
RTA-OS RH850/GHS V5.0.22
Port Guide
Status: Released

Copyright

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this doc-
ument. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract. Under no circumstances
may any part of this document be copied, reproduced, transmitted, stored in a retrieval
system or translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2019 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document: 10617-PG-5.0.22 EN-04-2019

RTA-OS RH850/GHS Port Guide V5.0.22 2

Safety Notice

Safety Notice

This ETAS product fulfills standard quality management requirements. If requirements
of specific safety standards (e.g. IEC 61508, ISO 26262) need to be fulfilled, these
requirements must be explicitly defined and ordered by the customer. Before use of
the product, customer must verify the compliance with specific safety standards.

RTA-OS RH850/GHS Port Guide V5.0.22 3

Contents

Contents

1 Introduction 8
1.1 About You . 8
1.2 Document Conventions . 9
1.3 References . 9

2 Installing the RTA-OS Port Plug-in 10
2.1 Preparing to Install . 10

2.1.1 Hardware Requirements . 10
2.1.2 Software Requirements . 10

2.2 Installation . 11
2.2.1 Installation Directory . 11

2.3 Licensing . 12
2.3.1 Installing the ETAS License Manager 12
2.3.2 Licenses . 13
2.3.3 Installing a Concurrent License Server 14
2.3.4 Using the ETAS License Manager 15
2.3.5 Troubleshooting Licenses . 17

3 Verifying your Installation 20
3.1 Checking the Port . 20
3.2 Running the Sample Applications . 20

4 Port Characteristics 22
4.1 Parameters of Implementation . 22
4.2 Configuration Parameters . 22

4.2.1 Stack used for C-startup . 22
4.2.2 Stack used when idle . 23
4.2.3 Stack overheads for ISR activation 23
4.2.4 Stack overheads for ECC tasks . 23
4.2.5 Stack overheads for ISR . 23
4.2.6 ORTI/Lauterbach . 24
4.2.7 ORTI/winIDEA . 24
4.2.8 ORTI Stack Fill . 24
4.2.9 Support winIDEA Analyzer . 25
4.2.10 Enable Direct vector mode . 25
4.2.11 Link Type . 25
4.2.12 Trust Trap . 25
4.2.13 Enable stack repositioning . 26
4.2.14 Enable untrusted stack check . 26
4.2.15 EBASE setting . 26
4.2.16 Handle FPU context . 27
4.2.17 CrossCore0 IPIR . 27
4.2.18 CrossCore1 IPIR . 27
4.2.19 Block default interrupt . 27
4.2.20 GetAbortStack always . 28
4.2.21 Cache CoreID in CTPSW . 28
4.2.22 SDA Threshold . 28

RTA-OS RH850/GHS Port Guide V5.0.22 4

Contents

4.2.23 SDA size setting . 29
4.2.24 Optimizer setting . 29
4.2.25 Customer compiler option set 1 29
4.2.26 Compiler option set 2 . 30
4.2.27 stack_protector setting . 30
4.2.28 Enhanced Isolation . 30
4.2.29 Unaligned data . 31

4.3 Generated Files . 31

5 Port-Specific API 32
5.1 API Calls . 32

5.1.1 Os_InitializeVectorTable . 32
5.1.2 Os_PreBindVectorsForPEx . 33

5.2 Callbacks . 34
5.2.1 Os_Cbk_GetAbortStack . 34
5.2.2 Os_Cbk_GetEnhancedIsolationStack 35
5.2.3 Os_Cbk_StartCore . 36
5.2.4 Os_Cbk_StopCore . 37

5.3 Macros . 38
5.3.1 CAT1_ISR . 38
5.3.2 Os_Clear_x . 38
5.3.3 Os_DisableAllConfiguredInterrupts 39
5.3.4 Os_Disable_x . 39
5.3.5 Os_EnableAllConfiguredInterrupts 39
5.3.6 Os_Enable_x . 40
5.3.7 Os_IntChannel_x . 40

5.4 Type Definitions . 40
5.4.1 Os_StackSizeType . 40
5.4.2 Os_StackValueType . 41

6 Toolchain 42
6.1 Compiler Versions . 42

6.1.1 Green Hills Software v2013.5.5 . 42
6.1.2 Green Hills Software v2015.1.7 . 42
6.1.3 Green Hills Software v2017.1.5 . 43
6.1.4 Green Hills Software v2018.1.5 . 43

6.2 Options used to generate this guide . 43
6.2.1 Compiler . 43
6.2.2 Assembler . 45
6.2.3 Librarian . 46
6.2.4 Linker . 46
6.2.5 Debugger . 47

RTA-OS RH850/GHS Port Guide V5.0.22 5

Contents

7 Hardware 49
7.1 Supported Devices . 49
7.2 Register Usage . 50

7.2.1 Initialization . 50
7.2.2 Modification . 51

7.3 Interrupts . 52
7.3.1 Interrupt Priority Levels . 52
7.3.2 Using FETRAP TRAP and SYSCALL Instructions 53
7.3.3 Allocation of ISRs to Interrupt Vectors 53
7.3.4 Vector Table . 53
7.3.5 Using Raw Exception Handlers . 54
7.3.6 Writing Category 1 Interrupt Handlers 55
7.3.7 Writing Category 2 Interrupt Handlers 55
7.3.8 Default Interrupt . 55
7.3.9 Cross-core Interrupts . 55

7.4 Memory Model . 56
7.5 Processor Modes . 56
7.6 Stack Handling . 56
7.7 C1M-A2 Details . 56

7.7.1 C1MA2_CPU1_CPU2 . 57
7.7.2 C1MA2_CPU1 . 57
7.7.3 C1MA2_CPU2 . 57
7.7.4 C1MA2_SubCPU . 58

8 Enhanced Isolation 59
8.1 Os_Cbk_RestoreGlobalRegisters . 59
8.2 Os_Cbk_IsUntrustedTrapOK . 59
8.3 Os_Cbk_IsUntrustedCodeOK . 59
8.4 Os_Cbk_IsSystemTrapAllowed . 60
8.5 Enhanced Isolation Stack . 60

9 Performance 61
9.1 Measurement Environment . 61
9.2 RAM and ROM Usage for OS Objects . 61

9.2.1 Single Core . 62
9.2.2 Multi Core . 62

9.3 Stack Usage . 62
9.4 Library Module Sizes . 63

9.4.1 Single Core . 63
9.4.2 Multi Core . 65

9.5 Execution Time . 68
9.5.1 Context Switching Time . 69

10 Finding Out More 72

RTA-OS RH850/GHS Port Guide V5.0.22 6

Contents

11 Contacting ETAS 73
11.1 Technical Support . 73
11.2 General Enquiries . 73

11.2.1 ETAS Global Headquarters . 73
11.2.2 ETAS Local Sales & Support Offices 73

RTA-OS RH850/GHS Port Guide V5.0.22 7

Introduction

1 Introduction

RTA-OS is a small and fast real-time operating system that conforms to both the AU-
TOSAR OS (R3.0.1 -> R3.0.7, R3.1.1 -> R3.1.5, R3.2.1 -> R3.2.2, R4.0.1 -> R4.3.1) and
OSEK/VDX 2.2.3 standards (OSEK is now standardized in ISO 17356). The operating
system is configured and built on a PC, but runs on your target hardware.

This document describes the RTA-OS RH850/GHS port plug-in that customizes the RTA-
OS development tools for the Renesas RH850 with the GREENHILLS compiler. It supple-
ments the more general information you can find in the User Guide and the Reference
Guide.

The document has two parts. Chapters 2 to 3 help you understand the RH850/GHS port
and cover:

• how to install the RH850/GHS port plug-in;

• how to configure RH850/GHS-specific attributes;

• how to build an example application to check that the RH850/GHS port plug-in
works.

Chapters 4 to 9 provide reference information including:

• the number of OS objects supported;

• required and recommended toolchain parameters;

• how RTA-OS interacts with the RH850, including required register settings, memory
models and interrupt handling;

• memory consumption for each OS object;

• memory consumption of each API call;

• execution times for each API call.

For the best experience with RTA-OS it is essential that you read and understand this
document.

1.1 About You

You are a trained embedded systems developer who wants to build real-time appli-
cations using a preemptive operating system. You should have knowledge of the C
programming language, including the compilation, assembling and linking of C code
for embedded applications with your chosen toolchain. Elementary knowledge about
your target microcontroller, such as the start address, memory layout, location of pe-
ripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows operating sys-
tem, including installing software, selecting menu items, clicking buttons, navigating
files and folders.

RTA-OS RH850/GHS Port Guide V5.0.22 8

Introduction

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options appear in bold, blue characters.

Click OK. Button labels appear in bold characters

Press <Enter>. Key commands are enclosed in angle brackets.

The “Open file” dialog box
appears

GUI element names, for example window titles, fields,
etc. are enclosed in double quotes.

Activate(Task1) Program code, header file names, C type names,
C functions and API call names all appear in a
monospaced typeface.

See Section 1.2. Internal document hyperlinks are shown in blue letters.

Functionality in RTA-OS that might not be portable to
other implementations of AUTOSAR OS is marked with
the RTA-OS icon.

Important instructions that you must follow carefully to
ensure RTA-OS works as expected are marked with a
caution sign.

1.3 References

OSEK is a European automotive industry standards effort to produce open systems
interfaces for vehicle electronics. OSEK is now standardized in ISO 17356. For details
of the OSEK standards, please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized auto-
motive software architecture, jointly developed by automobile manufacturers, suppli-
ers and tool developers. For details of the AUTOSAR standards, please refer to:

http://www.autosar.org

RTA-OS RH850/GHS Port Guide V5.0.22 9

http://www.osek-vdx.org
http://www.autosar.org

Installing the RTA-OS Port Plug-in

2 Installing the RTA-OS Port Plug-in

2.1 Preparing to Install

RTA-OS port plug-ins are supplied as a downloadable electronic installation image which
you obtain from the ETAS Web Portal. You will have been provided with access to the
download when you bought the port. You may optionally have requested an installation
CD which will have been shipped to you. In either case, the electronic image and the
installation CD contain identical content.

Integration Guidance 2.1:You must have installed the RTA-OS tools before installing
the RH850/GHS port plug-in. If you have not yet done this then please follow the in-
structions in the Getting Started Guide.

2.1.1 Hardware Requirements

You should make sure that you are using at least the following hardware before in-
stalling and using RTA-OS on a host PC:

• 1GHz Pentium Windows-capable PC.

• 2G RAM.

• 20G hard disk space.

• CD-ROM or DVD drive (Optional)

• Ethernet card.

2.1.2 Software Requirements

RTA-OS requires that your host PC has one of the following versions of Microsoft Win-
dows installed:

• Windows 7

• Windows 8

• Windows 10

Integration Guidance 2.2:The tools provided with RTA-OS require Microsoft’s .NET
Framework v2.0 (included as part of .NET Framework v3.5) and v4.0 to be installed. You
should ensure that these have been installed before installing RTA-OS. The .NET frame-
work is not supplied with RTA-OS but is freely available from https://www.microsoft.
com/net/download. To install .NET 3.5 on Windows 10 see https://docs.microsoft.
com/en-us/dotnet/framework/install/dotnet-35-windows-10.

The migration of the code from v2.0 to v4.0 will occur over a period of time for perfor-
mance and maintenance reasons.

RTA-OS RH850/GHS Port Guide V5.0.22 10

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10

Installing the RTA-OS Port Plug-in

2.2 Installation

Target port plug-ins are installed in the same way as the tools:

1. Either

• Double click the executable image; or

• Insert the RTA-OS RH850/GHS CD into your CD-ROM or DVD drive.

If the installation program does not run automatically then you will need to
start the installation manually. Navigate to the root directory of your CD/DVD
drive and double click autostart.exe to start the setup.

2. Follow the on-screen instructions to install the RH850/GHS port plug-in.

By default, ports are installed into C:\ETAS\RTA-OS\Targets. During the installation
process, you will be given the option to change the folder to which RTA-OS ports are
installed. You will normally want to ensure that you install the port plug-in in the same
location that you have installed the RTA-OS tools. You can install different versions of
the tools/targets into different directories and they will not interfere with each other.

Integration Guidance 2.3:Port plug-ins can be installed into any location, but using
a non-default directory requires the use of the --target_include argument to both
rtaosgen and rtaoscfg. For example:

rtaosgen --target_include:<target_directory>

2.2.1 Installation Directory

The installation will create a sub-directory under Targets with the name
RH850GHS_5.0.22. This contains everything to do with the port plug-in.

Each version of the port installs in its own directory - the trailing _5.0.22 is the port’s
version identifier. You can have multiple different versions of the same port installed at
the same time and select a specific version in a project’s configuration.

The port directory contains:

RH850GHS.dll - the port plug-in that is used by rtaosgen and rtaoscfg.

RTA-OS RH850GHS Port Guide.pdf - the documentation for the port (the document
you are reading now).

RTA-OS RH850GHS Release Note.pdf - the release note for the port. This doc-
ument provides information about the port plug-in release, including a list of
changes from previous releases and a list of known limitations.

There may be other port-specific documentation supplied which you can also find in
the root directory of the port installation. All user documentation is distributed in PDF
format which can be read using Adobe Acrobat Reader. Adobe Acrobat Reader is not
supplied with RTA-OS but is freely available from http://www.adobe.com.

RTA-OS RH850/GHS Port Guide V5.0.22 11

http://www.adobe.com

Installing the RTA-OS Port Plug-in

Figure 2.1: The ETAS License manager

2.3 Licensing

RTA-OS is protected by FLEXnet licensing technology. You will need a valid license key
in order to use RTA-OS.

Licenses for the product are managed using the ETAS License Manager which keeps
track of which licenses are installed and where to find them. The information about
which features are required for RTA-OS and any port plug-ins is stored as license signa-
ture files that are stored in the folder <install_folder>\bin\Licenses.

The ETAS License Manager can also tell you key information about your licenses includ-
ing:

• Which ETAS products are installed

• Which license features are required to use each product

• Which licenses are installed

• When licenses expire

• Whether you are using a local or a server-based license

Figure 2.1 shows the ETAS License Manager in operation.

2.3.1 Installing the ETAS License Manager

Integration Guidance 2.4:The ETAS License Manager must be installed for RTA-OS to
work. It is highly recommended that you install the ETAS License Manager during your
installation of RTA-OS.

The installer for the ETAS License Manager contains two components:

RTA-OS RH850/GHS Port Guide V5.0.22 12

Installing the RTA-OS Port Plug-in

1. the ETAS License Manager itself;

2. a set of re-distributable FLEXnet utilities. The utilities include the software and
instructions required to setup and run a FLEXnet license server manager if con-
current licenses are required (see Sections 2.3.2 and 2.3.3 for further details)

During the installation of RTA-OS you will be asked if you want to install the ETAS
License Manager. If not, you can install it manually at a later time by running
<install_folder>\LicenseManager\LicensingStandaloneInstallation.exe.

Once the installation is complete, the ETAS License Manager can be found in
C:\Program Files\Common Files\ETAS\Licensing.

After it is installed, a link to the ETAS License Manager can be found in the Windows
Start menu under ProgramsÔ ETAS Ô License Management Ô ETAS License
Manager.

2.3.2 Licenses

When you install RTA-OS for the first time the ETAS License Manager will allow the
software to be used in grace mode for 14 days. Once the grace mode period has
expired, a license key must be installed. If a license key is not available, please contact
your local ETAS sales representative. Contact details can be found in Chapter 11.

You should identify which type of license you need and then provide ETAS with the
appropriate information as follows:

Machine-named licenses allows RTA-OS to be used by any user logged onto the PC
on which RTA-OS and the machine-named license is installed.

A machine-named license can be issued by ETAS when you provide the host ID
(Ethernet MAC address) of the host PC

User-named licenses allow the named user (or users) to use RTA-OS on any PC in the
network domain.

A user-named license can be issued by ETAS when you provide the Windows user-
name for your network domain.

Concurrent licenses allow any user on any PC up to a specified number of users to
use RTA-OS. Concurrent licenses are sometimes called floating licenses because
the license can float between users.

A concurrent license can be issued by ETAS when you provide the following infor-
mation:

1. The name of the server

2. The Host ID (MAC address) of the server.

3. The TCP/IP port over which your FLEXnet license server will serve licenses. A
default installation of the FLEXnet license server uses port 27000.

RTA-OS RH850/GHS Port Guide V5.0.22 13

Installing the RTA-OS Port Plug-in

Figure 2.2: Obtaining License Information

You can use the ETAS License Manager to get the details that you must provide to ETAS
when requesting a machine-named or user-named license and (optionally) store this
information in a text file.

Open the ETAS License Manager and choose Tools Ô Obtain License Info from the
menu. For machine-named licenses you can then select the network adaptor which
provides the Host ID (MAC address) that you want to use as shown in Figure 2.2. For
a user-based license, the ETAS License Manager automatically identifies the Windows
username for the current user.

Selecting “Get License Info” tells you the Host ID and User information and lets you
save this as a text file to a location of your choice.

2.3.3 Installing a Concurrent License Server

Concurrent licenses are allocated to client PCs by a FLEXnet license server manager
working together with a vendor daemon. The vendor daemon for ETAS is called
ETAS.exe. A copy of the vendor daemon is placed on disk when you install the ETAS
License Manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

To work with an ETAS concurrent license, a license server must be configured which is
accessible from the PCs wishing to use a license. The server must be configured with
the following software:

• FLEXnet license server manager;

• ETAS vendor daemon (ETAS.exe);

It is also necessary to install your concurrent license on the license server.

RTA-OS RH850/GHS Port Guide V5.0.22 14

Installing the RTA-OS Port Plug-in

Figure 2.3: Unlicensed RTA-OS Installation

In most organizations there will be a single FLEXnet license server manager that is
administered by your IT department. You will need to ask your IT department to install
the ETAS vendor daemon and the associated concurrent license.

If you do not already have a FLEXnet license server then you will need to arrange for
one to be installed. A copy of the FLEXnet license server, the ETAS vendor daemon and
the instructions for installing and using the server (LicensingEndUserGuide.pdf) are
placed on disk when you install the ETAS License manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

2.3.4 Using the ETAS License Manager

If you try to run the RTA-OS GUI rtaoscfg without a valid license, you will be given the
opportunity to start the ETAS License Manager and select a license. (The command-line
tool rtaosgen will just report the license is not valid.)

When the ETAS License Manager is launched, it will display the RTA-OS license state as
NOT AVAILABLE. This is shown in Figure 2.3.

Note that if the ETAS License Manager window is slow to start, rtaoscfg may ask a
second time whether you want to launch it. You should ignore the request until the
ETAS License Manager has opened and you have completed the configuration of the
licenses. You should then say yes again, but you can then close the ETAS License
Manager and continue working.

RTA-OS RH850/GHS Port Guide V5.0.22 15

Installing the RTA-OS Port Plug-in

License Key Installation

License keys are supplied in an ASCII text file, which will be sent to you on completion
of a valid license agreement.

If you have a machine-based or user-based license key then you can simply install the
license by opening the ETAS License Manager and selecting File Ô Add License File
menu.

If you have a concurrent license key then you will need to create a license stub file that
tells the client PC to look for a license on the FLEXnet server as follows:

1. create a copy of the concurrent license file

2. open the copy of the concurrent license file and delete every line except the one
starting with SERVER

3. add a new line containing USE_SERVER

4. add a blank line

5. save the file

The file you create should look something like this:

SERVER <server name> <MAC address> <TCP/IP Port>¶
USE_SERVER¶
¶

Once you have create the license stub file you can install the license by opening the
ETAS License Manager and selecting File Ô Add License File menu and choosing the
license stub file.

License Key Status

When a valid license has been installed, the ETAS License Manager will display the
license version, status, expiration date and source as shown in Figure 2.4.

Borrowing a concurrent license

If you use a concurrent license and need to use RTA-OS on a PC that will be disconnected
from the network (for example, you take a demonstration to a customer site), then the
concurrent license will not be valid once you are disconnected.

To address this problem, the ETAS License Manager allows you to temporarily borrow a
license from the license server.

To borrow a license:

1. Right click on the license feature you need to borrow.

2. Select “Borrow License”

3. From the calendar, choose the date that the borrowed license should expire.

4. Click “OK”

RTA-OS RH850/GHS Port Guide V5.0.22 16

Installing the RTA-OS Port Plug-in

Figure 2.4: Licensed features for RTA-OS

The license will automatically expire when the borrow date elapses. A borrowed license
can also be returned before this date. To return a license:

1. Reconnect to the network;

2. Right-click on the license feature you have borrowed;

3. Select “Return License”.

2.3.5 Troubleshooting Licenses

RTA-OS tools will report an error if you try to use a feature for which a correct license
key cannot be found. If you think that you should have a license for a feature but the
RTA-OS tools appear not to work, then the following troubleshooting steps should be
followed before contacting ETAS:

Can the ETAS License Manager see the license?

The ETAS License Manager must be able to see a valid license key for each product
or product feature you are trying to use.

You can check what the ETAS License Manager can see by starting it from the
Help Ô License Manager. . . menu option in rtaoscfg or directly from the
Windows Start Menu - Start Ô ETAS Ô License Management Ô ETAS License
Manager.

The ETAS License Manager lists all license features and their status. Valid licenses
have status INSTALLED. Invalid licenses have status NOT AVAILABLE.

RTA-OS RH850/GHS Port Guide V5.0.22 17

Installing the RTA-OS Port Plug-in

Figure 2.5: Licensed features that are due to expire

Is the license valid?

You may have been provided with a time-limited license (for example, for evalu-
ation purposes) and the license may have expired. You can check that the Expi-
ration Date for your licensed features to check that it has not elapsed using the
ETAS License Manager.

If a license is due to expire within the next 30 days, the ETAS License Manager will
use a warning triangle to indicate that you need to get a new license. Figure 2.5
shows that the license features LD_RTA-OS3.0_VRTA and LD_RTA-OS3.0_SRC are
due to expire.

If your license has elapsed then please contact your local ETAS sales representa-
tive to discuss your options.

Does the Ethernet MAC address match the one specified?

If you have a machine based license then it is locked to a specific MAC address.
You can find out the MAC address of your PC by using the ETAS License Manager
(Tools Ô Obtain License Info) or using the Microsoft program ipconfig /all at
a Windows Command Prompt.

You can check that the MAC address in your license file by opening your license file
in a text editor and checking that the HOSTID matches the MAC address identified
by the ETAS License Manager or the Physical Address reported by ipconfig /all.

If the HOSTID in the license file (or files) does not match your MAC address then
you do not have a valid license for your PC. You should contact your local ETAS
sales representative to discuss your options.

Is your Ethernet Controller enabled?

RTA-OS RH850/GHS Port Guide V5.0.22 18

Installing the RTA-OS Port Plug-in

If you use a laptop and RTA-OS stops working when you disconnect from the net-
work then you should check your hardware settings to ensure that your Ether-
net controller is not turned off to save power when a network connection is not
present. You can do this using Windows Control Panel. Select System Ô Hard-
ware Ô Device Manager then select your Network Adapter. Right click to open
Properties and check that the Ethernet controller is not configured for power
saving in Advanced and/or Power Management settings.

Is the FlexNet License Server visible?

If your license is served by a FlexNet license server, then the ETAS License Man-
ager will report the license as NOT AVAILABLE if the license server cannot be ac-
cessed.

You should contact your IT department to check that the server is working cor-
rectly.

Still not fixed?

If you have not resolved your issues, after confirming these points above, please
contact ETAS technical support. The contact address is provided in Section 11.1.
You must provide the contents and location of your license file and your Ethernet
MAC address.

RTA-OS RH850/GHS Port Guide V5.0.22 19

Verifying your Installation

3 Verifying your Installation

Now that you have installed both the RTA-OS tools and a port plug-in and have obtained
and installed a valid license key you can check that things are working.

3.1 Checking the Port

The first thing to check is that the RTA-OS tools can see the new port. You can do this
in two ways:

1. use the rtaosgen tool

You can run the command rtaosgen −−target:? to get a list of available targets,
the versions of each target and the variants supported, for example:

RTA-OS Code Generator
Version p.q.r.s, Copyright © ETAS nnnn
Available targets:
TriCoreHighTec_n.n.n [TC1797...]
VRTA_n.n.n [MinGW,VS2005,VS2008,VS2010]

2. use the rtaoscfg tool

The second way to check that the port plug-in can be seen is by starting rtaoscfg
and selecting Help Ô Information... drop down menu. This will show informa-
tion about your complete RTA-OS installation and license checks that have been
performed.

Integration Guidance 3.1:If the target port plug-ins have been installed to a non-
default location, then the --target_include argument must be used to specify the
target location.

If the tools can see the port then you can move on to the next stage – checking that you
can build an RTA-OS library and use this in a real program that will run on your target
hardware.

3.2 Running the Sample Applications

Each RTA-OS port is supplied with a set of sample applications that allow you to check
that things are running correctly. To generate the sample applications:

1. Create a new working directory in which to build the sample applications.

2. Open a Windows command prompt in the new directory.

3. Execute the command:

rtaosgen --target:<your target> --samples:[Applications]

e.g.

rtaosgen --target:[MPC5777Mv2]PPCe200HighTec_5.0.8
--samples:[Applications]

RTA-OS RH850/GHS Port Guide V5.0.22 20

Verifying your Installation

You can then use the build.bat and run.bat files that get created for each sample appli-
cation to build and run the sample. For example:

cd Samples\Applications\HelloWorld
build.bat
run.bat

Remember that your target toolchain must be accessible on the Windows PATH for the
build to be able to run successfully.

Integration Guidance 3.2:It is strongly recommended that you build and run at least
the Hello World example in order to verify that RTA-OS can use your compiler toolchain
to generate an OS kernel and that a simple application can run with that kernel.

For further advice on building and running the sample applications, please consult your
Getting Started Guide.

RTA-OS RH850/GHS Port Guide V5.0.22 21

Port Characteristics

4 Port Characteristics

This chapter tells you about the characteristics of RTA-OS for the RH850/GHS port.

4.1 Parameters of Implementation

To be a valid OSEK (ISO 17356) or AUTOSAR OS, an implementation must support a
minimum number of OS objects. The following table specifies the minimum numbers
of each object required by the standards and the maximum number of each object
supported by RTA-OS for the RH850/GHS port.

Parameter Required RTA-OS

Tasks 16 1024
Tasks not in SUSPENDED state 16 1024
Priorities 16 1024
Tasks per priority - 1024
Queued activations per priority - 4294967296
Events per task 8 32
Software Counters 8 4294967296
Hardware Counters - 4294967296
Alarms 1 4294967296
Standard Resources 8 4294967296
Linked Resources - 4294967296
Nested calls to GetResource() - 4294967296
Internal Resources 2 no limit
Application Modes 1 4294967296
Schedule Tables 2 4294967296
Expiry Points per Schedule Table - 4294967296
OS Applications - 4294967295
Trusted functions - 4294967295
Spinlocks (multicore) - 4294967295
Register sets - 4294967296

4.2 Configuration Parameters

Port-specific parameters are configured in the General Ô Target workspace of
rtaoscfg, under the “Target-Specific” tab.

The following sections describe the port-specific configuration parameters for the
RH850/GHS port, the name of the parameter as it will appear in the XML configura-
tion and the range of permitted values (where appropriate).

4.2.1 Stack used for C-startup

XML name SpPreStartOS

RTA-OS RH850/GHS Port Guide V5.0.22 22

Port Characteristics

Description

The amount of stack already in use at the point that StartOS() is called. This value is
simply added to the total stack size that the OS needs to support all tasks and interrupts
at run-time. Typically you use this to obtain the amount of stack that the linker must
allocate. The value does not normally change if the OS configuration changes.

4.2.2 Stack used when idle

XML name SpStartOS

Description

The amount of stack used when the OS is in the idle state (typically inside
Os_Cbk_Idle()). This is just the difference between the stack used at the point that
Os_StartOS() is called and the stack used when no task or interrupt is running. This
can be zero if Os_Cbk_Idle() is not used. It must include the stack used by any function
called while in the idle state. The value does not normally change if the OS configura-
tion changes.

4.2.3 Stack overheads for ISR activation

XML name SpIDisp

Description

The extra amount of stack needed to activate a task from within an ISR. If a task is
activated within a Category 2 ISR, and that task has a higher priority than any currently
running task, then for some targets the OS may need to use marginally more stack
than if it activates a task that is of lower priority. This value accounts for that. On
most targets this value is zero. This value is used in worst-case stack size calculations.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.4 Stack overheads for ECC tasks

XML name SpECC

Description

The extra amount of stack needed to start an ECC task. ECC tasks need to save slightly
more state on the stack when they are started than BCC tasks. This value contains the
difference. The value may change if significant changes are made to the OS configura-
tion. e.g. STANDARD/EXTENDED, SC1/2/3/4.

4.2.5 Stack overheads for ISR

XML name SpPreemption

RTA-OS RH850/GHS Port Guide V5.0.22 23

Port Characteristics

Description

The amount of stack used to service a Category 2 ISR. When a Category 2 ISR interrupts
a task, it usually places some data on the stack. If the ISR measures the stack to deter-
mine if the preempted task has exceeded its stack budget, then it will overestimate the
stack usage unless this value is subtracted from the measured size. The value is also
used when calculating the worst-case stack usage of the system. Be careful to set this
value accurately. If its value is too high then when the subtraction occurs, 32-bit un-
derflow can occur and cause the OS to think that a budget overrun has been detected.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.6 ORTI/Lauterbach

XML name Orti22Lauterbach

Description

Enables ORTI generation for the Lauterbach debugger.

Settings

Value Description

true Generate ORTI
false No ORTI (default)

4.2.7 ORTI/winIDEA

XML name Orti21winIDEA

Description

Enables ORTI generation for the winIDEA debugger.

Settings

Value Description

true Generate ORTI
false No ORTI (default)

4.2.8 ORTI Stack Fill

XML name OrtiStackFill

Description

Expands ORTI information to cover stack address, size and fill pattern details to support
debugger stack usage monitoring.

Settings

Value Description

true Support ORTI stack tracking
false ORTI stack tracking unsupported (default)

RTA-OS RH850/GHS Port Guide V5.0.22 24

Port Characteristics

4.2.9 Support winIDEA Analyzer

XML name winIDEAAnalyzer

Description

Adds support for the winIDEA profiler to track ORTI items. Context switches take a few
cycles longer as additional code is inserted to support this feature.

Settings

Value Description

None Tracking disabled (default)
Data Track by monitoring global variables
Soft Track with DBPUSH/DBTAG instructions
User Track with User-Trace (I/O Port 1)

4.2.10 Enable Direct vector mode

XML name DirectVectors

Description

Select Direct Vector Method for handling all EI maskable interrupts with a single vector
address (please refer to the Renesas documentation for more details on the vector
methods).

Settings

Value Description

true Use Direct Vector Method
false Use Table Reference Method (default)

4.2.11 Link Type

XML name OsLinkerModel

Description

Select the type of map used in linker samples.

Settings

Value Description

RAM Code/data in RAM (default)
FLASH Code in FLASH, data in RAM

4.2.12 Trust Trap

XML name OsTrustTrap

RTA-OS RH850/GHS Port Guide V5.0.22 25

Port Characteristics

Description

When there is untrusted code in an application RTA-OS needs to reserve one of the two
CPU trap vectors to switch between trusted and untrusted code. This option selects
which is used. This functionality must be supported if a user provided TRAP handlers
are used in such applications.

Settings

Value Description

0x40 TRAP 0x0-0xF instructions used by RTA-OS (default)
0x50 TRAP 0x10-0x1F instructions used by RTA-OS

4.2.13 Enable stack repositioning

XML name AlignUntrustedStacks

Description

Use to support realignment of the stack for untrusted code when there are
MPU protection region granularity issues. Refer to the documentation for
Os_Cbk_SetMemoryAccess

Settings

Value Description

true Support repositioning
false Normal behavior (default)

4.2.14 Enable untrusted stack check

XML name DistrustStacks

Description

Extra code can be placed in interrupt handlers to detect when untrusted code has an
illegal stack pointer value. Also exception handlers run on a private stack (Refer to the
documentation for Os_Cbk_GetAbortStack). This has a small performance overhead, so
is made optional.

Settings

Value Description

true Perform the checks
false Do not check (default)

4.2.15 EBASE setting

XML name EBASE_value

RTA-OS RH850/GHS Port Guide V5.0.22 26

Port Characteristics

Description

Controls EBASE register setting within Os_InitializeVectorTable(). This register is only
initialized if RTA-OS generates a vector table. The register value is aligned to a 512 byte
boundary. When setting the EBASE register directly ensure that the RINT bit matches
the desired interrupt vector mode.

Valid values are; ’true’ initialize EBASE to the address of Os_interrupt_vectors the RTA-
OS generated vector table (default), ’false’ do not initialize EBASE, the hex address
used to initialize EBASE, or the address of the label used to initialize EBASE.

4.2.16 Handle FPU context

XML name handle_FPU_context

Description

Extra code can be added during context switches to additionally handle the FPSR and
FPRPC registers for tasks and ISRs. This option should only be used if the majority of
Tasks and ISRs in the application contain FPU instructions otherwise register sets should
be used. This has a small performance overhead, so is made optional.

Settings

Value Description

true Save FPU context
false Do not save FPU context (default)

4.2.17 CrossCore0 IPIR

XML name CrossCore0IPIR

Description

Optionally specify the IPIR used for cross-core interrupts for core 0. A free IPIR will be
selected automatically if one is not specified. Used in multicore applications only.

4.2.18 CrossCore1 IPIR

XML name CrossCore1IPIR

Description

Optionally specify the IPIR used for cross-core interrupts for core 1. A free IPIR will be
selected automatically if one is not specified. Used in multicore applications only.

4.2.19 Block default interrupt

XML name block_default_interrupt

RTA-OS RH850/GHS Port Guide V5.0.22 27

Port Characteristics

Description

Where a default interrupt is specified, it will normally execute if a spurious interrupt
fires. This option can change this behavior by changing the priority assigned to unused
interrupt sources.

Settings

Value Description

true Block the default interrupt
false Allow the default interrupt handler to run if a spurious interrupt fires (de-

fault)

4.2.20 GetAbortStack always

XML name always_call_GetAbortStack

Description

When the abort ISR is triggered always use the Os_Cbk_GetAbortStack() callback to set
up a safe area of memory to use as a stack executing the ProtectionHook (please refer
to the documentation for Os_Cbk_GetAbortStack).

Settings

Value Description

true Always call Os_Cbk_GetAbortStack()
false Only call Os_Cbk_GetAbortStack() when the ’Enable untrusted stack check’

target option is selected (default)

4.2.21 Cache CoreID in CTPSW

XML name Cache_CoreID_in_CTPSW

Description

Optionally specify that the CTPSW is used to cache the Core ID into. This improves
performance in multicore applications, especially where there is untrusted code. If
selected the OS will initialize and use the CTPSW where it can to read the Core ID. It
must not be modified (beware this may be unexpectedly changed in untrusted code).

Settings

Value Description

true Cache the Core ID into CTPSW
false Read Core ID from HTCFG0.PEID (default)

4.2.22 SDA Threshold

XML name sda_value

RTA-OS RH850/GHS Port Guide V5.0.22 28

Port Characteristics

Description

Sets the value for the -sda compiler option (see the compiler documentation for more
details). Valid values are 0 (default), ’none’, ’all’, or the threshold value in bytes.

4.2.23 SDA size setting

XML name SDA_size

Description

Controls the maximum size of the offset used by the compiler from the small data area
(SDA) base register when accessing SDA data with load and store instructions.

Settings

Value Description

16-bit Only use 4-byte load/store instructions
23-bit Extend SDA addressing to allow use of 6-byte load/store instructions (de-

fault)

4.2.24 Optimizer setting

XML name Optimizer_setting

Description

Controls the optimizer strategy compiler option (see the compiler documentation for
more details).

Settings

Value Description

Onone Disable all optimizations
Osize Improve code size over performance
Ogeneral Balance code size and performance improvements (default)
Ospeed Improve code performance over size

4.2.25 Customer compiler option set 1

XML name option_set1

Description

Selects a set of default compiler options. Requested by a customer for a spe-
cific project and not supported elsewhere. Configuration errors are generated if
other target options contend with the option set when used. The options are: -
cpu=rh850x (selected via the target variant), -fhard, -ignore_callt_state_in_interrupts,
-large_sda, -misalign_pack, -nofarcalls, -nofloatio, -no_callt, -Ogeneral, -Onounroll, -
prepare_dispose, -registermode=32, -reserve_r2, -shorten_loads, -sda=0, -Wshadow,
-Wundef, –brief_diagnostics, –no_commons, –no_wrap_diagnostics, –prototype_errors,
–quit_after_warnings, –short_enum, -list, -c, -G, -dual_debug, -dwarf, -X5523, -lnk=-
no_xda_modifications.

RTA-OS RH850/GHS Port Guide V5.0.22 29

Port Characteristics

Settings

Value Description

true Enable compiler option set 1
false Use standard options (default)

4.2.26 Compiler option set 2

XML name option_set2

Description

Selects a set of default compiler options. Configuration errors are generated if other
target options contend with the option set when used. The options are: -Ogeneral
(can be modified via target option), -G, -cpu=rh850g3m, -dual-debug, –no_commons,
-prepare_dispose, -no_callt, -reserve_r2, -shorten_loads, -sda=0 (can be modified via
target option), -large_sda (can be modified via target option), –short_enum, -list, -
ignore_callt_state_in_interrupts, -frigor=accurate.

Settings

Value Description

true Enable compiler option set 2
false Use standard options (default)

4.2.27 stack_protector setting

XML name stack_protector

Description

Enable protection against stack smashing attacks using the compiler -stack_protector
command line option (see the compiler documentation for more details).

Settings

Value Description

true compile with -stack_protector option
false compile without -stack_protector option (default)

4.2.28 Enhanced Isolation

XML name EnhancedIsolation

Description

Use to enforce additional checks to prevent errors in untrusted code from affecting any
other part of the system. Refer to the documentation in the User and Reference Guides

Settings

Value Description

true Support Enhanced Isolation
false Normal behavior (default)

RTA-OS RH850/GHS Port Guide V5.0.22 30

Port Characteristics

4.2.29 Unaligned data

XML name Unaligned_data

Description

Controls the packing of data with the ’-misalign_pack’ compiler option (see the compiler
documentation for more details). If applied misaligned accesses are used to manage
packed data. This requires additional instructions. When used the MCTL.MA must be
set to avoid the MAE exception triggering. The default GHS startup code normally takes
care of this. Some RH850 variants do not support misaligned data access (i.e. P1M).

Settings

Value Description

true Apply the ’-misalign_pack’ compiler option (default)
false Apply the ’-no_misalign_pack’ compiler option

4.3 Generated Files

The following table lists the files that are generated by rtaosgen for all ports:

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured. This is in-

cluded by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by RTA-

OS to merge with the system-wide MemMap.h file in AU-
TOSAR versions 4.0 and earlier. From AUTOSAR version 4.1,
Os_MemMap.h is used by the OS instead of MemMap.h.

RTAOS.<lib> The RTA-OS library for your application. The extension <lib>
depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application. This is
used by rtaosgen to work out which parts of the kernel li-
brary need to be rebuilt if the configuration has changed. The
extension <lib> depends on your target.

<projectname>.log A log file that contains a copy of the text that the tool and
compiler sent to the screen during the build process.

RTA-OS RH850/GHS Port Guide V5.0.22 31

Port-Specific API

5 Port-Specific API

The following sections list the port-specific aspects of the RTA-OS programmers refer-
ence for the RH850/GHS port that are provided either as:

• additions to the material that is documented in the Reference Guide; or

• overrides for the material that is documented in the Reference Guide. When a
definition is provided by both the Reference Guide and this document, the definition
provided in this document takes precedence.

5.1 API Calls

5.1.1 Os_InitializeVectorTable

Initialize the ICn registers.

Syntax

void Os_InitializeVectorTable(void)

Description

Os_InitializeVectorTable() initializes the interrupt controller registers and priorities ac-
cording to the requirements of the project configuration.

The ICn registers for interrupts declared in the project configuration are modified so
that their priority matches that expected by RTA-OS. If Table Reference method inter-
rupt vectors is selected then the EITB bits are set for the configured interrupts. The
ICn mask bits are not cleared, which can be done later using the provided macros (i.e.
Os_Enable_x). The ICn registers of interrupt channels not declared in the project con-
figuration are not modified by this function. The vector table base address register is
set to match the location of Os_interrupt_vectors. If Table Reference interrupt vectors
are used then the INTBP register is set to match the location of Os_EI_vectors. The
PMR register is set to block all Category 2 interrupts (as these should only trigger after
StartOS()) but allow Category 1 interrupts to fire. The PSW.ID bit is also set to allow EI
interrupts. For G3KH core parts the FPIPR register is set so that it’s priority matches
that expected by RTA-OS. Os_InitializeVectorTable() should be called before StartOS().
It should be called even if ’Suppress Vector Table Generation’ is set to TRUE.

In multicore applications Os_InitializeVectorTable() should be called by all cores.

Example

Os_InitializeVectorTable();

See Also

StartOS
Os_PreBindVectorsForPEx

RTA-OS RH850/GHS Port Guide V5.0.22 32

Port-Specific API

5.1.2 Os_PreBindVectorsForPEx

Initialize the INTC2 EIBDn registers so that INTC2 interrupts can be configured in
Os_InitializeVectorTable().

Syntax

void Os_PreBindVectorsForPEx(void)

Description

This API is only applicable to single-core variants running on a multicore processor
(e.g. C1MA2_SubCPU). It does not apply to multicore variants (e.g. F1H), or single-core
variants running on a single-core processor (e.g. F1L).

On some RH850 devices the INTC2 registers for an interrupt channel can only be written
by the core to which the interrupt channel is bound (via the channel’s EIBD register).
After reset all INTC2 interrupt channels are bound to core PE1 and hence only PE1 can
bind the interrupts to a different core. (Core PEn is the core whose HTCFG0.PEID field
is n.)

There are some single-core variants (e.g. C1MA2_CPU2 and C1MA2_SubCPU) where
RTA-OS does not run on PE1 and therefore Os_InitializeVectorTable() will not be called
by PE1. For these variants the function Os_PreBindVectorsForPEx() is created in the
file Os_PreBindVectorsForPEx.c. Os_PreBindVectorsForPEx() binds the configured INTC2
interrupt channels to core PEx so that when Os_IntializeVectorTable() is called by core
PEx it can write to the necessary INTC2 registers. When the RTA-OS variant runs on PE2
then ’x’ will be ’2’, when the RTA-OS variant runs on PE3 then ’x’ will be ’3’, etc.

For variants where a Os_PreBindVectorsForPEx.c file is generated (see sec-
tion ’Supported Devices’ in in the ’RTA-OS RH850/GHS Port Guide’) the
Os_PreBindVectorsForPEx() function (or its equivalent) must run on PE1 before
Os_InitializeVectorTable() is called on core PEx. You are responsible for compiling
Os_PreBindVectorsForPEx.c and calling Os_PreBindVectorsForPEx() on PE1.

For example, if the C1MA2_SubCPU variant, which runs on core PE3 of a C1M-A2 device,
is used RTA-OS will generate a file called Os_PreBindVectorsForPE3.c. You must compile
the generated Os_PreBindVectorsForPE3.c file and call the Os_PreBindVectorsForPE3()
function on PE1 before PE3 calls Os_InitializeVectorTable().

Similarly, if you use the C1MA2_CPU1_CPU2 variant, which runs on cores PE1 and
PE2 of a C1M-A2, device and the C1MA2_SubCPU variant then you must compile the
Os_PreBindVectorsForPE3.c file generated by the C1MA2_SubCPU variant and call the
Os_PreBindVectorsForPE3() function on PE1 before PE3 calls Os_InitializeVectorTable().

In the sample applications Os_PreBindVectorsForPEx() is called by the reset code in
reset.850.

See section ’C1M-A2 Details’ in the ’RTA-OS RH850/GHS Port Guide’ for more informa-
tion.

RTA-OS RH850/GHS Port Guide V5.0.22 33

Port-Specific API

Example

Os_PreBindVectorsForPE2();
Os_PreBindVectorsForPE3();

See Also

Os_InitializeVectorTable

5.2 Callbacks

5.2.1 Os_Cbk_GetAbortStack

Callback routine to provide the start address of the stack to use to handle exceptions.

Syntax

FUNC(void *,{memclass}) Os_Cbk_GetAbortStack(void)

Return Values

The call returns values of type void *.

Description

Untrusted code can misbehave and cause a protection exception. When this happens,
AUTOSAR requires that ProtectionHook is called and the task, ISR or OS Application
must be terminated.

It is possible that at the time of the fault the stack pointer is invalid. For this reason,
if ’Enable untrusted stack check’ is configured, RTA-OS will call Os_Cbk_GetAbortStack
to get the address of a safe area of memory that it should use for the stack while it
performs this processing.

Maskable interrupts will be disabled during this process so the stack only needs to be
large enough to perform the ProtectionHook.

A default implementation of Os_Cbk_GetAbortStack is supplied in the RTA-OS library
that will place the abort stack at the starting stack location of the untrusted code.

In systems that use the Os_Cbk_SetMemoryAccess callback, the return value is the last
stack location returned in ApplicationContext from Os_Cbk_SetMemoryAccess. This is
to avoid having to reserve memory. Note that this relies on Os_Cbk_SetMemoryAccess
having been called at least once on that core otherwise zero will be returned. (The
stack will not get adjusted if zero is returned.) Otherwise the default implementation
returns the address of an area of static memory that is reserved for sole use by the
abort stack.

Note: memclass is OS_APPL_CODE for AUTOSAR 3.x, OS_CALLOUT_CODE for AUTOSAR
4.0, OS_OS_CBK_GETABORTSTACK_CODE for AUTOSAR 4.1.

RTA-OS RH850/GHS Port Guide V5.0.22 34

Port-Specific API

Example

FUNC(void *,{memclass}) Os_Cbk_GetAbortStack(void) {
static uint32 abortstack[40U];
return &abortstack[40U];

}

Required when

The callback must be present if ’Enable untrusted stack check’ is configured and there
are untrusted OS Applications. The callback is also present if the ’GetAbortStack al-
ways’ target option is enabled.

5.2.2 Os_Cbk_GetEnhancedIsolationStack

Callback routine to initialize the start address of the stack to use by enhanced isolation
support.

Syntax

FUNC(void,{memclass}) Os_Cbk_GetEnhancedIsolationStack(void)

Description

When ’Enhanced Isolation’ support is selected additional tests are performed to en-
sure that untrusted code has not corrupted register values. It is possible that the
stack pointer may be invalid when these tests are performed. For this reason, if
’Enhanced Isolation’ is configured, RTA-OS will call Os_Cbk_GetEnhancedIsolationStack
during StartOS() to get the address of a safe area of memory that it should use for the
stack during these tests.

The top address of the safe memory is used to initialize the pointer
Os_EnhancedIsolationStack. This pointer value is used to configure the stack during the
’Enhanced Isolation’ tests. In multi-core applications Os_EnhancedIsolationStack is a
pointer array, with a value for each core. The values of the stack pointers should follow
the alignment constraints maintained by the Application Binary Interface (ABI). Inter-
rupts will be disabled during these tests so the stack only needs to be large enough
to perform the OS_Cbk_RestoreGlobalRegisters(), Os_Cbk_IsUntrustedTrapOK(),
Os_Cbk_IsUntrustedCodeOK() and Os_Cbk_IsSystemTrapAllowed() callback functions.

A default implementation of Os_Cbk_GetEnhancedIsolationStack is supplied in the RTA-
OS library that will configure the Enhanced Isolation stack pointer at the top of a block
of RAM (or a block of RAM per core in multi-core applications).

Note: memclass is OS_APPL_CODE for AUTOSAR 3.x, OS_CALLOUT_CODE for AUTOSAR
4.0, OS_OS_CBK_GETENHANCEDISOLATIONSTACK_CODE for AUTOSAR 4.1.

RTA-OS RH850/GHS Port Guide V5.0.22 35

Port-Specific API

Example

FUNC(void,{memclass}) Os_Cbk_GetEnhancedIsolationStack(void) {
static uint32 OS_EIstack[100U];
Os_EnhancedIsolationStack = &OS_EIstack[100U];

}

FUNC(void,{memclass}) Os_Cbk_GetEnhancedIsolationStack(void) {
static uint32 OS_EIstack[2][100U];
Os_EnhancedIsolationStack[0] = &OS_EIstack[0][100U];
Os_EnhancedIsolationStack[1] = &OS_EIstack[1][100U];

}

Required when

The callback must be present if ’Enhanced Isolation’ is configured.

5.2.3 Os_Cbk_StartCore

Callback routine used to start a non-master core on a multicore variant.

Syntax

FUNC(StatusType, {memclass})Os_Cbk_StartCore(
uint16 CoreID

)

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.
E_OS_ID all The core does not exist or can not be started.

Description

In a multicore application, the StartCore or StartNonAutosarCore OS APIs have to be
called prior to StartOS for each core that is to run. For this target port, these APIs make
a call to Os_Cbk_StartCore() which is responsible for starting the specified core.

RTA-OS provides a default implementation of Os_Cbk_StartCore() that will be appro-
priate for most normal situations. Os_Cbk_StartCore() does not get called for core 0,
because core 0 must start first.

Note: memclass is OS_APPL_CODE for AUTOSAR 3.x, OS_CALLOUT_CODE for AUTOSAR
4.0, OS_OS_CBK_STARTCORE_CODE for AUTOSAR 4.1.

RTA-OS RH850/GHS Port Guide V5.0.22 36

Port-Specific API

Example

FUNC(StatusType, {memclass}) Os_Cbk_StartCore(uint16 CoreID)
{
StatusType ret = E_OS_ID;

/* If an expected core... */
if (CoreID == 1U) {
/* Set the global variable Os_StartCoreVar to a known value

* to allow a secondary core to resume code execution */
Os_StartCoreVar = 0xA5U;

ret = E_OK;
}

return ret;
}

Required when

Required for non-master cores that will be started.

See Also

StartCore
StartNonAutosarCore
StartOS

5.2.4 Os_Cbk_StopCore

Callback routine used to stop a non master core on a multicore variant.

Syntax

FUNC(StatusType, {memclass}) Os_Cbk_StopCore(void)

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.
E_OS_ID all The core does not exist or can not be started.

Description

When the RH850 CPU comes out of reset all cores start automatically. The
Os_Cbk_StopCore() callback is used to suspend the execution of the current core
in preparation for execution to be resumed by the primary core calling the
Os_Cbk_StartCore callback. Os_Cbk_StopCore() should be used before the primary core
uses the StartCore() or StartOS() API calls.

RTA-OS provides a default implementation of Os_Cbk_StopCore() that will be appropri-
ate for most normal situations. Here Os_Cbk_StopCore() is called from the C start-up

RTA-OS RH850/GHS Port Guide V5.0.22 37

Port-Specific API

code, it can also be called in OS_MAIN(). Os_Cbk_StopCore() should not get called for
core 0 as this is the primary core.

Note: memclass is OS_APPL_CODE for AUTOSAR 3.x, OS_CALLOUT_CODE for AUTOSAR
4.0, OS_OS_CBK_STOPCORE_CODE for AUTOSAR 4.1.

Example

FUNC(StatusType, {memclass}) Os_Cbk_StopCore(void)
{
/* If an expected core, shutdown until the Os_StartCoreVar

* global variable holds a value set by Os_Cbk_StartCore(). */
/* Put the Os_StartCore variable in a known state until

* the master core sets it */
while (Os_StartCoreVar != 0xA5U) {
/* Use the RH850 SNOOZE instruction to put the core in

* standby. */
OS_SNOOZE();

}

return E_OK;
}

Required when

Required for non master cores that will be started.

See Also

StartCore
StartNonAutosarCore
StartOS

5.3 Macros

5.3.1 CAT1_ISR

Macro that should be used to create a Category 1 ISR entry function. This macro exists
to help make your code portable between targets. It should be used with both EI and
FE interrupts.

Example

CAT1_ISR(MyISR) {...}

5.3.2 Os_Clear_x

Use of the Os_Clear_x() will clear the interrupt request bit of the EI level interrupt
control register for the named interrupt channel. The macro can be called using ei-
ther the EI channel number or the RTA-OS configured vector name. In the example,
this is Os_Clear_EI_Channel_20() and Os_Clear_Millisecond() respectively. To use the
Os_Clear_x macro the file Os_ConfigInterrupts.h must be included through the use of

RTA-OS RH850/GHS Port Guide V5.0.22 38

Port-Specific API

#include. The macro is provided so the interrupt channel can be cleared without cor-
rupting the interrupt priority value configured by calling Os_InitializeVectorTable(). It
may not be used by untrusted code.

On the C1MA2_CPU1_CPU2 variant this macro only works when called on the core to
which the interrupt channel is assigned.

Example

Os_Clear_EI_Channel_20()
Os_Clear_Millisecond()

5.3.3 Os_DisableAllConfiguredInterrupts

The Os_DisableAllConfiguredInterrupts macro will disable all configured EI inter-
rupt channels. To use the Os_DisableAllConfiguredInterrupts macro the file
Os_ConfigInterrupts.h must be included through the use of #include. The macro is pro-
vided so the interrupt channels can be disabled without corrupting the interrupt priority
values configured by calling Os_InitializeVectorTable(). It may not be used by untrusted
code.

On the C1MA2_CPU1_CPU2 variant this macro only affects interrupt channels assigned
to the core on which it is called.

Example

Os_DisableAllConfiguredInterrupts()
...
Os_EnableAllConfiguredInterrupts()

5.3.4 Os_Disable_x

Use of the Os_Disable_x macro will disable the named interrupt channel. The macro can
be called using either the EI channel number or the RTA-OS configured vector name.
In the example, this is Os_Disable_EI_Channel_20() and Os_Disable_Millisecond() re-
spectively. To use the Os_Disable_x macro the file Os_ConfigInterrupts.h must be in-
cluded through the use of #include. The macro is provided so the interrupt channel
can be masked without corrupting the interrupt priority value configured by calling
Os_InitializeVectorTable(). It may not be used by untrusted code.

On the C1MA2_CPU1_CPU2 variant this macro only works when called on the core to
which the interrupt channel is assigned.

Example

Os_Disable_EI_Channel_20()
Os_Disable_Millisecond()

5.3.5 Os_EnableAllConfiguredInterrupts

The Os_EnableAllConfiguredInterrupts macro will enable all configured EI inter-
rupt channels. To use the Os_EnableAllConfiguredInterrupts macro the file

RTA-OS RH850/GHS Port Guide V5.0.22 39

Port-Specific API

Os_ConfigInterrupts.h must be included through the use of #include. The macro is pro-
vided so the interrupt channels can be enabled without corrupting the interrupt priority
values configured by calling Os_InitializeVectorTable(). It may not be used by untrusted
code.

On the C1MA2_CPU1_CPU2 variant this macro only affects interrupt channels assigned
to the core on which it is called.

Example

Os_DisableAllConfiguredInterrupts()
...
Os_EnableAllConfiguredInterrupts()

5.3.6 Os_Enable_x

Use of the Os_Enable_x macro will enable the named interrupt channel. The macro
can be called using either the EI channel number or the RTA-OS configured vector
name. In the example, this is Os_Enable_EI_Channel_20() and Os_Enable_Millisecond()
respectively. To use the Os_Enable_x macro the file Os_ConfigInterrupts.h must be in-
cluded through the use of #include. The macro is provided so the interrupt channel
can be enabled without corrupting the interrupt priority value configured by calling
Os_InitializeVectorTable(). It may not be used by untrusted code.

On the C1MA2_CPU1_CPU2 variant this macro only works when called on the core to
which the interrupt channel is assigned.

Example

Os_Enable_EI_Channel_20()
Os_Enable_Millisecond()

5.3.7 Os_IntChannel_x

The Os_IntChannel_x macro can be used to get the vector number associated with
the named INTC interrupt (0, 1, 2...). The macro can be called using either the
INTC vector name or the RTA-OS configured vector name. In the example, this is
Os_IntChannel_INTTAUD0I11 and Os_IntChannel_Millisecond respectively. To use the
Os_IntChannel_x macro the file Os_ConfigInterrupts.h must be included through the
use of #include.

Example

trigger_interrupt(Os_IntChannel_INTTAUD0I11);
trigger_interrupt(Os_IntChannel_Millisecond);

5.4 Type Definitions

5.4.1 Os_StackSizeType

An unsigned value representing an amount of stack in bytes.

RTA-OS RH850/GHS Port Guide V5.0.22 40

Port-Specific API

Example

Os_StackSizeType stack_size;
stack_size = Os_GetStackSize(start_position, end_position);

5.4.2 Os_StackValueType

An unsigned value representing the position of the stack pointer (ESP).

Example

Os_StackValueType start_position;
start_position = Os_GetStackValue();

RTA-OS RH850/GHS Port Guide V5.0.22 41

Toolchain

6 Toolchain

This chapter contains important details about RTA-OS and the GREENHILLS toolchain. A
port of RTA-OS is specific to both the target hardware and a specific version of the com-
piler toolchain. You must make sure that you build your application with the supported
toolchain.

In addition to the version of the toolchain, RTA-OS may use specific tool options
(switches). The options are divided into three classes:

kernel options are those used by rtaosgen to build the RTA-OS kernel.

mandatory options must be used to build application code so that it will work with the
RTA-OS kernel.

forbidden options must not be used to build application code.

Any options that are not explicitly forbidden can be used by application code providing
that they do not conflict with the kernel and mandatory options for RTA-OS.

Integration Guidance 6.1:ETAS has developed and tested RTA-OS using the tool ver-
sions and options indicated in the following sections. Correct operation of RTA-OS is
only covered by the warranty in the terms and conditions of your deployment license
agreement when using identical versions and options. If you choose to use a different
version of the toolchain or an alternative set of options then it is your responsibility to
check that the system works correctly. If you require a statement that RTA-OS works
correctly with your chosen tool version and options then please contact ETAS to discuss
validation possibilities.

6.1 Compiler Versions

This port of RTA-OS has been developed to work with the following compiler(s):

6.1.1 Green Hills Software v2013.5.5

Ensure that ccrh850.exe is on the path and that the appropriate environment variables
have been set.

Tested on Green Hills Software, MULTI v2013.5.5 (patch P42)

6.1.2 Green Hills Software v2015.1.7

Ensure that ccrh850.exe is on the path and that the appropriate environment variables
have been set.

Tested on Green Hills Software, MULTI v2015.1.7 (patch P11)

RTA-OS RH850/GHS Port Guide V5.0.22 42

Toolchain

6.1.3 Green Hills Software v2017.1.5

Ensure that ccrh850.exe is on the path and that the appropriate environment variables
have been set.

Tested on Green Hills Software, MULTI v2017.1.5

6.1.4 Green Hills Software v2018.1.5

Ensure that ccrh850.exe is on the path and that the appropriate environment variables
have been set.

Tested on Green Hills Software, MULTI v2018.1.5

If you require support for a compiler version not listed above, please contact ETAS.

6.2 Options used to generate this guide

6.2.1 Compiler

Name ecom800.exe
Version v2018.1.5 Release Date Thu Apr 19 23:03:46 PDT 2018

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

-cpu=rh850g3mh Specify the target processor instruction set (this is variant-specific
i.e. rh850g3k, rh850g3m, rh850g3kh or rh850g3mh if supported by the compiler)

-fsoft Floating-point operations performed in software (can be changed by target op-
tion Handle FPU context)

-ignore_callt_state_in_interrupts CTPSW and CTPC registers are not saved in
interrupt routines

-large_sda Generate 23-bit SDA relocations for load/store instructions (can be
changed by a target option)

-misalign_pack Do not generate code to handle misaligned data accesses (can be
changed by a target option)

-nofarcalls Disable generation of far function calls

-nofloatio No floating-point operations in stdio routines

-no_callt Disable use of the callt instruction

RTA-OS RH850/GHS Port Guide V5.0.22 43

Toolchain

-Ogeneral Optimizer strategy (other values are supported using the target option ’Op-
timizer setting’ value)

-Onounroll Prevent the optimizer from loop unrolling

-prepare_dispose Allow V850E prepare and dispose instructions

-registermode=32 No registers are reserved for user

-reserve_r2 Reserve R2

-sda=0 SDA threshold (other values are supported using the target option ’SDA Thresh-
old’ value)

-shorten_loads Convert 23-bit SDA relocations to 16-bit in load/store instructions
when possible

-Wshadow Warn on the declaration of local variable shadows

-Wundef Warn on undefined symbols in preprocessor expressions

--brief_diagnostics Brief error messages

--no_commons Allocate uninitialized global variables to a section and initialize them to
zero at program startup

--no_wrap_diagnostics Do not wrap diagnostic messages

--prototype_errors Report an error for functions with no prototype

--quit_after_warnings Treat all warnings as errors

--short_enum Store enumerations in the smallest possible type

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for kernel compilation with the exception of the following which
may be omitted from application code:

-nofarcalls,

-nofloatio,

-Onounroll,

–brief_diagnostics,

–no_wrap_diagnostics,

–quit_after_warnings.

RTA-OS RH850/GHS Port Guide V5.0.22 44

Toolchain

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options for example:

-callt Use callt instruction in function prologues/epilogues

-registermode=22 Restrict the compiler to using 22 general purpose registers

-registermode=26 Restrict the compiler to using 26 general purpose registers

-globalreg Reserve register to hold global variable

-ga Use r28 as a frame pointer

-r20has255 Register r20 is set to the value 255

-r21has65535 Register r21 is set to the value 65535

--no_short_enum Store enumerations as integers

6.2.2 Assembler

Name as850.exe
Version v2018.1.5 Release Date Thu Apr 19 23:02:04 PDT 2018

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

RTA-OS RH850/GHS Port Guide V5.0.22 45

Toolchain

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.3 Librarian

Name ax.exe
Version v2018.1.5 Release Date Thu Apr 19 23:02:01 PDT 2018

6.2.4 Linker

Name elxr.exe
Version v2018.1.5 Release Date Thu Apr 19 23:02:02 PDT 2018

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

-cpu=rh850g3mh Specify the target processor instruction set (this is variant-specific
i.e. rh850g3k, rh850g3m, rh850g3kh or rh850g3mh if supported by the linker)

-e Os_sample_reset Set the application entry function

-fsoft Floating-point operations performed in software (can be changed by target op-
tion Handle FPU context)

-lnk="-Manux -v -Qn" Create map file, verbose, skip comment section

-lnk="-strict_overlap_check" Errors for all overlapping sections

-lnk="-ignore_debug_references" Ignore reference from debug sections with
delete

-lnk="-delete" Delete unused functions

-lnk="-overlap" Do not generate errors for overlapping sections (needed for core
local memory in multicore parts)

RTA-OS RH850/GHS Port Guide V5.0.22 46

Toolchain

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for the kernel

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.5 Debugger

Name Lauterbach TRACE32
Version Build 96645 or later

Notes on using ORTI with the debugger

ORTI with the Lauterbach debugger

When ORTI information for the Trace32 debugger is enabled entry and exit times for
Category 1 interrupts are increased by a few cycles to support tracking of Category 1
interrupts by the debugger.

ORTI Stack Fill with the Lauterbach debugger

The ’ORTI Stack Fill’ target option is provided to extend the ORTI support to allow eval-
uation of unused stack space. The Task.Stack.View command can then be used in the
Trace32 debugger.

The application must contain 32 bit constant values referencing the base and size of
the stack section (e.g for a stack section defined in the linker command file as ’stack’).
This is demonstrated in the sample applications:

extern const uint32 __ghsbegin_stack[];
extern const uint32 __ghssize_stack[];
const uint32 OS_STACK0_BASE = (uint32)__ghsbegin_stack;
const uint32 OS_STACK0_SIZE = (uint32)__ghssize_stack;
The fill pattern used by the debugger must be contained within a 32 bit constant
OS_STACK_FILL (e.g. for a fill pattern 0xCAFEF00D).

const uint32 OS_STACK_FILL = 0xCAFEF00D;

RTA-OS RH850/GHS Port Guide V5.0.22 47

Toolchain

The stack must be initialized with this fill pattern either in the application start-up rou-
tines or during debugger initialization.

RTA-OS RH850/GHS Port Guide V5.0.22 48

Hardware

7 Hardware

7.1 Supported Devices

This port of RTA-OS has been developed to work with the following target:

Name: Renesas
Device: RH850

The following variants of the RH850 are supported:

• C1H

• C1M

• C1MA2_CPU1 (Single-core variant running on CPU1 of a C1M-A2 device.)

• C1MA2_CPU1_CPU2 (Multicore variant running on CPU1 and CPU2 of a C1M-A2 de-
vice.)

• C1MA2_CPU2 (Single-core variant running on CPU2 of a C1M-A2 device.
The file Os_PreBindVectorsForPE2.c is created - see the API reference for
Os_PreBindVectorsForPEx() and section ’C1M-A2 Details’.)

• C1MA2_SubCPU (Single-core variant running on SubCPU of a C1M-A2 device.
The file Os_PreBindVectorsForPE3.c is created - see the API reference for
Os_PreBindVectorsForPEx() and section ’C1M-A2 Details’.)

• CCC

• D1x

• E1L

• E1MS

• E1xFCC

• E1xFCC1

• F1H

• F1K

• F1KH

• F1KM

• F1L

• F1M

• GenericRH850_16IPL

• GenericRH850_8IPL

RTA-OS RH850/GHS Port Guide V5.0.22 49

Hardware

• ICUMC

• ICUMD

• P1HC

• P1LC

• P1M

• P1MC

• R1L

• V3H_ICUMXA

If you require support for a variant of RH850 not listed above, please contact ETAS.

7.2 Register Usage

7.2.1 Initialization

RTA-OS requires the following registers to be initialized to the indicated values before
StartOS() is called.

RTA-OS RH850/GHS Port Guide V5.0.22 50

Hardware

Register Setting

EBASE The EBASE register must be set to match the interrupt vector mode de-
clared in the configuration. If using Direct Vector interrupt vectors the
RINT bit should be set to configure a single vector entry. This can be
done by calling Os_InitializeVectorTable().

EIBDn The INTC interrupt core binding (in multicore parts) must be set
to match the values declared in the configuration. This can
be done by calling Os_InitializeVectorTable(). For single-
core variants that run on a multicore processor it may be nec-
essary to call Os_PreBindVectorsForPEx() on core PE1 before
Os_InitializeVectorTable() is called. See the API reference for
Os_PreBindVectorsForPEx().

EICn The INTC priorities must be set to match the values declared in the con-
figuration. This can be done by calling Os_InitializeVectorTable().

FPIPR The FPIPR register (not supported on G3K and G3M cores) must be set
to match the interrupt priority declared in the configuration

INTBP The interrupt vector base address must be set to match the application
vector table address when using Table Reference interrupt vectors. This
can be done by calling Os_InitializeVectorTable().

INTCFG The interrupt function setting register must be set to disable updating of
the ISPR register. This is done by calling Os_InitializeVectorTable().

P1M When winIDEA User tracing is required the I/O Port 1 Mode register (P1M)
must configure all of the I/O pins to general purpose output before calling
StartOS().

PSW.UM The CPU must be in Supervisor mode (i.e. PSW.UM=0).

SP The stack must be allocated and SP initialized before calling
Os_InitializeVectorTable().

7.2.2 Modification

The following registers must not be modified by user code after the call to StartOS():

Register Notes

CTPSW Reserved in multicore applications when the target option Cache CoreID
is selected

INTCFG User code may not directly change the Interrupt function setting Regis-
ter.

ISPR User code may not directly change the In-Service Priority Register.

P1 I/O Port 1 is reserved to support winIDEA User tracing when configured
in the application.

PMR User code may not directly change the Priority Mask Register.

PSW User code may not directly change the Program Status Word other than
as a result of normal program flow.

R2 Reserved with the reserve_r2 compiler option and preserved by the OS.
The r2 register is reserved for future OS use

SP User code may not change the stack pointer other than as a result of
normal program flow.

RTA-OS RH850/GHS Port Guide V5.0.22 51

Hardware

7.3 Interrupts

This section explains the implementation of RTA-OS’s interrupt model on the RH850.

7.3.1 Interrupt Priority Levels

Interrupts execute at an interrupt priority level (IPL). RTA-OS standardizes IPLs across
all targets. IPL 0 indicates task level. IPL 1 and higher indicate an interrupt priority. It is
important that you don’t confuse IPLs with task priorities. An IPL of 1 is higher than the
highest task priority used in your application.

The IPL is a target-independent description of the interrupt priority on your target hard-
ware. The following table shows how IPLs are mapped onto the hardware interrupt
priorities of the RH850:

IPL PMR Description

0 0x0000 User (task) level. No Interrupts are masked
1 0x8000 G3M/G3KH/G3MH core EI Maskable Category 1 and 2 interrupts
1 0x0080 G3K core EI Maskable Category 1 and 2 interrupts
2 0xC000 G3M/G3KH/G3MH core EI Maskable Category 1 and 2 interrupts
2 0x00C0 G3K core EI Maskable Category 1 and 2 interrupts
... ... EI Maskable Category 1 and 2 interrupts
8 0xFF00 G3M/G3KH/G3MH core EI Maskable Category 1 and 2 interrupts
8 0x00FF G3K core EI Maskable Category 1 and 2 interrupts
... ... EI Maskable Category 1 and 2 interrupts
16 0xFFFF G3M/G3KH/G3MH EI Maskable Category 1 and 2 interrupts
17 N/A EI Category 1 interrupts maskable through the PSW.ID bit, EITRAPx

and SYSCALL
18 N/A FE Category 1 interrupts maskable through the PSW.NP bit and FE-

TRAP
19 N/A FE Category 1 traps and FE level non-maskable interrupts (FENMI)

Even though a particular mapping is permitted, all Category 1 ISRs must have equal or
higher IPL than all of your Category 2 ISRs.

The range of IPLs that EI interrupts support is not consistent over all RH850 variants. EI
interrupts can have up to 16 IPLs for G3M core devices. On G3K cores this is restricted
to 8 levels.

The RH850 interrupt controller hardware expects IPL values to work counter to the
standardized RTA-OS scheme. In the RH850 zero is always the highest IPL and depend-
ing upon the core variant either 7 or 15 is the lowest IPL. RTA-OS converts the IPLs
from its standardized scheme to that expected by the RH850 hardware. The function
Os_InitializeVectorTable() can be used to initialize the EI interrupt priorities to that de-
tailed in the RTA-OS application configuration. If this function is not used then care
must be taken that interrupts are initialized to the IPLs expected by RTA-OS otherwise
the OS will not operate correctly.

RTA-OS RH850/GHS Port Guide V5.0.22 52

Hardware

7.3.2 Using FETRAP TRAP and SYSCALL Instructions

The SYSCALL, TRAP and FETRAP instructions are not masked by the state of the PSW or
the PMR registers. Care must then be taken if these instructions are used in application
code. These interrupts have been nominally been allocated RTA-OS IPLs of 17 and 18
even though they can never be masked.

7.3.3 Allocation of ISRs to Interrupt Vectors

The following restrictions apply for the allocation of Category 1 and Category 2 inter-
rupt service routines (ISRs) to interrupt vectors on the RH850. A 3 indicates that the
mapping is permitted and a 7 indicates that it is not permitted:

Address Category 1 Category 2

0x10, SYSERR 3 7

0x20, HVTRAP 3 7

0x30, FETRAP 3 7

0x40, EITRAP0 3 7

0x50, EITRAP1 3 7

0x60, RIE 3 7

0x70, FPP/FPI Category 1 trap maskable through the
PSW.ID bit (G3K and G3M cores), maskable through the
PMR register (G3KH cores)

3 7

0x70, FPINT (G3MH cores) 3 7

0x80, UCPOP 3 7

0x90, MIP/MDP/ITLBE/DTLBE 3 7

0xA0, PIE 3 7

0xB0, DEBUG 3 7

0xC0, MAE 3 7

0xD0, Reserved Category 1 trap 3 7

0xE0, FENMI 3 7

0xF0, FEINT Category 1 trap maskable through the
PSW.NP bit

3 7

0x100+, Maskable EI interrupt handlers 3 3

7.3.4 Vector Table

rtaosgen normally generates an interrupt vector table for you automatically. You can
configure “Suppress Vector Table Generation” as true to stop RTA-OS from generating
the interrupt vector table.

Depending upon your target, you may be responsible for locating the generated vector
table at the correct base address. The following table shows the section (or sections)
that need to be located and the associated valid base address:

RTA-OS RH850/GHS Port Guide V5.0.22 53

Hardware

Section Valid Addresses

Os_intvect Should be located at absolute address 0x10 or located in accordance
with the EBASE register. The first entry is the HVTRAP interrupt handler
offset 0x10.

Os_EI_vect Should be located in accordance with the INTBP register when using
Table Reference interrupt vectors.

The function Os_InitializeVectorTable should be called before StartOS() to set the
EBASE register to the address of the label Os_interrupt_vectors aligned to a 0x200
byte boundary.

The RTA-OS generated vector table does not include the reset vector. You should pro-
vide this and locate it before the HVTRAP interrupt handler.

When the default interrupt is configured the RTA-OS generated vector table contains
entries for all supported interrupts for the selected chip variant. If the default interrupt
is not configured then entries are created up the highest configured interrupt.

RTA-OS reserves one EI trap vector (i.e. configurable to be either 0x40 or 0x50) for
applications that use untrusted code (see section 4.2.12 Trust Trap for more details).

RTA-OS currently supports two vector table formats: Table reference method and Direct
vector.

When you supply the vector table (i.e. ’Suppress Vector Table Generation’ is set to
TRUE) the label Os_interrupt_vectors should be placed at the start of the vector
table so that the function Os_InitializeVectorTable() can set the EH_BASE register
to the correct address. Note that the minimum alignment of the EBASE register is
0x200 bytes so the vector table must be aligned accordingly.

7.3.5 Using Raw Exception Handlers

RTA-OS supports direct branches in the interrupt vector table for interrupt vectors with
address offsets less than 0x100. Normally RTA-OS produces wrapper code around the
interrupt handler functions for these exceptions to enforce the correct interrupt con-
troller IPL settings. If interrupt handlers in this address offset range are given names
starting with "b_" then the interrupt vector table entry is an unconditional jump relative
"jr" instruction to the handler function. When using these raw exception handlers it is
the user’s responsibility that:

• The correct register context is saved and restored.

• The correct return instruction is used.

• Interrupts are not re-enabled in these handlers.

• The RTA-OS API is not used in these handlers.

RTA-OS RH850/GHS Port Guide V5.0.22 54

Hardware

7.3.6 Writing Category 1 Interrupt Handlers

Raw Category 1 interrupt service routines (ISRs) must correctly handle the interrupt
context themselves. RTA-OS provides an optional helper macro CAT1_ISR that can be
used to make code more portable. Depending on the target, this may cause the se-
lection of an appropriate interrupt control directive to indicate to the compiler that a
function requires additional code to save and restore the interrupt context.

A Category 1 ISR therefore has the same structure as a Category 2 ISR, as shown below.

CAT1_ISR(Category1Handler) {
/* Handler routine */

}

7.3.7 Writing Category 2 Interrupt Handlers

Category 2 ISRs are provided with a C function context by RTA-OS, since the RTA-OS
kernel handles the interrupt context itself. The handlers are written using the ISR()
macro as shown below:

#include <Os.h>
ISR(MyISR) {
/* Handler routine */

}

You must not insert a return from interrupt instruction in such a function. The return is
handled automatically by RTA-OS.

7.3.8 Default Interrupt

The ’default interrupt’ is intended to be used to catch all unexpected interrupts. All
unused interrupts have their interrupt vectors directed to the named routine that you
specify. The routine you provide is not handled by RTA-OS and must correctly handle
the interrupt context itself. The handler must use the CAT1_ISR macro in the same way
as a Category 1 ISR (see Section 7.3.6 for further details).

When the RH850 comes out of reset all maskable EI interrupts (i.e. those with address
offsets 0x100 and above) are masked and set to trigger at the lowest priority. When the
function Os_InitializeVectorTable() is used to initialize the EI interrupt priorities only the
configured interrupts in the application are set up. All unused EI interrupt channels are
left in their reset state even if the RTA-OS Default Interrupt is configured. For a Default
Interrupt to trigger on an unattached EI interrupt channel then the these unattached
channels must have been initialized by application code.

7.3.9 Cross-core Interrupts

In a multicore application, RTA-OS will normally allocate a separate IPIR interrupt chan-
nel for each cross-core interrupt. This is the fastest option. Instead the same IPIR
channel can be allocated to each cross-core interrupt to reduce the number of chan-
nels needed. The execution time will be increased by a few cycles as the cross-core
interrupt handler now needs to determine the core it is running on.

RTA-OS RH850/GHS Port Guide V5.0.22 55

Hardware

7.4 Memory Model

The following memory models are supported:

Model Description

Standard The standard 32-bit EABI memory model is used.

7.5 Processor Modes

RTA-OS can run in the following processor modes:

Mode Notes

Trusted All trusted code runs in Supervisor mode (i.e. PSW.UM clear).
Untrusted All untrusted code runs in User mode (i.e. PSW.UM set).

Trusted-with-protection (TWP) requires that the RH850 MPU can restrict supervisor
mode memory accesses. This is not supported by all RH850 hardware variants (e.g.
F1L and R1L do not allow this). When using TWP please check the Renesas documen-
tation to ensure that the variant MPU hardware can support this feature (e.g. check
the MPM.SVP and MPATn.SX|SW|SR). If TWP has been configured in an application for a
variant that is known not to support TWP RTA-OS will generate an error when building
the library.

7.6 Stack Handling

RTA-OS uses a single stack for all tasks and ISRs.

RTA-OS manages the stack (via register R3).

7.7 C1M-A2 Details

There are 4 variants that support the C1M-A2 processor:

• C1MA2_CPU1_CPU2 This is a multicore variant that runs RTA-OS on cores CPU1 and
CPU2.

• C1MA2_CPU1 This is a single-core variant that runs RTA-OS on core CPU1.

• C1MA2_CPU2 This is a single-core variant that runs RTA-OS on core CPU2.

• C1MA2_SubCPU This is a single-core variant that runs RTA-OS on core SubCPU.

Which variants you use depends on how you want to use the cores on the C1M-A2. For
example:

• If you only want to use CPU1 and CPU2 then you would use the C1MA2_CPU1_CPU2
variant to create an OS to run on CPU1 and CPU2.

• If you only want to use CPU2 then you would use the C1MA2_CPU2 variant to create
an OS to run on CPU2.

RTA-OS RH850/GHS Port Guide V5.0.22 56

Hardware

• If you want to use CPU1, CPU2 and SubCPU then you could use the
C1MA2_CPU2_CPU1 variant to create an OS to run on CPU1 and CPU2, and the
C1MA2_SubCPU variant to create an OS to run on SubCPU.

IMPORTANT: If you use multiple variants at the same time (as in the last example
above) then you will have multiple RTA-OS configurations. You must ensure that any EI
interrupt with a channel number >= 32 only appears in one configuration.

7.7.1 C1MA2_CPU1_CPU2

This is a standard multicore variant that runs on cores CPU1 (RTA-OS core number 0)
and CPU2 (RTA-OS core number 1).

Please note that because of the way that interrupt binding works on the C1M-A2, EI
interrupt channels must be enabled on the core to which they are assigned in the RTA-
OS configuration. For example, if EI interrupt channel 48 is assigned to CPU2 (RTA-OS
core number 1) then Os_Enable_EI_Channel_48() must be called on CPU2 to enable
the interrupt channel.

7.7.2 C1MA2_CPU1

This is a single-core variant that runs on CPU1.

7.7.3 C1MA2_CPU2

This is a single-core variant that runs on CPU2.

Since this is a single-core variant, all ISRs and tasks must be assigned to core 0. If
you use the RTA-OS configuration tool to configure RTA-OS then you will only have the
choice of core 0.

Please note that because of the way that interrupt binding works on the C1M-
A2, configured EI interrupts must be bound to CPU2 (PE2) by CPU1 (PE1) before
Os_InitializeVectorTable() is called on CPU2. For the C1MA2_CPU2 variant RTA-
OS creates a file called Os_PreBindVectorsForPE2.c that contains a function called
Os_PreBindVectorsForPE2() that binds configured EI interrupts to CPU2. The func-
tion Os_PreBindVectorsForPE2() (or its equivalent) must be run on CPU1 before
Os_InitializeVectorTable() is called on CPU2. You are responsible for compiling
and linking Os_PreBindVectorsForPE2.c and calling Os_PreBindVectorsForPE2() on
CPU1. See the sample applications for the C1MA2_CPU2 variant for examples of how to
compile Os_PreBindVectorsForPE2.c and call Os_PreBindVectorsForPE2(). In the
sample applications Os_PreBindVectorsForPE2() is called from reset.850.

Os_PreBindVectorsForPE2.c is not automatically compiled into the RTA-OS library file
(rtaos.a) because the RTA-OS library generated by the C1MA2_CPU2 variant contains
the OS to run on core CPU2. The OS and application that runs on CPU2 may be linked
into a separate image (e.g. .elf or .hex file) from the image that runs on CPU1. Therefore
Os_PreBindVectorsForPE2.c is in a separate file so that it can be compiled and linked
into the image that runs on CPU1.

RTA-OS RH850/GHS Port Guide V5.0.22 57

Hardware

7.7.4 C1MA2_SubCPU

This is a single-core variant that runs on SubCPU.

Since this is a single-core variant, all ISRs and tasks must be assigned to core 0. If
you use the RTA-OS configuration tool to configure RTA-OS then you will only have the
choice of core 0.

Please note that because of the way that interrupt binding works on the C1M-
A2, configured EI interrupts must be bound to SubCPU (PE3) by CPU1 (PE1) before
Os_InitializeVectorTable() is called on SubCPU. For the C1MA2_SubCPU variant RTA-
OS creates a file called Os_PreBindVectorsForPE3.c that contains a function called
Os_PreBindVectorsForPE3() that binds configured EI interrupts to SubCPU. The func-
tion Os_PreBindVectorsForPE3() (or its equivalent) must be run on CPU1 before
Os_InitializeVectorTable() is called on SubCPU. You are responsible for compiling
and linking Os_PreBindVectorsForPE3.c and calling Os_PreBindVectorsForPE3() on
CPU1. See the sample applications for the C1MA2_SubCPU variant for examples of how
to compile Os_PreBindVectorsForPE3.c and call Os_PreBindVectorsForPE3(). In the
sample applications Os_PreBindVectorsForPE3() is called from reset.850.

Os_PreBindVectorsForPE3.c is not automatically compiled into the RTA-OS library file
(rtaos.a) because the RTA-OS library generated by the C1MA2_SubCPU variant contains
the OS to run on core SubCPU. The OS and application that runs on SubCPU may be
linked into a separate image (e.g. .elf or .hex file) from the image that runs on CPU1.
Therefore Os_PreBindVectorsForPE3.c is in a separate file so that it can be compiled
and linked into the image that runs on CPU1.

RTA-OS RH850/GHS Port Guide V5.0.22 58

Enhanced Isolation

8 Enhanced Isolation

This chapter describes the implementation details that are specific to the RH850
’Enhanced Isolation’ support. Note in particular that the parameters passed to
Os_Cbk_IsUntrustedCodeOK and Os_Cbk_IsUntrustedTrapOK are target-specific. For
details on the ’Enhanced Isolation’ extensions to RTA-OS and how these are used in an
application please refer to ’RTA-OS RH850GHS Enhanced Isolation.pdf’.

8.1 Os_Cbk_RestoreGlobalRegisters

This callback can be used to restore the r4/r5 global address registers if these are used
in the system. By convention, these registers are used as the base register for the RAM
and ROM SDA.

8.2 Os_Cbk_IsUntrustedTrapOK

Syntax

FUNC(ProtectionReturnType,OS_APPL_CODE)Os_Cbk_IsUntrustedTrapOK(
MemoryStartAddressType Os_ret_addr, uint32 Os_CauseCode)

Description

The first parameter Os_ret_addr is the address that the trap should return to (i.e. the
untrusted code that caused the trap).

The second parameter Os_CauseCode is the Exception Cause Code from the EIIC/FEIC
register value associated with the trap.

The possible return values from this callback are PRO_IGNORE, PRO_TERMINATETASKISR,
PRO_TERMINATEAPPL and PRO_TERMINATEAPPL_RESTART.

8.3 Os_Cbk_IsUntrustedCodeOK

Syntax

FUNC(ProtectionReturnType, OS_APPL_CODE)Os_Cbk_IsUntrustedCodeOK(
Os_EIContextBuffType * Os_stack_context, Os_UntrustedContextRefType
Os_EIApplicationContext)

Description

The first parameter Os_stack_context is a pointer to the context block of the regis-
ters of the untrusted code to be checked that are saved before entering the callback.
The context block is contained in an Os_EIContextBuffType structure. It holds the
registers r1, r3, r6 to r19, r30 and r31. Registers r20 to r29 are permanent reg-
isters. As these are not destroyed over a function call they can be checked directly
without needing to be preserved in the context block. Register r2 is reserved (via the
compilation option) and if used expected to be handled in the same way as r4/r5.

The second parameter ApplicationContext gives a reference to the
ApplicationContext that was passed to the Os_Cbk_SetMemoryAccess callback

RTA-OS RH850/GHS Port Guide V5.0.22 59

Enhanced Isolation

when starting the untrusted code. This can be used to determine exactly which TASK,
ISR or function is being checked.

The possible return values from this callback are PRO_IGNORE, PRO_TERMINATETASKISR,
PRO_TERMINATEAPPL and PRO_TERMINATEAPPL_RESTART.

8.4 Os_Cbk_IsSystemTrapAllowed

Syntax

FUNC(boolean, OS_APPL_CODE)Os_Cbk_IsSystemTrapAllowed(MemoryStartAd-
dressType Caller)

Description

The parameter Caller is the address that the trap should return to (i.e. the untrusted
code that caused the trap).

The possible return values from this callback are TRUE and FALSE.

8.5 Enhanced Isolation Stack

Enhanced Isolation requires a block of RAM to use as a safe stack area. It is used when
determining the state of untrusted code. It must be large enough to hold the initial
register context block and to support the callback functions. RTA-OS reserves a default
amount of stack that can be overridden by the Os_Cbk_GetEnhancedIsolationStack()
callback (see section 5.2.2 for more details).

RTA-OS RH850/GHS Port Guide V5.0.22 60

Performance

9 Performance

This chapter provides detailed information on the functionality, performance and mem-
ory demands of the RTA-OS kernel. RTA-OS is highly scalable. As a result, different
figures will be obtained when your application uses different sets of features. The fig-
ures presented in this chapter are representative for the RH850/GHS port based on the
following configuration:

• There are 32 tasks in the system

• Standard build is used

• Stack monitoring is disabled

• Time monitoring is disabled

• There are no calls to any hooks

• Tasks have unique priorities

• Tasks are not queued (i.e. tasks are BCC1 or ECC1)

• All tasks terminate/wait in their entry function

• Tasks and ISRs do not save any auxiliary registers (for example, floating point reg-
isters)

• Resources are shared by tasks only

• The generation of the resource RES_SCHEDULER is disabled

9.1 Measurement Environment

The following hardware environment was used to take the measurements in this chap-
ter:

Device C1MA2_CPU1_CPU2 on Renesas RH850/C1M-A2 (R7F701275)
CPU Clock Speed 320.0MHz
Stopwatch Speed 40.0MHz

9.2 RAM and ROM Usage for OS Objects

Each OS object requires some ROM and/or RAM. The OS objects are generated by
rtaosgen and placed in the RTA-OS library. In the main:

• Os_Cfg_Counters includes data for counters, alarms and schedule tables.

• Os_Cfg contains the data for most other OS objects.

RTA-OS RH850/GHS Port Guide V5.0.22 61

Performance

9.2.1 Single Core

The following table gives the ROM and/or RAM requirements (in bytes) for each OS
object in a simple single-core configuration. Note that object sizes will vary depending
on the project configuration and compiler packing issues.

Object ROM RAM

Alarm 2 12
Cat 2 ISR 8 0
Counter 20 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 69
OS-Application 0 0
PeripheralArea 0 0
Resource 8 4
ScheduleTable 16 12
Task 20 0

9.2.2 Multi Core

The following table gives the ROM and/or RAM requirements (in bytes) for each OS
object in a simple multi-core configuration. Note that object sizes will vary depending
on the project configuration and compiler packing issues.

Object ROM RAM

Alarm 8 12
Cat 2 ISR 16 0
Core Overheads (each OS core) 0 60
Core Overheads (each processor core) 20 25
Counter 32 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 9
OS-Application 8 0
PeripheralArea 0 0
Resource 16 4
ScheduleTable 20 12
Task 36 0

9.3 Stack Usage

The amount of stack used by each Task/ISR in RTA-OS is equal to the stack used in
the Task/ISR body plus the context saved by RTA-OS. The size of the run-time context
saved by RTA-OS depends on the Task/ISR type and the exact system configuration.
The only reliable way to get the correct value for Task/ISR stack usage is to call the
Os_GetStackUsage() API function.

RTA-OS RH850/GHS Port Guide V5.0.22 62

Performance

Note that because RTA-OS uses a single-stack architecture, the run-time contexts of
all tasks reside on the same stack and are recovered when the task terminates. As a
result, run-time contexts of mutually exclusive tasks (for example, those that share an
internal resource) are effectively overlaid. This means that the worst case stack usage
can be significantly less than the sum of the worst cases of each object on the system.
The RTA-OS tools automatically calculate the total worst case stack usage for you and
present this as part of the configuration report.

9.4 Library Module Sizes

9.4.1 Single Core

The RTA-OS kernel is demand linked. This means that each API call is placed into a
separately linkable module. The following table lists the section sizes for each API
module (in bytes) for the simple single-core configuration in standard status.

Library Module .O
s
_E

I_
v
e
c
t

.O
s
_i

n
tv

e
c
t

.O
s
_p

ri
m

it
iv

e
s

.b
s
s

.r
o
d

a
ta

.t
e
x
t

ActivateTask 106
AdvanceCounter 4
CallTrustedFunction 26
CancelAlarm 80
ChainTask 98
CheckISRMemoryAccess 44
CheckObjectAccess 116
CheckObjectOwnership 112
CheckTaskMemoryAccess 44
ClearEvent 30
ControlIdle 4 48
DisableAllInterrupts 8 48
DispatchTask 182
ElapsedTime 158
EnableAllInterrupts 34
GetActiveApplicationMode 10
GetAlarm 146
GetAlarmBase 58
GetApplicationID 42
GetCounterValue 40
GetCurrentApplicationID 42
GetElapsedCounterValue 68
GetEvent 30
GetExecutionTime 30
GetISRID 10
GetIsrMaxExecutionTime 30

RTA-OS RH850/GHS Port Guide V5.0.22 63

Performance

Library Module .O
s
_E

I_
v
e
c
t

.O
s
_i

n
tv

e
c
t

.O
s
_p

ri
m

it
iv

e
s

.b
s
s

.r
o
d

a
ta

.t
e
x
t

GetIsrMaxStackUsage 30
GetResource 62
GetScheduleTableStatus 40
GetStackSize 6
GetStackUsage 30
GetStackValue 16
GetTaskID 16
GetTaskMaxExecutionTime 30
GetTaskMaxStackUsage 30
GetTaskState 40
GetVersionInfo 24
Idle 4
InShutdown 2
IncrementCounter 18
InterruptSource 4 164
ModifyPeripheral 120
NextScheduleTable 118
Os_Cfg 561 776 242
Os_Cfg_Counters 728 4402
Os_Cfg_KL 48
Os_CoreLocks 12
Os_GetAbortStack 8
Os_GetCurrentIMask 6
Os_GetCurrentTPL 30
Os_Stack 4
Os_StartCores 4 50
Os_Trust 12
Os_Vectors 320 224 60
Os_Wrapper 104
Os_abort 52
Os_mid_wrapper 190
Os_setjmp 136
Os_vec_init 100
ProtectionSupport 40
ReadPeripheral 114
ReleaseResource 72
ResetIsrMaxExecutionTime 30
ResetIsrMaxStackUsage 30
ResetTaskMaxExecutionTime 30
ResetTaskMaxStackUsage 30

RTA-OS RH850/GHS Port Guide V5.0.22 64

Performance

Library Module .O
s
_E

I_
v
e
c
t

.O
s
_i

n
tv

e
c
t

.O
s
_p

ri
m

it
iv

e
s

.b
s
s

.r
o
d

a
ta

.t
e
x
t

ResumeAllInterrupts 34
ResumeOSInterrupts 34
Schedule 88
SetAbsAlarm 88
SetEvent 30
SetRelAlarm 142
SetScheduleTableAsync 54
ShutdownOS 74
StackOverrunHook 6
StartOS 156
StartScheduleTableAbs 114
StartScheduleTableRel 104
StartScheduleTableSynchron 54
StopScheduleTable 72
SuspendAllInterrupts 8 48
SuspendOSInterrupts 8 58
SyncScheduleTable 54
SyncScheduleTableRel 54
TerminateTask 24
ValidateCounter 38
ValidateISR 14
ValidateResource 32
ValidateScheduleTable 32
ValidateTask 32
WaitEvent 30
WritePeripheral 102

9.4.2 Multi Core

The RTA-OS kernel is demand linked. This means that each API call is placed into a
separately linkable module. The following table lists the section sizes for each API
module (in bytes) for the simple multi-core configuration in standard status.

Library Module .O
s
_E

I_
v
e
c
t

.O
s
_i

n
tv

e
c
t

.O
s
_p

ri
m

it
iv

e
s

.b
s
s

.r
o
d

a
ta

.t
e
x
t

ActivateTask 224

RTA-OS RH850/GHS Port Guide V5.0.22 65

Performance

Library Module .O
s
_E

I_
v
e
c
t

.O
s
_i

n
tv

e
c
t

.O
s
_p

ri
m

it
iv

e
s

.b
s
s

.r
o
d

a
ta

.t
e
x
t

AdvanceCounter 4
CallTrustedFunction 26
CancelAlarm 110
ChainTask 164
CheckISRMemoryAccess 46
CheckObjectAccess 192
CheckObjectOwnership 148
CheckTaskMemoryAccess 46
ClearEvent 30
ControlIdle 8 64
CrossCore 46
DisableAllInterrupts 62
DispatchTask 372
ElapsedTime 158
EnableAllInterrupts 48
GetActiveApplicationMode 10
GetAlarm 144
GetAlarmBase 56
GetApplicationID 52
GetCounterValue 40
GetCurrentApplicationID 54
GetElapsedCounterValue 68
GetEvent 30
GetExecutionTime 30
GetISRID 22
GetIsrMaxExecutionTime 30
GetIsrMaxStackUsage 30
GetNumberOfActivatedCores 24
GetResource 74
GetScheduleTableStatus 70
GetSpinlock 4
GetStackSize 6
GetStackUsage 30
GetStackValue 58
GetTaskID 28
GetTaskMaxExecutionTime 30
GetTaskMaxStackUsage 30
GetTaskState 68
GetVersionInfo 24
Idle 4

RTA-OS RH850/GHS Port Guide V5.0.22 66

Performance

Library Module .O
s
_E

I_
v
e
c
t

.O
s
_i

n
tv

e
c
t

.O
s
_p

ri
m

it
iv

e
s

.b
s
s

.r
o
d

a
ta

.t
e
x
t

InShutdown 2
IncrementCounter 18
InterruptSource 4 164
ModifyPeripheral 120
NextScheduleTable 150
Os_Cfg 691 1524 290
Os_Cfg_Counters 1080 5326
Os_Cfg_KL 82
Os_CoreLocks 42
Os_CrossCore 156
Os_GetAbortStack 20
Os_GetCurrentIMask 6
Os_GetCurrentTPL 80
Os_ScheduleQ 50
Os_Stack 4
Os_StartCores 4 50
Os_Trust 12
Os_Vectors 320 224 100
Os_Wrapper 142
Os_abort 52
Os_mid_wrapper 190
Os_setjmp 136
Os_vec_init 132
ProtectionSupport 40
ReadPeripheral 114
ReleaseResource 88
ReleaseSpinlock 4
ResetIsrMaxExecutionTime 30
ResetIsrMaxStackUsage 30
ResetTaskMaxExecutionTime 30
ResetTaskMaxStackUsage 30
ResumeAllInterrupts 48
ResumeOSInterrupts 40
Schedule 100
SetAbsAlarm 122
SetEvent 30
SetRelAlarm 174
SetScheduleTableAsync 54
ShutdownAllCores 70
ShutdownOS 100

RTA-OS RH850/GHS Port Guide V5.0.22 67

Performance

Library Module .O
s
_E

I_
v
e
c
t

.O
s
_i

n
tv

e
c
t

.O
s
_p

ri
m

it
iv

e
s

.b
s
s

.r
o
d

a
ta

.t
e
x
t

StackOverrunHook 6
StartCore 58
StartNonAutosarCore 58
StartOS 310
StartScheduleTableAbs 150
StartScheduleTableRel 134
StartScheduleTableSynchron 54
StopScheduleTable 102
SuspendAllInterrupts 62
SuspendOSInterrupts 64
SyncScheduleTable 54
SyncScheduleTableRel 54
TerminateTask 30
TryToGetSpinlock 10
ValidateCounter 32
ValidateISR 14
ValidateResource 32
ValidateScheduleTable 38
ValidateTask 60
WaitEvent 30
WritePeripheral 102

9.5 Execution Time

The following tables give the execution times in CPU cycles, i.e. in terms of ticks of
the processor’s program counter. These figures will normally be independent of the
frequency at which you clock the CPU. To convert between CPU cycles and SI time units
the following formula can be used:

Time in microseconds = Time in cycles / CPU Clock rate in MHz

For example, an operation that takes 50 CPU cycles would be:

• at 20MHz = 50/20 = 2.5µs

• at 80MHz = 50/80 = 0.625µs

• at 150MHz = 50/150 = 0.333µs

While every effort is made to measure execution times using a stopwatch running at
the same rate as the CPU clock, this is not always possible on the target hardware. If

RTA-OS RH850/GHS Port Guide V5.0.22 68

Performance

the stopwatch runs slower than the CPU clock, then when RTA-OS reads the stopwatch,
there is a possibility that the time read is less than the actual amount of time that has
elapsed due to the difference in resolution between the CPU clock and the stopwatch
(the User Guide provides further details on the issue of uncertainty in execution time
measurement).

The figures presented in Section 9.5.1 have an uncertainty of 7 CPU cycle(s).

Values are given for single-core operation only. Timings for cross-core activations,
though interesting, are variable because of the nature of multi-core operation. Mini-
mum values cannot be given, because timings are dependent on the activity on the
core that receives the activation.

9.5.1 Context Switching Time

Task switching time is the time between the last instruction of the previous task and the
first instruction of the next task. The switching time differs depending on the switching
contexts (e.g. an ActivateTask() versus a ChainTask()).

Interrupt latency is the time between an interrupt request being recognized by the
target hardware and the execution of the first instruction of the user provided handler
function:

For Category 1 ISRs this is the time required for the hardware to recognize the inter-
rupt.

For Category 2 ISRs this is the time required for the hardware to recognize the in-
terrupt plus the time required by RTA-OS to set-up the context in which the ISR
runs.

Figure 9.1 shows the measured context switch times for RTA-OS.

RTA-OS RH850/GHS Port Guide V5.0.22 69

Performance

Switch Key CPU Cycles Actual Time

Task activation A 128 400ns
Task termination with resume B 96 300ns
Task termination with switch to new task C 112 350ns
Chaining a task D 176 550ns
Waiting for an event resulting in transition to
the WAITING state

E 328 1.02us

Setting an event results in task switch F 416 1.3us
Non-preemptive task offers a preemption point
(co-operative scheduling)

G 120 375ns

Releasing a resource results in a task switch H 120 375ns
Entering a Category 2 ISR I 80 250ns
Exiting a Category 2 ISR and resuming the in-
terrupted task

J 160 500ns

Exiting a Category 2 ISR and switching to a
new task

K 160 500ns

Entering a Category 1 ISR L 48 150ns

RTA-OS RH850/GHS Port Guide V5.0.22 70

(a) Task activated. Termination resumes
preempted task.

(b) Task activated. Termination switches into new task.

(c) Task chained. (d) Task waits. Task is resumed when
event set.

(e) Task switch when re-
source is released.

(f) Request for scheduling made by non-
preemptive task.

(g) Category 2 interrupt entry. Interrupted
task resumed on exit.

(h) Category 2 interrupt entry. Switch to new task on exit. (i) Category 1 interrupt entry.

Figure 9.1: Context Switching

RTA-OS RH850/GHS Port Guide V5.0.22 71

Finding Out More

10 Finding Out More

Additional information about RH850/GHS-specific parts of RTA-OS can be found in the
following manuals:

RH850/GHS Release Note. This document provides information about the
RH850/GHS port plug-in release, including a list of changes from previous
releases and a list of known limitations.

Information about the port-independent parts of RTA-OS can be found in the following
manuals, which can be found in the RTA-OS installation (typically in the Documents
folder):

Getting Started Guide. This document explains how to install RTA-OS tools and de-
scribes the underlying principles of the operating system

Reference Guide. This guide provides a complete reference to the API, programming
conventions and tool operation for RTA-OS.

User Guide. This guide shows you how to use RTA-OS to build real-time applications.

RTA-OS RH850/GHS Port Guide V5.0.22 72

Contacting ETAS

11 Contacting ETAS

11.1 Technical Support

Technical support is available to all users with a valid support contract. If you do
not have a valid support contract, please contact your regional sales office (see Sec-
tion 11.2.2).

The best way to get technical support is by email. Any problems or questions about the
use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you call the
support hotline on:

+44 (0)1904 562624.

The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the following infor-
mation:

• Your support contract number

• Your .xml, .arxml, .rtaos and/or .stc files

• The command line which caused the error

• The version of the ETAS tools you are using

• The version of the compiler tool chain you are using

• The error message you received (if any)

• The file Diagnostic.dmp if it was generated

11.2 General Enquiries

11.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

11.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team (where avail-
able) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

RTA-OS RH850/GHS Port Guide V5.0.22 73

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

Index

A
Assembler, 45
AUTOSAR OS includes

Os.h, 31
Os_Cfg.h, 31
Os_MemMap.h, 31

C
C1M-A2, 56
C1MA2_CPU1, 57
C1MA2_CPU1_CPU2, 57
C1MA2_CPU2, 57
C1MA2_SubCPU, 58
CAT1_ISR, 38
Compiler, 43
Compiler (Green Hills Software v2013.5.5),

42
Compiler (Green Hills Software v2015.1.7),

42
Compiler (Green Hills Software v2017.1.5),

43
Compiler (Green Hills Software v2018.1.5),

43
Compiler Versions, 42
Configuration

Port-Specific Parameters, 22
Cross-core Interrupts, 55

D
Debugger, 47

E
Enhanced Isolation, 59
Enhanced Isolation Stack, 60
ETAS License Manager, 12

Installation, 12

F
Files, 31

H
Hardware

Requirements, 10

I
Installation, 10

Default Directory, 11

Verification, 20

Interrupts, 52

Category 1, 55

Category 2, 55

Default, 55

IPL, 52

L

Librarian, 46

Library

Name of, 31

License, 12

Borrowing, 16

Concurrent, 13

Grace Mode, 13

Installation, 16

Machine-named, 13

Status, 16

Troubleshooting, 17

User-named, 13

Linker, 46

M

Memory Model, 56

O

Options, 43

Os_Cbk_GetAbortStack, 34

Os_Cbk_GetEnhancedIsolationStack, 35

Os_Cbk_IsSystemTrapAllowed, 60

Os_Cbk_IsUntrustedCodeOK, 59

Os_Cbk_IsUntrustedTrapOK, 59

Os_Cbk_RestoreGlobalRegisters, 59

Os_Cbk_StartCore, 36

Os_Cbk_StopCore, 37

Os_Clear_x, 38

Os_Disable_x, 39

Os_DisableAllConfiguredInterrupts, 39

Os_Enable_x, 40

Os_EnableAllConfiguredInterrupts, 39

Os_InitializeVectorTable, 32

Os_IntChannel_x, 40

Os_PreBindVectorsForPEx, 33

Os_StackSizeType, 40

Os_StackValueType, 41

RTA-OS RH850/GHS Port Guide V5.0.22 74

Index

P
Parameters of Implementation, 22
Performance, 61

Context Switching Times, 69
Library Module Sizes, 63
RAM and ROM, 61
Stack Usage, 62

Processor Modes, 56
Trusted, 56
Untrusted, 56

R
Registers

CTPSW, 51
EBASE, 51
EIBDn, 51
EICn, 51
FPIPR, 51
Initialization, 50
INTBP, 51
INTCFG, 51
ISPR, 51
Non-modifiable, 51
P1, 51
P1M, 51

PMR, 51

PSW, 51

PSW.UM, 51

R2, 51

SP, 51

S

Software

Requirements, 10

Stack, 56

T

Target, 49

Variants, 50

Toolchain, 42

U

Using FETRAP TRAP and SYSCALL Instruc-
tions, 53

Using Raw Exception Handlers, 54

V

Variants, 50

Vector Table

Base Address, 53

RTA-OS RH850/GHS Port Guide V5.0.22 75

	1 Introduction
	1.1 About You
	1.2 Document Conventions
	1.3 References

	2 Installing the RTA-OS Port Plug-in
	2.1 Preparing to Install
	2.1.1 Hardware Requirements
	2.1.2 Software Requirements

	2.2 Installation
	2.2.1 Installation Directory

	2.3 Licensing
	2.3.1 Installing the ETAS License Manager
	2.3.2 Licenses
	2.3.3 Installing a Concurrent License Server
	2.3.4 Using the ETAS License Manager
	2.3.5 Troubleshooting Licenses

	3 Verifying your Installation
	3.1 Checking the Port
	3.2 Running the Sample Applications

	4 Port Characteristics
	4.1 Parameters of Implementation
	4.2 Configuration Parameters
	4.2.1 Stack used for C-startup
	4.2.2 Stack used when idle
	4.2.3 Stack overheads for ISR activation
	4.2.4 Stack overheads for ECC tasks
	4.2.5 Stack overheads for ISR
	4.2.6 ORTI/Lauterbach
	4.2.7 ORTI/winIDEA
	4.2.8 ORTI Stack Fill
	4.2.9 Support winIDEA Analyzer
	4.2.10 Enable Direct vector mode
	4.2.11 Link Type
	4.2.12 Trust Trap
	4.2.13 Enable stack repositioning
	4.2.14 Enable untrusted stack check
	4.2.15 EBASE setting
	4.2.16 Handle FPU context
	4.2.17 CrossCore0 IPIR
	4.2.18 CrossCore1 IPIR
	4.2.19 Block default interrupt
	4.2.20 GetAbortStack always
	4.2.21 Cache CoreID in CTPSW
	4.2.22 SDA Threshold
	4.2.23 SDA size setting
	4.2.24 Optimizer setting
	4.2.25 Customer compiler option set 1
	4.2.26 Compiler option set 2
	4.2.27 stack_protector setting
	4.2.28 Enhanced Isolation
	4.2.29 Unaligned data

	4.3 Generated Files

	5 Port-Specific API
	5.1 API Calls
	5.1.1 Os_InitializeVectorTable
	5.1.2 Os_PreBindVectorsForPEx

	5.2 Callbacks
	5.2.1 Os_Cbk_GetAbortStack
	5.2.2 Os_Cbk_GetEnhancedIsolationStack
	5.2.3 Os_Cbk_StartCore
	5.2.4 Os_Cbk_StopCore

	5.3 Macros
	5.3.1 CAT1_ISR
	5.3.2 Os_Clear_x
	5.3.3 Os_DisableAllConfiguredInterrupts
	5.3.4 Os_Disable_x
	5.3.5 Os_EnableAllConfiguredInterrupts
	5.3.6 Os_Enable_x
	5.3.7 Os_IntChannel_x

	5.4 Type Definitions
	5.4.1 Os_StackSizeType
	5.4.2 Os_StackValueType

	6 Toolchain
	6.1 Compiler Versions
	6.1.1 Green Hills Software v2013.5.5
	6.1.2 Green Hills Software v2015.1.7
	6.1.3 Green Hills Software v2017.1.5
	6.1.4 Green Hills Software v2018.1.5

	6.2 Options used to generate this guide
	6.2.1 Compiler
	6.2.2 Assembler
	6.2.3 Librarian
	6.2.4 Linker
	6.2.5 Debugger

	7 Hardware
	7.1 Supported Devices
	7.2 Register Usage
	7.2.1 Initialization
	7.2.2 Modification

	7.3 Interrupts
	7.3.1 Interrupt Priority Levels
	7.3.2 Using FETRAP TRAP and SYSCALL Instructions
	7.3.3 Allocation of ISRs to Interrupt Vectors
	7.3.4 Vector Table
	7.3.5 Using Raw Exception Handlers
	7.3.6 Writing Category 1 Interrupt Handlers
	7.3.7 Writing Category 2 Interrupt Handlers
	7.3.8 Default Interrupt
	7.3.9 Cross-core Interrupts

	7.4 Memory Model
	7.5 Processor Modes
	7.6 Stack Handling
	7.7 C1M-A2 Details
	7.7.1 C1MA2_CPU1_CPU2
	7.7.2 C1MA2_CPU1
	7.7.3 C1MA2_CPU2
	7.7.4 C1MA2_SubCPU

	8 Enhanced Isolation
	8.1 Os_Cbk_RestoreGlobalRegisters
	8.2 Os_Cbk_IsUntrustedTrapOK
	8.3 Os_Cbk_IsUntrustedCodeOK
	8.4 Os_Cbk_IsSystemTrapAllowed
	8.5 Enhanced Isolation Stack

	9 Performance
	9.1 Measurement Environment
	9.2 RAM and ROM Usage for OS Objects
	9.2.1 Single Core
	9.2.2 Multi Core

	9.3 Stack Usage
	9.4 Library Module Sizes
	9.4.1 Single Core
	9.4.2 Multi Core

	9.5 Execution Time
	9.5.1 Context Switching Time

	10 Finding Out More
	11 Contacting ETAS
	11.1 Technical Support
	11.2 General Enquiries
	11.2.1 ETAS Global Headquarters
	11.2.2 ETAS Local Sales & Support Offices

