
RTA-OS Centauri M4/GHS V2.0.0
Port Guide
Status: Released

Copyright

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this doc-
ument. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract. Under no circumstances
may any part of this document be copied, reproduced, transmitted, stored in a retrieval
system or translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2019 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document: 10820-PG-2.0.0 EN-07-2019

RTA-OS Centauri M4/GHS Port Guide V2.0.0 2

Safety Notice

Safety Notice

This ETAS product fulfills standard quality management requirements. If requirements
of specific safety standards (e.g. IEC 61508, ISO 26262) need to be fulfilled, these
requirements must be explicitly defined and ordered by the customer. Before use of
the product, customer must verify the compliance with specific safety standards.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 3

Contents

Contents

1 Introduction 7
1.1 About You . 7
1.2 Document Conventions . 8
1.3 References . 8

2 Installing the RTA-OS Port Plug-in 9
2.1 Preparing to Install . 9

2.1.1 Hardware Requirements . 9
2.1.2 Software Requirements . 9

2.2 Installation . 10
2.2.1 Installation Directory . 10

2.3 Licensing . 11
2.3.1 Installing the ETAS License Manager 11
2.3.2 Licenses . 12
2.3.3 Installing a Concurrent License Server 13
2.3.4 Using the ETAS License Manager 14
2.3.5 Troubleshooting Licenses . 16

3 Verifying your Installation 19
3.1 Checking the Port . 19
3.2 Running the Sample Applications . 19

4 Port Characteristics 21
4.1 Parameters of Implementation . 21
4.2 Configuration Parameters . 21

4.2.1 Stack used for C-startup . 21
4.2.2 Stack used when idle . 22
4.2.3 Stack overheads for ISR activation 22
4.2.4 Stack overheads for ECC tasks . 22
4.2.5 Stack overheads for ISR . 22
4.2.6 Orti22/Lauterbach . 23
4.2.7 Orti23/Lauterbach . 23
4.2.8 Block default interrupt . 23
4.2.9 Enable stack repositioning . 24
4.2.10 Enable untrusted stack check . 24
4.2.11 Handle FPU context . 24

4.3 Generated Files . 25

RTA-OS Centauri M4/GHS Port Guide V2.0.0 4

Contents

5 Port-Specific API 26
5.1 API Calls . 26

5.1.1 Os_InitializeVectorTable . 26
5.2 Callbacks . 26

5.2.1 Os_Cbk_GetAbortStack . 26
5.3 Macros . 27

5.3.1 CAT1_ISR . 27
5.3.2 Os_Clear_x . 27
5.3.3 Os_DisableAllConfiguredInterrupts 28
5.3.4 Os_Disable_x . 28
5.3.5 Os_EnableAllConfiguredInterrupts 28
5.3.6 Os_Enable_x . 28
5.3.7 Os_IntChannel_x . 28
5.3.8 Os_IntID_x . 29

5.4 Type Definitions . 29
5.4.1 Os_StackSizeType . 29
5.4.2 Os_StackValueType . 29

6 Toolchain 30
6.1 Compiler Versions . 30

6.1.1 Green Hills Software, Compiler v2018.1.4 30
6.2 Options used to generate this guide . 30

6.2.1 Compiler . 30
6.2.2 Assembler . 32
6.2.3 Librarian . 33
6.2.4 Linker . 33
6.2.5 Debugger . 34

7 Hardware 35
7.1 Supported Devices . 35
7.2 Register Usage . 35

7.2.1 Initialization . 35
7.2.2 Modification . 36

7.3 Required OS resources . 37
7.4 Interrupts . 37

7.4.1 Interrupt Priority Levels . 37
7.4.2 Allocation of ISRs to Interrupt Vectors 38
7.4.3 Vector Table . 38
7.4.4 Writing Category 1 Interrupt Handlers 38
7.4.5 Writing Category 2 Interrupt Handlers 39
7.4.6 Default Interrupt . 39

7.5 Memory Model . 39
7.6 Processor Modes . 39
7.7 Stack Handling . 40

RTA-OS Centauri M4/GHS Port Guide V2.0.0 5

Contents

8 Performance 41
8.1 Measurement Environment . 41
8.2 RAM and ROM Usage for OS Objects . 41
8.3 Stack Usage . 42
8.4 Library Module Sizes . 42
8.5 Execution Time . 45

8.5.1 Context Switching Time . 45

9 Finding Out More 48

10 Contacting ETAS 49
10.1 Technical Support . 49
10.2 General Enquiries . 49

10.2.1 ETAS Global Headquarters . 49
10.2.2 ETAS Local Sales & Support Offices 49

RTA-OS Centauri M4/GHS Port Guide V2.0.0 6

Introduction

1 Introduction

RTA-OS is a small and fast real-time operating system that conforms to both the AU-
TOSAR OS (R3.0.1 -> R3.0.7, R3.1.1 -> R3.1.5, R3.2.1 -> R3.2.2, R4.0.1 -> R4.3.1) and
OSEK/VDX 2.2.3 standards (OSEK is now standardized in ISO 17356). The operating
system is configured and built on a PC, but runs on your target hardware.

This document describes the RTA-OS Centauri M4/GHS port plug-in that customizes
the RTA-OS development tools for the STMicroelectronics Centauri with the Green Hills
compiler. It supplements the more general information you can find in the User Guide
and the Reference Guide.

The document has two parts. Chapters 2 to 3 help you understand the Centauri M4/GHS
port and cover:

• how to install the Centauri M4/GHS port plug-in;

• how to configure Centauri M4/GHS-specific attributes;

• how to build an example application to check that the Centauri M4/GHS port plug-in
works.

Chapters 4 to 8 provide reference information including:

• the number of OS objects supported;

• required and recommended toolchain parameters;

• how RTA-OS interacts with the Centauri, including required register settings, mem-
ory models and interrupt handling;

• memory consumption for each OS object;

• memory consumption of each API call;

• execution times for each API call.

For the best experience with RTA-OS it is essential that you read and understand this
document.

1.1 About You

You are a trained embedded systems developer who wants to build real-time appli-
cations using a preemptive operating system. You should have knowledge of the C
programming language, including the compilation, assembling and linking of C code
for embedded applications with your chosen toolchain. Elementary knowledge about
your target microcontroller, such as the start address, memory layout, location of pe-
ripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows operating sys-
tem, including installing software, selecting menu items, clicking buttons, navigating
files and folders.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 7

Introduction

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options appear in bold, blue characters.

Click OK. Button labels appear in bold characters

Press <Enter>. Key commands are enclosed in angle brackets.

The “Open file” dialog box
appears

GUI element names, for example window titles, fields,
etc. are enclosed in double quotes.

Activate(Task1) Program code, header file names, C type names,
C functions and API call names all appear in a
monospaced typeface.

See Section 1.2. Internal document hyperlinks are shown in blue letters.

Functionality in RTA-OS that might not be portable to
other implementations of AUTOSAR OS is marked with
the RTA-OS icon.

Important instructions that you must follow carefully to
ensure RTA-OS works as expected are marked with a
caution sign.

1.3 References

OSEK is a European automotive industry standards effort to produce open systems
interfaces for vehicle electronics. OSEK is now standardized in ISO 17356. For details
of the OSEK standards, please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized auto-
motive software architecture, jointly developed by automobile manufacturers, suppli-
ers and tool developers. For details of the AUTOSAR standards, please refer to:

http://www.autosar.org

RTA-OS Centauri M4/GHS Port Guide V2.0.0 8

http://www.osek-vdx.org
http://www.autosar.org

Installing the RTA-OS Port Plug-in

2 Installing the RTA-OS Port Plug-in

2.1 Preparing to Install

RTA-OS port plug-ins are supplied as a downloadable electronic installation image which
you obtain from the ETAS Web Portal. You will have been provided with access to the
download when you bought the port. You may optionally have requested an installation
CD which will have been shipped to you. In either case, the electronic image and the
installation CD contain identical content.

Integration Guidance 2.1:You must have installed the RTA-OS tools before installing
the Centauri M4/GHS port plug-in. If you have not yet done this then please follow the
instructions in the Getting Started Guide.

2.1.1 Hardware Requirements

You should make sure that you are using at least the following hardware before in-
stalling and using RTA-OS on a host PC:

• 1GHz Pentium Windows-capable PC.

• 2G RAM.

• 20G hard disk space.

• CD-ROM or DVD drive (Optional)

• Ethernet card.

2.1.2 Software Requirements

RTA-OS requires that your host PC has one of the following versions of Microsoft Win-
dows installed:

• Windows 7

• Windows 8

• Windows 10

Integration Guidance 2.2:The tools provided with RTA-OS require Microsoft’s .NET
Framework v2.0 (included as part of .NET Framework v3.5) and v4.0 to be installed. You
should ensure that these have been installed before installing RTA-OS. The .NET frame-
work is not supplied with RTA-OS but is freely available from https://www.microsoft.
com/net/download. To install .NET 3.5 on Windows 10 see https://docs.microsoft.
com/en-us/dotnet/framework/install/dotnet-35-windows-10.

The migration of the code from v2.0 to v4.0 will occur over a period of time for perfor-
mance and maintenance reasons.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 9

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10

Installing the RTA-OS Port Plug-in

2.2 Installation

Target port plug-ins are installed in the same way as the tools:

1. Either

• Double click the executable image; or

• Insert the RTA-OS Centauri M4/GHS CD into your CD-ROM or DVD drive.

If the installation program does not run automatically then you will need to
start the installation manually. Navigate to the root directory of your CD/DVD
drive and double click autostart.exe to start the setup.

2. Follow the on-screen instructions to install the Centauri M4/GHS port plug-in.

By default, ports are installed into C:\ETAS\RTA-OS\Targets. During the installation
process, you will be given the option to change the folder to which RTA-OS ports are
installed. You will normally want to ensure that you install the port plug-in in the same
location that you have installed the RTA-OS tools. You can install different versions of
the tools/targets into different directories and they will not interfere with each other.

Integration Guidance 2.3:Port plug-ins can be installed into any location, but using
a non-default directory requires the use of the --target_include argument to both
rtaosgen and rtaoscfg. For example:

rtaosgen --target_include:<target_directory>

2.2.1 Installation Directory

The installation will create a sub-directory under Targets with the name Centauri
M4/GHS_2.0.0. This contains everything to do with the port plug-in.

Each version of the port installs in its own directory - the trailing _2.0.0 is the port’s
version identifier. You can have multiple different versions of the same port installed at
the same time and select a specific version in a project’s configuration.

The port directory contains:

Centauri M4/GHS.dll - the port plug-in that is used by rtaosgen and rtaoscfg.

RTA-OS Centauri M4/GHS Port Guide.pdf - the documentation for the port (the
document you are reading now).

RTA-OS Centauri M4/GHS Release Note.pdf - the release note for the port. This
document provides information about the port plug-in release, including a list of
changes from previous releases and a list of known limitations.

There may be other port-specific documentation supplied which you can also find in
the root directory of the port installation. All user documentation is distributed in PDF
format which can be read using Adobe Acrobat Reader. Adobe Acrobat Reader is not
supplied with RTA-OS but is freely available from http://www.adobe.com.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 10

http://www.adobe.com

Installing the RTA-OS Port Plug-in

Figure 2.1: The ETAS License manager

2.3 Licensing

RTA-OS is protected by FLEXnet licensing technology. You will need a valid license key
in order to use RTA-OS.

Licenses for the product are managed using the ETAS License Manager which keeps
track of which licenses are installed and where to find them. The information about
which features are required for RTA-OS and any port plug-ins is stored as license signa-
ture files that are stored in the folder <install_folder>\bin\Licenses.

The ETAS License Manager can also tell you key information about your licenses includ-
ing:

• Which ETAS products are installed

• Which license features are required to use each product

• Which licenses are installed

• When licenses expire

• Whether you are using a local or a server-based license

Figure 2.1 shows the ETAS License Manager in operation.

2.3.1 Installing the ETAS License Manager

Integration Guidance 2.4:The ETAS License Manager must be installed for RTA-OS to
work. It is highly recommended that you install the ETAS License Manager during your
installation of RTA-OS.

The installer for the ETAS License Manager contains two components:

RTA-OS Centauri M4/GHS Port Guide V2.0.0 11

Installing the RTA-OS Port Plug-in

1. the ETAS License Manager itself;

2. a set of re-distributable FLEXnet utilities. The utilities include the software and
instructions required to setup and run a FLEXnet license server manager if con-
current licenses are required (see Sections 2.3.2 and 2.3.3 for further details)

During the installation of RTA-OS you will be asked if you want to install the ETAS
License Manager. If not, you can install it manually at a later time by running
<install_folder>\LicenseManager\LicensingStandaloneInstallation.exe.

Once the installation is complete, the ETAS License Manager can be found in
C:\Program Files\Common Files\ETAS\Licensing.

After it is installed, a link to the ETAS License Manager can be found in the Windows
Start menu under ProgramsÔ ETAS Ô License Management Ô ETAS License
Manager.

2.3.2 Licenses

When you install RTA-OS for the first time the ETAS License Manager will allow the
software to be used in grace mode for 14 days. Once the grace mode period has
expired, a license key must be installed. If a license key is not available, please contact
your local ETAS sales representative. Contact details can be found in Chapter 10.

You should identify which type of license you need and then provide ETAS with the
appropriate information as follows:

Machine-named licenses allows RTA-OS to be used by any user logged onto the PC
on which RTA-OS and the machine-named license is installed.

A machine-named license can be issued by ETAS when you provide the host ID
(Ethernet MAC address) of the host PC

User-named licenses allow the named user (or users) to use RTA-OS on any PC in the
network domain.

A user-named license can be issued by ETAS when you provide the Windows user-
name for your network domain.

Concurrent licenses allow any user on any PC up to a specified number of users to
use RTA-OS. Concurrent licenses are sometimes called floating licenses because
the license can float between users.

A concurrent license can be issued by ETAS when you provide the following infor-
mation:

1. The name of the server

2. The Host ID (MAC address) of the server.

3. The TCP/IP port over which your FLEXnet license server will serve licenses. A
default installation of the FLEXnet license server uses port 27000.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 12

Installing the RTA-OS Port Plug-in

Figure 2.2: Obtaining License Information

You can use the ETAS License Manager to get the details that you must provide to ETAS
when requesting a machine-named or user-named license and (optionally) store this
information in a text file.

Open the ETAS License Manager and choose Tools Ô Obtain License Info from the
menu. For machine-named licenses you can then select the network adaptor which
provides the Host ID (MAC address) that you want to use as shown in Figure 2.2. For
a user-based license, the ETAS License Manager automatically identifies the Windows
username for the current user.

Selecting “Get License Info” tells you the Host ID and User information and lets you
save this as a text file to a location of your choice.

2.3.3 Installing a Concurrent License Server

Concurrent licenses are allocated to client PCs by a FLEXnet license server manager
working together with a vendor daemon. The vendor daemon for ETAS is called
ETAS.exe. A copy of the vendor daemon is placed on disk when you install the ETAS
License Manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

To work with an ETAS concurrent license, a license server must be configured which is
accessible from the PCs wishing to use a license. The server must be configured with
the following software:

• FLEXnet license server manager;

• ETAS vendor daemon (ETAS.exe);

It is also necessary to install your concurrent license on the license server.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 13

Installing the RTA-OS Port Plug-in

Figure 2.3: Unlicensed RTA-OS Installation

In most organizations there will be a single FLEXnet license server manager that is
administered by your IT department. You will need to ask your IT department to install
the ETAS vendor daemon and the associated concurrent license.

If you do not already have a FLEXnet license server then you will need to arrange for
one to be installed. A copy of the FLEXnet license server, the ETAS vendor daemon and
the instructions for installing and using the server (LicensingEndUserGuide.pdf) are
placed on disk when you install the ETAS License manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

2.3.4 Using the ETAS License Manager

If you try to run the RTA-OS GUI rtaoscfg without a valid license, you will be given the
opportunity to start the ETAS License Manager and select a license. (The command-line
tool rtaosgen will just report the license is not valid.)

When the ETAS License Manager is launched, it will display the RTA-OS license state as
NOT AVAILABLE. This is shown in Figure 2.3.

Note that if the ETAS License Manager window is slow to start, rtaoscfg may ask a
second time whether you want to launch it. You should ignore the request until the
ETAS License Manager has opened and you have completed the configuration of the
licenses. You should then say yes again, but you can then close the ETAS License
Manager and continue working.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 14

Installing the RTA-OS Port Plug-in

License Key Installation

License keys are supplied in an ASCII text file, which will be sent to you on completion
of a valid license agreement.

If you have a machine-based or user-based license key then you can simply install the
license by opening the ETAS License Manager and selecting File Ô Add License File
menu.

If you have a concurrent license key then you will need to create a license stub file that
tells the client PC to look for a license on the FLEXnet server as follows:

1. create a copy of the concurrent license file

2. open the copy of the concurrent license file and delete every line except the one
starting with SERVER

3. add a new line containing USE_SERVER

4. add a blank line

5. save the file

The file you create should look something like this:

SERVER <server name> <MAC address> <TCP/IP Port>¶
USE_SERVER¶
¶

Once you have create the license stub file you can install the license by opening the
ETAS License Manager and selecting File Ô Add License File menu and choosing the
license stub file.

License Key Status

When a valid license has been installed, the ETAS License Manager will display the
license version, status, expiration date and source as shown in Figure 2.4.

Borrowing a concurrent license

If you use a concurrent license and need to use RTA-OS on a PC that will be disconnected
from the network (for example, you take a demonstration to a customer site), then the
concurrent license will not be valid once you are disconnected.

To address this problem, the ETAS License Manager allows you to temporarily borrow a
license from the license server.

To borrow a license:

1. Right click on the license feature you need to borrow.

2. Select “Borrow License”

3. From the calendar, choose the date that the borrowed license should expire.

4. Click “OK”

RTA-OS Centauri M4/GHS Port Guide V2.0.0 15

Installing the RTA-OS Port Plug-in

Figure 2.4: Licensed features for RTA-OS

The license will automatically expire when the borrow date elapses. A borrowed license
can also be returned before this date. To return a license:

1. Reconnect to the network;

2. Right-click on the license feature you have borrowed;

3. Select “Return License”.

2.3.5 Troubleshooting Licenses

RTA-OS tools will report an error if you try to use a feature for which a correct license
key cannot be found. If you think that you should have a license for a feature but the
RTA-OS tools appear not to work, then the following troubleshooting steps should be
followed before contacting ETAS:

Can the ETAS License Manager see the license?

The ETAS License Manager must be able to see a valid license key for each product
or product feature you are trying to use.

You can check what the ETAS License Manager can see by starting it from the
Help Ô License Manager. . . menu option in rtaoscfg or directly from the
Windows Start Menu - Start Ô ETAS Ô License Management Ô ETAS License
Manager.

The ETAS License Manager lists all license features and their status. Valid licenses
have status INSTALLED. Invalid licenses have status NOT AVAILABLE.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 16

Installing the RTA-OS Port Plug-in

Figure 2.5: Licensed features that are due to expire

Is the license valid?

You may have been provided with a time-limited license (for example, for evalu-
ation purposes) and the license may have expired. You can check that the Expi-
ration Date for your licensed features to check that it has not elapsed using the
ETAS License Manager.

If a license is due to expire within the next 30 days, the ETAS License Manager will
use a warning triangle to indicate that you need to get a new license. Figure 2.5
shows that the license features LD_RTA-OS3.0_VRTA and LD_RTA-OS3.0_SRC are
due to expire.

If your license has elapsed then please contact your local ETAS sales representa-
tive to discuss your options.

Does the Ethernet MAC address match the one specified?

If you have a machine based license then it is locked to a specific MAC address.
You can find out the MAC address of your PC by using the ETAS License Manager
(Tools Ô Obtain License Info) or using the Microsoft program ipconfig /all at
a Windows Command Prompt.

You can check that the MAC address in your license file by opening your license file
in a text editor and checking that the HOSTID matches the MAC address identified
by the ETAS License Manager or the Physical Address reported by ipconfig /all.

If the HOSTID in the license file (or files) does not match your MAC address then
you do not have a valid license for your PC. You should contact your local ETAS
sales representative to discuss your options.

Is your Ethernet Controller enabled?

RTA-OS Centauri M4/GHS Port Guide V2.0.0 17

Installing the RTA-OS Port Plug-in

If you use a laptop and RTA-OS stops working when you disconnect from the net-
work then you should check your hardware settings to ensure that your Ether-
net controller is not turned off to save power when a network connection is not
present. You can do this using Windows Control Panel. Select System Ô Hard-
ware Ô Device Manager then select your Network Adapter. Right click to open
Properties and check that the Ethernet controller is not configured for power
saving in Advanced and/or Power Management settings.

Is the FlexNet License Server visible?

If your license is served by a FlexNet license server, then the ETAS License Man-
ager will report the license as NOT AVAILABLE if the license server cannot be ac-
cessed.

You should contact your IT department to check that the server is working cor-
rectly.

Still not fixed?

If you have not resolved your issues, after confirming these points above, please
contact ETAS technical support. The contact address is provided in Section 10.1.
You must provide the contents and location of your license file and your Ethernet
MAC address.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 18

Verifying your Installation

3 Verifying your Installation

Now that you have installed both the RTA-OS tools and a port plug-in and have obtained
and installed a valid license key you can check that things are working.

3.1 Checking the Port

The first thing to check is that the RTA-OS tools can see the new port. You can do this
in two ways:

1. use the rtaosgen tool

You can run the command rtaosgen −−target:? to get a list of available targets,
the versions of each target and the variants supported, for example:

RTA-OS Code Generator
Version p.q.r.s, Copyright © ETAS nnnn
Available targets:
TriCoreHighTec_n.n.n [TC1797...]
VRTA_n.n.n [MinGW,VS2005,VS2008,VS2010]

2. use the rtaoscfg tool

The second way to check that the port plug-in can be seen is by starting rtaoscfg
and selecting Help Ô Information... drop down menu. This will show informa-
tion about your complete RTA-OS installation and license checks that have been
performed.

Integration Guidance 3.1:If the target port plug-ins have been installed to a non-
default location, then the --target_include argument must be used to specify the
target location.

If the tools can see the port then you can move on to the next stage – checking that you
can build an RTA-OS library and use this in a real program that will run on your target
hardware.

3.2 Running the Sample Applications

Each RTA-OS port is supplied with a set of sample applications that allow you to check
that things are running correctly. To generate the sample applications:

1. Create a new working directory in which to build the sample applications.

2. Open a Windows command prompt in the new directory.

3. Execute the command:

rtaosgen --target:<your target> --samples:[Applications]

e.g.

rtaosgen --target:[MPC5777Mv2]PPCe200HighTec_5.0.8
--samples:[Applications]

RTA-OS Centauri M4/GHS Port Guide V2.0.0 19

Verifying your Installation

You can then use the build.bat and run.bat files that get created for each sample appli-
cation to build and run the sample. For example:

cd Samples\Applications\HelloWorld
build.bat
run.bat

Remember that your target toolchain must be accessible on the Windows PATH for the
build to be able to run successfully.

Integration Guidance 3.2:It is strongly recommended that you build and run at least
the Hello World example in order to verify that RTA-OS can use your compiler toolchain
to generate an OS kernel and that a simple application can run with that kernel.

For further advice on building and running the sample applications, please consult your
Getting Started Guide.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 20

Port Characteristics

4 Port Characteristics

This chapter tells you about the characteristics of RTA-OS for the Centauri M4/GHS port.

4.1 Parameters of Implementation

To be a valid OSEK (ISO 17356) or AUTOSAR OS, an implementation must support a
minimum number of OS objects. The following table specifies the minimum numbers
of each object required by the standards and the maximum number of each object
supported by RTA-OS for the Centauri M4/GHS port.

Parameter Required RTA-OS

Tasks 16 1024
Tasks not in SUSPENDED state 16 1024
Priorities 16 1024
Tasks per priority - 1024
Queued activations per priority - 4294967296
Events per task 8 32
Software Counters 8 4294967296
Hardware Counters - 4294967296
Alarms 1 4294967296
Standard Resources 8 4294967296
Linked Resources - 4294967296
Nested calls to GetResource() - 4294967296
Internal Resources 2 no limit
Application Modes 1 4294967296
Schedule Tables 2 4294967296
Expiry Points per Schedule Table - 4294967296
OS Applications - 4294967295
Trusted functions - 4294967295
Spinlocks (multicore) - 4294967295
Register sets - 4294967296

4.2 Configuration Parameters

Port-specific parameters are configured in the General Ô Target workspace of
rtaoscfg, under the “Target-Specific” tab.

The following sections describe the port-specific configuration parameters for the Cen-
tauri M4/GHS port, the name of the parameter as it will appear in the XML configuration
and the range of permitted values (where appropriate).

4.2.1 Stack used for C-startup

XML name SpPreStartOS

RTA-OS Centauri M4/GHS Port Guide V2.0.0 21

Port Characteristics

Description

The amount of stack already in use at the point that StartOS() is called. This value is
simply added to the total stack size that the OS needs to support all tasks and interrupts
at run-time. Typically you use this to obtain the amount of stack that the linker must
allocate. The value does not normally change if the OS configuration changes.

4.2.2 Stack used when idle

XML name SpStartOS

Description

The amount of stack used when the OS is in the idle state (typically inside
Os_Cbk_Idle()). This is just the difference between the stack used at the point that
Os_StartOS() is called and the stack used when no task or interrupt is running. This
can be zero if Os_Cbk_Idle() is not used. It must include the stack used by any function
called while in the idle state. The value does not normally change if the OS configura-
tion changes.

4.2.3 Stack overheads for ISR activation

XML name SpIDisp

Description

The extra amount of stack needed to activate a task from within an ISR. If a task is
activated within a Category 2 ISR, and that task has a higher priority than any currently
running task, then for some targets the OS may need to use marginally more stack
than if it activates a task that is of lower priority. This value accounts for that. On
most targets this value is zero. This value is used in worst-case stack size calculations.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.4 Stack overheads for ECC tasks

XML name SpECC

Description

The extra amount of stack needed to start an ECC task. ECC tasks need to save slightly
more state on the stack when they are started than BCC tasks. This value contains the
difference. The value may change if significant changes are made to the OS configura-
tion. e.g. STANDARD/EXTENDED, SC1/2/3/4.

4.2.5 Stack overheads for ISR

XML name SpPreemption

RTA-OS Centauri M4/GHS Port Guide V2.0.0 22

Port Characteristics

Description

The amount of stack used to service a Category 2 ISR. When a Category 2 ISR interrupts
a task, it usually places some data on the stack. If the ISR measures the stack to deter-
mine if the preempted task has exceeded its stack budget, then it will overestimate the
stack usage unless this value is subtracted from the measured size. The value is also
used when calculating the worst-case stack usage of the system. Be careful to set this
value accurately. If its value is too high then when the subtraction occurs, 32-bit un-
derflow can occur and cause the OS to think that a budget overrun has been detected.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.6 Orti22/Lauterbach

XML name Orti22Lauterbach

Description

Select ORTI 2.2 generation for the Lauterbach debugger.

Settings

Value Description

true Generate ORTI
false No ORTI (default)

4.2.7 Orti23/Lauterbach

XML name Orti23Lauterbach

Description

Select ORTI 2.3 generation for the Lauterbach debugger.

Settings

Value Description

true Generate ORTI
false No ORTI (default)

4.2.8 Block default interrupt

XML name block_default_interrupt

Description

Where a default interrupt is specified, it will normally execute if an unexpected interrupt
fires. You can block this behavior using this option. The option affects the enabling of
unused interrupt sources.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 23

Port Characteristics

Settings

Value Description

true Block the default interrupt
false Allow the default interrupt handler to run if an unexpected interrupt fires

(default)

4.2.9 Enable stack repositioning

XML name AlignUntrustedStacks

Description

Use to support realignment of the stack for untrusted code when there are
MPU protection region granularity issues. Refer to the documentation for
Os_Cbk_SetMemoryAccess.

Settings

Value Description

true Support repositioning
false Normal behavior (default)

4.2.10 Enable untrusted stack check

XML name DistrustStacks

Description

Extra code can be placed in interrupt handlers to detect when untrusted code has an
illegal stack pointer value. Also exception handlers may run on a private stack (Re-
fer to the documentation for Os_Cbk_GetAbortStack). This has a small performance
overhead, so is made optional.

Settings

Value Description

true Perform the checks
false Do not check (default)

4.2.11 Handle FPU context

XML name handle_FPU_context

Description

Extra code can be added during context switches to preserve floating point registers
used by tasks and ISRs. This option should only be used if the majority of tasks and
ISRs in the application contain FPU instructions otherwise the register set mechanism
may be more efficient.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 24

Port Characteristics

Settings

Value Description

true Save FPU context
false Do not save FPU context (default)

4.3 Generated Files

The following table lists the files that are generated by rtaosgen for all ports:

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured. This is in-

cluded by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by RTA-

OS to merge with the system-wide MemMap.h file in AU-
TOSAR versions 4.0 and earlier. From AUTOSAR version 4.1,
Os_MemMap.h is used by the OS instead of MemMap.h.

RTAOS.<lib> The RTA-OS library for your application. The extension <lib>
depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application. This is
used by rtaosgen to work out which parts of the kernel li-
brary need to be rebuilt if the configuration has changed. The
extension <lib> depends on your target.

<projectname>.log A log file that contains a copy of the text that the tool and
compiler sent to the screen during the build process.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 25

Port-Specific API

5 Port-Specific API

The following sections list the port-specific aspects of the RTA-OS programmers refer-
ence for the Centauri M4/GHS port that are provided either as:

• additions to the material that is documented in the Reference Guide; or

• overrides for the material that is documented in the Reference Guide. When a
definition is provided by both the Reference Guide and this document, the definition
provided in this document takes precedence.

5.1 API Calls

5.1.1 Os_InitializeVectorTable

Initialize the vector table.

Syntax

void Os_InitializeVectorTable(void)

Description

Os_InitializeVectorTable() initializes the NVIC and other control registers according to
the project configuration. If RTA-OS has been configured to generate a vector table, it
also sets the VTOR register to the address of the OS-generated vector table that has
entries for all the appropriate CPU exceptions and interrupts. It enables Category 1
ISRs but leaves Category 2 ISRs disabled until after calling StartOS().

Os_InitializeVectorTable() should be called before StartOS(). It should be called even if
’Suppress Vector Table Generation’ is set to TRUE.

Example

Os_InitializeVectorTable();

See Also

StartOS

5.2 Callbacks

5.2.1 Os_Cbk_GetAbortStack

Callback routine to provide the start address of the stack to use for some exception
conditions.

Syntax

FUNC(void *,OS_APPL_CODE) Os_Cbk_GetAbortStack(void)

Return Values

The call returns values of type void *.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 26

Port-Specific API

Description

Untrusted code can misbehave and cause a protection exception. When this happens,
AUTOSAR requires that ProtectionHook is called and the task, ISR or OS Application
must be terminated.

It is possible that at the time of the fault the stack pointer is invalid. For this reason,
if ’Enable untrusted stack check’ is configured, RTA-OS will call Os_Cbk_GetAbortStack
to get the address of a safe area of memory that it should use for the stack while it
performs this processing.

If the value zero is returned, the stack does not get adjusted.

The stack only needs to be large enough to perform the ProtectionHook. Maskable
interrupts are disabled during this process.

A default implementation of Os_Cbk_GetAbortStack is supplied in the RTA-OS library
that returns the address of an area of static memory.

Example

FUNC(void *,OS_APPL_CODE) Os_Cbk_GetAbortStack(void) {
/* 64-bit alignment is needed for EABI. */
static long long abortstack[18U];
return &abortstack[18U];

}

Required when

The callback must be present if ’Enable untrusted stack check’ is configured and there
are untrusted OS Applications.

5.3 Macros

5.3.1 CAT1_ISR

Macro that should be used to create a Category 1 ISR entry function. This macro exists
to help make your code portable between targets.

Example

CAT1_ISR(MyISR) {...}

5.3.2 Os_Clear_x

The Os_Clear_x() macro can be used to clear the interrupt pending bit for a specified
NVIC interrupt. The interrupt can be identified using either the NVIC channel number
or the RTA-OS configured vector name. The macro is only available if you #include the
file Os_ConfigInterrupts.h. The macro may not be used by untrusted code.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 27

Port-Specific API

Example
Os_Clear_IntChannel_20();
Os_Clear_Millisecond();

5.3.3 Os_DisableAllConfiguredInterrupts

The Os_DisableAllConfiguredInterrupts() can be used to disable all configured NVIC in-
terrupts. The macro is only available if you #include the file Os_ConfigInterrupts.h. The
macro may not be used by untrusted code.

Example
Os_DisableAllConfiguredInterrupts();

5.3.4 Os_Disable_x

The Os_Disable_x() macro can be used to disable a specified NVIC interrupt. The inter-
rupt can be identified using either the NVIC channel number or the RTA-OS configured
vector name. The macro is only available if you #include the file Os_ConfigInterrupts.h.
The macro may not be used by untrusted code.

Example
Os_Disable_IntChannel_20();
Os_Disable_Millisecond();

5.3.5 Os_EnableAllConfiguredInterrupts

The Os_EnableAllConfiguredInterrupts() can be used to enable all configured NVIC in-
terrupts. The macro is only available if you #include the file Os_ConfigInterrupts.h. The
macro may not be used by untrusted code.

Example
Os_EnableAllConfiguredInterrupts();

5.3.6 Os_Enable_x

The Os_Enable_x() macro can be used to enable a specified NVIC interrupt. The inter-
rupt can be identified using either the NVIC channel number or the RTA-OS configured
vector name. The macro is only available if you #include the file Os_ConfigInterrupts.h.
The macro may not be used by untrusted code.

Example
Os_Enable_IntChannel_20();
Os_Enable_Millisecond();

5.3.7 Os_IntChannel_x

The Os_IntChannel_x macro can be used to get the interrupt channel number for a
named NVIC interrupt. The channel number is the index into the NVIC hardware, so it
is 16 less than the associated IntID. The Os_IntChannel_x macro is only available if you
#include the file Os_ConfigInterrupts.h.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 28

Port-Specific API

Example

trigger_nvic_interrupt(Os_IntChannel_Millisecond);

5.3.8 Os_IntID_x

The Os_IntID_x macro can be used to get the CPU INTID value for a named interrupt. It
is available for CPU and NVIC interrupts. The Os_IntID_x macro is only available if you
#include the file Os_ConfigInterrupts.h.

Example

trigger_cpu_interrupt(Os_IntID_Millisecond);

5.4 Type Definitions

5.4.1 Os_StackSizeType

An unsigned value representing an amount of stack in bytes.

Example

Os_StackSizeType stack_size;
stack_size = Os_GetStackSize(start_position, end_position);

5.4.2 Os_StackValueType

An unsigned value representing the position of the stack pointer.

Example

Os_StackValueType start_position;
start_position = Os_GetStackValue();

RTA-OS Centauri M4/GHS Port Guide V2.0.0 29

Toolchain

6 Toolchain

This chapter contains important details about RTA-OS and the Green Hills toolchain. A
port of RTA-OS is specific to both the target hardware and a specific version of the com-
piler toolchain. You must make sure that you build your application with the supported
toolchain.

In addition to the version of the toolchain, RTA-OS may use specific tool options
(switches). The options are divided into three classes:

kernel options are those used by rtaosgen to build the RTA-OS kernel.

mandatory options must be used to build application code so that it will work with the
RTA-OS kernel.

forbidden options must not be used to build application code.

Any options that are not explicitly forbidden can be used by application code providing
that they do not conflict with the kernel and mandatory options for RTA-OS.

Integration Guidance 6.1:ETAS has developed and tested RTA-OS using the tool ver-
sions and options indicated in the following sections. Correct operation of RTA-OS is
only covered by the warranty in the terms and conditions of your deployment license
agreement when using identical versions and options. If you choose to use a different
version of the toolchain or an alternative set of options then it is your responsibility to
check that the system works correctly. If you require a statement that RTA-OS works
correctly with your chosen tool version and options then please contact ETAS to discuss
validation possibilities.

6.1 Compiler Versions

This port of RTA-OS has been developed to work with the following compiler(s):

6.1.1 Green Hills Software, Compiler v2018.1.4

Ensure that ccarm.exe is on the path.

Tested on Green Hills Software, Compiler v2018.1.4 Release Date: Wed Apr 18
01:00:05 2018

See also http://www.ghs.com/products/arm_development.html

If you require support for a compiler version not listed above, please contact ETAS.

6.2 Options used to generate this guide

6.2.1 Compiler

Name ccthumb.exe
Version v2018.1.4

RTA-OS Centauri M4/GHS Port Guide V2.0.0 30

http://www.ghs.com/products/arm_development.html

Toolchain

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

-c Compile only

-Wundef Warn for undefined preprocessor symbols

-Wimplicit-int Warn for implicit return type

--diag_error=193,940 Messages 193 and 940 are errors

--diag_warning=2003 Message 2003 is warning

--no_wrap_diagnostics Controls diagnostic messages

--no_vla No variable length arrays

-Osize Optimize for size

-Omax Max optimizations

--no_commons Disable commons

-no_discard_zero_initializers Place zero initializers in data sections

--gnu_asm Allow GNU extended asm

-preprocess_assembly_files Preprocess assembly files

-passsource Source in listings (requires appropriate license)

-split_data_sections_by_alignment Use aligned data sections

-individual_data_sections Use individual data sections

-individual_pragma_data_sections Use individual renamed data sections

-individual_function_sections Use individual function sections

-individual_pragma_function_sections Use individual renamed function sections

-individual_attribute_data_sections Use individual user defined data sections

-individual_attribute_function_sections Use individual user function data sec-
tions

-individual_section_name_extra_dot Use extra dot in section names

-g Plain debugging

RTA-OS Centauri M4/GHS Port Guide V2.0.0 31

Toolchain

-dwarf2 Dwarf 2 debugging

-cpu=cortexm4f Select the CPU type

-thumb Thumb mode

-thumb_lib Thumb libraries

-align8 8 byte data alignment

-X5261 Customer required option

--unknown_pragma_errors Treat unknown pragma as error

--incorrect_pragma_errors Treat incorrect pragma as error

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- Options compatible with those used for kernel

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

-bigendian Generate big-endian code

-std=x Other C standard code apart from C99

- Any other options that conflict with kernel options

6.2.2 Assembler

Name ccthumb.exe
Version v2018.1.4

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

RTA-OS Centauri M4/GHS Port Guide V2.0.0 32

Toolchain

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.3 Librarian

Name ax.exe
Version v2018.1.4

6.2.4 Linker

Name elxr.exe
Version v2018.1.4

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

-globalcheck=normal Normal checking on types

-map Emit map file

-mapfile_type=2 Detailed map file

-Man Sort alphabetic and numeric

-Ml Include locals in map file

-Mx Include cross-reference in map

-Mu Display unused functions in map

RTA-OS Centauri M4/GHS Port Guide V2.0.0 33

Toolchain

-keepmap Keep map if link fails

-delete Remove unreferenced functions

-data_delete Remove unreferenced data

-ignore_debug_references Ignore debug relocations

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for kernel

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.5 Debugger

Name Lauterbach TRACE32 for ARM64
Version Build 109980 or later

RTA-OS Centauri M4/GHS Port Guide V2.0.0 34

Hardware

7 Hardware

7.1 Supported Devices

This port of RTA-OS has been developed to work with the following target:

Name: STMicroelectronics
Device: Centauri

The following variants of the Centauri are supported:

• DME_Cut1 (Centauri Data Move Engine)

• DSP-H_Cut1 (Centauri DSP H)

• HSM_Cut1 (Centauri Hardware Security Module)

If you require support for a variant of Centauri not listed above, please contact ETAS.

7.2 Register Usage

7.2.1 Initialization

RTA-OS requires the following registers to be initialized to the indicated values before
StartOS() is called.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 35

Hardware

Register Setting

CCR.NONBASETHRDENA This must be one so that the processor can en-
ter Thread mode with exceptions active. Calling
Os_InitializeVectorTable() will do this for you.

CCR.STKALIGN This must be one so that 8-byte stack alignment is forced
for exceptions. Calling Os_InitializeVectorTable() will do
this for you.

CONTROL.SPSEL This must be zero so that SP_main is used in thread mode.
Calling Os_InitializeVectorTable() will do this for you.

CONTROL.nPRIV This must be zero so that StartOS() is entered in privi-
leged mode. Calling Os_InitializeVectorTable() will do this
for you.

CPACR/FPCCR These need to be initialized appropriately if floating point
features are used.

FAULTMASK This must be cleared before StartOS(). Calling
Os_InitializeVectorTable() will do this for you.

IPSR This must be cleared before StartOS(). Calling
Os_InitializeVectorTable() will do this for you.

PRIMASK This must be cleared before StartOS(). Calling
Os_InitializeVectorTable() will do this for you.

SP (R13) Must be set to the area of memory to be used for the
stack before calling StartOS().

VTOR This must be setup before StartOS(). Calling
Os_InitializeVectorTable() will do this for you, except
when you are generating your own vector table.

7.2.2 Modification

The following registers must not be modified by user code after the call to StartOS():

RTA-OS Centauri M4/GHS Port Guide V2.0.0 36

Hardware

Register Notes

ACTLR User code may not change the values in the
ACTLR register.

BASEPRI User code may not make changes to BASEPRI
other than via OS APIs.

CCR STKALIGN/NONBASETHRENA User code may not make changes to these bits.

CONTROL User code may not change the values in the
CONTROL register.

FAULTMASK User code may not make changes to FAULTMASK
other than via OS APIs.

FPCCR User code may not make direct changes to
FPCCR.

NVIC User code may not make changes to the inter-
rupt controller (NVIC) other than via OS APIs.

PRIMASK User code may not make changes to PRIMASK
other than via OS APIs.

SHCSR User code may not make changes to SHCSR.

SHPRx User code may not make changes to SHPRx.

SP (R13) User code may not change the stack pointer
other than as a result of normal program flow.

7.3 Required OS resources

RTA-OS needs the following resources for correct operation.

Resource Description

SVCall If untrusted code is present, the OS will use SVCall to move from unpriv-
ileged to privileged mode. It is also used when handling exceptions. If
overridden by user-code, its behavior must be replicated.

7.4 Interrupts

This section explains the implementation of RTA-OS’s interrupt model on the Centauri.

7.4.1 Interrupt Priority Levels

Interrupts execute at an interrupt priority level (IPL). RTA-OS standardizes IPLs across
all targets. IPL 0 indicates task level. IPL 1 and higher indicate an interrupt priority. It is
important that you don’t confuse IPLs with task priorities. An IPL of 1 is higher than the
highest task priority used in your application.

The IPL is a target-independent description of the interrupt priority on your target hard-
ware. The following table shows how IPLs are mapped onto the hardware interrupt
priorities of the Centauri:

RTA-OS Centauri M4/GHS Port Guide V2.0.0 37

Hardware

IPL BASEPRI Description

0 BASEPRI = 0x0 User (task) level
1-15 BASEPRI = 0xF0-0x10 Category 1 and 2 interrupts. Configurable priority

traps.
16 - HardFault. Not affected by DisableAllInterrupts.
17 - NMI. Not affected by DisableAllInterrupts.

Even though a particular mapping is permitted, all Category 1 ISRs must have equal or
higher IPL than all of your Category 2 ISRs.

7.4.2 Allocation of ISRs to Interrupt Vectors

The following restrictions apply for the allocation of Category 1 and Category 2 interrupt
service routines (ISRs) to interrupt vectors on the Centauri. A 3 indicates that the
mapping is permitted and a 7 indicates that it is not permitted:

Address Category 1 Category 2

NMI (Vector 2) 3 7

HardFault (Vector 3) 3 7

MemManage (Vector 4) 3 7

BusFault (Vector 5) 3 7

UsageFault (Vector 6) 3 7

SVCall (Vector 11) 3 7

DebugMon (Vector 12) 3 7

PendSV (Vector 14) 3 7

SysTick (Vector 15) 3 3

NVIC interrupts (Vectors 16+) 3 3

7.4.3 Vector Table

rtaosgen normally generates an interrupt vector table for you automatically. You can
configure “Suppress Vector Table Generation” as true to stop RTA-OS from generating
the interrupt vector table.

Depending upon your target, you may be responsible for locating the generated vector
table at the correct base address. The following table shows the section (or sections)
that need to be located and the associated valid base address:

Section Valid Addresses

.os_vectors Section containing Os_Vectors. First entry is the address placed into
VTOR.

.os_text Section containing exception handling code

7.4.4 Writing Category 1 Interrupt Handlers

Raw Category 1 interrupt service routines (ISRs) must correctly handle the interrupt
context themselves. RTA-OS provides an optional helper macro CAT1_ISR that can be

RTA-OS Centauri M4/GHS Port Guide V2.0.0 38

Hardware

used to make code more portable. Depending on the target, this may cause the se-
lection of an appropriate interrupt control directive to indicate to the compiler that a
function requires additional code to save and restore the interrupt context.

A Category 1 ISR therefore has the same structure as a Category 2 ISR, as shown below.

CAT1_ISR(Category1Handler) {
/* Handler routine */

}

7.4.5 Writing Category 2 Interrupt Handlers

Category 2 ISRs are provided with a C function context by RTA-OS, since the RTA-OS
kernel handles the interrupt context itself. The handlers are written using the ISR()
macro as shown below:

#include <Os.h>
ISR(MyISR) {
/* Handler routine */

}

You must not insert a return from interrupt instruction in such a function. The return is
handled automatically by RTA-OS.

7.4.6 Default Interrupt

The ’default interrupt’ is intended to be used to catch all unexpected interrupts. All
unused interrupts have their interrupt vectors directed to the named routine that you
specify. The routine you provide is not handled by RTA-OS and must correctly handle
the interrupt context itself. The handler must use the CAT1_ISR macro in the same way
as a Category 1 ISR (see Section 7.4.4 for further details).

7.5 Memory Model

The following memory models are supported:

Model Description

Standard The standard flat memory model is used, following standard EABI.

7.6 Processor Modes

RTA-OS can run in the following processor modes:

Mode Notes

Handler Category 1 ISRs run in handler mode.
Trusted Trusted tasks, category 2 ISRs and functions run in thread-privileged

mode.
Untrusted Untrusted tasks, category 2 ISRs and functions run in thread-

unprivileged mode.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 39

Hardware

7.7 Stack Handling

RTA-OS uses a single stack for all tasks and ISRs.

SP_main is used for the stack in both handler and thread mode. The process stack is
not used.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 40

Performance

8 Performance

This chapter provides detailed information on the functionality, performance and mem-
ory demands of the RTA-OS kernel. RTA-OS is highly scalable. As a result, different fig-
ures will be obtained when your application uses different sets of features. The figures
presented in this chapter are representative for the Centauri M4/GHS port based on the
following configuration:

• There are 32 tasks in the system

• Standard build is used

• Stack monitoring is disabled

• Time monitoring is disabled

• There are no calls to any hooks

• Tasks have unique priorities

• Tasks are not queued (i.e. tasks are BCC1 or ECC1)

• All tasks terminate/wait in their entry function

• Tasks and ISRs do not save any auxiliary registers (for example, floating point reg-
isters)

• Resources are shared by tasks only

• The generation of the resource RES_SCHEDULER is disabled

8.1 Measurement Environment

The following hardware environment was used to take the measurements in this chap-
ter:

Device DME_Cut1 on
CPU Clock Speed 60.0MHz
Stopwatch Speed 20.0MHz

8.2 RAM and ROM Usage for OS Objects

Each OS object requires some ROM and/or RAM. The OS objects are generated by
rtaosgen and placed in the RTA-OS library. In the main:

• Os_Cfg_Counters includes data for counters, alarms and schedule tables.

• Os_Cfg contains the data for most other OS objects.

The following table gives the ROM and/or RAM requirements (in bytes) for each OS
object in a simple configuration. Note that object sizes will vary depending on the
project configuration and compiler packing issues.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 41

Performance

Object ROM RAM

Alarm 2 12
Cat 2 ISR 8 0
Counter 20 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 69
OS-Application 0 0
PeripheralArea 0 0
Resource 8 4
ScheduleTable 16 16
Task 20 0

8.3 Stack Usage

The amount of stack used by each Task/ISR in RTA-OS is equal to the stack used in
the Task/ISR body plus the context saved by RTA-OS. The size of the run-time context
saved by RTA-OS depends on the Task/ISR type and the exact system configuration.
The only reliable way to get the correct value for Task/ISR stack usage is to call the
Os_GetStackUsage() API function.

Note that because RTA-OS uses a single-stack architecture, the run-time contexts of
all tasks reside on the same stack and are recovered when the task terminates. As a
result, run-time contexts of mutually exclusive tasks (for example, those that share an
internal resource) are effectively overlaid. This means that the worst case stack usage
can be significantly less than the sum of the worst cases of each object on the system.
The RTA-OS tools automatically calculate the total worst case stack usage for you and
present this as part of the configuration report.

8.4 Library Module Sizes

The RTA-OS kernel is demand linked. This means that each API call is placed into a
separately linkable module. The following table lists the section sizes for each API
module (in bytes) for the simple configuration in standard status.

Library Module .a
p

p
_t

e
x
t

.b
s
s
.a

4

.o
s
_b

s
s

.o
s
_c

o
n

s
t

.o
s
_r

e
s
e
t_

v
e
c
to

r

.o
s
_t

e
x
t

.o
s
_v

e
c
to

rs

ActivateTask 92
AdvanceCounter 4
CallTrustedFunction 26
CancelAlarm 60
ChainTask 88
CheckISRMemoryAccess 40

RTA-OS Centauri M4/GHS Port Guide V2.0.0 42

Performance

Library Module .a
p

p
_t

e
x
t

.b
s
s
.a

4

.o
s
_b

s
s

.o
s
_c

o
n

s
t

.o
s
_r

e
s
e
t_

v
e
c
to

r

.o
s
_t

e
x
t

.o
s
_v

e
c
to

rs

CheckObjectAccess 78
CheckObjectOwnership 74
CheckTaskMemoryAccess 40
ClearEvent 18
ControlIdle 8 12
DisableAllInterrupts 4 4 40
DispatchTask 148
ElapsedTime 18
EnableAllInterrupts 32
GetActiveApplicationMode 12
GetAlarm 108
GetAlarmBase 48
GetApplicationID 36
GetCounterValue 24
GetCurrentApplicationID 36
GetElapsedCounterValue 42
GetEvent 18
GetExecutionTime 18
GetISRID 12
GetIsrMaxExecutionTime 18
GetIsrMaxStackUsage 18
GetResource 44
GetScheduleTableStatus 24
GetStackSize 4
GetStackUsage 18
GetStackValue 16
GetTaskID 16
GetTaskMaxExecutionTime 18
GetTaskMaxStackUsage 18
GetTaskState 40
GetVersionInfo 26
Idle 4
InShutdown 2
IncrementCounter 14
InterruptSource 8 52
ModifyPeripheral 28
NextScheduleTable 84
Os_CPUExceptionHandlers 58
Os_Cat1ExceptionHandlers 40

RTA-OS Centauri M4/GHS Port Guide V2.0.0 43

Performance

Library Module .a
p

p
_t

e
x
t

.b
s
s
.a

4

.o
s
_b

s
s

.o
s
_c

o
n

s
t

.o
s
_r

e
s
e
t_

v
e
c
to

r

.o
s
_t

e
x
t

.o
s
_v

e
c
to

rs

Os_Cat2ExceptionHandlers 64
Os_Cfg 4 621 776 56
Os_Cfg_Counters 728 160
Os_Cfg_KL 44
Os_GetCurrentIMask 6
Os_GetCurrentTPL 28
Os_H2T 48
Os_ResetVector 18
Os_Vectors 572
Os_Wrapper 16 108
Os_setjmp 28
Os_vec_init 264
ProtectionSupport 22
ReadPeripheral 22
ReleaseResource 52
ResetIsrMaxExecutionTime 18
ResetIsrMaxStackUsage 18
ResetTaskMaxExecutionTime 18
ResetTaskMaxStackUsage 18
ResumeAllInterrupts 32
ResumeOSInterrupts 32
Schedule 64
SetAbsAlarm 68
SetEvent 18
SetRelAlarm 112
SetScheduleTableAsync 40
ShutdownOS 60
StackOverrunHook 6
StartOS 92
StartScheduleTableAbs 80
StartScheduleTableRel 76
StartScheduleTableSynchron 40
StopScheduleTable 52
SuspendAllInterrupts 4 4 40
SuspendOSInterrupts 4 4 52
SyncScheduleTable 40
SyncScheduleTableRel 40
TerminateTask 24
ValidateCounter 40

RTA-OS Centauri M4/GHS Port Guide V2.0.0 44

Performance

Library Module .a
p

p
_t

e
x
t

.b
s
s
.a

4

.o
s
_b

s
s

.o
s
_c

o
n

s
t

.o
s
_r

e
s
e
t_

v
e
c
to

r

.o
s
_t

e
x
t

.o
s
_v

e
c
to

rs

ValidateISR 16
ValidateResource 32
ValidateScheduleTable 32
ValidateTask 32
WaitEvent 18
WritePeripheral 20

8.5 Execution Time

The following tables give the execution times in CPU cycles, i.e. in terms of ticks of
the processor’s program counter. These figures will normally be independent of the
frequency at which you clock the CPU. To convert between CPU cycles and SI time units
the following formula can be used:

Time in microseconds = Time in cycles / CPU Clock rate in MHz

For example, an operation that takes 50 CPU cycles would be:

• at 20MHz = 50/20 = 2.5µs

• at 80MHz = 50/80 = 0.625µs

• at 150MHz = 50/150 = 0.333µs

While every effort is made to measure execution times using a stopwatch running at
the same rate as the CPU clock, this is not always possible on the target hardware. If
the stopwatch runs slower than the CPU clock, then when RTA-OS reads the stopwatch,
there is a possibility that the time read is less than the actual amount of time that has
elapsed due to the difference in resolution between the CPU clock and the stopwatch
(the User Guide provides further details on the issue of uncertainty in execution time
measurement).

The figures presented in Section 8.5.1 have an uncertainty of 2 CPU cycle(s).

8.5.1 Context Switching Time

Task switching time is the time between the last instruction of the previous task and the
first instruction of the next task. The switching time differs depending on the switching
contexts (e.g. an ActivateTask() versus a ChainTask()).

RTA-OS Centauri M4/GHS Port Guide V2.0.0 45

Performance

Interrupt latency is the time between an interrupt request being recognized by the
target hardware and the execution of the first instruction of the user provided handler
function:

For Category 1 ISRs this is the time required for the hardware to recognize the inter-
rupt.

For Category 2 ISRs this is the time required for the hardware to recognize the in-
terrupt plus the time required by RTA-OS to set-up the context in which the ISR
runs.

Figure 8.1 shows the measured context switch times for RTA-OS.

Switch Key CPU Cycles Actual Time

Task activation A 3537 59us
Task termination with resume B 1914 31.9us
Task termination with switch to new task C 2166 36.1us
Chaining a task D 4080 68us
Waiting for an event resulting in transition to
the WAITING state

E 8919 149us

Setting an event results in task switch F 11919 199us
Non-preemptive task offers a preemption point
(co-operative scheduling)

G 3465 57.8us

Releasing a resource results in a task switch H 3141 52.4us
Entering a Category 2 ISR I 4335 72.2us
Exiting a Category 2 ISR and resuming the in-
terrupted task

J 3105 51.8us

Exiting a Category 2 ISR and switching to a
new task

K 3501 58.4us

Entering a Category 1 ISR L 1155 19.2us

RTA-OS Centauri M4/GHS Port Guide V2.0.0 46

(a) Task activated. Termination resumes
preempted task.

(b) Task activated. Termination switches into new task.

(c) Task chained. (d) Task waits. Task is resumed when
event set.

(e) Task switch when re-
source is released.

(f) Request for scheduling made by non-
preemptive task.

(g) Category 2 interrupt entry. Interrupted
task resumed on exit.

(h) Category 2 interrupt entry. Switch to new task on exit. (i) Category 1 interrupt entry.

Figure 8.1: Context Switching

RTA-OS Centauri M4/GHS Port Guide V2.0.0 47

Finding Out More

9 Finding Out More

Additional information about Centauri M4/GHS-specific parts of RTA-OS can be found in
the following manuals:

Centauri M4/GHS Release Note. This document provides information about the
Centauri M4/GHS port plug-in release, including a list of changes from previous
releases and a list of known limitations.

Information about the port-independent parts of RTA-OS can be found in the following
manuals, which can be found in the RTA-OS installation (typically in the Documents
folder):

Getting Started Guide. This document explains how to install RTA-OS tools and de-
scribes the underlying principles of the operating system

Reference Guide. This guide provides a complete reference to the API, programming
conventions and tool operation for RTA-OS.

User Guide. This guide shows you how to use RTA-OS to build real-time applications.

RTA-OS Centauri M4/GHS Port Guide V2.0.0 48

Contacting ETAS

10 Contacting ETAS

10.1 Technical Support

Technical support is available to all users with a valid support contract. If you do
not have a valid support contract, please contact your regional sales office (see Sec-
tion 10.2.2).

The best way to get technical support is by email. Any problems or questions about the
use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you call the
support hotline on:

+44 (0)1904 562624.

The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the following infor-
mation:

• Your support contract number

• Your .xml, .arxml, .rtaos and/or .stc files

• The command line which caused the error

• The version of the ETAS tools you are using

• The version of the compiler tool chain you are using

• The error message you received (if any)

• The file Diagnostic.dmp if it was generated

10.2 General Enquiries

10.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

10.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team (where avail-
able) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

RTA-OS Centauri M4/GHS Port Guide V2.0.0 49

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

Index

A
Assembler, 32
AUTOSAR OS includes

Os.h, 25
Os_Cfg.h, 25
Os_MemMap.h, 25

C
CAT1_ISR, 27
Compiler, 30
Compiler (Green Hills Software, Compiler

v2018.1.4), 30
Compiler Versions, 30
Configuration

Port-Specific Parameters, 21

D
Debugger, 34

E
ETAS License Manager, 11

Installation, 11

F
Files, 25

H
Hardware

Requirements, 9

I
Installation, 9

Default Directory, 10
Verification, 19

Interrupts, 37
Category 1, 38
Category 2, 39
Default, 39

IPL, 37

L
Librarian, 33
Library

Name of, 25
License, 11

Borrowing, 15
Concurrent, 12

Grace Mode, 12
Installation, 15
Machine-named, 12
Status, 15
Troubleshooting, 16
User-named, 12

Linker, 33

M
Memory Model, 39

O
Options, 30
Os_Cbk_GetAbortStack, 26
Os_Clear_x, 27
Os_Disable_x, 28
Os_DisableAllConfiguredInterrupts, 28
Os_Enable_x, 28
Os_EnableAllConfiguredInterrupts, 28
Os_InitializeVectorTable, 26
Os_IntChannel_x, 28
Os_IntID_x, 29
Os_StackSizeType, 29
Os_StackValueType, 29

P
Parameters of Implementation, 21
Performance, 41

Context Switching Times, 45
Library Module Sizes, 42
RAM and ROM, 41
Stack Usage, 42

Processor Modes, 39
Handler, 39
Trusted, 39
Untrusted, 39

R
Registers

ACTLR, 37
BASEPRI, 37
CCR STKALIGN/NONBASETHRENA, 37
CCR.NONBASETHRDENA, 36
CCR.STKALIGN, 36
CONTROL, 37
CONTROL.nPRIV, 36

RTA-OS Centauri M4/GHS Port Guide V2.0.0 50

Index

CONTROL.SPSEL, 36
CPACR/FPCCR, 36
FAULTMASK, 36, 37
FPCCR, 37
Initialization, 35
IPSR, 36
Non-modifiable, 36
NVIC, 37
PRIMASK, 36, 37
SHCSR, 37
SHPRx, 37
SP (R13), 36, 37
VTOR, 36

Resource
SVCall, 37

S

Software

Requirements, 9

Stack, 40

T

Target, 35

Variants, 35

Toolchain, 30

V

Variants, 35

Vector Table

Base Address, 38

RTA-OS Centauri M4/GHS Port Guide V2.0.0 51

	1 Introduction
	1.1 About You
	1.2 Document Conventions
	1.3 References

	2 Installing the RTA-OS Port Plug-in
	2.1 Preparing to Install
	2.1.1 Hardware Requirements
	2.1.2 Software Requirements

	2.2 Installation
	2.2.1 Installation Directory

	2.3 Licensing
	2.3.1 Installing the ETAS License Manager
	2.3.2 Licenses
	2.3.3 Installing a Concurrent License Server
	2.3.4 Using the ETAS License Manager
	2.3.5 Troubleshooting Licenses

	3 Verifying your Installation
	3.1 Checking the Port
	3.2 Running the Sample Applications

	4 Port Characteristics
	4.1 Parameters of Implementation
	4.2 Configuration Parameters
	4.2.1 Stack used for C-startup
	4.2.2 Stack used when idle
	4.2.3 Stack overheads for ISR activation
	4.2.4 Stack overheads for ECC tasks
	4.2.5 Stack overheads for ISR
	4.2.6 Orti22/Lauterbach
	4.2.7 Orti23/Lauterbach
	4.2.8 Block default interrupt
	4.2.9 Enable stack repositioning
	4.2.10 Enable untrusted stack check
	4.2.11 Handle FPU context

	4.3 Generated Files

	5 Port-Specific API
	5.1 API Calls
	5.1.1 Os_InitializeVectorTable

	5.2 Callbacks
	5.2.1 Os_Cbk_GetAbortStack

	5.3 Macros
	5.3.1 CAT1_ISR
	5.3.2 Os_Clear_x
	5.3.3 Os_DisableAllConfiguredInterrupts
	5.3.4 Os_Disable_x
	5.3.5 Os_EnableAllConfiguredInterrupts
	5.3.6 Os_Enable_x
	5.3.7 Os_IntChannel_x
	5.3.8 Os_IntID_x

	5.4 Type Definitions
	5.4.1 Os_StackSizeType
	5.4.2 Os_StackValueType

	6 Toolchain
	6.1 Compiler Versions
	6.1.1 Green Hills Software, Compiler v2018.1.4

	6.2 Options used to generate this guide
	6.2.1 Compiler
	6.2.2 Assembler
	6.2.3 Librarian
	6.2.4 Linker
	6.2.5 Debugger

	7 Hardware
	7.1 Supported Devices
	7.2 Register Usage
	7.2.1 Initialization
	7.2.2 Modification

	7.3 Required OS resources
	7.4 Interrupts
	7.4.1 Interrupt Priority Levels
	7.4.2 Allocation of ISRs to Interrupt Vectors
	7.4.3 Vector Table
	7.4.4 Writing Category 1 Interrupt Handlers
	7.4.5 Writing Category 2 Interrupt Handlers
	7.4.6 Default Interrupt

	7.5 Memory Model
	7.6 Processor Modes
	7.7 Stack Handling

	8 Performance
	8.1 Measurement Environment
	8.2 RAM and ROM Usage for OS Objects
	8.3 Stack Usage
	8.4 Library Module Sizes
	8.5 Execution Time
	8.5.1 Context Switching Time

	9 Finding Out More
	10 Contacting ETAS
	10.1 Technical Support
	10.2 General Enquiries
	10.2.1 ETAS Global Headquarters
	10.2.2 ETAS Local Sales & Support Offices

