
RTA-OS TriCore/HighTec V5.0.22
Port Guide
Status: Released

Copyright

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this doc-
ument. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract. Under no circumstances
may any part of this document be copied, reproduced, transmitted, stored in a retrieval
system or translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2019 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document: 10568-PG-5.0.22 EN-02-2019

RTA-OS TriCore/HighTec Port Guide V5.0.22 2

Safety Notice

Safety Notice

This ETAS product fulfills standard quality management requirements. If requirements
of specific safety standards (e.g. IEC 61508, ISO 26262) need to be fulfilled, these
requirements must be explicitly defined and ordered by the customer. Before use of
the product, customer must verify the compliance with specific safety standards.

RTA-OS TriCore/HighTec Port Guide V5.0.22 3

Contents

Contents

1 Introduction 7
1.1 About You . 7
1.2 Document Conventions . 8
1.3 References . 8

2 Installing the RTA-OS Port Plug-in 9
2.1 Preparing to Install . 9

2.1.1 Hardware Requirements . 9
2.1.2 Software Requirements . 9

2.2 Installation . 10
2.2.1 Installation Directory . 10

2.3 Licensing . 11
2.3.1 Installing the ETAS License Manager 11
2.3.2 Licenses . 12
2.3.3 Installing a Concurrent License Server 13
2.3.4 Using the ETAS License Manager 14
2.3.5 Troubleshooting Licenses . 16

3 Verifying your Installation 19
3.1 Checking the Port . 19
3.2 Running the Sample Applications . 19

4 Port Characteristics 21
4.1 Parameters of Implementation . 21
4.2 Configuration Parameters . 21

4.2.1 Stack used for C-startup . 21
4.2.2 Stack used when idle . 22
4.2.3 Stack overheads for ISR activation 22
4.2.4 Stack overheads for ECC tasks . 22
4.2.5 Stack overheads for ISR . 22
4.2.6 ORTI/Lauterbach . 23
4.2.7 ORTI/winIDEA . 23
4.2.8 ORTI Stack Fill . 23
4.2.9 Support winIDEA Analyzer . 24
4.2.10 ORTI/SMP . 24
4.2.11 CrossCore SRC0 . 24
4.2.12 CrossCore SRC1 . 24
4.2.13 CrossCore SRC2 . 24
4.2.14 CrossCore SRC3 . 25
4.2.15 CrossCore SRC4 . 25
4.2.16 CrossCore SRC5 . 25
4.2.17 Block default interrupt . 25
4.2.18 User Mode . 26
4.2.19 Trusted with protection PRS . 26
4.2.20 Guard supervisor access . 26
4.2.21 Interrupt vector matches priority 26
4.2.22 OS Locks disable Cat1 . 27

RTA-OS TriCore/HighTec Port Guide V5.0.22 4

Contents

4.2.23 Enable stack repositioning . 27
4.2.24 Link Type . 27
4.2.25 Memory model . 28
4.2.26 Optimization . 28
4.2.27 Small const threshold . 28
4.2.28 Small data threshold . 28
4.2.29 mcpu override . 28
4.2.30 emit stack usage . 29
4.2.31 Far jumps . 29
4.2.32 Customer Option Set 1 . 29
4.2.33 Customer Feature Set . 30

4.3 Generated Files . 30

5 Port-Specific API 31
5.1 API Calls . 31

5.1.1 Os_GetTrapInfo . 31
5.1.2 Os_InitializeInterruptTable . 32
5.1.3 Os_InitializeServiceRequests . 33
5.1.4 Os_InitializeTrapTable . 34
5.1.5 Os_InitializeVectorTable . 35
5.1.6 Os_StartCoreGate . 35

5.2 Callbacks . 36
5.2.1 Os_Cbk_StartCore . 36

5.3 Macros . 37
5.3.1 CAT1_ISR . 37
5.3.2 CAT1_TRAP . 38
5.3.3 OS_CORE_isrname . 38
5.3.4 OS_VEC_isrname . 38
5.3.5 Os_DisableAllConfiguredInterrupts 38
5.3.6 Os_Disable_x . 38
5.3.7 Os_EnableAllConfiguredInterrupts 39
5.3.8 Os_Enable_x . 39
5.3.9 Os_IntChannel_x . 39

5.4 Type Definitions . 39
5.4.1 OsTrapInfoRefType . 39
5.4.2 OsTrapInfoType . 40
5.4.3 Os_StackSizeType . 40
5.4.4 Os_StackTraceType . 40
5.4.5 Os_StackValueType . 40

RTA-OS TriCore/HighTec Port Guide V5.0.22 5

Contents

6 Toolchain 41
6.1 Compiler Versions . 41

6.1.1 v4.9.2.0 . 41
6.1.2 v4.6.6.1 . 41
6.1.3 v4.6.6.0 . 41
6.1.4 v4.6.5.* . 42
6.1.5 v4.6.4.* . 42

6.2 Options used to generate this guide . 42
6.2.1 Compiler . 42
6.2.2 Assembler . 44
6.2.3 Librarian . 45
6.2.4 Linker . 45
6.2.5 Debugger . 46

7 Hardware 48
7.1 Supported Devices . 48
7.2 Register Usage . 49

7.2.1 Initialization . 49
7.2.2 Modification . 50

7.3 Interrupts . 50
7.3.1 Interrupt Priority Levels . 51
7.3.2 Allocation of ISRs to Interrupt Vectors 51
7.3.3 Vector Table . 51
7.3.4 Writing Category 1 Interrupt Handlers 53
7.3.5 Writing Category 2 Interrupt Handlers 54
7.3.6 Default Interrupt . 54

7.4 Memory Model . 54
7.5 Processor Modes . 54
7.6 Stack Handling . 55

8 Performance 56
8.1 Measurement Environment . 56
8.2 RAM and ROM Usage for OS Objects . 56

8.2.1 Single Core . 57
8.2.2 Multi Core . 57

8.3 Stack Usage . 57
8.4 Library Module Sizes . 58

8.4.1 Single Core . 58
8.4.2 Multi Core . 60

8.5 Execution Time . 63
8.5.1 Context Switching Time . 64

9 Finding Out More 67

10 Contacting ETAS 68
10.1 Technical Support . 68
10.2 General Enquiries . 68

10.2.1 ETAS Global Headquarters . 68
10.2.2 ETAS Local Sales & Support Offices 68

RTA-OS TriCore/HighTec Port Guide V5.0.22 6

Introduction

1 Introduction

RTA-OS is a small and fast real-time operating system that conforms to both the AU-
TOSAR OS (R3.0.1 -> R3.0.7, R3.1.1 -> R3.1.5, R3.2.1 -> R3.2.2, R4.0.1 -> R4.3.1) and
OSEK/VDX 2.2.3 standards (OSEK is now standardized in ISO 17356). The operating
system is configured and built on a PC, but runs on your target hardware.

This document describes the RTA-OS TriCore/HighTec port plug-in that customizes the
RTA-OS development tools for the Infineon TriCore with the HighTec compiler. It supple-
ments the more general information you can find in the User Guide and the Reference
Guide.

The document has two parts. Chapters 2 to 3 help you understand the TriCore/HighTec
port and cover:

• how to install the TriCore/HighTec port plug-in;

• how to configure TriCore/HighTec-specific attributes;

• how to build an example application to check that the TriCore/HighTec port plug-in
works.

Chapters 4 to 8 provide reference information including:

• the number of OS objects supported;

• required and recommended toolchain parameters;

• how RTA-OS interacts with the TriCore, including required register settings, memory
models and interrupt handling;

• memory consumption for each OS object;

• memory consumption of each API call;

• execution times for each API call.

For the best experience with RTA-OS it is essential that you read and understand this
document.

1.1 About You

You are a trained embedded systems developer who wants to build real-time appli-
cations using a preemptive operating system. You should have knowledge of the C
programming language, including the compilation, assembling and linking of C code
for embedded applications with your chosen toolchain. Elementary knowledge about
your target microcontroller, such as the start address, memory layout, location of pe-
ripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows operating sys-
tem, including installing software, selecting menu items, clicking buttons, navigating
files and folders.

RTA-OS TriCore/HighTec Port Guide V5.0.22 7

Introduction

1.2 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options appear in bold, blue characters.

Click OK. Button labels appear in bold characters

Press <Enter>. Key commands are enclosed in angle brackets.

The “Open file” dialog box
appears

GUI element names, for example window titles, fields,
etc. are enclosed in double quotes.

Activate(Task1) Program code, header file names, C type names,
C functions and API call names all appear in a
monospaced typeface.

See Section 1.2. Internal document hyperlinks are shown in blue letters.

Functionality in RTA-OS that might not be portable to
other implementations of AUTOSAR OS is marked with
the RTA-OS icon.

Important instructions that you must follow carefully to
ensure RTA-OS works as expected are marked with a
caution sign.

1.3 References

OSEK is a European automotive industry standards effort to produce open systems
interfaces for vehicle electronics. OSEK is now standardized in ISO 17356. For details
of the OSEK standards, please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized auto-
motive software architecture, jointly developed by automobile manufacturers, suppli-
ers and tool developers. For details of the AUTOSAR standards, please refer to:

http://www.autosar.org

RTA-OS TriCore/HighTec Port Guide V5.0.22 8

http://www.osek-vdx.org
http://www.autosar.org

Installing the RTA-OS Port Plug-in

2 Installing the RTA-OS Port Plug-in

2.1 Preparing to Install

RTA-OS port plug-ins are supplied as a downloadable electronic installation image which
you obtain from the ETAS Web Portal. You will have been provided with access to the
download when you bought the port. You may optionally have requested an installation
CD which will have been shipped to you. In either case, the electronic image and the
installation CD contain identical content.

Integration Guidance 2.1:You must have installed the RTA-OS tools before installing
the TriCore/HighTec port plug-in. If you have not yet done this then please follow the
instructions in the Getting Started Guide.

2.1.1 Hardware Requirements

You should make sure that you are using at least the following hardware before in-
stalling and using RTA-OS on a host PC:

• 1GHz Pentium Windows-capable PC.

• 2G RAM.

• 20G hard disk space.

• CD-ROM or DVD drive (Optional)

• Ethernet card.

2.1.2 Software Requirements

RTA-OS requires that your host PC has one of the following versions of Microsoft Win-
dows installed:

• Windows 7

• Windows 8

• Windows 10

Integration Guidance 2.2:The tools provided with RTA-OS require Microsoft’s .NET
Framework v2.0 (included as part of .NET Framework v3.5) and v4.0 to be installed. You
should ensure that these have been installed before installing RTA-OS. The .NET frame-
work is not supplied with RTA-OS but is freely available from https://www.microsoft.
com/net/download. To install .NET 3.5 on Windows 10 see https://docs.microsoft.
com/en-us/dotnet/framework/install/dotnet-35-windows-10.

The migration of the code from v2.0 to v4.0 will occur over a period of time for perfor-
mance and maintenance reasons.

RTA-OS TriCore/HighTec Port Guide V5.0.22 9

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10

Installing the RTA-OS Port Plug-in

2.2 Installation

Target port plug-ins are installed in the same way as the tools:

1. Either

• Double click the executable image; or

• Insert the RTA-OS TriCore/HighTec CD into your CD-ROM or DVD drive.

If the installation program does not run automatically then you will need to
start the installation manually. Navigate to the root directory of your CD/DVD
drive and double click autostart.exe to start the setup.

2. Follow the on-screen instructions to install the TriCore/HighTec port plug-in.

By default, ports are installed into C:\ETAS\RTA-OS\Targets. During the installation
process, you will be given the option to change the folder to which RTA-OS ports are
installed. You will normally want to ensure that you install the port plug-in in the same
location that you have installed the RTA-OS tools. You can install different versions of
the tools/targets into different directories and they will not interfere with each other.

Integration Guidance 2.3:Port plug-ins can be installed into any location, but using
a non-default directory requires the use of the --target_include argument to both
rtaosgen and rtaoscfg. For example:

rtaosgen --target_include:<target_directory>

2.2.1 Installation Directory

The installation will create a sub-directory under Targets with the name
TriCoreHighTec_5.0.22. This contains everything to do with the port plug-in.

Each version of the port installs in its own directory - the trailing _5.0.22 is the port’s
version identifier. You can have multiple different versions of the same port installed at
the same time and select a specific version in a project’s configuration.

The port directory contains:

TriCoreHighTec.dll - the port plug-in that is used by rtaosgen and rtaoscfg.

RTA-OS TriCoreHighTec Port Guide.pdf - the documentation for the port (the doc-
ument you are reading now).

RTA-OS TriCoreHighTec Release Note.pdf - the release note for the port. This doc-
ument provides information about the port plug-in release, including a list of
changes from previous releases and a list of known limitations.

There may be other port-specific documentation supplied which you can also find in
the root directory of the port installation. All user documentation is distributed in PDF
format which can be read using Adobe Acrobat Reader. Adobe Acrobat Reader is not
supplied with RTA-OS but is freely available from http://www.adobe.com.

RTA-OS TriCore/HighTec Port Guide V5.0.22 10

http://www.adobe.com

Installing the RTA-OS Port Plug-in

Figure 2.1: The ETAS License manager

2.3 Licensing

RTA-OS is protected by FLEXnet licensing technology. You will need a valid license key
in order to use RTA-OS.

Licenses for the product are managed using the ETAS License Manager which keeps
track of which licenses are installed and where to find them. The information about
which features are required for RTA-OS and any port plug-ins is stored as license signa-
ture files that are stored in the folder <install_folder>\bin\Licenses.

The ETAS License Manager can also tell you key information about your licenses includ-
ing:

• Which ETAS products are installed

• Which license features are required to use each product

• Which licenses are installed

• When licenses expire

• Whether you are using a local or a server-based license

Figure 2.1 shows the ETAS License Manager in operation.

2.3.1 Installing the ETAS License Manager

Integration Guidance 2.4:The ETAS License Manager must be installed for RTA-OS to
work. It is highly recommended that you install the ETAS License Manager during your
installation of RTA-OS.

The installer for the ETAS License Manager contains two components:

RTA-OS TriCore/HighTec Port Guide V5.0.22 11

Installing the RTA-OS Port Plug-in

1. the ETAS License Manager itself;

2. a set of re-distributable FLEXnet utilities. The utilities include the software and
instructions required to setup and run a FLEXnet license server manager if con-
current licenses are required (see Sections 2.3.2 and 2.3.3 for further details)

During the installation of RTA-OS you will be asked if you want to install the ETAS
License Manager. If not, you can install it manually at a later time by running
<install_folder>\LicenseManager\LicensingStandaloneInstallation.exe.

Once the installation is complete, the ETAS License Manager can be found in
C:\Program Files\Common Files\ETAS\Licensing.

After it is installed, a link to the ETAS License Manager can be found in the Windows
Start menu under ProgramsÔ ETAS Ô License Management Ô ETAS License
Manager.

2.3.2 Licenses

When you install RTA-OS for the first time the ETAS License Manager will allow the
software to be used in grace mode for 14 days. Once the grace mode period has
expired, a license key must be installed. If a license key is not available, please contact
your local ETAS sales representative. Contact details can be found in Chapter 10.

You should identify which type of license you need and then provide ETAS with the
appropriate information as follows:

Machine-named licenses allows RTA-OS to be used by any user logged onto the PC
on which RTA-OS and the machine-named license is installed.

A machine-named license can be issued by ETAS when you provide the host ID
(Ethernet MAC address) of the host PC

User-named licenses allow the named user (or users) to use RTA-OS on any PC in the
network domain.

A user-named license can be issued by ETAS when you provide the Windows user-
name for your network domain.

Concurrent licenses allow any user on any PC up to a specified number of users to
use RTA-OS. Concurrent licenses are sometimes called floating licenses because
the license can float between users.

A concurrent license can be issued by ETAS when you provide the following infor-
mation:

1. The name of the server

2. The Host ID (MAC address) of the server.

3. The TCP/IP port over which your FLEXnet license server will serve licenses. A
default installation of the FLEXnet license server uses port 27000.

RTA-OS TriCore/HighTec Port Guide V5.0.22 12

Installing the RTA-OS Port Plug-in

Figure 2.2: Obtaining License Information

You can use the ETAS License Manager to get the details that you must provide to ETAS
when requesting a machine-named or user-named license and (optionally) store this
information in a text file.

Open the ETAS License Manager and choose Tools Ô Obtain License Info from the
menu. For machine-named licenses you can then select the network adaptor which
provides the Host ID (MAC address) that you want to use as shown in Figure 2.2. For
a user-based license, the ETAS License Manager automatically identifies the Windows
username for the current user.

Selecting “Get License Info” tells you the Host ID and User information and lets you
save this as a text file to a location of your choice.

2.3.3 Installing a Concurrent License Server

Concurrent licenses are allocated to client PCs by a FLEXnet license server manager
working together with a vendor daemon. The vendor daemon for ETAS is called
ETAS.exe. A copy of the vendor daemon is placed on disk when you install the ETAS
License Manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

To work with an ETAS concurrent license, a license server must be configured which is
accessible from the PCs wishing to use a license. The server must be configured with
the following software:

• FLEXnet license server manager;

• ETAS vendor daemon (ETAS.exe);

It is also necessary to install your concurrent license on the license server.

RTA-OS TriCore/HighTec Port Guide V5.0.22 13

Installing the RTA-OS Port Plug-in

Figure 2.3: Unlicensed RTA-OS Installation

In most organizations there will be a single FLEXnet license server manager that is
administered by your IT department. You will need to ask your IT department to install
the ETAS vendor daemon and the associated concurrent license.

If you do not already have a FLEXnet license server then you will need to arrange for
one to be installed. A copy of the FLEXnet license server, the ETAS vendor daemon and
the instructions for installing and using the server (LicensingEndUserGuide.pdf) are
placed on disk when you install the ETAS License manager and can be found in:

C:\Program Files\Common Files\ETAS\Licensing\Utility

2.3.4 Using the ETAS License Manager

If you try to run the RTA-OS GUI rtaoscfg without a valid license, you will be given the
opportunity to start the ETAS License Manager and select a license. (The command-line
tool rtaosgen will just report the license is not valid.)

When the ETAS License Manager is launched, it will display the RTA-OS license state as
NOT AVAILABLE. This is shown in Figure 2.3.

Note that if the ETAS License Manager window is slow to start, rtaoscfg may ask a
second time whether you want to launch it. You should ignore the request until the
ETAS License Manager has opened and you have completed the configuration of the
licenses. You should then say yes again, but you can then close the ETAS License
Manager and continue working.

RTA-OS TriCore/HighTec Port Guide V5.0.22 14

Installing the RTA-OS Port Plug-in

License Key Installation

License keys are supplied in an ASCII text file, which will be sent to you on completion
of a valid license agreement.

If you have a machine-based or user-based license key then you can simply install the
license by opening the ETAS License Manager and selecting File Ô Add License File
menu.

If you have a concurrent license key then you will need to create a license stub file that
tells the client PC to look for a license on the FLEXnet server as follows:

1. create a copy of the concurrent license file

2. open the copy of the concurrent license file and delete every line except the one
starting with SERVER

3. add a new line containing USE_SERVER

4. add a blank line

5. save the file

The file you create should look something like this:

SERVER <server name> <MAC address> <TCP/IP Port>¶
USE_SERVER¶
¶

Once you have create the license stub file you can install the license by opening the
ETAS License Manager and selecting File Ô Add License File menu and choosing the
license stub file.

License Key Status

When a valid license has been installed, the ETAS License Manager will display the
license version, status, expiration date and source as shown in Figure 2.4.

Borrowing a concurrent license

If you use a concurrent license and need to use RTA-OS on a PC that will be disconnected
from the network (for example, you take a demonstration to a customer site), then the
concurrent license will not be valid once you are disconnected.

To address this problem, the ETAS License Manager allows you to temporarily borrow a
license from the license server.

To borrow a license:

1. Right click on the license feature you need to borrow.

2. Select “Borrow License”

3. From the calendar, choose the date that the borrowed license should expire.

4. Click “OK”

RTA-OS TriCore/HighTec Port Guide V5.0.22 15

Installing the RTA-OS Port Plug-in

Figure 2.4: Licensed features for RTA-OS

The license will automatically expire when the borrow date elapses. A borrowed license
can also be returned before this date. To return a license:

1. Reconnect to the network;

2. Right-click on the license feature you have borrowed;

3. Select “Return License”.

2.3.5 Troubleshooting Licenses

RTA-OS tools will report an error if you try to use a feature for which a correct license
key cannot be found. If you think that you should have a license for a feature but the
RTA-OS tools appear not to work, then the following troubleshooting steps should be
followed before contacting ETAS:

Can the ETAS License Manager see the license?

The ETAS License Manager must be able to see a valid license key for each product
or product feature you are trying to use.

You can check what the ETAS License Manager can see by starting it from the
Help Ô License Manager. . . menu option in rtaoscfg or directly from the
Windows Start Menu - Start Ô ETAS Ô License Management Ô ETAS License
Manager.

The ETAS License Manager lists all license features and their status. Valid licenses
have status INSTALLED. Invalid licenses have status NOT AVAILABLE.

RTA-OS TriCore/HighTec Port Guide V5.0.22 16

Installing the RTA-OS Port Plug-in

Figure 2.5: Licensed features that are due to expire

Is the license valid?

You may have been provided with a time-limited license (for example, for evalu-
ation purposes) and the license may have expired. You can check that the Expi-
ration Date for your licensed features to check that it has not elapsed using the
ETAS License Manager.

If a license is due to expire within the next 30 days, the ETAS License Manager will
use a warning triangle to indicate that you need to get a new license. Figure 2.5
shows that the license features LD_RTA-OS3.0_VRTA and LD_RTA-OS3.0_SRC are
due to expire.

If your license has elapsed then please contact your local ETAS sales representa-
tive to discuss your options.

Does the Ethernet MAC address match the one specified?

If you have a machine based license then it is locked to a specific MAC address.
You can find out the MAC address of your PC by using the ETAS License Manager
(Tools Ô Obtain License Info) or using the Microsoft program ipconfig /all at
a Windows Command Prompt.

You can check that the MAC address in your license file by opening your license file
in a text editor and checking that the HOSTID matches the MAC address identified
by the ETAS License Manager or the Physical Address reported by ipconfig /all.

If the HOSTID in the license file (or files) does not match your MAC address then
you do not have a valid license for your PC. You should contact your local ETAS
sales representative to discuss your options.

Is your Ethernet Controller enabled?

RTA-OS TriCore/HighTec Port Guide V5.0.22 17

Installing the RTA-OS Port Plug-in

If you use a laptop and RTA-OS stops working when you disconnect from the net-
work then you should check your hardware settings to ensure that your Ether-
net controller is not turned off to save power when a network connection is not
present. You can do this using Windows Control Panel. Select System Ô Hard-
ware Ô Device Manager then select your Network Adapter. Right click to open
Properties and check that the Ethernet controller is not configured for power
saving in Advanced and/or Power Management settings.

Is the FlexNet License Server visible?

If your license is served by a FlexNet license server, then the ETAS License Man-
ager will report the license as NOT AVAILABLE if the license server cannot be ac-
cessed.

You should contact your IT department to check that the server is working cor-
rectly.

Still not fixed?

If you have not resolved your issues, after confirming these points above, please
contact ETAS technical support. The contact address is provided in Section 10.1.
You must provide the contents and location of your license file and your Ethernet
MAC address.

RTA-OS TriCore/HighTec Port Guide V5.0.22 18

Verifying your Installation

3 Verifying your Installation

Now that you have installed both the RTA-OS tools and a port plug-in and have obtained
and installed a valid license key you can check that things are working.

3.1 Checking the Port

The first thing to check is that the RTA-OS tools can see the new port. You can do this
in two ways:

1. use the rtaosgen tool

You can run the command rtaosgen −−target:? to get a list of available targets,
the versions of each target and the variants supported, for example:

RTA-OS Code Generator
Version p.q.r.s, Copyright © ETAS nnnn
Available targets:
TriCoreHighTec_n.n.n [TC1797...]
VRTA_n.n.n [MinGW,VS2005,VS2008,VS2010]

2. use the rtaoscfg tool

The second way to check that the port plug-in can be seen is by starting rtaoscfg
and selecting Help Ô Information... drop down menu. This will show informa-
tion about your complete RTA-OS installation and license checks that have been
performed.

Integration Guidance 3.1:If the target port plug-ins have been installed to a non-
default location, then the --target_include argument must be used to specify the
target location.

If the tools can see the port then you can move on to the next stage – checking that you
can build an RTA-OS library and use this in a real program that will run on your target
hardware.

3.2 Running the Sample Applications

Each RTA-OS port is supplied with a set of sample applications that allow you to check
that things are running correctly. To generate the sample applications:

1. Create a new working directory in which to build the sample applications.

2. Open a Windows command prompt in the new directory.

3. Execute the command:

rtaosgen --target:<your target> --samples:[Applications]

e.g.

rtaosgen --target:[MPC5777Mv2]PPCe200HighTec_5.0.8
--samples:[Applications]

RTA-OS TriCore/HighTec Port Guide V5.0.22 19

Verifying your Installation

You can then use the build.bat and run.bat files that get created for each sample appli-
cation to build and run the sample. For example:

cd Samples\Applications\HelloWorld
build.bat
run.bat

Remember that your target toolchain must be accessible on the Windows PATH for the
build to be able to run successfully.

Integration Guidance 3.2:It is strongly recommended that you build and run at least
the Hello World example in order to verify that RTA-OS can use your compiler toolchain
to generate an OS kernel and that a simple application can run with that kernel.

For further advice on building and running the sample applications, please consult your
Getting Started Guide.

RTA-OS TriCore/HighTec Port Guide V5.0.22 20

Port Characteristics

4 Port Characteristics

This chapter tells you about the characteristics of RTA-OS for the TriCore/HighTec port.

4.1 Parameters of Implementation

To be a valid OSEK (ISO 17356) or AUTOSAR OS, an implementation must support a
minimum number of OS objects. The following table specifies the minimum numbers
of each object required by the standards and the maximum number of each object
supported by RTA-OS for the TriCore/HighTec port.

Parameter Required RTA-OS

Tasks 16 1024
Tasks not in SUSPENDED state 16 1024
Priorities 16 1024
Tasks per priority - 1024
Queued activations per priority - 4294967296
Events per task 8 32
Software Counters 8 4294967296
Hardware Counters - 4294967296
Alarms 1 4294967296
Standard Resources 8 4294967296
Linked Resources - 4294967296
Nested calls to GetResource() - 4294967296
Internal Resources 2 no limit
Application Modes 1 4294967296
Schedule Tables 2 4294967296
Expiry Points per Schedule Table - 4294967296
OS Applications - 4294967295
Trusted functions - 4294967295
Spinlocks (multicore) - 4294967295
Register sets - 4294967296

4.2 Configuration Parameters

Port-specific parameters are configured in the General Ô Target workspace of
rtaoscfg, under the “Target-Specific” tab.

The following sections describe the port-specific configuration parameters for the Tri-
Core/HighTec port, the name of the parameter as it will appear in the XML configuration
and the range of permitted values (where appropriate).

4.2.1 Stack used for C-startup

XML name SpPreStartOS

RTA-OS TriCore/HighTec Port Guide V5.0.22 21

Port Characteristics

Description

The amount of stack already in use at the point that StartOS() is called. This value is
simply added to the total stack size that the OS needs to support all tasks and interrupts
at run-time. Typically you use this to obtain the amount of stack that the linker must
allocate. The value does not normally change if the OS configuration changes.

4.2.2 Stack used when idle

XML name SpStartOS

Description

The amount of stack used when the OS is in the idle state (typically inside
Os_Cbk_Idle()). This is just the difference between the stack used at the point that
Os_StartOS() is called and the stack used when no task or interrupt is running. This
can be zero if Os_Cbk_Idle() is not used. It must include the stack used by any function
called while in the idle state. The value does not normally change if the OS configura-
tion changes.

4.2.3 Stack overheads for ISR activation

XML name SpIDisp

Description

The extra amount of stack needed to activate a task from within an ISR. If a task is
activated within a Category 2 ISR, and that task has a higher priority than any currently
running task, then for some targets the OS may need to use marginally more stack
than if it activates a task that is of lower priority. This value accounts for that. On
most targets this value is zero. This value is used in worst-case stack size calculations.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.4 Stack overheads for ECC tasks

XML name SpECC

Description

The extra amount of stack needed to start an ECC task. ECC tasks need to save slightly
more state on the stack when they are started than BCC tasks. This value contains the
difference. The value may change if significant changes are made to the OS configura-
tion. e.g. STANDARD/EXTENDED, SC1/2/3/4.

4.2.5 Stack overheads for ISR

XML name SpPreemption

RTA-OS TriCore/HighTec Port Guide V5.0.22 22

Port Characteristics

Description

The amount of stack used to service a Category 2 ISR. When a Category 2 ISR interrupts
a task, it usually places some data on the stack. If the ISR measures the stack to deter-
mine if the preempted task has exceeded its stack budget, then it will overestimate the
stack usage unless this value is subtracted from the measured size. The value is also
used when calculating the worst-case stack usage of the system. Be careful to set this
value accurately. If its value is too high then when the subtraction occurs, 32-bit un-
derflow can occur and cause the OS to think that a budget overrun has been detected.
The value may change if significant changes are made to the OS configuration. e.g.
STANDARD/EXTENDED, SC1/2/3/4.

4.2.6 ORTI/Lauterbach

XML name Orti22Lauterbach

Description

Select ORTI generation for the Lauterbach debugger.

Settings

Value Description

true Generate Lauterbach ORTI
false No Lauterbach ORTI (default)

4.2.7 ORTI/winIDEA

XML name Orti21winIDEA

Description

Select ORTI generation for winIDEA debugger.

Settings

Value Description

true Generate winIDEA ORTI
false No winIDEA ORTI (default)

4.2.8 ORTI Stack Fill

XML name OrtiStackFill

Description

Expands ORTI information to cover stack address, size and fill pattern details to support
debugger stack usage monitoring.

Settings

Value Description

true Enable Stack Fill
false Disable Stack Fill (default)

RTA-OS TriCore/HighTec Port Guide V5.0.22 23

Port Characteristics

4.2.9 Support winIDEA Analyzer

XML name winIDEAAnalyzer

Description

Adds support for the winIDEA profiler to track ORTI items.

Settings

Value Description

true Support Analyzer
false No support for Analyzer (default)

4.2.10 ORTI/SMP

XML name OrtiSMPProposal

Description

Emit ORTI according to the ORTI_SMP_Proposal_v4.pdf (multicore only).

Settings

Value Description

true Generate ORTI/SMP
false Use RTA-OS legacy (default)

4.2.11 CrossCore SRC0

XML name CrossCoreSRC0

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 0. e.g.
SRC_GPSR02. A free register will be selected automatically if one is not specified. Mul-
ticore only.

4.2.12 CrossCore SRC1

XML name CrossCoreSRC1

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 1. e.g.
SRC_GPSR02. A free register will be selected automatically if one is not specified. Mul-
ticore only.

4.2.13 CrossCore SRC2

XML name CrossCoreSRC2

RTA-OS TriCore/HighTec Port Guide V5.0.22 24

Port Characteristics

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 2. e.g.
SRC_GPSR02. A free register will be selected automatically if one is not specified. Mul-
ticore only.

4.2.14 CrossCore SRC3

XML name CrossCoreSRC3

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 3. e.g.
SRC_GPSR02. A free register will be selected automatically if one is not specified. Mul-
ticore only.

4.2.15 CrossCore SRC4

XML name CrossCoreSRC4

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 4. e.g.
SRC_GPSR02. A free register will be selected automatically if one is not specified. Mul-
ticore only.

4.2.16 CrossCore SRC5

XML name CrossCoreSRC5

Description

Optionally specify the SRC assigned to the cross-core interrupt for core 5. e.g.
SRC_GPSR02. A free register will be selected automatically if one is not specified. Mul-
ticore only.

4.2.17 Block default interrupt

XML name block_default_interrupt

Description

This option is provided for compatibility reasons only. SRC registers for unused registers
are left in their power-on disabled state which blocks spurious interrupts and has no
impact on the generated code.

Settings

Value Description

true Ignored
false Ignored (default)

RTA-OS TriCore/HighTec Port Guide V5.0.22 25

Port Characteristics

4.2.18 User Mode

XML name UserMode

Description

Specify the PSW.IO user mode setting used for untrusted code. You may need to set up
SYSCON register in User-1 mode.

Settings

Value Description

User-0 PSW-IO 00: no peripheral access (default)
User-1 PSW-IO 01: regular peripheral access

4.2.19 Trusted with protection PRS

XML name TWPprs

Description

Specify the PSW.PRS setting used for trusted-with-protection code.

Settings

Value Description

1 PSW-PRS 01
2 PSW-PRS 10 (default)
3 PSW-PRS 11

4.2.20 Guard supervisor access

XML name guard_supervisor_access

Description

This option adds extra security checks to the System Call trap handler to validate that
the caller is the OS rather than some application code.

Settings

Value Description

true Extra checks
false No checks (default)

4.2.21 Interrupt vector matches priority

XML name IPL_matches_vector

Description

RTA-OS will normally pack interrupts to minimize the size of the interrupt vector table.
This reduces the memory size and reduces the interrupt entry time. Some customers
prefer to use the interrupt priority to determine the interrupt’s SRC.SRPN value.

RTA-OS TriCore/HighTec Port Guide V5.0.22 26

Port Characteristics

Settings

Value Description

true Try to match SRPN and priority
false Pack vectors (default)

4.2.22 OS Locks disable Cat1

XML name OSLockDisableAll

Description

Specify whether all interrupts are disabled while internal OS spinlocks are held. This
may reduce cross-core blocking. It should normally be selected if OS option ’Add Spin-
lock APIs for CAT1 ISRs’ is active. This does not affect spinlocks accessed using the
GetSpinlock or TryToGetSpinlock APIs

Settings

Value Description

true Disable all interrupts
false Do not disable interrupts (default)

4.2.23 Enable stack repositioning

XML name AlignUntrustedStacks

Description

Use to support realignment of the stack for untrusted code when there are
MPU protection region granularity issues. Refer to the documentation for
Os_Cbk_SetMemoryAccess

Settings

Value Description

true Support repositioning
false Normal behavior (default)

4.2.24 Link Type

XML name OsLinkerModel

Description

Select the type of map used in linker samples.

Settings

Value Description

Standalone Code in internal flash, data in internal RAM (default)
IntRAM Code/data in internal RAM
ExtRAM Code/data in external RAM

RTA-OS TriCore/HighTec Port Guide V5.0.22 27

Port Characteristics

4.2.25 Memory model

XML name OsMemoryModel

Description

Select the memory model. See the HighTec documentation for further details.

Settings

Value Description

small All data allocated to SDA (-msmall=0) (default)
small-const All constants allocated to SDA (-msmall-const=0)
small-data All variables allocated to SDA (-msmall-data=0)
large No data allocated to SDA

4.2.26 Optimization

XML name Optimization

Description

Select the optimization level. See the HighTec documentation for further details.

Settings

Value Description

s Optimize for space (-Os) (default)
2 Level 2 (-O2)

4.2.27 Small const threshold

XML name small_const_value

Description

Sets the value used for -msmall-const=n when compiling. (The option is not used other-
wise.) Overrides the Memory model option. See the HighTec documentation for further
details.

4.2.28 Small data threshold

XML name small_data_value

Description

Sets the value used for -msmall-data=n when compiling. (The option is not used other-
wise.) Overrides the Memory model option. See the HighTec documentation for further
details.

4.2.29 mcpu override

XML name mcpu

RTA-OS TriCore/HighTec Port Guide V5.0.22 28

Port Characteristics

Description

Override the OS-default value for the -mcpu compiler option. e.g. TC1766AC. See the
HighTec documentation for further details.

4.2.30 emit stack usage

XML name su_files

Description

Generate .su files [-fstack-usage compiler option]

Settings

Value Description

true Generate
false Do not generate (default)

4.2.31 Far jumps

XML name far_jumps

Description

Select far jumps if interrupt/trap handlers are located at an address that is more than
’24-bits’ away from the vector tables.

Settings

Value Description

true far jumps
false near jumps (default)

4.2.32 Customer Option Set 1

XML name option_set1

Description

Selects a different fixed set of compiler options. Overrides other target options.
Requested by a customer for a specific project and not supported elsewhere.
The compiler options are: -x c, -mtc162, -fno-common, -fno-delete-null-pointer-
checks, -ffunction-sections, -mpragma-function-sections, -fdata-sections, -mpragma-
data-sections, -DGNU=1, -Os, -maligned-data-sections, -W, -Wall, -Wcast-align, -
Wcast-qual, -Wmissing-noreturn, -Wmissing-prototypes, -Wnested-externs, -Wpointer-
arith, -Wredundant-decls, -Wstrict-prototypes, -Winline, -Wundef, -Wfloat-equal, -
Werror=double-promotion, -Wunsuffixed-float-constants, -Werror=nonzero-initialized-
in-bss, -fno-inline-functions-called-once, -finline-is-always-inline, -fno-section-anchors,
-ferror-numbers, -fno-builtin, -fstack-usage, -gdwarf-2, -fdwarf-control-flow, -mpragma-
section-filter.

RTA-OS TriCore/HighTec Port Guide V5.0.22 29

Port Characteristics

Settings

Value Description

true Enables option set 1
false Use standard options (default)

4.2.33 Customer Feature Set

XML name feature_set

Description

Modify generated code based on the specified feature set. Customer specific.

4.3 Generated Files

The following table lists the files that are generated by rtaosgen for all ports:

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured. This is in-

cluded by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by RTA-

OS to merge with the system-wide MemMap.h file in AU-
TOSAR versions 4.0 and earlier. From AUTOSAR version 4.1,
Os_MemMap.h is used by the OS instead of MemMap.h.

RTAOS.<lib> The RTA-OS library for your application. The extension <lib>
depends on your target.

RTAOS.<lib>.sig A signature file for the library for your application. This is
used by rtaosgen to work out which parts of the kernel li-
brary need to be rebuilt if the configuration has changed. The
extension <lib> depends on your target.

<projectname>.log A log file that contains a copy of the text that the tool and
compiler sent to the screen during the build process.

RTA-OS TriCore/HighTec Port Guide V5.0.22 30

Port-Specific API

5 Port-Specific API

The following sections list the port-specific aspects of the RTA-OS programmers refer-
ence for the TriCore/HighTec port that are provided either as:

• additions to the material that is documented in the Reference Guide; or

• overrides for the material that is documented in the Reference Guide. When a
definition is provided by both the Reference Guide and this document, the definition
provided in this document takes precedence.

5.1 API Calls

5.1.1 Os_GetTrapInfo

Return information about the most recent unhandled trap.

Syntax

FUNC(StatusType, OS_CODE)Os_GetTrapInfo(
OsTrapInfoRefType Info

)

Parameters

Name Type Mode Description

info OsTrapInfoRefType in Pointer to the OsTrapInfoType into which
the information will be copied. OsTrapInfo-
Type contains the trap class (.Class), iden-
tification number (.TIN) and return address
(.ReturnAddress).

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.
E_OS_ILLEGAL_ADDRESS extended Info is an address that is not legal for writ-

ing by the current OS-Application (only when
there are untrusted OS-Applications).

Description

When an unhandled processor Trap is detected, RTA-OS records the trap class, identi-
fication number and return address. It stores this information independently for each
core, and then calls the ProtectionHook (when configured).

You can call Os_GetTrapInfo() from within ProtectionHook to get a copy of the most
recent trap information for the calling core.

RTA-OS TriCore/HighTec Port Guide V5.0.22 31

Port-Specific API

You should only call Os_GetTrapInfo() when the StatusType passed to ProtectionHook is
E_OS_PROTECTION_MEMORY or E_OS_PROTECTION_EXCEPTION.

Note that Os_GetTrapInfo() can only return the information for the most recent unhan-
dled trap for the given core.

Example

FUNC(ProtectionReturnType, {memclass}) ProtectionHook(StatusType
FatalError) {

OsTrapInfoType trap_info;
switch (FatalError) {
case E_OS_PROTECTION_MEMORY:
/* A memory protection error has been detected */
Os_GetTrapInfo(&trap_info);
return MyUnexpectedTrapHandler(trap_info.Class, trap_info.TIN,

trap_info.ReturnAddress);
case E_OS_PROTECTION_EXCEPTION:
/* Trap occurred */
Os_GetTrapInfo(&trap_info);
return MyUnexpectedTrapHandler(trap_info.Class, trap_info.TIN,

trap_info.ReturnAddress);
...

}
return PRO_SHUTDOWN;

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-OS Hooks

Task 7 PreTaskHook 7 StackOverrunHook 7

Category 1 ISR 7 PostTaskHook 7 TimeOverrunHook 7

Category 2 ISR 7 StartupTaskHook 7

ShutdownHook 7

ErrorHook 7

ProtectionHook 3

See Also

ProtectionHook
OsTrapInfoType
OsTrapInfoRefType

5.1.2 Os_InitializeInterruptTable

Initialize the interrupt vector table.

Syntax

FUNC(void, OS_CODE) Os_InitializeInterruptTable(void)

RTA-OS TriCore/HighTec Port Guide V5.0.22 32

Port-Specific API

Description

RTA-OS creates interrupt vector table(s) based upon the interrupts that are configured.
In the TriCore, the BIV register must be set to the address of the appropriate table. It
should be called before StartOS().

The interrupt table must be initialized by calling this for each AUTOSAR core in a multi-
core application.

You do not normally need to call Os_InitializeInterruptTable() directly because it gets
called by Os_InitializeVectorTable().

You must ensure that the BIV register is in a state where it can be modified when you
make this call. You will need to be running in Supervisor with ENDINIT protection off.

Example

Os_InitializeInterruptTable();

See Also

StartOS
Os_InitializeVectorTable

5.1.3 Os_InitializeServiceRequests

Initializes the TriCore Service Request Registers according to the application configura-
tion.

Syntax

FUNC(void, OS_CODE) Os_InitializeServiceRequests(void)

Description

It is crucial that the initialization of the TriCore Service Request Registers is done in
accordance with the interrupts and priorities declared in the application configuration.

This function should be called to set the correct SRC values. You do not normally need
to call this explicitly because it is automatically called from Os_InitializeInterruptTable()
when it is called from core 0.

Note that the hardware priority values allocated to each interrupt source are not the
same as the logical interrupt priority levels (IPLs) that are assigned to an interrupt in
the configuration. In a single-core system, the priorities are compressed to reduce
the vector table size and improve response times. In multi-core systems, there are
additional constraints that require priorities across cores to be aligned and the correct
interrupt steering values to be set.

RTA-OS emits OS_INIT_<srcname> macros that contain the correct SRC values for each
configured interrupt. If really necessary, you can use these to set the SRC values di-
rectly instead of calling this function.

RTA-OS TriCore/HighTec Port Guide V5.0.22 33

Port-Specific API

You must ensure that the SRC registers are in a state where they can be modified when
you make this call. You will need to be running in Supervisor with ENDINIT protection
off.

Example

Os_InitializeServiceRequests();
StartOS();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-OS Hooks

Task 7 PreTaskHook 7 StackOverrunHook 7

Category 1 ISR 7 PostTaskHook 7 TimeOverrunHook 7

Category 2 ISR 7 StartupTaskHook 7

ShutdownHook 7

ErrorHook 7

ProtectionHook 7

See Also

Os_InitializeVectorTable
StartOS
Os_InitializeInterruptTable

5.1.4 Os_InitializeTrapTable

Initialize the trap vector table.

Syntax

FUNC(void, OS_CODE) Os_InitializeTrapTable(void)

Description

RTA-OS creates trap vector table(s) based upon the traps that are configured. In the
TriCore, the BTV register must be set to the address of the appropriate table. It should
be called before StartOS().

The trap table must be initialized by calling this for each AUTOSAR core in a multicore
application.

You do not normally need to call Os_InitializeTrapTable() directly because it gets called
by Os_InitializeVectorTable().

Example

Os_InitializeTrapTable();

See Also

StartOS
Os_InitializeVectorTable

RTA-OS TriCore/HighTec Port Guide V5.0.22 34

Port-Specific API

5.1.5 Os_InitializeVectorTable

Initialize the interrupt vector table.

Syntax

void Os_InitializeVectorTable(void)

Description

RTA-OS creates interrupt table(s) and trap vector table(s) based upon the interrupts
and traps that are configured. In the TriCore, the BIV and BTV registers must be set to
their start addresses.

In addition, the Service Request Control Registers must be set up correctly such that
they match the configuration that is declared for the project. In particular, the TOS and
SRPN values must be correct. Note that the SRPN value does not necessarily match the
priority assigned to an interrupt.

Os_InitializeVectorTable() performs all of these initializations for you. It should be called
before StartOS().

If you only want to initialize the interrupt system then call Os_InitializeInterruptTable()
instead of Os_InitializeVectorTable.

If you only want to initialize the SRC registers then call Os_InitializeServiceRequests()
instead of Os_InitializeVectorTable / Os_InitializeInterruptTable.

If you only want to initialize the trap system then call Os_InitializeTrapTable() instead of
Os_InitializeVectorTable.

However it is recommended that you always use Os_InitializeVectorTable().

In a multicore application, each core must perform these initializations.

You must ensure that the BIV, BTV and SRC registers are in a state where they can be
modified when you make these calls. You will need to be running in Supervisor with
ENDINIT protection off.

Example

Os_InitializeVectorTable();

See Also

StartOS
Os_InitializeTrapTable
Os_InitializeVectorTable
Os_InitializeServiceRequests

5.1.6 Os_StartCoreGate

Control core startup.

RTA-OS TriCore/HighTec Port Guide V5.0.22 35

Port-Specific API

Syntax

FUNC(void, OS_CODE) Os_StartCoreGate(void)

Description

In a multi-core AUTOSAR application it is necessary for the master core to control the
start-up behavior of the slave cores. Ideally the slave cores should stay in reset until
Os_Cbk_StartCore gets called to release them.

Sometimes this can not be enforced (for example a debugger may not support this).
For this reason, the OS provides the Os_StartCoreGate() API that should be placed at
the start of ’main’.

If a slave core is released too early, this API will cause it to spin waiting until its
Os_Cbk_StartCore has been called.

In normal usage, the OS_MAIN macro hides the call to Os_StartCoreGate. If you choose
not to use OS_MAIN, then you should call Os_StartCoreGate explicitly if slave cores
cannot be held in reset.

Example

OS_MAIN() {
/* The OS_MAIN macro implicitly calls Os_StartCoreGate */
...

}

or

int main(void) {
Os_StartCoreGate();
...

}

See Also

Os_Cbk_StartCore

5.2 Callbacks

5.2.1 Os_Cbk_StartCore

Callback routine used to start a non master core on a multicore variant.

Syntax

FUNC(StatusType, {memclass})Os_Cbk_StartCore(
uint16 CoreID

)

RTA-OS TriCore/HighTec Port Guide V5.0.22 36

Port-Specific API

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.
E_OS_ID all The core does not exist or can not be started.

Description

In a multi-core application, the StartCore and StartNonAutosarCore OS APIs have to be
called prior to StartOS for each core that is to run.

For this target port, these APIs make a call to Os_Cbk_StartCore which is responsible
for starting the specified core and causing it to enter OS_MAIN.

RTA-OS provides a default implementation of Os_Cbk_StartCore that will be appropriate
for most normal situations. Note that this version also provides

some support for the default Os_StartCoreGate implementation.

Os_Cbk_StartCore does not get called for core 0, because core 0 must start first.

Note: memclass is OS_APPL_CODE for AUTOSAR 3.x, OS_CALLOUT_CODE for AUTOSAR
4.0, OS_OS_CBK_STARTCORE_CODE for AUTOSAR 4.1.

Example

FUNC(StatusType, {memclass}) Os_Cbk_StartCore(uint16 CoreID) {
SET_CORE_RSTVEC(CoreID);
RELEASE_CORE(CoreID);

}

Required when

Required for non master cores that will be started.

See Also

StartCore
StartNonAutosarCore
StartOS
Os_StartCoreGate

5.3 Macros

5.3.1 CAT1_ISR

Macro that should be used to create a Category 1 ISR entry function. This macro exists
to help make your code portable between targets.

RTA-OS TriCore/HighTec Port Guide V5.0.22 37

Port-Specific API

Example

CAT1_ISR(MyISR) {...}

5.3.2 CAT1_TRAP

Macro that should be used to implement a trap handler. If you want to use your own
trap handler instead of the OS supplied versions, you must declare it in the project
configuration as if it were a category 1 ISR.

Example

CAT1_TRAP(MyTrapHandler) {...}

5.3.3 OS_CORE_isrname

This macro contains the core (0,1...) that the named interrupt runs on. This is only
emitted for multicore applications

Example

#ifdef OS_CORE_timer_interrupt...

5.3.4 OS_VEC_isrname

This macro contains the vector number (1-255) that is assigned to the named interrupt

Example

#ifdef OS_VEC_timer_interrupt...

5.3.5 Os_DisableAllConfiguredInterrupts

The Os_DisableAllConfiguredInterrupts macro will disable all configured SRC inter-
rupts by adjusting the SRC register settings. You will need to #include the file
"Os_DisableInterrupts.h" if you want to use this macro. It may not be used by untrusted
code.

Example

Os_DisableAllConfiguredInterrupts()
Os_Enable_Millisecond()

5.3.6 Os_Disable_x

The Os_Disable_x macro will disable the named interrupt by adjusting its SRC register
settings. It is normally paired with a call to Os_Enable_x. The macro can be called
using either the SRC name or the RTA-OS configured vector name. In the example, this
is Os_Disable_STM_SRC0() and Os_Disable_Millisecond() respectively. You will need to
#include the file "Os_DisableInterrupts.h" if you want to use these macros. They may
not be used by untrusted code.

RTA-OS TriCore/HighTec Port Guide V5.0.22 38

Port-Specific API

Example

Os_Disable_STM_SRC0()
Os_Disable_Millisecond()

5.3.7 Os_EnableAllConfiguredInterrupts

The Os_EnableAllConfiguredInterrupts macro will enable all configured SRC inter-
rupts by adjusting the SRC register settings. You will need to #include the file
"Os_DisableInterrupts.h" if you want to use this macro. It may not be used by untrusted
code.

Example

Os_DisableAllConfiguredInterrupts()
...
Os_EnableAllConfiguredInterrupts()

5.3.8 Os_Enable_x

The Os_Enable_x macro will re-enable the named interrupt at the priority it was con-
figured with by adjusting its SRC register settings. It is normally paired with a call
to Os_Disable_x. The macro can be called using either the INTC vector name or
the RTA-OS configured vector name. In the example, this is Os_Enable_STM_SRC0()
and Os_Enable_Millisecond() respectively. You will need to #include the file
"Os_DisableInterrupts.h" if you want to use these macros. They may not be used by
untrusted code.

Example

Os_Enable_STM_SRC0()
Os_Enable_Millisecond()

5.3.9 Os_IntChannel_x

The Os_IntChannel_x macro returns the address of the SRC register that is associated
with the named interrupt. You can use this, for example, to trigger the interrupt through
software.

Example

*Os_IntChannel_Millisecond = *Os_IntChannel_Millisecond +
SRC_TRIGGER_BIT;

5.4 Type Definitions

5.4.1 OsTrapInfoRefType

A pointer to an object of OsTrapInfoType. OsTrapInfoType contains the trap class
(.Class), identification number (.TIN) and return address (.ReturnAddress) describing
a trap.

RTA-OS TriCore/HighTec Port Guide V5.0.22 39

Port-Specific API

Example

OsTrapInfoRefType trap_info_ref = &trap_info;
Os_GetTrapInfo(trap_info_ref);

5.4.2 OsTrapInfoType

Structure used by the Os_GetTrapInfo() API to return information about unhandled
traps.

5.4.3 Os_StackSizeType

A structure containing ’Os_StackTraceType sp’ to represent a size (in bytes) on the
regular stack (A10) and ’Os_StackTraceType ctx’ to represent a size (in bytes) on the
CSA list.

Example

Os_StackSizeType stack_size;
stack_size = Os_GetStackSize(start_position, end_position);

5.4.4 Os_StackTraceType

An unsigned type used to represent values on the regular stack and the CSAs.

5.4.5 Os_StackValueType

A structure containing ’Os_StackTraceType sp’ to represent the position of the regular
stack (A10) and ’Os_StackTraceType ctx’ to represent the position of the CSA list.

Example

Os_StackValueType start_position;
start_position = Os_GetStackValue();

RTA-OS TriCore/HighTec Port Guide V5.0.22 40

Toolchain

6 Toolchain

This chapter contains important details about RTA-OS and the HighTec toolchain. A
port of RTA-OS is specific to both the target hardware and a specific version of the com-
piler toolchain. You must make sure that you build your application with the supported
toolchain.

In addition to the version of the toolchain, RTA-OS may use specific tool options
(switches). The options are divided into three classes:

kernel options are those used by rtaosgen to build the RTA-OS kernel.

mandatory options must be used to build application code so that it will work with the
RTA-OS kernel.

forbidden options must not be used to build application code.

Any options that are not explicitly forbidden can be used by application code providing
that they do not conflict with the kernel and mandatory options for RTA-OS.

Integration Guidance 6.1:ETAS has developed and tested RTA-OS using the tool ver-
sions and options indicated in the following sections. Correct operation of RTA-OS is
only covered by the warranty in the terms and conditions of your deployment license
agreement when using identical versions and options. If you choose to use a different
version of the toolchain or an alternative set of options then it is your responsibility to
check that the system works correctly. If you require a statement that RTA-OS works
correctly with your chosen tool version and options then please contact ETAS to discuss
validation possibilities.

6.1 Compiler Versions

This port of RTA-OS has been developed to work with the following compiler(s):

6.1.1 v4.9.2.0

Release tests were performed on this version.

Tested on gcc version 4.9.4 build on 2017-04-25 (HighTec Release HDP-v4.9.2.0-
0397a57)

6.1.2 v4.6.6.1

Release tests were performed on this version.

Tested on gcc version 4.6.4 build on 2016-03-01 (HighTec Release HDP-v4.6.6.1-
a20ed07)

6.1.3 v4.6.6.0

Supported but no longer used for release testing.

Tested on - not tested for this release -

RTA-OS TriCore/HighTec Port Guide V5.0.22 41

Toolchain

6.1.4 v4.6.5.*

Supported but no longer used for release testing.

Tested on - not tested for this release -

6.1.5 v4.6.4.*

Supported but no longer used for release testing.

Tested on - not tested for this release -

If you require support for a compiler version not listed above, please contact ETAS.

6.2 Options used to generate this guide

6.2.1 Compiler

Name tricore-gcc.exe
Version gcc version 4.9.4 build on 2017-04-25 (HighTec Release HDP-

v4.9.2.0-0397a57) Configured with: ../../sources/gcc/configure
–host=x86_64-w64-mingw32 –build=x86_64-linux-gnu –with-
pkgversion=HDP-v4.9.2.0-0397a57 –with-bugurl=support@hightec-rt.com
–target=tricore –prefix=/data/distribution/HDP-v4.9.2.0-tricore/tricore-
win64/htc/tricore/win64/HDP-v4.9.2.0 –program-prefix=tricore- –
with-local-prefix=/data/distribution/HDP-v4.9.2.0-tricore/tricore-
win64/htc/tricore/win64/HDP-v4.9.2.0 –disable-shared –with-gnu-as –
with-gnu-ld –disable-threads –enable-languages=c,c++ –disable-libssp
–enable-nls –with-headers=yes –with-newlib=no –disable-newlib-supplied-
syscalls Thread model: single

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

-gdwarf-2 Generate DWARF v2 debugging information

-Wall Enable nearly all warnings

-W Enable additional warnings

-Werror-implicit-function-declaration Error if function is used before being de-
clared

-Wundef Warn about undefined macro in #if

-Wpointer-arith Warn for arithmetic using size of function or void

RTA-OS TriCore/HighTec Port Guide V5.0.22 42

Toolchain

-Wbad-function-cast Warn for function cast to a non-matching type

-Wcast-qual Warn if cast discards qualifiers

-Wcast-align Warn if cast may break alignment

-Wstrict-prototypes Warn if type and number of arguments for a function are not
declared

-Wmissing-prototypes Warn if a global function is defined without a prototype

-Wmissing-noreturn Warn if function could use noreturn attribute

-Wredundant-decls Warn about multiple redundant declarations

-Wnested-externs Warn about extern in a function

-Winline Warn if inline function cannot be inlined

-fno-builtin No built-in functions

-Wno-return-type Not appropriate for RTA-OS.

-Wno-pointer-to-int-cast Not appropriate for RTA-OS.

-Wfloat-equal Warn if floating point values are used in equality comparisons

-fno-common Use data section rather than common

-O2 Optimization level 2 (configurable via target option ’Optimization’)

-ffunction-sections Functions normally placed in .text are placed in their own sec-
tions.

-fdata-sections Items normally placed in .data are placed in their own sections.

-mpragma-data-sections Support -fdata-sections option

-Wno-unused-parameter Do not warn about unused parameters. The AUTOSAR API is
fixed, but RTA-OS may not need all parameters in every case.

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

-mcpu=tc27xx Select CPU

-maligned-data-sections Avoid alignment gaps

-msmall=0 All data allocated in SDA (configurable via target option ’Memory Model’)

RTA-OS TriCore/HighTec Port Guide V5.0.22 43

Toolchain

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.2 Assembler

Name tricore-gcc.exe
Version gcc version 4.9.4 build on 2017-04-25 (HighTec Release HDP-

v4.9.2.0-0397a57) Configured with: ../../sources/gcc/configure
–host=x86_64-w64-mingw32 –build=x86_64-linux-gnu –with-
pkgversion=HDP-v4.9.2.0-0397a57 –with-bugurl=support@hightec-rt.com
–target=tricore –prefix=/data/distribution/HDP-v4.9.2.0-tricore/tricore-
win64/htc/tricore/win64/HDP-v4.9.2.0 –program-prefix=tricore- –
with-local-prefix=/data/distribution/HDP-v4.9.2.0-tricore/tricore-
win64/htc/tricore/win64/HDP-v4.9.2.0 –disable-shared –with-gnu-as –
with-gnu-ld –disable-threads –enable-languages=c,c++ –disable-libssp
–enable-nls –with-headers=yes –with-newlib=no –disable-newlib-supplied-
syscalls Thread model: single

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

RTA-OS TriCore/HighTec Port Guide V5.0.22 44

Toolchain

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.3 Librarian

Name tricore-ar.exe
Version tricore-ar (HighTec Release HDP-v4.9.2.0-8277af9) build on 2017-04-25

(GNU Binutils) 2.20

6.2.4 Linker

Name tricore-gcc.exe
Version gcc version 4.9.4 build on 2017-04-25 (HighTec Release HDP-

v4.9.2.0-0397a57) Configured with: ../../sources/gcc/configure
–host=x86_64-w64-mingw32 –build=x86_64-linux-gnu –with-
pkgversion=HDP-v4.9.2.0-0397a57 –with-bugurl=support@hightec-rt.com
–target=tricore –prefix=/data/distribution/HDP-v4.9.2.0-tricore/tricore-
win64/htc/tricore/win64/HDP-v4.9.2.0 –program-prefix=tricore- –
with-local-prefix=/data/distribution/HDP-v4.9.2.0-tricore/tricore-
win64/htc/tricore/win64/HDP-v4.9.2.0 –disable-shared –with-gnu-as –
with-gnu-ld –disable-threads –enable-languages=c,c++ –disable-libssp
–enable-nls –with-headers=yes –with-newlib=no –disable-newlib-supplied-
syscalls Thread model: single

Options

Kernel Options

The following options were used to build the RTA-OS kernel for the configuration that
was used to generate the performance figures in this document. If you select different
target options, then the values used to build the kernel might change. You can run a
Configuration Summary report to check the values used for your configuration.

-Wl,--warn-orphan Warn if there is no dedicated mapping between an input section
and an output section.

-Wl,--warn-section-align Warn if the address of an output section is changed be-
cause of alignment.

-nostdlib No standard libraries

-nodefaultlibs No default libraries

-Wl,--no-demangle Do not demangle low-level symbol names

RTA-OS TriCore/HighTec Port Guide V5.0.22 45

Toolchain

-Wl,--warn-once Only warn once for each undefined symbol

-Wl,--relax Relax branches

-nocrt0 No C startup

-nodefaultlibs No default libraries

-nostartfiles No standard startup code

-e cstart Specify application entry point

Mandatory Options for Application Code

The following options were mandatory for application code used with the configuration
that was used to generate the performance figures in this document. If you select differ-
ent target options, then the values required by application code might change. You can
run a Configuration Summary report to check the values used for your configuration.

- The same options as for compilation

Forbidden Options for Application Code

The following options were forbidden for application code used with the configuration
that was used to generate the performance figures in this document. If you select
different target options, then the forbidden values might change. You can run a Config-
uration Summary report to check the values used for your configuration.

- Any options that conflict with kernel options

6.2.5 Debugger

Name Lauterbach TRACE32
Version Build 10654 or later

Notes

Supports .elf files and ORTI files.

Notes on using ORTI with the debugger

When ORTI information is enabled, extra code is added to the CAT1_ISR macro to sup-
port tracking of Category 1 interrupts by the debugger.

The ’ORTI Stack Fill’ target option is provided to extend the ORTI support to allow evalu-
ation of unused stack space. The ORTI information gets extended to include information
about the base address, size and fill pattern for the A10 stack.

The stack information is read from constants that you must create and initialize with
appropriate values. For the example linker file that ships with RTA-OS, you would use
the following code (for core 0):

RTA-OS TriCore/HighTec Port Guide V5.0.22 46

Toolchain

const uint32 OS_STACK0_BASE = (uint32)&__SP_BASE0;
const uint32 OS_STACK0_SIZE = (uint32)&__SP_LEN0;

Other cores follow the same pattern.

You must also specify the stack fill pattern in a 32 bit constant OS_STACK_FILL.

const uint32 OS_STACK_FILL = 0xCAFEF00D;

The stack must be initialized with this fill pattern before starting the OS. You can do this
in the C start-up code or during debugger initialization.

RTA-OS TriCore/HighTec Port Guide V5.0.22 47

Hardware

7 Hardware

7.1 Supported Devices

This port of RTA-OS has been developed to work with the following target:

Name: Infineon
Device: TriCore

The following variants of the TriCore are supported:

• Generic131 (Any 1.3.1 core)

• Generic16 (Any 1.6.0 core)

• Generic161 (Any 1.6.1 core)

• TC1387

• TC1724

• TC1728

• TC1736

• TC1767

• TC1784

• TC1793

• TC1797

• TC1798

• TC21x

• TC22x

• TC23x

• TC23xADAS

• TC265D (A-Step)

• TC26x (A-Step)

• TC26xB (B-Step)

• TC27x (B-Step)

• TC27xA (A-Step)

• TC27xB (B-Step)

• TC27xC (C-Step)

RTA-OS TriCore/HighTec Port Guide V5.0.22 48

Hardware

• TC27xD (D-Step)

• TC298TP (A-Step)

• TC299TP (A-Step)

• TC29x (A-Step)

• TC29xB (B-Step)

• TC35x

• TC36x

• TC37x

• TC38x

• TC39x (A-Step)

• TC39xB (B-Step)

If you require support for a variant of TriCore not listed above, please contact ETAS.

7.2 Register Usage

7.2.1 Initialization

RTA-OS requires the following registers to be initialized to the indicated values before
StartOS() is called.

RTA-OS TriCore/HighTec Port Guide V5.0.22 49

Hardware

Register Setting

BIV The Base Interrupt Vector has to be set to the start of CPU Inter-
rupt vector table. This is done by calling Os_InitializeVectorTable() (or
Os_InitializeInterruptTable()). This must be done for each OS core in a
multicore application.

BTV The Base Trap Vector has to be set to the start of the CPU Trap
vector table. This is done by calling Os_InitializeVectorTable() (or
Os_InitializeTrapTable()). This must be done for each OS core in a multi-
core application.

FCX,LCX The Free Context List must be initialized to a contiguous block of context
save areas (CSAs). Each block must link to its immediate neighbor such
that FCX gets smaller as CSAs are allocated. (This is the default behavior
of the HighTec startup code.)

PSW IO must be set to Supervisor Mode and IS must be set to 1.

SRR / SRC The Service request registers for each interrupt source must be initial-
ized correctly. This is done by calling Os_InitializeServiceRequests() (or
Os_InitializeVectorTable(), which calls it for you if called from core 0).
Note that the hardware priority values allocated to each interrupt source
are not normally the same as the logical interrupt priority levels (IPLs)
that are assigned to an interrupt in the configuration. In a single-core
system, the priorities are compressed to reduce the vector table size
and improve response times. In multi-core systems, there are additional
constraints that require priorities across cores to be aligned and the cor-
rect interrupt steering values to be set. If you have to, you can use the
OS_INIT_srcname macros to set the values directly. You can override this
behavior by using the ’Interrupt vector matches priority’ target option.

7.2.2 Modification

The following registers must not be modified by user code after the call to StartOS():

Register Notes

BIV The Base Interrupt Vector.

BTV The Base Trap Vector.

FCX The Free CSA List Head Pointer.

Interrupt Control Registers This includes SRC priority and TOS fields.

LCX The Free CSA List Limit Pointer.

PCX The Previous CSA List Head Pointer.

PCXI The Previous Context Information Register.

PSW After StartOS(), only the User Status bits may be written
to.

7.3 Interrupts

This section explains the implementation of RTA-OS’s interrupt model on the TriCore.

RTA-OS TriCore/HighTec Port Guide V5.0.22 50

Hardware

7.3.1 Interrupt Priority Levels

Interrupts execute at an interrupt priority level (IPL). RTA-OS standardizes IPLs across
all targets. IPL 0 indicates task level. IPL 1 and higher indicate an interrupt priority. It is
important that you don’t confuse IPLs with task priorities. An IPL of 1 is higher than the
highest task priority used in your application.

The IPL is a target-independent description of the interrupt priority on your target hard-
ware. The following table shows how IPLs are mapped onto the hardware interrupt
priorities of the TriCore:

IPL ICR Description

0 IE=1, CCPN=0 User (task) level
1-255 IE=1, CCPN=1-255 Category 1 and 2 level
256 - Traps

Even though a particular mapping is permitted, all Category 1 ISRs must have equal or
higher IPL than all of your Category 2 ISRs.

7.3.2 Allocation of ISRs to Interrupt Vectors

The following restrictions apply for the allocation of Category 1 and Category 2 inter-
rupt service routines (ISRs) to interrupt vectors on the TriCore. A 3 indicates that the
mapping is permitted and a 7 indicates that it is not permitted:

Address Category 1 Category 2

A named SRC register 3 3

A named trap 3 7

7.3.3 Vector Table

rtaosgen normally generates an interrupt vector table for you automatically. You can
configure “Suppress Vector Table Generation” as true to stop RTA-OS from generating
the interrupt vector table.

Depending upon your target, you may be responsible for locating the generated vector
table at the correct base address. The following table shows the section (or sections)
that need to be located and the associated valid base address:

RTA-OS TriCore/HighTec Port Guide V5.0.22 51

Hardware

Section Valid Addresses

.inttab.osinterrupts Contains Os_InterruptVectorTable(s). The table must be
aligned such that it fits within a memory range where its up-
per 20 address bits are the same. You should call the function
Os_InitializeVectorTable before StartOS() initialize the interrupt
system. It should be called for each AUTOSAR core in a multi-
core application.

.inttab.osstubs Emitted when the OS is not generating vector table and con-
tains interrupt / trap handler code for you to call.

.inttab.ostraps Contains the CPU Trap vector table. The table must be aligned
such that the lowest 8 bits of its address are zero. You should
call the function Os_InitializeVectorTable before StartOS() to
set register BTV to the start of the table. It should be called for
each AUTOSAR core in a multicore application. If you choose
to reassign BTV to point to a different set of traps, be aware
you will not be able to use untrusted OS Applications because
the OS expects to use the syscall(0) trap to switch modes. In
addition, the OS will not be able to detect memory access vio-
lations.

When ’Suppress Vector Table Generation’ is configured to TRUE, no vector tables get
generated. You are responsible for providing the vector tables and initializing the
BIV/BTV registers. RTA-OS still provides the interrupt and trap handler code for you
to bind to your tables. Note that this is the same code that would normally be placed
directly in the interrupt/trap tables, so must be entered with the same conditions that
were in effect when the vector was taken. In particular, the stack must be the same be-
cause the handler code expects to perform the return from interrupt/trap. The handler
code uses the bisr instruction to ensure that the interrupts run at the correct priority.
Each handler is placed in its own code memory section named using the convention
.intvec_core_index. In the simplest case your code will simply jump to the appropriate
interrupt or trap handler. There is a naming convention that helps you to do this:

Interrupt handler naming:

Each interrupt handler is given 2 names by which it can be accessed: Os_Interrupt_nnn
and Os_Interrupt_<name>. ’nnn’ represents the vector number 001 to 255. <name>
is the name of your ISR. You can choose which label to use. (In a multicore application
the first of these becomes Os_Interrupt_c_nnn, where c is the core number 0,1..) It is
critically important that the handlers get associated with the correct vector. You may
find the macros OS_VEC_<name> and OS_CORE_<name> that are in Os_Cfg.h helpful
if you want to auto-generate the vector tables.

Trap handler naming:

Each trap handler has a name appropriate to its responsibility. The names
are Os_memory_trap, Os_protection_trap, Os_instruction_trap, Os_context_trap,
Os_bus_trap, Os_assert_trap, Os_syscall_trap and Os_nmi_trap.

RTA-OS TriCore/HighTec Port Guide V5.0.22 52

Hardware

Cat1 ISR Implementation:

The CAT1_ISR macro should be used to implement Category 1 ISRs. It ensures that the
interrupt runs at the correct priority and saves / restores the correct registers.

Trap Implementation:

The CAT1_TRAP macro should be used to implement Category 1 Traps. It ensures that
the trap runs at the correct priority and saves / restores the correct registers.

Multicore Issues:

Each core that is running the AUTOSAR OS needs to use a software interrupt for cross-
core communication. RTA-OS will choose unallocated SRC registers for this purpose,
or you can configure specific registers. Macros in Os_Cfg.h can be used to determine
which registers are being used.

7.3.4 Writing Category 1 Interrupt Handlers

Raw Category 1 interrupt service routines (ISRs) must correctly handle the interrupt
context themselves. RTA-OS provides an optional helper macro CAT1_ISR that can be
used to make code more portable. Depending on the target, this may cause the se-
lection of an appropriate interrupt control directive to indicate to the compiler that a
function requires additional code to save and restore the interrupt context.

A Category 1 ISR therefore has the same structure as a Category 2 ISR, as shown below.

CAT1_ISR(Category1Handler) {
/* Handler routine */

}

You can configure your own trap handlers (declared as Category 1 ISRs) that will
override the OS-provided handlers. If there is untrusted code in the application then
syscall(0) will be intercepted and run instead of your handler code.

You should implement your handler using the CAT1_TRAP macro. That way, RTA-OS will
save the lower context before entering your handler, meaning that normal program
execution will resume when the handler finishes (as long as the reason for the trap has
been resolved).

Alternatively, if you name your trap handler b_(name) then RTA-OS will branch directly
to b_(name) without any modification to the CSAs or registers. You are entirely respon-
sible for the trap handing code in this case.

If you do provide your own handler, you can still jump to the default OS handler code
for the trap, using the naming rules described for supplying your own interrupt vector
table.

RTA-OS TriCore/HighTec Port Guide V5.0.22 53

Hardware

7.3.5 Writing Category 2 Interrupt Handlers

Category 2 ISRs are provided with a C function context by RTA-OS, since the RTA-OS
kernel handles the interrupt context itself. The handlers are written using the ISR()
macro as shown below:

#include <Os.h>
ISR(MyISR) {
/* Handler routine */

}

You must not insert a return from interrupt instruction in such a function. The return is
handled automatically by RTA-OS.

7.3.6 Default Interrupt

The ’default interrupt’ is intended to be used to catch all unexpected interrupts. All
unused interrupts have their interrupt vectors directed to the named routine that you
specify. The routine you provide is not handled by RTA-OS and must correctly handle
the interrupt context itself. The handler must use the CAT1_ISR macro in the same way
as a Category 1 ISR (see Section 7.3.4 for further details).

7.4 Memory Model

The following memory models are supported:

Model Description

large No data allocated to SDA
mixed Refer to the ’Small const threshold’ and ’Small data threshold’ option
small Default: all data allocated to SDA (-msmall=0)
small-const All constants allocated to SDA (-msmall-const=0)
small-data All variables allocated to SDA (-msmall-data=0)

7.5 Processor Modes

RTA-OS can run in the following processor modes:

Mode Notes

Trusted All OS and trusted code runs in supervisor mode (PSW.IO =
Supervisor) and PSW.PRS = 0.

TrustedWithProtection All trusted-with-protection code runs in supervisor mode
(PSW.IO = Supervisor). PSW.PRS is 2 by default but can be
set to 1 or 3 by target option.

Untrusted All untrusted code runs in user mode with PSW.PRS = 1.
PSW.IO can be set to User-0 (default) or User-1 by target
option.

RTA-OS TriCore/HighTec Port Guide V5.0.22 54

Hardware

7.6 Stack Handling

RTA-OS uses a single stack for all tasks and ISRs.

RTA-OS manages both the locals stack (via register A10) and the CSA list. CSAs are
used in such a way that they behave as if they were a normal stack, which means that
CSA usage can be calculated quickly at run time.

RTA-OS TriCore/HighTec Port Guide V5.0.22 55

Performance

8 Performance

This chapter provides detailed information on the functionality, performance and mem-
ory demands of the RTA-OS kernel. RTA-OS is highly scalable. As a result, different fig-
ures will be obtained when your application uses different sets of features. The figures
presented in this chapter are representative for the TriCore/HighTec port based on the
following configuration:

• There are 32 tasks in the system

• Standard build is used

• Stack monitoring is disabled

• Time monitoring is disabled

• There are no calls to any hooks

• Tasks have unique priorities

• Tasks are not queued (i.e. tasks are BCC1 or ECC1)

• All tasks terminate/wait in their entry function

• Tasks and ISRs do not save any auxiliary registers (for example, floating point reg-
isters)

• Resources are shared by tasks only

• The generation of the resource RES_SCHEDULER is disabled

8.1 Measurement Environment

The following hardware environment was used to take the measurements in this chap-
ter:

Device TC27xC on TC2x5 V1.0
CPU Clock Speed 80.0MHz
Stopwatch Speed 80.0MHz
Code Internal RAM
Data Internal RAM

8.2 RAM and ROM Usage for OS Objects

Each OS object requires some ROM and/or RAM. The OS objects are generated by
rtaosgen and placed in the RTA-OS library. In the main:

• Os_Cfg_Counters includes data for counters, alarms and schedule tables.

• Os_Cfg contains the data for most other OS objects.

RTA-OS TriCore/HighTec Port Guide V5.0.22 56

Performance

8.2.1 Single Core

The following table gives the ROM and/or RAM requirements (in bytes) for each OS
object in a simple single-core configuration. Note that object sizes will vary depending
on the project configuration and compiler packing issues.

Object ROM RAM

Alarm 2 12
Cat 2 ISR 8 0
Counter 20 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 70
OS-Application 0 0
PeripheralArea 0 0
Resource 8 4
ScheduleTable 16 12
Task 20 0

8.2.2 Multi Core

The following table gives the ROM and/or RAM requirements (in bytes) for each OS
object in a simple multi-core configuration. Note that object sizes will vary depending
on the project configuration and compiler packing issues.

Object ROM RAM

Alarm 4 12
Cat 2 ISR 12 0
Core Overheads (each OS core) 0 68
Core Overheads (each processor core) 20 28
Counter 28 4
CounterCallback 4 0
ExpiryPoint 3.5 0
OS Overheads (max) 0 6
OS-Application 2 0
PeripheralArea 0 0
Resource 12 4
ScheduleTable 16 12
Task 32 0

8.3 Stack Usage

The amount of stack used by each Task/ISR in RTA-OS is equal to the stack used in
the Task/ISR body plus the context saved by RTA-OS. The size of the run-time context
saved by RTA-OS depends on the Task/ISR type and the exact system configuration.
The only reliable way to get the correct value for Task/ISR stack usage is to call the
Os_GetStackUsage() API function.

RTA-OS TriCore/HighTec Port Guide V5.0.22 57

Performance

Note that because RTA-OS uses a single-stack architecture, the run-time contexts of
all tasks reside on the same stack and are recovered when the task terminates. As a
result, run-time contexts of mutually exclusive tasks (for example, those that share an
internal resource) are effectively overlaid. This means that the worst case stack usage
can be significantly less than the sum of the worst cases of each object on the system.
The RTA-OS tools automatically calculate the total worst case stack usage for you and
present this as part of the configuration report.

8.4 Library Module Sizes

8.4.1 Single Core

The RTA-OS kernel is demand linked. This means that each API call is placed into a
separately linkable module. The following table lists the section sizes for each API
module (in bytes) for the simple single-core configuration in standard status.

Library Module c
o
m

m
o
n

in
tt

a
b

.o
s
in

te
rr

u
p

ts

in
tt

a
b

.o
s
tr

a
p

s

s
b

s
s
.a

1

s
b

s
s
.a

4

s
ro

d
a
ta

.a
1

s
ro

d
a
ta

.a
2

s
ro

d
a
ta

.a
4

te
x
t

ActivateTask 132
AdvanceCounter 4
CallTrustedFunction 26
CancelAlarm 80
ChainTask 98
CheckISRMemoryAccess 28
CheckObjectAccess 114
CheckObjectOwnership 106
CheckTaskMemoryAccess 28
ClearEvent 32
ControlIdle 4 48
DisableAllInterrupts 8 42
DispatchTask 160
ElapsedTime 168
EnableAllInterrupts 28
GetActiveApplicationMode 6
GetAlarm 132
GetAlarmBase 42
GetApplicationID 26
GetCounterValue 38
GetCurrentApplicationID 26
GetElapsedCounterValue 72
GetEvent 32
GetExecutionTime 32

RTA-OS TriCore/HighTec Port Guide V5.0.22 58

Performance

Library Module c
o
m

m
o
n

in
tt

a
b

.o
s
in

te
rr

u
p

ts

in
tt

a
b

.o
s
tr

a
p

s

s
b

s
s
.a

1

s
b

s
s
.a

4

s
ro

d
a
ta

.a
1

s
ro

d
a
ta

.a
2

s
ro

d
a
ta

.a
4

te
x
t

GetISRID 6
GetIsrMaxExecutionTime 32
GetIsrMaxStackUsage 32
GetResource 62
GetScheduleTableStatus 38
GetStackSize 10
GetStackUsage 32
GetStackValue 18
GetTaskID 10
GetTaskMaxExecutionTime 32
GetTaskMaxStackUsage 32
GetTaskState 40
GetVersionInfo 26
Idle 4
InShutdown 2
IncrementCounter 10
InterruptSource 4 162
ModifyPeripheral 120
NextScheduleTable 102
Os_Cfg 3 556 776 216
Os_Cfg_Counters 56 32 640 3148
Os_Cfg_KL 40
Os_GetCurrentIMask 12
Os_GetCurrentTPL 26
Os_GetTrapInfo 16
Os_SrcInit 30
Os_Stack 28
Os_StartCores 8 166
Os_TrapSupport 8 16
Os_VectorInit 22
Os_locks
Os_longjmp_ext 56
Os_setjmp
Os_traps 256 250 18
Os_vectors 128
Os_wrapper 126
ProtectionSupport 34
ReadPeripheral 110

RTA-OS TriCore/HighTec Port Guide V5.0.22 59

Performance

Library Module c
o
m

m
o
n

in
tt

a
b

.o
s
in

te
rr

u
p

ts

in
tt

a
b

.o
s
tr

a
p

s

s
b

s
s
.a

1

s
b

s
s
.a

4

s
ro

d
a
ta

.a
1

s
ro

d
a
ta

.a
2

s
ro

d
a
ta

.a
4

te
x
t

ReleaseResource 74
ResetIsrMaxExecutionTime 32
ResetIsrMaxStackUsage 32
ResetTaskMaxExecutionTime 32
ResetTaskMaxStackUsage 32
ResumeAllInterrupts 28
ResumeOSInterrupts 28
Schedule 72
SetAbsAlarm 88
SetEvent 32
SetRelAlarm 148
SetScheduleTableAsync 58
ShutdownOS 60
StackOverrunHook 8
StartOS 124
StartScheduleTableAbs 120
StartScheduleTableRel 106
StartScheduleTableSynchron 58
StopScheduleTable 72
SuspendAllInterrupts 8 42
SuspendOSInterrupts 8 58
SyncScheduleTable 58
SyncScheduleTableRel 58
TerminateTask 18
ValidateCounter 58
ValidateISR 10
ValidateResource 42
ValidateScheduleTable 42
ValidateTask 42
WaitEvent 32
WritePeripheral 102

8.4.2 Multi Core

The RTA-OS kernel is demand linked. This means that each API call is placed into a
separately linkable module. The following table lists the section sizes for each API
module (in bytes) for the simple multi-core configuration in standard status.

RTA-OS TriCore/HighTec Port Guide V5.0.22 60

Performance

Library Module c
o
m

m
o
n

in
tt

a
b

.o
s
in

te
rr

u
p

ts

in
tt

a
b

.o
s
tr

a
p

s

s
b

s
s
.a

1

s
b

s
s
.a

4

s
ro

d
a
ta

.a
1

s
ro

d
a
ta

.a
2

s
ro

d
a
ta

.a
4

te
x
t

ActivateTask 236
AdvanceCounter 4
CallTrustedFunction 26
CancelAlarm 108
ChainTask 156
CheckISRMemoryAccess 28
CheckObjectAccess 180
CheckObjectOwnership 130
CheckTaskMemoryAccess 30
ClearEvent 32
ControlIdle 8 56
CrossCore 42
DisableAllInterrupts 52
DispatchTask 336
ElapsedTime 168
EnableAllInterrupts 40
GetActiveApplicationMode 6
GetAlarm 132
GetAlarmBase 42
GetApplicationID 54
GetCounterValue 38
GetCurrentApplicationID 54
GetElapsedCounterValue 72
GetEvent 32
GetExecutionTime 32
GetISRID 22
GetIsrMaxExecutionTime 32
GetIsrMaxStackUsage 32
GetNumberOfActivatedCores 18
GetResource 74
GetScheduleTableStatus 60
GetSpinlock 4
GetStackSize 10
GetStackUsage 32
GetStackValue 32
GetTaskID 26
GetTaskMaxExecutionTime 32
GetTaskMaxStackUsage 32

RTA-OS TriCore/HighTec Port Guide V5.0.22 61

Performance

Library Module c
o
m

m
o
n

in
tt

a
b

.o
s
in

te
rr

u
p

ts

in
tt

a
b

.o
s
tr

a
p

s

s
b

s
s
.a

1

s
b

s
s
.a

4

s
ro

d
a
ta

.a
1

s
ro

d
a
ta

.a
2

s
ro

d
a
ta

.a
4

te
x
t

GetTaskState 66
GetVersionInfo 26
Idle 4
InShutdown 2
IncrementCounter 10
InterruptSource 4 162
ModifyPeripheral 120
NextScheduleTable 138
Os_Cfg 2 708 6 1300 296
Os_Cfg_Counters 56 64 768 4140
Os_Cfg_KL 76
Os_CrossCore 16 186
Os_GetCurrentIMask 12
Os_GetCurrentTPL 78
Os_GetTrapInfo 30
Os_ScheduleQ 40
Os_SrcInit 58
Os_Stack 28
Os_StartCores 8 166
Os_TrapSupport 28
Os_VectorInit 50
Os_locks 48
Os_longjmp_ext 56
Os_setjmp
Os_traps 256 250 18
Os_vectors 256
Os_wrapper 136
ProtectionSupport 34
ReadPeripheral 110
ReleaseResource 88
ReleaseSpinlock 4
ResetIsrMaxExecutionTime 32
ResetIsrMaxStackUsage 32
ResetTaskMaxExecutionTime 32
ResetTaskMaxStackUsage 32
ResumeAllInterrupts 40
ResumeOSInterrupts 40
Schedule 86

RTA-OS TriCore/HighTec Port Guide V5.0.22 62

Performance

Library Module c
o
m

m
o
n

in
tt

a
b

.o
s
in

te
rr

u
p

ts

in
tt

a
b

.o
s
tr

a
p

s

s
b

s
s
.a

1

s
b

s
s
.a

4

s
ro

d
a
ta

.a
1

s
ro

d
a
ta

.a
2

s
ro

d
a
ta

.a
4

te
x
t

SetAbsAlarm 116
SetEvent 32
SetRelAlarm 172
SetScheduleTableAsync 58
ShutdownAllCores 62
ShutdownOS 100
StackOverrunHook 8
StartCore 44
StartNonAutosarCore 44
StartOS 286
StartScheduleTableAbs 148
StartScheduleTableRel 124
StartScheduleTableSynchron 58
StopScheduleTable 102
SuspendAllInterrupts 52
SuspendOSInterrupts 68
SyncScheduleTable 58
SyncScheduleTableRel 58
TerminateTask 32
TryToGetSpinlock 8
ValidateCounter 58
ValidateISR 10
ValidateResource 58
ValidateScheduleTable 42
ValidateTask 104
WaitEvent 32
WritePeripheral 102

8.5 Execution Time

The following tables give the execution times in CPU cycles, i.e. in terms of ticks of
the processor’s program counter. These figures will normally be independent of the
frequency at which you clock the CPU. To convert between CPU cycles and SI time units
the following formula can be used:

Time in microseconds = Time in cycles / CPU Clock rate in MHz

For example, an operation that takes 50 CPU cycles would be:

RTA-OS TriCore/HighTec Port Guide V5.0.22 63

Performance

• at 20MHz = 50/20 = 2.5µs

• at 80MHz = 50/80 = 0.625µs

• at 150MHz = 50/150 = 0.333µs

While every effort is made to measure execution times using a stopwatch running at
the same rate as the CPU clock, this is not always possible on the target hardware. If
the stopwatch runs slower than the CPU clock, then when RTA-OS reads the stopwatch,
there is a possibility that the time read is less than the actual amount of time that has
elapsed due to the difference in resolution between the CPU clock and the stopwatch
(the User Guide provides further details on the issue of uncertainty in execution time
measurement).

The figures presented in Section 8.5.1 have an uncertainty of 0 CPU cycle(s).

Values are given for single-core operation only. Timings for cross-core activations,
though interesting, are variable because of the nature of multi-core operation. Mini-
mum values cannot be given, because timings are dependent on the activity on the
core that receives the activation.

8.5.1 Context Switching Time

Task switching time is the time between the last instruction of the previous task and the
first instruction of the next task. The switching time differs depending on the switching
contexts (e.g. an ActivateTask() versus a ChainTask()).

Interrupt latency is the time between an interrupt request being recognized by the
target hardware and the execution of the first instruction of the user provided handler
function:

For Category 1 ISRs this is the time required for the hardware to recognize the inter-
rupt.

For Category 2 ISRs this is the time required for the hardware to recognize the in-
terrupt plus the time required by RTA-OS to set-up the context in which the ISR
runs.

Figure 8.1 shows the measured context switch times for RTA-OS.

RTA-OS TriCore/HighTec Port Guide V5.0.22 64

Performance

Switch Key CPU Cycles Actual Time

Task activation A 212 2.65us
Task termination with resume B 122 1.53us
Task termination with switch to new task C 156 1.95us
Chaining a task D 286 3.58us
Waiting for an event resulting in transition to
the WAITING state

E 1154 14.4us

Setting an event results in task switch F 1344 16.8us
Non-preemptive task offers a preemption point
(co-operative scheduling)

G 202 2.52us

Releasing a resource results in a task switch H 198 2.48us
Entering a Category 2 ISR I 86 1.07us
Exiting a Category 2 ISR and resuming the in-
terrupted task

J 86 1.07us

Exiting a Category 2 ISR and switching to a
new task

K 182 2.27us

Entering a Category 1 ISR L 10 125ns

RTA-OS TriCore/HighTec Port Guide V5.0.22 65

(a) Task activated. Termination resumes
preempted task.

(b) Task activated. Termination switches into new task.

(c) Task chained. (d) Task waits. Task is resumed when
event set.

(e) Task switch when re-
source is released.

(f) Request for scheduling made by non-
preemptive task.

(g) Category 2 interrupt entry. Interrupted
task resumed on exit.

(h) Category 2 interrupt entry. Switch to new task on exit. (i) Category 1 interrupt entry.

Figure 8.1: Context Switching

RTA-OS TriCore/HighTec Port Guide V5.0.22 66

Finding Out More

9 Finding Out More

Additional information about TriCore/HighTec-specific parts of RTA-OS can be found in
the following manuals:

TriCore/HighTec Release Note. This document provides information about the Tri-
Core/HighTec port plug-in release, including a list of changes from previous re-
leases and a list of known limitations.

Information about the port-independent parts of RTA-OS can be found in the following
manuals, which can be found in the RTA-OS installation (typically in the Documents
folder):

Getting Started Guide. This document explains how to install RTA-OS tools and de-
scribes the underlying principles of the operating system

Reference Guide. This guide provides a complete reference to the API, programming
conventions and tool operation for RTA-OS.

User Guide. This guide shows you how to use RTA-OS to build real-time applications.

RTA-OS TriCore/HighTec Port Guide V5.0.22 67

Contacting ETAS

10 Contacting ETAS

10.1 Technical Support

Technical support is available to all users with a valid support contract. If you do
not have a valid support contract, please contact your regional sales office (see Sec-
tion 10.2.2).

The best way to get technical support is by email. Any problems or questions about the
use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you call the
support hotline on:

+44 (0)1904 562624.

The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the following infor-
mation:

• Your support contract number

• Your .xml, .arxml, .rtaos and/or .stc files

• The command line which caused the error

• The version of the ETAS tools you are using

• The version of the compiler tool chain you are using

• The error message you received (if any)

• The file Diagnostic.dmp if it was generated

10.2 General Enquiries

10.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

10.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team (where avail-
able) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

RTA-OS TriCore/HighTec Port Guide V5.0.22 68

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

Index

A
Assembler, 44
AUTOSAR OS includes

Os.h, 30
Os_Cfg.h, 30
Os_MemMap.h, 30

C
CAT1_ISR, 37
CAT1_TRAP, 38
Compiler, 42
Compiler (v4.6.4.*), 42
Compiler (v4.6.5.*), 42
Compiler (v4.6.6.0), 41
Compiler (v4.6.6.1), 41
Compiler (v4.9.2.0), 41
Compiler Versions, 41
Configuration

Port-Specific Parameters, 21

D
Debugger, 46

E
ETAS License Manager, 11

Installation, 11

F
Files, 30

H
Hardware

Requirements, 9

I
Installation, 9

Default Directory, 10
Verification, 19

Interrupts, 50
Category 1, 53
Category 2, 54
Default, 54

IPL, 51

L
Librarian, 45
Library

Name of, 30
License, 11

Borrowing, 15
Concurrent, 12
Grace Mode, 12
Installation, 15
Machine-named, 12
Status, 15
Troubleshooting, 16
User-named, 12

Linker, 45

M
Memory Model, 54

O
Options, 42
Os_Cbk_StartCore, 36
OS_CORE_isrname, 38
Os_Disable_x, 38
Os_DisableAllConfiguredInterrupts, 38
Os_Enable_x, 39
Os_EnableAllConfiguredInterrupts, 39
Os_GetTrapInfo, 31
Os_InitializeInterruptTable, 32
Os_InitializeServiceRequests, 33
Os_InitializeTrapTable, 34
Os_InitializeVectorTable, 35
Os_IntChannel_x, 39
Os_StackSizeType, 40
Os_StackTraceType, 40
Os_StackValueType, 40
Os_StartCoreGate, 35
OS_VEC_isrname, 38
OsTrapInfoRefType, 39
OsTrapInfoType, 40

P
Parameters of Implementation, 21
Performance, 56

Context Switching Times, 64
Library Module Sizes, 58
RAM and ROM, 56
Stack Usage, 57

Processor Modes, 54
Trusted, 54

RTA-OS TriCore/HighTec Port Guide V5.0.22 69

Index

TrustedWithProtection, 54
Untrusted, 54

R
Registers

BIV, 50
BTV, 50
FCX, 50
FCX,LCX, 50
Initialization, 49
Interrupt Control Registers, 50
LCX, 50
Non-modifiable, 50
PCX, 50
PCXI, 50
PSW, 50

SRR / SRC, 50

S

Software

Requirements, 9

Stack, 55

T

Target, 48

Variants, 49

Toolchain, 41

V

Variants, 49

Vector Table

Base Address, 51

RTA-OS TriCore/HighTec Port Guide V5.0.22 70

	1 Introduction
	1.1 About You
	1.2 Document Conventions
	1.3 References

	2 Installing the RTA-OS Port Plug-in
	2.1 Preparing to Install
	2.1.1 Hardware Requirements
	2.1.2 Software Requirements

	2.2 Installation
	2.2.1 Installation Directory

	2.3 Licensing
	2.3.1 Installing the ETAS License Manager
	2.3.2 Licenses
	2.3.3 Installing a Concurrent License Server
	2.3.4 Using the ETAS License Manager
	2.3.5 Troubleshooting Licenses

	3 Verifying your Installation
	3.1 Checking the Port
	3.2 Running the Sample Applications

	4 Port Characteristics
	4.1 Parameters of Implementation
	4.2 Configuration Parameters
	4.2.1 Stack used for C-startup
	4.2.2 Stack used when idle
	4.2.3 Stack overheads for ISR activation
	4.2.4 Stack overheads for ECC tasks
	4.2.5 Stack overheads for ISR
	4.2.6 ORTI/Lauterbach
	4.2.7 ORTI/winIDEA
	4.2.8 ORTI Stack Fill
	4.2.9 Support winIDEA Analyzer
	4.2.10 ORTI/SMP
	4.2.11 CrossCore SRC0
	4.2.12 CrossCore SRC1
	4.2.13 CrossCore SRC2
	4.2.14 CrossCore SRC3
	4.2.15 CrossCore SRC4
	4.2.16 CrossCore SRC5
	4.2.17 Block default interrupt
	4.2.18 User Mode
	4.2.19 Trusted with protection PRS
	4.2.20 Guard supervisor access
	4.2.21 Interrupt vector matches priority
	4.2.22 OS Locks disable Cat1
	4.2.23 Enable stack repositioning
	4.2.24 Link Type
	4.2.25 Memory model
	4.2.26 Optimization
	4.2.27 Small const threshold
	4.2.28 Small data threshold
	4.2.29 mcpu override
	4.2.30 emit stack usage
	4.2.31 Far jumps
	4.2.32 Customer Option Set 1
	4.2.33 Customer Feature Set

	4.3 Generated Files

	5 Port-Specific API
	5.1 API Calls
	5.1.1 Os_GetTrapInfo
	5.1.2 Os_InitializeInterruptTable
	5.1.3 Os_InitializeServiceRequests
	5.1.4 Os_InitializeTrapTable
	5.1.5 Os_InitializeVectorTable
	5.1.6 Os_StartCoreGate

	5.2 Callbacks
	5.2.1 Os_Cbk_StartCore

	5.3 Macros
	5.3.1 CAT1_ISR
	5.3.2 CAT1_TRAP
	5.3.3 OS_CORE_isrname
	5.3.4 OS_VEC_isrname
	5.3.5 Os_DisableAllConfiguredInterrupts
	5.3.6 Os_Disable_x
	5.3.7 Os_EnableAllConfiguredInterrupts
	5.3.8 Os_Enable_x
	5.3.9 Os_IntChannel_x

	5.4 Type Definitions
	5.4.1 OsTrapInfoRefType
	5.4.2 OsTrapInfoType
	5.4.3 Os_StackSizeType
	5.4.4 Os_StackTraceType
	5.4.5 Os_StackValueType

	6 Toolchain
	6.1 Compiler Versions
	6.1.1 v4.9.2.0
	6.1.2 v4.6.6.1
	6.1.3 v4.6.6.0
	6.1.4 v4.6.5.*
	6.1.5 v4.6.4.*

	6.2 Options used to generate this guide
	6.2.1 Compiler
	6.2.2 Assembler
	6.2.3 Librarian
	6.2.4 Linker
	6.2.5 Debugger

	7 Hardware
	7.1 Supported Devices
	7.2 Register Usage
	7.2.1 Initialization
	7.2.2 Modification

	7.3 Interrupts
	7.3.1 Interrupt Priority Levels
	7.3.2 Allocation of ISRs to Interrupt Vectors
	7.3.3 Vector Table
	7.3.4 Writing Category 1 Interrupt Handlers
	7.3.5 Writing Category 2 Interrupt Handlers
	7.3.6 Default Interrupt

	7.4 Memory Model
	7.5 Processor Modes
	7.6 Stack Handling

	8 Performance
	8.1 Measurement Environment
	8.2 RAM and ROM Usage for OS Objects
	8.2.1 Single Core
	8.2.2 Multi Core

	8.3 Stack Usage
	8.4 Library Module Sizes
	8.4.1 Single Core
	8.4.2 Multi Core

	8.5 Execution Time
	8.5.1 Context Switching Time

	9 Finding Out More
	10 Contacting ETAS
	10.1 Technical Support
	10.2 General Enquiries
	10.2.1 ETAS Global Headquarters
	10.2.2 ETAS Local Sales & Support Offices

