8.5 Event: Position

Event ID Data Format
1 $u:;0;1

This event contains the current value (position) of the sensor. It is raised
whenever the value of the sensor changes.

RTA-OSEK for PC User Guide Sample Device Reference 157

11.9 vrtaSensorMultiwaySwitch

A vrtaSensorMultiwaySwitch is a special form of a sensor that
represents a switch with a number of possible positions. The number of
positions is set when the device is created (but can be changed later).

When a vrtaSensorMultiwaySwitch is created its current value is zero.

11.9.1 Method: vrtaSensorMultiwaySwitch()

The constructor.

Method declaration:

vrtaSensorMultiwaySwitch (const vrtaTextPtr name,
unsigned ways)

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
ways Input The number of positions the
switch may take minus 1.
Description:

This is the constructor wused to <create an instance of a
vrtaSensorMultiwaySwitch device. The sensor may have a value in the
range zero to ways inclusive.

Return values:

Value Description
<none>

11.9.2 Method: GetMax()

Get the maximum value.

Method declaration:

unsigned GetMax (void)

Parameters:

Parameter Input/Output Description
<none>

158 Sample Device Reference RTA-OSEK for PC User Guide

Description:

This method is used to get the maximum value of the sensor.

Return values:

Value Description
<a value> The maximum value of the sensor.

11.9.3 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the sensor.

Return values:

Value Description
<a value> The current value of the sensor.

11.9.4 Method: SetMax()

Set the maximum value.

Method declaration:

void SetMax (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new maximum value for the
sensor.
Description:

This method is used to set the maximum value of the sensor (i.e. to override
the value of the ways argument used in the constructor). If the current value
of the sensor is greater than the new maximum value then the current value is
set to zero.

RTA-OSEK for PC User Guide Sample Device Reference 159

Return values:

Value Description
<none>

11.9.5 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the sensor.
Description:

This method is used to set the current value of the sensor. If the new current
value of the sensor is greater than the maximum value then the current value
is not set.

Return values:

Value Description
<none>

11.9.6 Action: Value

Action ID | Data Format
1 $u

This action sets the current value of the sensor. It is the equivalent of the
SetVval () method.

11.9.7 Action: Maximum

Action ID | Data Format
2 $u

This action sets the maximum value of the sensor. It is the equivalent of the
SetMax () method.

160 Sample Device Reference RTA-OSEK for PC User Guide

11.9.8 Event: Value

Event ID Data Format
1 $u

This event contains the current value of the sensor. It is raised whenever the
value of the sensor changes.

11.9.9 Event: Maximum

Event ID Data Format
2 $u

This event contains the maximum value of the sensor. It is raised whenever
the maximum value of the sensor changes.

RTA-OSEK for PC User Guide Sample Device Reference 161

11.10 vrtaActuator

A vrtaActuator device models an actuator. That is, a device which has its
value set by an application and then signals that value to entities outside of
the ECU. vrtaActuator represents a generic actuator,;
vrtaActuatorLight, vrtaActuatorDimmableLight and
vrtaActuatorMultiColorLight are derived from vrtaActuator and
represent more specialized actuators.

An actuator has a current value and a maximum value. The current value of
the actuator can be set to a value between zero and the maximum value
inclusive. Events are raised whenever the current value or maximum value
changes.

When an actuator is created the current value is zero and the maximum value
is 4294967295.

11.10.1 Method: vrtaActuator()

The constructor.

Method declaration:

vrtaActuator (const vrtaTextPtr name)

Parameters:

Parameter Input/Output Description

name Input The name of the virtual device.
Description:

This is the constructor used to create an instance of a vrtaActuator device.

Return values:

Value Description
<none>

11.10.2 Method: GetMax()

Get the maximum value.

Method declaration:

unsigned GetMax (void)

162 Sample Device Reference RTA-OSEK for PC User Guide

Parameters:

Parameter

Input/Output

Description

<none>

Description:

This method is used to get the maximum value of the actuator.

Return values:

Value

Description

<a value>

The maximum value of the actuator.

11.10.3 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter

Input/Output

Description

<none>

Description:

This method is used to get the current value of the actuator.

Return values:

Value

Description

<a value>

The current value of the actuator.

11.10.4 Method: SetMax()

Set the maximum value.

Method declaration:

void SetMax (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new maximum value for the

actuator.

RTA-OSEK for PC User Guide

Sample Device Reference 163

Description:

This method is used to set the maximum value of the actuator. If the current
value of the actuator is greater than the new maximum value then the current
value is set to zero.

Return values:

Value Description

<none>

11.10.5 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the actuator.
Description:

This method is used to set the current value of the actuator. If the new
current value of the actuator is greater than the maximum value then the
current value is not set.

Return values:

Value Description

<none>

11.10.6 Action: Value

Action ID | Data Format

1 su

This action sets the current value of the actuator. It is the equivalent of the
SetVal () method.

11.10.7 Action: Maximum

Action ID | Data Format

2 su

This action sets the maximum value of the actuator. It is the equivalent of the
SetMax () method.

164 Sample Device Reference RTA-OSEK for PC User Guide

11.10.8 Event: Value

Event ID Data Format
1 $u

This event contains the current value of the actuator. It is raised whenever the
value of the actuator changes.

11.10.9 Event: Maximum

Event ID Data Format
2 $u

This event contains the maximum value of the actuator. It is raised whenever
the maximum value of the actuator changes.

RTA-OSEK for PC User Guide Sample Device Reference 165

11.11 vrtaActuatorLight

A vrtaActuatorLight is a special form of an actuator that represents a
light. A vrtaActuatorLight has two possible values zero and one,
representing “off” and “on”.

When a vrtaActuatorLight is created its current value is zero.

11.11.1 Method: vrtaActuatorLight()

The constructor.

Method declaration:

vrtaActuatorLight (const vrtaTextPtr name)

Parameters:

Parameter Input/Output Description

name Input The name of the virtual device.
Description:

This is the constructor used to create an instance of a vrtaActuatorLight
device.

Return values:

Value Description
<none>

11.11.2 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the actuator.

166 Sample Device Reference RTA-OSEK for PC User Guide

Return values:

Value Description
<a values> The current value of the actuator.

11.11.3 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the actuator.
Description:

This method is used to set the current value of the actuator. If the new
current value of the actuator is greater than 1 then the current value is not
set.

Return values:

Value Description
<none>

11.11.4 Action: Value

Action ID | Data Format

1 Fu
This action sets the current value of the actuator. It is the equivalent of the
SetVal () method.

11.11.5 Event: Value

Event ID Data Format

1 $u
This event contains the current value of the actuator. It is raised whenever the
value of the actuator changes.

RTA-OSEK for PC User Guide Sample Device Reference 167

11.12 vrtaActuatorDimmableLight

A vrtaActuatorDimmableLight is a special form of an actuator that
represents a light whose brightness can be set. The number of possible
brightness levels is set when the actuator is created (but can be changed

later).

When a vrtaActuatorDimmableLight is created its current value is zero.

11.12.1 Method: vrtaActuatorDimmableLight()

The constructor.

Method declaration:

vrtaActuatorDimmableLight (const vrtaTextPtr name,

unsigned levels)

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
levels Input The number of brightness levels
minus 1
Description:

This is the constructor wused to

Create an instance of a

vrtaActuatorDimmableLight device. The actuator may have a value in

the range zero to levels inclusive.

Return values:

Value Description

<none>

11.12.2 Method: GetMax()

Get the maximum value.

Method declaration:

unsigned GetMax (void)

Parameters:

Parameter Input/Output

Description

<none>

168 Sample Device Reference

RTA-OSEK for PC User Guide

Description:

This method is used to get the maximum value of the actuator.

Return values:

Value Description
<a value> The maximum value of the actuator.

11.12.3 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the actuator.

Return values:

Value Description
<a value> The current value of the actuator.

11.12.4 Method: SetMax()

Set the maximum value.

Method declaration:

void SetMax (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new maximum value for the
actuator.
Description:

This method is used to set the maximum value of the actuator (i.e. to override
the value of the levels argument used in the constructor). If the current
value of the actuator is greater than the new maximum value then the current
value is set to zero.

RTA-OSEK for PC User Guide Sample Device Reference 169

Return values:

Value

Description

<none>

11.12.5 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the actuator.
Description:

This method is used to set the current value of the actuator. If the new
current value of the actuator is greater than the maximum value then the
current value is not set.

Return values:

Value

Description

<none>

11.12.6 Action: Value

Action ID

Data Format

1

°
su

This action sets the current value of the actuator. It is the equivalent of the
SetVval () method.

11.12.7 Action: Maximum

Action ID

Data Format

2

°
su

This action sets the maximum value of the actuator. It is the equivalent of the
SetMax () method.

170 Sample Device Reference

RTA-OSEK for PC User Guide

11.12.8 Event: Value

Event ID Data Format
1 $u

This event contains the current value of the actuator. It is raised whenever the
value of the actuator changes.

11.12.9 Event: Maximum

Event ID Data Format
2 $u

This event contains the maximum value of the actuator. It is raised whenever
the maximum value of the actuator changes.

RTA-OSEK for PC User Guide Sample Device Reference 171

11.13 vrtaActuatorMultiColorLight

A vrtaActuatorMultiColorLight is a special form of an actuator that
represents a light whose color can be set. The number of possible colors is set
when the actuator is created (but can be changed later).

When a vrtaActuatorMultiColorLight is created its current value is
zero.

11.13.1 Method: vrtaActuatorMultiColorLight()

The constructor.

Method declaration:

vrtaActuatorMultiColorLight (const vrtaTextPtr name,
unsigned colors)

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
colors Input The number of colors minus 1
Description:

This is the constructor wused to «create an instance of a
vrtaActuatorMultiColorLight device. The actuator may have a value
in the range zero to colors inclusive.

Return values:

Value Description
<none>

11.13.2 Method: GetMax()

Get the maximum value.

Method declaration:

unsigned GetMax (void)

Parameters:

Parameter Input/Output Description
<none>

172 Sample Device Reference RTA-OSEK for PC User Guide

Description:

This method is used to get the maximum value of the actuator.

Return values:

Value Description
<a value> The maximum value of the actuator.

11.13.3 Method: Value()

Get the current value.

Method declaration:

unsigned Value (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current value of the actuator.

Return values:

Value Description
<a value> The current value of the actuator.

11.13.4 Method: SetMax()

Set the maximum value.

Method declaration:

void SetMax (unsigned v)

Parameters:
Parameter Input/Output Description
v Input The new maximum value for the
actuator.
Description:

This method is used to set the maximum value of the actuator (i.e. to override
the value of the colors argument used in the constructor). If the current
value of the actuator is greater than the new maximum value then the current
value is set to zero.

RTA-OSEK for PC User Guide Sample Device Reference 173

Return values:

Value

Description

<none>

11.13.5 Method: SetVal()

Set the current value.

Method declaration:

void SetVal (unsigned v)

Parameters:

Parameter Input/Output Description

v Input The new value for the actuator.
Description:

This method is used to set the current value of the actuator. If the new
current value of the actuator is greater than the maximum value then the
current value is not set.

Return values:

Value

Description

<none>

11.13.6 Action: Value

Action ID

Data Format

1

°
su

This action sets the current value of the actuator. It is the equivalent of the
SetVval () method.

11.13.7 Action: Maximum

Action ID

Data Format

2

°
su

This action sets the maximum value of the actuator. It is the equivalent of the
SetMax () method.

174 Sample Device Reference

RTA-OSEK for PC User Guide

11.13.8 Event: Value

Event ID Data Format
1 $u

This event contains the current value of the actuator. It is raised whenever the
value of the actuator changes.

11.13.9 Event: Maximum

Event ID Data Format
2 $u

This event contains the maximum value of the actuator. It is raised whenever
the maximum value of the actuator changes.

RTA-OSEK for PC User Guide Sample Device Reference 175

11.14 vrtaCompare

A vrtaCompare device represents a comparator that may be attached to any

of the following devices
vrtaUpCounter
vrtaDownCounter
vrtaSensor

vrtaSensorToggleSwitch

vrtaSensorMultiwaySwitch

vrtaActuator

vrtaActuatorLight

vrtaActuatorDimmableLight

vrtaActuatorMultiColorLight

It will generate an interrupt when the current value of the attached device
reaches a specified match value.

Multiple vrtaCompare devices may be attached to the same device.

11.14.1 Method: vrtaCompare()

The constructor.

Method declaration:

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
source Input The device to which to attach.
match Input The match value.
vector Input The interrupt vector number to
be generated or zero for no
interrupt.
Description:

176

vrtaCompare (const vrtaTextPtr name,
vrtaComparable &source,

unsigned match,

unsigned vector)

This is the constructor used to create an instance of a vrtaCompare device.
The vrtaCompare device will raise interrupt number vector when the
current value of the device specified by source reaches the value match.
(Note that vrtaCompare will not enable the interrupt vector. This must be
done by sending an Unmask action to the ICU device.)

Sample Device Reference

RTA-OSEK for PC User Guide

Return values:

Value Description
<nomne>

11.14.2 Method: GetMatch()

Get the match value.

Method declaration:
unsigned GetMatch (void)

Parameters:

Parameter Input/Output Description
<none>

Description:

This method is used to get the current match value of the device.

Return values:

Value Description
<a value> The current match value.

11.14.3 Method: SetMatch()

Set the match value.

Method declaration:

void SetMatch (unsigned val)

Parameters:

Parameter Input/Output Description

val Input The new match value.
Description:

This method is used to set the match value.

Return values:

Value Description
<none>

RTA-OSEK for PC User Guide Sample Device Reference 177

11.14.4 Method: IncrementMatch()

Increment the match value.

Method declaration:

unsigned IncrementMatch (unsigned wval)

Parameters:
Parameter Input/Output Description
val Input The amount by which the match
value should be incremented.
Description:

This method is used to increment the match value.

Return values:

Value Description
<a value> The new match value.

11.14.5 Method: SetVector()

Set the interrupt vector number.

Method declaration:

void SetVector (unsigned val)

Parameters:

Parameter Input/Output Description

val Input The new interrupt vector number.
Description:

This method is used to set the interrupt vector number. If the interrupt vector
number is set to zero then no interrupted will be generated.

Return values:

Value Description
<none>

178 Sample Device Reference RTA-OSEK for PC User Guide

11.14.6 Action: Match

Action ID

Data Format

1

[
su

This action sets the match value. It is the equivalent of the SetMatch()

method.

11.14.7 Action: Vector

Action ID

Data Format

2

[
su

This action sets the interrupt vector number. It is the equivalent of the
SetVector () method.

11.14.8 Event: Match

Event ID

Data Format

1

°
su

This event contains the match value. It is raised whenever the current value of
the attached device reaches the match value of the vrtaCompare device.

RTA-OSEK for PC User Guide

Sample Device Reference 179

11.15 vrtalO

A vrtalIO device represents an array of 32-bit I/O cells that may be written

and read by an application.

11.15.1 Method: vrtalO()

The constructor.

Method declaration:
vrtalO(const vrtaTextPtr name, unsigned elements)

Parameters:
Parameter Input/Output Description
name Input The name of the virtual device.
elements Input The number of I/O cells to be
used.
Description:

This is the constructor used to create an instance of a vrtaIO device. The
vrtalIO device will contain an array of elements I/O cells. The I/O cells will

have offsets in the range zero to elements — 1 inclusive.

Return values:

Value Description

<none>

11.15.2 Method: SetValue()

Set the value of an I/O cell.

Method declaration:

void SetValue (unsigned offset, unsigned value)

Parameters:
Parameter Input/Output Description
offset Input The offset of the I/O cell to be
set.
value Input The value to write.
Description:

This method is used to set the value of an I/O cell.

RTA-OSEK for PC User Guide

180 Sample Device Reference

Return values:

Value Description

<none>

11.15.3 Method: SetValues()

Set the value of multiple I/O cells.

Method declaration:
void SetValues (unsigned offset,
const unsigned *values,
unsigned number)

Parameters:
Parameter Input/Output Description
offset Input The offset of the first I/O cell to
be set.
values Input An array of values to write.
number Input The number of values to write.
Description:

This method is used to set the values of multiple I/O cells. The number values
from values [] are written to the array of I/O cells starting at of fset.

Return values:

Value Description

<none>

11.15.4 Method: GetValue()

Get the value of an I/0O cell.

Method declaration:

unsigned GetValue (unsigned offset) const
Parameters:
Parameter Input/Output Description
offset Input The offset of the I/O cell get.
Description:

This method is used to get the value of an I/O cell.

RTA-OSEK for PC User Guide Sample Device Reference 181

Return values:

Value Description
<a values> The value of the specified I/0 cell.

11.15.5 Method: GetValues()

Get the values of all I/0 cells.

Method declaration:

const unsigned *GetValues (void) const

Parameters:

Parameter Input/Output Description
<nomne>

Description:

This method is used to get the values of all I/O cells.

Return values:

Value Description
<a pointers A pointer to the array of I/O cells.

11.15.6 Action: Value

Action ID | Data Format
1 %u, 5u

This action sets the value of an I/O cell. The first number in the action data is
the 1/0 cell offset and the second number is the value to write. This action is
equivalent to the setvalue () method.

11.15.7 Action: Values

Action ID | Data Format
2 %a

This action sets the values of multiple I/O cells. The action data is an array of
values to write to the I/O cell array starting at offset zero. This action is
equivalent to the Setvalues () method with the of fset argument set to
zero.

182 Sample Device Reference RTA-OSEK for PC User Guide

11.15.8 Action: GetValue

Action ID

Data Format

3

o
su

This action causes a Value event to be raised for the offset specified in the
action data.

11.15.9 Action: GetValues

Action ID

Data Format

4

<none>

This action causes a Values event to be raised.

11.15.10 Event: Value

Event ID Data Format
1 $u, su(%u)

This event contains the value of an I/O cell. The first number is the offset of
the I/0 cell. The second number is the value of the I/O cell. If the event is
raised in response to a Value action then the I/O cell offset is in the action
data. If the event is queried then the I/O cell offset is in the input data.

11.15.11 Event: Values

Event ID

Data Format

2

[
sa

This event contains the values of all of the I/0 cells.

RTA-OSEK for PC User Guide

Sample Device Reference 183

12 Virtual ECU Server Library Reference

The Virtual ECU Server library is a library that provides a C programming API
for communication with vrtaServer. This chapter describes, in alphabetic
order, the API calls provided by this library.

12.1 Using the Source Code

The server library is provided in source code form in the file
interfaces\VESLib\veslib.cpp. You will also need the support file
interfaces\vrtaClientSupport.cpp. Any source files that wish to
use the library should include the ves1ib.h header file.

12.2 Using the DLL

The server library is also provided as a DLL called veslib.dl1l. An import
library is not provided for the DLL since the format of import libraries varies
between compilers. If you wish to use veslib.d11 you will need to use the
Windows LoadLibrary () function to load the DLL and then the Windows
GetProcAddress () function to get pointers to the library API functions
within the DLL. Prototypes for all of the library API functions can be found in
veslib.h.

Any source files that wish to use the library should include the veslib.h
header file.

veslib.d1l1l was produced by compiling veslib.cpp with the C++ macro
VESLIB_ DLL defined.

12.3 Virtual ECU Aliases

vrtaServer makes use of aliases to keep track of Virtual ECUs. When a
Virtual ECU registers with vrtaServer it is assigned an alias. The default
alias for a VECU is simply the name of its executable. However if multiple
VECUs with the same executable name register with vrtaServer then a
numeric suffix is applied to the executable name to generate a unique alias.
For example, if a VECU with the executable vecu.exe is loaded then it will
be assigned the alias “vecu.exe”. If a second instance of vecu.exe is
loaded then it will be assigned the alias “vecu.exe 2".

It is also possible for a VECU's alias to be set on the command line of the
VECU by using the “-alias” command line option. Again vrtaServer will

apply numeric suffixes to the specified aliases to ensure that all aliases are
unique.

184 Virtual ECU Server Library Reference RTA-OSEK for PC User Guide

12.4 VeslLibEculnfoType

The VesLibEcuInfoType type is used to identify Virtual ECU executables to
the server library. VesLibEcuInfoType has the definition:

typedef struct
char path [VESLIB_MAX_PATH] ;
} VesLibEcuInfoType;

The path field should contain the full path of the Virtual ECU executable.

12.5 VesLibEcuAliasType

The VesLibEcuAliasType type is used to contain Virtual ECU aliases.
VesLibEcuAliasType has the definition:

typedef struct
char name [VESLIB MAX PATH] ;
} VesLibEcuAliasType;

12.6 The API Call Template

Each API call is described in this chapter using the following standard format:

The title gives the name of the API call.
A brief description of the API call is provided.

Function declaration:

Interface in C syntax.

Parameters:
Parameter Input/Output Description
Parameter Name Input/Output Description.
Description:

Explanation of the functionality of the API call.

Return values:

Value Description
Return values. Description of return value.

Notes:

Usage restrictions and notes for the API call.

RTA-OSEK for PC User Guide Virtual ECU Server Library Reference 185

See also:
List of related API calls.

12.7 VesLibAttachToECU()

Attach to a loaded Virtual ECU.

Function declaration:

VesLibStatusType VesLibAttachToECU (
VesLibEcuAliasType * alias, int * port)

Parameters:
Parameter Input/Output | Description
alias Input A pointer to a VesLibEcuAliasType structure

specifying the alias of a loaded Virtual ECU.

A pointer to a variable that on successful return
port Output will contain the TCP port number of the Virtual
ECU's diagnostic port.

Description:

This function is used to connect to a Virtual ECU that has already been
loaded. On successful return *port contains the port number of the Virtual
ECU’s diagnostic interface.

Return values:

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS The library cannot communicate with
vrtaServer.

VESLIB_STATUS_NO_ECU The alias does not exist.

VESLIB_STATUS_ECU_NOT_LOADED | The alias is not loaded.

Notes:

See also:
VesLibListLoadedECUs (), VesLibLoadECU ()

186 Virtual ECU Server Library Reference RTA-OSEK for PC User Guide

12.8 VeslLibCreateAlias()

Create an alias for a Virtual ECU.

Function declaration:

VesLibStatusType VesLibCreateAlias (
VesLibEculnfoType * ecu,
VesLibEcuAliasType * alias)

Parameters:
Parameter | Input/Output | Description
ecu Input A pointer to a VesLibEcuInfoType structure
P that identifies the Virtual ECU executable.
alias Output A pomter to g VesleEguAllasType structure
that will contain the new alias.
Description:

This API call creates an alias for a Virtual ECU. ecu identifies a Virtual ECU
executable. alias points to a VesLibtEcuAliasType structure allocated
by the caller. On successful return *alias contains a new alias for the Virtual
ECU. The reference count for the alias will have been set to 1.

Return values:

Value Description
VESLIB_STATUS_OK The API call succeeded.
VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.
VESLIB_STATUS_NO_ECU The Virtual ECU executable does not exist.
Notes:
See also:

VesLibFreeAlias (), VesLibLoadEcu ()

12.9 VesLibExit()

Shutdown the library.

Function declaration:
VesLibStatusType VesLibExit (void)

RTA-OSEK for PC User Guide Virtual ECU Server Library Reference 187

Parameters:

Parameter | Input/Output | Description

<none>

Description:

This APl call is used to disconnect from vrtaServer and release any
resources allocated within VesLibInitialize () and subsequent API calls
(but it does not release any memory that should have been freed via
VesLibFreeMemory ()).

VesLibInitialize() can be «called subsequently to re-attach to
vrtaServer.

Return values:

Value Description
VESLIB_STATUS_OK The API call succeeded.
Notes:
See also:

VesLibSelectServer (), vrtaLibInitialize()

12.10 VesLibFindECUs()

Find out what Virtual ECU executables are present.

Function declaration:

VesLibStatusType VesLibFindECUs (char * dir,
char * * results)

Parameters:

Parameter | Input/Output | Description

dir Input

ECU executables.

results Output

will point to a list of Virtual ECU executables.

Description:

188

This API call is used to discover the Virtual ECU executables present on the
local PC (or remote PC if VesLibSelectServer () has been used to select
vrtaServer running on a remote PC). dir contains the path of the
directory to be searched — either as an absolute path or a path relative to the
directory containing the vrtaServer executable. On successful return
*results points to a ‘\n’ separated list of the Virtual ECUs executables

Virtual ECU Server Library Reference RTA-OSEK for PC User Guide

The path of the directory to be searched for Virtual

A pointer to a variable which on successful return

found in the specified directory plus directory information that allows remote
navigation of the directories available on vrtaServer's PC.

On successful return the "\n’ separated list pointed to by *results contains
the following items in the order specified below:

1. The current path.
2. A comma separated list of drives that are readable.

3. The subdirectories of dir (one per line), including ".." for a non-
root directory.

. A blank line.
5. Alist of files in dir that may be valid Virtual ECU applications.

Return values:

Value Description
VESLIB_STATUS_OK The API call succeeded.
VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.
Notes:
*results points to memory allocated by the server library. The memory
should be released by calling VesLibFreeMemory ().
See also:

VesLibFreeMemory ()

12.11 VesLibFreeAlias()

Free a Virtual ECU alias.

Function declaration:

VesLibStatusType VesLibFreeAlias (
VesLibEcuAliasType * alias)

Parameters:

Parameter | Input/Output | Description
A pointer to a VesLibEcuAliasType structure
specifying an alias.

alias Input

Description:

This API call decrements the reference count of the specified Virtual ECU alias.
An alias is removed when its reference count reaches zero. If the application
that is using the library terminates without freeing aliases then vrtaServer
will automatically decrement the reference counts of aliases appropriately.

RTA-OSEK for PC User Guide Virtual ECU Server Library Reference 189

Return values:

Value

Description

VESLIB_STATUS_OK

The API call succeeded.

VESLIB_STATUS_SERVER_COMMS

The library cannot communicate
vrtaServer.

with

VESLIB_STATUS_NO_ECU

The alias does not exist.

Notes:

See also:

VesLibCreateAlias (), VesLibGetAliases (),
VesLibListAliases (), VesLibListLoadedECUs ()

12.12 VesLibFreeMemory()

Free memory allocated by the server library.

Function declaration:

void VesLibFreeMemory (void * results)

Parameters:

Parameter Input/Output | Description

results Input A pointer the memory to be freed
Description:

This API call is used to free memory returned from other library functions.

Return values:

Value Description
<none>

Notes:

See also:

VesLibFindECUs (), VesLibGetAliases (), VesLibListAliases (),
VesLibListLoadedECUs (), VesLibGetInfo ()

12.13 VesLibGetAliases()

Get a list of the aliases that exist for a Virtual ECU executable.

190 Virtual ECU Server Library Reference

RTA-OSEK for PC User Guide

Function declaration:

VesLibStatusType VesLibGetAliases (
VesLibEculInfoType * ecu,
VesLibEcuAliasType * * results,
int * count)

Parameters:

Parameter | Input/Output | Description

A pointer to a VesLibEcuInfoType structure
that identifies the Virtual ECU executable.

A pointer to a variable which on successful return
will point to a list of VesLibEcuAliasType
structures containing the aliases for the specified
Virtual ECU executable.

A pointer to a variable which on successful return
will contain the number of aliases in *results.

ecu Input

results Output

count Output

Description:

This API call gets a list of all the aliases that exists for a specified Virtual ECU
executable. The aliases may have been created explicitly with
VesLibCreateAlias () or have been created when the Virtual ECU
registered with vrtaServer. ecu identifies the Virtual ECU executable. On
successful return *results points to an array of VesLibEcuAliasType
structures containing all aliases for the Virtual ECU executable and *count
contains the number of aliases in the array. If no alias exists for the specified
Virtual ECU executable, one will be created. The reference count of each alias
returned is incremented by 1.

Return values:

Value Description
VESLIB_STATUS_OK The API call succeeded.
VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.
VESLIB_STATUS_NO_ECU The Virtual ECU executable does not exist.
Notes:
*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory ().
See also:

VesLibFreeMemory (), VesLibFreeAlias (), VesLibLoadEcu (),
VesLibListAliases ()

RTA-OSEK for PC User Guide Virtual ECU Server Library Reference 191

12.14 VesLibGetinfo()

Get version information about a Virtual ECU.

Function declaration:

VesLibStatusType VesLibGetInfo(

VesLibEcuAliasType * alias,

Parameters:

char * * results)

Parameter | Input/Output

Description

alias Input

A pointer to a VesLibEcuAliasType structure

specifying an alias.

results Output

A pointer to a variable which on successful return
will point to version information.

Description:

This API call returns version information about the specified Virtual ECU alias.
On successful return *results points to a ‘\n’ separated list containing
version number information as a series of “key=value” pairs.

Return values:

Notes:

Value

Description

VESLIB_STATUS_OK

The API call succeeded.

VESLIB_STATUS_SERVER_COMMS | The library

vrtaServer.

cannot communicate with

VESLIB_STATUS_NO_ECU

The alias does not exist.

*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory ().

See also:

12.15 VesLiblnitialize()

Initialize the library.

Function declaration:

VesLibStatusType VesLibInitialize (void)

Parameters:

192

Parameter | Input/Output

Description

<none>

Virtual ECU Server Library Reference

RTA-OSEK for PC User Guide

Description:
This API call is used to prepare the library for use. This APl must be called
before all other API calls except for VesLibSelectServer ().
By default the server library communicates with vrtaServer running on the
local PC. This can be changed by calling VesLibSelectServer ().

If vrtaServer is not already running on the selected PC then the server
library will attempt to start vrtaServer as a service on the selected PC
when VesLibInitialize() is called. This will only succeed if
vrtaServer has been installed as a service on the selected PC.

Return values:

Value Description
VESLIB_STATUS_OK The API call succeeded.
VESLIB_STATUS_SERVER_START vrtaServer cannot be started.

VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.

Notes:

See also:

VesLibSelectServer (), vrtaLibExit ()

12.16 VesLibListAliases()

Get a list of all aliases that exist.

Function declaration:

VesLibStatusType VesLiblListAliases (
VesLibEcuAliasType * * results,
int * count)

Parameters:

Parameter | Input/Output | Description

A pointer to a variable which on successful return
results Output will point to a list of VesLibEcuAliasType
structures containing all aliases.

A pointer to a variable which on successful return
will contain the number of aliases in *results.

count Output

Description:

This API call gets a list of all aliases that have been created. The aliases may
have been created explicitly with VesLibCreateAlias () or have been
created when Virtual ECUs registered with vrtaServer. On successful
return *results points to an array of VesLibEcuAliasType structures
containing all aliases that have been created and *count contains the

RTA-OSEK for PC User Guide Virtual ECU Server Library Reference 193

number of aliases in the array. The reference count of each alias returned is
incremented by 1.

Return values:

Value Description
VESLIB_STATUS_OK The API call succeeded.
VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.
Notes:
*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory ().
See also:

VesLibFreeMemory (), VesLibFreeAlias (), VesLibLoadEcu (),
VesLibGetAliases ()

12.17 VeslLibListLoadedECUs()

Get a list of the Virtual ECUs that have been loaded.

Function declaration:

VesLibStatusType VesLibListLoadedECUs (
VesLibEcuAliasType * * results,
int * count)

Parameters:

Parameter | Input/Output | Description

A pointer to a variable which on successful return
will point to a list of VesLibEcuAliasType
structures containing the aliases of loaded Virtual
ECUs.

A pointer to a variable which on successful return
will contain the number of aliases in *results.

results Output

count Output

Description:

This API call is used to discover the aliases of Virtual ECUs that have been
loaded (i.e. the Virtual ECU executables are running). On successful return
*results points to an array of VesLibEcuAliasType structures
containing the aliases of all loaded Virtual ECUs and *count contains the
number of aliases in the array. The reference count of each alias returned is
incremented by 1.

194 Virtual ECU Server Library Reference RTA-OSEK for PC User Guide

Return values:

Notes:

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.

*results points to memory allocated by the library. The memory should be
released by calling VesLibFreeMemory ().

See also:

VesLibFreeMemory (), VesLibFreeAlias (), VesLibLoadEcu ()

12.18 VesLibLoadECU()

Load a Virtual ECU.

Function declaration:

VesLibStatusType VesLibLoadECU (
VesLibEcuAliasType * alias,
VesLibStartMode startMode,
VesLibDisplayMode displayMode,
char * cmd,
int * port)

Parameters:
Parameter Input/Output | Description
A pointer to a VesLibEcuAliasType structure
alias Input specifying the alias of the Virtual ECU executable
to load.
startMode Input The start mode for the Virtual ECU.
displayMode | Input The display mode for the Virtual ECU.
cmd Input The command line for the Virtual ECU.
A pointer to a variable that on successful return
port Output will contain the TCP port number of the Virtual
ECU's diagnostic port.
Description:

This API call is used to load and connect to a Virtual ECU alias specified by
alias (i.e. to run the Virtual ECU executable identified by alias). If
startMode is VesLibSMAuto then the alias is loaded in autostart mode. If
startMode is VesLibSMSlave then the alias is loaded in slave mode. If
displayMode is VesLibDMSilent then the alias is loaded in silent mode.
If displayMode is VesLibDMGui then the alias is loaded in GUI mode. cmd

RTA-OSEK for PC User Guide

Virtual ECU Server Library Reference

195

specifies additional command line parameters. On successful return *port
contains the port number of the Virtual ECU’s diagnostic interface.

Return values:

Value Description

VESLIB_STATUS_OK The API call succeeded.

VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.

VESLIB_STATUS_NO_ECU The alias does not exist.

VESLIB_STATUS_ECU_LOADED The alias is already loaded.

Notes:

See also:

VesLibCreateAlias (), VesLibListLoadedECUs (),
VesLibAttachToECUs ()

12.19 VesLibSelectServer()

Function

Select the vrtaServer to use.

declaration:

VesLibStatusType VesLibSelectServer (const char *host,
int port)

Parameters:

Parameter | Input/Output | Description

host Input The host name of the PC running vrtaServer.

port Input

vrtaServer.

Description:

196

The server library is normally used to communicate with vrtaServer
running on the local PC. This API call can direct the server library to
communicate with vrtaServer running on a remote PC by passing the
hostname of the remote PC as host. If host is NULL then the server library
will communicate with vrtaServer running on the local PC (it internally
defaults host to “localhost”).

Similarly vrtaServer is normally found by searching three pre-defined TCP
port numbers. If vrtaServer is set to use a different port number then you
can specify this number with the port argument. If port is zero then the
server library will search for vrtaServer on the pre-defined port numbers.

VesLibSelectServer () should normally be called before
VesLibInitialize (). If it is called after VesLibInitialize () but

Virtual ECU Server Library Reference RTA-OSEK for PC User Guide

The number of the TCP port being used by

before vesLibExit () then the function will itself call vesLibExit () then
VesLibInitialize () to reset the connection.

Return values:

Value Description
VESLIB_STATUS_OK The API call succeeded.
VESLIB_STATUS_SERVER_START vrtaServer cannot be started.

VESLIB_STATUS_SERVER_COMMS | The library cannot communicate with
vrtaServer.

Notes:

See also:
VesLibInitialize (), VesLibExit ()

RTA-OSEK for PC User Guide Virtual ECU Server Library Reference 197

13

COM Bridge Tutorial and Reference

13.1

The COM Bridge provides services to COM enabled clients such as Microsoft
Visual Basic to allow them to interact with Virtual ECUs. The COM Bridge
translates between COM protocols on the client-side and the TCP/IP protocols
used by vrtaServer and VECUs.

This chapter describes the objects and interfaces provided by the COM Bridge.

Important: This chapter is not intended as a tutorial on COM. It is assumed
that the reader is familiar with COM programming.

Overview

The COM Bridge is implemented as a DLL COM Server. It will be loaded into
the process of any client wishing to use it. The DLL is vrtaMSCOM.d11.

The COM objects hosted by the COM Bridge support dual interfaces to enable
access from as wide a variety of COM clients as possible. The COM Bridge can
create worker threads and therefore the objects hosted by the COM Bridge
use the multi-threaded apartment (MTA).

13.2 Sample of use

198

The section shows code snippets written in Microsoft Visual Basic that
demonstrate how to use the COM Bridge.

13.2.1 CVcServer

The CvVecServer object is used to connect to vrtaServer so that you can load
or attach to VECUs.

The code below shows how to create a CVeServer named local Server,
connect to the local vrtaServer, create an alias for the VECU named by
ourexe, then load it.

' Declare a server component
Private local Server As CVcServer

' Create the server component in form load
Private Sub Form Load ()

Set local Server = New CVcServer

< ... snip ...>
End Sub

' Release the server component in form unload
Private Sub Form Unload(Cancel As Integer)
Set local Server = Nothing
< ... snip ...>
End Sub

COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

| |

|' A helper function that checks the server component |
' return codes
Private Sub CheckServerStatus (location, val)
If val = STATUS_OK Then
Exit Sub
ElseIf val = SERVER_ START Then
ret = "SERVER START"
ElseIf val = SERVER_COMMS Then
ret = "SERVER_COMMS"
ElseIf val = NO_ECU Then
ret = "NO ECU"
ElseIf val = ECU _LOADED Then
ret = "ECU LOADED"
ElseIf val = ECU_NOT LOADED Then
ret = "ECU NOT_LOADED"
ElseIf val = ECU _SLAVE Then
ret = "ECU SLAVE"
ElseIf val = ECU _ALIASED Then
ret = "ECU_ALIASED"
ElseIf val = NOT_LOADED Then
ret = "NOT LOADED"
Else
ret = "** UNKNOWN **"
End If
AddLine (location + " return status: " + ret)
AddLine ("Test failed")

' Quit program
Unload fTest
End Sub

Private Sub DoSomething()

Call CheckServerStatus (
"Connect to serxrver",
local Server.Connect ("localhost", 0)

Dim ouralias As String
Call CheckServerStatus (
"Create alias",
local Server.CreateAlias(ourexe, ouralias)

Dim diagport As Long
Call CheckServerStatus ("LoadECU",
local Server.LoadECU (
ouralias, AUTO, GUI, "", diagport)

< ... snip ...>

Call CheckServerStatus ("FreeAlias",
local Server.FreeAlias(ouralias)
)
local Server.Disconnect
End Sub

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 199

200

13.2.2 CVcECU

The CVcECU object is used to connect to a VECU so that you can interact with

its devices.

The code below shows how to create a CVcECU named monitored ECU,

connect it to a VECU, hook and display an event then terminate the VECU.

' Declare an ECU component that has events
Private WithEvents monitored ECU As CVcECU

' Create the ECU component in form load
Private Sub Form Load ()

Set monitored ECU = New CVcECU

< ... snip ...>
End Sub

' Release the ECU component in form unload
Private Sub Form Unload(Cancel As Integer)
Set monitored ECU = Nothing
< ... snip ...>
End Sub

' A helper function that checks the ECU component
' return codes
Private Sub CheckECUStatus(location As String, wval As
Integer)
Dim ret As String

If val = ECU_OK Then

Exit Sub
ElseIf val = ECU DevErr Then
ret = "ECU_DevErr"
ElseIf val = ECU_IDErr Then
ret = "ECU_IDErr"
ElseIf val = ECU ValErr Then
ret = "ECU ValErr"
Else
ret = "** UNKNOWN **"
End If
AddLine (location + " return status: " + ret)

AddLine ("Test failed")
' Quit program
Unload fTest

End Sub

' This gets called each time an event hooked by
' monitored ECU gets raised in the VECU
Private Sub monitored ECU OnEventChange (ByVal dev As
Long, ByVal id As Long, ByVal value As String)
hook count = hook count + 1

AddLine (
"x* Device " + Str(dev) +
", Event " + Str(id) +
", Value " + value)
End Sub

COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

' This waits for at least one event to be hooked
' It is only here for test purposes - normally we
just allow events to arrive asynchronously
Private Sub WaitOnEvents ()

Do
hook count = 0
PauseTime = 0.5 ' Set duration.
Start = Timer ' Set start time.
Do While Timer < Start + PauseTime

DoEvents ' Yield to other processes.

Loop

Loop Until (hook count = 0)

End Sub

Private Sub DoSomething()

< ... snip ...>
Call CheckECUStatus ("Connect",
monitored ECU.Connect ("localhost", diagport)
)
AddLine ("Loaded ok")

Call CheckECUStatus ("Hook ecu",
monitored ECU.Hook (
a_device ID,
an event ID,
1

WaitOnEvents

Call CheckECUStatus ("Terminate",
monitored ECU.DoAction (2, 2)
) ' Terminate

Call CheckECUStatus ("Disconnect",
monitored ECU.Disconnect

)

< ... snip ...>
End Sub

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference

201

13.2.3 CVcDevice, CVcAction and CVcEvent

The CVcDevice, CVcAction and CVcEvent components represent a VECU
device, action and event respectively.

They cannot be created via ‘New' like CVeServer or CVcECU because they
must be bound to a parent CVcECU or CVcDevice.

A CVcDevice object is obtained by caling the CVcECU's
GetDeviceByName Or GetDeviceByID method.

A CVcAction object is obtained by calling the CvcDevice's
GetActionByName Or GetActionByID method.

A CVcEvent object is obtained by calling the CvVcDevice's
GetEventByName Or GetEventByID method.

The code below shows how to create these objects, hook and display events.

Private WithEvents monitored Device As CVcDevice
Private monitored Action As CVcAction
Private WithEvents monitored Event As CVcEvent

' This gets called each time an event hooked by
' monitored Device gets raised in the VECU
Private Sub monitored Device OnEventChange (ByVal id As
Long, ByVal value As String)

hook count = hook count + 1

AddLine (

+ Event " + Str(id) + ", Value " + value

)

End Sub

' This gets called each time an event hooked by
' monitored Event gets raised in the VECU
Private Sub monitored Event OnEventChange (ByVal value As

String)
hook count = hook count + 1
AddLine ("-- Value " + value)
End Sub

Private Sub DoSomething()
< ... snip ...>

Set monitored Device =
monitored ECU.GetDeviceByName ("Test")

Set monitored Action =
monitored Device.GetActionByName ("£01")

Set monitored Event =
monitored Device.GetEventByName ("£01")

Call CheckECUStatus ("Hook device",
monitored Device.Hook (
monitored Event.EventID, 1)

202 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Call CheckECUStatus ("Hook event",
monitored Event.Hook (1)

)

monitored Action.Send .01")

("1
monitored Action.Send ("2.02")
monitored Action.Send ("3.03")
monitored Action.Send ("4.04")
monitored Action.Send ("5.05")
WaitOnEvents
< ... snip ...>

End Sub

13.3 A short tutorial

This tutorial gives an example of how to use the COM Bridge in Microsoft
Visual Basic. You will create a simple application that can monitor and control
a VECU. The example is developed using Visual Basic version 5.0, but should
be easily transferable to later versions.

The tutorial creates a program that interacts with the ‘Example2’ VECU that
ships with RTA-OSEK for PC. You should be able to find this in a location like
C:\rta\vrta\samples\Applications\RTA-OSEK Example 2. The
application is very simplistic: it will only attach to the VECU if it is already
running, and there will be very little error handling done. This is because the
main aim of the tutorial is to show you how to interface between Visual Basic
and VECUs.

13.3.1 Setting up the project

Firstly create a new empty Visual Basic application, renaming Forml to fCar
with the caption Car.

Ensure that you have ProgressBar and Slider components available (you may
need to add the Microsoft Windows Common Controls to the Project
Components), then use the screenshot below as a reference to:

* add a TextBox eAlias with the default content ‘Example2.exe’.
» add a Button bConnect alongside it.
» add a ProgressBar pSpeed with a range 0 to 100.

» add a Sliders sThrottle and sBrake, again with range 0 to 100.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference

203

204

i, Car

Alias: I|e:-:amp|eE.e:-:e

Connect |

=] E3

— Controlz

Speed: |

Throttle: ; - .. .
Brake: ; —

Save the project as ‘Car.vbp’.

13.3.2 Connecting to vrtaServer

You will now add the code to connect to vrtaServer. Firstly ensure that
the vrtaMSCOM Library is selected in the Project References:

References - Car.¥bp

Available References:

[1Wisual Skudio 97 Project System

[wisual studio 97 Shared Objects

[]visual Skudio 97 Text Edikor

[ToiceCH 1.0 Type Library

[¥alume Shadow Copy Service 1.0 Type Librar
ek SO Library
[[1v5 WebBrowsing Service
[JwsDebug 1.0 Type Library
[T¥sHelp

[]'wave MSP 2.0 Type Library
[]'WebDeplowWizard 1.0 Type Library
[Twebww 1.0 Type Library
[1'"WECAPI 5.0 Type Library
rlIWEC.ﬁ.F'I 6.0 Tvoe Library

4

JIS |
LIJ

X
(0].4

Zancel

Erowse, ..,

+|

Pricrity

+

Help

ke

—wrEaMSC oM Library

Chrtatbint wrkarsC o, di
Standard

Location:

Language:

You now have access to the CVcServer object, so add the following lines to

the project:

Private server As CVcServer

Private Sub Form Load ()
Set server = New CVcServer

End Sub

Private Sub Form Unload(Cancel As Integer)
Set server = Nothing

End Sub

COM Bridge Tutorial and Reference

RTA-OSEK for PC User Guide

As you can see, server gets set to a new instance of CvcServer as the
form loads. It gets released as the form unloads.

Before you can use server to access VECUs, you must connect it to
vrtaServer running on a specified PC. For this example we will assume that
vrtaServer is on the same PC (“1localhost”).

Add the ‘connect’ code to the button’s Click event:

Private Sub bConnect Click()
If Not (STATUS OK = server.Connect ("localhost", 0))Then
MsgBox ("Did not connect to VRTA Server")

Exit Sub
End If
MsgBox ("Connected to VRTA Server")
End Sub

If you run the program at this point, then you should see the connection
succeed. From this point on, server can be used to access and control
VECUs on the local PC.

13.3.3 Connecting to the VECU

The CVCcECU object is used to communicate with a specific VECU. You can
obtain the details needed to use such an object via CvcServer.

Modify your code to add the declaration for ecu:

Private server As CVcServer
Private ecu As CVcECU
Private Sub Form Load()
Set server = New CVcServer
Set ecu = New CVcECU
End Sub
Private Sub Form Unload(Cancel As Integer)
Set server = Nothing
Set ecu = Nothing
End Sub

In the ‘Connect’ button event, add:

Dim diagport As Long
If Not (STATUS_OK = server.AttachECU(eAlias.Text,
diagport)) Then
server .Disconnect
MsgBox ("ECU is not running")
Exit Sub
End If

If Not (ECU _OK = ecu.Connect ("localhost", diagport))
Then
server.Disconnect
MsgBox ("Cannot connect to ECU")
Exit Sub
End If

The first clause asks server for the diagnostic port number of the VECU
whose alias is the same as the text in eAlias. The connection will fail if there
is no such VECU, so you will have to start Example2.exe before you can get
much further.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 205

The second clause simply binds ecu to the VECU by specifying the PC name
and diagnostic port number.

Try it and see that it works as expected.

13.3.4 |Initializing the devices

The next task is to create objects to link to the VECU'’s device Throttle, Brake
and Speedometer devices.

They should be declared thus:

Private dSpeed As CVcDevice

Private aSpeed As CVcAction

Private WithEvents eSpeed As CVcEvent
Private dThrottle As CVcDevice

Private aThrottle As CVcAction

Private WithEvents eThrottle As CVcEvent
Private dBrake As CVcDevice

Private aBrake As CVcAction

Private WithEvents eBrake As CVcEvent

Now, when the ecu connects the application can read the current value of
the Speedometer and initialize ProgressBar pSpeed. This is done with the
code below, added to the bottom of the ‘Connect’ handler:

Dim res As String
Set dSpeed = ecu.GetDeviceByName ("Speedometer")
Set eSpeed dSpeed.GetEventByName ("Value")

reg = "n

If ECU OK = eSpeed.Query(res) Then
pSpeed.value = res

End If

This shows that dSpeed gets bound to the Speedometer device, and eSpeed
gets bound to its Value event. eSpeed.Query () takes an infout String
value. This must be empty on entry because the VECU knows that no data
should be passed ‘in’ to this event. eSpeed.Query () returns its result in the
String res. This String can be passed directly in to the ProgressBar’s value.

You can also initialize the sliders from the current values from the VECU by
adding:

Set dThrottle ecu.GetDeviceByName ("Throttle")
Set aThrottle dThrottle.GetActionByName ("Value")
Set eThrottle = dThrottle.GetEventByName ("Value")

reg = "n

If ECU OK = eThrottle.Query(res) Then
sThrottle.value = res

End If

Set dBrake ecu.GetDeviceByName ("Brake")
Set aBrake dBrake.GetActionByName ("Value")
Set eBrake = dBrake.GetEventByName ("Value")

reg = "n

If ECU OK = eBrake.Query(res) Then
sBrake.value = res

End If

206 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

13.3.5 Reacting

to events

You have seen how to read the value of an event to initialize the control

values, so it is an easy step to set up a timer to poll for changes.
But we don’t want to do that...

It is clearly more efficient to be informed by the VECU that an event has
changed, so we simply enable the event hook mechanism and respond to

‘OnkventChange’.
Modify the code above to enable the hooks:

Dim

Set
Set
res

End

Set
Set
Set
res

End

Set
Set
Set
res

End

res As String

dSpeed = ecu.GetDeviceByName ("Speedometer")
eSpeed dSpeed.GetEventByName ("Value")

If ECU OK = eSpeed.Query(res) Then

pSpeed.value = res
eSpeed.Hook (1)
If

dThrottle = ecu.GetDeviceByName ("Throttle")
aThrottle dThrottle.GetActionByName ("Value")
eThrottle dThrottle.GetEventByName ("Value")

If ECU OK = eThrottle.Query(res) Then

sThrottle.value = res

eThrottle.Hook (1)

If

dBrake = ecu.GetDeviceByName ("Brake")
aBrake = dBrake.GetActionByName ("Value")
eBrake = dBrake.GetEventByName ("Value")

If ECU OK = eBrake.Query(res) Then

sBrake.value = res
eBrake.Hook (1)
If

Also add the

event handlers:

Private
String)

End Sub

Private
String)

End Sub

Private
String)

End Sub

Sub eBrake OnEventChange (ByVal value As

sBrake.value = wvalue

Sub eSpeed OnEventChange (ByVal value As

pSpeed.value = value

Sub eThrottle OnEventChange (ByVal value As

sThrottle.value = value

Easy! The application will now automatically update the sliders and progress
bar whenever the associated events change in the VECU. You can use

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference

207

vrtaMonitor to change the Brake and Throttle values, and your application
will respond automatically.

13.3.6 Sending actions

The final step links the sliders to the Brake and Throttle.
The code is laughably simple:

Private Sub sBrake Change ()
aBrake.Send (sBrake.value)
End Sub

Private Sub sThrottle Change ()
aThrottle.Send (sThrottle.value)
End Sub

13.3.7 Summary

Clearly in a ‘real” application you will wish to go a lot further than this. Points
to note are:

» Run-time error checking is necessary

* You may wish to load an ECU rather than simply attach to an existing
one. You must remember that the name of the VECU executable that
gets passed to vrtaServer in LoadECU must be a path that is visible to
the server. You cannot specify a file on machine ‘a’ if the server is on
machine 'b’.

» Data sent between your application and VECU actions/events is in the
form of Strings. Multiple values are "\n’ separated.

208 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

13.4 Method Description

Each interface method is described in a standard form as follows:

The title gives the name of the method.

A brief description of the method is provided.

Method declaration:

Interface in IDL syntax.

Parameters:
Parameter Input/Output Description
Parameter Name Input/Output Description.

Description:

Explanation of the functionality of the method.

Return values:

Value

Description

Return values

Description of return value.

RTA-OSEK for PC User Guide

COM Bridge Tutorial and Reference

209

13.5 CVcServer

A client must create one or more instances of the CvcServer object for each
vrtaServer with which they wish to communicate.

CVcServer provides the capability to load Virtual ECUs, find out what ECUs
are loaded / running and discover the information needed to create a CVcECU
instance.

CVcServer implements the interface ICvcServer.

13.6 ICVcServer

This is the interface to vrtaServer. ICVcServer's constants and API are
based on those in the Virtual ECU Server Library (VesLib).

13.6.1 Enum: IVcServer_DisplayMode

This enumeration provides values that determine whether a VECU is
started with or without its embedded GUI visible.
IVcServer_DisplayMode Name

SILENT
GUI

13.6.2 Enum: IVcServer_StartMode

This enumeration provides values that determine whether a VECU is
auto-started or started in slave mode
IVcServer_StartMode Name

AUTO
SLAVE

13.6.3 Enum: IVcServer_Status

This enumeration provides the return values for all Icvecserver
methods.

IVcServer_Status Name
STATUS OK

SERVER START
SERVER COMMS
NO_ECU

ECU_LOADED

ECU NOT LOADED

ECU SLAVE

210 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

ECU ALIASED
NOT LOADED

13.6.4 Method: AttachECU()

Attach to a loaded Virtual ECU.

Method declaration:
HRESULT _stdcall AttachECU(
[in] BSTR alias,
[out] int * diagport,
[out, retval] IVcServer Status * status

)

Parameters:
Parameter Input/Output Description
alias Input A Virtual ECU alias.
diagport Output The TCP port number used by the
Virtual ECU'’s diagnostic interface.
status Output The return value.
Description:

This method is used to connect to a Virtual ECU that has already been loaded.
On successful return *diagport contains the port number of the virtual

ECU's diagnostic interface.

Return values:

Value Description

STATUS OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.
NO ECU If the alias does not exist.

ECU_NOT_LOADED | If the alias has not been loaded.

13.6.5 Method: Connect()

Connect to a vrtaServer instance.

Method declaration:

HRESULT stdcall Connect (
[in, defaultvalue (“localhost”)]
[in, defaultvalue(0)] long port,
[out, retval] IVcServer Status *status

BSTR hostname,

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 211

Parameters:

Parameter Input/Output Description
hostname Input The hostname of the PC running
vrtaServer.
port Input The TCP port being used by
vrtaServer.
status Output The return value.
Description:

This method connects to vrtaServer on the PC named hostname using
TCP port number port.

hostname can be a name (e.g. yok50123) or IP address (e.g. 127.0.0.1).
port is normally set to zero, in which case the object will search for
vrtaServer in its default location. A non-zero value can be used to force
the object to check only the specified port.

All subsequent methods apply to the instance of vrtaServer to which the

object is connected.

Return values:

Value

Description

STATUS OK

Success.

SERVER_ START

If vrtaServer cannot be started.

SERVER_COMMS

If the object cannot communicate with vrtaServer.

13.6.6 Method: CreateAlias()

Create an alias for a Virtual ECU.

Method declaration:

HRESULT stdcall CreateAlias(
[in] BSTR app,
[out] BSTR * alias,
[out, retval] IVcServer Status * status

)

Parameters:

Parameter Input/Output Description

app Input The full path (on the PC running
vrtaServer) of a virtual ECU
executable.

alias Output A new alias for the virtual ECU.

status Output The return value.

212 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Description:

This method creates a new alias for a virtual ECU. On successful return,
alias contains a new alias for the virtual ECU. The reference count for the
alias will have been set to 1.

Return values:

Value Description

STATUS_ OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.
NO ECU If the Virtual ECU executable does not exist.

13.6.7 Method: Disconnect()

Disconnect from vrtaServer.

Method declaration:
HRESULT Disconnect (void)

Parameters:

Parameter Input/Output Description
<nomne>

Description:

This method is used to disconnect from vrtaServer. This method should be
called prior to termination of the application, or before connecting to a
different instance of vrtaServer.

Return values:

Value Description
<none>

13.6.8 Method: FindECUs()

Find out what Virtual ECU executables are present.

Method declaration:

HRESULT _stdcall FindECUs (
[in] BSTR srchpath,
] BSTR * path,
] BSTR * drives,
[out] BSTR * subdirs,
] BSTR * apps,
[out, retval] IVcServer Status * status,

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 213

Parameters:

Parameter Input/Output Description

srchpath Input The path of the directory to be
searched for Virtual ECU
executables.

path Output The current absolute search path.

drives Output A comma-separated list of the
drives that are readable.

subdirs Output A ‘\n' separated list of the

subdirectories of path, including
".." for a non-root directory.
apps Output A ‘\n' separated list of the
names of files in path that could
be Virtual ECU executables.

status Output The return value.

Description:

This method is used to discover the virtual ECU executables on
vrtaServer's PC.

srchpath contains the path of the directory to be searched - either as an
absolute path or a path relative to the directory containing vrtaServer.

Return values:

Value Description
STATUS_ OK Success.
SERVER_COMMS If the object cannot communicate with vrtaServer.

13.6.9 Method: FreeAlias()

Free a Virtual ECU alias.

Method declaration:

HRESULT _stdcall FreeAlias(
[in] BSTR alias,
[out, retval] IVcServer Status * status

)

Parameters:
Parameter Input/Output Description
alias Input A Virtual ECU alias.
status Output The return value.

214 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Description:

This method decrements the reference count of the specified virtual ECU alias.
An alias is removed when its reference count reaches zero. (If the connection
to vrtaServer terminates without freeing aliases then vrtaServer will
automatically decrement the reference counts of aliases appropriately.)

Return values:

Value Description

STATUS_ OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.
NO_ECU If the alias does not exist.

13.6.10 Method: GetAliases()

Get a list of the aliases that exist for a Virtual ECU executable.

Method declaration:

HRESULT _stdcall GetAliases(
[in] BSTR app,
[out] BSTR * aliases,
[out, retval] IVcServer Status * status

)

Parameters:
Parameter Input/Output Description
app Input The full path (on the PC running
vrtaServer) of a virtual ECU
executable.
aliases Output A '\n’ separated list of all aliases
that exist for the Virtual ECU
executable.
status Output The return value.
Description:
This method gets a list of all aliases that have been created for a virtual ECU
executable.

On successful return aliases contains a ‘\n’ separated list of all aliases that
exist for the Virtual ECU executable. If no alias exists then one will be created.
The reference count of each alias returned is incremented by 1.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 215

Return values:

Value Description

STATUS_ OK Success.

SERVER _COMMS If the object cannot communicate with vrtaServer.
NO_ECU If the Virtual ECU executable does not exist.

13.6.11 Method: Getinfo()

Get version information about a Virtual ECU.

Method declaration:
HRESULT _stdcall GetInfo(
[in] BSTR alias,
[out] BSTR *info,
[out, retval] IVcServer Status * status

)

Parameters:
Parameter Input/Output Description
alias Input A Virtual ECU alias.
info Output Virtual ECU version information.
status Output The return value.

Description:

This function returns version information about the specified alias. On
successful return, info contains a ‘\n' separated list of "key=value" pairs.

Return values:

Value Description

STATUS OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.
NO ECU If the alias does not exist.

13.6.12 Method: ListAliases()

Get a list of all aliases that exist.

Method declaration:

HRESULT _stdcall ListAliases(
[out] BSTR * aliases,
[out, retval] IVcServer Status * status

216 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Parameters:

Parameter Input/Output Description
aliases Output A '\n’ separated list of all aliases
that exist
status Output The return value.
Description:

This method gets a list of all aliases that exist.
On successful return aliases contains a ‘\n’ separated list of the aliases.
The reference count of each alias returned is incremented by 1.

Return values:

Value Description
STATUS_ OK Success.
SERVER_COMMS If the object cannot communicate with vrtaServer.

13.6.13 Method: ListLoadedAliases()

Get a list of the Virtual ECUs that have been loaded.

Method declaration:
HRESULT _stdcall ListLoadedAliases (
[out] BSTR * aliases,
[out, retval] IVcServer Status * status

)

Parameters:
Parameter Input/Output Description
aliases Output A '\n' separated list of the aliases
of all loaded Virtual ECUs.
status Output The return value.
Description:

This method gets a list of the aliases for all loaded Virtual ECUs.
On successful return aliases contains a ‘\n’ separated list of the aliases.
The reference count of each alias returned is incremented by 1.

Return values:

Description

Success.
If the object cannot communicate with vrtaServer.

Value
STATUS_OK

SERVER_COMMS

COM Bridge Tutorial and Reference 217

RTA-OSEK for PC User Guide

13.6.14 Method: LoadECU()

Load a Virtual ECU.

Method declaration:

HRESULT stdcall LoadECU (
[in] BSTR alias,
[in] IVcServer StartMode startmode,
[in] IVcServer DisplayMode displaymode,
[in] BSTR command,
[out] int * diagport,

[out, retwval]

)

IVcServer Status * status

Parameters:
Parameter Input/Output Description
alias Input A Virtual ECU alias.
startmode Input The start mode for the Virtual
ECU.
displaymode Input The display mode for the Virtual
ECU.
command Input The command line for the Virtual
ECU.
diagport Output The TCP port number used by the
Virtual ECU'’s diagnostic interface.
status Output The return value.
Description:

This method is used to load and connect to a virtual ECU specified by alias.
If startmode is AUTO then the alias is loaded in autostart mode.

If startmode is SLAVE then the alias is loaded in slave mode.

If displaymode is SILENT then the alias is loaded in silent mode.

If displaymode is GUI then the alias is loaded in GUI mode.

command specifies additional command line parameters for the Virtual ECU.

On successful return *diagport contains the port number of the Virtual
ECU’s diagnostic interface.

Return values:

Value Description

STATUS_ OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.
NO ECU If the alias does not exist.

ECU LOADED If the alias has already been loaded.

218 COM Bridge Tutorial and Reference

RTA-OSEK for PC User Guide

13.6.15 Method: ServerStatus()

Check if the server is still connected.

Method declaration:

HRESULT ServerStatus (
[out, retval] IVcServer Status *status

)

Parameters:
Parameter Input/Output Description
status Output The return value.
Description:

This method is used to check if the object is (still) connected to vrtaServer.

Return values:

Value Description

STATUS_ OK Success.

SERVER_COMMS If the object cannot communicate with vrtaServer.
13.7 CVcECU

A CVCECU object represents a connection to a Virtual ECU. It can be
connected to (and disconnected from) local and remote Virtual ECUs. It
provides access to the Virtual ECU’s devices, events and actions.

CVCcECU implements the interface ICVcECU.

13.8 ICVcECU

This is the interface to a Virtual ECU.

13.8.1 Enum: IVCECU_Status

This enumeration provides the return values for all 1cveEcu methods.

IVCECU_Status Name
ECU _OK

ECU DevErr

ECU IDErr

ECU ValErr

ECU ConErr

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 219

13.8.2 Method: Connect()

Connect to a Virtual ECU.

Method declaration:

HRESULT _stdcall Connect (

[in] BSTR hostname,

[in] long port,

[out, retval] IVcECU Status * status
)

Parameters:
Parameter Input/Output Description
hostname Input The hostname of the PC running
the Virtual ECU.
port Input The TCP port of the Virtual ECU’s
diagnostic interface.
status Output The return value.
Description:

This method causes the object to connect to a Virtual ECU whose diagnostic
interface is using port port and that is loaded on the PC named hostname.

hostname can be a name (e.g. yok50123) or IP address (e.g. 127.0.0.1).
This method causes the object to disconnect from any existing connection.

Return values:

Value Description
ECU OK Success.
ECU ValErr If the connection cannot be made.

13.8.3 Method: Disconnect()

Disconnect from a Virtual ECU.

Method declaration:

HRESULT stdcall Disconnect (
[out, retval] IVcECU Status * status
)

Parameters:
Parameter Input/Output Description
status Output The return value.

220 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Description:

This method disconnects from a Virtual ECU. All interfaces supplied via
GetDevicexxx (), GetActionxxx() and GetEventxxx() become
invalid.

Return values:

Value Description
ECU_OK Success.
ECU ValErr If the object is not connected to a Virtual ECU.

13.8.4 Method: DoAction()

Send a data-less action to a virtual device.

Method declaration:

HRESULT stdcall DoAction (

[in] long dev,

[in] long id,

[out, retval] IVcECU Status * status
)

Parameters:
Parameter Input/Output Description
dev Input The device ID.
id Input The action ID.
status Output The return value.
Description:

This method sends the action with ID id to the device with ID dev. Only use
this method where the action requires no data.

Return values:

Value Description

ECU OK Success.

ECU ConErr If the connection is invalid.

ECU DevErr If the device ID is invalid.

ECU_ IDErr If the action ID is invalid.

ECU ValErr If the sent data is invalid. l.e. there should have been some.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 221

13.8.5 Method: GetDeviceBylD()

Get an interface to a virtual device by device ID.

Method declaration:

HRESULT stdcall GetDeviceByID (
[in] long id,
[out, retval] ICVcDevice ** device

)

Parameters:
Parameter Input/Output Description
id Input The device ID.
device Output The return value.
Description:

This method returns an ICVcDevice interface corresponding to the device
with the specified device ID. NULL is returned if the ID is invalid. The first
device has ID zero.

Return values:

Value Description
<an interface> | An ICVcDevice interface corresponding to the specified
device.

13.8.6 Method: GetDeviceByName()

Get an interface to a virtual device by device name.

Method declaration:

HRESULT _stdcall GetDeviceByName (
[in] BSTR id,
[out, retval] ICVcDevice ** device

)

Parameters:
Parameter Input/Output Description
id Input The device name.
device Output The return value.
Description:

This method returns an ICvVcDevice interface corresponding to the device
with the specified device name. NULL is returned if the name is invalid.

222 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Return values:

Value Description
<an interface> | An ICVcDevice interface corresponding to the specified
device.

13.8.7 Method: GetDeviceCount()

Get the number of virtual devices.

Method declaration:

HRESULT stdcall GetDeviceCount (
[out, retval] long * count

)

Parameters:
Parameter Input/Output Description
count Output The return value.
Description:

This method gets the number of virtual devices in the Virtual ECU.

Return values:

Value Description
<a value> The number of virtual devices in the Virtual ECU.

13.8.8 Method: Hook()

Hook or unhook an event.

Method declaration:

HRESULT stdcall Hook (
[in] long dev,
[in] long id,
[in] long value,
[out, retval] IVcECU Status * status

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 223

Parameters:

Parameter Input/Output Description
dev Input The device ID.
id Input The event ID.
value Input 1 to hook an event or zero to
unhook an event.
status Output The return value.
Description:

This method controls whether the event with ID id belonging to the device
with ID dev is hooked or unhooked. If the event is hooked then when the

device raises the event a COM event

is fired (via the event sink

ICVcECUEvents). If value is one the specified event is hooked, if value is
zero the specified event is unhooked. By default all events are unhooked.

Return values:

Value

Description

ECU_OK

Success.

ECU_ConErr

If the connection is invalid.

ECU DevErr

If the device ID is invalid.

ECU_IDErr

If the event ID is invalid.

13.8.9 Method: QueryEvent()

Query (poll) the value of an event.

Method declaration:

HRESULT _stdcall QueryEvent (

[in]
[in]
[in,

long dev,
long id,
BSTR * value,

[out, retval],IVcECU Status * status

)

Parameters:
Parameter Input/Output Description
dev Input The device ID.
id Input The event ID.
value Input/Output Event input data on call and the
value of the event on return.
status Output The return value.
224 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Description:

This method queries the event with ID id belonging to the device with ID
dev. If the event requires input data then this is passed in value. On
successful return the value of the event is in value.

The data passed to and from the object is in string form. It can be converted
from/to the native values by reference to the format specifiers that can be
obtained via QueryFormat () and ReplyFormat ().

Return values:

Value Description

ECU OK Success.

ECU ConErr If the connection is invalid.
ECU DevErr If the device ID is invalid.
ECU IDErr If the event ID is invalid.
ECU ValErr If the sent data is invalid.

13.8.10 Method: QueryFormat()

Get the data format for an event’s input data.

Method declaration:

HRESULT stdcall QueryFormat (
[in] long dev,
[in] long id,
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
dev Input The device ID.
id Input The event ID.
value Output The return value.
Description:

This method returns the input data-format string for the event with ID id
belonging to the device with ID dev. The return value is empty if dev or id is
invalid. This data format string describes the format of the data that should be
provided as input to QueryEvent (). (Many events have no input data, so
this is often empty.)

Return values:

Value Description

<a strings> The input data format string for the specified event.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference

225

13.8.11 Method: ReplyFormat()

Get the data format for an event'’s value.

Method declaration:

HRESULT stdcall ReplyFormat (
[in] long dev,
[in] long id,
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
dev Input The device ID.
id Input The event ID.
value Output The return value.
Description:

This method returns the data-format string for the value of the event with ID
id belonging to the device with ID dev. The return value is empty if dev or
id is invalid. This data format string describes the format of the data that is

returned by QueryEvent ().

Return values:

Value Description
The data format string for the value of the specified event.

<a strings>

13.8.12 Method: SendAction()

Send an action containing data to a virtual device.

Method declaration:

HRESULT _stdcall SendAction(
[in] long dev,
[in] long id,
[in] BSTR value,
[out, retval] IVcECU Status * status

)

Parameters:
Parameter Input/Output Description
dev Input The device ID.
id Input The action ID.
value Input Action data.
status Output The return value.

226 COM Bridge Tutorial and Reference

RTA-OSEK for PC User Guide

Description:

This method sends the action with ID id to the device with ID dev. The data
passed to the object is in string form. It can be converted from the native
values by reference to the format specifier that can be obtained via

SendFormat ().

Return values:

Value Description

ECU OK Success.

ECU ConErr If the connection is invalid.
ECU DevErr If the device ID is invalid.
ECU IDErr If the action ID is invalid.
ECU ValErr If the sent data is invalid.

13.8.13 Method: SendFormat()

Get the data format for an action.

Method declaration:

HRESULT stdcall SendFormat (
[in] long dev,
[in] long id,
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
dev Input The device ID.
Id Input The action ID.
value Output The return value.
Description:

This method returns the data format string for the action with ID id
belonging to the device with ID dev. This shows the format of the data that is
passed to SendAction (). The return value is empty if dev or id is invalid.

Return values:

Value Description
<a strings> The data format string for the specified action.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 227

13.9 ICVcECUEvents

This interface is implemented by a client that wishes to receive COM events
when a virtual device raises an event. Note that the event hook must have
been activated via ICVcECU.Hook (). Hooking or unhooking the same event
via ICVcDevice or ICVcEvent does not affect ICVcECUEvents.

13.9.1 Method: OnEventChange()

Event hook callback.

Method declaration:

HRESULT OnEventChange (
[in] long dev,
[in] long id,
[in] BSTR wvalue

)

Parameters:
Parameter Input/Output Description
dev Input The device ID.
id Input The event ID.
value Input The event's value.
Description:

This method is called when a hooked event is raised. The format of the data in
value is the same as the data returned by ICVcECU method

QueryEvent ().

Return values:

Value Description

<none>

228 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

13.10 CVcDevice

A CVcDevice object represents a single device in a Virtual ECU. A
CVcDevice object must only be obtained via the CvcECU method
GetDevice (). It cannot be created via CoCreateInstance (). This is to
maintain the link between the Virtual ECU and the device.

A CVcDevice object provides the ability to access the actions and events of a
specific device in a Virtual ECU.

CVcDevice implements the interface ICvcDevice.

13.11 ICVcDevice

This is the interface to a virtual device.

13.11.1 Method: DevicelD()

Get the device’s ID.

Method declaration:

HRESULT stdcall DeviceID(
[out, retval] long * id

)

Parameters:

Parameter Input/Output Description

id Output The return value.
Description:

This method returns the ID of the device. This is the number by which the
device is known within its Virtual ECU. The first device has ID zero.

Return values:

Value Description
<a values> The ID of the device.

13.11.2 Method: DoAction()

Send a data-less action.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 229

Method declaration:

HRESULT _stdcall DoAction(

[in] long id,

[out, retval] IVcECU Status * status
)

Parameters:
Parameter Input/Output Description
id Input The action ID.
status Output The return value.
Description:

This method sends the action with ID id to this device. Only use this method
where the action requires no data.

Return values:

Value Description

ECU OK Success.

ECU ConErr If the connection is invalid.

ECU IDErr If the action ID is invalid.

ECU ValErr If the sent data is invalid. l.e. there should have been some.

13.11.3 Method: GetActionByID()

Get an interface to an action by action ID.

Method declaration:

HRESULT stdcall GetActionByID(
[in] long id,
[out, retval] ICVcAction ** action

)

Parameters:
Parameter Input/Output Description
id Input The action ID.
action Output The return value.
Description:

This method returns an ICVcAction interface corresponding to the action
with the specified action ID. NULL is returned if the ID is invalid. The first
action has ID 1.

230 COM Bridge Tutorial and Reference

RTA-OSEK for PC User Guide

Return values:

Value Description
<an interface> | An ICVcAction interface corresponding to the specified
action.

13.11.4 Method: GetActionByName()

Get an interface to an action by name.

Method declaration:

HRESULT stdcall GetActionByName (
[in] BSTR id,
[out, retval] ICVcAction ** action

)

Parameters:
Parameter Input/Output Description
id Input The action name.
action Output The return value.
Description:

This method returns an ICVcAction interface corresponding to the action
with the specified name. NULL is returned if the name is invalid.

Return values:

Value Description
<an interface> | An ICVcAction interface corresponding to the specified
action.

13.11.5 Method: GetActionCount()

Get the number of actions supported by the device.

Method declaration:

HRESULT stdcall GetActionCount (
[out, retval] long * count

)

Parameters:
Parameter Input/Output Description
count Output The return value.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 231

Description:

This method returns the number of actions supported by the device.

Return values:

Value Description
<a value> The number of actions supported by the device.

13.11.6 Method: GetEventByID()

Get an interface to an event by event ID.

Method declaration:

HRESULT stdcall GetEventByID (
[in] long id,
[out, retval] ICVcEvent ** event

)

Parameters:
Parameter Input/Output Description
id Input The event ID.
event Output The return value.
Description:

This method returns an ICVcEvent interface corresponding to the event
with the specified event ID. NULL is returned if the ID is invalid. The first event
has ID 1.

Return values:

Value Description
<an interface> | An ICVcEvent interface corresponding to the specified
event.

13.11.7 Method: GetEventByName()

Get an interface to an event by name.

Method declaration:

HRESULT stdcall GetEventByName (
[in] BSTR id,
[out, retval] [out, retval] ICVcEvent ** event

232 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Parameters:

Parameter Input/Output Description

id Input The event name.

event Output The return value.
Description:

This method returns an ICVcEvent interface corresponding to the event
with the specified name. NULL is returned if the name is invalid.

Return values:

Value Description
<an interface> | An ICVcEvent interface corresponding to the specified
event.

13.11.8 Method: GetEventCount()

Get the number of events supported by the device.

Method declaration:

HRESULT _stdcall GetEventCount (
[out, retval] long * count

)

Parameters:
Parameter Input/Output Description
count Output The return value.
Description:

This method returns the number of events supported by the device.

Return values:

Value Description
<a values> The number of events supported by the device.

13.11.9 Method: Hook()

Hook or unhook an event.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 233

Method declaration:

HRESULT _stdcall Hook (

[in] long id,
[in] long value,
[out, retval] IVcECU Status * status
)
Parameters:
Parameter Input/Output Description
id Input The event ID.
value Input 1 to hook an event or zero to
unhook an event.
status Output The return value.
Description:

This method controls whether the event with ID id is hooked or unhooked. If
the event is hooked then when the device raises the event a COM event is
fired (via the event sink ICVcDeviceEvents). If value is one the specified
event is hooked, if value is zero the specified event is unhooked. By default

all events are unhooked.

Return values:

Value Description

ECU_OK Success.

ECU ConErr If the connection is invalid.
ECU_ IDErr If the event ID is invalid.

13.11.10 Method: Name()

Get the device’s name.

Method declaration:

HRESULT stdcall Name (

[out, retval] BSTR * name
)
Parameters:
Parameter Input/Output Description
name Output The return value.
Description:

This method returns the name of the device.

234

COM Bridge Tutorial and Reference

RTA-OSEK for PC User Guide

Return values:

Value Description
<a value> The name of the device.

13.11.11 Method: QueryEvent()

Query (poll) the value of an event.

Method declaration:

HRESULT stdcall QueryEvent (

[in] long id,

[in, out] BSTR * wvalue,

[out, retval] IVcECU Status * status
)

Parameters:
Parameter Input/Output Description
id Input The event ID.
value Input/Output Event input data on call and the
value of the event on return.
status Output The return value.
Description:

This method queries (polls) the event with ID id. If the event requires input
data then this is passed in value. On successful return the value of the event
isin value.

The data passed to and from the object is in string form. It can be converted
from/to the native values by reference to the format specifiers that can be
obtained via QueryFormat () and ReplyFormat ().

Return values:

Value Description

ECU_OK Success.

ECU ConErr If the connection is invalid.
ECU_ IDErr If the event ID is invalid.
ECU ValErr If the sent data is invalid.

13.11.12 Method: QueryFormat()

Get the data format for an event’s input data.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 235

Method declaration:

HRESULT stdcall QueryFormat (
[in] long id,
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
id Input The event ID.
value Output The return value.
Description:

This method returns the input data-format string for the event with ID id. The
return value is empty if id is invalid. This data format string describes the
format of the data that should be provided as input to QueryEvent ().
(Many events have no input data, so this is often empty.)

Return values:

Value Description
<a strings> The input data format string for the specified event.

13.11.13 Method: ReplyFormat()

Get the data format for an event'’s value.

Method declaration:

HRESULT stdcall ReplyFormat (
[in] long id,
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
id Input The event ID.
value Output The return value.
Description:

This method returns the data-format string for the value of the event with ID
id. The return value is empty if id is invalid. This data format string describes
the format of the data that is returned by QueryEvent ().

Return values:

Value Description
<a strings> The data format string for the value of the specified event.

236 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

13.11.14 Method: SendAction()

Send an action containing data.

Method declaration:

HRESULT _stdcall SendAction(
[in] long id,
[in] BSTR value,
[out, retval] IVcECU Status * status

)

Parameters:
Parameter Input/Output Description
id Input The action ID.
value Input Action data.
status Output The return value.
Description:

This method sends the action with ID id to this device. The data passed to the
object is in string form. It can be converted from the native values by
reference to the format specifier that can be obtained via SendFormat ().

Return values:

Value Description

ECU OK Success.

ECU _ConErr If the connection is invalid.
ECU IDErr If the action ID is invalid.
ECU ValErr If the sent data is invalid.

13.11.15 Method: SendFormat()

Get the data format for an action.

Method declaration:

HRESULT _stdcall SendFormat (
[in] long id,
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
id Input The action ID.
value Output The return value.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 237

Description:

This method returns the data format string for the action with ID id. This
shows the format of the data that is passed to SendAction (). The return
value is empty if id is invalid.

Return values:

238

Value

Description

<a string>

The data format string for the specified action.

COM Bridge Tutorial and Reference

RTA-OSEK for PC User Guide

13.12 ICVcDeviceEvents

This interface is implemented by a client that wishes to receive COM events
when a virtual device raises an event. Note that the event hook must have
been activated via ICVcDevice.Hook (). Hooking or unhooking the same
event via ICVcECU or ICVcEvent does not affect ICvcDeviceEvents.

13.12.1 Method: OnEventChange()

Event hook callback.

Method declaration:

HRESULT OnEventChange (
[in] long id,
[in] BSTR wvalue

)

Parameters:
Parameter Input/Output Description
id Input The event ID.
value Input The event's value.
Description:

This method is called when a hooked event is raised. The format of the data in
value is the same as the data returned by ICVcDevice method
QueryEvent ().

Return values:

Value Description
<none>

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 239

13.13 CVcAction

A CVcAction object represents a single action on a specific device in a
Virtual ECU. A CVcAction object must only be obtained via the CveDevice

method GetActionxxx (). [t cannot be created via
CoCreateInstance (). This is to maintain the link between the device and
the action.

A CVcAction object provides the ability to send an action to a Virtual ECU.
CVcAction implements the interface ICVcAction.

13.14 ICVcAction

This is the interface to a virtual device action.

13.14.1 Method: ActionID()

Get the action’s ID.

Method declaration:

HRESULT stdcall ActionID(
[out, retval] long * id

)

Parameters:

Parameter Input/Output Description

id Output The return value.
Description:

This method returns the ID of the action. This is the number by which the
action is known within its device. The first action has ID 1.

Return values:

Value Description
<a value> The ID of the action.

240 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

13.14.2 Method: Do()

Send a data-less action.

Method declaration:

HRESULT stdcall Do (
[out, retval] IVcECU Status * status
)

Parameters:
Parameter Input/Output Description
status Output The return value.
Description:

This method sends the action. Only use this method where the action requires
no data.

Return values:

Value Description

ECU OK Success.

ECU _ConErr If the connection is invalid.

ECU ValErr If the sent data is invalid. |.e. there should have been some.

13.14.3 Method: Name()

Get the action’s name.

Method declaration:

HRESULT _stdcall Name (
[out, retval] BSTR * name

)

Parameters:
Parameter Input/Output Description
name Output The return value.
Description:

This method returns the name of the action.

Return values:

Value Description

<a value> The name of the action.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference

241

13.14.4 Method: Send()

Send an action containing data.

Method declaration:

HRESULT _stdcall SendAction(

[in] BSTR value,

[out, retval] IVcECU Status * status
)

Parameters:
Parameter Input/Output Description
value Input Action data.
status Output The return value.
Description:

This method sends the action. The data passed to the object is in string form.
It can be converted from the native values by reference to the format specifier
that can be obtained via SendFormat ().

Return values:

Value Description

ECU OK Success.

ECU ConErr If the connection is invalid.
ECU ValErr If the sent data is invalid.

13.14.5 Method: SendFormat()

Get the data format for an action.

Method declaration:

HRESULT _stdcall SendFormat (
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
value Output The return value.
Description:

This method returns the data format string for the action. This shows the
format of the data that is passed to Send ().

242 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Return values:

Value Description
<a strings> The data format string for the specified action.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 243

13.15 CVcEvent

A CVcEvent object represents a single event on a specific device in a Virtual
ECU. A CVvcEvent object must only be obtained via the CvcDevice method
GetEventxxx (). It cannot be created via CoCreateInstance (). This is
to maintain the link between the device and the event.

A CVcEvent object provides the ability to query the current value of an
event. It can also enable and disable the raising of COM events for events
raised by virtual devices.

CVcEvent implements the interface ICVcEvent.

13.16 ICVcEvent

This is the interface to a virtual device event.

13.16.1 Method: EventID()

Get the events's ID.

Method declaration:

HRESULT stdcall EventID(
[out, retval] long * id

)

Parameters:

Parameter Input/Output Description

id Output The return value.
Description:

This method returns the ID of the event. This is the number by which the
event is known within its device. The first event has ID 1.

Return values:

Value Description
<a values> The ID of the event.

13.16.2 Method: Hook()

Hook or unhook the event.

244 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

Method declaration:

HRESULT _stdcall Hook (

[in] long value,
[out, retval] IVcECU Status * status

)

Parameters:
Parameter Input/Output Description
value Input 1 to hook the event or zero to
unhook the event.
status Output The return value.
Description:

This method controls whether the event is hooked or unhooked. If the event
is hooked then when the device raises the event a COM event is fired (via the
event sink ICVcEventEvents). If value is one the event is hooked, if
value is zero the event is unhooked. By default all events are unhooked.

Return values:
Value Description
ECU_OK Success.
ECU _ConErr If the connection is invalid.

13.16.3 Method: Name()

Get the event’s name.

Method declaration:

HRESULT stdcall Name (
[out, retval] BSTR * name

)

Parameters:
Parameter Input/Output Description
name Output The return value.

Description:

This method returns the name of the event.

Return values:

Description
The name of the event.

Value
<a value>

COM Bridge Tutorial and Reference 245

RTA-OSEK for PC User Guide

13.16.4 Method: Query()

Query the value of an event.

Method declaration:

HRESULT _stdcall QueryEvent (
[in, out] BSTR * wvalue,

[out, retwval]

)

IVCECU_Status * status

Parameters:
Parameter Input/Output Description
value Input/Output Event input data on call and the
value of the event on return.
status Output The return value.
Description:

This method queries the event. If the event requires input data then this is

passed in value. On successful return the value of the event is in value.

The data passed to and from the object is in string form. It can be converted
from/to the native values by reference to the section on data format specifiers.

Return values:

Value Description

ECU_OK Success.

ECU ConErr If the connection is invalid.
ECU ValErr If the sent data is invalid.

13.16.5 Method: QueryFormat()

Get the data format for an event’s input data.

Method declaration:

HRESULT stdcall QueryFormat (
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
value Output The return value.

246 COM Bridge Tutorial and Reference

RTA-OSEK for PC User Guide

Description:

This method returns the input data-format string for the event. This data
format string describes the format of the data that should be provided as
input to Query (). (Many events have no input data, so this is often empty.)

Return values:

Value Description
<a strings The input data format string for the event.

13.16.6 Method: ReplyFormat()

Get the data format for an event'’s value.

Method declaration:

HRESULT stdcall ReplyFormat (
[out, retval] BSTR * wvalue

)

Parameters:
Parameter Input/Output Description
value Output The return value.
Description:

This method returns the data-format string for the value of the event. This
data format string describes the format of the data that is returned by

Query ().

Return values:

Value Description
<a strings> The data format string for the value of the event.

RTA-OSEK for PC User Guide COM Bridge Tutorial and Reference 247

13.17 ICVcEventEvents

This interface is implemented by a client that wishes to receive COM events
when a virtual device raises an event. Note that the event hook must have
been activated via ICVcEvent .Hook (). Hooking or unhooking the same
event via ICVcECU or ICVcDevice does not affect ICVcEventEvents.

13.17.1 Method: OnEventChange()

Event hook callback.

Method declaration:

HRESULT OnEventChange (
[in] BSTR value
)

Parameters:
Parameter Input/Output Description
value Input The event's value.
Description:

This method is called when a hooked event is raised. The format of the data in
value is the same as the data returned by ICVcEvent method Query ().

Return values:

Value Description
<none>

248 COM Bridge Tutorial and Reference RTA-OSEK for PC User Guide

14 Compiler Configuration

RTA-OSEK for PC has been designed to work with almost any PC C/C++
compiler. It is pre-configured to work with the following compilers:

e MinGW/gcc (tested with version 3.4.2)

e Microsoft Visual C++ 5.0

e Microsoft Visual Studio 2003

e Borland C++ 5..5.1/ Borland C++ Builder 5

e Borland C++ 5.8.1/ Borland Developer Studio 2006

LiveDevices cannot guarantee that RTA-OSEK for PC will work with a
compiler that is not in the above list but there is a good chance that it will as
long as the compiler obeys the following rules:

e The C/C++ char type is 8 bits.

* The C/C++ short type is 16 bits.
e The C/C++ int type is 32 bits.

e The C/C++ long type is 32 bits.

e The C/C++ float type is 32 bits.
* The C/C++ double type is 64 bits.

e The compiler includes header files and libraries to support the
Windows API. e.g. the header file windows . h is provided.

* Fields within a C struct are stored in memory in the order they
occur in the structure definition.

» Fields within a C struct are aligned on natural boundaries. i.e. a
short is always aligned on a 16 bit boundary, an int, a long and a
float is always aligned on a 32 bit boundary and a double is always
aligned on a 64 bit boundary.

Each different compiler supported by RTA-OSEK is called a “variant”.
Configuring RTA-OSEK for PC for a new variant consists of three steps:

* Modifying toolinit.bat to include details of the variant.

» Creating an RTA-OSEK initialization file for the variant.

» Possibly creating new floating-point wrappers.
The first step is to think of a name for the new variant. This should be
reasonably short and should follow C identifier rules (i.e. can contain letters,
numbers and ‘_’ and is case sensitive). As an illustration, we will add a new
variant that is a variation of the standard MinGW/gcc variant that has

debugging enabled. The standard MinGW/gcc variant is called “MinGW"; we
will call the new variant “MinGW_DBG".

RTA-OSEK for PC User Guide Compiler Configuration

249

14.1 Modifying Toolinit.bat

The toolinit.bat file is used by RTA-OSEK to setup environment variables
containing paths to the compiler, assembler, linker and compiler header file
directories. You will need to modify toolinit.bat to add support for a
new variant.
Near the top of toolinit.bat you will see a block of statements like:

if not @%l==@ set VRTA=%1

if @%VRTA%$@==@MinGW@ goto MINGW

if @%VRTA%$@==@BorlandCe@ goto BCPP

if @%VRTA%@==@BDS2006@ goto BDS_ 2006

if @%VRTA%@==@VisualC5@ goto VCPP5

if @%VRTA%@==@VS2003@ goto VS2003
These if statements branch to the part of toolinit.bat that sets up the
environment for a specific variant. The variant name is passed into
toolinit.bat either on the command line or in the VRTA environment
variable. We need to add an analogous if statement for our new variant. For
example:

if not @%1==@ set VRTA=%1

if @%VRTA%$@==@MinGW@ goto MINGW

if @%VRTA%@==@BorlandC@ goto BCPP

if @%VRTA%@==@BDS2006@ goto BDS_ 2006

if @%VRTA%$@==@VisualC5@ goto VCPP5

if @%VRTA%@==@VS2003@ goto VS2003

if @%VRTA%@==@MinGW DBG@ goto MINGW DBG
The line in bold makes toolinit.bat branch to the label MINGW DBG
when the variant “MinGW_DBG" is specified.
Further on in toolinit.bat you will see blocks of statements like:

rem ================= MINGW ================

:MINGW

rem tools installation directory

set CBASE=c:\mingw

rem location of C compiler

set CC=%CBASE%\bin\gcc.exe

rem location of C++ compiler

set AS=%CBASE%\bin\gcc.exe

rem location of linker

set LNK=%CBASE%\bin\g++.exe

rem location of Archiver / librarian

set AR=%CBASE%\bin\ar.exe

rem Set location of C include files

set CBASE INC=%CBASE%\include

250 Compiler Configuration RTA-OSEK for PC User Guide

rem Default settings
SET LIBS=-lwinmm -lws2 32
SET _OBJ=o0

goto check

Again we need to add a section for our new variant. Since our new variant is
also using MinGW/gcc the environment variable settings will be the same as
the standard MinGW variant. Obviously if you were adding a variant for a
different compiler the environment variable settings would be different. Have
a look at the other standard variants in toolint .bat for examples.

Our new section in toolinit .bat looks like:

rem ============== MINGW Debugging =============
:MINGW_ DBG

rem tools installation directory

set CBASE=C:\mingw

rem location of C compiler
set CC=%CBASE%\bin\gcc.exe

rem location of C++ compiler
set AS=%CBASE%\bin\gcc.exe

rem location of linker
set LNK=%CBASE%\bin\g++.exe

rem location of Archiver / librarian
set AR=%CBASE%\bin\ar.exe

rem Set location of C include files
set CBASE_INC=%CBASE%\include

rem Default settings
SET LIBS=-lwinmm -lws2 32
SET OBJ=o0

goto check

The environment variables set up should be self explanatory. The LIBS
variable contains the default libraries need when a Virtual ECU executable is
linked. Here we have specified the Windows multi-media library (winmm)
needed by vrtaClock devices and the winsock2 library (ws2_32). The 0OBJ
variable contains the object file suffix.

One slight oddity is that we set the assembler as gcc . exe in the line:

‘set AS=%CBASE%\bin\gcc.exe ‘
This is because in a standard RTA-OSEK port the OSEK configuration is
generated in an assembly file (osgen.asm) and RTA-OSEK uses the AS
variable to find the assembler to assemble it. In RTA-OSEK for PC the OSEK

configuration is generated in a C++ file (osgen. cpp) so we need to arrange
for RTA-OSEK to use the C/C++ compiler to “assemble” osgen. cpp.

RTA-OSEK for PC User Guide Compiler Configuration

251

14.2 Creating a new Variant

The next step is to create a description file for the new variant. The file for a
variant called “XxxX" is called “vrta XXxXX.ini". This file should be in the
“bin” directory. The “Target .ini files” chapter of the RTA-OSEK Reference
Guide contains full details of how to write an initialization file.

The initialization file for our new wvariant will be called
“vrta_ MinGW DBG.ini” and look like:
[globals]

Target=Virtual
numstacks=1
StackNameO=Processor Stack

; Tell RTA-OSEK that when the compiler is invoked
; the environment variable %c% should contain the
; name of the C file to be compiled.

c_env="c"

; Tell RTA-OSEK that when the compiler is invoked
; the environment variable %0% should contain the
; name of the object file to be created.

obj env="o"

; Tell RTA-OSEK that when the assembler is invoked
; the environment wvariable %c% should contain the
; name of the assembly file to be assembled.

; Remember that in RTA-OSEK for PC osgen is a C++
; file rather than an assembly file.

asm_env="c"

; Insert a compiler command to specify the object

; file.

c_insertopt=" -o%o% "

; The compiler option to set an include directory.
c_include="-I"

; The compiler option to define a macro.
c_define="-D"

; The default compilation options.
c_defopt="-c -g "

; The options used to compile osekdefs.c.
osekdefsc defopt="-c -g "

; Insert an "assembler" command to specify the
; object file.

a_insertopt=" -o0%o0% "

; The "assembler" option to set an include
; directory.

a_include="-I"

; The "assembler" option to define a macro.

a_define="-D"

; The default "assembly" options.

a_defopt="-c -g "

; The options used to "assemble" osgen.cpp. We use

; %AOPTS% here because we want the default
"assembly" options that include the include path

; settings.

osgen_defopt="%A0PTS% "

; The object file suffix.

extobj="0o"

; The "assembly" file suffix. Remember that in

252 Compiler Configuration RTA-OSEK for PC User Guide

; RTA-OSEK for PC osgen is a C++ file rather than
; an assembly file.

extasm="cpp"

; The library file extension.

extlib="a"

; Ensure that the interrupt vectors have the
; correct names (you can put descriptive names here) .
[vectors]
0x0=1
0x1=2
0x2=3
0x3=4
0x4=5
0x5=6
0x6=7
0x7=8
0x8=9
0x9=10
Oxa=11
0xb=12
Oxc=13
0xd=14
Oxe=15
0xf=16
0x10=17
0x11=18
0x12=19
0x13=20
0x14=21
0x15=22
0x16=23
0x17=24
0x18=25
0x19=26
Oxla=27
0x1b=28
0x1lc=29
0x1d=30
Oxle=31
0x1f=32

We have also set the options used to "assemble” osgen.cpp to be
"$AOPTS%"”. AOPTS will contain the options to “assemble” a general
assembly file and will include directives to set up include paths to the RTA-
OSEK for PC header files. These header files are needed to “assemble”
osgen.cpp. An alternative would be to use the line:
osgen_defopt="-c -g -I. -I%APPL INC% -I%RTA INC% -
I$CBASE INC% "

RTA-OSEK for PC User Guide Compiler Configuration 253

14.3 Floating-point Wrappers

254

RTA-OSEK saves the processor’s floating-point registers for tasks and ISRs that
use floating-point and can preempt other FP tasks or ISRs.

Default code is provided in VM to do this. However, it is possible for you to
provide your own code to save the floating-point registers if you need to
change the default behavior. The RTA-OSEK Binding Manual PC has details on
how this is done.

The files osfptgt.c and osfptgt.h contain examples of user-provided
floating-point wrappers for the standard variants. If you wish to use your own
floating-point wrappers you will need to modify osfptgt.c and
osfptgt.h for your new compiler.

Compiler Configuration RTA-OSEK for PC User Guide

15 Command Line Option Reference

This chapter provides a list of the command line options that are supported by
Virtual ECU executables, vrtaServer and vrtaMonitor.

15.1 Virtual ECU Executables

The command line options listed below can be used when a Virtual ECU
executable is run to control the behavior of the Virtual ECU. Note that options
other than those listed below may be used with a Virtual ECU executable and
they will be ignored by the Virtual Machine but can be recovered by your code
by querying the ApplicationManager.

15.1.1 -alias=name (override the default alias)

When a Virtual ECU registers with vrtaServer it is normally assigned an
alias that is simply the name of the Virtual ECU’s executable (e.g. vecu.exe).
The option —alias=name causes the token name to be used as the Virtual
ECU’s alias (if possible).

15.1.2 -lic=<licfile> (select a license file)

The -lic=<licfile> option tells a Virtual ECU to look in the license file
<licfiles> for avalid license.

15.1.3 -priority=<n> (set the Windows priority)

By default a Virtual ECU runs at the Window's priority
NORMAL PRIORITY CLASS. If you wish to run a Virtual ECU at a different
Windows priority the -priority=<n> option can be used; where <n> is:

<n> Windows Priority Class

IDLE PRIORITY CLASS

BELOW_NORMAL PRIORITY CLASS

NORMAL PRIORITY CLASS

ABOVE NORMAL PRIORITY CLASS

HIGH PRIORITY CLASS

G |W N PO

REALTIME PRIORITY CLASS

Increasing the priority of a Virtual ECU will improve how closely it
approximates “real-time” behavior but will negatively affect the performance
of other applications running in the same PC.

15.1.4 -silent (select silent or GUI mode)

The -silent option causes a Virtual ECU to be loaded in silent mode. In
silent mode the Virtual ECU does not display its own (embedded) GUI (it is

RTA-OSEK for PC User Guide Command Line Option Reference

255

256

assumed that vrtaMonitor or a similar program will be used to control the
Virtual ECU).

If the —silent option is not used then the Virtual ECU is loaded in GUI
mode. In GUI mode the Virtual ECU displays its own GUI.

15.1.5 -slave (select slave or autostart mode)

The -slave option causes a Virtual ECU to be loaded in slave mode. In slave
mode the application thread is not started immediately after the
vrtaStart () Virtual Machine APl has been called. Instead the Virtual
Machine waits until a Start action is sent to the Application Manager before
starting the application thread.

In slave mode the Virtual Machine does not terminate immediately after the
application thread returns from 0S MAIN (). Instead the Virtual Machine
waits until a Terminate action is sent to the Application Manager.

If the —slave option is not used then the Virtual ECU loads in autostart
mode. In autostart mode the application thread starts immediately after the
vrtaStart () Virtual Machine API has been called.

In autostart mode the Virtual Machine terminates immediately after the
application thread returns from 0S_MAIN ().

Command Line Option Reference RTA-OSEK for PC User Guide

15.2 vrtaServer

vrtaServer supports the command line options listed below.

15.2.1 -install (install as a service)

The -install option causes vrtaServer to install itself as a Windows
service. Unless the —silent option is also specified a confirmation message
will be displayed.

15.2.2 -lic=<licfile> (select a license file)

The -lic=<licfile> option tells vrtaServer to look in the license file
<licfiles for avalid license.

15.2.3 -p<n> (specify the TCP port)

vrtaServer searches a pre-defined set of TCP ports for an empty port on
which to listen for connections. The -p<n> option forces vrtaServer to
listen on TCP port <n> for connections. <n> can be a decimal or hexadecimal
(0x prefix) number.

15.2.4 -silent (silent install or uninstall)

Installation and un-installation as a Windows service normally generates a
confirmation message. The -silent option stops the confirmation message
being displayed. See —install and -uninstall.

15.2.5 -standalone (run in standalone mode)

The -standalone option causes vrtaServer to run as a standalone
Windows application rather than as a service. If you want to manually run
vrtaServer rather than installing it as a service then use the ~standalone
option.

15.2.6 -start (start the vrtaServer service)

If vrtaServer is installed as service but has not been started then the -
start option will cause the service to be started. You do not normally have
to start the service yourself —a VECU or vrtaMonitor will start the service if it
needs to.

RTA-OSEK for PC User Guide Command Line Option Reference 257

15.2.7 -stop (stop the vrtaServer service)

If vrtaServer is installed as service and has been started then the -stop
option will cause the service to be stopped.

15.2.8 -uninstall (un-install as a service)

The -uninstall option causes vrtaServer to uninstall itself as a
Windows service. If the —silent option is not also specified a confirmation
message will be displayed.

258 Command Line Option Reference RTA-OSEK for PC User Guide

15.3 vrtaMonitor

vrtaMonitor supports two sets of command line options. The global
options affect the overall operation of vrtaMonitor. It does not matter
where the global options appear in the command line.

The sequential options are processed in the order they appear on the
command line.

15.3.1 Command Files

Command line options can be passed to vrtaMonitor in a command file. If
vrtaMonitor encounters a statement of the form e<file> on its
command line it will start processing command line options from the file
<file>. Each option in <f£ile> must be on a separate line.

15.4 vrtaMonitor Global Options

The following options affect the overall operation of vrtaMonitor.

15.4.1 -f<filename> (close when <filename> appears)

The -f<filename> options tells vrtaMonitor to run until the file
<filename> appears and then to terminate.

15.4.2 -k (terminate with specific error level)

The -k option causes vrtaMonitor to terminate with a specific error level
when certain events occur.

Error level

Event

1

Cannot connect to vrtaServer when auto-connection requested
from the command line.

Cannot attach to an alias specified via ~alias.

Cannot auto-load a specified Virtual ECU.

Closed as a result of a -t timeout.

Cannot load scripting engine.

Cannot run a script.

Failed to load.

Closed as a result of —f£.

Ol |Nd/aau|pdlWIN

Failed to send an action or receive an event.

RTA-OSEK for PC User Guide Command Line Option Reference 259

15.4.3 -lic=<licfile> (select a license file)

The -1lic=<licfile> option tells vrtaMonitor to look in the license file
<licfiles> for avalid license.

15.4.4 -log=<file> (write to a log file)

The -log=<file> options causes vrtaMonitor to log activity to the file
<files.

15.4.5 -scripter=<name> (select a scripting engine)

The -scripter=<name> option selects the scripting engine called
rtaScript<names>.dll.

15.4.6 -t<n> (close after <n> seconds)

The -t<n> options tells vrtaMonitor to run for <n> seconds and then
terminate.

15.5 vrtaMonitor Sequential Options

The following options are processed in the order they appear on the
command line.

15.5.1 Virtual ECU Executable Name (auto-load)

If vrtaMonitor encounters the name of a Virtual ECU executable on its
command line it attempts to load the named Virtual ECU. The Virtual ECU
executable may be on the local PC or a remote PC depending on whether or
not the ~host option has been used. The -4, -r, -n and —g options affect
how the Virtual ECU is auto-loaded.

15.5.2 -alias=<name> (connect to VECU)

The -alias=<name> option tells vrtaMonitor to try and connect to an
existing (loaded) Virtual ECU that has the alias <name>. By default
vrtaMonitor assumes the Virtual ECU is on the local PC. If it is not the -
host option should be used.

15.5.3 -d (load but not start a Virtual ECU)

The -d options causes the next Virtual ECU auto-loaded to be loaded but not
started.

260 Command Line Option Reference RTA-OSEK for PC User Guide

15.5.4 -g (load with a GUI)

The —g options causes the next Virtual ECU auto-loaded to run with an
embedded GUI (i.e. run in GUI mode).

15.5.5 -host=<hostname> (select a remote PC)

The -host=<hostname> option selects the remote PC for the ~alias and
auto-load options. <hostnames is the host name of the remote PC.

15.5.6 -mon=<dev>.<event> (monitor event)

The -mon=<devs>.<event> options tells vrtaMonitor to monitor the
event called <events> from the device called <devs in the Virtual ECU to
which vrtaMonitor has most recently attached (-alias) or auto-loaded.

15.5.7 -n (load without a GUI)

The -n options causes the next Virtual ECU auto-loaded to run without an
embedded GUI (i.e. run in silent mode). This is the default when auto-loading
a Virtual ECU.

15.5.8 -p<n> (select TCP port)

The -p<n> option tells vrtaMonitor that vrtaServer is listening on port
<n>. By default vrtaMonitor looks for vrtaServer on a set of pre-
defined TCP port numbers. <n> may be a decimal or hexadecimal (0x prefix)
number.

15.5.9 -quit (terminate)

The —quit option causes vrtaMonitor to terminate.

15.5.10 -r (load and start a VECU)

The -r options causes the next Virtual ECU auto-loaded to be loaded and
started. This is the default when auto-loading a Virtual ECU.

15.5.11 -script=<file>

The —script=<file> option causes vrtaMonitor to run the script in the
file <file>. Please contact LiveDevices if you need information on monitor
scripts.

RTA-OSEK for PC User Guide Command Line Option Reference

261

15.5.12 -send=<dev>.<act> (send action)

The —send=<dev>.<act> options tells vrtaMonitor to send the data-less
action called <act> to the device called <dev> in the Virtual ECU to which
vrtaMonitor has most recently attached (-alias) or auto-loaded.

15.5.13 -send=<dev>.<act>(<str>) (send action)

The -send=<devs>.<act>(<str>) options tells vrtaMonitor to send
the action called <act> to the device called <devs> in the Virtual ECU to
which vrtaMonitor has most recently attached (-alias) or auto-loaded.
The string <str> is sent as action data.

15.5.14 -start (start a VECU)

The -start option tells vrtaMonitor to send a Start action to the
Application Manager of the next Virtual ECU auto-loaded.

15.5.15 -wait=<n> (wait)

The —wait=<n> option causes vrtaMonitor to wait for approximately <n>
milliseconds before processing the next command line option.

Command Line Option Reference RTA-OSEK for PC User Guide

16 Windows Notes

Although RTA-OSEK for PC tries very hard to simulate the behavior of a real
ECU, ultimately Virtual ECUs are running under Windows alongside other
applications. This chapter contains notes about Windows related behavior that
developers may find useful.

16.1 Real-Time Behavior

When an embedded application runs on a real ECU the application is the only
code using the ECU's processor. As a result the real-time behavior is
predictable. However an application running in a Virtual ECU has to share the
processor with other applications and Windows itself. As a result it is not
possible to completely predict the real-time behavior of applications running
in Virtual ECUs.

Despite this, on the whole our experience has shown that applications
running in Virtual ECUs exhibit very close to real-time behavior. This is due to
the very fast processor speeds of Windows PCs. For example, consider an
embedded application that needs to read and then process input from a
sensor every 5 milliseconds. On a real ECU it might take almost 5 milliseconds
to carry out this activity. However on a Windows PC it may only take 0.5
milliseconds. Thus even if Windows assigns the processor to another
application for 3 milliseconds the Virtual ECU application can still carry out the
necessary processing in the 5 milliseconds allowed.

If your application is not behaving as you expect for timing reasons you can
try the following:

e Shutdown other Windows applications so that more of the processor’s
time can be dedicated to the Virtual ECU.

* Increase the process priority of the Virtual ECU - see the
-priority=<n> command line options.

16.2 Calling the C/C++ Runtime and Windows

In order to simulate interrupts in a Virtual ECU, the Virtual Machine has to
asynchronously manipulate the stack of the application thread (the thread
that calls 0s MAIN()). Few C/C++ runtime functions or Windows API
functions can cope with the stack being changed asynchronously. Therefore if
the application thread needs to call a C/C++ runtime function (including
printf ()) or a Windows APl function it must make the call in an
uninterruptible section. See the vrtaEnterUninterruptibleSection ()
and vrtaleaveUninterruptibleSection () calls.

16.3 vrtaVMxxx.dll Location

When a Virtual ECU is started it tries to load the appropriate VM DLL
(vrtavMs.dll etc.). The VECU first tries to load the VM DLL using the

RTA-OSEK for PC User Guide Windows Notes 263

264

normal DLL search rules. That is, it searches the following locations in the
specified order:

1. The directory containing the VECU.

The current directory.

The 32-bit Windows system directory.

The Windows directory.

. The directories listed in the PATH environment variable.

If the VECU fails to find the VM DLL then by default it tries to load it from the
directory c:\rta\bin.

Therefore, if you have installed RTA-OSEK for PC in c:\rta (the default
location) a VECU will always be able to find the appropriate VM DLL. If you
have installed RTA-OSEK for PC in a different location then there are three
ways of ensuring that VECUs can find VM DLLs:

e Add the directory <rta>\bin to the PATH environment variable.
Where <rta> is the RTA-OSEK installation directory.

* Edit the file <rtas\vrtalinc\vrtaCore.cpp and set the
DLL_SEARCH #define to be the directory containing the VM DLLs (i.e.
<rtas>\bin).

» Define the DLL. SEARCH macro to be the directory containing the VM
DLLs when vrtaCore.cpp or osgen. cpp is compiled. For example,

define the DLL_SEARCH macro using a compiler command line
option.

SEENNVIEN

Windows Notes RTA-OSEK for PC User Guide

Glossary

Action

ApplicationManager
(AM)

Application thread

AUTOSAR

Autostart mode

Diagnostic interface

ECU

Event

GUI mode

Interrupt Control
Unit (ICU)

OSEK™

RTA-OSEK for PC User Guide

An action is a command sent to a virtual device.

The virtual device that controls aspects of the
application thread.

This is the Windows thread that runs the Virtual
ECU application code — including OSEK tasks.
The application thread is created when the
vrtaStart () APl is called. The application
thread’s entry point is the function called
OS MAIN().

AUTOSAR is a partnership that is seeking to
establish an open standard for automotive E/E
architecture. See http://www.autosar.org

In autostart mode the application thread starts
immediately after the vrtaStart () Virtual
Machine APl has been called and the Virtual
Machine terminates automatically after the
application thread returns from 0S_MAIN ().

A Virtual ECU has a diagnostic interface that
can be used by external applications to monitor
and manage the Virtual ECU. This diagnostic
interface uses TCP/IP. The vrtaServer
application keeps track of the port numbers
used by Virtual ECUs on its local PC.

Electronic Control Unit

An event is a signal generated (raised) by a
virtual device to inform interested parties that
something has happened. Events may or may
not contain data.

In GUI mode the Virtual ECU displays its own
GUI.

The virtual device that controls aspects of the
application’s virtual interrupts.

OSEK is a registered trademark of Siemens AG.
It was founded in May 1993 as a joint project in
the German automotive industry. Its aims are to
provide an “industry standard for an open-
ended architecture for distributed control units
in vehicles.”

OSEK is an abbreviation for "Offene Systeme
und deren Schnittstellen fur die Elektronik im
Kraftfahrzeug”, which translates as Open
Systems and the Corresponding Interfaces for
Automotive Electronics.

Glossary

265

)
]
(%)
v
Q
=
<

266

Silent mode

Slave mode

Virtual devices

Virtual ECU
(VECU)

Virtual Machine
(VM)

vrtaMonitor

VRTA

vrtaServer

Glossary

See http://www.osek-vdx.org/

In silent mode the Virtual ECU does not display
its own GUI.

In slave mode the application thread is not
started immediately after the vrtaStart ()
Virtual Machine API has been called. Instead the
Virtual Machine waits until a Start action is sent
to the Device Manager before starting the
application thread.

In slave mode the Virtual Machine does not
terminate immediately after the application
thread returns from 0S _MAIN (). Instead the
Virtual Machine waits until a Terminate action is
sent to the Device Manager.

Virtual devices are software components within
Virtual ECUs that simulate hardware devices.
Virtual devices include: clocks, counters,
sensors, actuators and CAN controllers.

A Virtual ECU is composed of an application,
the Virtual Machine, virtual devices and possibly
an RTA-OSEK kernel. A Virtual ECU is the RTA-
OSEK for PC analog of an application running
on a real ECU.

The Virtual Machine is the component of RTA-
OSEK for PC that simulates an ECU. The Virtual
Machine simulates interrupts, manages virtual
devices, manages the application thread and
manages communication with external
applications. The Virtual Machine is supplied as
a DLL. Virtual ECU start-up code links to the
Virtual Machine DLL at runtime.

The vrtaMonitor(.exe) program is an
application supplied with RTA-OSEK for PC that
allows Virtual ECUs running on the same or a
remote PC to be monitored and managed.

Virtual RTA-OSEK : a short form used for the
RTA-OSEK for PC product.

The ~vrtaServer(.exe) program is an
application supplied with RTA-OSEK for PC that
manages access to Virtual ECU. It runs as a
normal application or as a Windows service.

RTA-OSEK for PC User Guide

Index

JIRTAOILCFG ADDRESS ... 81
JIRTAOILCFG PRIORITY Lo 81
JIRTAOILCFG TY PE . e 80
PRIt BV N .o 67
'SYSTEM @CCOUNT ... 71
ACHION CAIDACK TUNCHION ... 65, 113
ACTIONID) - 240
ACHIONS ..o 24, 64,75, 113, 219, 229, 240, 265
Y e (8 1= (o] PR 42
additional command liNe PAraMETEIS.........iiiiiiiiee et 218
alias.....ccooo 71,184, 186, 187, 189, 192, 195, 211, 213, 215, 216, 255, 260
AlIASES . 185, 190, 193, 194, 215, 217
A e 127
AP A P . 39
APPHCATION MANAGET ...t 26, 127
application threadoooii e, 31, 54, 96, 265
A NGO S AT e 65
ATACHECUQ) .o 211
AUTOS AR e 265
AUTOSTAM MOTE. ... 97, 118, 195, 218, 256, 265
Borland C++ 5..5.1 /Borland C++ BUilder 5 ... 249
Borland C++ 5.8.1 / Borland Developer Studio 2006cccooviiiiiiiiiiiiiiiieeeciiiee e 249
C/ CH+interface fUNCIONo e 46
CAH4 NAME MANGIING .ottt 86
LT e, 125
ClOCK SOUICE <. e, 40
ClOCK tICk INTEIVAL. ... 134
CLOCKS e 40
COM BIIAGE ..o 198
COMMIANG FIlO e e 78, 259
COMMIANG [N e 129, 130, 196, 255
COMMANG-IINE OPLION ..., 128
COMMANA-IINE PAFAMELET ... 128
COMPAIE TBVICES ... ettt ettt e ettt e e et e e ettt e e e et e e e 40
(@] 1] o1 [T G ST P OO UUP P TUPPP 32,249
CONNECE) e 211, 220
CONSEIAINT L. e, 94
(o 1] LU= £ PP PP PTPP R SPPPPPPIN 40
CreatANIAS() ..o 212
G A e 76
G AR L 76
G A S 75

RTA-OSEK for PC User Guide Index 267

268

GV 37,49, 57
AT R e 76
TS e 75
CUITENT P e 124, 126
CUSEOM ABVICES ..., 43
VA ON e 202, 240
CVCDBVICE ... 202, 229
CVCECU e 200, 219
CVCEVENT e 202, 244
CVCSBIVET e 198, 210
S e, 260
Data fOrMat STHNGS ..o 93
AEDUGET . 22
DEVICE IMANAGET ...ttt 24,121
DEVICEACTIONS ... 122
DEVICEEVENTS ... 123
DEVICRID() ..o 229
DVICRINTO e 123
DVICELIST . 122
DVICEMANAGET ©..eieiitieie ettt e 24
ABVICES oo, 219
Lo et o] o O SO U PP UPUUPPRUTPUPR 38, 44, 96
Diagnostic Interface...........ccooeeveiiiiiiiiiiiccee, 24,65, 70, 186, 196, 211, 218, 220, 265
QIAGNOSTIC TINK L.t 28,29
DISCONNECE) et 213, 220
DLL COM SEIVET ..o 198
DV e 121
D00 et 241
DOACTION() e 221, 229
B U e 20
ECU _CONEIT e 219
ECU D BVEIT 219
ECU DT e 219
ECU L OK e 219
ECU NV aIEIT e 219
ECUTRIEAAPIIONILY ©oeieieeee et 84
Electronic Control UNit 20
EMbedded GUIo 26
ENADIEAVECS ... 126
ENVIFONMENT VANADIES ..o e 32
VRN AN e 98, 100, 102
BV N D) e 244
EVENTREGISTOT ... 121
BVENTS Lo 24,64,76, 112, 219, 229, 244, 265

Index RTA-OSEK for PC User Guide

FINAECUS() ..o
FIFEWAL ...
Flash MemMOTYo
Floating-point WrapPersooviiiiiieee et

FrE@ALIAS() ...

GELACHONBYID().....vveieeeeeee e
GEtACIONBYNGME() ...
GetACLIONCOUNT() ..o
GEEANASES() ..o
GetDEVICERACHIONS ..o
GetDEVICEBYID() ...
GetDeVICeBYNAME()eeeeiieee e
GetDEVICECOUNT() ..o
GetDEVICEEVENTS. ...
GetDEVICEINTO. ..o
GEtEVENTBYID() .. .o

GEtEVENTBYNAME() ...iiviiiceeeee e
GetEVeNTCOUNT() oo
GOEINTO. e
G PL .
GEtMATCN() ..o
GEIMEAX) e 152,
GEIPENAING ..o,
GEtValU ..
GetVaAlUB) ..o
GEtVAIUBS. ...
GUI MO, ... e

ICVCECU. .
IOV CECUEVENTS ..
IOV CEVENT .o
ICVCEVENTEVENTS oo
ICVCSOIVET L
INCrementMatCh()oooveee

RTA-OSEK for PC User Guide

Index 269

270

T e 129
INEIAlZATION .. 82
INLAlIZEDVICES() .o 38, 41,47, 54, 96, 118
SINSEAIL e 257
Interrupt Control UNit........cocooiiice e 25, 80, 82, 124
INTEITUPt NANAIET ..o 104, 124
INTEITUPT MUMIDET ... 124
INTEITUDT PIIOTTTIES oottt et e et e e e e iaaee e 25
INTEITUPT PrIONILY [OVEL ..oi i 25,124
INEEITUDT SOUICE ..ttt e e e st e e 80, 82
INTEITUDT VECEOT 1ot 25,103, 104, 124
INEEITUDTS oottt e et e et e e 82,124
INTEIVAL 136, 137
P 25,124, 126
L RS e 28, 82
IV B U S aTUS ..o, 219
IVCServer_DisplayMOdec.oiiiiiiiii e 210
IVCESerVer_StartMOTe ..o 210
VSNV _STatUS ..o 210
JAVA e 79
e U PRSP R 259
e 255, 257
BN .., 32, 255, 257, 260
HCENSE Il oo 255, 257, 260
LISTAIASES() e 216
LISt A L 122
ListLo@d@AANASES) .. .o 217
LOAAECUQ e 218
O e 260
LOGQET GEVICE ..ottt 46
MNBIN0) e 103
IVIBSK e 125
MASKEA . 25,124
NMASKS ..o 125
VAN L 179
IVIBX() . 139, 146
Maximumccooeeeioiieeeeie 143, 150, 154, 155, 160, 161, 164, 165, 170, 171, 174, 175
MICrosOft ViSUAl Cat 5.0 .. oo 249
Microsoft Visual Studio 2003..... ... 249
00110 = 1o 10 HP PP POPPRTRPI 80
V) e 139, 146
VNG Y e 22,32, 39, 249
VI T U e 143, 150
L 110] o TR OO PPTUPRPPPPPPINt 261
Index RTA-OSEK for PC User Guide

AT A e 198
MUIti-MEdia DIArY ... 251
MUIEEMEAIA HIMEI ... 134
multi-threaded apartMENTooiiii e 198
e LIS O TSSOSO P PRSPPI 261
NGIME() .ttt 234,241, 245
NONVOIATIIE MEMOIY ...ttt 57
O I et 80
(0107 1T] PSSP UPRPSPRUPR 65
ONEVENTCNANGE() .. 228, 239, 248
(0] 01 110] o TS U PP SP PRSP PRSP 129
O] o1 Te] a1l = G PRSP T PP 130
OS_IMAINQ e 96, 118
OS_OVERRIDE_VIATIACEDEVICE ... e 85
(O 1) =1 G 1 o (=T o [T 54
OSEKABTS .. 39
(01 = O TT 265
O D Gt G 254
OS DTGt N e, 254
(01 o =3 o PP 39, 251
05TraceCommDataReAAY().........oiiuieiiiii e 83, 85
0STraceCommMINITTAIGET()eiieeieee e 83, 85
ST PRSP PP 257, 261
ParaM T XY 130
P AU 127
e TV T USRS 129
PENAING .. 126
PENAING Flag .. i 124,125
PENAING INTEITUPTS ...ttt 126
PO LI UM e et e ettt e e 22
PersiStTArOUGNRESET() ... vveiieeee e 47
PIUGEIN Lo 79
POSTEION .ttt ettt 157
(o1 A QY4 () P U R U PSUU PSR 31, 46
PIIOTTHIES ..ottt 80
o1 [e] 1 47U PRSPPI 124, 255
e L[11172 PSSP PP 255
PIOCESSES. ...ttt ettt 28
PIOCESSPIIONITY ..ottt 84
QUETY() e 246
QUEIYEVENT(). ..., 224, 235
QUETYFOIMAL() ..o 225, 235, 246
U SRS PRSP 261
e (TSP PSPPSR 261

RTA-OSEK for PC User Guide Index 271

272

RAISEEVENT) .ot e 66
RAISEINTEITUDT() .. v 67
REAAOPEION L.t 128
REAAPAIAM ... 128
FEAI NAITAWAIE ... 80
real-time DENAVION ... o e 263
reference CouNt ..o 187, 191, 194, 213, 215, 217
FEfEIENCE COUNTS ..o e 189
FEMOTE PC 28,70
REPIVFOIMAL() ..o 226, 236, 247
R T RPN 143, 150
RSB e 115, 128, 129
1y = SR 127
RS AT .. e 129
RTA-OSEK fOr PC arget CD....ooiiiiiieiii e 32
RTA-OSEK V5 t00IS CD ..o 32
R A O S E KN R A e 84
RTA-TRACE <. 30, 35, 59, 83
RTA-TRACE communications driVErcooumiiiii e 84
FECVRTANNK. Al e 35,84
FEKOUIIA.DAT .o 39
RTVECUEIT _CONN oo 89
RTVECUEIT D@V ... 88
RTVECUEIT_ID ..o 88
RTVECUEIT _NONE ... 88
RTVECUEIT VAL o 88
RUDY e 79
RUNINING ettt ettt 137
Sl e 137
o= 1 [aT o =Tl (o] R U 134, 135
e] o] SO U PP PP R PR PPRRO 261
e 101 =] T O U U PRSP PPRRO 260
SCIIDTING ettt 78
SCIIPTING BNGINE ..ttt 260
SO e 262
SN e 242
SENAACTION). .o, 226, 237
SENAFOIMAt) ..o 227, 237, 242
=1 1] £ 42
SEIVEISTATUS() .o 219
SV I 71
S 143, 144, 150, 151
ST NTEIVAI) e 134
SBEIPL < 125
Index RTA-OSEK for PC User Guide

SEtMaATCN) . 177

SEIMAX() ... 141, 148, 153, 159, 163, 169, 173
SEEMING) .o 140, 147
SOTSCAIRY) . e 135
SEtVaAl()...ooo oo 141, 148, 154, 157, 160, 164, 167, 170, 174
SEVAIUB() ... 180
SEIVAIUBS ... e 181
SEEVECION) . 178
SRULAOWNHOOK() ..o 31
SRULAOWNOS) ... 97
S I e 255, 257
SHENT MO ... e 195, 218, 255, 266
S AV 256
SIaVe MOAE. ... e 97, 118, 195, 218, 256, 266
YO T A=T= Lo [ISR 69
STACKFAUITHOOK) .o 31
SStANAIONE e 257
Y = | PR 257, 262
1) 2= | SRR 126, 127, 137, 143, 150
Y 2= 1 () J SRR 135, 142, 149
S AT O e, 128
STAMTOSO) e 97
Startup and ShUtdOWN NOOKSoiiiiiiiiiiic e 36
AL 130
state CallDACK FUNCHION 65, 114
SEATUS DT < 46
(0] 0P 258
Y (o] o ISP 126, 137, 143, 150
SEOP0) et 136, 142, 149
System-tray @apPlCAtIONo..iiiii i 71
L TSR UUPRRRRR 260
TArGET NAIAWAIE ..o 80
L= 0= Y oL PR 80
TANGET VAMANT. ..o 80
BB S e 28, 81
TP P e, 121, 198
BT E 0 01 A T= (PRSPPI 127
TOIMINATEA ... 129
IS (0] o1 o] E PSPPSR PPSPPPPRR 128
T AT e 54, 69
BOO NI DT . 32,249
TrACECOMMINITE) .. 83, 85
SUNINSTAIL e, 258
UNMASK e 54, 125
UNMASKEA <. 25

RTA-OSEK for PC User Guide Index 273

274

UploadTraceDatal).........cooiveieeeeeeee e 83, 85
Value.....oooovvec 154, 155, 160, 161, 164, 165, 167, 170, 171, 174, 175, 182, 183
Value() .. 140, 146, 153, 156, 159, 163, 166, 169, 173
VAIUBS e 182, 183
VAT AN 249, 252
LY =Tt (o TSR 179
VECU e 20, 266
VST CPD e 184
VESID. Il e 184
VSl N 184
VESLIB_DLL. ... 184
VESLIDATLACATOEC U . .. 186
VESLIBCTEATEANAS() ... 187
VESLIDECUATASTYPE «.viiiiii it 185
VS LIDECUINTOTY PO i 185
VESLIDEXIT() oo 187
VESLIBFINAECUS() ... 188
VESLIBFIEEANAS)) .. 189
VESLIDFIEEIMEMOIY() ... e 190
VESLIDGETATESES() . 190
VESLIDGRTINTON) . 192
VESLIBINITIANZE() - e 192
V@SLIBLISTATIBSES() .. e 193
VESLIBDLISTLOAARUAECUS() ... 194
VESLIBLOAAECUQ) ... 195
VS LI S IS OIVEI() e 196
VITEUAI DBVICE ... 64, 111, 266
Virtual ECU. ... 20, 28, 219, 229, 240, 244, 255, 266
Virtual ECU SErver LIDraryoooiiiiiiii o 184, 210
VIrtUAl MaChING ... 20, 23, 103, 266
Virtual Maching DLLS.......oooiiee e 27
ViISUL BASIC. ... 198
VM e, 20, 266
LTSIyl Y7 <P 114
VR A e 21, 32
VI XK N e 252
VIEAACTEVID e 88
VA ON e 64,90, 113, 116
VITAACHIONCAIDACK ..o 113
VIEAACHIONID .ottt nnnne 88
VI AACTUAT O .. 42,162
vrtaActuatorDimmablelight...........oooviiii e 42,162, 168
VITAACTUATOTLIGNT L. 42,162, 166
vrtaACtuatorMUltiColorLight........oooiiiiiii e 42,162,172
Index RTA-OSEK for PC User Guide

VEEAB OO AN <. 89

VT By e e 89
VITACIENTSUPPOIT.CPD vttt 184
VEEACTOCK - e 40, 134, 138, 145
VITAC OMIPAIE e 41,176
VI A O . N e 86, 120
VITAD ATALEN . e 89
VITADATALENIMAX L.t 89
VITADBVICE oo 40, 64, 65, 66, 67, 131
VITADBVICE. N L 40, 64, 131
VITADAVID .. e e 88
VITADEVRESETINTO L., 113
VIEADOWNCOUNTEY L. 145
VITAEMIDEA ... 89
vrtaEnterUninterruptibleSection()...........cooveriioiie e, 98, 263
(V= Y7o TSSOSO 88
VBV N 64,91, 111, 115
VITAEVENTCAIDACK ... 99
VITAEVENTID .. e e 88
VITAEVENTREGISTEI() ... e 98
VITAEVENTUNTEGISTEI() ..o 100
VITAFIASI e 57
VTEAGETSTATE() - 65, 100
VIEAHOOKEVENT() . e 102
VIAINTTIATIZE() . 103
VIAINTTIALIZEOS(). . 105
VITAINEPTIOTIEY L 88
VIRl O 43,180
VItalSAPPFINISNEA() ..o 55, 97, 105, 117
VITAISAPPTIIEAA() - e 106
VIEAISIAI) . 55, 107
VITAISRID ... 88
vrtaLeaveUninterruptibleSection()c..oooiviiiii i 107, 263
VIEALOBAVIVI(). . e 103, 108
VITAMIISECOND L. e 89
VIEAMONITON L. 29, 46, 70, 74, 259, 266
VITAMSCOML AL e 198
VIEANONEUSEITAICAT() .. 109
VITAOPESIINGHSIPEI (..o 92
VEEAO S GOTIPL) e 109
VEEAO S SOTIPLY) . 110
VIEARAISEEVENT() ... 66, 110
VIEAREAAHPTIMEY) - et 11
VrtaRegisterVirtualDeVICe()c.veieei e 64, 111
VTEARESET) e 115

RTA-OSEK for PC User Guide Index 275

276

VITaSAMPIEDAVICES.CPP ..ttt 40, 131

VItASAMPIEDEVICES. N 40, 131
VIEASENAACTION() . e 65, 116
(VL 7= N Y<] o 1Yo] SRR 42,152
VITASENSOIMUIIWAY ... 158
vrtaSensorMUtIWaySWITCN ... 42,152, 158
VITASENSOITOGGIEo 156
vrtaSensorToggIESWITCNiiiiiii e 42,152, 156
VITASEIVET ... 28,70, 184, 210, 257, 266
VITASPAWNTRIEAT() .. .eieeiiiie et 17
VITASTAIT() oo 64, 103, 118, 119
VItaStateCallDacKooe 114
VITASTADEVICES. N e 120
VITASTIINGIISTPII .o 92
VEEATEIMINGTE() e 118, 119
VI AT X P e 92
VITATIMIESTAIMID ettt e et e e e e et e e 89
VI ATYPES. N e 86, 88
VB AU D C OUNTEE L.ttt ss e 138
VITAVECEOITADIE L. e 103
VIRV VL Al e 27
VIRV VL N e 86
VITAVMAE. Al 27
VIRV Mt Al 27
VITAVIMIE. Il 27
VAV VIS Al e 27
VI AV VI Al e 27
VAV V. Al e 27
VI AV VIS Al 27
VI AV VI Al e 27
EVAVZ= | PP 262
WINAOWS EVENT VIBWET ... 71
WINAOWS SEIVICE ..., 257, 258

Index RTA-OSEK for PC User Guide

