
RTA-OS
TriCore/GHS Port Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2018 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10677-PG-5.0.8 EN-08-2018

2 Copyright

Safety Notice

This ETAS product fulfills standard quality management requirements. If re-
quirements of specific safety standards (e.g. IEC 61508, ISO 26262) need to
be fulfilled, these requirements must be explicitly defined and ordered by the
customer. Before use of the product, customer must verify the compliance
with specific safety standards.

Safety Notice 3

Contents

1 Introduction 8
1.1 About You . 9
1.2 Document Conventions . 9
1.3 References . 10

2 Installing the RTA-OS Port Plug-in 11
2.1 Preparing to Install . 11

2.1.1 Hardware Requirements 11
2.1.2 Software Requirements 11

2.2 Installation . 12
2.2.1 Installation Directory 12

2.3 Licensing . 13
2.3.1 Installing the ETAS License Manager 13
2.3.2 Licenses . 14
2.3.3 Installing a Concurrent License Server 15
2.3.4 Using the ETAS License Manager 16
2.3.5 Troubleshooting Licenses 19

3 Verifying your Installation 22
3.1 Checking the Port . 22
3.2 Running the Sample Applications 22

4 Port Characteristics 24
4.1 Parameters of Implementation 24
4.2 Configuration Parameters . 24

4.2.1 Stack used for C-startup 24
4.2.2 Stack used when idle 25
4.2.3 Stack overheads for ISR activation 25
4.2.4 Stack overheads for ECC tasks 25
4.2.5 Stack overheads for ISR 26
4.2.6 ORTI/Lauterbach . 26
4.2.7 ORTI/winIDEA . 26
4.2.8 ORTI Stack Fill . 26
4.2.9 Support winIDEA Analyzer 27
4.2.10 ORTI/SMP . 27
4.2.11 CrossCore SRC0 . 27
4.2.12 CrossCore SRC1 . 27
4.2.13 CrossCore SRC2 . 28
4.2.14 CrossCore SRC3 . 28
4.2.15 CrossCore SRC4 . 28
4.2.16 CrossCore SRC5 . 28
4.2.17 Block default interrupt 28
4.2.18 User Mode . 29
4.2.19 Trusted with protection PRS 29
4.2.20 Guard supervisor access 29

4 Contents

4.2.21 Interrupt vector matches priority 30
4.2.22 OS Locks disable Cat1 30
4.2.23 Enable stack repositioning 30
4.2.24 Enhanced Isolation . 31
4.2.25 Link Type . 31
4.2.26 Small data threshold 31
4.2.27 Short enums . 31
4.2.28 FP Instructions . 32
4.2.29 Far jumps . 32
4.2.30 Max Optimizations . 32
4.2.31 Optimization Type . 33
4.2.32 Customer Option Set 1 33
4.2.33 Customer Option Set 2 33

4.3 Generated Files . 34

5 Port-Specific API 35
5.1 API Calls . 35

5.1.1 Os_GetTrapInfo . 35
5.1.2 Os_InitializeInterruptTable 37
5.1.3 Os_InitializeServiceRequests 37
5.1.4 Os_InitializeTrapTable 39
5.1.5 Os_InitializeVectorTable 39
5.1.6 Os_StartCoreGate . 40

5.2 Callbacks . 41
5.2.1 Os_Cbk_StartCore . 41

5.3 Macros . 42
5.3.1 CAT1_ISR . 42
5.3.2 CAT1_TRAP . 42
5.3.3 OS_CORE_isrname . 43
5.3.4 OS_INIT_srcname . 43
5.3.5 OS_VEC_isrname . 43
5.3.6 Os_DisableAllConfiguredInterrupts 43
5.3.7 Os_Disable_x . 43
5.3.8 Os_EnableAllConfiguredInterrupts 44
5.3.9 Os_Enable_x . 44
5.3.10 Os_IntChannel_x . 44

5.4 Type Definitions . 44
5.4.1 OsTrapInfoRefType . 44
5.4.2 OsTrapInfoType . 45
5.4.3 Os_StackSizeType . 45
5.4.4 Os_StackTraceType . 45
5.4.5 Os_StackValueType . 45

Contents 5

6 Toolchain 46
6.1 Compiler Versions . 46

6.1.1 v2018.1.5 . 46
6.1.2 v2017.1.5 . 46
6.1.3 v2015.1.7 . 47

6.2 Options used to generate this guide 47
6.2.1 Compiler . 47
6.2.2 Assembler . 48
6.2.3 Librarian . 49
6.2.4 Linker . 49
6.2.5 Debugger . 50

7 Hardware 52
7.1 Supported Devices . 52
7.2 Register Usage . 53

7.2.1 Initialization . 53
7.2.2 Modification . 54

7.3 Interrupts . 55
7.3.1 Interrupt Priority Levels 55
7.3.2 Allocation of ISRs to Interrupt Vectors 55
7.3.3 Vector Table . 56
7.3.4 Writing Category 1 Interrupt Handlers 58
7.3.5 Writing Category 2 Interrupt Handlers 58
7.3.6 Default Interrupt . 59

7.4 Memory Model . 59
7.5 Processor Modes . 59
7.6 Stack Handling . 59

8 Performance 60
8.1 Measurement Environment . 60
8.2 RAM and ROM Usage for OS Objects 60

8.2.1 Single Core . 61
8.2.2 Multi Core . 61

8.3 Stack Usage . 61
8.4 Library Module Sizes . 62

8.4.1 Single Core . 62
8.4.2 Multi Core . 65

8.5 Execution Time . 69
8.5.1 Context Switching Time 70

9 Finding Out More 72

6 Contents

10 Contacting ETAS 73
10.1 Technical Support . 73
10.2 General Enquiries . 73

10.2.1 ETAS Global Headquarters 73
10.2.2 ETAS Local Sales & Support Offices 73

Contents 7

1 Introduction

RTA-OS is a small and fast real-time operating system that conforms to both
the AUTOSAR OS (R3.0.1 -> R3.0.7, R3.1.1 -> R3.1.5, R3.2.1 -> R3.2.2, R4.0.1
-> R4.3.1) and OSEK/VDX 2.2.3 standards (OSEK is now standardized in ISO
17356). The operating system is configured and built on a PC, but runs on
your target hardware.

This document describes the RTA-OS TriCore/GHS port plug-in that cus-
tomizes the RTA-OS development tools for the Infineon TriCore with the GHS
compiler. It supplements the more general information you can find in the
User Guide and the Reference Guide.

The document has two parts. Chapters 2 to 3 help you understand the Tri-
Core/GHS port and cover:

• how to install the TriCore/GHS port plug-in;

• how to configure TriCore/GHS-specific attributes;

• how to build an example application to check that the TriCore/GHS port
plug-in works.

Chapters 4 to 8 provide reference information including:

• the number of OS objects supported;

• required and recommended toolchain parameters;

• how RTA-OS interacts with the TriCore, including required register set-
tings, memory models and interrupt handling;

• memory consumption for each OS object;

• memory consumption of each API call;

• execution times for each API call.

For the best experience with RTA-OS it is essential that you read and under-
stand this document.

8 Introduction

1.1 About You

You are a trained embedded systems developer who wants to build real-time
applications using a preemptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling
and linking of C code for embedded applications with your chosen toolchain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows op-
erating system, including installing software, selecting menu items, clicking
buttons, navigating files and folders.

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options appear in bold, blue characters.

Click OK. Button labels appear in bold characters

Press <Enter>. Key commands are enclosed in angle brackets.

The “Open file” dialog
box appears

GUI element names, for example window titles,
fields, etc. are enclosed in double quotes.

Activate(Task1) Program code, header file names, C type names,
C functions and API call names all appear in a
monospaced typeface.

See Section 1.2. Internal document hyperlinks are shown in blue
letters.

Functionality in RTA-OS that might not be portable
to other implementations of AUTOSAR OS is
marked with the RTA-OS icon.

Important instructions that you must follow care-
fully to ensure RTA-OS works as expected are
marked with a caution sign.

Introduction 9

1.3 References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. OSEK is now standardized in ISO
17356. For details of the OSEK standards, please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

10 Introduction

http://www.osek-vdx.org
http://www.autosar.org

2 Installing the RTA-OS Port Plug-in

2.1 Preparing to Install

RTA-OS port plug-ins are supplied as a downloadable electronic installation
image which you obtain from the ETAS Web Portal. You will have been pro-
vided with access to the download when you bought the port. You may op-
tionally have requested an installation CD which will have been shipped to
you. In either case, the electronic image and the installation CD contain iden-
tical content.

Integration Guidance 2.1:You must have installed the RTA-OS tools be-
fore installing the TriCore/GHS port plug-in. If you have not yet done this
then please follow the instructions in the Getting Started Guide.

2.1.1 Hardware Requirements

You should make sure that you are using at least the following hardware be-
fore installing and using RTA-OS on a host PC:

• 1GHz Pentium Windows-capable PC.

• 2G RAM.

• 20G hard disk space.

• CD-ROM or DVD drive (Optional)

• Ethernet card.

2.1.2 Software Requirements

RTA-OS requires that your host PC has one of the following versions of Mi-
crosoft Windows installed:

• Windows 7

• Windows 8

• Windows 10

Integration Guidance 2.2:The tools provided with RTA-OS require
Microsoft’s .NET Framework v2.0 (included as part of .NET Frame-
work v3.5) and v4.0 to be installed. You should ensure that these
have been installed before installing RTA-OS. The .NET framework
is not supplied with RTA-OS but is freely available from https:
//www.microsoft.com/net/download. To install .NET 3.5 on Win-
dows 10 see https://docs.microsoft.com/en-us/dotnet/framework/
install/dotnet-35-windows-10.
The migration of the code from v2.0 to v4.0 will occur over a period of time
for performance and maintenance reasons.

Installing the RTA-OS Port Plug-in 11

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10

2.2 Installation

Target port plug-ins are installed in the same way as the tools:

1. Either

• Double click the executable image; or

• Insert the RTA-OS TriCore/GHS CD into your CD-ROM or DVD drive.

If the installation program does not run automatically then you will
need to start the installation manually. Navigate to the root direc-
tory of your CD/DVD drive and double click autostart.exe to start
the setup.

2. Follow the on-screen instructions to install the TriCore/GHS port plug-in.

By default, ports are installed into C:\ETAS\RTA-OS\Targets. During the
installation process, you will be given the option to change the folder to which
RTA-OS ports are installed. You will normally want to ensure that you install
the port plug-in in the same location that you have installed the RTA-OS tools.
You can install different versions of the tools/targets into different directories
and they will not interfere with each other.

Integration Guidance 2.3:Port plug-ins can be installed into any
location, but using a non-default directory requires the use of the
--target_include argument to both rtaosgen and rtaoscfg. For ex-
ample:

rtaosgen --target_include:<target_directory>

2.2.1 Installation Directory

The installation will create a sub-directory under Targets with the name
TriCoreGHS_5.0.8. This contains everything to do with the port plug-in.

Each version of the port installs in its own directory - the trailing _5.0.8 is the
port’s version identifier. You can have multiple different versions of the same
port installed at the same time and select a specific version in a project’s
configuration.

The port directory contains:

TriCoreGHS.dll - the port plug-in that is used by rtaosgen and rtaoscfg.

RTA-OS TriCoreGHS Port Guide.pdf - the documentation for the port (the
document you are reading now).

12 Installing the RTA-OS Port Plug-in

RTA-OS TriCoreGHS Release Note.pdf - the release note for the port.
This document provides information about the port plug-in release, in-
cluding a list of changes from previous releases and a list of known
limitations.

There may be other port-specific documentation supplied which you can also
find in the root directory of the port installation. All user documentation is
distributed in PDF format which can be read using Adobe Acrobat Reader.
Adobe Acrobat Reader is not supplied with RTA-OS but is freely available from
http://www.adobe.com.

2.3 Licensing

RTA-OS is protected by FLEXnet licensing technology. You will need a valid
license key in order to use RTA-OS.

Licenses for the product are managed using the ETAS License Manager
which keeps track of which licenses are installed and where to find them.
The information about which features are required for RTA-OS and any port
plug-ins is stored as license signature files that are stored in the folder
<install_folder>\bin\Licenses.

The ETAS License Manager can also tell you key information about your li-
censes including:

• Which ETAS products are installed

• Which license features are required to use each product

• Which licenses are installed

• When licenses expire

• Whether you are using a local or a server-based license

Figure 2.1 shows the ETAS License Manager in operation.

2.3.1 Installing the ETAS License Manager

Integration Guidance 2.4:The ETAS License Manager must be installed
for RTA-OS to work. It is highly recommended that you install the ETAS
License Manager during your installation of RTA-OS.

The installer for the ETAS License Manager contains two components:

1. the ETAS License Manager itself;

Installing the RTA-OS Port Plug-in 13

http://www.adobe.com

Figure 2.1: The ETAS License manager

2. a set of re-distributable FLEXnet utilities. The utilities include the soft-
ware and instructions required to setup and run a FLEXnet license
server manager if concurrent licenses are required (see Sections 2.3.2
and 2.3.3 for further details)

During the installation of RTA-OS you will be asked if
you want to install the ETAS License Manager. If not,
you can install it manually at a later time by running
<install_folder>\LicenseManager\LicensingStandaloneInstallation.exe.

Once the installation is complete, the ETAS License Manager can be found in
C:\Program Files\Common Files\ETAS\Licensing.

After it is installed, a link to the ETAS License Manager can be found in the
Windows Start menu under ProgramsÔ ETAS Ô License Management Ô

ETAS License Manager.

2.3.2 Licenses

When you install RTA-OS for the first time the ETAS License Manager will al-
low the software to be used in grace mode for 14 days. Once the grace mode
period has expired, a license key must be installed. If a license key is not
available, please contact your local ETAS sales representative. Contact de-
tails can be found in Chapter 10.

You should identify which type of license you need and then provide ETAS
with the appropriate information as follows:

14 Installing the RTA-OS Port Plug-in

Machine-named licenses allows RTA-OS to be used by any user logged
onto the PC on which RTA-OS and the machine-named license is in-
stalled.

A machine-named license can be issued by ETAS when you provide the
host ID (Ethernet MAC address) of the host PC

User-named licenses allow the named user (or users) to use RTA-OS on
any PC in the network domain.

A user-named license can be issued by ETAS when you provide the Win-
dows user-name for your network domain.

Concurrent licenses allow any user on any PC up to a specified number of
users to use RTA-OS. Concurrent licenses are sometimes called floating
licenses because the license can float between users.

A concurrent license can be issued by ETAS when you provide the fol-
lowing information:

1. The name of the server

2. The Host ID (MAC address) of the server.

3. The TCP/IP port over which your FLEXnet license server will serve
licenses. A default installation of the FLEXnet license server uses
port 27000.

You can use the ETAS License Manager to get the details that you must pro-
vide to ETAS when requesting a machine-named or user-named license and
(optionally) store this information in a text file.

Open the ETAS License Manager and choose Tools Ô Obtain License Info
from the menu. For machine-named licenses you can then select the network
adaptor which provides the Host ID (MAC address) that you want to use as
shown in Figure 2.2. For a user-based license, the ETAS License Manager
automatically identifies the Windows username for the current user.

Selecting “Get License Info” tells you the Host ID and User information and
lets you save this as a text file to a location of your choice.

2.3.3 Installing a Concurrent License Server

Concurrent licenses are allocated to client PCs by a FLEXnet license server
manager working together with a vendor daemon. The vendor daemon for
ETAS is called ETAS.exe. A copy of the vendor daemon is placed on disk
when you install the ETAS License Manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

Installing the RTA-OS Port Plug-in 15

Figure 2.2: Obtaining License Information

To work with an ETAS concurrent license, a license server must be configured
which is accessible from the PCs wishing to use a license. The server must be
configured with the following software:

• FLEXnet license server manager;

• ETAS vendor daemon (ETAS.exe);

It is also necessary to install your concurrent license on the license server.

In most organizations there will be a single FLEXnet license server manager
that is administered by your IT department. You will need to ask your IT
department to install the ETAS vendor daemon and the associated concurrent
license.

If you do not already have a FLEXnet license server then you will need to
arrange for one to be installed. A copy of the FLEXnet license server, the
ETAS vendor daemon and the instructions for installing and using the server
(LicensingEndUserGuide.pdf) are placed on disk when you install the ETAS
License manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

2.3.4 Using the ETAS License Manager

If you try to run the RTA-OS GUI rtaoscfg without a valid license, you will be
given the opportunity to start the ETAS License Manager and select a license.
(The command-line tool rtaosgen will just report the license is not valid.)

16 Installing the RTA-OS Port Plug-in

Figure 2.3: Unlicensed RTA-OS Installation

When the ETAS License Manager is launched, it will display the RTA-OS license
state as NOT AVAILABLE. This is shown in Figure 2.3.

Note that if the ETAS License Manager window is slow to start, rtaoscfg may
ask a second time whether you want to launch it. You should ignore the
request until the ETAS License Manager has opened and you have completed
the configuration of the licenses. You should then say yes again, but you can
then close the ETAS License Manager and continue working.

License Key Installation

License keys are supplied in an ASCII text file, which will be sent to you on
completion of a valid license agreement.

If you have a machine-based or user-based license key then you can simply
install the license by opening the ETAS License Manager and selecting File Ô

Add License File menu.

If you have a concurrent license key then you will need to create a license
stub file that tells the client PC to look for a license on the FLEXnet server as
follows:

1. create a copy of the concurrent license file

2. open the copy of the concurrent license file and delete every line except
the one starting with SERVER

3. add a new line containing USE_SERVER

4. add a blank line

Installing the RTA-OS Port Plug-in 17

Figure 2.4: Licensed features for RTA-OS

5. save the file

The file you create should look something like this:

SERVER <server name> <MAC address> <TCP/IP Port>¶
USE_SERVER¶
¶

Once you have create the license stub file you can install the license by open-
ing the ETAS License Manager and selecting File Ô Add License File menu
and choosing the license stub file.

License Key Status

When a valid license has been installed, the ETAS License Manager will dis-
play the license version, status, expiration date and source as shown in Fig-
ure 2.4.

Borrowing a concurrent license

If you use a concurrent license and need to use RTA-OS on a PC that will be
disconnected from the network (for example, you take a demonstration to
a customer site), then the concurrent license will not be valid once you are
disconnected.

To address this problem, the ETAS License Manager allows you to temporarily
borrow a license from the license server.

To borrow a license:

18 Installing the RTA-OS Port Plug-in

1. Right click on the license feature you need to borrow.

2. Select “Borrow License”

3. From the calendar, choose the date that the borrowed license should
expire.

4. Click “OK”

The license will automatically expire when the borrow date elapses. A bor-
rowed license can also be returned before this date. To return a license:

1. Reconnect to the network;

2. Right-click on the license feature you have borrowed;

3. Select “Return License”.

2.3.5 Troubleshooting Licenses

RTA-OS tools will report an error if you try to use a feature for which a correct
license key cannot be found. If you think that you should have a license
for a feature but the RTA-OS tools appear not to work, then the following
troubleshooting steps should be followed before contacting ETAS:

Can the ETAS License Manager see the license?

The ETAS License Manager must be able to see a valid license key for
each product or product feature you are trying to use.

You can check what the ETAS License Manager can see by starting it
from the Help Ô License Manager. . . menu option in rtaoscfg or di-
rectly from the Windows Start Menu - Start Ô ETAS Ô License Man-
agement Ô ETAS License Manager.

The ETAS License Manager lists all license features and their status.
Valid licenses have status INSTALLED. Invalid licenses have status
NOT AVAILABLE.

Is the license valid?

You may have been provided with a time-limited license (for example,
for evaluation purposes) and the license may have expired. You can
check that the Expiration Date for your licensed features to check that
it has not elapsed using the ETAS License Manager.

If a license is due to expire within the next 30 days, the ETAS Li-
cense Manager will use a warning triangle to indicate that you need
to get a new license. Figure 2.5 shows that the license features
LD_RTA-OS3.0_VRTA and LD_RTA-OS3.0_SRC are due to expire.

If your license has elapsed then please contact your local ETAS sales
representative to discuss your options.

Installing the RTA-OS Port Plug-in 19

Figure 2.5: Licensed features that are due to expire

Does the Ethernet MAC address match the one specified?

If you have a machine based license then it is locked to a specific MAC
address. You can find out the MAC address of your PC by using the ETAS
License Manager (Tools Ô Obtain License Info) or using the Microsoft
program ipconfig /all at a Windows Command Prompt.

You can check that the MAC address in your license file by opening your
license file in a text editor and checking that the HOSTID matches the
MAC address identified by the ETAS License Manager or the Physical
Address reported by ipconfig /all.

If the HOSTID in the license file (or files) does not match your MAC ad-
dress then you do not have a valid license for your PC. You should con-
tact your local ETAS sales representative to discuss your options.

Is your Ethernet Controller enabled?

If you use a laptop and RTA-OS stops working when you disconnect from
the network then you should check your hardware settings to ensure
that your Ethernet controller is not turned off to save power when a net-
work connection is not present. You can do this using Windows Control
Panel. Select System Ô Hardware Ô Device Manager then select
your Network Adapter. Right click to open Properties and check that
the Ethernet controller is not configured for power saving in Advanced
and/or Power Management settings.

Is the FlexNet License Server visible?

20 Installing the RTA-OS Port Plug-in

If your license is served by a FlexNet license server, then the ETAS Li-
cense Manager will report the license as NOT AVAILABLE if the license
server cannot be accessed.

You should contact your IT department to check that the server is work-
ing correctly.

Still not fixed?

If you have not resolved your issues, after confirming these points
above, please contact ETAS technical support. The contact address is
provided in Section 10.1. You must provide the contents and location of
your license file and your Ethernet MAC address.

Installing the RTA-OS Port Plug-in 21

3 Verifying your Installation

Now that you have installed both the RTA-OS tools and a port plug-in and
have obtained and installed a valid license key you can check that things are
working.

3.1 Checking the Port

The first thing to check is that the RTA-OS tools can see the new port. You can
do this in two ways:

1. use the rtaosgen tool

You can run the command rtaosgen −−target:? to get a list of avail-
able targets, the versions of each target and the variants supported, for
example:

RTA-OS Code Generator
Version p.q.r.s, Copyright © ETAS nnnn
Available targets:
TriCoreHighTec_n.n.n [TC1797...]
VRTA_n.n.n [MinGW,VS2005,VS2008,VS2010]

2. use the rtaoscfg tool

The second way to check that the port plug-in can be seen is by start-
ing rtaoscfg and selecting Help Ô Information... drop down menu.
This will show information about your complete RTA-OS installation and
license checks that have been performed.

Integration Guidance 3.1:If the target port plug-ins have been installed
to a non-default location, then the --target_include argument must be
used to specify the target location.

If the tools can see the port then you can move on to the next stage – check-
ing that you can build an RTA-OS library and use this in a real program that
will run on your target hardware.

3.2 Running the Sample Applications

Each RTA-OS port is supplied with a set of sample applications that allow you
to check that things are running correctly. To generate the sample applica-
tions:

1. Create a new working directory in which to build the sample applica-
tions.

2. Open a Windows command prompt in the new directory.

22 Verifying your Installation

3. Execute the command:

rtaosgen --target:<your target> --samples:[Applications]

e.g.

rtaosgen --target:[MPC5777Mv2]PPCe200HighTec_5.0.8
--samples:[Applications]

You can then use the build.bat and run.bat files that get created for each
sample application to build and run the sample. For example:

cd Samples\Applications\HelloWorld
build.bat
run.bat

Remember that your target toolchain must be accessible on the Windows
PATH for the build to be able to run successfully.

Integration Guidance 3.2:It is strongly recommended that you build
and run at least the Hello World example in order to verify that RTA-OS can
use your compiler toolchain to generate an OS kernel and that a simple
application can run with that kernel.

For further advice on building and running the sample applications, please
consult your Getting Started Guide.

Verifying your Installation 23

4 Port Characteristics

This chapter tells you about the characteristics of RTA-OS for the TriCore/GHS
port.

4.1 Parameters of Implementation

To be a valid OSEK (ISO 17356) or AUTOSAR OS, an implementation must
support a minimum number of OS objects. The following table specifies the
minimum numbers of each object required by the standards and the maxi-
mum number of each object supported by RTA-OS for the TriCore/GHS port.

Parameter Required RTA-OS

Tasks 16 1024
Tasks not in SUSPENDED state 16 1024
Priorities 16 1024
Tasks per priority - 1024
Queued activations per priority - 4294967296
Events per task 8 32
Software Counters 8 4294967296
Hardware Counters - 4294967296
Alarms 1 4294967296
Standard Resources 8 4294967296
Linked Resources - 4294967296
Nested calls to GetResource() - 4294967296
Internal Resources 2 no limit
Application Modes 1 4294967296
Schedule Tables 2 4294967296
Expiry Points per Schedule Table - 4294967296
OS Applications - 4294967295
Trusted functions - 4294967295
Spinlocks (multicore) - 4294967295
Register sets - 4294967296

4.2 Configuration Parameters

Port-specific parameters are configured in the General Ô Target workspace
of rtaoscfg, under the “Target-Specific” tab.

The following sections describe the port-specific configuration parameters for
the TriCore/GHS port, the name of the parameter as it will appear in the XML
configuration and the range of permitted values (where appropriate).

4.2.1 Stack used for C-startup

XML name SpPreStartOS

24 Port Characteristics

Description

The amount of stack already in use at the point that StartOS() is called. This
value is simply added to the total stack size that the OS needs to support all
tasks and interrupts at run-time. Typically you use this to obtain the amount
of stack that the linker must allocate. The value does not normally change if
the OS configuration changes.

4.2.2 Stack used when idle

XML name SpStartOS

Description

The amount of stack used when the OS is in the idle state (typically inside
Os_Cbk_Idle()). This is just the difference between the stack used at the point
that Os_StartOS() is called and the stack used when no task or interrupt is
running. This can be zero if Os_Cbk_Idle() is not used. It must include the
stack used by any function called while in the idle state. The value does not
normally change if the OS configuration changes.

4.2.3 Stack overheads for ISR activation

XML name SpIDisp

Description

The extra amount of stack needed to activate a task from within an ISR. If a
task is activated within a Category 2 ISR, and that task has a higher priority
than any currently running task, then for some targets the OS may need to
use marginally more stack than if it activates a task that is of lower priority.
This value accounts for that. On most targets this value is zero. This value
is used in worst-case stack size calculations. The value may change if signifi-
cant changes are made to the OS configuration. e.g. STANDARD/EXTENDED,
SC1/2/3/4.

4.2.4 Stack overheads for ECC tasks

XML name SpECC

Description

The extra amount of stack needed to start an ECC task. ECC tasks need
to save slightly more state on the stack when they are started than BCC
tasks. This value contains the difference. The value may change if signifi-
cant changes are made to the OS configuration. e.g. STANDARD/EXTENDED,
SC1/2/3/4.

Port Characteristics 25

4.2.5 Stack overheads for ISR

XML name SpPreemption

Description

The amount of stack used to service a Category 2 ISR. When a Category 2 ISR
interrupts a task, it usually places some data on the stack. If the ISR measures
the stack to determine if the preempted task has exceeded its stack budget,
then it will overestimate the stack usage unless this value is subtracted from
the measured size. The value is also used when calculating the worst-case
stack usage of the system. Be careful to set this value accurately. If its value
is too high then when the subtraction occurs, 32-bit underflow can occur and
cause the OS to think that a budget overrun has been detected. The value
may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.6 ORTI/Lauterbach

XML name Orti22Lauterbach

Description

Select ORTI generation for the Lauterbach debugger.

Settings

Value Description

true Generate Lauterbach ORTI
false No Lauterbach ORTI (default)

4.2.7 ORTI/winIDEA

XML name Orti21winIDEA

Description

Select ORTI generation for winIDEA debugger.

Settings

Value Description

true Generate winIDEA ORTI
false No winIDEA ORTI (default)

4.2.8 ORTI Stack Fill

XML name OrtiStackFill

26 Port Characteristics

Description

Expands ORTI information to cover stack address, size and fill pattern details
to support debugger stack usage monitoring.

Settings

Value Description

true Enable Stack Fill
false Disable Stack Fill (default)

4.2.9 Support winIDEA Analyzer

XML name winIDEAAnalyzer

Description

Adds support for the winIDEA profiler to track ORTI items.

Settings

Value Description

true Support Analyzer
false No support for Analyzer (default)

4.2.10 ORTI/SMP

XML name OrtiSMPProposal

Description

Emit ORTI according to the ORTI_SMP_Proposal_v4.pdf (multicore only).

Settings

Value Description

true Generate ORTI/SMP
false Use RTA-OS legacy (default)

4.2.11 CrossCore SRC0

XML name CrossCoreSRC0

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 0.
e.g. SRC_GPSR02. A free register will be selected automatically if one is not
specified. Multicore only.

4.2.12 CrossCore SRC1

XML name CrossCoreSRC1

Port Characteristics 27

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 1.
e.g. SRC_GPSR02. A free register will be selected automatically if one is not
specified. Multicore only.

4.2.13 CrossCore SRC2

XML name CrossCoreSRC2

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 2.
e.g. SRC_GPSR02. A free register will be selected automatically if one is not
specified. Multicore only.

4.2.14 CrossCore SRC3

XML name CrossCoreSRC3

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 3.
e.g. SRC_GPSR02. A free register will be selected automatically if one is not
specified. Multicore only.

4.2.15 CrossCore SRC4

XML name CrossCoreSRC4

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 4.
e.g. SRC_GPSR02. A free register will be selected automatically if one is not
specified. Multicore only.

4.2.16 CrossCore SRC5

XML name CrossCoreSRC5

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 5.
e.g. SRC_GPSR02. A free register will be selected automatically if one is not
specified. Multicore only.

4.2.17 Block default interrupt

XML name block_default_interrupt

28 Port Characteristics

Description

This option is provided for compatibility reasons only. SRC registers for un-
used registers are left in their power-on disabled state which blocks spurious
interrupts and has no impact on the generated code.

Settings

Value Description

true Ignored
false Ignored (default)

4.2.18 User Mode

XML name UserMode

Description

Specify the PSW.IO user mode setting used for untrusted code. You may need
to set up SYSCON register in User-1 mode.

Settings

Value Description

User-0 PSW-IO 00: no peripheral access (default)
User-1 PSW-IO 01: regular peripheral access

4.2.19 Trusted with protection PRS

XML name TWPprs

Description

Specify the PSW.PRS setting used for trusted-with-protection code.

Settings

Value Description

1 PSW-PRS 01
2 PSW-PRS 10 (default)
3 PSW-PRS 11

4.2.20 Guard supervisor access

XML name guard_supervisor_access

Description

This option adds extra security checks to the System Call trap handler to
validate that the caller is the OS rather than some application code.

Port Characteristics 29

Settings

Value Description

true Extra checks
false No checks (default)

4.2.21 Interrupt vector matches priority

XML name IPL_matches_vector

Description

RTA-OS will normally pack interrupts to minimize the size of the interrupt vec-
tor table. This reduces the memory size and reduces the interrupt entry time.
Some customers prefer to use the interrupt priority to determine the inter-
rupt’s SRC.SRPN value.

Settings

Value Description

true Try to match SRPN and priority
false Pack vectors (default)

4.2.22 OS Locks disable Cat1

XML name OSLockDisableAll

Description

Specify whether all interrupts are disabled while internal OS spinlocks are
held. This may reduce cross-core blocking. It should normally be selected
if OS option ’Add Spinlock APIs for CAT1 ISRs’ is active. This does not affect
spinlocks accessed using the GetSpinlock or TryToGetSpinlock APIs

Settings

Value Description

true Disable all interrupts
false Do not disable interrupts (default)

4.2.23 Enable stack repositioning

XML name AlignUntrustedStacks

Description

Use to support realignment of the stack for untrusted code when there are
MPU protection region granularity issues. Refer to the documentation for
Os_Cbk_SetMemoryAccess

30 Port Characteristics

Settings

Value Description

true Support repositioning
false Normal behavior (default)

4.2.24 Enhanced Isolation

XML name EnhancedIsolation

Description

Use to enforce additional checks to prevent errors in untrusted code from
affecting any other part of the system. Refer to the documentation in the
User and Reference Guides

Settings

Value Description

true Support Enhanced Isolation
false Normal behavior (default)

4.2.25 Link Type

XML name OsLinkerModel

Description

Select the type of map used in linker samples.

Settings

Value Description

Standalone Code in internal flash, data in internal RAM (default)
IntRAM Code/data in internal RAM
ExtRAM Code/data in external RAM

4.2.26 Small data threshold

XML name small_data_value

Description

Sets the value used for -sda=n when compiling. Defaults to 0. Refer to com-
piler documentation for full details.

4.2.27 Short enums

XML name short_enums

Port Characteristics 31

Description

Use the compiler option –short_enum to force enum types the smallest data
type possible.

Settings

Value Description

true Short enums (default)
false Standard enums

4.2.28 FP Instructions

XML name fsingle

Description

Use the compiler option -fsingle use floating point instructions where possi-
ble.

Settings

Value Description

true Use -fsingle (default)
false Do not use -fsingle

4.2.29 Far jumps

XML name far_jumps

Description

Select far jumps if interrupt/trap handlers are located at an address that is
more than ’24-bits’ away from the vector tables. Near jumps may be very
slightly faster.

Settings

Value Description

true Far jumps (default)
false Near jumps

4.2.30 Max Optimizations

XML name Omax

Description

Use the compiler option -Omax. Refer to compiler documentation for full
details.

32 Port Characteristics

Settings

Value Description

true Use -Omax (default)
false Do not use -Omax

4.2.31 Optimization Type

XML name opt_type

Description

Specify the optimization type. Refer to compiler documentation for full de-
tails.

Settings

Value Description

speed -Ospeed (default)
size -Osize
general -Ogeneral
none -Onone

4.2.32 Customer Option Set 1

XML name option_set1

Description

Selects a different set of compiler options. Requested by a customer
for a specific project and not supported elsewhere. The compiler op-
tions are: -fsingle, -Ospeed, -Omax, -sda=0, –short_enum, –no_commons,
–unsigned_fields, -c99, –gnu_asm, -delete, -ignore_debug_references, -
preprocess_assembly_files, -passsource, -g, -dwarf2, -prototype_errors, -
Wundef, -Wimplicit-int, -diag_warning=2003.

Settings

Value Description

true Enables option set 1
false Use standard options (default)

4.2.33 Customer Option Set 2

XML name option_set2

Port Characteristics 33

Description

Selects a different set of compiler options. Requested by a customer for a
specific project and not supported elsewhere. Primarily for use with v2016
compiler onwards. Some options are not supported with the v2015.1.7
compiler, and there may be linker issues with the v2015.1.7 toolchain
with pre 1.6 core architectures. The compiler options are: -cpu=tc1v16p,
-fsingle, -farcallpatch, -g, -Ospeed, -Omax, -dwarf2, -nostartfiles, -delete,
-ignore_debug_references, -lnk=-delete, -lnk=-ignore_debug_references,
-split_data_sections_by_alignment, -individual_data_sections, -
individual_pragma_data_sections, -individual_function_sections, -
individual_pragma_function_sections, -individual_section_name_extra_dot,
–prototype_errors, -Wundef, -Wimplicit-int, –diag_warning=2003, -
globalcheck=normal, -map, -lnk=-mapfile_type=2, -Man, -Ml, -Mx, -Mu,
-MD, -sda=0, –no_commons, -c99, –gnu_asm, -preprocess_assembly_files,
-passsource, -discard_zero_initializers

Settings

Value Description

true Enables option set 2
false Use standard options (default)

4.3 Generated Files

The following table lists the files that are generated by rtaosgen for all ports:

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured.

This is included by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by

RTA-OS to merge with the system-wide MemMap.h
file in AUTOSAR versions 4.0 and earlier. From AU-
TOSAR version 4.1, Os_MemMap.h is used by the OS
instead of MemMap.h.

RTAOS.<lib> The RTA-OS library for your application. The exten-
sion <lib> depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application.
This is used by rtaosgen to work out which parts of
the kernel library need to be rebuilt if the configu-
ration has changed. The extension <lib> depends
on your target.

<projectname>.log A log file that contains a copy of the text that the
tool and compiler sent to the screen during the
build process.

34 Port Characteristics

5 Port-Specific API

The following sections list the port-specific aspects of the RTA-OS program-
mers reference for the TriCore/GHS port that are provided either as:

• additions to the material that is documented in the Reference Guide; or

• overrides for the material that is documented in the Reference Guide.
When a definition is provided by both the Reference Guide and this doc-
ument, the definition provided in this document takes precedence.

5.1 API Calls

5.1.1 Os_GetTrapInfo

Return information about the most recent unhandled trap.

Syntax

FUNC(StatusType, OS_CODE)Os_GetTrapInfo(
OsTrapInfoRefType Info

)

Parameters

Name Type Mode Description

info OsTrapInfoRefType in Pointer to the OsTrapInfoType into
which the information will be
copied. OsTrapInfoType contains
the trap class (.Class), identifica-
tion number (.TIN) and return ad-
dress (.ReturnAddress).

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.
E_OS_ILLEGAL_ADDRESS extended Info is an address that is not le-

gal for writing by the current OS-
Application (only when there are
untrusted OS-Applications).

Port-Specific API 35

Description

When an unhandled processor Trap is detected, RTA-OS records the trap
class, identification number and return address. It stores this information
independently for each core, and then calls the ProtectionHook (when config-
ured).

You can call Os_GetTrapInfo() from within ProtectionHook to get a copy of the
most recent trap information for the calling core.

You should only call Os_GetTrapInfo() when the StatusType passed to Protec-
tionHook is E_OS_PROTECTION_MEMORY or E_OS_PROTECTION_EXCEPTION.

Note that Os_GetTrapInfo() can only return the information for the most re-
cent unhandled trap for the given core.

Example

FUNC(ProtectionReturnType, {memclass}) ProtectionHook(StatusType
FatalError) {

OsTrapInfoType trap_info;
switch (FatalError) {
case E_OS_PROTECTION_MEMORY:
/* A memory protection error has been detected */
Os_GetTrapInfo(&trap_info);
return MyUnexpectedTrapHandler(trap_info.Class,

trap_info.TIN, trap_info.ReturnAddress);
case E_OS_PROTECTION_EXCEPTION:
/* Trap occurred */
Os_GetTrapInfo(&trap_info);
return MyUnexpectedTrapHandler(trap_info.Class,

trap_info.TIN, trap_info.ReturnAddress);
...

}
return PRO_SHUTDOWN;

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-OS Hooks

Task 7 PreTaskHook 7 StackOverrunHook 7

Category 1 ISR 7 PostTaskHook 7 TimeOverrunHook 7

Category 2 ISR 7 StartupTaskHook 7

ShutdownHook 7

ErrorHook 7

ProtectionHook 3

36 Port-Specific API

See Also

ProtectionHook
OsTrapInfoType
OsTrapInfoRefType

5.1.2 Os_InitializeInterruptTable

Initialize the interrupt vector table.

Syntax

FUNC(void, OS_CODE) Os_InitializeInterruptTable(void)

Description

RTA-OS creates interrupt vector table(s) based upon the interrupts that are
configured. In the TriCore, the BIV register must be set to the address of the
appropriate table. It should be called before StartOS().

The interrupt table must be initialized by calling this for each AUTOSAR core
in a multicore application.

You do not normally need to call Os_InitializeInterruptTable() directly because
it gets called by Os_InitializeVectorTable().

You must ensure that the BIV register is in a state where it can be modified
when you make this call. You will need to be running in Supervisor with EN-
DINIT protection off.

Example

Os_InitializeInterruptTable();

See Also

StartOS
Os_InitializeVectorTable

5.1.3 Os_InitializeServiceRequests

Initializes the TriCore Service Request Registers according to the application
configuration.

Port-Specific API 37

Syntax

FUNC(void, OS_CODE) Os_InitializeServiceRequests(void)

Description

It is crucial that the initialization of the TriCore Service Request Registers is
done in accordance with the interrupts and priorities declared in the applica-
tion configuration.

This function should be called to set the correct SRC values. You do not
normally need to call this explicitly because it is automatically called from
Os_InitializeInterruptTable() when it is called from core 0.

Note that the hardware priority values allocated to each interrupt source are
not the same as the logical interrupt priority levels (IPLs) that are assigned
to an interrupt in the configuration. In a single-core system, the priorities
are compressed to reduce the vector table size and improve response times.
In multi-core systems, there are additional constraints that require priorities
across cores to be aligned and the correct interrupt steering values to be set.

RTA-OS emits OS_INIT_<srcname> macros that contain the correct SRC val-
ues for each configured interrupt. If really necessary, you can use these to
set the SRC values directly instead of calling this function.

You must ensure that the SRC registers are in a state where they can be
modified when you make this call. You will need to be running in Supervisor
with ENDINIT protection off.

Example

Os_InitializeServiceRequests();
StartOS();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-OS Hooks

Task 7 PreTaskHook 7 StackOverrunHook 7

Category 1 ISR 7 PostTaskHook 7 TimeOverrunHook 7

Category 2 ISR 7 StartupTaskHook 7

ShutdownHook 7

ErrorHook 7

ProtectionHook 7

See Also

Os_InitializeVectorTable
StartOS
Os_InitializeInterruptTable

38 Port-Specific API

5.1.4 Os_InitializeTrapTable

Initialize the trap vector table.

Syntax

FUNC(void, OS_CODE) Os_InitializeTrapTable(void)

Description

RTA-OS creates trap vector table(s) based upon the traps that are configured.
In the TriCore, the BTV register must be set to the address of the appropriate
table. It should be called before StartOS().

The trap table must be initialized by calling this for each AUTOSAR core in a
multicore application.

You do not normally need to call Os_InitializeTrapTable() directly because it
gets called by Os_InitializeVectorTable().

You must ensure that the BTV register is in a state where it can be modi-
fied when you make this call. You will need to be running in Supervisor with
ENDINIT protection off.

Example

Os_InitializeTrapTable();

See Also

StartOS
Os_InitializeVectorTable

5.1.5 Os_InitializeVectorTable

Initialize the interrupt and trap vector tables.

Syntax

void Os_InitializeVectorTable(void)

Description

RTA-OS creates interrupt table(s) and trap vector table(s) based upon the
interrupts and traps that are configured. In the TriCore, the BIV and BTV
registers must be set to their start addresses.

In addition, the Service Request Control Registers must be set up correctly so
that they match the configuration that is declared for the project. In particu-
lar, the TOS and SRPN values must be correct. Note that the SRPN value does
not necessarily match the priority assigned to an interrupt.

Port-Specific API 39

Os_InitializeVectorTable() performs all of these initializations for you. It should
be called before StartOS().

If you only want to initialize the interrupt system then call
Os_InitializeInterruptTable() instead of Os_InitializeVectorTable.

If you only want to initialize the SRC registers then call
Os_InitializeServiceRequests() instead of Os_InitializeVectorTable /
Os_InitializeInterruptTable.

If you only want to initialize the trap system then call Os_InitializeTrapTable()
instead of Os_InitializeVectorTable.

However it is recommended that you always use Os_InitializeVectorTable().

In a multicore application, each core must perform these initializations.

You must ensure that the BIV, BTV and SRC registers are in a state where they
can be modified when you make these calls. You will need to be running in
Supervisor with ENDINIT protection off.

Example

Os_InitializeVectorTable();

See Also

StartOS
Os_InitializeTrapTable
Os_InitializeVectorTable
Os_InitializeServiceRequests

5.1.6 Os_StartCoreGate

Control core startup.

Syntax

FUNC(void, OS_CODE) Os_StartCoreGate(void)

Description

In a multi-core AUTOSAR application it is necessary for the master core to
control the start-up behavior of the slave cores. Ideally the slave cores should
stay in reset until Os_Cbk_StartCore gets called to release them.

Sometimes this can not be enforced (for example a debugger may not sup-
port this). For this reason, the OS provides the Os_StartCoreGate() API that
should be placed at the start of ’main’.

40 Port-Specific API

If a slave core is released too early, this API will cause it to spin waiting until
its Os_Cbk_StartCore has been called.

In normal usage, the OS_MAIN macro hides the call to Os_StartCoreGate. If
you choose not to use OS_MAIN, then you should call Os_StartCoreGate ex-
plicitly if slave cores cannot be held in reset.

Example

OS_MAIN() {
/* The OS_MAIN macro implicitly calls Os_StartCoreGate */
...

}

or

int main(void) {
Os_StartCoreGate();
...

}

See Also

Os_Cbk_StartCore

5.2 Callbacks

5.2.1 Os_Cbk_StartCore

Callback routine used to start a non master core on a multicore variant.

Syntax

FUNC(StatusType, {memclass})Os_Cbk_StartCore(
uint16 CoreID

)

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.
E_OS_ID all The core does not exist or can not be started.

Port-Specific API 41

Description

In a multi-core application, the StartCore and StartNonAutosarCore OS APIs
have to be called prior to StartOS for each core that is to run.

For this target port, these APIs make a call to Os_Cbk_StartCore which is re-
sponsible for starting the specified core and causing it to enter OS_MAIN.

RTA-OS provides a default implementation of Os_Cbk_StartCore that will be
appropriate for most normal situations.

Os_Cbk_StartCore does not get called for core 0, because core 0 must start
first.

Note: memclass is OS_APPL_CODE for AUTOSAR 3.x, OS_CALLOUT_CODE for
AUTOSAR 4.0, OS_OS_CBK_STARTCORE_CODE for AUTOSAR 4.1.

Example

FUNC(StatusType, {memclass}) Os_Cbk_StartCore(uint16 CoreID) {
SET_CORE_RSTVEC(CoreID);
RELEASE_CORE(CoreID);

}

Required when

Required for non master cores that will be started.

See Also

StartCore
StartNonAutosarCore
StartOS

5.3 Macros

5.3.1 CAT1_ISR

Macro that should be used to create a Category 1 ISR entry function. This
macro exists to help make your code portable between targets.

Example

CAT1_ISR(MyISR) {...}

5.3.2 CAT1_TRAP

Macro that should be used to implement a trap handler. If you want to use
your own trap handler instead of the OS supplied versions, you must declare
it in the project configuration as if it were a category 1 ISR.

42 Port-Specific API

Example

CAT1_TRAP(MyTrapHandler) {...}

5.3.3 OS_CORE_isrname

This macro contains the core (0,1...) that the named interrupt runs on. This
is only emitted for multicore applications

Example

if (OS_CORE_ID_MASTER == OS_CORE_timer_interrupt)...

5.3.4 OS_INIT_srcname

This macro contains initialization values for the named SRC register. This is
only emitted for multicore applications

5.3.5 OS_VEC_isrname

This macro contains the vector number (1-255) that is assigned to the named
interrupt

Example

MyVectors[OS_CORE_timer_interrupt][OS_VEC_timer_interrupt] =
my_timer_interrupt_handler;

5.3.6 Os_DisableAllConfiguredInterrupts

The Os_DisableAllConfiguredInterrupts macro will disable all configured SRC
interrupts by adjusting the SRC register settings. You will need to #include
the file "Os_DisableInterrupts.h" if you want to use this macro. It may not be
used by untrusted code.

Example

Os_DisableAllConfiguredInterrupts()
Os_Enable_Millisecond()

5.3.7 Os_Disable_x

The Os_Disable_x macro will disable the named interrupt by adjusting its
SRC register settings. It is normally paired with a call to Os_Enable_x.
The macro can be called using either the SRC name or the RTA-OS con-
figured vector name. In the example, this is Os_Disable_STM_SRC0() and
Os_Disable_Millisecond() respectively. You will need to #include the file
"Os_DisableInterrupts.h" if you want to use these macros. They may not be
used by untrusted code.

Port-Specific API 43

Example

Os_Disable_STM_SRC0()
Os_Disable_Millisecond()

5.3.8 Os_EnableAllConfiguredInterrupts

The Os_EnableAllConfiguredInterrupts macro will enable all configured SRC
interrupts by adjusting the SRC register settings. You will need to #include
the file "Os_DisableInterrupts.h" if you want to use this macro. It may not be
used by untrusted code.

Example

Os_DisableAllConfiguredInterrupts()
...
Os_EnableAllConfiguredInterrupts()

5.3.9 Os_Enable_x

The Os_Enable_x macro will re-enable the named interrupt at the priority
it was configured with by adjusting its SRC register settings. It is normally
paired with a call to Os_Disable_x. The macro can be called using either the
INTC vector name or the RTA-OS configured vector name. In the example, this
is Os_Enable_STM_SRC0() and Os_Enable_Millisecond() respectively. You will
need to #include the file "Os_DisableInterrupts.h" if you want to use these
macros. They may not be used by untrusted code.

Example

Os_Enable_STM_SRC0()
Os_Enable_Millisecond()

5.3.10 Os_IntChannel_x

The Os_IntChannel_x macro returns the address of the SRC register that is
associated with the named interrupt. You can use this, for example, to trigger
the interrupt through software.

Example

*Os_IntChannel_Millisecond = *Os_IntChannel_Millisecond +
SRC_TRIGGER_BIT;

5.4 Type Definitions

5.4.1 OsTrapInfoRefType

A pointer to an object of OsTrapInfoType. OsTrapInfoType contains the trap
class (.Class), identification number (.TIN) and return address (.ReturnAd-
dress) describing a trap.

44 Port-Specific API

Example

OsTrapInfoRefType trap_info_ref = &trap_info;
Os_GetTrapInfo(trap_info_ref);

5.4.2 OsTrapInfoType

Structure used by the Os_GetTrapInfo() API to return information about un-
handled traps.

5.4.3 Os_StackSizeType

A structure containing ’Os_StackTraceType sp’ to represent a size (in bytes)
on the regular stack (A10) and ’Os_StackTraceType ctx’ to represent a size
(in bytes) on the CSA list.

Example

Os_StackSizeType stack_size;
stack_size = Os_GetStackSize(start_position, end_position);

5.4.4 Os_StackTraceType

An unsigned type used to represent values on the regular stack and the CSAs.

5.4.5 Os_StackValueType

A structure containing ’Os_StackTraceType sp’ to represent the position of the
regular stack (A10) and ’Os_StackTraceType ctx’ to represent the position of
the CSA list.

Example

Os_StackValueType start_position;
start_position = Os_GetStackValue();

Port-Specific API 45

6 Toolchain

This chapter contains important details about RTA-OS and the GHS toolchain.
A port of RTA-OS is specific to both the target hardware and a specific version
of the compiler toolchain. You must make sure that you build your application
with the supported toolchain.

In addition to the version of the toolchain, RTA-OS may use specific tool op-
tions (switches). The options are divided into three classes:

kernel options are those used by rtaosgen to build the RTA-OS kernel.

mandatory options must be used to build application code so that it will
work with the RTA-OS kernel.

forbidden options must not be used to build application code.

Any options that are not explicitly forbidden can be used by application code
providing that they do not conflict with the kernel and mandatory options for
RTA-OS.

Integration Guidance 6.1:ETAS has developed and tested RTA-OS us-
ing the tool versions and options indicated in the following sections. Cor-
rect operation of RTA-OS is only covered by the warranty in the terms
and conditions of your deployment license agreement when using identi-
cal versions and options. If you choose to use a different version of the
toolchain or an alternative set of options then it is your responsibility to
check that the system works correctly. If you require a statement that
RTA-OS works correctly with your chosen tool version and options then
please contact ETAS to discuss validation possibilities.

6.1 Compiler Versions

This port of RTA-OS has been developed to work with the following com-
piler(s):

6.1.1 v2018.1.5

Release tests are performed on this version.

Tested on v2018.1.5 Release Date Thu Apr 19 20:12:43 PDT 2018

6.1.2 v2017.1.5

Release tests are performed on this version.

Tested on v2017.1.5 Release Date Mon Apr 10 22:26:30 PDT 2017

46 Toolchain

6.1.3 v2015.1.7

Release tests are performed on this version.

Tested on v2015.1.7 Release Date Mon Nov 02 12:26:56 PST 2015

If you require support for a compiler version not listed above, please contact
ETAS.

6.2 Options used to generate this guide

6.2.1 Compiler

Name cctri.exe
Version v2018.1.5 Release Date Thu Apr 19 23:03:11 PDT 2018

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configu-
ration that was used to generate the performance figures in this document.
If you select different target options, then the values used to build the ker-
nel might change. You can run a Configuration Summary report to check the
values used for your configuration.

-fsingle Use floating-point instructions (configurable via target option ’FP
Instructions’)

-Ospeed Optimize for speed (configurable via target option ’Optimization
Type’)

-Omax Aggressive optimization (configurable via target option ’Max Opti-
mizations’)

-sda=0 Set SDA threshold (configurable via target option ’Small data thresh-
old’)

--short_enum Store enumerations in the smallest possible type (config-
urable via target option ’Short enums’)

--no_commons Uninitialized global variables are unique

--unsigned_fields Bitfields are unsigned

-c99 -gcc ISO C99. GNU Mode

-preprocess_assembly_files Assember files are preprocessed

-g Support debugging

Toolchain 47

-dwarf2 Dwarf2 debugging format

--prototype_errors Raise error if prototypes are missing

-Wundef Warn for undefined symbols in preprocessor expressions

-Wimplicit-int Warn if function return type is not declared

--diag_warning=2003 Compiler message 2003 is warning

Mandatory Options for Application Code

The following options were mandatory for application code used with the con-
figuration that was used to generate the performance figures in this docu-
ment. If you select different target options, then the values required by ap-
plication code might change. You can run a Configuration Summary report to
check the values used for your configuration.

-cpu=tc1v16 Generate code for target processor (variant-specific)

Forbidden Options for Application Code

The following options were forbidden for application code used with the con-
figuration that was used to generate the performance figures in this docu-
ment. If you select different target options, then the forbidden values might
change. You can run a Configuration Summary report to check the values
used for your configuration.

- Any options that conflict with kernel options

6.2.2 Assembler

Name cctri.exe
Version v2018.1.5 Release Date Thu Apr 19 23:02:03 PDT 2018

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configu-
ration that was used to generate the performance figures in this document.
If you select different target options, then the values used to build the ker-
nel might change. You can run a Configuration Summary report to check the
values used for your configuration.

- The same options as for compilation

48 Toolchain

Mandatory Options for Application Code

The following options were mandatory for application code used with the con-
figuration that was used to generate the performance figures in this docu-
ment. If you select different target options, then the values required by ap-
plication code might change. You can run a Configuration Summary report to
check the values used for your configuration.

- The same options as for compilation

Forbidden Options for Application Code

The following options were forbidden for application code used with the con-
figuration that was used to generate the performance figures in this docu-
ment. If you select different target options, then the forbidden values might
change. You can run a Configuration Summary report to check the values
used for your configuration.

- Any options that conflict with kernel options

6.2.3 Librarian

Name ax.exe
Version v2018.1.5 Release Date Thu Apr 19 23:02:02 PDT 2018

6.2.4 Linker

Name elxr.exe
Version v2018.1.5 Release Date Thu Apr 19 23:02:01 PDT 2018

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configu-
ration that was used to generate the performance figures in this document.
If you select different target options, then the values used to build the ker-
nel might change. You can run a Configuration Summary report to check the
values used for your configuration.

-delete Remove functions that are not referenced

-ignore_debug_references Ignores relocations from DWARF debug sec-
tions when using -delete

-globalcheck=normal Extra link-time warnings

Toolchain 49

-map Create map file

-mapfile_type=2 Detailed map format

-Man Alphabetic sort map file

-Ml Add locals to map file

-Mx Cross references in map file

-Mu Undefined symbols in map file

-keepmap Keep map file if link fails

-Manx Map file options Alpha, Numeric, X-reference

-Qn No linker ident string

T:\ghs\comp_201815\lib\tri16\libstartup.a Use startup library

T:\ghs\comp_201815\lib\tri16\libsys.a Use sys library (for startup)

Mandatory Options for Application Code

The following options were mandatory for application code used with the con-
figuration that was used to generate the performance figures in this docu-
ment. If you select different target options, then the values required by ap-
plication code might change. You can run a Configuration Summary report to
check the values used for your configuration.

- The same options as for the kernel

Forbidden Options for Application Code

The following options were forbidden for application code used with the con-
figuration that was used to generate the performance figures in this docu-
ment. If you select different target options, then the forbidden values might
change. You can run a Configuration Summary report to check the values
used for your configuration.

- Any options that conflict with kernel options

6.2.5 Debugger

Name Lauterbach TRACE32
Version Build 10654 or later

50 Toolchain

Notes

Supports .elf files and ORTI files.

Notes on using ORTI with the debugger

When ORTI information is enabled, extra code is added to the CAT1_ISR macro
to support tracking of Category 1 interrupts by the debugger.

The ’ORTI Stack Fill’ target option is provided to extend the ORTI support to
allow evaluation of unused stack space. The ORTI information gets extended
to include information about the base address, size and fill pattern for the
A10 stack.

The stack information is read from constants that you must create and initial-
ize with appropriate values. For the example linker file that ships with RTA-OS,
you would use the following code (for core 0):

const uint32 OS_STACK0_BASE = (uint32)&__SP_BASE0;
const uint32 OS_STACK0_SIZE = (uint32)&__SP_LEN0;

Other cores follow the same pattern.

You must also specify the stack fill pattern in a 32 bit constant
OS_STACK_FILL.

const uint32 OS_STACK_FILL = 0xCAFEF00D;

The stack must be initialized with this fill pattern before starting the OS. You
can do this in the C start-up code or during debugger initialization.

Toolchain 51

7 Hardware

7.1 Supported Devices

This port of RTA-OS has been developed to work with the following target:

Name: Infineon
Device: TriCore

The following variants of the TriCore are supported:

• Generic131 (Any 1.3.1 core)

• Generic16 (Any 1.6.0 core)

• Generic161 (Any 1.6.1 core)

• TC1387

• TC1724

• TC1728

• TC1736

• TC1767

• TC1784

• TC1793

• TC1797

• TC1798

• TC21x

• TC22x

• TC23x

• TC23xADAS

• TC265D (A-Step)

• TC26x (A-Step)

• TC26xB (B-Step)

• TC27x (B-Step)

• TC27xA (A-Step)

• TC27xB (B-Step)

52 Hardware

• TC27xC (C-Step)

• TC27xD (D-Step)

• TC298TP (A-Step)

• TC299TP (A-Step)

• TC29x (A-Step)

• TC29xB (B-Step)

• TC35x

• TC37x

• TC38x

• TC39x (A-Step)

• TC39xB (B-Step)

If you require support for a variant of TriCore not listed above, please contact
ETAS.

7.2 Register Usage

7.2.1 Initialization

RTA-OS requires the following registers to be initialized to the indicated values
before StartOS() is called.

Hardware 53

Register Setting

BIV The Base Interrupt Vector has to be set to the start
of CPU Interrupt vector table. This is done by call-
ing Os_InitializeVectorTable() (or Os_InitializeInterruptTable()).
This must be done for each OS core in a multicore application.

BTV The Base Trap Vector has to be set to the start of the CPU Trap
vector table. This is done by calling Os_InitializeVectorTable()
(or Os_InitializeTrapTable()). This must be done for each OS
core in a multicore application.

FCX,LCX The Free Context List must be initialized to a contiguous block
of context save areas (CSAs). Each block must link to its im-
mediate neighbor such that FCX gets smaller as CSAs are al-
located. (This is the default behavior of the compiler startup
code.)

PSW IO must be set to Supervisor Mode and IS must be set to 1.

SRR / SRC The Service request registers for each interrupt source
must be initialized correctly. This is done by calling
Os_InitializeServiceRequests() (or Os_InitializeVectorTable(),
which calls it for you). Note that the hardware priority values
allocated to each interrupt source are not the same as the log-
ical interrupt priority levels (IPLs) that are assigned to an inter-
rupt in the configuration. In a single-core system, the priorities
are compressed to reduce the vector table size and improve
response times. In multi-core systems, there are additional
constraints that require priorities across cores to be aligned
and the correct interrupt steering values to be set. If you have
to, you can use and the correct interrupt steering values to be
set. If you have to, you can use the OS_INIT_srcname macros
to set the values directly. You can override this behavior by
using the ’Interrupt vector matches priority’ target option.

7.2.2 Modification

The following registers must not be modified by user code after the call to
StartOS():

54 Hardware

Register Notes

BIV The Base Interrupt Vector.

BTV The Base Trap Vector.

FCX The Free CSA List Head Pointer.

Interrupt Control Registers This includes SRC priority and TOS fields.

LCX The Free CSA List Limit Pointer.

PCX The Previous CSA List Head Pointer.

PCXI The Previous Context Information Register.

PSW After StartOS(), only the User Status bits may
be written to.

7.3 Interrupts

This section explains the implementation of RTA-OS’s interrupt model on the
TriCore.

7.3.1 Interrupt Priority Levels

Interrupts execute at an interrupt priority level (IPL). RTA-OS standardizes IPLs
across all targets. IPL 0 indicates task level. IPL 1 and higher indicate an in-
terrupt priority. It is important that you don’t confuse IPLs with task priorities.
An IPL of 1 is higher than the highest task priority used in your application.

The IPL is a target-independent description of the interrupt priority on your
target hardware. The following table shows how IPLs are mapped onto the
hardware interrupt priorities of the TriCore:

IPL ICR Description

0 IE=1, CCPN=0 User (task) level
1-255 IE=1, CCPN=1-255 Category 1 and 2 level
256 - Traps

Even though a particular mapping is permitted, all Category 1 ISRs must have
equal or higher IPL than all of your Category 2 ISRs.

7.3.2 Allocation of ISRs to Interrupt Vectors

The following restrictions apply for the allocation of Category 1 and Category
2 interrupt service routines (ISRs) to interrupt vectors on the TriCore. A 3

indicates that the mapping is permitted and a 7 indicates that it is not per-
mitted:

Address Category 1 Category 2

A named SRC register 3 3

A named trap 3 7

Hardware 55

7.3.3 Vector Table

rtaosgen normally generates an interrupt vector table for you automatically.
You can configure “Suppress Vector Table Generation” as true to stop RTA-OS
from generating the interrupt vector table.

Depending upon your target, you may be responsible for locating the gener-
ated vector table at the correct base address. The following table shows the
section (or sections) that need to be located and the associated valid base
address:

Section Valid Addresses

.text.Os_interrupt_handlers Contains Os_InterruptVectorTable[n], where
[n] is 0, 1 or 2 in multicore targets. The ta-
ble must be aligned such that it fits within
a memory range where its upper 20 ad-
dress bits are the same. You should call the
function Os_InitializeVectorTable before Star-
tOS() to set register BIV to the start of the
table. It should be called for each AUTOSAR
core in a multicore application. When you
tell the OS not to generate the interrupt vec-
tors, it will put its interrupt handler code in
this section. The code that you supply to
handle interrupts can then jump to this code
to implement the default OS behavior. (See
the description of user generated vectors).

.text.Os_trap_handlers Contains the Trap vector table. You should
call the function Os_InitializeVectorTable be-
fore StartOS() to set register BTV to the start
of the table. It should be called for each AU-
TOSAR core in a multicore application. If you
choose to reassign BTV to point to a different
set of traps, be aware you will not be able to
use untrusted OS Applications because the
OS expects to use the system call trap to
switch modes. In addition, the OS will not
be able to detect memory access violations.
When you tell the OS not to generate the
trap vectors, it will put its trap handler code
in this section. The code that you supply to
handle traps can then jump to this code to
implement the default OS behavior. (See the
description of user generated vectors).

56 Hardware

When ’Suppress Vector Table Generation’ is configured to TRUE, no vector ta-
bles get generated. You are responsible for providing the vector tables and
initializing the BIV/BTV registers. RTA-OS still provides the interrupt and trap
handler code for you to bind to your handlers, but it is not linked to the vector
tables. Note that this is the same code that would normally be placed directly
in the interrupt/trap tables, so must be entered with the same conditions that
were in effect when the vector was taken. In particular, the stack must be the
same because the handler code expects to perform the return from interrup-
t/trap. The handler code uses the bisr instruction to ensure that the interrupts
run at the correct priority. In the simplest case your code will simply jump to
the appropriate interrupt or trap handler. There is a naming convention that
helps you to do this:

Interrupt handler naming:

Each interrupt handler is given 2 names by which it can be accessed:
Os_Interrupt_nnn and Os_Interrupt_<name>. ’nnn’ represents the vector
number 001 to 255. <name> is the name of your ISR. You can choose
which label to use. (In a multicore application the first of these becomes
Os_Interrupt_c_nnn, where c is the core number 0,1..) It is critically impor-
tant that the handlers get associated with the correct vector. You may find
the macros OS_VEC_<name> and OS_CORE_<name> that are in Os_Cfg.h
helpful if you want to auto-generate the vector tables.

Trap handler naming:

Each trap handler has a name appropriate to its responsibility. The names are
Os_memory_trap, Os_protection_trap, Os_instruction_trap, Os_context_trap,
Os_bus_trap, Os_assert_trap, Os_syscall_trap and Os_nmi_trap.

Cat1 ISR Implementation:

The CAT1_ISR macro must be used to implement Category 1 ISRs. It ensures
that the interrupt runs at the correct priority and saves / restores the correct
registers.

Trap Implementation:

The CAT1_TRAP macro must be used to implement Category 1 Traps. It en-
sures that the trap runs at the correct priority and saves / restores the correct
registers.

Multicore Issues:

Each core that is running the AUTOSAR OS needs to use a software interrupt
for cross-core communication. RTA-OS will choose unallocated SRC registers

Hardware 57

for this purpose, or you can configure specific registers. Macros in Os_Cfg.h
can be used to determine which registers are being used.

7.3.4 Writing Category 1 Interrupt Handlers

Raw Category 1 interrupt service routines (ISRs) must correctly handle the
interrupt context themselves. RTA-OS provides an optional helper macro
CAT1_ISR that can be used to make code more portable. Depending on the
target, this may cause the selection of an appropriate interrupt control di-
rective to indicate to the compiler that a function requires additional code to
save and restore the interrupt context.

A Category 1 ISR therefore has the same structure as a Category 2 ISR, as
shown below.

CAT1_ISR(Category1Handler) {
/* Handler routine */

}

You can configure your own trap handlers (declared as Category 1 ISRs) that
will override the OS-provided handlers. However the system call trap should
only be overridden if you do not have untrusted code.

You should use the CAT1_TRAP macro to implement your handlers because
the OS just jumps to your handler and it must therefore be implemented as a
trap, not as an interrupt.

Alternatively, if you name your trap handler b_(name) then RTA-OS will
branch directly to b_(name) without any modification to the CSAs or regis-
ters. You are entirely responsible for the trap handing code in this case.

If you do provide your own handler, you can still jump to the default OS han-
dler code for the trap, using the naming rules described for supplying your
own interrupt vector table.

7.3.5 Writing Category 2 Interrupt Handlers

Category 2 ISRs are provided with a C function context by RTA-OS, since the
RTA-OS kernel handles the interrupt context itself. The handlers are written
using the ISR() macro as shown below:

#include <Os.h>
ISR(MyISR) {
/* Handler routine */

}

You must not insert a return from interrupt instruction in such a function. The
return is handled automatically by RTA-OS.

58 Hardware

7.3.6 Default Interrupt

The ’default interrupt’ is intended to be used to catch all unexpected in-
terrupts. All unused interrupts have their interrupt vectors directed to the
named routine that you specify. The routine you provide is not handled by
RTA-OS and must correctly handle the interrupt context itself. The handler
must use the CAT1_ISR macro in the same way as a Category 1 ISR (see
Section 7.3.4 for further details).

7.4 Memory Model

The following memory models are supported:

Model Description

far data Default: nothing allocated to near data
near data Target configuration parameters can be used to allocate data

small data areas.

7.5 Processor Modes

RTA-OS can run in the following processor modes:

Mode Notes

Supervisor All OS and "trusted" code runs in supervisor mode.
User All "untrusted" code runs in user mode.

Trusted code, including the OS, runs with PSW.PRS = 00 (Protection register
set 0) and PSW.IO = 10. Untrusted code runs with PSW.PRS = 01 (Protection
register set 1) and PSW.IO = 00 or 01.

7.6 Stack Handling

RTA-OS uses a single stack for all tasks and ISRs.

RTA-OS manages both the locals stack (via register A10) and the CSA list.
CSAs are used in such a way that they behave as if they were a normal stack,
so worst-case stack usage can be calculated for the CSA area in the usual
way.

Hardware 59

8 Performance

This chapter provides detailed information on the functionality, performance
and memory demands of the RTA-OS kernel. RTA-OS is highly scalable. As a
result, different figures will be obtained when your application uses different
sets of features. The figures presented in this chapter are representative for
the TriCore/GHS port based on the following configuration:

• There are 32 tasks in the system

• Standard build is used

• Stack monitoring is disabled

• Time monitoring is disabled

• There are no calls to any hooks

• Tasks have unique priorities

• Tasks are not queued (i.e. tasks are BCC1 or ECC1)

• All tasks terminate/wait in their entry function

• Tasks and ISRs do not save any auxiliary registers (for example, floating
point registers)

• Resources are shared by tasks only

• The generation of the resource RES_SCHEDULER is disabled

8.1 Measurement Environment

The following hardware environment was used to take the measurements in
this chapter:

Device TC27xC on TC2x5 V1.0
CPU Clock Speed 80.0MHz
Stopwatch Speed 80.0MHz
Code Internal RAM
Data Internal RAM

8.2 RAM and ROM Usage for OS Objects

Each OS object requires some ROM and/or RAM. The OS objects are generated
by rtaosgen and placed in the RTA-OS library. In the main:

• Os_Cfg_Counters includes data for counters, alarms and schedule ta-
bles.

• Os_Cfg contains the data for most other OS objects.

60 Performance

8.2.1 Single Core

The following table gives the ROM and/or RAM requirements (in bytes) for
each OS object in a simple single-core configuration. Note that object sizes
will vary depending on the project configuration and compiler packing issues.

Object ROM RAM

Alarm 2 12
Cat 2 ISR 8 0
Counter 20 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 70
OS-Application 0 0
PeripheralArea 0 0
Resource 8 4
ScheduleTable 16 12
Task 20 0

8.2.2 Multi Core

The following table gives the ROM and/or RAM requirements (in bytes) for
each OS object in a simple multi-core configuration. Note that object sizes will
vary depending on the project configuration and compiler packing issues.

Object ROM RAM

Alarm 4 12
Cat 2 ISR 12 0
Core Overheads (each OS core) 0 68
Core Overheads (each processor core) 20 28
Counter 28 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 6
OS-Application 2.66 0
PeripheralArea 0 0
Resource 12 4
ScheduleTable 16 12
Task 32 0

8.3 Stack Usage

The amount of stack used by each Task/ISR in RTA-OS is equal to the stack
used in the Task/ISR body plus the context saved by RTA-OS. The size of the

Performance 61

run-time context saved by RTA-OS depends on the Task/ISR type and the ex-
act system configuration. The only reliable way to get the correct value for
Task/ISR stack usage is to call the Os_GetStackUsage() API function.

Note that because RTA-OS uses a single-stack architecture, the run-time con-
texts of all tasks reside on the same stack and are recovered when the task
terminates. As a result, run-time contexts of mutually exclusive tasks (for
example, those that share an internal resource) are effectively overlaid. This
means that the worst case stack usage can be significantly less than the sum
of the worst cases of each object on the system. The RTA-OS tools automat-
ically calculate the total worst case stack usage for you and present this as
part of the configuration report.

8.4 Library Module Sizes

8.4.1 Single Core

The RTA-OS kernel is demand linked. This means that each API call is placed
into a separately linkable module. The following table lists the section sizes
for each API module (in bytes) for the simple single-core configuration in stan-
dard status.

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

ActivateTask 128
AdvanceCounter 32
CallTrustedFunction 32
CancelAlarm 96
ChainTask 128
CheckISRMemoryAccess 32
CheckObjectAccess 96
CheckObjectOwnership 96
CheckTaskMemoryAccess 32
ClearEvent 32
ControlIdle 8 96
DisableAllInterrupts 8 64
DispatchTask 224

62 Performance

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

ElapsedTime 224
EnableAllInterrupts 64
GetActiveApplicationMode 32
GetAlarm 160
GetAlarmBase 64
GetApplicationID 64
GetCounterValue 64
GetCurrentApplicationID 64
GetElapsedCounterValue 64
GetEvent 32
GetExecutionTime 32
GetISRID 32
GetIsrMaxExecutionTime 32
GetIsrMaxStackUsage 64
GetResource 96
GetScheduleTableStatus 64
GetStackSize 32
GetStackUsage 64
GetStackValue 32
GetTaskID 32
GetTaskMaxExecutionTime 32
GetTaskMaxStackUsage 64
GetTaskState 64
GetVersionInfo 32
Idle 32
InShutdown 32
IncrementCounter 32
InterruptSource 4 288
ModifyPeripheral 192
NextScheduleTable 128
Os_Cfg 559 776 320
Os_Cfg_Counters 728 11712
Os_Cfg_KL 64

Performance 63

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

Os_GetCurrentIMask 32
Os_GetCurrentTPL 32
Os_GetTrapInfo 32
Os_Interrupts 74
Os_SrcInit 32
Os_Stack 64
Os_StartCores 16 224
Os_TrapInit 32
Os_TrapSupport 8 32
Os_Traps 256
Os_VectorInit 32
Os_Wrapper 160
Os_longjmp_ext 60
Os_setjmp 184
ProtectionSupport 64
ReadPeripheral 192
ReleaseResource 96
ResetIsrMaxExecutionTime 32
ResetIsrMaxStackUsage 32
ResetTaskMaxExecutionTime 32
ResetTaskMaxStackUsage 32
ResumeAllInterrupts 64
ResumeOSInterrupts 64
Schedule 96
SetAbsAlarm 96
SetEvent 32
SetRelAlarm 160
SetScheduleTableAsync 64
ShutdownOS 96
StackOverrunHook 32
StartOS 160
StartScheduleTableAbs 128
StartScheduleTableRel 128

64 Performance

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

StartScheduleTableSynchron 64
StopScheduleTable 96
SuspendAllInterrupts 8 64
SuspendOSInterrupts 8 96
SyncScheduleTable 64
SyncScheduleTableRel 64
TerminateTask 32
ValidateCounter 64
ValidateISR 32
ValidateResource 64
ValidateScheduleTable 64
ValidateTask 64
WaitEvent 32
WritePeripheral 192

8.4.2 Multi Core

The RTA-OS kernel is demand linked. This means that each API call is placed
into a separately linkable module. The following table lists the section sizes
for each API module (in bytes) for the simple multi-core configuration in stan-
dard status.

Performance 65

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

ActivateTask 256
AdvanceCounter 32
CallTrustedFunction 32
CancelAlarm 160
ChainTask 192
CheckISRMemoryAccess 32
CheckObjectAccess 192
CheckObjectOwnership 128
CheckTaskMemoryAccess 32
ClearEvent 32
ControlIdle 16 96
CrossCore 64
DisableAllInterrupts 64
DispatchTask 448
ElapsedTime 224
EnableAllInterrupts 64
GetActiveApplicationMode 32
GetAlarm 160
GetAlarmBase 64
GetApplicationID 64
GetCounterValue 64
GetCurrentApplicationID 64
GetElapsedCounterValue 64
GetEvent 32
GetExecutionTime 32
GetISRID 32
GetIsrMaxExecutionTime 32
GetIsrMaxStackUsage 64
GetNumberOfActivatedCores 32
GetResource 96
GetScheduleTableStatus 128
GetSpinlock 32

66 Performance

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

GetStackSize 32
GetStackUsage 64
GetStackValue 64
GetTaskID 32
GetTaskMaxExecutionTime 32
GetTaskMaxStackUsage 64
GetTaskState 96
GetVersionInfo 32
Idle 32
InShutdown 32
IncrementCounter 32
InterruptSource 4 384
ModifyPeripheral 192
NextScheduleTable 192
Os_Cfg 710 1308 448
Os_Cfg_Counters 888 13984
Os_Cfg_KL 96
Os_CrossCore 16 256
Os_GetCurrentIMask 32
Os_GetCurrentTPL 96
Os_GetTrapInfo 32
Os_Interrupts 170
Os_ScheduleQ 64
Os_Spinlock 32
Os_SrcInit 64
Os_Stack 64
Os_StartCores 16 224
Os_TrapInit 32
Os_TrapSupport 32
Os_Traps 256
Os_VectorInit 64
Os_Wrapper 160
Os_longjmp_ext 60

Performance 67

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

Os_setjmp 184
ProtectionSupport 64
ReadPeripheral 192
ReleaseResource 96
ReleaseSpinlock 32
ResetIsrMaxExecutionTime 32
ResetIsrMaxStackUsage 32
ResetTaskMaxExecutionTime 32
ResetTaskMaxStackUsage 32
ResumeAllInterrupts 64
ResumeOSInterrupts 64
Schedule 96
SetAbsAlarm 160
SetEvent 32
SetRelAlarm 256
SetScheduleTableAsync 64
ShutdownAllCores 64
ShutdownOS 128
StackOverrunHook 32
StartCore 64
StartNonAutosarCore 64
StartOS 320
StartScheduleTableAbs 192
StartScheduleTableRel 192
StartScheduleTableSynchron 64
StopScheduleTable 160
SuspendAllInterrupts 64
SuspendOSInterrupts 96
SyncScheduleTable 64
SyncScheduleTableRel 64
TerminateTask 64
TryToGetSpinlock 32
ValidateCounter 64

68 Performance

Library Module .b
s
s

.d
a
ta

.r
o
d

a
ta

.t
e
x
t

.t
e
x
t.

O
s

.t
e
x
t.

O
s
_i

n
te

rr
u

p
t_

h
a
n

d
le

rs

.t
e
x
t.

O
s
_t

ra
p

_h
a
n

d
le

rs

ValidateISR 32
ValidateResource 64
ValidateScheduleTable 64
ValidateTask 96
WaitEvent 32
WritePeripheral 192

8.5 Execution Time

The following tables give the execution times in CPU cycles, i.e. in terms
of ticks of the processor’s program counter. These figures will normally be
independent of the frequency at which you clock the CPU. To convert between
CPU cycles and SI time units the following formula can be used:

Time in microseconds = Time in cycles / CPU Clock rate in MHz

For example, an operation that takes 50 CPU cycles would be:

• at 20MHz = 50/20 = 2.5µs

• at 80MHz = 50/80 = 0.625µs

• at 150MHz = 50/150 = 0.333µs

While every effort is made to measure execution times using a stopwatch
running at the same rate as the CPU clock, this is not always possible on
the target hardware. If the stopwatch runs slower than the CPU clock, then
when RTA-OS reads the stopwatch, there is a possibility that the time read is
less than the actual amount of time that has elapsed due to the difference in
resolution between the CPU clock and the stopwatch (the User Guide provides
further details on the issue of uncertainty in execution time measurement).

The figures presented in Section 8.5.1 have an uncertainty of 0 CPU cycle(s).

Performance 69

Values are given for single-core operation only. Timings for cross-core acti-
vations, though interesting, are variable because of the nature of multi-core
operation. Minimum values cannot be given, because timings are dependent
on the activity on the core that receives the activation.

8.5.1 Context Switching Time

Task switching time is the time between the last instruction of the previ-
ous task and the first instruction of the next task. The switching time dif-
fers depending on the switching contexts (e.g. an ActivateTask() versus a
ChainTask()).

Interrupt latency is the time between an interrupt request being recognized
by the target hardware and the execution of the first instruction of the user
provided handler function:

For Category 1 ISRs this is the time required for the hardware to recognize
the interrupt.

For Category 2 ISRs this is the time required for the hardware to recognize
the interrupt plus the time required by RTA-OS to set-up the context in
which the ISR runs.

Figure 8.1 shows the measured context switch times for RTA-OS.

Switch Key CPU Cycles Actual Time

Task activation A 244 3.05us
Task termination with resume B 122 1.53us
Task termination with switch to new
task

C 162 2.02us

Chaining a task D 294 3.67us
Waiting for an event resulting in tran-
sition to the WAITING state

E 1182 14.8us

Setting an event results in task
switch

F 1446 18.1us

Non-preemptive task offers a pre-
emption point (co-operative schedul-
ing)

G 232 2.9us

Releasing a resource results in a task
switch

H 212 2.65us

Entering a Category 2 ISR I 92 1.15us
Exiting a Category 2 ISR and resum-
ing the interrupted task

J 94 1.18us

Exiting a Category 2 ISR and switch-
ing to a new task

K 206 2.58us

Entering a Category 1 ISR L 24 300ns

70 Performance

(a) Task activated. Termination resumes
preempted task.

(b) Task activated. Termination switches into new task.

(c) Task chained. (d) Task waits. Task is resumed when
event set.

(e) Task switch when re-
source is released.

(f) Request for scheduling made by non-
preemptive task.

(g) Category 2 interrupt entry. Interrupted
task resumed on exit.

(h) Category 2 interrupt entry. Switch to new task on exit. (i) Category 1 interrupt entry.

Figure 8.1: Context Switching

Performance 71

9 Finding Out More

Additional information about TriCore/GHS-specific parts of RTA-OS can be
found in the following manuals:

TriCore/GHS Release Note. This document provides information about the
TriCore/GHS port plug-in release, including a list of changes from previ-
ous releases and a list of known limitations.

Information about the port-independent parts of RTA-OS can be found in the
following manuals, which can be found in the RTA-OS installation (typically in
the Documents folder):

Getting Started Guide. This document explains how to install RTA-OS tools
and describes the underlying principles of the operating system

Reference Guide. This guide provides a complete reference to the API, pro-
gramming conventions and tool operation for RTA-OS.

User Guide. This guide shows you how to use RTA-OS to build real-time ap-
plications.

72 Finding Out More

10 Contacting ETAS

10.1 Technical Support

Technical support is available to all users with a valid support contract. If you
do not have a valid support contract, please contact your regional sales office
(see Section 10.2.2).

The best way to get technical support is by email. Any problems or questions
about the use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you
call the support hotline on:

+44 (0)1904 562624.

The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the fol-
lowing information:

• Your support contract number

• Your .xml, .arxml, .rtaos and/or .stc files

• The command line which caused the error

• The version of the ETAS tools you are using

• The version of the compiler tool chain you are using

• The error message you received (if any)

• The file Diagnostic.dmp if it was generated

10.2 General Enquiries

10.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

10.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team
(where available) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

Contacting ETAS 73

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

A
Assembler, 48
AUTOSAR OS includes

Os.h, 34
Os_Cfg.h, 34
Os_MemMap.h, 34

C
CAT1_ISR, 42
CAT1_TRAP, 42
Compiler, 47
Compiler (v2015.1.7), 47
Compiler (v2017.1.5), 46
Compiler (v2018.1.5), 46
Compiler Versions, 46
Configuration

Port-Specific Parameters, 24

D
Debugger, 50

E
ETAS License Manager, 13

Installation, 13

F
Files, 34

H
Hardware

Requirements, 11

I
Installation, 11

Default Directory, 12
Verification, 22

Interrupts, 55
Category 1, 58
Category 2, 58
Default, 59

IPL, 55

L
Librarian, 49
Library

Name of, 34
License, 13

Borrowing, 18
Concurrent, 15
Grace Mode, 14
Installation, 17
Machine-named, 15
Status, 18
Troubleshooting, 19
User-named, 15

Linker, 49

M
Memory Model, 59

O
Options, 47
Os_Cbk_StartCore, 41
OS_CORE_isrname, 43
Os_Disable_x, 43
Os_DisableAllConfiguredInterrupts,

43
Os_Enable_x, 44
Os_EnableAllConfiguredInterrupts,

44
Os_GetTrapInfo, 35
OS_INIT_srcname, 43
Os_InitializeInterruptTable, 37
Os_InitializeServiceRequests, 37
Os_InitializeTrapTable, 39
Os_InitializeVectorTable, 39
Os_IntChannel_x, 44
Os_StackSizeType, 45
Os_StackTraceType, 45
Os_StackValueType, 45
Os_StartCoreGate, 40
OS_VEC_isrname, 43
OsTrapInfoRefType, 44
OsTrapInfoType, 45

P
Parameters of Implementation, 24
Performance, 60

Context Switching Times, 70

74 Index

Library Module Sizes, 62
RAM and ROM, 60
Stack Usage, 61

Processor Modes, 59
Supervisor, 59
User, 59

R
Registers

BIV, 54, 55
BTV, 54, 55
FCX, 55
FCX,LCX, 54
Initialization, 53
Interrupt Control Registers, 55
LCX, 55
Non-modifiable, 54
PCX, 55

PCXI, 55

PSW, 54, 55

SRR / SRC, 54

S

Software

Requirements, 11

Stack, 59

T

Target, 52

Variants, 53

Toolchain, 46

V

Variants, 53

Vector Table

Base Address, 56

Index 75

	Introduction
	About You
	Document Conventions
	References

	Installing the RTA-OS Port Plug-in
	Preparing to Install
	Hardware Requirements
	Software Requirements

	Installation
	Installation Directory

	Licensing
	Installing the ETAS License Manager
	Licenses
	Installing a Concurrent License Server
	Using the ETAS License Manager
	Troubleshooting Licenses

	Verifying your Installation
	Checking the Port
	Running the Sample Applications

	Port Characteristics
	Parameters of Implementation
	Configuration Parameters
	Stack used for C-startup
	Stack used when idle
	Stack overheads for ISR activation
	Stack overheads for ECC tasks
	Stack overheads for ISR
	ORTI/Lauterbach
	ORTI/winIDEA
	ORTI Stack Fill
	Support winIDEA Analyzer
	ORTI/SMP
	CrossCore SRC0
	CrossCore SRC1
	CrossCore SRC2
	CrossCore SRC3
	CrossCore SRC4
	CrossCore SRC5
	Block default interrupt
	User Mode
	Trusted with protection PRS
	Guard supervisor access
	Interrupt vector matches priority
	OS Locks disable Cat1
	Enable stack repositioning
	Enhanced Isolation
	Link Type
	Small data threshold
	Short enums
	FP Instructions
	Far jumps
	Max Optimizations
	Optimization Type
	Customer Option Set 1
	Customer Option Set 2

	Generated Files

	Port-Specific API
	API Calls
	Os_GetTrapInfo
	Os_InitializeInterruptTable
	Os_InitializeServiceRequests
	Os_InitializeTrapTable
	Os_InitializeVectorTable
	Os_StartCoreGate

	Callbacks
	Os_Cbk_StartCore

	Macros
	CAT1_ISR
	CAT1_TRAP
	OS_CORE_isrname
	OS_INIT_srcname
	OS_VEC_isrname
	Os_DisableAllConfiguredInterrupts
	Os_Disable_x
	Os_EnableAllConfiguredInterrupts
	Os_Enable_x
	Os_IntChannel_x

	Type Definitions
	OsTrapInfoRefType
	OsTrapInfoType
	Os_StackSizeType
	Os_StackTraceType
	Os_StackValueType

	Toolchain
	Compiler Versions
	v2018.1.5
	v2017.1.5
	v2015.1.7

	Options used to generate this guide
	Compiler
	Assembler
	Librarian
	Linker
	Debugger

	Hardware
	Supported Devices
	Register Usage
	Initialization
	Modification

	Interrupts
	Interrupt Priority Levels
	Allocation of ISRs to Interrupt Vectors
	Vector Table
	Writing Category 1 Interrupt Handlers
	Writing Category 2 Interrupt Handlers
	Default Interrupt

	Memory Model
	Processor Modes
	Stack Handling

	Performance
	Measurement Environment
	RAM and ROM Usage for OS Objects
	Single Core
	Multi Core

	Stack Usage
	Library Module Sizes
	Single Core
	Multi Core

	Execution Time
	Context Switching Time

	Finding Out More
	Contacting ETAS
	Technical Support
	General Enquiries
	ETAS Global Headquarters
	ETAS Local Sales & Support Offices

