ETNAS

RTA-OS PPCLWHVR/GHS V2.0.2

Port Guide
Status: Released

ETAS

DRIVING EMBEDDED EXCELLENCE Copyright

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this doc-
ument. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract. Under no circumstances
may any part of this document be copied, reproduced, transmitted, stored in a retrieval
system or translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2019 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document: 10575-PG-2.0.2 EN-08-2019

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 2

ETAS

DRIVING EMBEDDED EXCELLENCE Safety Notice

Safety Notice

This ETAS product fulfills standard quality management requirements. If requirements
of specific safety standards (e.g. IEC 61508, ISO 26262) need to be fulfilled, these
requirements must be explicitly defined and ordered by the customer. Before use of
the product, customer must verify the compliance with specific safety standards.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 3

ETAS

DRIVING EMBEDDED EXCELLENCE Contents
Contents

1 Introduction 7
1.1 AbOULYOU o 7

1.2 Document Conventions i 8

1.3 References 8

2 Installing the RTA-OS Port Plug-in 9
2.1 PreparingtolInstall 9
2.1.1 Hardware Requirements 9

2.1.2 Software Requirements 9

2.2 Installation e 10
2.2.1 Installation Directory 10

2.3 LiCensing 11
23.1 Installing the ETAS License Manager 11

2.3.2 LiCeNSEeS 12

2.3.3 Installing a Concurrent License Server 13

2.3.4 Using the ETAS License Manager 14

2.3.5 Troubleshooting Licenses 16

3 Verifying your Installation 19
3.1 Checkingthe Port 19

3.2 Running the Sample Applications 19

4 Port Characteristics 21
4.1 Parameters of Implementation 21

4.2 Configuration Parameters 21
4.2.1 Stack used for C-startup 21

4.2.2 Stackusedwhenidle 22

4.2.3 Stack overheads for ISR activation 22

4.2.4 Stack overheads forECCtasks 22

4.2.5 Stack overheadsforISR 22

4.2.6 ORTl/Lauterbach 23

4.2.7 ORTI/WINIDEA 23

4.2.8 Link Type . . . 23

4.2.9 SDAThreshold 23

4.2.10 Optimizer Setting 23

4.3 Generated Files e 24

5 Port-Specific API 25
5.1 MaCrOS . . o 25
5.1.1 CATL ISR . . 25

5.2 Type Definitions e 25
5.2.1 Os StackSizeType oo 25

5.2.2 Os StackValueType i 25

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 a4

ETAS

DRIVING EMBEDDED EXCELLENCE Contents

6 Toolchain 26
6.1 CompilerVersions e 26
6.1.1 Green Hills Software v2015.1.6.................... 26

6.2 Options used to generate thisguide 26
6.2.1 Compiler. 26

6.2.2 Assembler 28

6.2.3 Librarian 28

6.2.4 Linker 29

6.2.5 Debugger 29

6.3 Specifying the location of LWHVR headerfiles 29

7 Hardware 30
7.1 Supported Deviceso oo e 30

7.2 RegisterUsage i 30
7.2.1 Initialization 30

7.2.2 Modification 30

7.3 Required OS resourCes v ittt i e e e e e e e e 30

7.4 Interrupts e 31
7.4.1 Interrupt Priority Levels 31

7.4.2 Allocation of ISRs to Interrupt Vectors 31

7.4.3 VectorTable 31

7.4.4 Writing Category 1 Interrupt Handlers 32

7.4.5 Writing Category 2 Interrupt Handlers 32

7.4.6 Default Interrupt 32

7.5 Memory Model e e 32

7.6 Processor Modes 33

7.7 Stack Handling e e 33

7.8 Virtual Machine Details. 33
7.8.1 Memory AssignedtotheVM 33

7.8.2 VM Entry Points e 33

7.8.3 Os VMStatusBlock 34

7.8.4 Untrusted Applicationsin SC3andSC4 34

7.8.5 Trusted with Protection 34

7.8.6 Using ORTI e e e e e e 34

7.8.7 iSystem Debugger Support 35

7.8.8 Compensating for the Effects of Time-Slicing 35

8 Performance 37
8.1 Measurement Environment. o 37

8.2 RAM and ROM Usage for OS Objects 37

8.3 Stack Usage e 38

8.4 Library Module Sizes e 38

8.5 Execution Time e 41
8.5.1 Context Switching Time 42

9 Finding Out More 44

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 5

ETAS

DRIVING EMBEDDED EXCELLENCE Contents
10 Contacting ETAS 45
10.1 Technical Support 45
10.2 General Enquiries 45
10.2.1 ETAS Global Headquarters 45
10.2.2 ETAS Local Sales & Support Offices 45

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 6

ETAS

DRIVING EMBEDDED EXCELLENCE

1.1

Introduction

RTA-OS is a small and fast real-time operating system that conforms to both the AU-
TOSAR OS (R3.0.1 -> R3.0.7, R3.1.1 -> R3.1.5, R3.2.1 -> R3.2.2, R4.0.1 -> R4.4.0) and
OSEK/VDX 2.2.3 standards (OSEK is now standardized in ISO 17356). The operating
system is configured and built on a PC, but runs on your target hardware.

This document describes the RTA-OS PPCLWHVR/GHS port plug-in that customizes the
RTA-OS development tools for the ETAS LWHVR/SPC58ECxx with the GreenHills com-
piler. It supplements the more general information you can find in the User Guide and
the Reference Guide.

The document has two parts. Chapters 2 to 3 help you understand the PPCLWHVR/GHS
port and cover:

e how to install the PPCLWHVR/GHS port plug-in;
e how to configure PPCLWHVR/GHS-specific attributes;

e how to build an example application to check that the PPCLWHVR/GHS port plug-in
works.

Chapters 4 to 8 provide reference information including:

the number of OS objects supported;

e required and recommended toolchain parameters;

e how RTA-OS interacts with the LWHVR/SPC58ECXxX, including required register set-
tings, memory models and interrupt handling;

e memory consumption for each OS object;
e memory consumption of each API call;
e execution times for each API call.

For the best experience with RTA-OS it is essential that you read and understand this
document.

About You

You are a trained embedded systems developer who wants to build real-time appli-
cations using a preemptive operating system. You should have knowledge of the C
programming language, including the compilation, assembling and linking of C code
for embedded applications with your chosen toolchain. Elementary knowledge about
your target microcontroller, such as the start address, memory layout, location of pe-
ripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows operating sys-
tem, including installing software, selecting menu items, clicking buttons, navigating
files and folders.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 7

Introduction

ETAS

DRIVING EMBEDDED EXCELLENCE Introduction

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options appear in bold, blue characters.
Click OK. Button labels appear in bold characters
Press <Enter>. Key commands are enclosed in angle brackets.

The “Open file” dialog box GUI element names, for example window titles, fields,
appears etc. are enclosed in double quotes.

Activate(Taskl) Program code, header file names, C type names,
C functions and APl call names all appear in a
monospaced typeface.

See Section 1.2. Internal document hyperlinks are shown in blue letters.
Functionality in RTA-OS that might not be portable to
vs other implementations of AUTOSAR OS is marked with
2 the RTA-OS icon.
Important instructions that you must follow carefully to

A ensure RTA-OS works as expected are marked with a
caution sign.

1.3 References

OSEK is a European automotive industry standards effort to produce open systems
interfaces for vehicle electronics. OSEK is now standardized in ISO 17356. For details
of the OSEK standards, please refer to:

http://www.0sek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized auto-
motive software architecture, jointly developed by automobile manufacturers, suppli-
ers and tool developers. For details of the AUTOSAR standards, please refer to:

http://www.autosar.org

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 8

http://www.osek-vdx.org
http://www.autosar.org

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in

2 Installing the RTA-OS Port Plug-in

2.1 Preparing to Install

RTA-OS port plug-ins are supplied as a downloadable electronic installation image which
you obtain from the ETAS Web Portal. You will have been provided with access to the
download when you bought the port. You may optionally have requested an installation
CD which will have been shipped to you. In either case, the electronic image and the
installation CD contain identical content.

Integration Guidance 2.1:You must have installed the RTA-OS tools before installing
A the PPCLWHVR/GHS port plug-in. If you have not yet done this then please follow the
instructions in the Getting Started Guide.

2.1.1 Hardware Requirements

You should make sure that you are using at least the following hardware before in-
stalling and using RTA-OS on a host PC:

e 1GHz Pentium Windows-capable PC.
e 2G RAM.

e 20G hard disk space.

e CD-ROM or DVD drive (Optional)

e Ethernet card.

2.1.2 Software Requirements

RTA-OS requires that your host PC has one of the following versions of Microsoft Win-
dows installed:

e Windows 7
e Windows 8
e Windows 10

Integration Guidance 2.2:The tools provided with RTA-OS require Microsoft’s .NET
Framework v2.0 (included as part of .NET Framework v3.5) and v4.0 to be installed. You
should ensure that these have been installed before installing RTA-OS. The .NET frame-
A work is not supplied with RTA-OS but is freely available from https://www.microsoft.
com/net/download. To install .NET 3.5 on Windows 10 see https://docs.microsoft.
com/en-us/dotnet/framework/install/dotnet-35-windows- 10.

The migration of the code from v2.0 to v4.0 will occur over a period of time for perfor-
mance and maintenance reasons.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 9

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in

2.2 Installation

Target port plug-ins are installed in the same way as the tools:

1. Either

e Double click the executable image; or
e Insert the RTA-OS PPCLWHVR/GHS CD into your CD-ROM or DVD drive.

If the installation program does not run automatically then you will need to
start the installation manually. Navigate to the root directory of your CD/DVD
drive and double click autostart.exe to start the setup.

2. Follow the on-screen instructions to install the PPCLWHVR/GHS port plug-in.

By default, ports are installed into C:\ETAS\RTA-0S\Targets. During the installation
process, you will be given the option to change the folder to which RTA-OS ports are
installed. You will normally want to ensure that you install the port plug-in in the same
location that you have installed the RTA-OS tools. You can install different versions of
the tools/targets into different directories and they will not interfere with each other.

Integration Guidance 2.3:Port plug-ins can be installed into any location, but using
A a non-default directory requires the use of the --target_include argument to both
rtaosgen and rtaoscfg. For example:

rtaosgen --target_include:<target_directory>

2.2.1 Installation Directory

The installation will create a sub-directory under Targets with the name
PPCLWHVRGHS_2.0.2. This contains everything to do with the port plug-in.

Each version of the port installs in its own directory - the trailing _2.0.2 is the port’s
version identifier. You can have multiple different versions of the same port installed at
the same time and select a specific version in a project’s configuration.

The port directory contains:

PPCLWHVRGHS.dII - the port plug-in that is used by rtaosgen and rtaoscfg.

RTA-OS PPCLWHVRGHS Port Guide.pdf - the documentation for the port (the doc-
ument you are reading now).

RTA-OS PPCLWHVRGHS Release Note.pdf - the release note for the port. This doc-
ument provides information about the port plug-in release, including a list of
changes from previous releases and a list of known limitations.

There may be other port-specific documentation supplied which you can also find in
the root directory of the port installation. All user documentation is distributed in PDF
format which can be read using Adobe Acrobat Reader. Adobe Acrobat Reader is not
supplied with RTA-OS but is freely available from http://www.adobe. com.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 10

http://www.adobe.com

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in
x

File Tools Help

—License Lisking
_I License | Product I Skatus I Wersion | Source I Expiration Cate
@ ASCET-MD ASCET IMSTALLED 6.0 SERVER Permanent
@ ASCET-RP ASCET IMSTALLED 6.0 SERVER Permanent
@ ASCET-SE BSCET INSTALLED 6.0 SERVER Permanent
@ LD _RTA-053,0_PPCEZO0GHS LD_RT&-053.0 PPCe2005HS MOT AVAILABLE 1.0 Mo Information
a LD _RTA-053.0_SRC LD_RTA-253.0 MOT AVAILABLE 1.0 Mo Information
@ LD_RTA-OS3.0_YRTA LD_RTA-DOS53.0 YRTA IMSTALLED 1.0 LCnZaAL 3-aug-2003
@ LD_RTA-RTEZ.1 RTA-RTEZ. 1 IMSTALLED 1.0 SERVER Permanent
1 i
rLicense Information
=
Kl

Figure 2.1: The ETAS License manager

2.3 Licensing

RTA-OS is protected by FLEXnet licensing technology. You will need a valid license key
in order to use RTA-OS.

Licenses for the product are managed using the ETAS License Manager which keeps
track of which licenses are installed and where to find them. The information about
which features are required for RTA-OS and any port plug-ins is stored as license signa-
ture files that are stored in the folder <install_folder>\bin\Licenses.

The ETAS License Manager can also tell you key information about your licenses includ-
ing:

e Which ETAS products are installed

e Which license features are required to use each product
o Which licenses are installed

e When licenses expire

e Whether you are using a local or a server-based license

Figure 2.1 shows the ETAS License Manager in operation.

2.3.1 Installing the ETAS License Manager

Integration Guidance 2.4:The ETAS License Manager must be installed for RTA-OS to
A work. It is highly recommended that you install the ETAS License Manager during your
installation of RTA-OS.

The installer for the ETAS License Manager contains two components:

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 11

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in

1. the ETAS License Manager itself;

2. a set of re-distributable FLEXnet utilities. The utilities include the software and
instructions required to setup and run a FLEXnet license server manager if con-
current licenses are required (see Sections 2.3.2 and 2.3.3 for further details)

During the installation of RTA-OS you will be asked if you want to install the ETAS
License Manager. If not, you can install it manually at a later time by running
<install_folder>\LicenseManager\LicensingStandaloneInstallation.exe.

Once the installation is complete, the ETAS License Manager can be found in
C:\Program Files\Common Files\ETAS\Licensing.

After it is installed, a link to the ETAS License Manager can be found in the Windows
Start menu under Programs—> ETAS - License Management - ETAS License
Manager.

2.3.2 Licenses

When you install RTA-OS for the first time the ETAS License Manager will allow the
software to be used in grace mode for 14 days. Once the grace mode period has
expired, a license key must be installed. If a license key is not available, please contact
your local ETAS sales representative. Contact details can be found in Chapter 10.

You should identify which type of license you need and then provide ETAS with the
appropriate information as follows:

Machine-named licenses allows RTA-OS to be used by any user logged onto the PC
on which RTA-OS and the machine-named license is installed.

A machine-named license can be issued by ETAS when you provide the host ID
(Ethernet MAC address) of the host PC

User-named licenses allow the named user (or users) to use RTA-OS on any PC in the
network domain.

A user-named license can be issued by ETAS when you provide the Windows user-
name for your network domain.

Concurrent licenses allow any user on any PC up to a specified number of users to
use RTA-OS. Concurrent licenses are sometimes called floating licenses because
the license can float between users.

A concurrent license can be issued by ETAS when you provide the following infor-
mation:

1. The name of the server

2. The Host ID (MAC address) of the server.

3. The TCP/IP port over which your FLEXnet license server will serve licenses. A
default installation of the FLEXnet license server uses port 27000.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 12

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in

¢ Obtain License Info x|

To obtain a license file From ETAS, wou must chose a nebwork adapter, the license
will be bound to. You can then send this information to ETAS,

Mame | MaC Address | IF Address
Inkel(R) PROWireless 3945A6G MNebw, ., O01B77337A06 0.0.0,0
Broadcom MebXtreme Gigabit Etherne,.. 001A4BSFEDCD 10.103.6.34

Get License Info

Figure 2.2: Obtaining License Information

You can use the ETAS License Manager to get the details that you must provide to ETAS
when requesting a machine-named or user-named license and (optionally) store this
information in a text file.

Open the ETAS License Manager and choose Tools = Obtain License Info from the
menu. For machine-named licenses you can then select the network adaptor which
provides the Host ID (MAC address) that you want to use as shown in Figure 2.2. For
a user-based license, the ETAS License Manager automatically identifies the Windows
username for the current user.

Selecting “Get License Info” tells you the Host ID and User information and lets you
save this as a text file to a location of your choice.

2.3.3 Installing a Concurrent License Server

Concurrent licenses are allocated to client PCs by a FLEXnet license server manager
working together with a vendor daemon. The vendor daemon for ETAS is called
ETAS.exe. A copy of the vendor daemon is placed on disk when you install the ETAS
License Manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

To work with an ETAS concurrent license, a license server must be configured which is
accessible from the PCs wishing to use a license. The server must be configured with
the following software:

e FLEXnet license server manager;
e ETAS vendor daemon (ETAS. exe);

It is also necessary to install your concurrent license on the license server.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 13

ETAS

DRIVING EMBEDDED EXCELLENCE

Installing the RTA-OS Port Plug-in

2.3.4

&, ETAS License Manager i i!

File Tools Help

—License Lisking

_I License I Produck I Status Version I Source | Expiration Dake I Borrow Expiration Dake
a LD _RTA-053,0_SRC LD _RT&-053.0 MOT AVAILABLE 1.0 Mo InfFormation

a LD _RTA-OS3.0_YRTA LD_RT&-053.0 MOT AVAILABLE 1.0 Mo Information

dl | ©

rLicense Information

Figure 2.3: Unlicensed RTA-OS Installation

In most organizations there will be a single FLEXnet license server manager that is
administered by your IT department. You will need to ask your IT department to install
the ETAS vendor daemon and the associated concurrent license.

If you do not already have a FLEXnet license server then you will need to arrange for
one to be installed. A copy of the FLEXnet license server, the ETAS vendor daemon and
the instructions for installing and using the server (LicensingEndUserGuide.pdf) are
placed on disk when you install the ETAS License manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

Using the ETAS License Manager

If you try to run the RTA-OS GUI rtaoscfg without a valid license, you will be given the
opportunity to start the ETAS License Manager and select a license. (The command-line
tool rtaosgen will just report the license is not valid.)

When the ETAS License Manager is launched, it will display the RTA-OS license state as
NOT AVAILABLE. This is shown in Figure 2.3.

Note that if the ETAS License Manager window is slow to start, rtaoscfg may ask a
second time whether you want to launch it. You should ignore the request until the
ETAS License Manager has opened and you have completed the configuration of the
licenses. You should then say yes again, but you can then close the ETAS License
Manager and continue working.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 14

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in

License Key Installation

License keys are supplied in an ASCII text file, which will be sent to you on completion
of a valid license agreement.

If you have a machine-based or user-based license key then you can simply install the
license by opening the ETAS License Manager and selecting File > Add License File
menu.

If you have a concurrent license key then you will need to create a license stub file that
tells the client PC to look for a license on the FLEXnet server as follows:

1. create a copy of the concurrent license file

2. open the copy of the concurrent license file and delete every line except the one
starting with SERVER

3. add a new line containing USE_SERVER

4. add a blank line

5. save the file

The file you create should look something like this:

SERVER <server name> <MAC address> <TCP/IP Port>9
USE_SERVERY

Al

Once you have create the license stub file you can install the license by opening the
ETAS License Manager and selecting File = Add License File menu and choosing the
license stub file.

License Key Status

When a valid license has been installed, the ETAS License Manager will display the
license version, status, expiration date and source as shown in Figure 2.4.

Borrowing a concurrent license

If you use a concurrent license and need to use RTA-OS on a PC that will be disconnected
from the network (for example, you take a demonstration to a customer site), then the
concurrent license will not be valid once you are disconnected.

To address this problem, the ETAS License Manager allows you to temporarily borrow a
license from the license server.

To borrow a license:

Right click on the license feature you need to borrow.

Select “Borrow License”

From the calendar, choose the date that the borrowed license should expire.
Click “OK"

Wi

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 15

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in
x

File Tools Help

—License Lisking

I License I Produck I Status Version I Source | Expiration Dake I Borrow Expiration Dake
@ LD _RTA-053,0_SRC LD _RT&-053.0 INSTALLED 1.0 LOCAL 24-dec-2008
@ LD _RTA-OS3.0_YRTA LD_RT&-053.0 INSTALLED 1.0 LOCAL 24-dec-2008
/ | ©

rLicense Information

Figure 2.4: Licensed features for RTA-OS

The license will automatically expire when the borrow date elapses. A borrowed license
can also be returned before this date. To return a license:

1. Reconnect to the network;
2. Right-click on the license feature you have borrowed;
3. Select “Return License”.

2.3.5 Troubleshooting Licenses

RTA-OS tools will report an error if you try to use a feature for which a correct license
key cannot be found. If you think that you should have a license for a feature but the
RTA-OS tools appear not to work, then the following troubleshooting steps should be
followed before contacting ETAS:

Can the ETAS License Manager see the license?

The ETAS License Manager must be able to see a valid license key for each product
or product feature you are trying to use.

You can check what the ETAS License Manager can see by starting it from the

Help = License Manager... menu option in rtaoscfg or directly from the
Windows Start Menu - Start = ETAS = License Management = ETAS License
Manager.

The ETAS License Manager lists all license features and their status. Valid licenses
have status INSTALLED. Invalid licenses have status NOT AVAILABLE.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 16

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in
T —— x

File Tools Help

—License Lisking

_I License | Product I Status I Wersion | Source I Expiration Date
@ ASCET-SE ASCET IMSTALLED 6.0 SERVER Permanent
a LD _RTA-053.0_PPCEZ00GHS LD_RT&-0S53.0 PPCe200GHS MOT AVAILABLE 1.0 Mo Information
i\. LD _RTA-053,0_SRC LD_RT&-053.0 INSTALLED 1.0 LCZAL 24-dec-2008
ﬂ LD _RTA-OS3,.0_YRTA LD_RTA-053.0 YRTA IMSTALLED 1.0 LCnZAL 24-dec-2008
@ LD _RTA-RTEZ.1 RTA-RTEZ. 1 IMSTALLED 1.0 SERVER Permanent
1|]

rLicense Information

Figure 2.5: Licensed features that are due to expire

Is the license valid?

You may have been provided with a time-limited license (for example, for evalu-
ation purposes) and the license may have expired. You can check that the Expi-
ration Date for your licensed features to check that it has not elapsed using the
ETAS License Manager.

If a license is due to expire within the next 30 days, the ETAS License Manager will
use a warning triangle to indicate that you need to get a new license. Figure 2.5
shows that the license features LD_RTA-0S3.0_VRTA and LD_RTA-0S3.0_SRC are
due to expire.

If your license has elapsed then please contact your local ETAS sales representa-
tive to discuss your options.

Does the Ethernet MAC address match the one specified?

If you have a machine based license then it is locked to a specific MAC address.
You can find out the MAC address of your PC by using the ETAS License Manager
(Tools = Obtain License Info) or using the Microsoft program ipconfig /all at
a Windows Command Prompt.

You can check that the MAC address in your license file by opening your license file
in a text editor and checking that the HOSTID matches the MAC address identified
by the ETAS License Manager or the Physical Address reported by ipconfig /all.

If the HOSTID in the license file (or files) does not match your MAC address then
you do not have a valid license for your PC. You should contact your local ETAS
sales representative to discuss your options.

Is your Ethernet Controller enabled?

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 17

ETAS

DRIVING EMBEDDED EXCELLENCE Installing the RTA-OS Port Plug-in

If you use a laptop and RTA-OS stops working when you disconnect from the net-
work then you should check your hardware settings to ensure that your Ether-
net controller is not turned off to save power when a network connection is not
present. You can do this using Windows Control Panel. Select System = Hard-
ware = Device Manager then select your Network Adapter. Right click to open
Properties and check that the Ethernet controller is not configured for power
saving in Advanced and/or Power Management settings.

Is the FlexNet License Server visible?

If your license is served by a FlexNet license server, then the ETAS License Man-
ager will report the license as NOT AVAILABLE if the license server cannot be ac-
cessed.

You should contact your IT department to check that the server is working cor-
rectly.
Still not fixed?

If you have not resolved your issues, after confirming these points above, please
contact ETAS technical support. The contact address is provided in Section 10.1.
You must provide the contents and location of your license file and your Ethernet
MAC address.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 18

ETAS

DRIVING EMBEDDED EXCELLENCE Verifying your Installation

3 Verifying your Installation

Now that you have installed both the RTA-OS tools and a port plug-in and have obtained
and installed a valid license key you can check that things are working.

3.1 Checking the Port

The first thing to check is that the RTA-OS tools can see the new port. You can do this
in two ways:

1. use the rtaosgen tool

You can run the command rtaosgen ——target:? to get a list of available targets,
the versions of each target and the variants supported, for example:

RTA-0S Code Generator

Version p.q.r.s, Copyright © ETAS nnnn
Available targets:

TriCoreHighTec_n.n.n [TC1797...]
VRTA_n.n.n [MinGW,VS2005,VS2008,VS2010]

2. use the rtaoscfg tool

The second way to check that the port plug-in can be seen is by starting rtaoscfg
and selecting Help = Information... drop down menu. This will show informa-
tion about your complete RTA-OS installation and license checks that have been
performed.

Integration Guidance 3.1:/f the target port plug-ins have been installed to a non-
A default location, then the --target_include argument must be used to specify the
target location.

If the tools can see the port then you can move on to the next stage — checking that you
can build an RTA-OS library and use this in a real program that will run on your target
hardware.

3.2 Running the Sample Applications

Each RTA-OS port is supplied with a set of sample applications that allow you to check
that things are running correctly. To generate the sample applications:

1. Create a new working directory in which to build the sample applications.

2. Open a Windows command prompt in the new directory.

3. Execute the command:

rtaosgen --target:<your target> --samples:[Applications]

e.g.

rtaosgen --target:[MPC5777Mv2]PPCe200HighTec_5.0.8
--samples: [Applications]

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 19

ETAS

DRIVING EMBEDDED EXCELLENCE Verifying your Installation

You can then use the build.bat and run.bat files that get created for each sample appli-
cation to build and run the sample. For example:

cd Samples\Applications\HelloWorld
build.bat
run.bat

Remember that your target toolchain must be accessible on the Windows PATH for the
build to be able to run successfully.

Integration Guidance 3.2:/t is strongly recommended that you build and run at least
A the Hello World example in order to verify that RTA-OS can use your compiler toolchain
to generate an OS kernel and that a simple application can run with that kernel.

For further advice on building and running the sample applications, please consult your
Getting Started Guide.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 20

ETAS

DRIVING EMBEDDED EXCELLENCE Port Characteristics

4 Port Characteristics

This chapter tells you about the characteristics of RTA-OS for the PPCLWHVR/GHS port.

4.1 Parameters of Implementation

To be a valid OSEK (ISO 17356) or AUTOSAR OS, an implementation must support a
minimum number of OS objects. The following table specifies the minimum numbers
of each object required by the standards and the maximum number of each object
supported by RTA-OS for the PPCLWHVR/GHS port.

Parameter Required RTA-OS

Tasks 16 1024
Tasks not in SUSPENDED state 16 1024
Priorities 16 1024
Tasks per priority - 1024
Queued activations per priority - | 4294967296
Events per task 8 32
Software Counters 8 | 4294967296
Hardware Counters - | 4294967296
Alarms 1| 4294967296
Standard Resources 8 | 4294967296
Linked Resources - | 4294967296
Nested calls to GetResource() - | 4294967296
Internal Resources 2 no limit
Application Modes 1 | 4294967296
Schedule Tables 2 | 4294967296
Expiry Points per Schedule Table - | 4294967296
OS Applications - | 4294967295
Trusted functions - | 4294967295
Spinlocks (multicore) - | 4294967295
Register sets - | 4294967296

4.2 Configuration Parameters

Port-specific parameters are configured in the General = Target workspace of
rtaoscfg, under the “Target-Specific” tab.

The following sections describe the port-specific configuration parameters for the PP-
CLWHVR/GHS port, the name of the parameter as it will appear in the XML configuration
and the range of permitted values (where appropriate).

4.2.1 Stack used for C-startup

XML name SpPreStartOS

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 21

ETAS

DRIVING EMBEDDED EXCELLENCE Port Characteristics

Description

The amount of stack already in use at the point that StartOS() is called. This value is
simply added to the total stack size that the OS needs to support all tasks and interrupts
at run-time. Typically you use this to obtain the amount of stack that the linker must
allocate. The value does not normally change if the OS configuration changes.

4.2.2 Stack used when idle

XML name SpStartOS

Description

The amount of stack used when the OS is in the idle state (typically inside
Os _Cbk Idle()). This is just the difference between the stack used at the point that
Os_StartOS() is called and the stack used when no task or interrupt is running. This
can be zero if Os_Cbk_Idle() is not used. It must include the stack used by any function
called while in the idle state. The value does not normally change if the OS configura-
tion changes.

4.2.3 Stack overheads for ISR activation

XML name SplDisp

Description

The extra amount of stack needed to activate a task from within an ISR. If a task is
activated within a Category 2 ISR, and that task has a higher priority than any currently
running task, then for some targets the OS may need to use marginally more stack
than if it activates a task that is of lower priority. This value accounts for that. On
most targets this value is zero. This value is used in worst-case stack size calculations.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.4 Stack overheads for ECC tasks

XML name SpECC

Description

The extra amount of stack needed to start an ECC task. ECC tasks need to save slightly
more state on the stack when they are started than BCC tasks. This value contains the
difference. The value may change if significant changes are made to the OS configura-
tion. e.g. STANDARD/EXTENDED, SC1/2/3/4.

4.2.5 Stack overheads for ISR

XML name SpPreemption

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 22

ETAS

DRIVING EMBEDDED EXCELLENCE Port Characteristics

Description

The amount of stack used to service a Category 2 ISR. When a Category 2 ISR interrupts
a task, it usually places some data on the stack. If the ISR measures the stack to deter-
mine if the preempted task has exceeded its stack budget, then it will overestimate the
stack usage unless this value is subtracted from the measured size. The value is also
used when calculating the worst-case stack usage of the system. Be careful to set this
value accurately. If its value is too high then when the subtraction occurs, 32-bit un-
derflow can occur and cause the OS to think that a budget overrun has been detected.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.6 ORTI/Lauterbach

XML name Orti22Lauterbach

Description

Enables ORTI generation for Lauterbach debugger.

4.2.7 ORTI/winIDEA

XML name Orti2lwinIDEA

Description

Enables ORTI generation for winIDEA debugger.

4.2.8 Link Type

XML name OSLinkMemModel

Description

Select the type of map used in linker samples.

Settings

Value Descripton

IntRAM Code/data in internal RAM (default)
IntFLASH | Code in internal flash, data in internal RAM

4.2.9 SDA Threshold

XML name sda value

Description

Sets the value used for small data objects when compiling. Defaults to zero.

4.2.10 Optimizer Setting

XML name optimizer_setting

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 23

ETAS

DRIVING EMBEDDED EXCELLENCE

4.3

Description

Controls the optimizer strategy compiler option (see the compiler documentation for
more details).

Settings

Value Description

Osize Improve code size over performance
Ospeed | Improve code performance over size (default)

Generated Files

The following table lists the files that are generated by rtaosgen for all ports:

Filename Contents

0s.h The main include file for the OS.

0s_Cfg.h Declarations of the objects you have configured. This is in-
cluded by 0s. h.

0s_MemMap.h AUTOSAR memory mapping configuration used by RTA-

OS to merge with the system-wide MemMap.h file in AU-
TOSAR versions 4.0 and earlier. From AUTOSAR version 4.1,
0s_MemMap.h is used by the OS instead of MemMap. h.
RTAOS.<lib> The RTA-OS library for your application. The extension <lib>
depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application. This is
used by rtaosgen to work out which parts of the kernel li-
brary need to be rebuilt if the configuration has changed. The
extension <lib> depends on your target.
<projectname>.log | A log file that contains a copy of the text that the tool and
compiler sent to the screen during the build process.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 24

Port Characteristics

ETAS

DRIVING EMBEDDED EXCELLENCE Port-Specific API

5

51

5.1.1

5.2
521

5.2.2

Port-Specific API

The following sections list the port-specific aspects of the RTA-OS programmers refer-
ence for the PPCLWHVR/GHS port that are provided either as:
e additions to the material that is documented in the Reference Guide; or

e overrides for the material that is documented in the Reference Guide. When a
definition is provided by both the Reference Guide and this document, the definition
provided in this document takes precedence.

Macros

CAT1_ISR

Macro that should be used to create a Category 1 ISR entry function. This macro exists
to help make your code portable between targets.

Example
CAT1_ISR(MyISR) {...}

Type Definitions

Os_StackSizeType

An unsigned value representing an amount of stack in bytes.

Example

Os_StackSizeType stack_size;
stack_size = 0s_GetStackSize(start_position, end_position);

Os_StackValueType

An unsigned value representing the position of the stack pointer.

Example

Os_StackValueType start_position;
start_position = Os_GetStackValue();

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 25

ETAS

DRIVING EMBEDDED EXCELLENCE Toolchain

6 Toolchain

This chapter contains important details about RTA-OS and the GreenHills toolchain. A
port of RTA-OS is specific to both the target hardware and a specific version of the com-
piler toolchain. You must make sure that you build your application with the supported
toolchain.

In addition to the version of the toolchain, RTA-OS may use specific tool options
(switches). The options are divided into three classes:

kernel options are those used by rtaosgen to build the RTA-OS kernel.

mandatory options must be used to build application code so that it will work with the
RTA-OS kernel.

forbidden options must not be used to build application code.

Any options that are not explicitly forbidden can be used by application code providing
that they do not conflict with the kernel and mandatory options for RTA-OS.

Integration Guidance 6.1:ETAS has developed and tested RTA-OS using the tool ver-
sions and options indicated in the following sections. Correct operation of RTA-OS is
only covered by the warranty in the terms and conditions of your deployment license
agreement when using identical versions and options. If you choose to use a different

A version of the toolchain or an alternative set of options then it is your responsibility to
check that the system works correctly. If you require a statement that RTA-OS works
correctly with your chosen tool version and options then please contact ETAS to discuss
validation possibilities.

6.1 Compiler Versions

This port of RTA-OS has been developed to work with the following compiler(s):

6.1.1 Green Hills Software v2015.1.6

Ensure that ccppc.exe is on the path.
Tested on Green Hills Software, MULTI v2015.1.6.
If you require support for a compiler version not listed above, please contact ETAS.

6.2 Options used to generate this guide

6.2.1 Compiler

Name ecomppc.exe
Version Green Hills Software, Compiler v2015.1.6

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 26

ETAS

DRIVING EMBEDDED EXCELLENCE Toolchain

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.
-checksum Append 4-byte checksum to initialized program sections
-cpu=ppc5746mz420 Generate code for target processor

-delete Remove functions that are unused and unreferenced

-dwarf2 Use DWARF2 debug format

-farcallpatch Allow the linker to insert code for far calls between modules
-floatsingle Treat double type as float

-g Generate source-level debugging information

-inline_prologue Inline code sequences in prologue and epilogue

--no_commons Zeros uninitialized global variables

-Ospeed Optimizer strategy (value set by target option)

-Omax Maximum optimization

-preprocess_assembly_files Preprocess .s/.asm files

-sda=0 SDA threshold (value set by target option)

-vle Enable VLE code generation

--prototype_errors Reports an error for functions with no prototype

--quit_after_warnings Treat all warnings as errors

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for kernel compilation with the exception of the following which
may be omitted from application code:

—prototype_errors

—-quit_after_warnings

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 27

ETAS

DRIVING EMBEDDED EXCELLENCE Toolchain

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.2 Assembler

Name asppc.exe
Version Green Hills Software, Compiler v2015.1.6

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select

different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.3 Librarian

Name ax.exe
Version Green Hills Software, Compiler v2015.1.6

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 28

ETAS

DRIVING EMBEDDED EXCELLENCE Toolchain

6.2.4 Linker

Name elxr.exe
Version Green Hills Software, Compiler v2015.1.6

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

-cpu=ppc5746mz420 Generate code for target processor

-vle Enable VLE code generation

-lnk="-Manx -v -Qn" Create map file, verbose, skip comment section

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select

different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.5 Debugger

Name Lauterbach TRACE32
Version Build 69577 or later

6.3 Specifying the location of LWHVR header files

In order to compile RTA-OS, rtaosgen.exe must be able include the header files that de-
fine the API available to an LWHVR virtual machine (VM). Therefore when rtaosgen.exe
is invoked it must be given the argument -I<LWHVR-Loc> where <LWHVR-Loc> is the
path of the directory containing the LWHVR header files.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 29

ETAS

DRIVING EMBEDDED EXCELLENCE Hardware

7 Hardware

7.1 Supported Devices

This port of RTA-OS has been developed to work with the following target:

Name: ETAS
Device: LWHVR/SPC58ECxx

The following variants of the LWHVR/SPC58ECxx are supported:
e SPC58ECXX

If you require support for a variant of LWHVR/SPC58ECxx not listed above, please con-
tact ETAS.

7.2 Register Usage

7.2.1 Initialization

RTA-OS requires the following registers to be initialized to the indicated values before
Start0S() is called.

Register Setting

R1 Before StartOS() is called the R1 register (stack-pointer) must be initial-
ized to point to the start of the stack. The address put in R1 must be
8-byte aligned.

7.2.2 Modification

The following registers must not be modified by user code after the call to Start0S():

Register

All supervisor-mode registers | Since all code runs inside a LWHVR virtual-machine
user-code may not access any registers that can only
be accessed in supervisor-mode.

7.3 Required OS resources

RTA-OS needs the following resources for correct operation.

Resource Description

Pseduo-interrupt handler | Executing code at the pseudo-interrupt handler address
configured for the virtual-machine running RTA-OS must
result in Os_PsIntHandler() being executed. For example
the instruction at the configured pseudo-interrupt han-
dler address could be e_b Os_PsIntHandler

Since all code is running inside an LWHVR virtual machine only registers accessible in
user-mode may be read or written. Attempts to read or write registers only accessible
in supervisor-mode will result in the virtual machine entering the error state and being
forcibly stopped.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 30

ETAS

DRIVING EMBEDDED EXCELLENCE Hardware

7.4 Interrupts

This section explains the implementation of RTA-OS’s interrupt model on the
LWHVR/SPC58ECxx.

7.4.1 Interrupt Priority Levels

Interrupts execute at an interrupt priority level (IPL). RTA-OS standardizes IPLs across
all targets. IPL O indicates task level. IPL 1 and higher indicate an interrupt priority. It is
important that you don’t confuse IPLs with task priorities. An IPL of 1 is higher than the
highest task priority used in your application.

The IPL is a target-independent description of the interrupt priority on your target hard-
ware. The following table shows how IPLs are mapped onto the hardware interrupt
priorities of the LWHVR/SPC58ECxXx:

IPL | psintEnabled | Description

0 0x0000 User (task) level. No interrupts are masked.

1-32 Category 1 and 2 level The value of
0s_VMStatusBlock.psIntEnabled at IPL=n is calculated
by RTA-OS to mask out any vectors assigned an IPL equal to
or lower than n.

Even though a particular mapping is permitted, all Category 1 ISRs must have equal or
higher IPL than all of your Category 2 ISRs.

The LWHVR interrupt vectors do not have a fixed priority. Any vector may
be assigned any IPL in the range 1 to 32 (inclusive). RTA-OS implements
IPLs by setting the 0s_VMStatusBlock.psIntEnabled mask. The value of
0s_VMStatusBlock.psIntEnabled at IPL=n is calculated by RTA-OS to mask out any
vectors assigned an IPL equal to or lower than n.

7.4.2 Allocation of ISRs to Interrupt Vectors

The following restrictions apply for the allocation of Category 1 and Category 2 interrupt
service routines (ISRs) to interrupt vectors on the LWHVR/SPC58ECxx. A v indicates
that the mapping is permitted and a X indicates that it is not permitted:

Address ' Category 1 Category 2 |
Vectors 0-31 v v

7.4.3 Vector Table

rtaosgen normally generates an interrupt vector table for you automatically. You can
configure “Suppress Vector Table Generation” as true to stop RTA-OS from generating
the interrupt vector table.

Depending upon your target, you may be responsible for locating the generated vector
table at the correct base address. The following table shows the section (or sections)
that need to be located and the associated valid base address:

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 31

ETAS

DRIVING EMBEDDED EXCELLENCE Hardware

Section Valid Addresses

N/A The interrupt vector table is called 0s_VectorTable and is within the AU-
TOSAR memory region 0S_SEC_VECTORS. This table may be located any-
where in the memory assigned to the LWHVR virtual-machine.

7.4.4 Writing Category 1 Interrupt Handlers

Raw Category 1 interrupt service routines (ISRs) must correctly handle the interrupt
context themselves. RTA-OS provides an optional helper macro CAT1_ISR that can be
used to make code more portable. Depending on the target, this may cause the se-
lection of an appropriate interrupt control directive to indicate to the compiler that a
function requires additional code to save and restore the interrupt context.

A Category 1 ISR therefore has the same structure as a Category 2 ISR, as shown below.

CAT1_ISR(CategorylHandler) {
/* Handler routine x/

}

7.4.5 Writing Category 2 Interrupt Handlers

Category 2 ISRs are provided with a C function context by RTA-OS, since the RTA-OS
kernel handles the interrupt context itself. The handlers are written using the ISR()
macro as shown below:

#include <0s.h>
ISR(MyISR) {
/* Handler routine x/

}

You must not insert a return from interrupt instruction in such a function. The return is
handled automatically by RTA-OS.

7.4.6 Default Interrupt

The "default interrupt’ is intended to be used to catch all unexpected interrupts. All
unused interrupts have their interrupt vectors directed to the named routine that you
specify. The routine you provide is not handled by RTA-OS and must correctly handle
the interrupt context itself. The handler must use the CAT1_ISR macro in the same way
as a Category 1 ISR (see Section 7.4.4 for further details).

7.5 Memory Model

The following memory models are supported:

Model Description

Flat 32-bit address space | All code and data is addressed using a 32-bit address

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 32

ETAS

DRIVING EMBEDDED EXCELLENCE Hardware

7.6 Processor Modes

RTA-OS can run in the following processor modes:

Mode Notes |
User All code runs inside a LWHVR virtual machine and therefore is in user-mode.

Both the RTA-OS code and the user code is running inside a LWHVR virtual machine.
Therefore the processor is always running in user-mode.

7.7 Stack Handling

RTA-OS uses a single stack for all tasks and ISRs.
RTA-OS manages the stack (via register R1).

7.8 Virtual Machine Details

The RTA-OS library generated by this port expects to run inside a LWHVR virtual-
machine (VM). This section describes special steps that must be taken as a result of
RTA-OS running inside a VM.

7.8.1 Memory Assigned to the VM

Please ensure that only memory (flash and RAM) that has been assigned to the VM in
the LWHVR configuration is used when linking RTA-OS and user code/data. If the VM
attempts to access memory that has not been assigned to it, the LWHVR will abort
execution of the VM and call the LWHVR callback LWHVR_VMErrorCallback.

7.8.2 VM Entry Points

When the LWHVR starts a VM it executes the code at the VM’s entry-point. The code at
the entry-point is responsible for setting up the stack and initializing data. The address
of each VM’s entry point is specified in the LWHVR configuration. Typically the entry-
point will be the _start symbol in the compiler’'s C start-up code.

When the LWHVR injects a interrupt into a VM it executes the code at the VM’s inter-
rupt handler. The address of each VM’s interrupt handler is specified in the LWHVR
configuration. For RTA-OS the interrupt handler is the code at 0s_PsIntHandler.

Obviously the location of _start and 0s_PsIntHandler can change depending on de-
tails of the code and data linked to create the executable. The suggested way of dealing
with this problem is to locate a short piece of assembly code at the start of the code
memory assigned to the VM. This assembly code contains a jump to _start and a
jump to 0s_PsIntHandler, thus providing an alternative entry-point and interrupt han-
dler for the VM. Since the assembly code is at a fixed location in memory the alternative
entry-point and interrupt handler addresses can be easily determined.

For example, the assembly used in the sample applications is called VMEntryPoints.s
and contains the following:

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 33

ETAS

DRIVING EMBEDDED EXCELLENCE Hardware

file "VMEntryPoints.s"
section ".VMEntryPoints", "vax"
vlie

global VMEntryPoints

VMEntryPoints:
e_b _start
e_b 0s_PsIntHandler

If we locate section .VMEntryPoints at the start of the code memory assigned to the
VM in the LWHVR configuration then we always know addresses that may be used for
the VM’s entry-point and interrupt handler. E.g. if the code memory assigned to a VM
starts at address 0x1040000 then in the LWHVR configuration for the VM we can set the
entry-point address to 0x1040000 and the interrupt handler address to 0x1040004.

7.8.3 Os_VMStatusBlock

Each VM has a status block used to communicate with the LWHVR. RTA-OS creates
a VM status block called 0s_VMStatusBlock in section .0s_VMStatusBlock. Section
.0s_VMStatusBlock must be located in RAM by the linker script. The address of a VM’s
status block must be specified in the LWHVR configuration for the VM. The easiest way
to do this is to locate .0s_VMStatusBlock at the start of the RAM assigned to the VM.

7.8.4 Untrusted Applications in SC3 and SC4

Since a VM is always running in user-mode it is not possible for either RTA-OS or user
code to modify the memory protection unit (MPU) configuration. Therefore although
it is possible to configure untrusted applications in SC3 and SC4 it is not possible to
apply memory access restrictions (beyond those enforced by the VM) to the untrusted
applications.

7.8.5 Trusted with Protection

Since a VM is always running in user-mode it is not possible for either RTA-OS or user
code to modify the memory protection unit (MPU) configuration. Therefore although it
is possible to configure trusted with protection applications it is not possible to apply
memory access restrictions (beyond those enforced by the VM) to the trusted with
protection applications.

7.8.6 Using ORTI

ORTI relies on being able to monitor the values of some internal RTA-OS variables. When
ORTI is being used to help debug an application running on RTA-OS in a LWHVR VM ORTI
must monitor the variables for the copy of RTA-OS in the VM, not the variables in the
copy of RTA-OS running on the master core or the copy of RTA-OS running in a different
VM. Therefore if you wish to use ORTI to help debug an RTA-OS application running in
a VM, ensure that only symbol information for that VM is loaded. If you are using a
Lauterbach debugger this can be done with a command like:

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 34

ETAS

DRIVING EMBEDDED EXCELLENCE Hardware

Data.Load VMO.elf /NOCODE /GHS

This will delete any symbol information already loaded and then load the symbol infor-
mation from the executable VMO.elf.

7.8.7 iSystem Debugger Support

If ORTI support is enabled for the iSystem winIDEA debugger then RTA-OS writes a value
to the PPC DDAM register to indicate to the iSystem debugger when a task or category
2 ISR is dispatched and which tasks are in a ready state. Please consult iSystem for
information about the debugger extensions need to make use of this support.

7.8.8 Compensating for the Effects of Time-Slicing

An LWHVR VM is time-sliced and therefore is not executing all of the time. An appli-
cation running on RTA-OS that needs to keep synchronized with "wall-clock" time may
need to take steps to compensate for the effects of time-slicing.

Consider an application that increments a counter every time it receives a clock-tick
interrupt. If the LWHVR receives a clock-tick interrupt every 1ms then the RTA-OS ap-
plication will receive a clock-tick interrupt every 1ms while its VM is running in a time-
slice. The application will not see clock-tick interrupts when its VM is not running in a
time-slice. Imagine that the counter were being used to activate a task every every 10
increments of the counter. If the VM only runs for half of the time then the task would
only be activated every 20ms not every 10ms as we would expect/require.

An application can use the VM status block field 0s_VMStatusBlock.ticksSinceStart
to compensate for this effect of time-slicing. 0s_VMStatusBlock.ticksSinceStart
contains the number of clock-ticks that have elapsed since the VM started.

Consider a typical ISR used to increment an RTA-OS counter on every clock-tick inter-
rupt:

void EnableInterrupt(void)

{
Os_VMStatusBlock.psIntEnabled |= LWHVR_PS_INT_MASK _TIMERO;
0s_VMStatusBlock.psIntGenerateOnTick |= LWHVR_PS_INT_MASK_TIMERO;

}

ISR(Millisecond)
{

IncrementCounter(MillisecondCounter);

}

To compensate for the effects of time-slicing we can adapt this code as follows:

LWHVR_UInt32Type LastSeenTick;

void EnablelInterrupt(void)

{
LastSeenTick = 0s_VMStatusBlock.ticksSinceStart;

0s_VMStatusBlock.psIntEnabled |= LWHVR_PS_INT_MASK_TIMERO;

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 35

ETAS

DRIVING EMBEDDED EXCELLENCE Hardware

0s_VMStatusBlock.psIntGenerateOnTick |= LWHVR_PS_INT_MASK_TIMERO;

}
ISR(Millisecond)
{
while (LastSeenTick != 0s_VMStatusBlock.ticksSinceStart)
{
LastSeenTick++;
IncrementCounter(MillisecondCounter);
}
}

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 36

ETAS

DRIVING EMBEDDED EXCELLENCE

8.1

8.2

Performance

This chapter provides detailed information on the functionality, performance and mem-
ory demands of the RTA-OS kernel. RTA-OS is highly scalable. As a result, different fig-
ures will be obtained when your application uses different sets of features. The figures
presented in this chapter are representative for the PPCLWHVR/GHS port based on the
following configuration:

e There are 32 tasks in the system

e Standard build is used

e Stack monitoring is disabled

e Time monitoring is disabled

e There are no calls to any hooks

e Tasks have unique priorities

e Tasks are not queued (i.e. tasks are BCC1 or ECC1)

e All tasks terminate/wait in their entry function

e Tasks and ISRs do not save any auxiliary registers (for example, floating point reg-
isters)

e Resources are shared by tasks only

e The generation of the resource RES_SCHEDULER is disabled

Measurement Environment

The following hardware environment was used to take the measurements in this chap-
ter:

Device SPC58ECXX on SPC57xxMB
CPU Clock Speed 180.0MHz
Stopwatch Speed 90.0MHz

RAM and ROM Usage for OS Objects

Each OS object requires some ROM and/or RAM. The OS objects are generated by
rtaosgen and placed in the RTA-OS library. In the main:

e (0s_Cfg_Counters includes data for counters, alarms and schedule tables.

e (s_Cfg contains the data for most other OS objects.

The following table gives the ROM and/or RAM requirements (in bytes) for each OS
object in a simple configuration. Note that object sizes will vary depending on the
project configuration and compiler packing issues.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 37

Performance

ETAS

DRIVING EMBEDDED EXCELLENCE

8.3

8.4

Object ROM RAM

Alarm 2 12
Cat 2 ISR 8 0
Counter 20 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 69
OS-Application 0 0
PeripheralArea 0 0
Resource 8 4
ScheduleTable 16 16
Task 20 0

Stack Usage

The amount of stack used by each Task/ISR in RTA-OS is equal to the stack used in
the Task/ISR body plus the context saved by RTA-OS. The size of the run-time context
saved by RTA-OS depends on the Task/ISR type and the exact system configuration.
The only reliable way to get the correct value for Task/ISR stack usage is to call the
0s_GetStackUsage() API function.

Note that because RTA-OS uses a single-stack architecture, the run-time contexts of
all tasks reside on the same stack and are recovered when the task terminates. As a
result, run-time contexts of mutually exclusive tasks (for example, those that share an
internal resource) are effectively overlaid. This means that the worst case stack usage
can be significantly less than the sum of the worst cases of each object on the system.
The RTA-OS tools automatically calculate the total worst case stack usage for you and
present this as part of the configuration report.

Library Module Sizes

The RTA-OS kernel is demand linked. This means that each API call is placed into a
separately linkable module. The following table lists the section sizes for each API
module (in bytes) for the simple configuration in standard status.

K
[©]
L}
m
0
3
el
T
)
7]
=
>I
» a
. (o] -]
Library Module d -
ActivateTask 154
AdvanceCounter 4
CallTrustedFunction 32
CancelAlarm 118
ChainTask 142

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 38

Performance

ETAS

DRIVING EMBEDDED EXCELLENCE

Library Module
CheckISRMemoryAccess
CheckObjectAccess
CheckObjectOwnership
CheckTaskMemoryAccess
ClearEvent

Controlldle
DisableAlllnterrupts
DispatchTask
ElapsedTime
EnableAlllnterrupts
GetActiveApplicationMode
GetAlarm

GetAlarmBase
GetApplicationID
GetCounterValue
GetCurrentApplicationID
GetElapsedCounterValue
GetEvent
GetExecutionTime
GetlISRID
GetlsrMaxExecutionTime
GetlsrMaxStackUsage
GetResource
GetScheduleTableStatus
GetStackSize
GetStackUsage
GetStackValue
GetTaskID
GetTaskMaxExecutionTime
GetTaskMaxStackUsage
GetTaskState
GetVersionInfo

Idle

InShutdown
IncrementCounter
InterruptSource
ModifyPeripheral
NextScheduleTable

-~
(%)
S
m
()]
=]
)
©
)
()]
=
>
7]
Q

66
110
108

66

58

76

48
238
298

62

10
192

68

48

70

48
114

58

58

10

58

58
104

70

58
14
16
58
58
46
42

24
174
192
162

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2

Performance

39

ETAS

DRIVING EMBEDDED EXCELLENCE

Library Module
Os_CallLWHVR

Os _Cfg

Os_Cfg_Counters
Os_Cfg_KL
Os_GetCurrentiMask
Os_GetCurrentTPL
Os_IPLTolmask
Os_OuterWrapper

Os Trust
Os_VMStatusBlock
Os_Vectors

Os_Wrapper

Os_setjmp
ProtectionSupport
ReadPeripheral
ReleaseResource
ResetlsrMaxExecutionTime
ResetlsrMaxStackUsage
ResetTaskMaxExecutionTime
ResetTaskMaxStackUsage
ResumeAlllnterrupts
ResumeOSinterrupts
Schedule

SetAbsAlarm

SetEvent

SetRelAlarm
SetScheduleTableAsync
ShutdownOS
StackOverrunHook
StartOS
StartScheduleTableAbs
StartScheduleTableRel
StartScheduleTableSynchron
StopScheduleTable
SuspendAllinterrupts
SuspendOSinterrupts
SyncScheduleTable
SyncScheduleTableRel

.0s_VMStatusBlock

40

625

776
728

132

384

I vietext

424
17250
46

10

28

44
154
74

118
132
192
64
198
122
58
58
58
58
62
62
136
122
58
188
76
66

176
168
134
76
106
48
82
76
76

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2

Performance

40

ETAS

DRIVING EMBEDDED EXCELLENCE

8.5

K]
[®]
o
m
0
3
el
T
)
]
=
>I
0 a
. (o] 2
Library Module . .
TerminateTask 24
ValidateCounter 76
ValidatelSR 20
ValidateResource 48
ValidateScheduleTable 48
ValidateTask 38
WaitEvent 58
WritePeripheral 180

Execution Time

The following tables give the execution times in CPU cycles, i.e. in terms of ticks of
the processor’s program counter. These figures will normally be independent of the
frequency at which you clock the CPU. To convert between CPU cycles and Sl time units
the following formula can be used:

Time in microseconds = Time in cycles / CPU Clock rate in MHz

For example, an operation that takes 50 CPU cycles would be:

e at 20MHz = 50/20 = 2.5us
e at 80MHz = 50/80 = 0.625us

e at 150MHz = 50/150 = 0.333us

While every effort is made to measure execution times using a stopwatch running at
the same rate as the CPU clock, this is not always possible on the target hardware. If
the stopwatch runs slower than the CPU clock, then when RTA-OS reads the stopwatch,
there is a possibility that the time read is less than the actual amount of time that has
elapsed due to the difference in resolution between the CPU clock and the stopwatch
(the User Guide provides further details on the issue of uncertainty in execution time
measurement).

The figures presented in Section 8.5.1 have an uncertainty of 1 CPU cycle(s).

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 41

Performance

ETAS

DRIVING EMBEDDED EXCELLENCE Performance

8.5.1 Context Switching Time

Task switching time is the time between the last instruction of the previous task and the
first instruction of the next task. The switching time differs depending on the switching
contexts (e.g. an ActivateTask() versus a ChainTask()).

Interrupt latency is the time between an interrupt request being recognized by the
target hardware and the execution of the first instruction of the user provided handler
function:

For Category 1 ISRs this is the time required for the hardware to recognize the inter-
rupt.

For Category 2 ISRs this is the time required for the hardware to recognize the in-
terrupt plus the time required by RTA-OS to set-up the context in which the ISR
runs.

Figure 8.1 shows the measured context switch times for RTA-OS.

Switch ' Key CPU Cycles Actual Time |
Task activation A 84 467ns
Task termination with resume B 50 278ns
Task termination with switch to new task C 56 311lns
Chaining a task D 104 578ns
Waiting for an event resulting in transition to | E 232 1.29us
the WAITING state

Setting an event results in task switch F 312 1.73us
Non-preemptive task offers a preemption point | G 82 456ns
(co-operative scheduling)

Releasing a resource results in a task switch H 82 456ns
Entering a Category 2 ISR I 248 1.38us
Exiting a Category 2 ISR and resuming the in- | | 248 1.38us
terrupted task

Exiting a Category 2 ISR and switching to a | K 76 422ns
new task

Entering a Category 1 ISR L 224 1.24us

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 42

{ l RTA-O RTA-O RTA-O
}‘ i " " TerminateTask()
RTA-O RTA-O Task3
TerminateTask() 4 TerminateTask()
Task2 Task2 in Ready state
‘ ActivateTask(Task2)

Task1 in Ready state

(a) Task activated. Termination resumes

(b) Task activated. Termination switches into new task.
preempted task.

ChainTask(Task1) 4

Task2

WaitEvent(E1)

Task2

Task2 in Waiting state

Task2 in Repdy state Task2
ReleaseResource(R1)

Task1 in Ready state

. Task is resumed when (e) Task switch when re-

SetEvent(Task2,E1)

Task1 in
Ready state

Task1 in Ready state

(c) Task chained. (d) Task waits

event set. source is released.
N o
- 1 e
G B
RTA-O RTA-O RTA-O RTA-O
TerminateTask() Interrupt returns
Task2 in Redy state TaSkz Cat2ISR
Schedule()

‘ Interrupt occurs
Task1 in Ready state Task1 in Ready state

(f) Request for scheduling made by non-

(g) Category 2 interrupt entry. Interrupted
preemptive task.

task resumed on exit.

o 'K B
L
R O R @) RTA-O
Interrupt returns | 4 [
Cat2ISR
TerminateTask() | Interrupt returns
Taskz2 in Ready state Cat1ISR

[A
Interrupt occurs Interrupt occurs
=
Task1 in Ready state

Task1 in Running state

(h) Category 2 interrupt entry. Switch to new task on exit. (i) Category 1 interrupt entry.

Figure 8.1: Context Switching

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 43

ETAS

DRIVING EMBEDDED EXCELLENCE Finding Out More

Finding Out More

Additional information about PPCLWHVR/GHS-specific parts of RTA-OS can be found in
the following manuals:

PPCLWHVR/GHS Release Note. This document provides information about the PP-
CLWHVR/GHS port plug-in release, including a list of changes from previous re-
leases and a list of known limitations.

Information about the port-independent parts of RTA-OS can be found in the following
manuals, which can be found in the RTA-OS installation (typically in the Documents
folder):

Getting Started Guide. This document explains how to install RTA-OS tools and de-
scribes the underlying principles of the operating system

Reference Guide. This guide provides a complete reference to the API, programming
conventions and tool operation for RTA-OS.

User Guide. This guide shows you how to use RTA-OS to build real-time applications.

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 a4

ETAS

DRIVING EMBEDDED EXCELLENCE Contacting ETAS

10 Contacting ETAS

10.1 Technical Support

Technical support is available to all users with a valid support contract. If you do
not have a valid support contract, please contact your regional sales office (see Sec-
tion 10.2.2).

The best way to get technical support is by email. Any problems or questions about the
use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you call the
support hotline on:

+44 (0)1904 562624.
The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the following infor-
mation:

e Your support contract number

e Your .xml, .arxml and . rtaos files

e The command line which caused the error

e The version of the ETAS tools you are using

e The version of the compiler tool chain you are using
e The error message you received (if any)

e The file Diagnostic.dmp if it was generated

10.2 General Enquiries

10.2.1 ETAS Global Headquarters

ETAS GmbH

Borsigstrasse 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

10.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team (where avail-
able) can be found on the ETAS web site:

ETAS subsidiaries www .etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 45

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

ETAS

DRIVING EMBEDDED EXCELLENCE Index
Index
A Installation, 15
Assembler, 28 Machine-named, 12
AUTOSAR OS includes Status, 15
Os.h, 24 Troubleshooting, 16
Os_Cfg.h, 24 User-named, 12
Os_MemMap.h, 24 Linker, 29
C M
CAT1 ISR, 25 Memory Model, 32
Compiler, 26 o
Compiler (Green Hills Software v2015.1.6), i
26 Options, 26

Os_StackSizeType, 25

Compiler Versions, 26
Os_StackValueType, 25

Configuration
Port-Specific Parameters, 21 P
Parameters of Implementation, 21
Performance, 37
Context Switching Times, 42

D
Debugger, 29

E Library Module Sizes, 38
ETAS License Manager, 11 RAM and ROM, 37
Installation, 11 Stack Usage, 38

Processor Modes, 33

F, User, 33

Files, 24
R

H Registers

Hardware

All supervisor-mode registers, 30

Requirements, 9 Initialization, 30

| Non-modifiable, 30
Installation, 9 R1, 30
Default Directory, 10 Resource
Verification, 19 Pseduo-interrupt handler, 30
Interrupts, 31 S
Category 1, 32 Software
Category 2, 32 Requirements, 9
Default, 32 Stack, 33
IPL, 31
T
L. . Target, 30
L!brarlan, 28 Variants, 30
Library Toolchain, 26
Name of, 24
License, 11 Vv
Borrowing, 15 Variants, 30
Concurrent, 12 Vector Table
Grace Mode, 12 Base Address, 31

RTA-OS PPCLWHVR/GHS Port Guide V2.0.2 46

	1 Introduction
	1.1 About You
	1.2 Document Conventions
	1.3 References

	2 Installing the RTA-OS Port Plug-in
	2.1 Preparing to Install
	2.1.1 Hardware Requirements
	2.1.2 Software Requirements

	2.2 Installation
	2.2.1 Installation Directory

	2.3 Licensing
	2.3.1 Installing the ETAS License Manager
	2.3.2 Licenses
	2.3.3 Installing a Concurrent License Server
	2.3.4 Using the ETAS License Manager
	2.3.5 Troubleshooting Licenses

	3 Verifying your Installation
	3.1 Checking the Port
	3.2 Running the Sample Applications

	4 Port Characteristics
	4.1 Parameters of Implementation
	4.2 Configuration Parameters
	4.2.1 Stack used for C-startup
	4.2.2 Stack used when idle
	4.2.3 Stack overheads for ISR activation
	4.2.4 Stack overheads for ECC tasks
	4.2.5 Stack overheads for ISR
	4.2.6 ORTI/Lauterbach
	4.2.7 ORTI/winIDEA
	4.2.8 Link Type
	4.2.9 SDA Threshold
	4.2.10 Optimizer Setting

	4.3 Generated Files

	5 Port-Specific API
	5.1 Macros
	5.1.1 CAT1_ISR

	5.2 Type Definitions
	5.2.1 Os_StackSizeType
	5.2.2 Os_StackValueType

	6 Toolchain
	6.1 Compiler Versions
	6.1.1 Green Hills Software v2015.1.6

	6.2 Options used to generate this guide
	6.2.1 Compiler
	6.2.2 Assembler
	6.2.3 Librarian
	6.2.4 Linker
	6.2.5 Debugger

	6.3 Specifying the location of LWHVR header files

	7 Hardware
	7.1 Supported Devices
	7.2 Register Usage
	7.2.1 Initialization
	7.2.2 Modification

	7.3 Required OS resources
	7.4 Interrupts
	7.4.1 Interrupt Priority Levels
	7.4.2 Allocation of ISRs to Interrupt Vectors
	7.4.3 Vector Table
	7.4.4 Writing Category 1 Interrupt Handlers
	7.4.5 Writing Category 2 Interrupt Handlers
	7.4.6 Default Interrupt

	7.5 Memory Model
	7.6 Processor Modes
	7.7 Stack Handling
	7.8 Virtual Machine Details
	7.8.1 Memory Assigned to the VM
	7.8.2 VM Entry Points
	7.8.3 Os_VMStatusBlock
	7.8.4 Untrusted Applications in SC3 and SC4
	7.8.5 Trusted with Protection
	7.8.6 Using ORTI
	7.8.7 iSystem Debugger Support
	7.8.8 Compensating for the Effects of Time-Slicing

	8 Performance
	8.1 Measurement Environment
	8.2 RAM and ROM Usage for OS Objects
	8.3 Stack Usage
	8.4 Library Module Sizes
	8.5 Execution Time
	8.5.1 Context Switching Time

	9 Finding Out More
	10 Contacting ETAS
	10.1 Technical Support
	10.2 General Enquiries
	10.2.1 ETAS Global Headquarters
	10.2.2 ETAS Local Sales & Support Offices

