
RTA-OS
STV0991/ARM Port Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2014 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10632-PG-2.0.0 EN-12-2014

2 Copyright

Safety Notice

This ETAS product fulfills standard quality management requirements. If re-
quirements of specific safety standards (e.g. IEC 61508, ISO 26262) need to
be fulfilled, these requirements must be explicitly defined and ordered by the
customer. Before use of the product, customer must verify the compliance
with specific safety standards.

Safety Notice 3

Contents

1 Introduction 7
1.1 About You . 8
1.2 Document Conventions . 8
1.3 References . 9

2 Installing the RTA-OS Port Plug-in 10
2.1 Preparing to Install . 10

2.1.1 Hardware Requirements 10
2.1.2 Software Requirements 10

2.2 Installation . 11
2.2.1 Installation Directory 11

2.3 Licensing . 12
2.3.1 Installing the ETAS License Manager 12
2.3.2 Licenses . 13
2.3.3 Installing a Concurrent License Server 14
2.3.4 Using the ETAS License Manager 15
2.3.5 Troubleshooting Licenses 18

3 Verifying your Installation 21
3.1 Checking the Port . 21
3.2 Running the Sample Applications 21

4 Port Characteristics 23
4.1 Parameters of Implementation 23
4.2 Configuration Parameters . 23

4.2.1 Stack used for C-startup 23
4.2.2 Stack used when idle 24
4.2.3 Stack overheads for ISR activation 24
4.2.4 Stack overheads for ECC tasks 24
4.2.5 Stack overheads for ISR 24
4.2.6 ORTI/Lauterbach . 25
4.2.7 ORTI Stack Fill . 25
4.2.8 Enable stack repositioning 25
4.2.9 Enable untrusted stack check 26
4.2.10 Block default interrupt 26

4.3 Generated Files . 26

4 Contents

5 Port-Specific API 28
5.1 API Calls . 28

5.1.1 Os_InitializeVectorTable 28
5.2 Macros . 29

5.2.1 CAT1_ISR . 29
5.2.2 Os_DisableAllConfiguredInterrupts 29
5.2.3 Os_Disable_x . 29
5.2.4 Os_EnableAllConfiguredInterrupts 30
5.2.5 Os_Enable_x . 30

5.3 Type Definitions . 30
5.3.1 Os_StackSizeType . 30
5.3.2 Os_StackValueType . 31

6 Toolchain 32
6.1 Compiler . 32
6.2 Assembler . 33
6.3 Librarian . 34
6.4 Linker . 34
6.5 Debugger . 35

7 Hardware 36
7.1 Supported Devices . 36
7.2 Register Usage . 36

7.2.1 Initialization . 36
7.2.2 Modification . 37

7.3 Interrupts . 38
7.3.1 Interrupt Priority Levels 38
7.3.2 Allocation of ISRs to Interrupt Vectors 39
7.3.3 Vector Table . 39
7.3.4 Writing Category 1 Interrupt Handlers 40
7.3.5 Writing Category 2 Interrupt Handlers 40
7.3.6 Default Interrupt . 40

7.4 Memory Model . 41
7.5 Processor Modes . 41
7.6 Stack Handling . 41

8 Performance 42
8.1 Measurement Environment . 42
8.2 RAM and ROM Usage for OS Objects 42
8.3 Stack Usage . 43
8.4 Library Module Sizes . 43
8.5 Execution Time . 46

8.5.1 Context Switching Time 46

9 Finding Out More 49

Contents 5

10 Contacting ETAS 50
10.1 Technical Support . 50
10.2 General Enquiries . 50

10.2.1 ETAS Global Headquarters 50
10.2.2 ETAS Local Sales & Support Offices 50

6 Contents

1 Introduction

RTA-OS is a small and fast real-time operating system that conforms to both
the AUTOSAR OS (R3.0.1 -> R3.0.7, R3.1.1 -> R3.1.5, R3.2.1 -> R3.2.2, R4.0.1
-> R4.0.3 and R4.1.1 -> R4.1.3) and OSEK/VDX 2.2.3 standards. The operat-
ing system is configured and built on a PC, but runs on your target hardware.

This document describes the RTA-OS STV0991/ARM port plug-in that cus-
tomizes the RTA-OS development tools for the STMicroelectronics STV0991
with the ARM DS-5 compiler. It supplements the more general information
you can find in the User Guide and the Reference Guide.

The document has two parts. Chapters 2 to 3 help you understand the
STV0991/ARM port and cover:

• how to install the STV0991/ARM port plug-in;

• how to configure STV0991/ARM-specific attributes;

• how to build an example application to check that the STV0991/ARM port
plug-in works.

Chapters 4 to 8 provide reference information including:

• the number of OS objects supported;

• required and recommended toolchain parameters;

• how RTA-OS interacts with the STV0991, including required register set-
tings, memory models and interrupt handling;

• memory consumption for each OS object;

• memory consumption of each API call;

• execution times for each API call.

For the best experience with RTA-OS it is essential that you read and under-
stand this document.

Introduction 7

1.1 About You

You are a trained embedded systems developer who wants to build real-time
applications using a preemptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling
and linking of C code for embedded applications with your chosen toolchain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows op-
erating system, including installing software, selecting menu items, clicking
buttons, navigating files and folders.

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options appear in bold, blue characters.

Click OK. Button labels appear in bold characters

Press <Enter>. Key commands are enclosed in angle brackets.

The “Open file” dialog
box appears

GUI element names, for example window titles,
fields, etc. are enclosed in double quotes.

Activate(Task1) Program code, header file names, C type names,
C functions and API call names all appear in a
monospaced typeface.

See Section 1.2. Internal document hyperlinks are shown in blue
letters.

Functionality in RTA-OS that might not be portable
to other implementations of AUTOSAR OS is
marked with the RTA-OS icon.

Important instructions that you must follow care-
fully to ensure RTA-OS works as expected are
marked with a caution sign.

8 Introduction

1.3 References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

Introduction 9

http://www.osek-vdx.org
http://www.autosar.org

2 Installing the RTA-OS Port Plug-in

2.1 Preparing to Install

RTA-OS port plug-ins are supplied as a downloadable electronic installation
image which you obtain from the ETAS Web Portal. You will have been pro-
vided with access to the download when you bought the port. You may op-
tionally have requested an installation CD which will have been shipped to
you. In either case, the electronic image and the installation CD contain iden-
tical content.

Integration Guidance 2.1:You must have installed the RTA-OS tools be-
fore installing the STV0991/ARM port plug-in. If you have not yet done this
then please follow the instructions in the Getting Started Guide.

2.1.1 Hardware Requirements

You should make sure that you are using at least the following hardware be-
fore installing and using RTA-OS on a host PC:

• 1GHz Pentium (or higher) IBM compatible PC.

• 512Mb RAM.

• 500Mb hard disk space.

• CD-ROM or DVD drive (Optional)

• Ethernet card.

2.1.2 Software Requirements

RTA-OS requires that your host PC has one of the following versions of Mi-
crosoft Windows installed:

• Windows 2000 (Service Pack 3 or later)

• Windows XP (Service Pack 2 or later)

• Windows Vista

• Windows 7

Integration Guidance 2.2:The tools provided with RTA-OS require Mi-
crosoft’s .NET Framework v2.0 and v4.0 to be installed. You should en-
sure that these have been installed before installing RTA-OS. The .NET
framework is not supplied with RTA-OS but is freely available from http:
//www.microsoft.com/net/Download.aspx.
The migration of the code from v2.0 to v4.0 will occur over a period of time
for performance and maintenance reasons.

10 Installing the RTA-OS Port Plug-in

http://www.microsoft.com/net/Download.aspx
http://www.microsoft.com/net/Download.aspx

2.2 Installation

Target port plug-ins are installed in the same way as the tools:

1. Either

• Double click the executable image; or

• Insert the RTA-OS STV0991/ARM CD into your CD-ROM or DVD drive.

If the installation program does not run automatically then you will
need to start the installation manually. Navigate to the root direc-
tory of your CD/DVD drive and double click autostart.exe to start
the setup.

2. Follow the on-screen instructions to install the STV0991/ARM port plug-
in.

By default, ports are installed into C:\ETAS\RTA-OS\Targets. During the
installation process, you will be given the option to change the folder to which
RTA-OS ports are installed. You will normally want to ensure that you install
the port plug-in in the same location that you have installed the RTA-OS tools.
You can install different versions of the tools/targets into different directories
and they will not interfere with each other.

Integration Guidance 2.3:Port plug-ins can be installed into any
location, but using a non-default directory requires the use of the
--target_include argument to both rtaosgen and rtaoscfg. For ex-
ample:

rtaosgen --target_include:<target_directory>

2.2.1 Installation Directory

The installation will create a sub-directory under Targets with the name
STV0991ARM_2.0.0. This contains everything to do with the port plug-in.

Each version of the port installs in its own directory - the trailing _2.0.0 is the
port’s version identifier. You can have multiple different versions of the same
port installed at the same time and select a specific version in a project’s
configuration.

The port directory contains:

STV0991ARM.dll - the port plug-in that is used by rtaosgen and rtaoscfg.

RTA-OS STV0991ARM Port Guide.pdf - the documentation for the port
(the document you are reading now).

Installing the RTA-OS Port Plug-in 11

RTA-OS STV0991ARM Release Note.pdf - the release note for the port.
This document provides information about the port plug-in release, in-
cluding a list of changes from previous releases and a list of known
limitations.

There may be other port-specific documentation supplied which you can also
find in the root directory of the port installation. All user documentation is
distributed in PDF format which can be read using Adobe Acrobat Reader.
Adobe Acrobat Reader is not supplied with RTA-OS but is freely available from
http://www.adobe.com.

2.3 Licensing

RTA-OS is protected by FLEXnet licensing technology. You will need a valid
license key in order to use RTA-OS.

Licenses for the product are managed using the ETAS License Manager
which keeps track of which licenses are installed and where to find them.
The information about which features are required for RTA-OS and any port
plug-ins is stored as license signature files that are stored in the folder
<install_folder>\bin\Licenses.

The ETAS License Manager can also tell you key information about your li-
censes including:

• Which ETAS products are installed

• Which license features are required to use each product

• Which licenses are installed

• When licenses expire

• Whether you are using a local or a server-based license

Figure 2.1 shows the ETAS License Manager in operation.

2.3.1 Installing the ETAS License Manager

Integration Guidance 2.4:The ETAS License Manager must be installed
for RTA-OS to work. It is highly recommended that you install the ETAS
License Manager during your installation of RTA-OS.

The installer for the ETAS License Manager contains two components:

1. the ETAS License Manager itself;

12 Installing the RTA-OS Port Plug-in

http://www.adobe.com

Figure 2.1: The ETAS License manager

2. a set of re-distributable FLEXnet utilities. The utilities include the soft-
ware and instructions required to setup and run a FLEXnet license
server manager if concurrent licenses are required (see Sections 2.3.2
and 2.3.3 for further details)

During the installation of RTA-OS you will be asked if
you want to install the ETAS License Manager. If not,
you can install it manually at a later time by running
<install_folder>\LicenseManager\LicensingStandaloneInstallation.exe.

Once the installation is complete, the ETAS License Manager can be found in
C:\Program Files\Common Files\ETAS\Licensing.

After it is installed, a link to the ETAS License Manager can be found in the
Windows Start menu under ProgramsÔ ETAS Ô License Management Ô

ETAS License Manager.

2.3.2 Licenses

When you install RTA-OS for the first time the ETAS License Manager will al-
low the software to be used in grace mode for seven days. Once the grace
mode period has expired, a license key must be installed. If a license key is
not available, please contact your local ETAS sales representative. Contact
details can be found in Chapter 10.

You should identify which type of license you need and then provide ETAS
with the appropriate information as follows:

Installing the RTA-OS Port Plug-in 13

Machine-named licenses allows RTA-OS to be used by any user logged
onto the PC on which RTA-OS and the machine-named license is in-
stalled.

A machine-named license can be issued by ETAS when you provide the
host ID (Ethernet MAC address) of the host PC

User-named licenses allow the named user (or users) to use RTA-OS on
any PC in the network domain.

A user-named license can be issued by ETAS when you provide the Win-
dows user-name for your network domain.

Concurrent licenses allow any user on any PC up to a specified number of
users to use RTA-OS. Concurrent licenses are sometimes called floating
licenses because the license can float between users.

A concurrent license can be issued by ETAS when you provide the fol-
lowing information:

1. The name of the server

2. The Host ID (MAC address) of the server.

3. The TCP/IP port over which your FLEXnet license server will serve
licenses. A default installation of the FLEXnet license server uses
port 27000.

You can use the ETAS License Manager to get the details that you must pro-
vide to ETAS when requesting a machine-named or user-named license and
(optionally) store this information in a text file.

Open the ETAS License Manager and choose Tools Ô Obtain License Info
from the menu. For machine-named licenses you can then select the network
adaptor which provides the Host ID (MAC address) that you want to use as
shown in Figure 2.2. For a user-based license, the ETAS License Manager
automatically identifies the Windows username for the current user.

Selecting “Get License Info” tells you the Host ID and User information and
lets you save this as a text file to a location of your choice.

2.3.3 Installing a Concurrent License Server

Concurrent licenses are allocated to client PCs by a FLEXnet license server
manager working together with a vendor daemon. The vendor daemon for
ETAS is called ETAS.exe. A copy of the vendor daemon is placed on disk
when you install the ETAS License Manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

14 Installing the RTA-OS Port Plug-in

Figure 2.2: Obtaining License Information

To work with an ETAS concurrent license, a license server must be configured
which is accessible from the PCs wishing to use a license. The server must be
configured with the following software:

• FLEXnet license server manager;

• ETAS vendor daemon (ETAS.exe);

It is also necessary to install your concurrent license on the license server.

In most organizations there will be a single FLEXnet license server manager
that is administered by your IT department. You will need to ask your IT
department to install the ETAS vendor daemon and the associated concurrent
license.

If you do not already have a FLEXnet license server then you will need to
arrange for one to be installed. A copy of the FLEXnet license server, the
ETAS vendor daemon and the instructions for installing and using the server
(LicensingEndUserGuide.pdf) are placed on disk when you install the ETAS
License manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

2.3.4 Using the ETAS License Manager

If you try to run RTA-OS without a valid license, you will be given the oppor-
tunity to start the ETAS License Manager and select a license.

Installing the RTA-OS Port Plug-in 15

Figure 2.3: Unlicensed RTA-OS Installation

When the ETAS License Manager is launched, it will display the RTA-OS license
state as NOT AVAILABLE and you will not be able to use any of the tools until
a valid license is installed. This is shown in Figure 2.3.

License Key Installation

License keys are supplied in an ASCII text file, which will be sent to you on
completion of a valid license agreement.

If you have a machine-based or user-based license key then you can simply
install the license by opening the ETAS License Manager and selecting File Ô

Add License File menu.

If you have a concurrent license key then you will need to create a license
stub file that tells the client PC to look for a license on the FLEXnet server as
follows:

1. create a copy of the concurrent license file

2. open the copy of the concurrent license file and delete every line except
the one starting with SERVER

3. add a new line containing USE_SERVER

4. add a blank line

5. save the file

The file you create should look something like this:

16 Installing the RTA-OS Port Plug-in

Figure 2.4: Licensed features for RTA-OS

SERVER <server name> <MAC address> <TCP/IP Port>¶
USE_SERVER¶
¶

Once you have create the license stub file you can install the license by open-
ing the ETAS License Manager and selecting File Ô Add License File menu
and choosing the license stub file.

License Key Status

When a valid license has been installed, the ETAS License Manager will dis-
play the license version, status, expiration date and source as shown in Fig-
ure 2.4.

When a license is installed by the ETAS License Manager it is placed in:
C:\Documents and Settings\All Users\Application Data\ETAS\FlexNet

Borrowing a concurrent license

If you use a concurrent license and need to use RTA-OS on a PC that will be
disconnected from the network (for example, you take a demonstration to
a customer site), then the concurrent license will not be valid once you are
disconnected.

To address this problem, the ETAS License Manager allows you to temporarily
borrow a license from the license server.

To borrow a license:

Installing the RTA-OS Port Plug-in 17

1. Right click on the license feature you need to borrow.

2. Select “Borrow License”

3. From the calendar, choose the date that the borrowed license should
expire.

4. Click “OK”

The license will automatically expire when the borrow date elapses. A bor-
rowed license can also be returned before this date. To return a license:

1. Reconnect to the network;

2. Right-click on the license feature you have borrowed;

3. Select “Return License”.

2.3.5 Troubleshooting Licenses

RTA-OS tools will report an error if you try to use a feature for which a correct
license key cannot be found. If you think that you should have a license
for a feature but the RTA-OS tools appear not to work, then the following
troubleshooting steps should be followed before contacting ETAS:

Can the ETAS License Manager see the license?

The ETAS License Manager must be able to see a valid license key for
each product or product feature you are trying to use.

You can check what the ETAS License Manager can see by starting it
from the Help Ô License Manager. . . menu option in rtaoscfg or di-
rectly from the Windows Start Menu - Start Ô ETAS Ô License Man-
agement Ô ETAS License Manager.

The ETAS License Manager lists all license features and their status.
Valid licenses have status INSTALLED. Invalid licenses have status
NOT AVAILABLE.

Is the license valid?

You may have been provided with a time-limited license (for example,
for evaluation purposes) and the license may have expired. You can
check that the Expiration Date for your licensed features to check that
it has not elapsed using the ETAS License Manager.

If a license is due to expire within the next 30 days, the ETAS Li-
cense Manager will use a warning triangle to indicate that you need
to get a new license. Figure 2.5 shows that the license features
LD_RTA-OS3.0_VRTA and LD_RTA-OS3.0_SRC are due to expire.

If your license has elapsed then please contact your local ETAS sales
representative to discuss your options.

18 Installing the RTA-OS Port Plug-in

Figure 2.5: Licensed features that are due to expire

Does the Ethernet MAC address match the one specified?

If you have a machine based license then it is locked to a specific MAC
address. You can find out the MAC address of your PC by using the ETAS
License Manager (Tools Ô Obtain License Info) or using the Microsoft
program ipconfig /all at a Windows Command Prompt.

You can check that the MAC address in your license file by opening your
license file in a text editor and checking that the HOSTID matches the
MAC address identified by the ETAS License Manager or the Physical
Address reported by ipconfig /all.

If the HOSTID in the license file (or files) does not match your MAC ad-
dress then you do not have a valid license for your PC. You should con-
tact your local ETAS sales representative to discuss your options.

Is your Ethernet Controller enabled?

If you use a laptop and RTA-OS stops working when you disconnect from
the network then you should check your hardware settings to ensure
that your Ethernet controller is not turned off to save power when a net-
work connection is not present. You can do this using Windows Control
Panel. Select System Ô Hardware Ô Device Manager then select
your Network Adapter. Right click to open Properties and check that
the Ethernet controller is not configured for power saving in Advanced
and/or Power Management settings.

Is the FlexNet License Server visible?

Installing the RTA-OS Port Plug-in 19

If your license is served by a FlexNet license server, then the ETAS Li-
cense Manager will report the license as NOT AVAILABLE if the license
server cannot be accessed.

You should contact your IT department to check that the server is work-
ing correctly.

Still not fixed?

If you have not resolved your issues, after confirming these points
above, please contact ETAS technical support. The contact address is
provided in Section 10.1. You must provide the contents and location of
your license file and your Ethernet MAC address.

20 Installing the RTA-OS Port Plug-in

3 Verifying your Installation

Now that you have installed both the RTA-OS tools and a port plug-in and
have obtained and installed a valid license key you can check that things are
working.

3.1 Checking the Port

The first thing to check is that the RTA-OS tools can see the new port. You can
do this in two ways:

1. use the rtaosgen tool

You can run the command rtaosgen −−target:? to get a list of avail-
able targets, the versions of each target and the variants supported, for
example:

RTA-OS Code Generator
Version p.q.r.s, Copyright © ETAS nnnn
Available targets:
TriCoreHighTec_n.n.n [TC1797...]
VRTA_n.n.n [MinGW,VS2005,VS2008,VS2010]

2. use the rtaoscfg tool

The second way to check that the port plug-in can be seen is by start-
ing rtaoscfg and selecting Help Ô Information... drop down menu.
This will show information about your complete RTA-OS installation and
license checks that have been performed.

Integration Guidance 3.1:If the target port plug-ins have been installed
to a non-default location, then the --target_include argument must be
used to specify the target location.

If the tools can see the port then you can move on to the next stage – check-
ing that you can build an RTA-OS library and use this in a real program that
will run on your target hardware.

3.2 Running the Sample Applications

Each RTA-OS port is supplied with a set of sample applications that allow you
to check that things are running correctly. To generate the sample applica-
tions:

1. Create a new working directory in which to build the sample applica-
tions.

2. Open a Windows command prompt in the new directory.

Verifying your Installation 21

3. Execute the command:

rtaosgen --target:<your target> --samples:[Applications]

e.g.

rtaosgen --target:[MPC5777Mv2]PPCe200HighTec_5.0.8
--samples:[Applications]

You can then use the build.bat and run.bat files that get created for each
sample application to build and run the sample. For example:

cd Samples\Applications\HelloWorld
build.bat
run.bat

Remember that your target toolchain must be accessible on the Windows
PATH for the build to be able to run successfully.

Integration Guidance 3.2:It is strongly recommended that you build
and run at least the Hello World example in order to verify that RTA-OS can
use your compiler toolchain to generate an OS kernel and that a simple
application can run with that kernel.

For further advice on building and running the sample applications, please
consult your Getting Started Guide.

22 Verifying your Installation

4 Port Characteristics

This chapter tells you about the characteristics of RTA-OS for the
STV0991/ARM port.

4.1 Parameters of Implementation

To be a valid OSEK or AUTOSAR OS, an implementation must support a mini-
mum number of OS objects. The following table specifies the minimum num-
bers of each object required by the standards and the maximum number of
each object supported by RTA-OS for the STV0991/ARM port.

Parameter Required RTA-OS

Tasks 16 1024
Tasks not in SUSPENDED state 16 1024
Priorities 16 1024
Tasks per priority - 1024
Queued activations per priority - 4294967296
Events per task 8 32
Software Counters 8 4294967296
Hardware Counters - 4294967296
Alarms 1 4294967296
Standard Resources 8 4294967296
Linked Resources - 4294967296
Nested calls to GetResource() - 4294967296
Internal Resources 2 no limit
Application Modes 1 4294967296
Schedule Tables 2 4294967296
Expiry Points per Schedule Table - 4294967296
OS Applications - 4294967295
Trusted functions - 4294967295
Spinlocks (multicore) - 4294967295
Register sets - 4294967296

4.2 Configuration Parameters

Port-specific parameters are configured in the General Ô Target workspace
of rtaoscfg, under the “Target-Specific” tab.

The following sections describe the port-specific configuration parameters for
the STV0991/ARM port, the name of the parameter as it will appear in the XML
configuration and the range of permitted values (where appropriate).

4.2.1 Stack used for C-startup

XML name SpPreStartOS

Port Characteristics 23

Description

The amount of stack already in use at the point that Os_StartOS() is called.
This value is simply added to the total stack size that the OS needs to sup-
port all tasks and interrupts at run-time. Typically you use this to obtain the
amount of stack that the linker must allocate. The value does not normally
change if the OS configuration changes.

4.2.2 Stack used when idle

XML name SpStartOS

Description

The amount of stack used when the OS is in the idle state (typically inside
Os_Cbk_Idle()). This is just the difference between the stack used at the point
that Os_StartOS() is called and the stack used when no task or interrupt is
running. This can be zero if Os_Cbk_Idle() is not used. The value does not
normally change if the OS configuration changes.

4.2.3 Stack overheads for ISR activation

XML name SpIDisp

Description

The amount of stack needed to activate a task from within an ISR. If a task is
activated within a Category 2 ISR, and that task has a higher priority than any
currently running task, then the OS may need to use marginally more stack
than if it activates a task that is of lower priority. This value is used in worst-
case stack size calculations. The value may change if significant changes are
made to the OS configuration. e.g. STANDARD/EXTENDED, SC1/2/3/4.

4.2.4 Stack overheads for ECC tasks

XML name SpECC

Description

The extra amount of stack needed to start an ECC task. ECC tasks need
to save slightly more state on the stack when they are started than BCC
tasks. This value contains the difference. The value may change if signifi-
cant changes are made to the OS configuration. e.g. STANDARD/EXTENDED,
SC1/2/3/4.

4.2.5 Stack overheads for ISR

XML name SpPreemption

24 Port Characteristics

Description

The amount of stack used to service a Category 2 ISR. When a Category 2
ISR interrupts a task, it usually places some data on the stack. If the ISR
measures the stack to determine if the task has exceeded its stack budget,
then it will overestimate the stack usage unless this value is subtracted from
the measured size. The value is also used when calculating the worst-case
stack usage of the system, assuming the maximum depth of preemption that
can occur. Be careful to set this value accurately. If its value is too high then
when the subtraction occurs, 32-bit underflow can occur and cause the OS to
think that a budget overrun has occurred. The value may change if signifi-
cant changes are made to the OS configuration. e.g. STANDARD/EXTENDED,
SC1/2/3/4.

4.2.6 ORTI/Lauterbach

XML name Orti22Lauterbach

Description

Select ORTI generation for the Lauterbach debugger.

Settings

Value Description

TRUE Generate ORTI
FALSE No ORTI

4.2.7 ORTI Stack Fill

XML name OrtiStackFill

Description

Expands ORTI information to cover stack address, size and fill pattern details
to support debugger stack usage monitoring.

4.2.8 Enable stack repositioning

XML name AlignUntrustedStacks

Description

Use to support realignment of the stack for untrusted code when there are
MPU protection region granularity issues. Refer to the documentation for
Os_Cbk_SetMemoryAccess.

Port Characteristics 25

Settings

Value Description

TRUE Support repositioning
FALSE Normal behavior (default)

4.2.9 Enable untrusted stack check

XML name DistrustStacks

Description

Extra code can be placed in interrupt handlers to detect when untrusted code
has an illegal stack pointer value. Also exception handlers run on a private
stack (Refer to the documentation for Os_Cbk_GetAbortStack). This has a
small performance overhead, so is made optional.

Settings

Value Description

TRUE Perform the checks
FALSE Do not check (default)

4.2.10 Block default interrupt

XML name block_default_interrupt

Description

Where a default interrupt is specified, it will normally execute if a spurious
interrupt fires. This option can change this behavior by changing the priority
assigned to unused interrupt sources.

Settings

Value Description

TRUE Block the default interrupt
FALSE Allow the default interrupt handler to run if a spurious interrupt

fires (default)

4.3 Generated Files

The following table lists the files that are generated by rtaosgen for all ports:

26 Port Characteristics

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured.

This is included by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by

RTA-OS to merge with the system-wide MemMap.h
file.

RTAOS.<lib> The RTA-OS library for your application. The exten-
sion <lib> depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application.
This is used by rtaosgen to work out which parts of
the kernel library need to be rebuilt if the configu-
ration has changed. The extension <lib> depends
on your target.

<projectname>.log A log file that contains a copy of the text that the
tool and compiler sent to the screen during the
build process.

Port Characteristics 27

5 Port-Specific API

The following sections list the port-specific aspects of the RTA-OS program-
mers reference for the STV0991/ARM port that are provided either as:

• additions to the material that is documented in the Reference Guide; or

• overrides for the material that is documented in the Reference Guide.
When a definition is provided by both the Reference Guide and this doc-
ument, the definition provided in this document takes precedence.

5.1 API Calls

5.1.1 Os_InitializeVectorTable

Initialize the CPU mode, stack and the VIC registers to match the application
configuration.

Syntax

void Os_InitializeVectorTable(void)

Description

Os_InitializeVectorTable() sets the SCTLR.VE to configure the Vectored Inter-
rupt Controller (VIC) to pass the handler address for IRQ interrupts. The VIC
INTSELECT, VECTADDR, VECTPRIORITY, PRIORITYDAISY and INTENABLE are
configured to match the project configuration. The mode is moved to SYS
mode and FIQ and IRQ interrupts are enabled. The current stack pointer value
is transfered to the SYS/USR mode stack. On exit all configured interrupt VIC
channels are enabled.

Os_InitializeVectorTable() should be called before StartOS(). It should be
called even if ’Suppress Vector Table Generation’ is set to TRUE.

Example

Os_InitializeVectorTable();

See Also

StartOS

28 Port-Specific API

5.2 Macros

5.2.1 CAT1_ISR

Macro that should be used to create a Category 1 ISR entry function. This
should only be used on Category 1 ISRs that are attached to the VIC not the
Cortex CPU exceptions (See the later section on ’Writing Category 1 Interrupt
Handlers’ for more information). This macro exists to help make your code
portable between targets.

Example

CAT1_ISR(MyISR) {...}

5.2.2 Os_DisableAllConfiguredInterrupts

The Os_DisableAllConfiguredInterrupts macro will disable all configured VIC
interrupt channels. To use the Os_DisableAllConfiguredInterrupts macro
the file Os_ConfigInterrupts.h must be included through the use of #in-
clude. The macro is provided so the interrupt channels can be dis-
abled without corrupting the interrupt priority values configured by calling
Os_InitializeVectorTable(). If the change to the interrupt configuration is re-
quired before the next instruction then an __isb(0xF) instruction should be
inserted after the macro to ensure that it has been applied before the next
instruction. It may not be used by untrusted code.

Example

Os_DisableAllConfiguredInterrupts()
...
Os_EnableAllConfiguredInterrupts()

5.2.3 Os_Disable_x

Use of the Os_Disable_x macro will disable the named interrupt channel. The
macro can be called using either the VIC channel number or the RTA-OS con-
figured vector name. In the example, this is Os_Disable_VIC_Channel_20()
and Os_Disable_Millisecond() respectively. To use the Os_Disable_x macro the
file Os_ConfigInterrupts.h must be included through the use of #include. The
macro is provided so the interrupt channel can be masked without corrupting
the VIC register values configured by calling Os_InitializeVectorTable(). If the
change to the interrupt configuration is required before the next instruction
then an __isb(0xF) instruction should be inserted after the macro to ensure
that it has been applied before the next instruction. It may not be used by
untrusted code

Port-Specific API 29

Example

Os_Disable_VIC_Channel_20()
Os_Disable_Millisecond()

5.2.4 Os_EnableAllConfiguredInterrupts

The Os_EnableAllConfiguredInterrupts macro will enable all configured VIC
interrupt channels. To use the Os_EnableAllConfiguredInterrupts macro
the file Os_ConfigInterrupts.h must be included through the use of #in-
clude. The macro is provided so the interrupt channels can be en-
abled without corrupting the interrupt priority values configured by calling
Os_InitializeVectorTable(). If the change to the interrupt configuration is re-
quired before the next instruction then an __isb(0xF) instruction should be
inserted after the macro to ensure that it has been applied before the next
instruction. It may not be used by untrusted code.

Example

Os_DisableAllConfiguredInterrupts()
...
Os_EnableAllConfiguredInterrupts()

5.2.5 Os_Enable_x

Use of the Os_Enable_x macro will enable the named interrupt channel. The
macro can be called using either the VIC channel number or the RTA-OS con-
figured vector name. In the example, this is Os_Enable_VIC_Channel_20()
and Os_Enable_Millisecond() respectively. To use the Os_Enable_x macro the
file Os_ConfigInterrupts.h must be included through the use of #include. The
macro is provided so the interrupt channel can be enabled without corrupting
the VIC register values configured by calling Os_InitializeVectorTable(). If the
change to the interrupt configuration is required before the next instruction
then an __isb(0xF) instruction should be inserted after the macro to ensure
that it has been applied before the next instruction. It may not be used by
untrusted code

Example

Os_Enable_VIC_Channel_20()
Os_Enable_Millisecond()

5.3 Type Definitions

5.3.1 Os_StackSizeType

An unsigned value representing an amount of stack in bytes.

30 Port-Specific API

Example

Os_StackSizeType stack_size;
stack_size = Os_GetStackSize(start_position, end_position);

5.3.2 Os_StackValueType

An unsigned value representing the position of the stack pointer (USR/SYS
mode).

Example

Os_StackValueType start_position;
start_position = Os_GetStackValue();

Port-Specific API 31

6 Toolchain

This chapter contains important details about RTA-OS and the ARM DS-5
toolchain. A port of RTA-OS is specific to both the target hardware and a
specific version of the compiler toolchain. You must make sure that you build
your application with the supported toolchain.

In addition to the version of the toolchain, RTA-OS may use specific tool op-
tions (switches). The options are divided into three classes:

kernel options are those used by rtaosgen to build the RTA-OS kernel.

mandatory options must be used to build application code so that it will
work with the RTA-OS kernel.

forbidden options must not be used to build application code.

Any options that are not explicitly forbidden can be used by application code
providing that they do not conflict with the kernel and mandatory options for
RTA-OS.

Integration Guidance 6.1:ETAS has developed and tested RTA-OS us-
ing the tool versions and options indicated in the following sections. Cor-
rect operation of RTA-OS is only covered by the warranty in the terms
and conditions of your deployment license agreement when using identi-
cal versions and options. If you choose to use a different version of the
toolchain or an alternative set of options then it is your responsibility to
check that the system works correctly. If you require a statement that
RTA-OS works correctly with your chosen tool version and options then
please contact ETAS to discuss validation possibilities.

RTA-OS supports the ARM DS-5 v5.04 compilation tools.

6.1 Compiler

Name armcc.exe
Version [5040081]

Options

Kernel Options

The following options are used to build the RTA-OS kernel:

-thumb Use the Thumb2 instruction set

-cpu=Cortex-R4 Generate code for the Cortex-R4 CPU

-fpu=none Do not generate floating point code

32 Toolchain

-O3 Set maximum level of optimization

-Otime Perform optimizations to reduce execution time

-diag_style=gnu Diagnostic messages are in the gnu style

Mandatory Options for Application Code

The following options are mandatory for application code (for this configura-
tion):

- The same options as for compilation

Forbidden Options for Application Code

The following options are forbidden for application code (for this configura-
tion):

-bigend Generate code for big-endian memory addressing

6.2 Assembler

Name armcc.exe
Version [5040081]

Options

Kernel Options

The following options are used to build the RTA-OS kernel:

- The same options as for compilation

Mandatory Options for Application Code

The following options are mandatory for application code (for this configura-
tion):

- The same options as for compilation

Forbidden Options for Application Code

The following options are forbidden for application code (for this configura-
tion):

- Any options that conflict with kernel options

Toolchain 33

6.3 Librarian

Name armar.exe
Version [5040081]

6.4 Linker

Name armlink.exe
Version [5040081]

Options

Kernel Options

The following options are used to build the RTA-OS kernel:

-info totals,sizes,unused Specify map file contents

-datacompressor=off Disable RW data compression

-no_remove Do not remove unused input sections

-xref Output cross reference information to the map file

-map Output memory map to the map file

-symbols Output symbol table to the map file

-verbose Output detailed information to the map file

-entry=reset_handler Specify the application entry point

Mandatory Options for Application Code

The following options are mandatory for application code (for this configura-
tion):

- The same options as for compilation

Forbidden Options for Application Code

The following options are forbidden for application code (for this configura-
tion):

-be8 Produce little-endian code and big-endian data

-be32 Produce big-endian code and big-endian data

34 Toolchain

6.5 Debugger

Name Lauterbach TRACE32
Version Build 10654 or later

Notes on using ORTI with the Lauterbach debugger

When ORTI information for the Trace32 debugger is enabled entry and exit
times for Category 1 interrupts are increased by a few cycles to support
tracking of Category 1 interrupts by the debugger. Only VIC IRQ Category
1 interrupts are tracked by ORTI.

ORTI Stack Fill with the Lauterbach debugger

The ’ORTI Stack Fill’ target option is provided to extend the ORTI support to
allow evaluation of unused stack space. The Task.Stack.View command can
then be used in the Trace32 debugger. The following must also be added to
an application to ensure correct operation (as demonstrated in the sample
applications):

The linker file must create labels holding the start address and stack size for
each stack. The labels automatically generated by the linker can be used. For
example the labels are:

extern const uint32 Image$$STACKHEAP$$ZI$$Base;
extern const uint32 Image$$STACKHEAP$$ZI$$Length;
OS_STACK0_BASE = (uint32)&Image$$STACKHEAP$$ZI$$Base;
OS_STACK0_SIZE = (uint32)&Image$$STACKHEAP$$ZI$$Length;

where STACKHEAP is the section containing the stack.

The fill pattern used by the debugger must be contained with in a 32 bit
constant OS_STACK_FILL (i.e. for a fill pattern 0xCAFEF00D).

const uint32 OS_STACK_FILL = 0xCAFEF00D;

The stack must also be initialized with this fill pattern either in the application
start-up routines or during debugger initialization.

Toolchain 35

7 Hardware

7.1 Supported Devices

This port of RTA-OS has been developed to work with the following target:

Name: STMicroelectronics
Device: STV0991

The following variants of the STV0991 are supported:

• STV0991

If you require support for a variant of STV0991 not listed above, please con-
tact ETAS.

7.2 Register Usage

7.2.1 Initialization

RTA-OS requires the following registers to be initialized to the indicated values
before StartOS() is called.

36 Hardware

Register Setting

CPSR The CPSR must select a privileged
mode (i.e. SVC or SYS) before calling
Os_InitializeVectorTable().

SCTLR.V The SCTLR.V must be set to match the loca-
tion of the Cortex vector table (i.e. 0x0 or
0xFFFF0000). This must be done before calling
Os_InitializeVectorTable()

SCTLR.VE The SCTLR.VE must be set as RTA-OS expects
the VIC to provide the handler address for
IRQ interrupts. This can be done by calling
Os_InitializeVectorTable().

SP The stack must be allocated and SP initialized be-
fore calling Os_InitializeVectorTable().

VICx_INTENABLE The VIC mask registers must be set to match
the declared ISRs in the configuration. This can
be done by calling Os_InitializeVectorTable().
The configuration values are also found in the ar-
ray Os_VIC_INTENABLE[].

VICx_INTSELECT The VIC IRQ/FIQ select registers must be
set to values to match the application con-
figuration. This can be done by calling
Os_InitializeVectorTable(). The config-
uration values are also found in the array
Os_VIC_INTSELECT[].

VICx_VECTADDR The VIC interrupt entry points must match those
expected by RTA-OS. This can be done by call-
ing Os_InitializeVectorTable(). The con-
figuration values are also found in the array
Os_VIC_VECTADDR[].

VICx_VECTPRIORITYx The VIC priorities must be set to match the values
declared in the configuration. This can be done
by calling Os_InitializeVectorTable(). The
configuration values are also found in the array
Os_VIC_VECTPRIORITY[].

7.2.2 Modification

The following registers must not be modified by user code after the call to
StartOS():

Hardware 37

Register Notes

CPSR User code may not change the operating mode.

SCTLR.VE RTA-OS expects that the VIC to provides the handler address
for IRQ interrupts.

SP User code may not change the USR/SYS stack pointer other
than as a result of normal program flow.

VIC User code may not program the VIC directly.

RTA-OS operates all code with the CPSR.A bit enabled.

7.3 Interrupts

This section explains the implementation of RTA-OS’s interrupt model on the
STV0991.

7.3.1 Interrupt Priority Levels

Interrupts execute at an interrupt priority level (IPL). RTA-OS standardizes IPLs
across all targets. IPL 0 indicates task level. IPL 1 and higher indicate an in-
terrupt priority. It is important that you don’t confuse IPLs with task priorities.
An IPL of 1 is higher than the highest task priority used in your application.

The IPL is a target-independent description of the interrupt priority on your
target hardware. The following table shows how IPLs are mapped onto the
hardware interrupt priorities of the STV0991:

IPL VIC_swprioritymask Description

0 0xFFFF User (task) level. No interrupts are masked.
1 0x7FFF Maskable Category 1 and 2 interrupts

routed through IRQ.
... ... Maskable Category 1 and 2 interrupts

routed through IRQ.
15 0x0001 Maskable Category 1 and 2 interrupts

routed through IRQ
16 0x0000 Maskable Category 1 and 2 interrupts

routed through IRQ
17 0x0000 Maskable Category 1 interrupts routed

through FIQ
18 n/a Cortex CPU Category 1 exceptions.

Even though a particular mapping is permitted, all Category 1 ISRs must have
equal or higher IPL than all of your Category 2 ISRs.

38 Hardware

7.3.2 Allocation of ISRs to Interrupt Vectors

The following restrictions apply for the allocation of Category 1 and Category
2 interrupt service routines (ISRs) to interrupt vectors on the STV0991. A
3 indicates that the mapping is permitted and a 7 indicates that it is not
permitted:

Address Category 1 Category 2

CPU Trap1 exception handler (Undefined in-
struction)

3 7

CPU Trap2 exception handler (SVC) 3 7

CPU Trap3 exception handler (Prefetch
abort)

3 7

CPU Trap4 exception handlers (Data abort) 3 7

FIQ VIC interrupt handlers 3 7

IRQ VIC interrupt handlers 3 3

RTA-OS requires that on entry to IRQ and FIQ exceptions the Cortex CPU
switches to the ARM instruction set. RTA-OS will switch back to the Thumb
instruction set before entering application interrupt handler code. The Cor-
tex CPU instruction set state must not be modified from the default setting
and make exceptions use the Thumb instruction set on exception entry.

7.3.3 Vector Table

rtaosgen normally generates an interrupt vector table for you automatically.
You can configure “Suppress Vector Table Generation” as TRUE to stop RTA-OS
from generating the interrupt vector table.

Depending upon your target, you may be responsible for locating the gener-
ated vector table at the correct base address. The following table shows the
section (or sections) that need to be located and the associated valid base
address:

Section Valid Addresses

Os_ExceptionVectors Should either be located after the reset vector at
0x0 or 0xFFFF0000 depending upon the state of
the SCTLR.V bit. The first entry is the undefined
instruction handler.

The RTA-OS generated vector table does not include the reset vector. This
should be added for an application and located before the undefined instruc-
tion handler.

Hardware 39

7.3.4 Writing Category 1 Interrupt Handlers

Raw Category 1 interrupt service routines (ISRs) must correctly handle the
interrupt context themselves. RTA-OS provides an optional helper macro
CAT1_ISR that can be used to make code more portable. Depending on the
target, this may cause the selection of an appropriate interrupt control di-
rective to indicate to the compiler that a function requires additional code to
save and restore the interrupt context.

A Category 1 ISR therefore has the same structure as a Category 2 ISR, as
shown below.

CAT1_ISR(Category1Handler) {
/* Handler routine */

}

Cortex CPU exception handlers (i.e. Undefined instruction, SVC, Prefetch
abort, Data abort and FIQ) can be configured as Category 1 ISRs. These
handlers should not use the CAT1_ISR macro, instead these should either be
C functions decorated with the __irq modifier where appropriate (i.e. only
basic non-reentrant handlers), or assembler routines (See the ARM DS-5 doc-
umentation for further details). Data abort handlers need a different return
instruction to the other handlers so cannot use __irq.

To provide a true low-latency interrupt a single Category 1 VIC interrupt can
be configured as FIQ in a system.

7.3.5 Writing Category 2 Interrupt Handlers

Category 2 ISRs are provided with a C function context by RTA-OS, since the
RTA-OS kernel handles the interrupt context itself. The handlers are written
using the ISR() macro as shown below:

#include <Os.h>
ISR(MyISR) {
/* Handler routine */

}

You must not insert a return from interrupt instruction in such a function. The
return is handled automatically by RTA-OS.

7.3.6 Default Interrupt

The ’default interrupt’ is intended to be used to catch all unexpected in-
terrupts. All unused interrupts have their interrupt vectors directed to the
named routine that you specify. The routine you provide is not handled by
RTA-OS and must correctly handle the interrupt context itself. The handler
must use the CAT1_ISR macro in the same way as a Category 1 ISR (see
Section 7.3.4 for further details).

40 Hardware

7.4 Memory Model

The following memory models are supported:

Model Description

Standard The standard 32-bit EABI memory model is used.

Apart from some small code sections RTA-OS uses the default compiler mem-
ory sections unless modified by the AUTOSAR memmap.h overrides. The non-
default code sections all use the prefix ’Os_’ (i.e. Os_primitives)

7.5 Processor Modes

RTA-OS can run in the following processor modes:

Mode Notes

Trusted All trusted code runs in system (SYS) mode.
Untrusted All untrusted code runs in user (USR) mode.

RTA-OS uses the SVC handler to transfer between Untrusted and Trusted code
(i.e. SYS and USR modes) in OS Applications. This must not be overridden if
a user provided SVC handler is used.

7.6 Stack Handling

RTA-OS uses a single stack for all tasks and ISRs.

RTA-OS manages the USR/SYS stack (via register SP). No IRQ stack is used.
The RTA-OS function Os_InitializeVectorTable() transfers the current
stack pointer value to the SYS/USR stack.

If there are Category 1 ISRs attached to the Cortex CPU exception handlers
(i.e. Undefined instruction, SVC, Prefetch abort, Data abort and FIQ) then
care must be taken that either stack has been assigned to that CPU mode or
that the exception handler transfers to a mode that has a valid stack.

Hardware 41

8 Performance

This chapter provides detailed information on the functionality, performance
and memory demands of the RTA-OS kernel. RTA-OS is highly scalable. As a
result, different figures will be obtained when your application uses different
sets of features. The figures presented in this chapter are representative for
the STV0991/ARM port based on the following configuration:

• There are 32 tasks in the system

• Standard build is used

• Stack monitoring is disabled

• Time monitoring is disabled

• There are no calls to any hooks

• Tasks have unique priorities

• Tasks are not queued (i.e. tasks are BCC1 or ECC1)

• All tasks terminate/wait in their entry function

• Tasks and ISRs do not save any auxiliary registers (for example, floating
point registers)

• Resources are shared by tasks only

• The generation of the resource RES_SCHEDULER is disabled

8.1 Measurement Environment

The following hardware environment was used to take the measurements in
this chapter:

Device STV0991 on STV0991 Validation Board
CPU Clock Speed 500.0MHz
Stopwatch Speed 500.0MHz

8.2 RAM and ROM Usage for OS Objects

Each OS object requires some ROM and/or RAM. The OS objects are generated
by rtaosgen and placed in the RTA-OS library. In the main:

• Os_Cfg_Counters includes data for counters, alarms and schedule ta-
bles.

• Os_Cfg contains the data for most other OS objects.

42 Performance

The following table gives the ROM and/or RAM requirements (in bytes) for
each OS object in a simple configuration. Note that object sizes will vary
depending on the project configuration and compiler packing issues.

Object ROM RAM

Alarm 2 12
Cat 2 ISR 8 0
Counter 20 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 69
OS-Application 0 0
Resource 8 4
ScheduleTable 16 12
Task 16 0

8.3 Stack Usage

The amount of stack used by each Task/ISR in RTA-OS is equal to the stack
used in the Task/ISR body plus the context saved by RTA-OS. The size of the
run-time context saved by RTA-OS depends on the Task/ISR type and the ex-
act system configuration. The only reliable way to get the correct value for
Task/ISR stack usage is to call the Os_GetStackUsage() API function.

Note that because RTA-OS uses a single-stack architecture, the run-time con-
texts of all tasks reside on the same stack and are recovered when the task
terminates. As a result, run-time contexts of mutually exclusive tasks (for
example, those that share an internal resource) are effectively overlaid. This
means that the worst case stack usage can be significantly less than the sum
of the worst cases of each object on the system. The RTA-OS tools automat-
ically calculate the total worst case stack usage for you and present this as
part of the configuration report.

8.4 Library Module Sizes

The RTA-OS kernel is demand linked. This means that each API call is placed
into a separately linkable module. The following table lists the section sizes
for each API module (in bytes) for the simple configuration in standard status.

Library Module C
o
d

e

R
O

D
a
ta

R
W

D
a
ta

Z
I

D
a
ta

ActivateTask.o 116 0 0 0
AdvanceCounter.o 4 0 0 0
CallTrustedFunction.o 24 0 0 0
CancelAlarm.o 96 0 0 0

Performance 43

Library Module C
o
d

e

R
O

D
a
ta

R
W

D
a
ta

Z
I

D
a
ta

ChainTask.o 112 0 0 0
CheckISRMemoryAccess.o 36 0 0 0
CheckObjectAccess.o 84 0 0 0
CheckObjectOwnership.o 78 0 0 0
CheckTaskMemoryAccess.o 36 0 0 0
ClearEvent.o 44 0 0 0
ControlIdle.o 76 0 4 0
DisableAllInterrupts.o 56 0 8 0
DispatchTask.o 168 0 0 0
ElapsedTime.o 212 0 0 0
EnableAllInterrupts.o 52 0 0 0
GetActiveApplicationMode.o 12 0 0 0
GetAlarm.o 148 0 0 0
GetAlarmBase.o 44 0 0 0
GetApplicationID.o 28 0 0 0
GetCounterValue.o 64 0 0 0
GetElapsedCounterValue.o 80 0 0 0
GetEvent.o 44 0 0 0
GetExecutionTime.o 44 0 0 0
GetISRID.o 12 0 0 0
GetIsrMaxExecutionTime.o 44 0 0 0
GetIsrMaxStackUsage.o 44 0 0 0
GetResource.o 84 0 0 0
GetScheduleTableStatus.o 64 0 0 0
GetStackSize.o 4 0 0 0
GetStackUsage.o 44 0 0 0
GetStackValue.o 16 0 0 0
GetTaskID.o 16 0 0 0
GetTaskMaxExecutionTime.o 44 0 0 0
GetTaskMaxStackUsage.o 44 0 0 0
GetTaskState.o 40 0 0 0
GetVersionInfo.o 34 0 0 0
Idle.o 4 0 0 0
InShutdown.o 2 0 0 0
IncrementCounter.o 10 0 0 0
NextScheduleTable.o 124 0 0 0
Os_Cfg.o 208 648 32 528
Os_Cfg_Counters.o 4332 728 0 0
Os_ExceptionVectors.o 156 0 0 0
Os_ISRConst.o 0 336 0 0

44 Performance

Library Module C
o
d

e

R
O

D
a
ta

R
W

D
a
ta

Z
I

D
a
ta

Os_Stack.o 4 0 0 0
Os_Wrapper.o 96 0 0 0
Os_mid_wrapper.o 124 0 0 0
Os_primitives.o 28 0 0 0
Os_setjmp.o 24 0 0 0
Os_vec_init.o 204 0 0 0
ProtectionSupport.o 48 0 0 0
ReleaseResource.o 84 0 0 0
ResetIsrMaxExecutionTime.o 44 0 0 0
ResetIsrMaxStackUsage.o 44 0 0 0
ResetTaskMaxExecutionTime.o 44 0 0 0
ResetTaskMaxStackUsage.o 44 0 0 0
ResumeAllInterrupts.o 52 0 0 0
ResumeOSInterrupts.o 52 0 0 0
Schedule.o 96 0 0 0
SetAbsAlarm.o 108 0 0 0
SetEvent.o 44 0 0 0
SetRelAlarm.o 164 0 0 0
SetScheduleTableAsync.o 64 0 0 0
ShutdownOS.o 56 0 0 0
StackOverrunHook.o 6 0 0 0
StartOS.o 144 0 0 0
StartScheduleTableAbs.o 144 0 0 0
StartScheduleTableRel.o 112 0 0 0
StartScheduleTableSynchron.o 64 0 0 0
StopScheduleTable.o 80 0 0 0
SuspendAllInterrupts.o 56 0 8 0
SuspendOSInterrupts.o 68 0 8 0
SyncScheduleTable.o 64 0 0 0
SyncScheduleTableRel.o 64 0 0 0
TerminateTask.o 24 0 0 0
ValidateCounter.o 52 0 0 0
ValidateISR.o 16 0 0 0
ValidateResource.o 36 0 0 0
ValidateScheduleTable.o 36 0 0 0
ValidateTask.o 36 0 0 0
WaitEvent.o 44 0 0 0

Performance 45

8.5 Execution Time

The following tables give the execution times in CPU cycles, i.e. in terms
of ticks of the processor’s program counter. These figures will normally be
independent of the frequency at which you clock the CPU. To convert between
CPU cycles and SI time units the following formula can be used:

Time in microseconds = Time in cycles / CPU Clock rate in MHz

For example, an operation that takes 50 CPU cycles would be:

• at 20MHz = 50/20 = 2.5µs

• at 80MHz = 50/80 = 0.625µs

• at 150MHz = 50/150 = 0.333µs

While every effort is made to measure execution times using a stopwatch
running at the same rate as the CPU clock, this is not always possible on
the target hardware. If the stopwatch runs slower than the CPU clock, then
when RTA-OS reads the stopwatch, there is a possibility that the time read is
less than the actual amount of time that has elapsed due to the difference in
resolution between the CPU clock and the stopwatch (the User Guide provides
further details on the issue of uncertainty in execution time measurement).

The figures presented in Section 8.5.1 have an uncertainty of 0 CPU cycle(s).

8.5.1 Context Switching Time

Task switching time is the time between the last instruction of the previ-
ous task and the first instruction of the next task. The switching time dif-
fers depending on the switching contexts (e.g. an ActivateTask() versus a
ChainTask()).

Interrupt latency is the time between an interrupt request being recognized
by the target hardware and the execution of the first instruction of the user
provided handler function:

For Category 1 ISRs this is the time required for the hardware to recognize
the interrupt.

For Category 2 ISRs this is the time required for the hardware to recognize
the interrupt plus the time required by RTA-OS to set-up the context in
which the ISR runs.

46 Performance

Figure 8.1 shows the measured context switch times for RTA-OS.

Switch Key CPU Cycles Actual Time

Task activation A 2487 4.97us
Task termination with resume B 1578 3.16us
Task termination with switch to new
task

C 1631 3.26us

Chaining a task D 3494 6.99us
Waiting for an event resulting in tran-
sition to the WAITING state

E 5140 10.3us

Setting an event results in task
switch

F 6716 13.4us

Non-preemptive task offers a pre-
emption point (co-operative schedul-
ing)

G 2557 5.11us

Releasing a resource results in a task
switch

H 2515 5.03us

Entering a Category 2 ISR I 2398 4.8us
Exiting a Category 2 ISR and resum-
ing the interrupted task

J 2243 4.49us

Exiting a Category 2 ISR and switch-
ing to a new task

K 2693 5.39us

Entering a Category 1 ISR L 2109 4.22us

Performance 47

(a) Task activated. Termination resumes
preempted task.

(b) Task activated. Termination switches into new task.

(c) Task chained. (d) Task waits. Task is resumed when
event set.

(e) Task switch when re-
source is released.

(f) Request for scheduling made by non-
preemptive task.

(g) Category 2 interrupt entry. Interrupted
task resumed on exit.

(h) Category 2 interrupt entry. Switch to new task on exit. (i) Category 1 interrupt entry.

Figure 8.1: Context Switching

48 Performance

9 Finding Out More

Additional information about STV0991/ARM-specific parts of RTA-OS can be
found in the following manuals:

STV0991/ARM Release Note. This document provides information about
the STV0991/ARM port plug-in release, including a list of changes from
previous releases and a list of known limitations.

Information about the port-independent parts of RTA-OS can be found in the
following manuals:

Getting Started Guide. This document explains how to install RTA-OS tools
and describes the underlying principles of the operating system

Reference Guide. This guide provides a complete reference to the API, pro-
gramming conventions and tool operation for RTA-OS.

User Guide. This guide shows you how to use RTA-OS to build real-time ap-
plications.

Finding Out More 49

10 Contacting ETAS

10.1 Technical Support

Technical support is available to all users with a valid support contract. If you
do not have a valid support contract, please contact your regional sales office
(see Section 10.2.2).

The best way to get technical support is by email. Any problems or questions
about the use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you
call the support hotline on:

+44 (0)1904 562624.

The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the fol-
lowing information:

• Your support contract number

• Your .xml, .arxml, .rtaos and/or .stc files

• The command line which caused the error

• The version of the ETAS tools you are using

• The version of the compiler tool chain you are using

• The error message you received (if any)

• The file Diagnostic.dmp if it was generated

10.2 General Enquiries

10.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-300
Germany WWW: www.etas.com

10.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team
(where available) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

50 Contacting ETAS

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

A
Assembler, 33
AUTOSAR OS includes

Os.h, 27
Os_Cfg.h, 27
Os_MemMap.h, 27

C
CAT1_ISR, 29
Compiler, 32
Configuration

Port-Specific Parameters, 23

D
Debugger, 35

E
ETAS License Manager, 12

Installation, 12

F
Files, 26

H
Hardware

Requirements, 10

I
Installation, 10

Default Directory, 11
Verification, 21

Interrupts, 38
Category 1, 40
Category 2, 40
Default, 40

IPL, 38

L
Librarian, 34
Library

Name of, 27
License, 12

Borrowing, 17
Concurrent, 14
Grace Mode, 13

Installation, 16
Machine-named, 14
Status, 17
Troubleshooting, 18
User-named, 14

Linker, 34

M
Memory Model, 41

O
Os_Disable_x, 29
Os_DisableAllConfiguredInterrupts,

29
Os_Enable_x, 30
Os_EnableAllConfiguredInterrupts,

30
Os_InitializeVectorTable, 28
Os_StackSizeType, 30
Os_StackValueType, 31

P
Parameters of Implementation, 23
Performance, 42

Context Switching Times, 46
Library Module Sizes, 43
RAM and ROM, 42
Stack Usage, 43

Processor Modes, 41
Trusted, 41
Untrusted, 41

R
Registers

CPSR, 37, 38
Initialization, 36
Non-modifiable, 37
SCTLR.V, 37
SCTLR.VE, 37, 38
SP, 37, 38
VIC, 38
VICx_INTENABLE, 37
VICx_INTSELECT, 37
VICx_VECTADDR, 37

Index 51

VICx_VECTPRIORITYx, 37

S

Software

Requirements, 10

Stack, 41

T

Target, 36
Variants, 36

Toolchain, 32

V
Variants, 36
Vector Table

Base Address, 39

52 Index

	Introduction
	About You
	Document Conventions
	References

	Installing the RTA-OS Port Plug-in
	Preparing to Install
	Hardware Requirements
	Software Requirements

	Installation
	Installation Directory

	Licensing
	Installing the ETAS License Manager
	Licenses
	Installing a Concurrent License Server
	Using the ETAS License Manager
	Troubleshooting Licenses

	Verifying your Installation
	Checking the Port
	Running the Sample Applications

	Port Characteristics
	Parameters of Implementation
	Configuration Parameters
	Stack used for C-startup
	Stack used when idle
	Stack overheads for ISR activation
	Stack overheads for ECC tasks
	Stack overheads for ISR
	ORTI/Lauterbach
	ORTI Stack Fill
	Enable stack repositioning
	Enable untrusted stack check
	Block default interrupt

	Generated Files

	Port-Specific API
	API Calls
	Os_InitializeVectorTable

	Macros
	CAT1_ISR
	Os_DisableAllConfiguredInterrupts
	Os_Disable_x
	Os_EnableAllConfiguredInterrupts
	Os_Enable_x

	Type Definitions
	Os_StackSizeType
	Os_StackValueType

	Toolchain
	Compiler
	Assembler
	Librarian
	Linker
	Debugger

	Hardware
	Supported Devices
	Register Usage
	Initialization
	Modification

	Interrupts
	Interrupt Priority Levels
	Allocation of ISRs to Interrupt Vectors
	Vector Table
	Writing Category 1 Interrupt Handlers
	Writing Category 2 Interrupt Handlers
	Default Interrupt

	Memory Model
	Processor Modes
	Stack Handling

	Performance
	Measurement Environment
	RAM and ROM Usage for OS Objects
	Stack Usage
	Library Module Sizes
	Execution Time
	Context Switching Time

	Finding Out More
	Contacting ETAS
	Technical Support
	General Enquiries
	ETAS Global Headquarters
	ETAS Local Sales & Support Offices

