
RTA-RTE2.1
AUTOSAR Release 2.1 RTE Generator
Features at a Glance

! Mature RTE Generation Tool

! AUTOSAR Release 2.1 compliant

! Easy integration into a variety of build en-
vironments

! Validation of Input Data (XML)

! Optimizes RTE resourse usage for either
memory or CPU usage.

! Generates OS configuration to help with in-
tegration of RTE and OS

! Compiler and target independent RTE

! Easy debugging using VFB tracing
Background

The AUTOSAR Runtime Environment (RTE) is the 'core' of
the AUTOSAR software architecture, providing all com-
munication mechanisms between the application Soft-
ware Components (SWCs). The RTE presents an
AUTOSAR interface to the SWCs, allowing them to be de-
veloped independently of the platform hardware and
software on which they will eventually run. This allows
AUTOSAR SWCs to be configured to run on multiple ECUs
across a network or to be re-usable in multiple vehicle
models, helping to reduce the overall cost of automotive
software development.

ETAS has been involved for many years in the production
of operating systems (OS) for the automotive industry.
These OSs are currently used in over 250 million ECUs on
the road worldwide. Members of the same engineering
team that developed these successful OSs have been in-
volved within the AUTOSAR RTE group since it was first
formed, and they were active in RTE development even
before then. Since 2006, the ETAS RTE generator has re-
ceived positive feedback from those customers who have
worked with the pre-release versions of the product. This
considerable experience in automotive embedded soft-
ware and RTE development has been used to develop a
mature, robust production quality RTE Generator that
builds on the results of the previous RTE development
projects. ETAS’s commitment to AUTOSAR continues as
Premium members in AUTOSAR Phase II which runs from
2007 – 2009.

Introduction to RTA-RTE2.1

RTA-RTE2.1 is an RTE generator that is compliant with
the AUTOSAR Release 2.1 RTE specification. It is a PC-
based, command-line tool that can be easily integrated
into a variety of build environments to generate an RTE
that can be optimised for either memory or CPU usage.
RTA-RTE2.1 helps users to solve many of the problems
involved in the RTE Generation process by, for example,
providing validation of the input XML, generating operat-
ing system (OS) configuration information and by provid-
ing easy debugging capabilities.

AUTOSAR divides the software development process into
2 main phases. In the first phase, the main SW architec-
ture is developed independently of the hardware on
which it will eventually run. This is achieved by develop-
ing the SWCs against a Virtual Function Bus that provides
all of the communication mechanisms required by the
SWCs. The second phase of the AUTOSAR development
process is system integration, in which SWCs are mapped
and integrated into the final production ECUs. RTA-
RTE2.1 provides support for both of these phases of the
AUTOSAR development process.

The Contract Phase

During the development of the SWCs, RTA-RTE2.1 allows
the interface to the RTE to be generated before the allo-
cation of SWCs to ECUs is known. Using an AUTOSAR
SWC Description XML as input, RTA-RTE2.1 has sufficient

information to generate the interface definition files necessary to
allow engineers to start developing the SWCs. In this situation, the
interface defines the contract between the RTE and the SWC; what
that SWC must provide if future integration work is to happen eas-
ily. This is known as the Contract Phase.

Figure1. RTA-RTE2.1 in the Contract Phase

Figure 1 shows that during the Contract Phase RTA-RTE2.1 uses
the SWC configuration XML files to generate the Type Definition
and Application Header files. These files contain the definition of
the interface that the RTE will present to the SWC, including such
information as declarations of API functions, SWC data structures
and Runnable Entity prototypes for example. These header files al-
low the developer to start implementation of the SWC without hav-
ing specific knowledge of the underlying basic software and
hardware.

The RTE Generation Phase

Once the mapping of all SWCs to ECUs is known, and the ECU has
been fully configured, the RTE itself can then be generated. At this
stage, a much more complete set of RTE configuration information
is available, including how many instances of a SWC exist, where
runnables are executing, which communication is local to an ECU
and which must be routed across the network etc. This information
is contained in the ‘ECU Configuration Description' XML files defined
in the AUTOSAR methodology. These XML files are used as input
to RTA-RTE2.1 to re-generate the interface definition files to in-
clude optimisations based on this additional context. This is known
as RTE Generation Phase.

Figure2. RTA-RTE2.1 in the RTE Generation Phase

Figure 2 demonstrates the operation of RTA-RTE2.1 in the RTE
Generation Phase. During this phase, in addition to producing op-
timized SWC header files, RTA-RTE2.1 also generates the actual
RTE code for the specified ECU, along with build information indi-
cating the files that need to be compiled and any dependencies.
The generated RTE is output in C, and is fully MISRA C compliant.
RTA-RTE2.1 also creates task bodies based on the mapping of the
runnable entities in each SWC to OS tasks specified in the input
ECU Configuration Description XML files. The final set of output
during the RTE Generation phase is the OS configuration informa-
tion that is required by the RTE.

RTE Optimisation

An embedded system is a resource constrained environment where
typically the resource limit is either memory space or available CPU
cycles. Since it is not possible to pre-determine which constraint
is most pressing for all systems, it is desirable to be able to choose
the optimisation strategy based on the resources available for a
specific ECU. An important feature of RTA-RTE2.1 is that it will op-
timize the resource usage of the generated RTE whenever possible,
and also gives the user the flexibility to specify whether the optimi-
zation should be performed for either code size (memory) or for
run-time (CPU usage). In either case RAM is usually the most
scarce resource and therefore solutions that favour ROM usage
over RAM are generally preferred by RTA-RTE2.1.

The implementation of the RTE API presented to SWCs by the gen-
erated RTE is optimised by RTA-RTE2.1 specifically for each ECU
based on the mapping of SWCs to ECUs and the abstract commu-
nication matrix. The optimizations are applied when generating in
the RTE phase, and provide for highly efficient API access. Some
examples of possible optimizations include direct read/write for
sender-reciver communication, direct function calls for client-server
communication and direct access to per-instance memories. When
applied, these optimizations are implemented purely as macros to
eliminate all function call overheads for the relevant RTE APIs.
Many of these optimisations are additional to the AUTOSAR stan-
dard, allowing users of RTE-RTE2.1 to generate an RTE that pro-
vides market leading resource efficiency.

Integration into existing build environments

An important requirement for any RTE generation tool is that it
must integrate easily into existing toolchains. RTA-RTE2.1 is con-
trolled by a combination of command-line options and an INI file.
The INI file configures which DLLs are available for use by the ap-
plication. The common feature of these control mechanisms is that
they both allow for a degree of automation, whether using a DOS
batch file, a makefile or some other scripting language. In this
way, RTA-RTE2.1 facilitates easy integration into a variety of exist-
ing build environments.

Cooperation with OS

Figure 3 shows the AUTOSAR software architecture, and illustrates
the relationship between the RTE and the underlying basic soft-
ware, including the operating system (OS). The AUTOSAR meth-
odology includes tools for the generation of the RTE and for the
configuration of the OS. Within RTA-RTE2.1, aspects of both of
these process steps are integrated into a single tool. RTA-RTE2.1
uses OS plugins to create OS configurations that greatly ease the
integration of the RTE into a system by eliminating the significant
task of keeping the OS and RTE configurations consistent.

The OS configuration fragment is created in the OSEK Implemen-
tation Language (OIL), and defines all OS objects needed to imple-

RTA-RTE2.1

SWC
Configuration

XML

Type Definitions

Application
Header File

RTA-RTE2.1

SWC
Configuration

XML

SWC
Configuration

XML

Type Definitions

Application
Header File

ECU
Configuration

XML

Type Definitions

Application
Header Files

Application
Header Files

Application
Header Files

Application
Header Files

Application
Header Files

Task Bodies

Application
Header Files

OS
Configuration

Generated RTERTA-RTE2.1
ECU

Configuration
XML

ECU
Configuration

XML

Type Definitions

Application
Header Files

Application
Header Files

Application
Header FilesApplication

Header Files

Application
Header Files

Application
Header Files

Application
Header Files

Application
Header Files

Task BodiesApplication
Header Files

Application
Header Files

Task Bodies

Application
Header Files

OS
ConfigurationApplication

Header Files

OS
Configuration

Generated RTERTA-RTE2.1

ment the generated RTE. This includes tasks, alarms, counters
and, where appropriate, schedule tables.

Figure 3. The AUTOSAR software architecture.

The product is provided with multiple OS plugins that create the OS
configuration output for various OS types. These include support
for OSEK 2.2.3 (OIL), AUTOSAR SC1 support (OIL, with RTA-OSEK
extensions) and ERCOSEK v4.3. The creation of the OS configura-
tion information is not a formal requirement on the RTE in the AU-
TOSAR R2.1 specification. Inclusion of this functionality in RTA-
RTE2.1 therefore provides users with a significant enhancement to
the standard AUTOSAR functionality in this important area. RTA-
RTE2.1 has been developed and tested to work seamlessly with
RTA-OSEK v5.0 (OSEK 2.2.3 compliant) and is therefore the ideal
choice for existing RTA-OSEK users.

The OS configuration files generated by RTA-RTE2.1 contain partial
configuration information that is relevant only to the RTE. These
configuration files must therefore be combined with other, non-
RTA-RTE2.1 generated, configuration files before being passed to
your OS configuration tools (not provided with RTA-RTE2.1). The
scope of the configuration data for the OS generated by RTA-
RTE2.1 are only those data necessary for the RTE to work. If ad-
ditional OS configuration information is provided as input, then this
will be ignored by RTA-RTE2.1.

Input XML Validation

Another important function that is performed by RTA-RTE2.1 is the
rigorous checking of the input XML configuration data for correct-
ness and completeness against the AUTOSAR Release 2.1 specifi-
cation. A large number of checks are performed to ensure that the
input data are consistent (e.g. that references within the XML point
to a valid object of the right type) and correct. If a problem is de-
tected in the input data RTA-RTE2.1 will raise an error message to
inform the user of the nature of the problem and of the action that
has been taken.

Source Code or Object Code SWCs

The generated RTE supports SWCs written in C or C++ that are
provided as either source code or as object code. The application
header files generated in Contract Phase contain sufficient detail to
allow a SWC to be developed, compiled and shipped as object files
to the ECU integrator, allowing the SWC developer to protect their
valuable Intellectual Property.

Target and Compiler Independence

RTA-RTE2.1 makes use of the AUTOSAR compiler and memory
mapping abstractions to ensure that the generated RTE is compiler
and target independent, allowing its use with a wide range of ECU
platforms.

Easy Debugging

RTA-RTE2.1 facilitates easy debugging by allowing the user to per-
form Virtual Function Bus (VFB) tracing. This optional capability al-
lows for the monitoring of AUTOSAR signals as they are sent and
received across the VFB by the use of a series of configurable hook
functions.

Product Roadmap

RTA-RTE2.1 is the second in a roadmap of production quality RTE
generator releases from ETAS, following on from the release of
RTA-RTE2.0 in 2007. The numerals in the product name of each
RTA-RTE release indicate compliance with a particular release of
the AUTOSAR specification. Hence RTA-RTE2.0 is compliant with
the AUTOSAR Release 2.0 specification and similarly, RTA-RTE2.1
is compliant with the AUTOSAR Release 2.1 specification.

ETAS will continue to support our customers’ evolving requirements
by releasing a series of RTA-RTE products to follow on from RTA-
RTE2.0 and RTA-RTE2.1. In 2008, this process will continue with
the release of RTA-RTE3.0 that will be compliant with AUTOSAR
Release 3.0. ETAS will fulfill customer-specific requirements by of-
fering an engineering service to develop new functionality that can
be added to the core RTA-RTE products.

RTA-RTE2.1 Summary

! Mature RTE generation tool

! AUTOSAR Release 2.1 compliant

! Easy integration into a variety of build environments

! Validation of Input Data (XML) for correctness and consistency

! Support for both Contract Phase and RTE Generation Phase

! Optimizes RTE resourse usage for either memory or speed

! Output of OS configuration eases integration of the RTE and OS

! Generated RTE is fully MISRA C compliant

! Compiler and target independent RTE can be used with a wide
range of ECU platforms

! Supports SWCs written in C or C++ provided as either source
code or object code

! Easy debugging using Virtual Function Bus (VFB) tracing

! Generated RTE is compatible with OSEK 2.2.3, AUTOSAR SC1
and ERCOSEK v4.3 Operating Systems

! Seamless cooperation with RTA-OSEKv5.0

Contact addresses

ETAS GmbH
70469 Stuttgart, Germany
Phone +49 711 89661-0
Fax +49 711 89661-106
sales@etas.de

ETAS S.A.S.
94588 Rungis Cedex, France
Phone +33 1 56 70 00 50
Fax +33 1 56 70 00 51
sales@etas.fr

ETAS Ltd.
Burton-upon-Trent
Staffordshire DE14 2WQ
Great Britain
Phone +44 1283 54 65 12
Fax +44 1283 54 87 67
sales@etas-uk.net

ETAS Inc.
Ann Arbor, MI 48103, USA
Phone +1 888 ETAS INC
Fax +1 734 997-9449
sales@etas.us

ETAS K.K.
Yokohama 220-6217, Japan
Phone +81 45 222-0900
Fax +81 45 222-0956
sales@etas.co.jp

ETAS Korea Co., Ltd.
Seoul 137-889, Korea
Phone +82 2 57 47-016
Fax +82 2 57 47-120
sales@etas.co.kr

ETAS (Shanghai) Co., Ltd.
Shanghai 200120, P.R. China
Phone +86 21 5037 2220
Fax +86 21 5037 2221
sales.cn@etasgroup.com

ETAS Automotive India Pvt. Ltd.
Bangalore 560 068, India
Phone +91 80 4191 2588
Fax +91 80 4191 2586
sales.in@etasgroup.com

www.etasgroup.com

Subject to change (07/2007)
Technical Data
RTA-RTE2.1

Ordering Information
RTA-RTE2.1

RTA-RTE2.1 Production License

To commercially deploy an RTE that has been generated using RTA-RTE2.1 in ECU applications, a valid pro-
duction license is required. Please contact your local ETAS sales office for details of production licenses for
RTA-RTE2.1.

Host System Requirements

Hardware 1 GHz Pentium PC, 512 MB RAM

Operating System Windows 2000, Windows XP

Memory > 50Mb free space

Order Name Short Name Order Number
Machine-Named license for RTA-
RTE2.1 LD_RTA-RTE2.1_LIC-MP F-00K-106-050

User-Named license for RTA-
RTE2.1

LD_RTA-RTE2.1_LIC-UP F-00K-106-051

Concurrent license for RTA-RTE2.1 LD_RTA-RTE2.1_LIC-CP F-00K-106-052

Media for RTA-RTE2.1 LD_RTA-RTE2.1_PROD F-00K-106-053

Service Contract for a Machine-
Named license for RTA-RTE2.1 LD_RTA-RTE2.1_SRV-ME52 F-00K-106-062

Service Contract for a User-Named
license for RTA-RTE2.1 LD_RTA-RTE2.1_SRV-UE52 F-00K-106-063

Service Contract for a Concurrent
license for RTA-RTE2.1 LD_RTA-RTE2.1_SRV-CE52 F-00K-106-064
ETAS/MKT61_Fi/07.2007

	RTA-RTE2.1
	AUTOSAR Release 2.1 RTE Generator
	Features at a Glance
	Host System Requirements
	Order Name
	Short Name
	Order Number

