
RTA-RTE V6.8.0
Reference Manual

RTA-RTE V6.8.0
Reference Manual

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this doc-
ument. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract. Under no circumstances
may any part of this document be copied, reproduced, transmitted, stored in a retrieval
system or translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2019 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document: 10756-RM-001 EN - 05-2019

Revision: 92501 [RTA-RTE 6.8.0]

This product described in this document includes software developed by the Apache
Software Foundation (http://www.apache.org/).

2 Copyright

RTA-RTE V6.8.0
Reference Manual

Contents

1 About this Manual 8
1.1 Who Should Read this Manual? . 8
1.2 Document Conventions . 9
1.3 Acronyms and Abbreviations . 9

2 Invocation 11
2.1 Command-line Usage . 11
2.2 Output Files . 11
2.3 OS Configuration File . 14
2.4 COM OIL File . 14
2.5 RTE Configuration Constants . 15
2.6 Screen Output . 17
2.7 Error and Information Messages . 18
2.8 Exit Codes . 18
2.9 RTE Library . 18
2.10 User Configuration File . 19

3 Command-line options 20
3.1 Examples . 20
3.2 Interaction with ECUC configuration 20
3.3 -- . 22
3.4 --append-name-to-buffer . 23
3.5 --atomic-assign . 24
3.6 --bit-pack-type . 25
3.7 --bsw . 26
3.8 --bsw-scope-limit-defns . 27
3.9 --calibration-disable . 28
3.10 --calibration-instantiation . 29
3.11 --calibration-method . 30
3.12 --client-server-global-optimization 31
3.13 --com-symbolic-sigs . 32
3.14 --com-version . 33
3.15 --contract . 34
3.16 --deviate-allow-unmapped-swci-config 35
3.17 --deviate-appl-impl-compu-method 36
3.18 --deviate-appl-impl-display-format 37
3.19 --deviate-bsw-any-partition . 38
3.20 --deviate-allow-supportsmulti-sharedmemorys 39
3.21 --deviate-enum-cast . 40
3.22 --deviate-group-calibration-none 41
3.23 --deviate-ignore-datatype-semantics 42
3.24 --deviate-implicit-cat2-mdd . 43
3.25 --deviate-implicit-modify-for-loopbacks 44
3.26 --deviate-memmap-decls . 45
3.27 --deviate-omit-implicit-cds . 46
3.28 --deviate-physical-dimension-compatibility 47
3.29 --deviate-prefer-no-empty-executions 48

Contents 3

RTA-RTE V6.8.0
Reference Manual

3.30 --deviate-split-swci-support 49
3.31 --deviate-trace-implicit-api 51
3.32 --deviate-unconnected-pmode-behavior 52
3.33 --disable-warning . 53
3.34 --error-as-warning . 54
3.35 --error-report . 55
3.36 --exclusive-area-optimization 56
3.37 --fast-init . 57
3.38 --file . 58
3.39 --force-basic-tasks . 59
3.40 --have-64bit-int-types . 60
3.41 --help . 61
3.42 --implicit-allocation-method 62
3.43 --implicit-read-return-const 63
3.44 --implicit-use-global-buffers 64
3.45 --incremental-build . 65
3.46 --initial-value-rounding . 66
3.47 --ioc-header . 67
3.48 --ioc-xml-namespace . 68
3.49 --local-mcsd . 69
3.50 --makedep . 70
3.51 --mcore-spinlocks-always . 71
3.52 --mcsd-policy . 72
3.53 --measurement . 73
3.54 --memory-sections . 74
3.55 --notimestamps . 75
3.56 --operating-system . 76
3.57 --optimize . 77
3.58 --os-define-osenv . 78
3.59 --os-fp . 79
3.60 --os-header . 80
3.61 --os-output-param . 81
3.62 --os-permit-extended-tasks . 82
3.63 --os-task-as-function . 83
3.64 --os-xml-namespace . 84
3.65 --output . 85
3.66 --period . 86
3.67 --preferred-intra-core-protection-scheme 87
3.68 --protection-threshold-copy-bytes 88
3.69 --quiet . 89
3.70 --report . 90
3.71 --rte . 91
3.72 --samples . 92
3.73 --strict-config-check . 93
3.74 --strict-initial-values-check 94
3.75 --strict-unconnected-rport-check 95
3.76 --sws . 96
3.77 --task-recurrence . 97

4 Contents

RTA-RTE V6.8.0
Reference Manual

3.78 --template-path . 98
3.79 --terminate-background-tasks 99
3.80 --test-license . 100
3.81 --text-value-spec-policy . 101
3.82 --toolchain-significant-len . 102
3.83 --use-partition-sections . 103
3.84 --variability-also-bind . 104
3.85 --version . 105
3.86 --vfb-trace . 106
3.87 --warn-directive . 107
3.88 --warning-as-error . 108
3.89 --xfrm-ignore-inplace . 109

4 Configuration 110
4.1 Supported namespace and schema versions 110
4.2 References . 111
4.3 Packages . 114
4.4 Software Components . 115
4.5 AUTOSAR Types and Data Conversion 128
4.6 Interfaces . 142
4.7 Measurement . 146
4.8 NVRAM . 150
4.9 AUTOSAR Modes . 155
4.10 Internal Behavior . 155
4.11 Implementation . 174
4.12 Signals . 175
4.13 System Signal Group . 176
4.14 PDU Type . 176
4.15 ECU Types . 177
4.16 Composition . 177
4.17 ECU Instances . 179
4.18 System Description . 181
4.19 ECU Description . 190
4.20 Vendor Specific XML Extensions . 198
4.21 Post-build . 198
4.22 Variability . 199
4.23 Support for the atpSplitable Stereotype 207

5 RTE Conventions 209
5.1 Name Space . 209
5.2 Software-Component Naming . 209

6 RTE API Reference 210
6.1 API Parameter Passing . 210
6.2 Data Types . 210
6.3 Rte_Call . 212
6.4 Rte_Prm . 213
6.5 Rte_CData . 214
6.6 Rte_Enter . 215

Contents 5

RTA-RTE V6.8.0
Reference Manual

6.7 Rte_Exit . 216
6.8 Rte_IFeedback . 217
6.9 Rte_Feedback / Rte_SwitchAck . 218
6.10 Rte_IInvalidate . 219
6.11 Rte_Invalidate . 220
6.12 Rte_IRead . 221
6.13 Rte_IWrite . 222
6.14 Rte_IWriteRef . 222
6.15 Rte_IrvIRead . 223
6.16 Rte_IrvIWrite . 224
6.17 Rte_IrvRead . 225
6.18 Rte_IrvWrite . 226
6.19 Rte_IStatus . 227
6.20 Rte_IsUpdated . 227
6.21 Rte_MainFunction . 228
6.22 Rte_Mode . 229
6.23 Rte_Ports . 230
6.24 Rte_NPorts . 230
6.25 Rte_Port . 231
6.26 Rte_Pim . 232
6.27 Rte_Read . 233
6.28 Rte_DRead . 234
6.29 Rte_Receive . 235
6.30 Rte_Result . 237
6.31 Rte_Send . 238
6.32 Rte_Start . 239
6.33 Rte_Stop . 239
6.34 Rte_Switch . 240
6.35 Rte_Tick_Timeouts . 241
6.36 Rte_Trigger . 242
6.37 Rte_IrTrigger . 242
6.38 Rte_Write . 243

7 RTE Runnable API Reference 245
7.1 Supported RTE Events . 245
7.2 Signature . 246
7.3 SWC Initialization . 247

8 VFB Tracing 248
8.1 Enabling VFB Tracing . 248
8.2 Trace Events . 248
8.3 Trace Event Implementation . 251
8.4 Optimization . 252

9 Memory Mapping and Compiler Abstraction 253
9.1 Memory mapping principles . 253
9.2 Memory mapping for code objects 253
9.3 Memory mapping for data objects 257
9.4 Reporting RTE objects to other AUTOSAR tooling 260

6 Contents

RTA-RTE V6.8.0
Reference Manual

9.5 Compiler Abstraction . 263

10External Dependencies 264
10.1 C Library . 264
10.2 OS Configuration . 264
10.3 AUTOSAR COM . 267
10.4 Operating System . 268
10.5 Calibration . 270

11Parameters of Implementation 277
11.1 AUTOSAR Common Published Information 277
11.2 API Legitimacy . 277
11.3 Tasks and Runnable Entities . 277
11.4 Queued Communication . 278
11.5 Scheduling . 278
11.6 Modes and Mode Switches . 278
11.7 Inter-ECU Communication . 279

12AUTOSAR Revision Support 280

13Contact, Support and Problem Reporting 281

Contents 7

RTA-RTE V6.8.0
Reference Manual

1 About this Manual

The manual provides a complete reference to the syntax and semantics of the RTE
configuration language, the operation of the RTA-RTE RTE generation tool, RTEGen, and
the syntax and semantics of the generated RTE interface.

• Chapter 2 describes how to invoke the RTE generator and what output to expect

• Chapter 3 provides a reference of the command-line options of RTA-RTE.

• Chapter 4 provides a reference for the AUTOSAR XML used to configure RTA-RTE.

• Chapter 5 describes the RTA-RTE namespace, software component and API naming
conventions in RTA-RTE.

• Chapter 6 presents a reference to the API as seen by software components. The API
includes calls for sender-receiver and client-server communication, concurrency
control and access to data memory sections.

• Chapter 7 explains how the runnable entities are declared using the RTE API and
provides a reference to the different classes of runnable entity.

• Chapter 8 describes how VFB tracing events are configured and used.

• Chapter 9 explains how elements within the generated RTE can be mapped to dif-
ferent memory segments using the AUTOSAR memory mapping and compiler ab-
straction.

• Chapter 10 describes the external objects (e.g. OS objects) required by a generated
RTE and defines the APIs provided by external AUTOSAR modules that are used by
the generated RTE.

• Chapter 11 defines limits and constraints imposed by RTA-RTE on the generated
RTE.

1.1 Who Should Read this Manual?

The RTA-RTE Reference Manual is intended for the software engineer who understands
the concepts and general techniques of developing an RTE-based application and needs
to know key technical detail about configuration and implementation.

It is assumed that the reader is familiar with the RTA-RTE User Guide.

1.1.1 Related Documents

This document is intended to be read in conjunction with the RTA-RTE User Guide.

This document also references information contained in the AUTOSAR Software Speci-
fications, in particular AUTOSAR Specification of RTE.

8 About this Manual

RTA-RTE V6.8.0
Reference Manual

1.2 Document Conventions

Notes that appear like this contain important information that you need to
be aware of. Make sure that you read them carefully and that you follow any
instructions that you are given.

Notes that appear like this describe things that you will need to know if you
want to write code that will work on any target processor.

In this guide you’ll see that program code, header file names, C type names, C functions
and API call names all appear in the courier typeface. When the name of an object
is made available to the programmer the name also appears in the courier typeface,
suitably modified in accordance with the RTE naming conventions. So, for example, a
runnable called Runnable1 appears as a handle called Runnable1.

1.3 Acronyms and Abbreviations

AUTOSAR AUTomotive Open System ARchitecture - a standardized
software architecture targeted at automotive applications
aimed at fostering the reuse of application software over
multiple vehicle platforms.

BNF Backus-Naur Form; a notation used to describe language
grammars.

ECUC AUTOSAR ECU Configuration

RTA-OSEK An AUTOSAR SC1 and OSEK 2.2.3 compatible operating
system from ETAS GmbH.

RTE AUTOSAR Run-Time Environment. See “Introduction to the
RTE” in the RTA-RTE User Guide.

RTA-RTE The ETAS AUTOSAR RTE Generator Product. This includes
the AUTOSAR RTE Generator Tool responsible for reading
the AUTOSAR XML configuration and generating the RTE
and associated C header files. RTA-RTE distributions also
include the RTE library, all user documentation and an ex-
ample application.

XML eXtensible Markup Language used to describe AUTOSAR
configurations.

RTEGen The ETAS AUTOSAR RTE generator tool responsible for
reading the AUTOSAR XML configuration and generating
the RTE and associated C header files.

About this Manual 9

RTA-RTE V6.8.0
Reference Manual

URI Uniform Resource Identifier – a character string that iden-
tifies (names) a resource. Within XML a URI identifies a
namespace.

10 About this Manual

RTA-RTE V6.8.0
Reference Manual

2 Invocation

The RTA-RTE RTE generator is a Win32 executable that provides multiple functions:

• Generation of a “contract” API for use by software components during develop-
ment.

• Generation of an optimized production RTE for a specific target ECU.

• Optional creation of an OS configuration for RTE created OS objects.

• Optional creation of a COM OIL configuration for RTE created COM objects.

Each core function forms an execution phase. The two “contract” and “RTE” phases
are typically widely separated in time with the “contract” phase occurring before de-
velopment of a component starts and the “RTE” phase after component deployment is
complete.

RTEGen takes one or more XML-based configuration files as input. The structure of these
files is defined in Chapter 5.

2.1 Command-line Usage

The RTE generator is invoked from the command line as follows:

RTEGen [options] <input files>

Command line options can be specified using either short or long (GNU style) names –
the supported options are listed below.

Any number of XML input files can be specified.

When a command line option takes an argument, the argument can be specified either
as a trailing word or with an equals sign. For example, given an option opt with argu-
ment arg the option could be specified as either “--opt arg” or “--opt=arg”. The two
forms are equivalent and can be mixed on the command line.

The ordering of command line parameters is unimportant: options and XML files can
be mixed freely. Command line options are read left-to-right and are processed before
any input files are read.

See Chapter 3 for a reference to all RTA-RTE command-line options.

2.2 Output Files

Each execution of the RTE generator in RTE-generation phase creates output for a sin-
gle ECU instance. In contract phase, files are generated for each application-software
component specified on the command line.

Table 2.1 describes the output files generated by the RTE generator in RTE-generation
and contract phases.

Invocation 11

RTA-RTE V6.8.0
Reference Manual

File Description Contract? RTE?

Rte.h Core RTE header file.
3 3

Rte_Intl.h Private RTE declarations and
definitions. 3 3

Rte_Main.h RTE lifecycle API declara-
tions. 3 3

Rte_Lib.c The RTE library.
7 3

Rte.c The RTE source file.
7 3

Rte_Cbk.h C header file containing pro-
totypes for all call-back func-
tions created within the gen-
erated RTE.

7 3

Rte_Const.h A C header file containing
RTE configuration constants.
See Section 2.5.

7 3

Rte_Hook.h VFB trace hook definitions
7 3

Rte_Type.h C header file containing def-
initions of the types de-
scribed in the input file. This
file is automatically included
by other generated files.

3 3

Rte_<SWC>.h A C header file contain-
ing the RTE API customized
for each software compo-
nent specified in the input
file. This file is the com-
ponent’s application header
file.

3 3

12 Invocation

RTA-RTE V6.8.0
Reference Manual

File Description Contract? RTE?

<TaskName>.c
(Vendor mode
only)

A C source file containing a
single OSEK task for each
<TaskName> defined in the
configuration file. In compat-
ibility mode task bodes are
created within the generated
RTE file.

7 3

Rte_BSWMD.arxml AUTOSAR XML file describ-
ing the features of the gener-
ated RTE code. Note that the
McSupportData is written to
a separate file following the
AUTOSAR splittable pattern.

3 3

Rte_McSupport-
Data.arxml

AUTOSAR XML file contain-
ing the McSupportData, that
is, information need to gen-
erate A2L files for measure-
ment/calibration tools. This
can be regarded as an ex-
cerpt from the BSW Module
Description and indeed can
be merged into it following
the AUTOSAR splittable pat-
tern.

7 3

Rte_Catalog.xml An XML file containing the
actual filenames used in the
RTE output.

3 3

Table 2.1: Generated Output Files

The following files are optional – whether or not they are generated depends on the
configuration of the RTE generator.

File Description Contract? RTE?

Rte.err RTE error file (see –err op-
tion). 3 3

OS configuration An XML/OIL configuration file
for the AUTOSAR/OSEK Oper-
ating System.

7 3

COM configura-
tion

An OIL/configuration file for
AUTOSAR COM R1.0. 7 3

Invocation 13

RTA-RTE V6.8.0
Reference Manual

Table 2.2: Optional Output Files

2.2.1 Redirecting Output

By default all output files are generated in the current directory – this is typically the
same directory as the input file. The --output option can be used to direct specific
output files to a defined folder.

For example, the RTA-RTE RTE generator can be directed to write all generated C files
to folder abc using the following option:

--output="[*.c]abc"

The pattern specified using the -o option does not need to include a wild card. The
following option directs only the generated RTE to folder abc:

--output "[Rte.c]abc"

The --output option can be specified multiple times on the command-line. Options
are processed left-to-right and therefore different patterns for output redirection are
also processed left-to-right. For example, to redirect Rte_Type.h to one folder and all
other generated header files to another folder one could use one must specify the more
general pattern last:

--output "[Rte_Type.h]folder1" --output "[*.h]folder2"

2.3 OS Configuration File

RTA-RTE can optionally generate an OS configuration file1 that defines all OS objects
used by the generated RTE.

The generated OS configuration file does not contain any target specific information –
only target-neutral OS objects are defined. Therefore the file should be combined with
an additional OS configuration file that defines target information (e.g. OS status, hook
usage, ISRs, etc.). Depending on the OS, the additional OS configuration could refer-
ence the generated OS configuration file using a “#include” mechanism (RTA-OSEK and
generic OSEK), auxiliary OIL files (RTA-OSEK only) or by merging XML files (RTA-OS3.0).

Generation of the OS configuration requires system information and therefore it is cre-
ated during RTE phase only.

See Section 10.2 for details of the OS objects created within the OS configuration file.

2.4 COM OIL File

RTA-RTE can optionally generate a AUTOSAR COM R1.0 configuration file, rta-com.oil.
This file defines all COM objects (messages and I-PDUs) used by the generated RTE.

1The filename depends on the selected OS plug-in. The default filename used by the RTA-OSEK plug-in
is rta-osek.oil.

14 Invocation

RTA-RTE V6.8.0
Reference Manual

As with the generated OS configuration, the COM configuration does not contain any
target specific information – only target-neutral COM objects are defined. Therefore
the file should be used with a “wrapper” OIL file that defines target information (COM
status, timebase etc.) and the references the generated OIL file using the “#include”
mechanism.

Generation of the COM configuration requires information on how software components
communicate and therefore it is created during RTE phase only.

Support for generating a COM configuration file is not included in all versions
of RTA-RTE.

2.5 RTE Configuration Constants

During RTE phase, RTA-RTE creates the file Rte_Const.h. This file defines constants
derived from the configuration that are used to optimize the compilation of the RTE
library.

2.5.1 C Library

By default, RTA-RTE is independent of the C library and uses the RTE library function
Rte_memcpy when copying memory.

Alternatively, RTA-RTE will use the standard C Library memcpy function if the symbol
RTE_LIBC_MEMCPY is defined when compiling the RTE library and RTE generated code.
Use of the standard function from the C library may be preferred if, for example, the
target compiler supports a built-in function that compiles to inline optimal assembler.

The RTE_LIBC_MEMCPY symbol can either be placed within the user configuration file
(see Section 2.10) or on the command-line when compiling the RTE library and RTE
generated code, for example:

... -DRTE_LIBC_MEMCPY

2.5.2 Calibration Method

Constant Description

RTE_CALPRM_SINGLE_PTR Defined if the selected global cali-
bration method is “single”.

RTE_CALPRM_DOUBLE_PTR Defined if the selected global cali-
bration method is “double”.

RTE_CALPRM_INITRAM Defined if the selected global cali-
bration method is “initram”.

RTE_CALPRM_NONE Defined if the selected global cali-
bration method is “none”.

2.5.3 Measurement

Invocation 15

RTA-RTE V6.8.0
Reference Manual

Constant Description

RTE_MEASUREMENT_SUPPORT Defined as “1” if measurement is
enabled in the RTE module config-
uration and “0” otherwise.

2.5.4 Counters

The generated OS configuration uses two counters, Rte_Tick_Counter for periodic ac-
tivities (schedule table or periodic alarms) and Rte_Tout_Counter for sporadic alarms
(timeouts, etc.). The tick rate for the counters is defined in Rte_Const.h.

Constant Description

RTE_PERIODIC_COUNTER_TICK_-
INTERVAL_US

The tick interval (in microseconds)
of the counter used to drive the
generated RTE’s Schedule Table or
periodic alarms.

RTE_ALARM_COUNTER_TICK_-
INTERVAL_US

The tick interval (in microseconds)
of the counter used to drive the
generated RTE’s timeout alarms.
Not defined if no timeout alarm is
required.

The counters are not ticked directly by user code but instead calls the generated API
Rte_Tick_Timeouts at the counter’s tick rate. (see Section 6.35).

Main Function

The period of the RTE’s main function defaults to 10ms but can also be set explicitly on
the command-line. The invocation rate in milliseconds is defined in Rte_Const.h.

Constant Description

RTE_MAINFUNCTION_PERIOD_US The tick interval (in microseconds)
of RTE’s main function.
Invocation of the RTE’s main
function is only required when
runnable entity minimum start in-
tervals (see Section 4.10.10) are
used.

2.5.5 OS Integration

The Rte_Const.h file includes constants that define the OS API and OS configuration
format in use.

16 Invocation

RTA-RTE V6.8.0
Reference Manual

Constant Description

RTE_OSAPI_AUTOSAR_R10 Defined if an AUTOSAR R1.0 com-
patible OS API is being used.

RTE_OSAPI_AUTOSAR_R30 Defined if an AUTOSAR R3.0 com-
patible OS API is being used.

RTE_OSAPI_OSEK Defined if an OSEK compatible OS
API is being used.

RTE_OSCFG_RTAOSEK Defined if RTA-OSEK OS configura-
tion file fragment is being used.

RTE_WOWP_EVENTS Number of RTE defined events
used within RTE generated code
for handling timeouts and RTE ac-
tivity.

RTE_OS_EVENTS Number of OS events in use for
runnable activation.

RTE_NULL_SCHEDULE Defined if no periodic runnable en-
tities exist.

The generated constants can be used to adapt application code to varying configura-
tions. For example, an ISR activated every millisecond can be written to automatically
tick the RTE’s counter at the correct rate irrespective of the configured TimingEvents
as follows:

#define DELAY_FACTOR (RTE_PERIODIC_COUNTER_TICK_INTERVAL_US / \
US_PER_TICK)

static uint16 count = DELAY_FACTOR;

ISR(my1msISR)
{
if (--count == 0)
{
Rte_Tick_Timeouts();
count = DELAY_FACTOR;

}
}

2.6 Screen Output

All screen output appears on the standard output. The RTA-RTE RTE generator will
output the phase of generation followed by a log of operations performed. For example:

c:\rte_projects>\RTEGen --c /MyPkg/MySWC MyFile.xml
RTA-RTE v4.0.0
Copyright (C) ETAS GmbH 2004-2011
Loading MyFile.xml... done

Invocation 17

RTA-RTE V6.8.0
Reference Manual

URI: http://autosar.org/schema/r4.0
Phase is Contract (license verified, permanent)
Validating DOM... done
Building types database... done
Building reification tree... done
Generating intermediate XML... done
Generating RTE C... done
Generation complete

The following files were generated:
Rte_MySWC.h
Rte_Type.h

2.7 Error and Information Messages

The RTA-RTE RTE generator presents information on the progress of RTE generation
using a system of status messages. Messages have the following classification:

Fatal – the detected error prevents further processing and the RTE generator termi-
nates immediately. No RTE or associated files are generated.

Error – the detected error is serious but does not prevent further processing. No RTE
or associated files are generated.

Warning – the detected error does not prevent further processing. The RTE and asso-
ciated files will be generated but should not be considered to be correct until the
source of the warning has been investigated.

Information – a status message that does not indicate an error.

2.8 Exit Codes

In addition to progress and error messages, the RTA-RTE RTE generator returns the
following error codes that can be used to confirm the success or otherwise of RTE gen-
eration:

• 0 : Success – the application headers (RTE and contract phase) or other files (RTE
phase only) were generated without error.

• 1 : Failure – the input configuration was found to be invalid or generation failed for
an environmental reason such as the output location not being writable.

• Other: Unexpected internal failure of the generator.

2.9 RTE Library

In addition to the generated Rte.c, RTA-RTE generates library code in Rte_Lib.c that
must be compiled and linked along with the generated code and the application code
to form the final executable.

18 Invocation

RTA-RTE V6.8.0
Reference Manual

The location to which Rte_Lib.c is generated can be altered using the --output
command-line option.

RTA-RTE optimizes the Rte_Lib.c when it is generated and also through preprocessor
constants (Section 2.5) defined in Rte_Const.h.

The RTE library must be recompiled each time the input configuration
changes.

It is forbidden to call functions found in Rte_Lib.c except where docu-
mented in Chapter 6.

2.10 User Configuration File

RTA-RTE includes use of an optional user configuration file Rte_UserCfg.h that can be
used to modify how the generated RTE and the RTE library are compiled.

RTA-RTE includes a default Rte_UserCfg.h and therefore it is only necessary
to define a custom file to define different definitions.

The following constants can be defined in Rte_UserCfg.h to modify how the generated
RTE and the RTE library are compiled.

Definition Notes

RTE_LIBC_MEMCPY When defined the use of the RTE library
function Rte_memcpy is replaced by the
standard C library function memcpy.

For definitions within a custom user configuration file to have any effect the
compiler’s include path must be set so that the new user configutation file
is read before the default file.

Invocation 19

RTA-RTE V6.8.0
Reference Manual

3 Command-line options

The operation of the RTE generator is controlled via command-line options. All options
begin with either the ‘-’ or ‘@’ characters; any other parameter on the command-line
is interpreted as an input filename.

Parameters (i.e. filenames) specified either on the command-line or in sub-files that
contain spaces must be quoted according to the rules of the invoking environment,
e.g.:

RTEGen [options] "input filename.xml"

3.1 Examples

To display the RTA-RTE product and RTE generator versions using long-form option
names:

RTEGen --version

To generate the contract for a software component ‘swcA’ in package ‘pkgB’ using short
option names:

RTEGen --contract=/pkgB/swcA input.xml

To generate the RTE for the ECU instance referenced from ECU configuration ecuConfig
in package ‘pkgC’ using short option names:

RTEGen --rte=/pkgC/ecuConfig ...

To generate the RTE using commands from subfile MyCommandLine while suppressing
all informational messages:

RTEGen --quiet=3 --file MyCommandLine

To use the ‘#warning’ pre-processor directive when issuing a warning within generated
C code instead of the default ‘#pragma message’:

RTEGen --warn=warning ...

3.2 Interaction with ECUC configuration

AUTOSAR defines certain configuration settings within the RteGeneration container
that can also be specified on the RTA-RTE command-line:

ECUC Parameter RTA-RTE Command-line option

RteOptimizationMode --optimize

RteCalibrationSupport --calibration-method

RteVfbTraceEnabled --vfb-trace

20 Command-line options

RTA-RTE V6.8.0
Reference Manual

ECUC Parameter RTA-RTE Command-line option

RteMeasurementSupport --measurement

RteToolChainSignificantCharacters --toolchain-significant-len

For RTE generation phase, the option can be set either in the ECUC file or on the
command-line. If specified in both places then RTA-RTE will use the command-line value
– this enables simple override of the “fixed” configuration value.

For Contract phase, RTA-RTE does not read the ECUC generation container and there-
fore the options can only be specified on the command-line.

Command-line options 21

RTA-RTE V6.8.0
Reference Manual

3.3 --

Description:
End of options

Name:
--

Parameter:
(None)

Default:
(None)

Notes:
Indicates the end of options list. All tokens on the command line after this option
are treated as filenames.

This option is required when one or more filenames start with “--”.

Example:
RTEGen.exe --rte=auto -- --model--file--name--with--dashes.arxml

22 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.4 --append-name-to-buffer

Description:
Append name to buffer symbol.

Name:
--append-name-to-buffer

Parameter:
This option takes a single parameter that specifies whether to include (‘1’) or
exclude (‘0’) the name from the created receive buffer name.

Default:
0

Notes:
When RTA-RTE creates buffers to handle receive data or store measurable data, it
names them using incrementing integers.

When this option is enabled, RTA-RTE appends the data element or operation ar-
gument name to the standard buffer name to make the generated code easier
to read, with the risk that the identifiers become too long for some compilers or
static checkers.

Example:
To cause RTA-RTE to append the data element name to the generated buffers:

--append-name-to-buffer=1

When this option is enabled, RTA-RTE creates receive buffers with names of the
form Rte_Rx_000000_<name>.

Command-line options 23

RTA-RTE V6.8.0
Reference Manual

3.5 --atomic-assign

Description:
Specify the SwBaseTypes that are assigned atomically on your target platform.

Name:
--atomic-assign

Parameter:
This option takes a comma-separated list of SwBaseType shortNames that de-
scribe types that do not need concurrency protection (e.g. RTE_ATOMIC16()).

Default:
All assigments are regarded as potentially in need of protection against read-
modify-write errors.

Notes:
This option must be used with care: if applied to a type that is not atomic on your
target platform, subtle run-time errors may occur that will be hard to track and
eliminate.

Note that this option affects SwBaseTypes with the given shortName(s). It does
not attempt to match SwBaseTypes with a different shortName, even if the size
and alignment are the same. (RTA-RTE does not know how, for example, na-
tiveDeclaration might affect atomicity).

Example:
To suppress concurrency protection on 16- and 8-bit AUTOSAR Platform types, the
following is sufficent:

--atomic-assign=uint16,uint8,sint16,sint8

24 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.6 --bit-pack-type

Description:
Specify underlying ImplementationDataType for bit-packed flags.

Name:
--bit-pack-type

Parameter:
This option takes a single parameter which is a reference to the
ImplementationDataType to use to contain bitfields.

Default:
/AUTOSAR_Platform/ImplementationDataTypes/uint16

Notes:
None.

Example:
To use the uint32 platform type for holding bit-packed flag in generated code,
use the following command:

--bit-pack-type=/AUTOSAR_Platform/ImplementationDataTypes/uint16

Command-line options 25

RTA-RTE V6.8.0
Reference Manual

3.7 --bsw

Description:
Select “BSW” generation phase to generate the BSW Scheduler components only.

Name:
--bsw

Parameter:
This option takes a single parameter, that specifies either the ECU instance or the
ECU configuration for which BSW generation should occur.

Default:
N/A

Notes:
The ECU instance <ECUI> must be specified using an absolute instance reference.
(See Section 4.2.4.)

It is an error if the input XML contains any SWC configuration data.

Example:
To select BSW generation phase for ECU configuration /pkg/ecu use the following
command:

--bsw=/pkg/ecu

26 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.8 --bsw-scope-limit-defns

Description:
Control use of scope-limiting definitions for BSW.

Name:
--bsw-scope-limit-defns

Parameter:
This option takes a single parameter, <P>, that determines whether scope-limiting
definitions are generated for BSW APIs within the Module Interlink Header file.
Generation is not required for AUTOSAR compliance.

Default:
If this option is not specified scope limiting definitions are generated in the same
form as used for application header files.

Notes:
This option is supported by the OutputC plug-in.

Example:
To use enable generation of scope-limiting definitions, use:

--bsw-scope-limit-defns=on

Command-line options 27

RTA-RTE V6.8.0
Reference Manual

3.9 --calibration-disable

Description:
Disable RTE calibration supported for specified SWC type.

Name:
--calibration-disable

Parameter:
This option takes a single parameter, <SWC>, which must be an absolute reference
to the SWC type for which calibration should be disabled.

Default:
N/A

Notes:
This option has no effect if the selected global calibration method is ‘none’. Cali-
bration can also be disabled for individual SWC types using the ECU Configuration
description.

Example:
To disable calibration for SWC /pkg/swcA use the following command:

--calibration-disable=/pkg/swcA

28 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.10 --calibration-instantiation

Description:
Determines whether RTA-RTE allocates memory (RAM) for calibration instances or
imports labels.

Name:
--calibration-instantiation

Parameter:
This option takes a single parameter, that specifies whether to import (import)
or allocate memory (‘allocate’) for calibration instances.

Default:
allocate.

Notes:
None.

Example:
The command-line option:

--calibration-instantiation=allocate

Causes RTA-RTE to allocate RAM buffers for each calibration group. These buffers
should be initialized by the application before the RTE is started. (See section ??.)

Alternatively, the command-line option:

--calibration-instantiation=import

Causes RTA-RTE only to import labels using the extern keyword. These labels can
be set to buffers which are initialized externally to the generated RTE code.

Command-line options 29

RTA-RTE V6.8.0
Reference Manual

3.11 --calibration-method

Description:
Select the global calibration method.

Name:
--calibration-method

Parameter:
This option takes a single parameter that specifies the selected calibration
method. Supported values are: none, singlePointered doublePointered,
initializedRam, and singlePointered2

Default:
none

Notes:
The selected calibration method affects the data structures and generated func-
tions created to support calibration. The API presented to SW-Cs within the appli-
cation header is not affected.

For RTE generation phase, this option can be set both in the ECUC file and on the
command-line. If specified in both places then RTA-RTE will use the command-line
value.

Example:
To select single-pointered method:

--calibration-method=singlePointered

30 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.12 --client-server-global-optimization

Description:
Select whether or not non-AUTOSAR optimizations of inter-partition client-server
communication should be performed.

Name:
--client-server-global-optimization

Parameter:
This option takes a single parameter which enables (“on” or “1”) or disables (“off”
or “0”) use of non-AUTOSAR optimizations for inter-partition client-server commu-
nication.

Default:
Disabled (“off”) for AUTOSAR compliance.

Notes:
None.

Example:
To enable the use of non-AUTOSAR optimizations for inter-partition client-server
communication:

--client-server-global-optimization=on

Command-line options 31

RTA-RTE V6.8.0
Reference Manual

3.13 --com-symbolic-sigs

Description:
Use symbolic names for COM or LdCom signal handles.

Name:
--com-symbolic-sigs

Parameter:
None.

Default:
By default, RTA-RTE generates an RTE that uses a ComSignal’s or LdComIPdu’s
numerical handle ID when invoking COM or LdCom API functions.

Notes:
When this option is specified the generated RTE uses the symbolic name of the
signal (the shortName of the corresponding ComSignal or LdComIPdu) instead of
the handle ID. This option must be specified when RTA-RTE is used with an AU-
TOSAR v1.0 compliant COM.

Example:
To enable use of symbolic signal names:

--com-symbolic-sigs

32 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.14 --com-version

Description:
Modify the generated code to be appropriate for the given version of AUTOSAR
COM.

Name:
--com-version

Parameter:
The parameter <V> specifies the required version. Supported and default COM
versions are dependent on the selected RTA-RTE backend processor.

Default:
Dependent on selected backend processor.

Notes:
None.

Example:
To specify use of AUTOSAR COM v1.0:

--com-version=1.0

Command-line options 33

RTA-RTE V6.8.0
Reference Manual

3.15 --contract

Description:
Execute contract phase for a specific software module.

Name:
--contract

Parameter:
This option takes a single parameter that must be an absolute reference to the Ap-
plicationSoftwareComponentType type or BswImplementation for which contract-
phase headers should be generated.

Default:
N/A

Notes:
Use --contract to support the AUTOSAR RTE Contract Phase or Basic Software
Scheduler Contract Phase. RTA-RTE will generate an application header file for
the specified application software component type or BSW implementation. To
generate headers for multiple software modules, the --contract option can be
repeated on the command line. You cannot mix contract phase and generation
phase in the same run of RTA-RTE.

Example:
To generate the contract phase headers for two hypothetical Software Component
Types swcA and swcB:

--contract=/myPackage/ApplicationSwComponentTypes/componentA --contract=/myPackage/ApplicationSwComponentTypes/componentB

34 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.16 --deviate-allow-unmapped-swci-config

Description:
Enable SWC instances within the RTE module configuration to be mapped to a
different ECU instance.

Name:
--deviate-allow-unmapped-swci-config

Parameter:
This option permits (“1”) or forbids (“0”) SWC instances within the RTE module
configuration to be mapped to a different ECU instance. When permitted a warn-
ing will be issued for each unmapped instance but generation will continue.

Default:
Forbid (“0”).

Notes:
None.

Example:
To allow unmapped SWC instances:

--deviate-allow-unmapped-swci-config=1

Command-line options 35

RTA-RTE V6.8.0
Reference Manual

3.17 --deviate-appl-impl-compu-method

Description:
This option suppresses the error that would be generated by having a Com-
puMethod on both an Application Data Type and its mapped Implementation Data
Type.

Name:
--deviate-appl-impl-compu-method

Parameter:
This option enables (“1”) or disables (“0”) the deviation.

Default:
Enabled (“1”).

Notes:
Standard AUTOSAR behavior specifies that when the CompuMethod is in both an
Implementation Data Type and its mapped Application Data Type that this is an
error.

Example:
To make RTA-RTE raise a configuration error when the CompuMethod is on both
the Application Data Type and its mapped Implementation Data Type (which is
standard AUTOSAR behavior):

--deviate-appl-impl-compu-method=off

36 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.18 --deviate-appl-impl-display-format

Description:
This option suppresses the error that would be generated by having a Display-
Format on both an Application Data Type and its mapped Implementation Data
Type.

Name:
--deviate-appl-impl-display-format

Parameter:
This option enables (“on” or “1”) or disables (“off” or “0”) the deviation.

Default:
Enabled (“on”).

Notes:
Standard AUTOSAR behavior specifies that when the DisplayFormat is in both an
Implementation Data Type and its mapped Application Data Type that this is an
error.

Example:
To make RTA-RTE raise a configuration error when the DisplayFormat is on both the
Application Data Type and its mapped Implementation Data Type (which standard
AUTOSAR behavior)

--deviate-appl-impl-display-format=off

Command-line options 37

RTA-RTE V6.8.0
Reference Manual

3.19 --deviate-bsw-any-partition

Description:
Enable mapping of BSW to any OS partition.

Name:
--deviate-bsw-any-partition

Parameter:
This option enables (“1”) or disables (“0”) an RTA-RTE deviation from the AUTOSAR
RTE specification. When enabled BSW may be mapped to any OS partition.

Default:
Disabled (“0”).

Notes:
None.

Example:
To enable mapping of BSW to any partition:

--deviate-bsw-any-partition=1

This option has received limited testing in this release of RTA-RTE. If
mapping to any partition is enabled the generated RTE must be thor-
oughly tested before use.

38 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.20 --deviate-allow-supportsmulti-sharedmemorys

Description:
Allow supportsMultipleInstantiation to be set on a SWCT with staticMemorys.

Name:
--deviate-allow-supportsmulti-sharedmemorys

Parameter:
This option enables (“1”) or disables (“0”) an RTA-RTE deviation from the AUTOSAR
RTE specification. According to the specification, it is an error to set supportsMul-
tipleInstantiation on an InternalBehavior that contains staticMemorys. When this
option is enabled, the error is reduced to a warning, and an error is only raised if
the input model actually contains multiple instances of the related SWCT.

Default:
Disabled (“0”).

Notes:
None.

Example:
--deviate-allow-supportsmulti-sharedmemorys=1

Command-line options 39

RTA-RTE V6.8.0
Reference Manual

3.21 --deviate-enum-cast

Description:
Explicitly cast literals used in enumerations (AUTOSAR TEXTTABLEs).

Name:
--deviate-enum-cast

Parameter:
This option takes a single parameter, <N>, that specifies whether the option is
enabled (‘1’) or disabled (‘0’).

Default:
Disabled (AUTOSAR compliant).

Notes:
RTA-RTE writes preprocessor define directives for the symbolic values in TEXTTA-
BLEs according to AUTOSAR (rte_sws 3810).

In addition to this, if the --deviate-enum-cast option is enabled, RTA-RTE also
emits an explicit cast to the underlying ImplementationDataType.

Regardless of this option, RTA-RTE writes a ‘U’ suffix to the numeric literal if the
underlying SwBaseType is unsigned or missing.

Example:
#define E1_VALUE1 34U

with --deviate-enum-cast=1 becomes

#define E1_VALUE1 (myUnsignedEnumType)34U

40 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.22 --deviate-group-calibration-none

Description:
Control grouping of calibration parameters.

Name:
--deviate-group-calibration-none

Parameter:
This option takes a single parameter, <N>, that specifies whether to enable (‘1’) or
disable (‘0’) the grouping of calibration parameters for ‘none’ calibration method.

Default:
Disable grouping (AUTOSAR compliant).

Notes:
RTA-RTE instantiates calibration parameters. For the single- and double-pointered
calibration methods all parameters are grouped according to the assigned SwAd-
drMethod. This option enables grouping to also be applied when the ‘none’ cali-
bration method is selected.

RTA-RTE will apply grouping when no flatmap instance descriptor is available since
the descriptor is required to assign a name to the parameter instance.

Example:
To cause RTA-RTE to group calibration parameters when using the ‘none’ method:

--deviate-group-calibration-none=1

Command-line options 41

RTA-RTE V6.8.0
Reference Manual

3.23 --deviate-ignore-datatype-semantics

Description:
Control semantic checks when checking type correctness.

Name:
--deviate-ignore-datatype-semantics

Parameter:
This option takes a single parameter, <P>, that specifies whether to ignore (‘1’) or
enable (‘0’) the semantic checking of connected data types

Default:
Enable check (‘0’).

Notes:
AUTOSAR specifies compatibility rules for connected DataPrototypes involv-
ing the referenced AutosarDataType and any CompuMethods, Units, or Physi-
calDimensions involved. Additionally, for R4.x projects, the AUTOSAR specifica-
tion states that when VariableDataPrototypes are not compatible it is still permit-
ted to connect them if they conform to further rules about whether automatic
data conversion is possible.

In some configurations, it may be necessary to allow connection of DataProto-
types that do not fully conform to the AUTOSAR compatibility rules.

With this option specified, the compatibility and convertibility checks are very
much relaxed, with the CompuMethod, Unit, and PhysicalDimension being com-
pletely ignored.

In addition, RTA-RTE normally checks that any CompuMethod referenced by an
ImplementationDataType is permitted according to constr_1158, raising an error
if the check fails. If this option is specified, then the error is downgraded to a
warning, allowing the generation to continue.

Example:
To ignore semantic checks:

--deviate-ignore-datatype-semantics=1

42 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.24 --deviate-implicit-cat2-mdd

Description:
Enable mode disabling dependency for category 2 runnables.

Name:
--deviate-implicit-cat2-mdd

Parameter:
This option permits (“1”) or forbids (“0”) mode disabling dependency for implicitly
category 2 runnables.

Default:
Forbid (“0”).

Notes:
Prior to AUTOSAR R4.0, a runnable is implicitly category 2 if it includes a syn-
chronous call point. This option permits such runnables to have mode disabling
dependencies.

Example:
To enable mode disabling dependencies for category 2 runnables:

--deviate-implicit-cat2-mdd=1

Command-line options 43

RTA-RTE V6.8.0
Reference Manual

3.25 --deviate-implicit-modify-for-loopbacks

Description:
Enable “data modify” semantics for implicit access to data items where there is a
loopback assembly connector.

Name:
--deviate-implicit-modify-for-loopbacks

Parameter:
This option enables (“on” or “1”) or disables (“off” or “0”) “data modify” semantics
for implicit access to data items where a loopback assembly connector exists.

Default:
Disabled (“off”).

Notes:
Without this option, RTA-RTE implements AUTOSAR rules for the visibility and
propagation of implicit data, and creates uninitialized Write Buffers for implicit
writers to support that. One consequence of this is that Runnables using
Rte_IWriteRef to write parts of a complex type will result in undefined values
being propagated on the other members of the type.

When this option is enabled, if you connect the PPort back to an RPort charac-
terized by the same interface in the same swc prototype, then RTA-RTE initial-
izes the implicit writeback buffers from the definitive, global buffer before the
Runnable enters. This enables the use of partial writes of complex data by multi-
ple runnables without the propagation of undefined variables.

It is permitted, but not necessary, to configure a DataReadAccess in the Runnable
for the configured RPort.

Example:
To enable “data modify” semantics for implicit access to data items:

--deviate-implicit-modify-for-loopbacks=on

44 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.26 --deviate-memmap-decls

Description:
Select whether or not memory allocation sequences should be used for declara-
tions as well as definitions.

Name:
--deviate-memmap-decls

Parameter:
This option takes a single parameter which enables (“on” or “1”) or disables (“off”
or “0”) use of MemMap for declarations.

Default:
Enabled (“on”).

Notes:
None.

Example:
To disable generation of MemMap decorations:

--deviate-memmap-decls=off

Command-line options 45

RTA-RTE V6.8.0
Reference Manual

3.27 --deviate-omit-implicit-cds

Description:
Enable optimization of CDS for implicit S/R and IRVs.

Name:
--deviate-omit-implicit-cds

Parameter:
This option enables (“1”) or disables (“0”) optimization of the component data
structure (CDS) for implicit access to S/R and IRVs.

Default:
Forbid (“0”).

Notes:
Optimization of the CDS removes the data handles that are not required. Opti-
mization is possible when the SWC is:

1. Singly instantiable,

2. Delivered as source code,

3. RTE generator is in vendor mode,

4. This option is enabled.

Example:
To enable optimization of the CDS for implicit S/R and IRVs:

--deviate-omit-implicit-cds=1

46 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.28 --deviate-physical-dimension-compatibility

Description:
Specify physical dimension compatibility rules.

Name:
--deviate-physical-dimension-compatibility

Parameter:
This option enables (“1”) or disables (“0”) an RTA-RTE deviation from the AUTOSAR
RTE specification.

Default:
Disabled (“0”).

Notes:
This option modifies how the RTE generator validates compatibility of physical
dimensions. By default RTA-RTE validates according to AUTOSAR rules and thus
the physical dimensions must have the same short-name and attributes. How-
ever when this option is enabled RTA-RTE only checks the attributes, e.g. length
exponent, match and permits the short-names to differ. This enables different el-
ements that represent the same physical dimensions to be connected but should
be used with care since physical dimensions with matching attributes can still rep-
resent different physical quantities. See the AUTOSAR documentation for further
details.

Example:
To enable non-AUTOSAR compatibility rules for physical dimension comaptibility:

--deviate-physical-dimension-compatibility=1

Command-line options 47

RTA-RTE V6.8.0
Reference Manual

3.29 --deviate-prefer-no-empty-executions

Description:
Enable (“on” or “1”) or disable (“off” or “0”) optimizations to runnable entity
scheduling that avoid empty executions of tasks containing only runnables (or
schedulable entities) triggered by the same source, at the expense of loss of the
guarantee that the runnables will execute after being activated during the execu-
tion of the task.

Name:
--deviate-prefer-no-empty-executions

Parameter:
This option enables (“on” or “1”) or disables (“off” or “0”) optimizations to the
scheduling of runnables that reduce execution overhead but cause the behavior
to deviate from the AUTOSAR specification and may cause activations occurring
during runnable execution to be delayed or lost.

Default:
Disabled (“off”).

Notes:
When enabled, activation flags are elided for tasks containing only runnables that
are activated by the same trigger source and such tasks are required to be config-
ured with an activation limit of one. This avoids empty task executions in the case
of bursts of runnable activations but activations occurring while the task executes
are delayed or lost, deviating from the AUTOSAR requirement that activations of
a runnable during its execution be honored.

Example:
--deviate-prefer-no-empty-executions=on

48 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.30 --deviate-split-swci-support

Description:
Split Sw-Cs across OsApplications

Name:
--deviate-split-swci-support

Parameter:
This option enables (“on” or “1”) or disables (“off” or “0”) splitting
ApplicationSofwareComponents across protection boundaries, i.e. by mapping
the Runnables to OsTasks in different OsApplications.

Default:
Disabled (“off”).

Notes:
When enabled, this option allows RteEvents from a SWC instance to be
mapped to OsTasks in different OsApplications, in violation of AUTOSAR 4.3.0
[SWS_Rte_07347].

The use of split SWCs is subject to the following restrictions. RTA-RTE will reject
any configuration that violates these restrictions with an error.

1. There can be at most one instance of a given SW-C on the ECU if the SW-C
instance is split.

2. BSW modules cannot be split, unless the --deviate-bsw-any-partition
option is also set to “on”.

3. A split SW-C cannot use ExclusiveAreas.

4. A Runnable of a split SW-C may not be started by multiple RteEvents if it
accesses port data or IRVs.

5. Each Data Item, Operation, Trigger, or Mode Group in a port (as appropriate
for the port type) of a split SW-C must only be accessed by runnables mapped
to tasks of one OsApplication.

6. Inter-runnable Variables within a split SW-C can be accessed by runnables
mapped to different OsApplications, provided that:

• There are not both multiple writing OsApplications and multiple read-
ing OsApplications (that is, an IRV cannot be used for M:N communica-
tion between OsApplications)

• There are not both multiple writing OsApplications and a reading
Runnable in one of the writing OsApplications (that is, an IRV cannot
be used for mixed intra- and inter-OsApplication N:1 communication).

These restrictions only apply to IRVs that are accessed from multiple
OsApplications. IRVs that are accessed only from a single OsApplication
may be used as normal.

When this option is enabled, InterrunnableVariables might need to cross pro-
tection boundaries. RTA-RTE will silently augment the input model with port com-
munication to handle this case, causing the IoC to be invoked where needed.

Command-line options 49

RTA-RTE V6.8.0
Reference Manual

Example:
To map runnables from the same SWCInstance to OsTasks in different
OsApplications,

--deviate-split-swci-support=on

50 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.31 --deviate-trace-implicit-api

Description:
Enable generation of VFB trace hooks for implicit API.

Name:
--deviate-trace-implicit-api

Parameter:
This option enables (“1”) or disables (“0”) an RTA-RTE deviation from the AUTOSAR
RTE specification. When set VFB trace hook calls are added for implicit API func-
tions / macros.

Default:
Disabled (“0”).

Notes:
None.

Example:
To enable VFB trace hook generation for the implicit API:

--deviate-trace-implicit-api=1

Command-line options 51

RTA-RTE V6.8.0
Reference Manual

3.32 --deviate-unconnected-pmode-behavior

Description:
Control behavior of unconnected mode PPorts.

Name:
--deviate-unconnected-pmode-behavior

Parameter:
This option controls whether a mode manager Rte_Switch API stores the current
mode (“on”) or discards the input parameters (“off”). When enabled the behav-
ior of the API is an RTA-RTE deviation from the AUTOSAR RTE specification since
AUTOSAR requires an unconnected mode manager to discard the inputs.

Default:
Disabled (“off”).

Notes:
None.

Example:
To enable storing of the current mode by an unconnected mode manager:

--deviate-unconnected-pmode-behavior=on

52 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.33 --disable-warning

Description:
Disable display of specified warning.

Name:
--disable-warning

Parameter:
The option takes a single parameter. <STR>, that specifies the identifier of the
warning or informational message to be disabled. The option can be specified
multiple times to disable multiple warnings.

Default:
#pragma message

Notes:
This option can disable the display of both warning and informational messages.
When disabled RTA-RTE does not show the message and does not count the warn-
ing or information in the totals.

This option can be disabled within the INI file by setting the flag
DisableWarningOption to “disable” within the section Options.

Example:
To disable information message I53-7701:

--disable-warning=I53-7701

Command-line options 53

RTA-RTE V6.8.0
Reference Manual

3.34 --error-as-warning

This option is deprecated and will be removed in a future version of RTA-RTE.
It should not be used in new projects. Existing projects should be updated
to no longer use this option.

Description:
Demote specific error to warning.

Name:
--error-as-warning

Parameter:
The option takes a single parameter <STR>, that specifies the identifier of the
error message to be demoted to a warning. The option can be specified multiple
times to demote multiple errors.

Default:
N/A

Notes:
This option produces undefined behavior and should not be used.

This option should be disabled in production projects by adding
ErrorAsWarningOption=disable to the [Options] section of RTEGen.ini.

This option demotes the severity of a message from “E” (error) to “W” (warning).
As a result, RTA-RTE does not stop processing and will continue to attempt to
generate code.

Because an error has occurred, behavior in subsequent steps is undefined.

Example:
To demote error message E53-1234 to W53-1234:

--error-as-warning=E53-1234

54 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.35 --error-report

Description:
Select the message output method.

Name:
--error-report

Parameter:
This option takes a single parameter, <Method>, that specifies the destination and
format of the Information, Warning, and Error messages. Supported values are

• console format messages and write to the standard error stream.

• file create file Rte.err. Format the messages as for console and write them
to this file along with a summary.

• xml create file RteErr.xml. Format the errors and summary in XML and write
to the file.

Default:
“console”

Notes:

Example:
To send all generated errors to a file use the following option:

--error-report=file

Command-line options 55

RTA-RTE V6.8.0
Reference Manual

3.36 --exclusive-area-optimization

Description:
Set optimization policy of RTE exlusive area APIs.

Name:
--exclusive-area-optimization

Parameter:
This option takes a single parameter, <P>, that specifies whether to “enable” or
disable “disable” optimization

Default:
“enable”

Notes:
When exclusive area optimization is disabled:

• For explicitly accessed exclusive areas the generated Rte_Enter/Rte_Exit
APIs are not mapped “null” implementations even when all accessors are al-
ready in mutual exclusion (e.g. mapped to same task).

• For implicitly accessed exclusive areas, RTA-RTE will perform no optimization
to “null” implementation of enter/exit locks created within the highest priority
task.

Example:
To disable optimization of exclusive area access:

--exclusive-area-optimization=disable

56 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.37 --fast-init

Description:
Enable fast activation for mode switch events.

Name:
--fast-init

Parameter:
This option takes a single parameter, <REF>, that specifies either an atomic SWC
type or a ModeSwitchEvent.

Default:
The default activation policy is AUTOSAR compliant activation therefore this op-
tion needs to be specified for each event that is to be activated by the non-
AUTOSAR compliant mechanism.

Notes:
Enables ModeSwitchEvents to be activated by a non-AUTOSAR compliant mech-
anism (for example, a function call from the body of a task started outside the
control of the RTE). ModeSwitchEvents may be specified either individually by
name or as a group by naming the SWC type to which they belong. This avoids
the complexity inherent in AUTOSAR-compliant activation for mode switch activa-
tions and is especially useful for “init” runnables that are activated only once.

Example:
To enable fast activation for RTE Event ev1 within an internal behavior IB:

--fast-init=/pkg/IB/ev1

Command-line options 57

RTA-RTE V6.8.0
Reference Manual

3.38 --file

Description:
Read options from command file.

Name:
--file

Parameter:
The file from which commands are read.

Default:
N/A

Notes:
Read command-line options from the specified file in addition to any read from
the command line. The option can be used recursively; a file read using --file
can include other files.

The ‘@’ character can be used as a synonym for the -file option. The space
separating ‘@’ and <FILE> into separate command-line arguments is optional.

Command line parameters included with this must observe the same rules as if
they were specified directly on the command line with the exception that options
can be split across multiple lines.

Comments can be included in a command file. A comment starts with semicolon
character (‘;’) either at the start of the line or after some whitespace. Text up to
the end of the line is ignored.

The file should be a plain ASCII text file. No special file extension is required.

Example:
The following examples both read options from the file project.rte:

--file=project.rte

@project.rte

58 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.39 --force-basic-tasks

Description:
Force basic tasks.

Name:
--force-basic-tasks

Parameter:
This option takes no parameters. If omitted, then the task’s forced-basic seman-
tics are taken from the ECU Configuration file (see Section 4.19.2).

Default:
N/A

Notes:
When specified RTA-RTE uses forced-basic semantics (see RTA-RTE User Guide)
for all tasks in the ECU instance for which the RTE is being generated. This option
overrides any settings in the ECU Configuration file.

Example:
To enable force-basic semantics for all tasks:

--force-basic-tasks

Command-line options 59

RTA-RTE V6.8.0
Reference Manual

3.40 --have-64bit-int-types

Description:
Enable support for 64-bit platform types for use within generated data-
transformation.

Name:
--have-64bit-int-types

Parameter:
This option takes a single parameter, <P>, that specifies whether to enable (‘1’)
or disable (‘0’) the use of 64-bit types.

Default:
Disabled (‘0’)

Notes:
This option enables use of 64-bit types within generated data-transformation
functions. Since these types are not standardized by AUTOSAR the option is dis-
abled by default. If enabled the types must be defined when the generated RTE
is compiled.

Example:
To indicate to RTA-RTE that 64-bit types are available:

--have-64bit-int-types=1

60 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.41 --help

Description:
Display RTE generator help.

Name:
--help

Parameter:
None

Default:
N/A

Notes:
Print the usage information on the standard output. Brief usage information is
presented when using -?/-h and more detailed information with --help.

Example:
To display the help text: --help

Command-line options 61

RTA-RTE V6.8.0
Reference Manual

3.42 --implicit-allocation-method

Description:
Select the allocation method used by RTA-RTE for creating implicit communication
buffers. Supported methods are ’overlay’ and ’task’.

Name:
--implicit-allocation-method

Parameter:
This option takes a single parameter which is the method to use. Supported val-
ues are “task” and “overlay”.

Default:
“overlay”

Notes:
Method “task” causes a separate structure to be created and instantiated by RTA-
RTE for each task’s implicit buffers. The structure instance is allocated to its own
memory section called SEC_VAR_IMPLICITSR_<TASK> where <TASK> is the task
name in uppercase. Method “overlay” creates a single structure where tasks
that cannot preempt (e.g. those at the same priority) have overlayed implicit
buffers.

Example:
To enable separate structures for each task’s implicit buffers:

--implicit-allocation-method=task

62 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.43 --implicit-read-return-const

Description:
Control whether or nor the CONST or VAR compiler abstraction macros are used
to cast the return value from Rte_IRead.

Name:
--implicit-read-return-const

Parameter:
This option takes a single integer parameter which defines cast used.

0 Use of CONST cast disabled; the API mapping uses a VAR cast.

1 Use of CONST cast enabled.

Default:
1 (CONST cast).

Notes:
None.

Example:
To enable use of a VAR cast:

--implicit-read-return-const=0

Command-line options 63

RTA-RTE V6.8.0
Reference Manual

3.44 --implicit-use-global-buffers

Description:
Enable or disable use of global receive buffers in place of task-specific buffers
for implicit communications. This optimization is dependent on task preemption
but when possible can save RAM since no additional copies of the global data are
required.

Name:
--implicit-use-global-buffers

Parameter:
This option takes a single integer parameter which defines the enabled optimiza-
tions.

0 Optimization disabled; all implicit communication uses AUTOSAR compliant
task-specific buffers.

1 Optimization of implicit communication to use global buffers is enabled. The
possible optimization depends on the relative priorities of tasks containing
readers and writers: for best results either map to tasks at the same priority
or map to the same task.

2 As ’1’ plus all ’fast-init’ tasks use global buffer access for implicit communi-
cation. For ’fast-init’ tasks the optimization occurs irrespective of the task
mapping of readers and writers since it is assumed that execution of the
’fast-init’ tasks is complete before periodic runnables (and hence normal RTE
tasks) start.

Default:
0 (optimization disabled and AUTOSAR compliant task-specific buffers used).

Notes:
None.

Example:
To enable use by the generated RTE of global receive buffers:

--implicit-use-global-buffers=1

64 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.45 --incremental-build

Description:
Incremental Build.

Name:
--incremental-build

Parameter:
This option takes a single parameter that enables (‘1’) or disables (‘0’) incremental
output of generated files. If not specified incremental output is disabled.

Default:
Build all files (incremental build disabled).

Notes:
When enabled, RTA-RTE generates files to a temporary folder and only overwrites
files in the destination folder if the contents have changed.

This option turns on the --notimestamps option.

Example:
To enable incremental build:

--incremental-build=1

Command-line options 65

RTA-RTE V6.8.0
Reference Manual

3.46 --initial-value-rounding

Description:
Select the rounding behavior for the calculation of initial values for integer data
from physical values.

Name:
--initial-value-rounding

Parameter:
This option takes a single parameter which specifies the required rounding be-
havior for the calculation of initial values for integer data types from physical
values. The supported rounding behaviors are ‘truncate’ meaning truncation to-
wards zero and ‘nearest’ meaning rounding to nearest, with half values rounding
away from zero.

Default:
truncate

Notes:
When a physical value is given with an ApplicationValueSpecification the compu-
tation of the corresponding internal value may result in a fractional value that
must be rounded in the case that the destination data type is an integer. This
option allows that rounding behavior to be selected.

The ‘truncate’ behavior means to truncate towards zero, so for example 2.3 and
2.8 both become 2 and −1.2 and −1.9 both become −1.

The ‘nearest’ behavior means to round to nearest, with half values rounding away
from zero, so for example 2.4 becomes 2, 2.8 and 2.5 both become 3, −1.2 be-
comes −1 and −1.7 and −1.5 both become −2.

Example:
To select rounding to nearest behavior:

--initial-value-rounding=nearest

66 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.47 --ioc-header

Description:
Set the IOC header file used.

Name:
--ioc-header

Parameter:
This option takes a single parameter, <FILE>, that specifies the name of the IOC
header file to use within generated code.

Default:
None.

Notes:
This option is valid in vendor mode only.

Example:
To use IOC header ioc.h:

--ioc-header=ioc.h

Command-line options 67

RTA-RTE V6.8.0
Reference Manual

3.48 --ioc-xml-namespace

Description:
Set the XML namespace URI used in generated IOC configuration file.

Name:
--ioc-xml-namespace

Parameter:
This option takes a single parameter, <URI>, that specifies the namespace URI to
be used within the generated IOC configuration file.

Default:
If this option is not specified the default namespace URI is the R4.0 default names-
pace.

Notes:
This option is supported by the RTA-IOC OS plug-in.

Example:
To use http://namespace as the namespace URI when generating the IOC con-
figuration file, use:

--ioc-xml-namespace=http://namespace

68 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.49 --local-mcsd

Description:
Report “local McSupportData” for a specific software module.

Name:
--local-mcsd

Parameter:
This option takes a single parameter that must be an absolute reference to the
ApplicationSoftwareComponentType type whose internal data are to be reported
in McSupportData.

Default:
N/A

Notes:
This is a non-AUTOSAR generation phase that generates McSupportData for spe-
cific software modules. RTA-RTE will generate an McSupportData report con-
taining the staticMemorys, constantMemorys and perInstanceParameters of the
given modules. To include multiple modules in the McSupportData, specify the
--local-mcsd option multiple times on the command line. You cannot mix “local
MCSD phase” with any other phase in the same run of RTA-RTE.

Example:
To generate McSupportData for two hypothetical Software Component Types
swcA and swcB:

--local-mcsd=/MyPackage/ApplicationSwComponentTypes/swcA --local-mcsd=/MyPackage/ApplicationSwComponentTypes/swcB

Command-line options 69

RTA-RTE V6.8.0
Reference Manual

3.50 --makedep

Description:
Output dependency information for generated files.

Name:
--makedep

Parameter:
The option takes one parameter, <FILE>, which is the file to which dependency
information is to be written.

Default:
N/A

Notes:
None.

Example:
To enable generation of dependency information and output it to file rte.dep use:

--makedep=rte.dep

70 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.51 --mcore-spinlocks-always

Description:
Enable spinlocks in multicore mode handling.

Name:
--mcore-spinlocks-always

Parameter:
This option enables (“1”) or disables (“0”) spinlocks in multicore mode handling.

Default:
Disabled (“0”).

Notes:
When enabled, RTA-RTE emits spinlocks for concurrency protection in Mode APIs.
At the time of writing, RTA-RTE does not optimize spinlocks, so specifying this
option will cause all Mode Machine Instances to use spinlocks even if there is no
inter-core communication to protect against. For this reason, the option should
not be used if the input model contains no inter-core mode handling.

On configurations detected as single core this option will be ignored assuming the
default Disabled.

Example:
Enable inter-core mode handling: --mcore-spinlocks-always=1

Command-line options 71

RTA-RTE V6.8.0
Reference Manual

3.52 --mcsd-policy

Description:
Specify options pertaining to the output of Measurement and Calibration Support
Data (MCSD).

Name:
--mcsd-policy

Parameter:
This option takes a single parameter: a comma-separated list of options which
modify the MCSD as follows:

emit-memorys emits McDataInstance containers for any BSW or ASW Static or
Constant Memory.

phys-constrs-always RTA-RTE shall always write PhysConstrs related to every
McDataInstance. If necessary, the PhysConstr will be taken from The Appli-
cationDataType, ImplementationDataType, CompuMethod (for enumerated
types) or SwBaseType (for Category NONE, 2C or BOOLEAN). If no PhysCon-
str can be found or calculated, an error is raised.

mcfunction-from-shortname For all McDataInstances where RTA-RTE sees a
relevant DataPrototype, that DataPrototype’s shortName is copied to the Mc-
DataInstance’s McFunction. This policy is deprecated; it was implemented
as a workaround for use before RTA-RTE exported McFunction correctly.

struct-element-symbols For McDataInstances that are structure elements, the
C names for the elements are emitted as their symbols. These are not global
linker symbols but they do allow the full C expressions to access the elements
to be constructed.

Default:
N/A

Notes:
N/A

Example:
--mcsd-policy=emit-memorys

72 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.53 --measurement

Description:
Globally enable (or disable) support for measurement.

Name:
--measurement

Parameter:
The option takes a single parameter, <V>, that specifies whether measurement is
enabled (“1”, “2” and “3”) or disabled (“0”)

Default:
Enabled (“1”)

Notes:
With parameter “1”, each data element, client-server argument and inter-
runnable variable that is to be measured must be configured separately.

With parameter “2”, measurement is enabled for all data elements and inter-
runnable variable irrespective of the configuration within the XML input. This
setting therefore enables items to be measured in 3rd party components (for
which source is available) without modifying the source XML.

Parameter “3” extends “2” to also measure all client-server arguments.

For RTE generation phase, this option can be set both in the ECUC file and on the
command-line. If specified in both places then RTA-RTE will use the command-line
value — this enables simple override of the “fixed” configuration value.

Example:
To enable measurement for all data elements (including inter-runnable variables)
irrespective of the settings in the input configuration use the following option:

--measurement=2

Command-line options 73

RTA-RTE V6.8.0
Reference Manual

3.54 --memory-sections

Description:
Specify location of the Memory Section Description File.

Name:
--memory-sections

Parameter:
<PATH> — specifies the folder containing the memory section description file. The
specification can be an absolute or relative path. A relative path is interpreted
relative to the folder containing the current folder.

Default:
File “memsect.xml” within the folder containing the application executable. If the
file is specified both in the INI configuration file and on the command-line the
latter takes precedence.

Notes:
See RTA-RTE Toolchain Integration Guide for further details on using the Memory
Section Description File to adapt the AUTOSAR compiler abstraction usage within
generated code.

Example:
To use memory section description file mymemsect.xml:

--memory-sections=mymemsect.xml

74 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.55 --notimestamps

Description:
Disable timestamps in generated files.

Name:
--notimestamps

Parameter:
None

Default:
Include timestamps.

Notes:
Output fixed-text banner (omit date and time of generation in generated files).
This option is useful when the generated output will be programmatically com-
pared, e.g. by a source control system.

Example:
To disable timestamp generation:

--notimestamps

Command-line options 75

RTA-RTE V6.8.0
Reference Manual

3.56 --operating-system

This option is deprecated and will be removed in a future version of RTA-RTE.
It should not be used in new projects. Existing projects should be updated
to no longer use this option.

Description:
Select which OS support to use.

Name:
--operating-system

Parameter:
The option takes a single parameter, <OS> that is the name of the OS to use.
Supported parameters are:

• autosar40 - generate OS APIs and configuration files compatible with an AU-
TOSAR 4.x operating system

Default:
autosar40

Notes:
The selected OS determines both the OS API used within the generated RTE and
also the form of the generated OS configuration file (if any).

Example:
To select the autosar40 OS support:

--operating-system=autosar40

76 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.57 --optimize

Description:
Set the optimization strategy for the generated RTE.

Name:
--optimize

Parameter:
This option takes a single parameter, <TYPE> that specifies the optimization type.
Supported values are “Runtime” (optimize for speed) and “Memory” (optimize for
code size).

Default:
“Runtime” (speed)

Notes:
When optimized for “Memory” (size) RTA-RTE invokes the COM API directly to ac-
cess non-queued signals rather than allocating buffers for storage. The optimiza-
tion strategy can also be set using the RTE Generation parameters within the ECU
Configuration description. A setting on the command-line overrides a setting in
the ECU Configuration description.

The short-form of this option is an uppercase letter “O”.

For RTE generation phase, this option can be set both in the ECUC file and on the
command-line. If specified in both places then RTA-RTE will use the command-line
value — this enables a simple override of the “fixed” configuration value.

Example:
To enable optimization for “memory” usage:

--optimize=Memory

Command-line options 77

RTA-RTE V6.8.0
Reference Manual

3.58 --os-define-osenv

Description:
Define OSENV within Rte_Const.h.

Name:
--os-define-osenv

Parameter:
This option takes a single parameter which is the OSENV <NAME> to define. The
two supported values are:

• RTAOS40 - for versions of RTA-OS which support AUTOSAR 4.x.

• UNSUPPORTED - for all other operating systems.

Default:
If this option is not specified, then OSENV_<NAME> must be defined when the RTE
is compiled.

Notes:
Usually the OSENV_<NAME> should be defined when the RTE is compiled. If it is
not practical to change compiler flags for your project, for example the RTE is
generated and compiled at different sites, then this option allows you to set the
symbol when generating the RTE.

Example:
To define the OS environment as a version of RTA-OS that supports AUTOSAR 4.X:

--os-define-osenv=RTAOS40

78 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.59 --os-fp

Description:
Set whether or not user code invoked by RTE generated tasks uses floating-point
operations/arithmetic support.

Name:
--os-fp

Parameter:
This option takes a single parameter that specifies whether floating point usage
is disabled (“off” or “0”) or enabled (“on” or “1”).

Default:
Enabled (“on”).

Notes:
This option only affects the OIL configuration file created by AUTOSAR R1.0 OS
plug-in. Its usage enables the additional optimizations included in RTA-OSEK 5.0
for when tasks do not use floating point.

Example:
To disable FP usage:

--os-fp=off

Command-line options 79

RTA-RTE V6.8.0
Reference Manual

3.60 --os-header

Description:
Set the OS header file used.

Name:
--os-header

Parameter:
This option takes a single parameter, <FILE>, that specifies the name of the OS
header file to use within generated code.

Default:
The default OS header files used are suitable for the primary target OS of the
selected OS plug-in. However this option permits a different value to be set.

Notes:
This option is supported by the VFB Tracing and the OS configuration plug-ins.

Example:
To select OS2.h as the OS header:

--os-header=OS2.h

80 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.61 --os-output-param

Description:
Output all OS task parameters and references OR output only those that have
changed.

Name:
--os-output-param

Parameter:
This option takes a single parameter, <P>, that specifies whether task parameters
and/or referenced should be copied from the input to the generated OS configu-
ration file. Supported values are “changed” and “all”.

Default:
“changed”

Notes:
When set to (“all”) this option causes RTA-RTE to output all OS task parameters
(priority, activation limit and schedule) and OS task references (OS resources)
regardless of whether they have been changed.

When set to (“changed”) this option causes RTA-RTE to output only those OS task
parameters and OS task references (OS resources) that it has modified.

This option can be used with both the AUTOSAR30 and AUTOSAR40 OS support.
See the RTA-RTE Toolchain Integration Guide for further details on working with
RTA-RTE and the osparam option.

Example:
To output all OS parameters in the generated OS configuration:

--os-output-param=all

Command-line options 81

RTA-RTE V6.8.0
Reference Manual

3.62 --os-permit-extended-tasks

Description:
Configure whether the RTE generator is permitted to create extended tasks.

Name:
--os-permit-extended-tasks

Parameter:
This option takes a single parameter, <P>, that specifies whether generation of
extended tasks by RTA-RTE is permitted (“1”) or forbidden (“0”).

Default:
Enabled (“1”).

Notes:
If extended tasks are disabled (option parameter “0”) then certain runnable-
entity mappings that require extended tasks are invalid; most notably the mixing
of runnables triggered by TimingEvents with runnables triggered by other RTE
Events.

Example:
To disable support for extended tasks:

--os-permit-extended-tasks=0

82 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.63 --os-task-as-function

Description:
Determine if generated tasks are created using the AUTOSAR OS macro TASK or
as function definitions.

Name:
--os-task-as-function

Parameter:
This option takes a single parameter, <P>, that specifies whether tasks are out-
put as functions or TASKs. When defined as “1” generated tasks are created as
functions which can be invoked by legacy systems. See the RTA-RTE Toolchain
Integration Guide for details.

Default:
Disabled (“0”).

Notes:
This option is supported by the C Output and OS output plug-ins. When enabled
in vendor mode no task-specific header files are referenced within the generated
task files.

When enabled, RTA-RTE replaces the TASK() macro in generated output with a
function definition.

This option is incompatible with runnables that specify a minimum
start interval since the execution of such runnables must be controlled
by the RTE.

Example:
To enable generation as tasks, use:

--os-task-as-function=1

Command-line options 83

RTA-RTE V6.8.0
Reference Manual

3.64 --os-xml-namespace

This option is deprecated and will be removed in a future version of RTA-RTE.
It should not be used in new projects. Existing projects should be updated
to no longer use this option.

Description:
Set the XML namespace URI used in generated OS configuration file.

Name:
--os-xml-namespace

Parameter:
This option takes a single parameter, <URI>, that specifies the namespace URI to
be used for the generated OS configuration file.

Default:
If this option is not specified the default is default namespace URI is
http://autosar.org/3.0.2.

Notes:
This option can be used with the AUTOSAR30 OS support.

Example:
To use http://namespace as the namespace URI when generating the OS config-
uration file, use:

--os-xml-namespace=http://namespace

84 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.65 --output

Description:
Direct all generated output files whose names match pattern <PAT> (which can
include wild cards) to folder <FLDR>.

Name:
--output

Parameter:
The option takes one parameter that typically consists of the pattern <PAT> and
the folder <FLDR>. The specification of <PAT> must be enclosed in square brackets
and precedes <FLDR>, for example --output=[*.c]Source.

If either <PAT> or <FLDR> are omitted then this option is ignored except for the
value “check_only” which, when present, causes the RTE generator to run, dis-
play detected errors and discard all output other than the error log.

Default:
Files are generated in the current folder.

Notes:
For further details on the use of the --output option including how multiple op-
tions are parsed see Section 2.2.1.

Example:
To redirect all C files to folderA and all other files to folderB use the following
two options in sequence:

--output=[*.c]folderA --output=[*]folderB

To log errors to a file and discard all other output use:

--error-report=file --output=check_only

Command-line options 85

RTA-RTE V6.8.0
Reference Manual

3.66 --period

Description:
Declare the period at which Rte_MainFunction will be called

Name:
--period

Parameter:
This option takes a single parameter, <SEC> that specifies the time between invo-
cations of Rte_MainFunction in seconds.

Default:
0.01 (10ms period)

Notes:
The value of <SEC> must be chosen such that all Minimum Start Intervals are
integral multiples of <SEC>. For maximum efficiency, choose Greatest Common
Divisor of the Minimum Start Intervals in the ECU Extract. If no Minimum Start
Intervals are used then this option is not relevant.

Example:
To notify RTA-RTE that the Rte_MainFunction API will be invoked every 50ms:
--period=0.05

86 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.67 --preferred-intra-core-protection-scheme

Description:
Select the preferred scheme for the implementation of intra-core concurrency
protection in RTE internal code.

Name:
--preferred-intra-core-protection-scheme

Parameter:
This option takes a single parameter which names the intra-core concurrency
protection strategy that is preferred for RTE internal code. Supported schemes
are per-core-resources, where an RTE internal OS resource for each processor
core is locked, os-interrupt-blocking, where OS interrupts are suspended and
all-interrupt-blocking where all interrupts are suspended.

Default:
per-core-resources

Notes:
The scheme selected with this option applies to RTE internal code where the ac-
cesses being protected are all from execution contexts on the same processor
core and where the choice of scheme is not limited due to there being accesses
from particular execution contexts (e.g. interrupt contexts) or due to the actions
of the code being protected.

This option has no effect on the APIs implementing ExclusiveAreas declared in
software components.

Note that at the time of writing this option only applies to a small subset of the
generated code.

Example:
To prefer the use of OS interrupt blocking within RTE internal code:
--preferred-intra-core-protection-scheme=os-interrupt-blocking

With this setting OS interrupt blocking will be used where possible but there may
be some places where this is not possible. For example where there is access
via a BSW interrupt entity from a category 1 interrupt, all interrupt blocking will
be used. On the other hand, where the protected code calls OS APIs such as
ActivateTask the locking of per-core OS resources will be used, since it is not
valid to call such APIs with interrupts disabled.

Command-line options 87

RTA-RTE V6.8.0
Reference Manual

3.68 --protection-threshold-copy-bytes

Description:
Tune the amount of data that can be copied in a critical section when concurrency
protection is needed.

Name:
--protection-threshold-copy-bytes

Parameter:
This option takes a single parameter: an integer expressing the threshold number
of bytes that can be copied in one critical section. Supported values:

• “0”: Batch all copy operations needing concurrency protection in a single
critical section. May reduce latency.

• “1”: Each copy operation needing concurrency protection is placed in its own
critical section. May reduce jitter.

• values larger than 1: apply algorithm as per notes below.

Default:
“0”

Notes:
For thresholds greater than 1, RTA-RTE batches copy operations requiring concur-
rency protection:

• When there are copies to be made that require concurrency protection, RTA-
RTE enters a critical section (e.g. by GetResource).

• RTA-RTE holds the critical section open, potentially across multiple copy oper-
ations, while there are still items to copy and the cumulative work performed
(as defined below) within the critical section does not exceed the threshold.

• RTA-RTE releases the critical section.

• If not all the copy operations are complete, RTA-RTE repeats from item 1 until
all the items are copied.

Work Performed = (Number of bytes of data copied) +
(Estimate of equivalent work, e.g. arithmetic operations)

Example:
To enable a separate lock around each copy action:
--protection-threshold-copy-bytes=1
To set protection threshold to 32 bytes:
--protection-threshold-copy-bytes=32
In this example, if there several data items to copy totalling 60 bytes, RTA-
RTE would release the critical section (e.g. by ReleaseResource followed by
GetResource) once during the batch of copy operations.

88 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.69 --quiet

Description:
Control the text output.

Name:
--quiet

Parameter:
The option takes a single parameter; an integer specifying the level of output
required. Valid values are:

0 Verbose.

1 Normal: Suppress certain plug-in information messages (default).

2 Quiet: No output other than RTA-RTE banner during normal operation.

3 Silent: output at all during normal operation.

Default:
Normal output (level 1).

Notes:
None.

Example:
To suppress all output during normal operation:

--quiet=3

Command-line options 89

RTA-RTE V6.8.0
Reference Manual

3.70 --report

Description:
Enable output of XML report.

Name:
--report

Parameter:
This option takes a single parameter that specifies the the report name and, op-
tionally, the report template file.

Default:
None.

Notes:
None.

Example:
To generate the RteObjects report with a template:

--report=[template.xml]RteObjects

To generate the same report but without a template:

--report=[null]RteObjects

90 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.71 --rte

Description:
Select “RTE” generation phase to generate an RTE for the specified ECU name.

Name:
--rte

Parameter:
This option takes a single parameter, <ECUI> that specifies the ECU instance or
the ECU configuration (ECUC value collection in R4.0) for which RTE generation
should occur. The System element must be referenced from the ECU configura-
tion. For R4.0 the parameter can be “auto” which causes the RTE generator to
search for and use the single EcucValueCollection present in the input.

Default:
N/A

Notes:
The ECU instance <ECUI> must be specified using an absolute instance reference.
(See Section 4.2.4.)

Example:
To enable RTE generation for /pkg/ecu:

--rte=/pkg/ecu

To enable automatic search for the ECUC value collection and processing of the
ECU extract (R4.0 only):

--rte=auto

Command-line options 91

RTA-RTE V6.8.0
Reference Manual

3.72 --samples

Description:
Enable creation of SWC skeleton files.

Name:
--samples

Parameter:
The --samples option takes a single parameter that specifies the samples re-
quired.

swc : Create skeleton code files consisting of empty runnable-entity bodies for
each runnable in the SWC. The generated files are named Rte_<name>.c
where <name> is the SWC name.

memmap : Create skeletons of SWC-specific memory-mapping files. The gener-
ated files are named <name>_MemMap.h where <name> is the SWC name.

Default:
None.

Notes:
Generated samples overwrite existing files with the same name.

The generated samples are intended to be examples only, and should be adapted
for the application and target hardware before use.

Example:
To enable sample generation for SWCs:

--samples=swc

92 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.73 --strict-config-check

Description:
Enable RTE validation of input OS configuration.

Name:
--strict-config-check

Parameter:
This option takes a single parameter, <P>, that specifies whether to enable (‘on’
or ‘weak’) or disable (‘off’) the strict configuration checks.

Default:
Disable check.

Notes:
RTA-RTE supports the AUTOSAR strict configuration check; when enabled the RTE
configuration must not require any OS objects that are not already present in
the input configuration. For example, all runnables must be mapped to existing
tasks and, if necessary, use pre-declared OsEvents and ScheduleTable/alarms for
triggering.

RTA-RTE also supports “weak” configuration checks — this changes the reported
error to a warning, allowing the build to continue.

Example:
To enable strict configuration checks:

--strict-config-check=on

Command-line options 93

RTA-RTE V6.8.0
Reference Manual

3.74 --strict-initial-values-check

Description:
Enable RTE validation of input OS configuration.

Name:
--strict-initial-values-check

Parameter:
This option takes a single parameter, <P>, that specifies the behavior when an
uninitialized calprm is encountered.

1. info: to output an informational message

2. warn: to output a warning message

3. error: to output an error message

4. none: to disable the detection of uninitialized calprms

Default:
Error.

Notes:

Example:
To reduce the severity of an uninitialized calprm to a warning:

--strict-initial-values-check=warn

94 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.75 --strict-unconnected-rport-check

Description:
Permit unconnected RPorts.

Name:
--strict-unconnected-rport-check

Parameter:
This option takes one argument with the value ’off’, ’warn’ or ’error’, which
specifies what RTA-RTE should do when it detects an unconnected R-Port.

Default:
If the option is not specified, it is an error to have unconnected R-Ports

Notes:
This is the AUTOSAR external configuration switch strictUnconnectedRPortCheck.

Example:
To allow RTA-RTE to accept an input model having unconnected require ports:

--strict-unconnected-rport-check=off

To enable the check for unconnected RPorts and raise a warning when such a port
is encountered:

--strict-unconnected-rport-check=warn

Command-line options 95

RTA-RTE V6.8.0
Reference Manual

3.76 --sws

Description:
Selection of backend processor.

Name:
--sws

Parameter:
The parameter specifies the appropriate AUTOSAR release.

Default:
If this option is not specified then RTA-RTE examines the input XML for an XML
namespace and selects the appropriate backend processor automatically.

Notes:
The --sws option bypasses the namespace check and explicitly selects the back-
end processor. The set of valid parameter values depends on the installed back-
end processors; use the --help option for the RTA-RTE frontend to show the valid
list.

Example:
To explicitly select the R4.0 backend processor:

--sws=4.0

When explicitly selecting the backend processor ensure that the input
XML is conformant to the selected AUTOSAR release.

96 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.77 --task-recurrence

Description:
Set the recurrence for externally activated periodic tasks.

Name:
--task-recurrence

Parameter:
This option takes a single parameter that specifies the task/OsEvent name and the
recurrence rate in seconds as a task.event=seconds” pair. The specification of
an OsEvent name is optional; if omitted the recurrence rate applies to activations
of the task. Time values are specified in seconds with a period as the decimal
separator.

Default:
Create OS alarms and/or schedule table entries (or use existing ones) to imple-
ment periodic RTE events.

Notes:
This option disables RTA-RTE’s generation of OS alarms and/or schedule table
entries for periodic events. Instead RTA-RTE uses the specified task recurrences
to both derive internal scaling for generated code (e.g. to map an RTE event with
20ms period to a task with an explicit recurrence of 10ms) and to validate the
mapping to detect erroneous cases (e.g. mapping an RTE event with period 10ms
to a task with an explicit recurrence of 20ms).

When this option is used for any task then it must be used to spec-
ify recurrence rates for all tasks with periodic events since it disables
RTA-RTE’s support for generating OS mechanisms to activate periodic
events.

This option can be specified many times to provide recurrence rates for multiple
tasks. Alternatively the parameter can be specified as a comma-separated list of
task name/rate pairs.

Example:
To specify a recurrence rate of 20ms for taskA:

--task-recurrence taskA=0.02

To specify a recurrence rate of 10ms for OsEvent ev1:

--task-recurrence TaskA.ev1=0.01

Command-line options 97

RTA-RTE V6.8.0
Reference Manual

3.78 --template-path

Description:
Selection location of RTE library templates.

Name:
--template-path

Parameter:
This option takes a single parameter which speci-

fies the folder containing RTE library files.
If a relative path is used, it is interpreted relative to the RTA-RTE appli-
cation executable.

Default:
Specified within RTE configuration INI file. If the template path is specified both in
the INI configuration file and on the command-line the latter takes precedence.

Notes:
None

Example:
To select project-specific templates located in folderA:

--template-path=folderA

98 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.79 --terminate-background-tasks

Description:
Causes the generated RTE to terminate background tasks.

Name:
--terminate-background-tasks

Parameter:
This option takes no parameters.

When the option is supplied, RTA-RTE will generate task bodies for background
tasks that end with a call to the TerminateTask() function.

When the option is not supplied, task bodies for background tasks will end with a
call to ChainTask(), with the task’s own ID as the argument.

Default:
N/A

Notes:
Normally, background tasks (OsTasks to which only background events are
mapped) end with a call to ChainTask() to allow continuous execution.

When this option is used, background tasks will be terminated instead. This may
be useful in cases where the continual execution of background events causes
problems, or to enable utilization measurement in a lower-level execution context.

When this option is used, any background tasks will need to be activated explicitly
(e.g. by a periodic timer interrupt) as they will no longer restart themselves on
completion.

Example:
To cause RTA-RTE to terminate background tasks:

--terminate-backgound-tasks

Command-line options 99

RTA-RTE V6.8.0
Reference Manual

3.80 --test-license

Description:
Display RTE license information.

Name:
--test-license

Parameter:
None

Default:
N/A

Notes:
Perform a license check and display the result.

Example:
To test the license in use:

s --test-license

100 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.81 --text-value-spec-policy

Description:
Adjust whether RTE writes symbols or numeric values for TextValueSpecs

Name:
--text-value-spec-policy

Parameter:

compumethod-resolution TextValueSpec.value is interpreted as a phys-
ical quantity to be looked up in a corresponding TEXTTABLE or
BITFIELD_TEXTTABLE CompuMethod. The numerical equivalent is written to
the generated code. If the value cannot be found RTA-RTE rejects the config-
uration with an error.

symbolic-pdav-always When used in a PortDefinedArgumentValue,
TextValueSpec.value is treated as a symbol that is to be copied di-
rectly into the generated code. Compile-time definitions must be provided
when compiling Rte.c.

Default:
compumethod-resolution

Notes:
N/A

Example:
--text-value-spec-policy=symbolic-pdav-always

Command-line options 101

RTA-RTE V6.8.0
Reference Manual

3.82 --toolchain-significant-len

Description:
Specify number of significant characters in toolchain identifiers.

Name:
--toolchain-significant-len

Parameter:
This option takes a single parameter, <P>, that specifies the number of significant
characters.

Default:
31

Notes:
Indicates to the RTE generator the number of significant characters checked by
the toolchain. The RTE generator will then issue a warning if multiple RTE gener-
ated identifiers are not distinguishable within the specified number of characters.

For RTE generation phase, this option can be set both in the ECUC file and on the
command-line. If specified in both places then RTA-RTE will use the command-line
value.

Example:
To set the number of significant characters to 60:

--toolchain-significant-len=60

102 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.83 --use-partition-sections

Description:
Select whether or not partition-specific default memory sections should be used
for partition-local objects without a section specified explicitly.

Name:
--use-partition-sections

Parameter:
This option takes a single parameter which enables (“on” or “1”) or disables (“off”
or “0”) use of partition-specific memory sections by default for objects that are
local to a partition and have no memory section specified. When enabled, the
name of the EcuCPartition is used as the infix for the memory section name when
one is configured, otherwise the name of the OsApplication is used.

Default:
Disabled (“off”) for AUTOSAR compliance.

Notes:
None.

Example:
To enable the use of partition-specific default memory sections:
--use-partition-sections=on

Command-line options 103

RTA-RTE V6.8.0
Reference Manual

3.84 --variability-also-bind

Description:
Add a BindingTime that RTA-RTE will also try to honor.

Name:
--variability-also-bind

Parameter:
If used, this option must be given the parameter PRE-COMPILE-TIME which is the
only supported value at this time.

Default:
Only instantiate variability with BindingTime CODE-GENERATION-TIME

Notes:
N/A

Example:
--variability-also-bind=PRE-COMPILE-TIME

104 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.85 --version

Description:
Display RTE generator version.

Name:
--version

Parameter:
None

Default:
N/A

Notes:
Print the RTA-RTE product and RTE generator version information on the standard
output.

Example:
To display the RTA-RTE version: --version

Command-line options 105

RTA-RTE V6.8.0
Reference Manual

3.86 --vfb-trace

Description:
Globally enable (or disable) the creation of VFB trace hooks in the generated RTE.

Name:
--vfb-trace

Parameter:
This option takes a single parameter that specifies whether generation of hook
functions is enabled (“on” or “1”) or disabled (“off” or “0”).

Default:
Enabled (“on”)

Notes:
For the RTE generation phase, this option can be set both in the ECUC file and on
the command-line. If specified in both places then RTA-RTE will use the command-
line value.

Example:
To disable VFB trace hook generation from the command-line:

--vfb-trace=off

106 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.87 --warn-directive

Description:
Set the name (excluding the ‘#’) of the C pre-processor directive used to issue
warnings.

Name:
--warn-directive

Parameter:
The option takes a single parameter, <STR>, that specifies the directive name.

Default:
#pragma message

Notes:
None.

Example:
To select #warn as the warning directive used in generated RTE code:

--warn-directive=warn

Command-line options 107

RTA-RTE V6.8.0
Reference Manual

3.88 --warning-as-error

Description:
Set whether warnings are treated as errors.

Name:
--warning-as-error

Parameter:
The option takes a single parameter that specifies whether to enable (‘1‘) or dis-
able (‘0’) treatment of warnings as errors.

Default:
Treat warnings as warnings (‘0’)

Notes:
When enabled RTE treats any warning as an error and raises the error level appro-
priately. Note that the warning message text itself is not changed and thus may
still refer to the error as a “warning”.

Note: If you wish to use this option along with --disable-warning then you must
turn the specific message back to a warning using --error-as-warning.

Example:
To treat all warnings as errors but continue suppressing warning W17-1023:

--warning-as-error=1 --error-as-warning=E17-1023
--disable-warning=W17-1023

108 Command-line options

RTA-RTE V6.8.0
Reference Manual

3.89 --xfrm-ignore-inplace

Description:
Allows RTA-RTE to ignore the requirement for in-place transformation.

Name:
--xfrm-ignore-inplace

Parameter:
This option takes no parameters.

When the option is supplied, RTA-RTE will ignore the requirement for in-place
transformation, so configurations containing TransformationTechnologys that
use in-place buffering will be accepted.

When the option is not supplied, RTA-RTE will reject these configurations with error
2226.

Default:
N/A

Notes:
This option does not enable complete support for in-place transformation. When
supplied, RTA-RTE will not raise error 2226 when a configuration contains in-place
transformation, but the generated RTE code will continue to use out-of-place
buffering and will call transformer functions using the out-of-place API format.

When this option is used, RTA-RTE will raise warning 3062 for each in-place trans-
former in the configuration.

Example:
To ignore the requirement for in-place transformation and generate with out-of-
place buffering:

--xfrm-ignore-inplace

Command-line options 109

RTA-RTE V6.8.0
Reference Manual

4 Configuration

RTA-RTE reads configuration files in the form of AUTOSAR XML Description fragments,
i.e. XML files containing a representation of all or part of an AUTOSAR model. Files pro-
vided as AUTOSAR XML Description fragments must declare that they use the AUTOSAR
4.x namespace and must conform with an AUTOSAR XML schema.

4.1 Supported namespace and schema versions

RTA-RTE interprets AUTOSAR XML Description Fragments that use the AUTOSAR 4.x
namespace (http://autosar.org/schema/r4.0), and validates all files declaring that
namespace against the schema for AUTOSAR revision 4.4.0 (AUTOSAR_00046.xsd).

RTA-RTE will reject a configuration if it contains any AUTOSAR XML Descrip-
tion Fragment that does not declare http://autosar.org/schema/r4.0 as
the default namespace.

AUTOSAR XML Description Fragments provided to the RTE generator may reference
different schema versions. RTA-RTE ignores the schemaLocation attribute and will al-
ways validate input files against the supported AUTOSAR 4.4.0 schema, regardless of
the schema version that is referenced in the file itself.

AUTOSAR XML schemas are backwards-compatible within the same namespace name,
so an input file conforming to an earlier version of the AUTOSAR schema will validate
successfully against a later schema version.

RTA-RTE will reject a configuration if it contains any input file that does not
validate against namespace http://autosar.org/schema/r4.0 according
to the AUTOSAR 4.4.0 schema.

An RTE generator requires only a subset of the information that can be expressed by
elements defined by the AUTOSAR XML schema. Elements present in the input to RTA-
RTE that are not required for RTE configuration are ignored as long as the definitions
are compliant with the input file’s associated AUTOSAR schema.

4.1.1 Overriding the validation schema

For development purposes, it is sometimes necessary to override the schema used for
validation of AUTOSAR XML Description files. For example, a new version of AUTOSAR
may introduce elements that cannot be validated against RTA-RTE’s supported schema.
Providing that these elements are not relevant for the RTE generation, the validation
schema can be overridden to allow these input files to be validated successfully by
RTA-RTE.

Overriding the schema used for validation may cause RTA-RTE to raise un-
expected errors, or may cause errors in the generated RTE source code. The
schema must only be overridden during the development stage of a project.
The code produced using an overridden validation schema must never be
used in production.

To override the schema, you must edit the RTEGen.ini file to supply the location of the

110 Configuration

RTA-RTE V6.8.0
Reference Manual

new schema file. The RTEGen.ini file is located in the same folder as the RTEGen.exe
executable - normally this will be C:\ETAS\RTA-RTE\bin. The path to the schema file is
supplied using the key ValidateARXMLAgainstSchema=<path> in the [Options] sec-
tion. This can be supplied either as an absolute path, or as a relative path in which case
the base location is the folder containing the RTEGen.exe executable.

[Options]
ValidateARXMLAgainstSchema=c:\schemas\schema_file.xsd

RTA-RTE will raise warning 2996 whenever the validation schema is overrid-
den.

When the overriding schema extends the set of reference targets for an XML element,
RTA-RTE may reject the configuration since its internal validation engine is not aware
of the change. Where the reference element is not relevant to RTE generation, the
additional destination elements can be declared in the RTEGen.ini file.

For example to allow <PDU-REF> elements to additionally refer to
<GENERAL-PURPOSE-I-PDU> and <J-1939-DCM-I-PDU> elements:

[ReferenceValidationTags]
PDU-REF=GENERAL-PURPOSE-I-PDU,J-1939-DCM-I-PDU

When the new schema includes changes relevant to the RTE configuration
the effect on RTA-RTE is undefined and may include failure of the generator
and/or generated code. The schema must only be overridden during the
development stage of a project. The code produced using an overridden
validation schema must never be used in production.

4.2 References

Most elements within the input are named using the <SHORT-NAME> element so that
they can be referenced by other elements.

The short name is used to reference an element from another element. The short name
should be a valid C identifier—i.e. consist only of the characters ‘_’, ‘A-Z’, ‘a-z’ or ‘0-9’
(but not start with a ‘0-9’).

An element within an AUTOSAR configuration that has a short-name defines a names-
pace1. All immediate descendant elements that are also named must have unique
names. This mechanism means that even if two objects contained within different par-
ent objects have the same name it is possible to uniquely identify an individual object
using a reference that includes the name of the parent objects.

An absolute reference consists of one or more element short names separated by the
‘/’ character and preceded by a ‘/’ character. The reference string forms a path, much
like a file-system path, that can be used to unambiguously locate the target of the
reference. References may also be specified relative to a defined base package.

1This should not be confused with an XML namespace.

Configuration 111

RTA-RTE V6.8.0
Reference Manual

A reference never includes a trailing ‘/’ character.

The following subsections provide more information on absolute references, relative
references and instance references.

4.2.1 Absolute

An absolute reference starts with the ‘/’ character and unambiguously identifies the
target.

For example, consider an SWC type swcA within package A. An absolute reference to
the SWC type would be /A/swcA.

When following an absolute reference, RTA-RTE always starts searching at the top-most
package level. Thus the first element of an absolute reference must be the short-name
of an <AR-PACKAGE> element.

4.2.2 Relative

A relative reference can be distinguished from an absolute reference because the latter
always start with the ’/’ character, whereas the former does not. A relative reference
can only be understood in the context of a given base package.

Each AUTOSAR package may optionally define reference bases for other AUTOSAR
packages whose objects are referred to from objects within the package. Each refer-
ence base defines the prefix to be used for relative references that are associated with
the reference base. For example, assume a package defines the following reference
base:

<REFERENCE-BASE>
<SHORT-LABEL>types</SHORT-LABEL>
<IS-DEFAULT>false</IS-DEFAULT>
<PACKAGE-REF DEST=’AR-PACKAGE’>/autosar_types</PACKAGE-REF>

</REFERENCE-BASE>

Subsequently within the package relative references can be used that are associated
with base “types”, for example, the relative reference within the package that defines
reference base “types” above:

<TYPE-TREF BASE=’types’>my_type</TYPE-TREF>

This is equivalent to the absolute reference:

<TYPE-TREF>/autosar_types/my_type</TYPE-TREF>

At most one reference base can be marked as the default for the package. The de-
fault reference base is used when a relative reference does not explicitly define the
associated base, e.g.:

<TYPE-TREF>my_type</TYPE-TREF>

112 Configuration

RTA-RTE V6.8.0
Reference Manual

4.2.3 Instance

An instance reference is a collection of absolute references that together define an
instance. When resolving an instance reference RTA-RTE resolves each absolute refer-
ence in turn until all encapsulated references have been processed.

The set of encapsulated references is dependent on context, for example an instance
reference from a “data received” event to a data element contains both a reference to
the required port and a reference to the data element within the interface categorizing
the port, for example:

<DATA-ELEMENT-IREF>
<R-PORT-PROTOTYPE-REF>...
<DATA-ELEMENT-PROTOTYPE-REF>...

</DATA-ELEMENT-IREF>

In contrast, a SWC instance reference contains an absolute reference to the top-level
composition, zero or more component prototype references (each of which references
one level of the composition hierarchy when nested compositions are used) and a final
target component prototype reference:

<COMPONENT-IREF>
<SOFTWARE-COMPOSITION-REF>...
<COMPONENT-PROTOTYPE-REF>...
<TARGET-COMPONENT-PROTOTYPE-REF>...

</COMPONENT-IREF>

The set of references necessary for each particular type of instance reference is speci-
fied whenever relevant in the following sections.

4.2.4 Referencing an ECU Instance

The --rte command line argument accepts a single argument identifying the starting
point of the RTE configuration. Usually this should be set to auto.

In some circumstances, e.g. if the supplied model is not an ECU Extract, then it is nec-
essary to indicate a suitable starting point for the RTE configuration. In this case, the ar-
gument value can be a reference to an <ECU-INSTANCE> or <ECUC-VALUE-COLLECTION>
that references a system extract.

The reference must satisfy the following constraints:

• If referencing an <ECU-INSTANCE> then the reference must be an absolute refer-
ence to an ECU instance element and there must be exactly one ECU configuration
element in the input.

• If referencing an <ECUC-VALUE-COLLECTION> then the ECU configuration must con-
tain an <ECU-EXTRACT-REF> that identifies the associated <SYSTEM> element as
well as references to the Rte, OS and COM configurations.

If the <SYSTEM> element has category “ECU_EXTRACT” then all component proto-
types within the root software composition are used for RTE generation and any

Configuration 113

RTA-RTE V6.8.0
Reference Manual

SwcToEcuMappings present in the System element are ignored and can be omitted
if desired.

Otherwise the <SYSTEM> element must contain exactly one <SWC-TO-ECU-MAPPING>
element that references the associated <ECU-INSTANCE>.

The --rte option can be passed a parameter of “auto” to cause the RTE generator
to search for and use the single EcucValueCollection present in the input.

4.3 Packages

The configuration of software-components, types, ECUs, etc. within an AUTOSAR con-
figuration is contained within one or more AUTOSAR package elements.

A package element, specified using the <AR-PACKAGE> tag, can contain either one or
more sub-packages or one or more elements. Since sub-packages can contain AU-
TOSAR packages the relationship is recursive and a hierarchical tree of packages—akin
to a file system—can be constructed.

The <AUTOSAR> element is the XML root node and must be present in all input files.
Within the <TOP-LEVEL-PACKAGES> node one or more AUTOSAR packages can be de-
fined. Each AUTOSAR package defines either sub-packages or elements.

ar_package ::=
<AR-PACKAGE>
short_name
(elements)
(sub-packages)
</AR-PACKAGE>

Each <SUB-PACKAGES> element defines one or more AUTOSAR packages. They con-
tain AUTOSAR sub-packages, which can themselves define either elements or further
<SUB-PACKAGES>.

sub_packages ::=
<SUB-PACKAGES>
+ ar_package
</SUB-PACKAGES>

An AUTOSAR package can contain both sub-packages and elements.

The + in the above XML indicates there can be one or more of the items appearing next
to the +.

4.3.1 Package Merging

An AUTOSAR package is an open set and therefore the RTA-RTE RTE generator “merges”
elements (SWC types, interfaces, etc)̇ and containers (OS tasks, runnable entity map-
pings, etc)̇ within packages with the same name when the XML files are loaded.

The merge rules implemented by RTA-RTE depend on the file type:

114 Configuration

RTA-RTE V6.8.0
Reference Manual

ECU Configuration —The ECU Configuration defines the OS and RTE configuration for
an ECU in terms of multiple <CONTAINER> elements each of which describes one
aspect of the configuration such as a task or runnable entity mapping.

Containers can be split across multiple files and those with the same name at the
same location within the package hierarchy merged when loaded.

Model —The model includes all SWC type definitions, system elements, etc.

The atpSplitable pattern is specified by AUTOSAR on certain aggregations. Not
all of these are supported by RTA-RTE; in most cases two elements with the same
path are regarded as a collision. However RTA-RTE does support merging for the
following application configuration elements:

• <MODULE-CONFIGURATION>

• <ECU-CONFIGURATION>

• <SYSTEM>

• <COMPOSITION-TYPE>

Note that subelements of splitable model elements, such as SWC mappings, can-
not typically be split and must be uniquely named.

The merging of elements and containers is illustrated in Figure 4.1.

4.4 Software Components

Atomic software component types are defined using one of the following tags:

• <APPLICATION-SW-COMPONENT-TYPE> — component that is part of an AUTOSAR ap-
plication.

• <SENSOR-ACTUATOR-SW-COMPONENT-TYPE> — A component that is part of an AU-
TOSAR application and accesses sensors and/or actuators.

• <SERVICE-SW-COMPONENT-TYPE>.

• <ECU-ABSTRACTION-COMPONENT-TYPE>

• <COMPLEX-DEVICE-DRIVER-SW-COMPONENT-TYPE>

Whichever tag is used to declare a software component type, the element defines two
things: the component’s type name (necessary so that it can be referenced) and the
component’s port prototypes.

component_type ::=
(<APPLICATION-SW-COMPONENT-TYPE>
| <SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
| <SERVICE-SW-COMPONENT-TYPE>
| <ECU-ABSTRACTION-SW-COMPONENT-TYPE>
| <COMPLEX-DEVICE-DRIVER-SW-COMPONENT-TYPE>
| <NV-BLOCK-SW-COMPONENT-TYPE>)

Configuration 115

RTA-RTE V6.8.0
Reference Manual

root

pkgA

El1 El2 El1 El2 El3 El4

pkgB pkgC

El1 El2

root

pkgA

El1 El2

pkgB

El1 El2

root

pkgB

El3 El4

pkgC

El1 El2

merge merge

Figure 4.1: AUTOSAR Package Merge

short_name
port_prototypes
nv_block_descriptors
(</APPLICATION-SW-COMPONENT-TYPE>

| </SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
| </SERVICE-SW-COMPONENT-TYPE>
| </ECU-ABSTRACTION-SW-COMPONENT-TYPE>
| </COMPLEX-DEVICE-DRIVER-SW-COMPONENT-TYPE>
| </NV-BLOCK-SW-COMPONENT-TYPE>)

The opening and closing tags for a component_type definition must match.

4.4.1 Port Prototypes

Port prototypes are defined using either the <P-PORT-PROTOTYPE> or
<R-PORT-PROTOTYPE> element depending on whether the containing software-
component type provides or requires the port. All port prototypes, whether they are
required or provided, are encapsulated within a <PORTS> element:

port_prototypes ::=

116 Configuration

RTA-RTE V6.8.0
Reference Manual

<PORTS>
+ port_prototype
</PORTS>

A port prototype defines either a required port or a provided port; a port cannot be
both required and provided.

port_prototype ::=
(r_port_prototype | p_port_prototype)

A port prototype is named and the name is used to reference instances of the port
prototype once the containing software component has been instantiated.

r_port_prototype ::=
<R-PORT-PROTOTYPE>
short_name
(communication_specification)
required_interface_reference
</R-PORT-PROTOTYPE>

p_port_prototype ::=
<P-PORT-PROTOTYPE>
short_name
(communication_specification)
provided_interface_reference
</P-PORT-PROTOTYPE>

Each port prototype definition contains a reference to a categorizing interface, which
can be a sender-receiver interface, client-server interface, a calibration interface, a
mode switch interface or an Nv-data interface.

Multiple port prototypes, even if located in different software components, can refer-
ence the same interface.

required_interface_reference ::=
<REQUIRED-INTERFACE-TREF>
ref
</REQUIRED-INTERFACE-TREF>

provided_interface_reference ::=
<PROVIDED-INTERFACE-TREF>
ref
</PROVIDED-INTERFACE-TREF>

4.4.2 NV Blocks

AUTOSAR R4.0 introduced the <NV-BLOCK-SW-COMPONENT-TYPE> SWC type (Sec-
tion 4.4). An NvBlockSwComponentType SWC can declare one or more
<NV-BLOCK-DESCRIPTOR> elements that enable configuration and access to mirrors of
data managed by the AUTOSAR NVRAM manager.

The NvBlockDescriptor elements are declared within an encapsulating
<NV-BLOCK-DESCRIPTORS> element.

Configuration 117

RTA-RTE V6.8.0
Reference Manual

nv_block_descriptors ::=
<NV-BLOCK-DESCRIPTORS>
+ nv_block_descriptor
</NV-BLOCK-DESCRIPTORS>

nv_block_descriptor ::=
<NV-BLOCK-DESCRIPTOR>
short_name
(cs_ports)
(nvblock_data_mappings)
ram_block
(rom_block)
</NV-BLOCK-DESCRIPTOR>

Each NvBlockDescriptor element declares a ram block.

ram_block ::=
<RAM-BLOCK>
short_name
(sw_addr_method_ref)
type_ref
(init_value)
</RAM-BLOCK>

The <RAM-BLOCK> serves as the RAM mirror for the NVRAM manager’s non-volatile data.
The element is named and can therefore be referenced by other elements within the
configuration.

RTA-RTE uses the ram-block element’s short_name as part of the cre-
ated instance and therefore it must be unique within the context of the
NvBlockSwComponentType.

In addition to the ram-block, each NvBlockDescriptor element can optionally declare
a rom-block, which can be used for initializing the ram-block.

rom_block ::=
<ROM-BLOCK>
short_name
type_ref
init_value
</ROM-BLOCK>

The types used by the ram-block and rom-block must be compatible. RTA-RTE does not
apply data conversion when initializing the ram-block from the rom-block.

The configuration of cs_ports and nvblock_data_mappings is considered in detail in
Section 4.8.

4.4.3 Communication Specification

The communication_specification element (ComSpec) defines additional attributes of a
port-prototype. For example:

118 Configuration

RTA-RTE V6.8.0
Reference Manual

• For a server, the queue length

• For a sender, whether or not transmission acknowledgment is enabled.

ComSpecs for Servers, ModeSwitchSenders and QueuedReceivers are mandatory. They
must have a queue length greater than zero, and this is enforced by RTA-RTE.

communication_specification ::=
(provided_com_spec | required_com_spec)

provided_com_spec ::=
<PROVIDED-COM-SPECS>
(server_com_spec
| sender_com_spec
| modemanager_com_spec
| parameter_provide_com_spec)
</PROVIDED-COM-SPECS>

required_com_spec ::=
<REQUIRED-COM-SPECS>
(receiver_com_spec
| client_com_spec
| parameter_require_com_spec)
</REQUIRED-COM-SPECS>

Sender

A data sender can be optionally configured to provide:

• An acknowledgment when a transmission is complete.

• An initial value to be used when the data is transmitted before it is written.

• Enabling (or disabling) data invalidation.

Transmission Acknowledgement

Acknowledgment is enabled using the PROVIDED-COM-SPECS element defined within the
providing port prototype.

sender_com_spec ::=
(event_sender_com_spec | data_sender_com_spec)

Both event and data sender com specs define whether or not transmission acknowledg-
ment is required and the data element to be acknowledged. In addition, a com spec
element for a data sender can define whether or not the datum can be invalidated.

event_sender_com_spec ::=
<QUEUED-SENDER-COM-SPEC>
<DATA-ELEMENT-REF>ref</DATA-ELEMENT-REF>
(ack_request)
</QUEUED-SENDER-COM-SPEC>

Configuration 119

RTA-RTE V6.8.0
Reference Manual

data_sender_com_spec ::=
<NONQUEUED-SENDER-COM-SPEC>
<DATA-ELEMENT-REF>ref</DATA-ELEMENT-REF>
(ack_request)
(invalidation_specification)
(init_value_specification)
</NONQUEUED-SENDER-COM-SPEC>

Communication specifications for queued and non-queued ports both include a
<DATA-ELEMENT-REF> reference that defines the data element to which this commu-
nication specification applies.

Both queued and non-queued communication specifications can optionally define one
or more transmission acknowledgment request(s):

ack_request ::=
<TRANSMISSION-ACKNOWLEDGE>

<TIMEOUT>float</TIMEOUT>
</TRANSMISSION-ACKNOWLEDGE>

A non-queued sender can optionally provide an initial value to be used when transmit-
ting the data (e.g. in a network frame) before it has been updated by the application.

init_value_specification ::=
<INIT-VALUE-REF>

ref
</INIT-VALUE-REF>

The <INIT-VALUE-REF> reference defines the constant to be used for the data ele-
ment’s initial value. The reference should identify the constant’s value specification
and not the constant specification element itself.

RTA-RTE uses AUTOSAR COM for inter-ECU communication. AUTOSAR COM
supports initial values only for integer types and therefore RTA-RTE will raise
an error if an initial value is specified for another type.

A non-queued data sender can optionally enable or disable data invalidation using the
<CAN-INVALIDATE> element. If omitted the default is to disable data invalidation.

invalidation_specification ::=
<CAN-INVALIDATE>(true | false)</CAN-INVALIDATE>

The “invalid value” used when a data item is invalidated is set within the type specifi-
cation.

Mode Manager

A mode manager can be optionally configured to provide:

• An acknowledgment when a mode switch is complete.

• The length of the queue for mode switch requests.

120 Configuration

RTA-RTE V6.8.0
Reference Manual

Both the enabling of acknowledgment and the queue length are enabled using
the <MODE-SWITCH-COM-SPEC> element defined within the providing port prototype’s
<PROVIDED-COM-SPEC>.

A ModeSwitchSenderComSpec must have a queue length greater than zero, and this is
enforced by RTA-RTE.

modemanager_com_spec ::=
<MODE-SWITCH-COM-SPEC>
(mode_ack_timeout)
(mode_switch_queuesize)
</MODE-SWITCH-COM-SPEC>

Mode switch acknowledgment is enabled by the specification of a <TIMEOUT> element
within the <MODE-SWITCHED-ACK>:

mode_ack_timeout ::=
<MODE-SWITCHED-ACK>
<TIMEOUT>time</TIMEOUT>
</MODE-SWITCHED-ACK>

The time specified within the <MODE-SWITCHED-ACK> determines the timeout applied
when the Rte_Feedback API is invoked; if no switch occurs within the specified timeout
then runnable entities associated with the acknowledgment are activated.

A timeout specification of 0 enables acknowledgment without a timeout.

The length of the queue for mode switch requests is enabled by the specification of a
<QUEUE-LENGTH> element within the <MODE-SWITCH-COM-SPEC> element:

mode_switch_queuesize ::=
<QUEUE-LENGTH>int</QUEUE-LENGTH>

A queue length of zero is invalid.

Mode user

A mode user can request asynchronous mode switch using a <REQUIRED-COM-SPECS>
element defined within the providing component prototype.

server_com_spec ::=
<MODE-SWITCH-RECEIVER-COM-SPEC>
support_async_modeswitch
</MODE-SWITCH-RECEIVER-COM-SPEC>

support_async_modeswitch ::=
<SUPPORTS-ASYNCHRONOUS-MODE-SWITCH>
boolean
</SUPPORTS-ASYNCHRONOUS-MODE-SWITCH>

Configuration 121

RTA-RTE V6.8.0
Reference Manual

All mode users must explicitly enable asynchronous mode switch for it to
take effect. No warning is issued if a subset of mode users enable asyn-
chronous mode switch.

Parameter Provide

A parameter provider com spec can be optionally configured to provide initial values
for calibration parameters. A calibration com-spec contains a pair of values; the first is
a reference to a constant containing the initial value and the second a reference to the
associated calibration prototype:

parameter_provide_com_spec ::=
<PARAMETER-PROVIDE-COM-SPEC>
init_value

<PARAMETER-REF>ref</PARAMETER-REF>
</PARAMETER-PROVIDE-COM-SPEC>

The referenced calibration parameter must be defined within the interface categorizing
the port. The referenced constant and the calibration parameter must have the same
underlying type.

Parameter Require

A parameter requirer com spec can be optionally configured to provide initial values for
calibration parameters for unconnected require ports.

Parameter require com specs are only used for unconnected RPorts.

A calibration com-spec contains a pair of values; the first is a reference to a constant
containing the initial value and the second a reference to the associated calibration
prototype:

parameter_require_com_spec ::=
<PARAMETER-REQUIRE-COM-SPEC>
init_value

<PARAMETER-REF>ref</PARAMETER-REF>
</PARAMETER-REQUIRE-COM-SPEC>

The referenced calibration parameter must be defined within the interface categorizing
the port. The referenced constant and the calibration parameter must have the same
underlying type.

Receiver

A receiver can use either ‘data’ (non-queued) or ‘event’ (queued) semantics. The
<REQUIRED-COM-SPECS> element can contain a communication specification for either
a ‘data’ or an ‘event’ receiver.

receiver_com_spec ::=
(event_receiver_com_spec
| data_receiver_com_spec)

122 Configuration

RTA-RTE V6.8.0
Reference Manual

Event (Queued) Receivers

A ’QUEUED’ receiver com_spec is used whenever a data element within the interface
categorizing the port is specified as using queued reception.

event_receiver_com_spec ::=
<QUEUED-RECEIVER-COM-SPEC>
<DATA-ELEMENT-REF>ref</DATA-ELEMENT-REF>
(filter)
(queue_length)
</QUEUED-RECEIVER-COM-SPEC>

Queue Length

A ‘QUEUED’ receiver can configure the length of the queue used to hold received
data before it is processed. The queue length is set for each received data el-
ement using the using queue_length within the <EVENT-RECEIVER-COM-SPECS> or
<QUEUED-RECEIVER-COM-SPECS> element.

A QueuedReceiverComSpec must have a queue length greater than zero, and this is
enforced by RTA-RTE.

queue_length ::=
<QUEUE-LENGTH>integer</QUEUE-LENGTH>

Data (Non-Queued) Receivers

A ‘non-queued’ receiver com_spec is used whenever a data element within the inter-
face categorizing the port is specified as using non-queued reception.

data_receiver_com_spec ::=
<UNQUEUED-RECEIVER-COM-SPEC>
<DATA-ELEMENT-REF>ref</DATA-ELEMENT-REF>
(alive_timeout)
(filter)
(init_value_specification)
(invalid_data_handling)
</UNQUEUED-RECEIVER-COM-SPEC>

For both the ‘queued’ and ‘non-queued’ receiver specifications the
<DATA-ELEMENT-IREF> instance reference defines the data element to which this
communication specification applies and requires a single context reference (the
port prototype within the software-component type) and a target reference (the data
element within the interface that categorizes the port prototype).

A ‘non-queued’ receiver can be optionally configured to define:

• The timeout used to verify that the sender is “alive”.

• An initial value to be used when the data is transmitted before it is written.

• The method to be used to handle invalidated data. If invalidation is enabled, the
RTE generator will respond to invalid data it encounters by using either the method
of “keep” or that of “replace”.

Configuration 123

RTA-RTE V6.8.0
Reference Manual

• A filter applied to received values by the generated RTE before they are forwarded
to the receiver.

Alive Timeout

A ‘non-queued’ receiver can optionally configure the minimum acceptable inter-arrival
period for signals received via COM.

alive_timeout ::=
<ALIVE-TIMEOUT>time</ALIVE-TIMEOUT>

If a non-zero “alive timeout” is specified and the inter-arrival period drops below the
specified value then any user-configured DataReceiveErrorEvent will be raised.

Alive timeout applies only to inter-ECU communication.

Initial Value

A ‘non-queued’ receiver can optionally provide an initial value to be used when the data
is read before a value has been received from the sender. If omitted the default is to
disable data invalidation.

init_value_specification ::=
<INIT-VALUE-REF>ref</INIT-VALUE-REF>

The <INIT-VALUE-REF> reference defines the constant that defines the data element’s
initial value. The reference should identify a constant’s value specification and not to
the constant specification element itself.

RTA-RTE uses AUTOSAR COM for inter-ECU communication. AUTOSAR COM
supports initial values only for integer types and therefore RTA-RTE will raise
an error if an initial value is specified for another type.

Invalidation

The actions taken when a receiver receives invalid data can be set using the
<HANDLE-INVALID> element. This can be either “keep” to retain the invalid value and
pass it to the receiver or “replace” to substitute the data’s initial value.

invalid_data_handling ::=
<HANDLE-INVALID>(KEEP|REPLACE)</HANDLE-INVALID>

Filter

Finally a receiver can configure a filter that is applied to values before they are passed
to the receiver.

filter ::=
<FILTER>filter_condition</FILTER>

A wide range of filter conditions are available:

124 Configuration

RTA-RTE V6.8.0
Reference Manual

filter_condition ::=
(ALWAYS
| MASKED-NEW-DIFFERS-MASKED-OLD
| MASKED-NEW-DIFFERS-X
| MASKED-NEW-EQUALS-MASKED-OLD
| MASKED-NEW-EQUALS-X
| NEVER
| NEW-IS-DIFFERENT
| NEW-IS-EQUAL
| NEW-IS-GREATER
| NEW-IS-GREATER-OR-EQUAL
| NEW-IS-LESS
| NEW-IS-LESS-OR-EQUAL
| NEW-IS-OUTSIDE
| NEW-IS-WITHIN
| ONE-EVERY-N)

The available filter conditions are summarized in the following table.

Condition Description XML

Masked new value differs
from masked old value. <MASKED-NEW-DIFFERS-MASKED-OLD>

<MASK>int</MASK>
</MASKED-NEW-DIFFERS-MASKED-OLD>

Masked new value differs
from X. <MASKED-NEW-DIFFERS-X>

<MASK>int</MASK>
<X>int</X>

</MASKED-NEW-DIFFERS-X>

Masked new value equals
masked previous value. <MASKED-NEW-EQUALS-MASKED-OLD>

<MASK>int</MASK>
</MASKED-NEW-EQUALS-MASKED-OLD>

Masked new value equals X.

<MASKED-NEW-EQUALS-X>
<MASK>int</MASK>
<X>int</X>

</MASKED-NEW-EQUALS-X>

Configuration 125

RTA-RTE V6.8.0
Reference Manual

Condition Description XML

New value is different from
previous value. <NEW-IS-DIFFERENT>

</NEW-IS-DIFFERENT>

New value is equal to previ-
ous value. <NEW-IS-EQUAL>

</NEW-IS-EQUAL>

New value is greater than
previous. <NEW-IS-GREATER>

</NEW-IS-GREATER>

New value is greater than or
equal to previous. <NEW-IS-GREATER-OR-EQUAL>

</NEW-IS-GREATER-OR-EQUAL>

New value is less than previ-
ous. <NEW-IS-LESS>

</NEW-IS-LESS>

New value is less than or
equal to previous. <NEW-IS-LESS-OR-EQUAL>

</NEW-IS-LESS-OR-EQUAL>

New value is outside speci-
fied range. <NEW-IS-OUTSIDE>

<MIN>int</MIN>
<MAX>int</MAX>

</NEW-IS-OUTSIDE>

New value is within specified
range. <NEW-IS-WITHIN>

<MIN>int</MIN>
<MAX>int</MAX>

</NEW-IS-WITHIN>

Table 4.1: Supported Signal Conditions for Value-based Fil-
tering

126 Configuration

RTA-RTE V6.8.0
Reference Manual

Client

The “client” communication specification is a place-holder—it does not specify any in-
formation used by RTA-RTE.

Server

A non re-entrant server contains a queue used to hold client requests before they
are processed by the server. The queue length is set for each server using the
<PROVIDED-COM-SPECS> element defined within the providing component prototype.

Configuration 127

RTA-RTE V6.8.0
Reference Manual

4.5 AUTOSAR Types and Data Conversion

4.5.1 ApplicationPrimitiveDataType

An ApplicationPrimitiveDataType allows the modelling of a single data value rele-
vant to a SWCT in terms of physical quantities, without the modeller having to decide
on the implementation details of the type, such as the width, signedness and encoding.
The choice of representation for the quantity can then be made later in the develop-
ment cycle.

application_primitive_data_type ::=
<APPLICATION-PRIMITIVE-DATA-TYPE>

short_name
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALIBRATION-ACCESS>sw_calibration_access</SW-
CALIBRATION-ACCESS>

(<COMPU-METHOD-REF DEST=’COMPU-METHOD’>ref</COMPU-
METHOD-REF>)

(<UNIT-REF>ref</UNIT-REF>)
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</APPLICATION-PRIMITIVE-DATA-TYPE>

The ShortName of an ApplicationPrimitiveDataType is only used to identify the
model element. An ApplicationPrimitiveDataType does not result in a C type
in the generated code for the RTE. Instead, every ApplicationDataType that is
used in the model must, by the RTE generation time, be mapped to a compati-
ble ImplementationDataType (see 4.5.15 DataTypeMappingSet) that will be used in
the generated code to represent the physical quantity (or quantities, for complex
ApplicationDataTypes, see below) using the chosen encoding.

Category must contain the literal text VALUE.

CompuMethodRef references a CompuMethod that describes how this Application-
DataType relates to the physical world (CompuMethod of Category IDENTICAL or
LINEAR). (See 4.5.11 CompuMethod).

UnitRef is optional because it is possible that the CompuMethod references a Unit. If
the CompuMethod references a Unit then the ApplicationPrimitiveDataType must

• not reference any Unit, or

• reference the same Unit (same path), or

• reference an exactly similar Unit (different path to a Unit with same relevant prop-
erties).

128 Configuration

RTA-RTE V6.8.0
Reference Manual

When Interfaces containing ApplicationDataTypes are connected by a connec-
tor that references a PortInterfaceMapping then the Data Conversion feature is
activated (see the User Guide) for an ApplicationPrimitiveDataType or for the
ApplicationPrimitiveDataTypes within a complex ApplicationDataType.

4.5.2 ApplicationRecordDataType

An ApplicationRecordDataType is a compound data type describing a group of values
in the physical world, analogous to a C struct.

application_record_data_type ::=
<APPLICATION-RECORD-DATA-TYPE>

short_name
<CATEGORY>STRUCTURE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALIBRATION-ACCESS>sw_calibration_access</SW-
CALIBRATION-ACCESS>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<ELEMENTS>
(

<APPLICATION-RECORD-ELEMENT>
short_name
<CATEGORY>category</CATEGORY>
<TYPE-TREF DEST=’dest’>ref</TYPE-TREF>

</APPLICATION-RECORD-ELEMENT>
...)
</ELEMENTS>

</APPLICATION-RECORD-DATA-TYPE>

As for ApplicationPrimitiveDataType, the ShortName is only used to identify the model
element and no C type in the generated code results. Instead a DataTypeMappingSet
(see 4.5.15) is required to specify a mapping to an ImplementationDataType of cate-
gory STRUCTURE. Likewise the element ShortName is only used to identify the model
element and does not influence any generated C code.

Category must contain the literal text STRUCTURE.

Each element can be an ApplicationPrimitiveDataType, ApplicationRecordDataType or
ApplicationArrayDataType. The element Category and the reference Dest should match
the class of the referenced data type.

4.5.3 ApplicationArrayDataType

An ApplicationArrayDataType is a compound data type describing a group of values in
the physical world of the same type, analogous to a C array.

application_array_data_type ::=
<APPLICATION-ARRAY-DATA-TYPE>

Configuration 129

RTA-RTE V6.8.0
Reference Manual

short_name
<CATEGORY>ARRAY</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALIBRATION-ACCESS>sw_calibration_access</SW-
CALIBRATION-ACCESS>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<ELEMENT>

short_name
<CATEGORY>category</CATEGORY>
<TYPE-TREF DEST=’dest’>ref</TYPE-TREF>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
<MAX-NUMBER-OF-ELEMENTS>int</MAX-NUMBER-OF-ELEMENTS>

</ELEMENT>
</APPLICATION-ARRAY-DATA-TYPE>

As for ApplicationPrimitiveDataType, the ShortName is only used to identify the model
element and no C type in the generated code results. Instead a DataTypeMappingSet
(see 4.5.15) is required to specify a mapping to an ImplementationDataType of cat-
egory ARRAY. Likewise the element ShortName is only used to identify the model ele-
ment and does not influence any generated C code.

Category must contain the literal text ARRAY. RTA-RTE does not support dynamic arrays
so ArraySizeSemantics must be the literal text FIXED-SIZE.

The element type can be an ApplicationPrimitiveDataType, ApplicationRecordDataType
or ApplicationArrayDataType. The element Category and the reference Dest should
match the class of the referenced data type.

4.5.4 ImplementationDataType — General

An ImplementationDataType describes a C type. Typically, an
ImplementationDataType results in a typedef being written to the generated
code (but see 4.5.5).

All ImplementationDataTypes contain a ShortName and a Category. The ShortName of
an ImplementationDataType becomes the name of the C type in the generated code.
The rules about what other sub-elements may be configured change according to the
Category supplied.

implementation_data_type::=
(implementation_data_type_type_reference
| implementation_data_type_value
| implementation_data_type_array
| implementation_data_type_structure)

130 Configuration

RTA-RTE V6.8.0
Reference Manual

4.5.5 TypeEmitter

In AUTOSAR 3.x and early 4.x, ImplementationDataTypes that reference a SwBaseType
result in a typedef only if the corresponding SwBaseType.nativeDeclaration is not
empty. For ImplementationDataTypes that are defined in external header files, the
nativeDeclaration should be empty in order to suppress generation of a definition by
RTA-RTE that might conflict with the externally-supplied definition.

From AUTOSAR 4.0.3, ImplementationDataTypes contain a typeEmitter attribute. If
the attribute is present and its value is RTE then RTA-RTE will generate the correspond-
ing typedef for the type. If the typeEmitter is present but has a value other than RTE,
then RTA-RTE assumes that the type is defined somewhere in a header file outside of
RTA-RTE’s control and does not generate a typedef.

Additionally, in AUTOSAR 4.x, if the typeEmitter attribute is not present, then RTA-RTE
uses the legacy method in which the presence or absence of nativeDeclaration is
used to decide.

4.5.6 ImplementationDataType — Category TYPE_REFERENCE

An ImplementationDataType of Category TYPE_REFERENCE expresses a C type that is
an alias for another C type.

<IMPLEMENTATION-DATA-TYPE>
short_name
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">ref</SW-ADDR-
METHOD-REF>

<IMPLEMENTATION-DATA-TYPE-REF DEST=’IMPLEMENTATION-DATA
-TYPE’>ref</IMPLEMENTATION-DATA-TYPE-REF>

<INVALID-VALUE>int</INVALID-VALUE>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
<TYPE-EMITTER>RTE</TYPE-EMITTER>

</IMPLEMENTATION-DATA-TYPE>

If used in the RTE then it is expressed in the generated code as:

typedef type-specifier typedef-name;

The ShortName of ImplementationDataType becomes typedef-name.

The referenced ImplementationDataType represents the type-specifier in the typedef.
This means that the ShortName of the referenced type becomes type-specifier.

The recommended way to define new ImplementationDataTypes that represent sim-
ple values is to set Category to TYPE_REFERENCE and reference a Platform Type in Im-
plementationDataTypeRef. The Platform Types are defined by AUTOSAR and help to

Configuration 131

RTA-RTE V6.8.0
Reference Manual

protect the model from differences between hardware targets. (See AUTOSAR Specifi-
cation of Platform Types).

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>myImplType</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST=’IMPLEMENTATION-DATA-
TYPE’>/AUTOSAR_Platform/ImplementationDataTypes/uint16<
/IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<TYPE-EMITTER>RTE</TYPE-EMITTER>

</IMPLEMENTATION-DATA-TYPE>

typedef uint16 myImplType;

Note that an ImplementationDataTypeElement of Category TYPE_REFERENCE has a
different meaning. See 4.5.8 ImplementationDataType — Category ARRAY and 4.5.9
ImplementationDataType — Category STRUCTURE.

4.5.7 ImplementationDataType — Category VALUE

An ImplementationDataType of category VALUE describes a simple C data type.

<IMPLEMENTATION-DATA-TYPE>
short_name
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<BASE-TYPE-REF DEST=’SW-BASE-TYPE’>ref</BASE-TYPE-REF>
<DATA-CONSTR-REF DEST=’DATA-CONSTR’>ref</DATA-CONSTR-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<TYPE-EMITTER>RTE</TYPE-EMITTER>

</IMPLEMENTATION-DATA-TYPE>

If used in the RTE then the C type is expressed in the generated code as:

typedef type-specifier typedef-name;

Note: Normally you should use Category TYPE_REFERENCE for this purpose as types
defined in that way are more easily portable between hardware targets.

The ShortName of ImplementationDataType becomes typedef-name.

BaseTypeRef references a SwBaseType that specifies the width of the type in bits and
the encoding (which defines whether or not the type is signed). The SwBaseType’s

132 Configuration

RTA-RTE V6.8.0
Reference Manual

nativeDeclaration contains native C that will be emitted as the type-specifier in the
typedef. If the nativeDeclaration is blank or missing then no typedef is emitted.
[rte_sws 7104 in, e.g. AUTOSAR_SWS_RTE R3.1.0]

In the case of an ImplementationDataTypeElement (See 4.5.8 Implementation-
DataType — Category ARRAY and 4.5.9 ImplementationDataType — Category STRUC-
TURE) no typedef is emitted. An ImplementationDataTypeElement of Cate-
gory VALUE is only rarely required (better to use TYPE_REFERENCE). If such an
ImplementationDataTypeElement is used then its referenced SwBaseType must have a
valid nativeDeclaration. If the nativeDeclaration is missing or blank then RTA-RTE
rejects the configuration, because a member of the complex type has no type-specifier:

typedef struct {
uint8 element1; /* using a TYPE_REFERENCE to Platform

Type uint8 */
unsigned char element2; /* with nativeDeclaration "unsigned char

". */
/*ERROR*/ element3; /* using a VALUE referencing a

SwBaseType without a nativeDeclaration */
} myStructType;

4.5.8 ImplementationDataType – Category ARRAY

An ImplementationDataType of category ARRAY describes a C array data type.

<IMPLEMENTATION-DATA-TYPE>
short_name
<CATEGORY>ARRAY</CATEGORY>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
short_name
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<ARRAY-SIZE>int</ARRAY-SIZE>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST=’
IMPLEMENTATION-DATA-TYPE’>ref</
IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>

</SUB-ELEMENTS>
<TYPE-EMITTER>RTE</TYPE-EMITTER>

</IMPLEMENTATION-DATA-TYPE>

If used in the RTE then the C type is expressed in the generated code as:

typedef type-specifier typedef-name [constant];

Configuration 133

RTA-RTE V6.8.0
Reference Manual

The ShortName of the ImplementationDataType becomes typedef-name.

The ArraySize of the ImplementationDataTypeElement becomes constant.

The ShortName of the ImplementationDataTypeElement is not used except to identify
the configuration element.

The ImplementationDataTypeElement specifies the type of the array element, which
in turn can be of Category TYPE_REFERENCE, VALUE, STRUCTURE or ARRAY.

4.5.9 ImplementationDataType — Category STRUCTURE

An ImplementationDataType of category STRUCTURE describes a C struct data type.

<IMPLEMENTATION-DATA-TYPE>
short_name
<CATEGORY>STRUCTURE</CATEGORY>
<SUB-ELEMENTS>
(

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
short_name
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST=’IMPLEMENTATION-
DATA-TYPE’>ref</IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>

...)
</SUB-ELEMENTS>
<TYPE-EMITTER>RTE</TYPE-EMITTER>

</IMPLEMENTATION-DATA-TYPE>

If used in the RTE then the C type is expressed in the generated code as:

typedef struct {
member-type-specifier member-name;
...

} type-name

The ShortName of the ImplementationDataType becomes type-name.

The ShortName of the ImplementationDataTypeElement becomes member-name.

The ImplementationDataTypeElement specifies member-type-specifier, which in turn
can be of Category TYPE_REFERENCE, VALUE, STRUCTURE or ARRAY.

134 Configuration

RTA-RTE V6.8.0
Reference Manual

4.5.10 ImplementationDataTypeElement

This is used inside an ImplementationDataTypeElement when specifying a complex
data type (See 4.5.8 ImplementationDataType — Category ARRAY and 4.5.9 Implemen-
tationDataType — Category STRUCTURE). The ImplementationDataTypeElement itself
does not define a C type but is a type specifier either for an array element type or a
structure member type.

ImplementationDataTypeElements are specified in nearly the same way as an
ImplementationDataType. To configure an ImplementationDataTypeElement, refer
to the section for the ImplementationDataType of the category you are interested in,
but use the XML tag IMPLEMENTATION-DATA-TYPE-ELEMENT.

It is recommended that ImplementationDataTypeElements should be of category
TYPE_REFERENCE, though STRUCTURE, ARRAY, and VALUE are supported too. When using
VALUE there is a special caution that you cannot then reference a SwBaseType without
nativeDeclaration. (See 4.5.7 ImplementationDataType — Category VALUE.)

4.5.11 CompuMethod — Category IDENTICAL

A CompuMethod of category IDENTICAL represents the linear data conversion y = 0 +

1x/1. Because it is linear it can be used in data conversion paths that also include
LINEAR CompuMethods. On its own it does not result in any conversion code.

<COMPU-METHOD>
short_name
<CATEGORY>IDENTICAL</CATEGORY>
<UNIT-REF DEST=’UNIT’>ref</UNIT-REF>

</COMPU-METHOD>

The UnitRef is optional.

4.5.12 CompuMethod — Category LINEAR

A CompuMethod of category LINEAR describes a linear data conversion y = num0 +

num1 ∗ x/denom.

<COMPU-METHOD>
short_name
<CATEGORY>LINEAR</CATEGORY>
<UNIT-REF DEST=’UNIT’>ref</UNIT-REF>
(<COMPU-INTERNAL-TO-PHYS> | <COMPU-PHYS-TO-INTERNAL>)

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR>

<V>int</V>
<V>int</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>

<V>int</V>
</COMPU-DENOMINATOR>

Configuration 135

RTA-RTE V6.8.0
Reference Manual

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
(</COMPU-INTERNAL-TO-PHYS> | </COMPU-PHYS-TO-INTERNAL>)

</COMPU-METHOD>

The ShortName is used as a reference target.

The UnitRef is optional.

CompuInternalToPhys is used if x is the numerical value and y is the physical value.

CompuPhysToInternal is used if x is the physical value and y is the internal value.

It is permitted to specify both CompuInternalToPhys and CompuPhysToInternal. Each
must be the inverse of the other. It is not necessary to specify both, as RTA-RTE can
derive the inverse of a LINEAR CompuMethod as needed.

There must be exactly two V elements under COMPU-NUMERATOR. The first V element
expresses num0 and the second V element expresses num1.

There must be exactly one V element under COMPU-DENOMINATOR. It expresses denom.

4.5.13 CompuMethod — Category RAT_FUNC

A CompuMethod of category RAT_FUNC is not supported by AUTOSAR R4.0. However
if you configure a data path having the same or exactly similar CompuMethod at each
end then RTA-RTE assumes that the CompuMethods cancel out and treats them as if
they compose to the IDENTICAL transformation.

In cases where unsupported CompuMethod categories do not trivially match, RTA-RTE
rejects the configuration.

4.5.14 CompuMethod — Category TEXTTABLE

A CompuMethod of category TEXTTABLE models a C enumerated type. It is not ref-
erenced by an ApplicationPrimitiveDataType like other CompuMethods but by an
ImplementationDataType.

<COMPU-METHOD>
short_name
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
(

<COMPU-SCALE>
<LOWER-LIMIT>int</LOWER-LIMIT>
<UPPER-LIMIT>int</UPPER-LIMIT>
<COMPU-CONST>
<VT>identifier</VT>

</COMPU-CONST>
</COMPU-SCALE>

136 Configuration

RTA-RTE V6.8.0
Reference Manual

...)
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

The CompuMethod may contain as many CompuScales as needed. For each CompuS-
cale RTA-RTE generates code similar to the following:

#define symbol ((type) literal-constant)

LowerLimit and UpperLimit must be the same value, i.e. the CompuScale must express
a point range. This value becomes literal-constant.

CompuConst must contain exactly one VT element. The contents of the VT element
become symbol.

The type in the example is derived from the ImplementationDataType that references
the CompuMethod.

4.5.15 DataTypeMappingSet

A DataTypeMappingSet maps ApplicationDataTypes used in a SWCT to
ImplementationDataTypes with which those physical quantities should be repre-
sented in the generated code. It is referenced by a Software Component Type so it
is possible that different SWCTs implement the same ApplicationDataType using
different ImplementationDataTypes.

<DATA-TYPE-MAPPING-SET>
short_name
<DATA-TYPE-MAPS>
(

<DATA-TYPE-MAP>
<APPLICATION-DATA-TYPE-REF DEST=’APPLICATION-PRIMITIVE-DATA-TYPE’>

ref</APPLICATION-DATA-TYPE-REF>
<IMPLEMENTATION-DATA-TYPE-REF DEST=’IMPLEMENTATION-DATA-TYPE’>ref</

IMPLEMENTATION-DATA-TYPE-REF>
</DATA-TYPE-MAP>

...)
</DATA-TYPE-MAPS>

</DATA-TYPE-MAPPING-SET>

The DataTypeMappingSet can contain as many DataTypeMap elements as needed and
indeed may contain mappings for ApplicationDataTypes not used by the referenc-
ing SWCT(s), allowing sharing of DataTypeMappingSets between SWCTs and between
projects; a DataTypeMap is only considered if the ApplicationDataType is used directly
in the model by a SWCT that references the DataTypeMappingSet.

The ApplicationDataTypeRef and ImplementationDataTypeRef reference the two
types to be mapped together. The ImplementationDataType must be com-
patible with the ApplicationDataType. In particular, for primitive types the
ImplementationDataType must have sufficient range to represent the range of

Configuration 137

RTA-RTE V6.8.0
Reference Manual

the ApplicationDataType, if specified, i.e. if it has DataConstrs. For struc-
tures, the ImplementationDataType must have the same number of members
as the ApplicationDataType and the pairs of member types at each position
(the member names need not be the same) must be compatible. For arrays
the ImplementationDataType must have the same number of elements as the
ApplicationDataType and the element types must be compatible.

4.5.16 TextTableMapping

A TextTableMapping causes RTA-RTE to generate data conversion code to transform
discrete values between a Sender and Receiver or a Client and a Server.

<TEXT-TABLE-MAPPINGS>
<TEXT-TABLE-MAPPING>

<MAPPING-DIRECTION>BIDIRECTIONAL</MAPPING-DIRECTION>
<VALUE-PAIRS>
(

<TEXT-TABLE-VALUE-PAIR>
<FIRST-VALUE>int</FIRST-VALUE>
<SECOND-VALUE>int</SECOND-VALUE>

</TEXT-TABLE-VALUE-PAIR>
...)
</VALUE-PAIRS>

</TEXT-TABLE-MAPPING>
</TEXT-TABLE-MAPPINGS>

TextTableMappings appear within a DataPrototypeMapping. The DataPrototypeMap-
ping contains the context of “First” and “Second” Data Prototype.

MappingDirection indicates whether the mapping is valid when data moves from First
to Second Data Prototype or from Second To First Data Prototype, or whether it will work
in both directions.

If the mapping of value pairs is 1:1 (i.e. no two FirstValue elements are alike and no
two SecondValue elements are alike) then MappingDirection of BIDIRECTIONAL is rec-
ommended.

If the mapping is n : 1 (i.e. some two FirstValue elements are alike, then MappingDirec-
tion must be FIRST-TO-SECOND.

If the mapping is 1 : n (i.e. some two SecondValue elements are alike, then MappingDi-
rection must be SECOND-TO-FIRST.

If the mapping is n : m then it cannot be used by RTA-RTE and must be split into more
than one mapping. RTA-RTE does not reject the configuration but the generated code
will resolve the ambiguities of the n : m mapping in an unspecified way.

4.5.17 Unit

Unit represents a Unit of measurement of some physical quantity. Data conversion
is possible between data values typed by ApplicationDataTypes having linear Com-

138 Configuration

RTA-RTE V6.8.0
Reference Manual

puMethods (includes IDENTICAL) and having matching or compatible Units. Units are
compatible if they reference the same or exactly similar PhysicalDimension elements.

<UNIT>
short_name
<FACTOR-SI-TO-UNIT>float</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>float</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF DEST=’PHYSICAL-DIMENSION’>ref</PHYSICAL-

DIMENSION-REF>
</UNIT>

ShortName is used as a reference target.

FactorSiToUnit is a floating-point decimal number expressing the number of units per SI
unit.

OffsetSiToUnit is a floating-point decimal number expressing the offset to be added to
convert from SI units to the specified unit.

4.5.18 Expression of Constant Values

Constant values are needed in the input model for the initial values of DataPrototypes
and the reserved values of DataTypes used as the “invalid values” for DataPrototypes
with invalidation enabled. These are modelled with ValueSpecifications, either directly
where needed or within reusable ConstantSpecifications that can be referenced where
needed.

4.5.19 NumericalValueSpecification

A NumericalValueSpecification provides a numeric constant value for direct use in the
generated C. No data conversion is performed, even when the DataPrototype is typed
by an ApplicationDataType; the value supplied is assumed to already be in the correct
numerical representation for the mapped ImplementationDataType.

numerical_value_specification ::=
<NUMERICAL-VALUE-SPECIFICATION>

<VALUE>int</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>

4.5.20 ApplicationValueSpecification

An ApplicationValueSpecification provides a physical constant value in a given unit for
a DataPrototype typed by an ApplicationPrimitiveDataType. Static (generation-time)
data conversion is performed to obtain the corresponding numerical representation of
the value, encoded for the mapped ImplementationDataType.

application_value_specification ::=
<APPLICATION-VALUE-SPECIFICATION>

<CATEGORY>VALUE</CATEGORY>
<SW-VALUE-CONT>

<UNIT-REF DEST=’UNIT’>ref</UNIT-REF>
<SW-VALUES-PHYS>

Configuration 139

RTA-RTE V6.8.0
Reference Manual

<V>int</V>
</SW-VALUES-PHYS>

</SW-VALUE-CONT>
</APPLICATION-VALUE-SPECIFICATION>

The referenced unit need not be the same as the unit for the ApplicationPrimitive-
DataType of the DataPrototype since data conversion occurs as necessary. Of course
the units need to reference the same physical dimension so that data conversion is
possible.

4.5.21 RecordValueSpecification

A RecordValueSpecification provides a container for the constant values for
each element of a structure, whether of ApplicationRecordDataType or of
ImplementationDataType with category STRUCTURE. The value for each element is
specified by an aggregated ValueSpecification of a class suitable for the data type of
the corresponding element. The values are associated with the structure elements in
declaration order.

record_value_specification ::=
<RECORD-VALUE-SPECIFICATION>

<FIELDS>
(

value_specification
...)
</FIELDS>

</RECORD-VALUE-SPECIFICATION>

4.5.22 ArrayValueSpecification

An ArrayValueSpecification provides a container for the constant values for each ele-
ment of an array, whether or ApplicationArrayDataType or of ImplementationDataType
with category ARRAY. The value for each element is specified by an aggregated Value-
Specification of a class suitable for the array element data type.

array_value_specification ::=
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
(

value_specification
...)
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>

For an array of elements of ApplicationPrimitiveDataType it is permitted to use a mix of
NumericalValueSpecifications and ApplicationValueSpecifications.

4.5.23 ConstantSpecification

A ConstantSpecification provides a free-standing constant that can be referenced from
anywhere that a ValueSpecification can be used.

140 Configuration

RTA-RTE V6.8.0
Reference Manual

constant_specification ::=
<CONSTANT-SPECIFICATION>

short_name
<VALUE-SPEC>

value_specification
</VALUE-SPEC>

</CONSTANT-SPECIFICATION>

4.5.24 ConstantReference

A ConstantReference can be used in place of a ValueSpecification to take the value
from a free-standing ConstantSpecification.

constant_reference ::=
<CONSTANT-REFERENCE>
<CONSTANT-REF DEST=’CONSTANT-SPECIFICATION’>ref</CONSTANT-REF>

</CONSTANT-REFERENCE>

4.5.25 IncludedDataTypeSet

IncludedDataTypeSets can be used to add prefixes to the names of enumerated val-
ues in the generated C code (for example see 4.5.14).

included_data_type_set ::=
<INCLUDED-DATA-TYPE-SET>
<DATA-TYPE-REFS>
data_type_ref+
</DATA-TYPE-REFS>
<LITERAL-PREFIX>prefix</LITERAL-PREFIX>
</INCLUDED-DATA-TYPE-SET>

There may be one or more data_type_ref items each of which is a <DATA-TYPE-REF>
element referencing an ImplementationDataType or an ApplicationDataType. The
prefix prefix is added to the names of enumerated values generated from the refer-
enced types.

When an IncludedDataTypeSet references an ApplicationDataType, RTA-
RTE adds prefixes to enumerated value names generated from the
ApplicationDataType and from any mapped ImplementationDataType.

If an ImplementationDataType or an ApplicationDataType is referenced by multiple
IncludedDataTypeSets then each enumeration value name will be generated once for
each IncludedDataTypeSet prefix.

If an ImplementationDataType or ImplementationDataTypeElement of
Category TYPE_REFERENCE references a CompuMethod that results in enu-
merated value generation and the target of the TYPE_REFERENCE references
a CompuMethod that also results in enumerated value generation then RTA-
RTE will use the CompuMethod in the TYPE_REFERENCE rather than the target.

Configuration 141

RTA-RTE V6.8.0
Reference Manual

4.6 Interfaces

An interface element defines the data elements (sender-receiver), calibration elements
or operations (client-server) that apply to the interface. A sender-receiver interface
is declared using the <SENDER-RECEIVER-INTERFACE> element, a calibration inter-
face using the <CALPRM-INTERFACE> and a client-server interface defined using the
<CLIENT-SERVER-INTERFACE> element.

4.6.1 Sender-Receiver

A sender-receiver interface is defined using the <SENDER-RECEIVER-INTERFACE> ele-
ment. The element must be named to enable it to be referenced from other elements,
such as port prototypes.

sender_receiver_interface ::=
<SENDER-RECEIVER-INTERFACE>
short_name
(data_element_prototypes)
(mode_groups)
</SENDER-RECEIVER-INTERFACE>

Data Elements

A sender-receiver interface element encapsulates zero or more data element defini-
tions each defined using the <DATA-ELEMENT-PROTOTYPE> element.

data_element_prototypes ::=
<DATA-ELEMENTS>
+data_element
</DATA-ELEMENTS>

data_element ::=
<VARIABLE-DATA-PROTOTYPE>
short_name

(sw_data_def_props_for_measurement)
<TYPE-TREF>ref</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE >

Each data element references a data type. The reference must refer to an AUTOSAR
data type declared within the AUTOSAR XML configuration.

Mode Declarations

In addition to the (optional) data element prototypes, a sender-receiver interface can
define zero or more mode declaration group prototypes within a <MODE-GROUPS> ele-
ment.

mode_groups ::=
<MODE-GROUPS>
+mode_declaration_group_prototype
</MODE-GROUPS>

mode_declaration_group_prototype ::=

142 Configuration

RTA-RTE V6.8.0
Reference Manual

<MODE-DECLARATION-GROUP-PROTOTYPE>
short_name
<TYPE-TREF>ref</TYPE-TREF>
</MODE-DECLARATION-GROUP-PROTOTYPE>

Each Mode Declaration Group Prototype element references a mode declaration group
type. The reference must refer to an AUTOSAR <MODE-DECLARATION-GROUP> declared
within the AUTOSAR XML configuration.

4.6.2 Nv-Data

A Nv-Data interface is defined using the <NV-DATA-INTERFACE> element. The element
must be named to enable it to be referenced from other elements, such as port proto-
types.

nv_data_interface ::=
<NV-DATA-INTERFACE>
short_name
(nv_data_prototypes)
</NV-DATA-INTERFACE>

Nv-Data Elements

A Nv-Data interface element encapsulates zero or more Nv-data element definitions
each defined using the <VARIABLE-DATA-PROTOTYPE> element.

nv_data_prototypes ::=
<NV-DATAS>
+variable_data_prototype
</NV-DATAS>

Each variable data prototype references a data type. The reference must refer to an
AUTOSAR data type declared within the AUTOSAR XML configuration.

4.6.3 Calibration

A calibration interface is defined using the <CALPRM-INTERFACE> element. The element
must be named to enable it to be referenced from other elements, such as port proto-
types.

calprm_interface ::=
<CALPRM-INTERFACE>
short_name
(calibration_element_prototypes)
</CALPRM-INTERFACE>

Calibration Elements

A calibration interface element encapsulates zero or more calibration element proto-
types each defined using the <DATA-ELEMENT-PROTOTYPE> element.

calibration_element_prototypes ::=
<CALPRM-ELEMENTS>

Configuration 143

RTA-RTE V6.8.0
Reference Manual

+calprm_element
</CALPRM-ELEMENTS>

calprm_element ::=
<CALPRM-ELEMENT-PROTOTYPE>
short_name
(sw_addr_method_ref)
<TYPE-TREF>ref</TYPE-TREF>
</CALPRM-ELEMENT-PROTOTYPE >

Each calibration element prototype references a data type. The reference must refer
to an AUTOSAR data type declared within the AUTOSAR XML configuration.

A calibration element prototype contains an optional reference to a <SW-ADDR-METHOD>
element:

sw_addr_method_ref ::=
<SW-DATA-DEF-PROPS>
<SW-ADDR-METHOD-REF>ref</SW-ADDR-METHOD-REF>
</SW-DATA-DEF-PROPS>

The <SW-ADDR-METHOD-REF> element must refer to an AUTOSAR <SW-ADDR-METHOD>
element. RTA-RTE packs all elements within an interface that reference the same
<SW-ADDR-METHOD> element into a structure to minimise the size of the required data-
structures and to ensure that related elements are allocated to the same region of
memory.

Calibration Data

RTA-RTE can allocate initial values for Calibration data. RTA-RTE creates a data structure
for each calibration element group and when initial values are specified for all members
of a group declares a suitable static initializer containing the values within Rte.c.

See Section 10.5 for details on labels and datastructures created by RTA-RTE.

4.6.4 Client-Server

A client-server interface follows a similar form to a sender-receiver interface with the
exception that the data element definitions are replaced by operation definitions.

The client-server interface element must be named to enable it to be referenced from
other elements, such as port prototypes.

client_server_interface ::=
<CLIENT-SERVER-INTERFACE>
short_name
operation_prototypes
(application_errors)
</CLIENT-SERVER-INTERFACE>

operation_prototypes ::=
<OPERATIONS>

144 Configuration

RTA-RTE V6.8.0
Reference Manual

+operation
</OPERATIONS>

Operation Prototypes

Each operation within the client-server interface element is defined using the
<OPERATION-PROTOTYPE> element that defines the operation name as well as encap-
sulating the definitions of the formal argument list.

operation ::=
<OPERATION-PROTOTYPE>
short_name
<ARGUMENTS>
+argument
</ARGUMENTS>
(error_references)
</OPERATION-PROTOTYPE>

An operation prototype must define one or more formal parameters using the
<ARGUMENT-PROTOTYPE> element.

argument ::=
<ARGUMENT-PROTOTYPE>
short_name
(sw_data_def_props_for_measurement)
<TYPE-REF>ref</TYPE-REF>
direction
</ARGUMENT-PROTOTYPE>

The specification within an argument prototype of sw_data_def_props is optional. If
present it describes whether the argument is measureable. For more details see Sec-
tion 4.7.

The short name of the <ARGUMENT-PROTOTYPE> defines the name of the formal param-
eter.

The type of the parameter is defined by the type reference and must refer to a type
defined in the XML input. Each parameter also has a direction that specifies whether
the parameter is an “in”, “in/out” or “out” parameter.

direction ::=
<DIRECTION>(IN | INOUT | OUT)</DIRECTION>

An operation can be marked as ‘pure’ in which case invocation of the server runnable
entity are not queued but are instead invoked by a direction function call from the client
SWC. This is achievied by marking the runnable entity that implements the server as
“CanBeInvokedConcurrently”, see Section 4.10.9.

A client-server interface can, optionally, define one or more application errors that can
be returned (using the standard C return mechanism) from a runnable entity imple-
menting the server.

Configuration 145

RTA-RTE V6.8.0
Reference Manual

application_errors ::=
<POSSIBLE-ERRORS>
+application_error
</POSSIBLE-ERRORS>

application_error ::=
<APPLICATION-ERROR>
short_name
<ERROR-CODE>int</ERROR-CODE>
</APPLICATION-ERROR>

Declared application errors are defined in the software-component’s application header
file using the template:

RTE_E_<interface_name>_<error_name>

Once an application error has been defined it must be referenced from the associated
operation prototype using an <POSSIBLE-ERROR-REF> element:

error_references ::=
<POSSIBLE-ERROR-REFS>
+error_reference
</POSSIBLE-ERROR-REFS>

error_reference ::=
<POSSIBLE-ERROR-REF>ref</POSSIBLE-ERROR-REF>

The data type for application errors is always Std_ReturnType and thus the return
value for a runnable whose operation invoked event references one or more application
errors is also Std_ReturnType.

4.7 Measurement

Measurement permits communication within the RTE to be monitored by an external
tool.

4.7.1 Enabling Measurement

To enable measurement it must be both globally enabled in the RTE module configura-
tion(see Section 4.19.2) and the individual item must be configured as measurable by
specifying a <SW-DATA-DEF-PROPS> element:

sw_data_def_props_for_measurement ::=
<SW-DATA-DEF-PROPS>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
</SW-DATA-DEF-PROPS>

Measurement can be enabled for data elements (sender-receiver), arguments (client-
server) and inter-runnable variables.

Data element Prototype —A data element within sender-receiver communication is
enabled for measurement by specifying a <SW-DATA-DEF-PROPS> element either

146 Configuration

RTA-RTE V6.8.0
Reference Manual

in the data element prototype within an interface or, for primitive types, within
data type’s definition. If measurement is enabled/disabled in both places then
the definition within the data element prototype takes precedence.

Argument Prototype —An argument within client-server communication is enabled
for measurement by specifying a <SW-DATA-DEF-PROPS> element either in the
argument prototype within an interface or, for primitive types, within data type’s
definition. If measurement is enabled/disabled in both places then the definition
within the argument prototype takes precedence.

Inter-runnable variable —Measurement can be enabled for an inter-runnable vari-
able (see Section 4.10.3) by specifying a <SW-DATA-DEF-PROPS> element either
in the inter-runnable variable declaration within an internal behavior or, for prim-
itive types, within relevant type’s definition. If measurement is enabled/disabled
in both places then the definition within the inter-runnable variable declaration
prototype takes precedence.

4.7.2 RTA-RTE output

RTA-RTE outputs an XML file that describes each measured item’s RTE-created buffer
variable and associated configuration element (e.g. port and data item).

The XML output format is not defined by AUTOSAR and is therefore RTA-RTE
specific.

The XML root element is <MEASURABLE-INFO>.

measurable ::=
<MEASURABLE-INFO>
(measurable_data)
(measurable_arguments)
(measurable_irvs)
</MEASURABLE-INFO>

Data Element Prototype

Measurable data element prototypes are described by the <MEASURABLE-DATUM> ele-
ment.

measurable_data ::=
<MEASURABLE-DATA>

*measurable_datum
</MEASURABLE-DATA>

measurable_datum ::=
<MEASURABLE-DATUM>
short-name
<INSTANCE-DATUM>instance_ref</INSTANCE-DATUM>
<SYMBOL>
<NAME>string</NAME>
<TYPE>string</TYPE>
</SYMBOL>
</MEASURABLE-DATA>

Configuration 147

RTA-RTE V6.8.0
Reference Manual

The <SYMBOL> element describes the RTE allocated name and data type of the variable
to be measured. The <INSTANCE-DATUM> element references the associated compo-
nent prototype, port and data element.

Argument Prototype

Measurable argument prototypes are described by the <MEASURABLE-ARG> element.

measurable_arguments ::=
<MEASURABLE-ARGS>

*measurable_arg
</MEASURABLE-ARGS>

measurable_arg ::=
<MEASURABLE-ARG>
short-name
<INSTANCE-ARG>instance_ref</INSTANCE-ARG>
<SYMBOL>
<NAME>string</NAME>
<TYPE>string</TYPE>
</SYMBOL>
</MEASURABLE-ARG>

The <SYMBOL> element describes the RTE allocated name and data type of the variable
to be measured. The <INSTANCE-ARG> element references the associated component
prototype, port and data element.

Inter-runnable variables

Measurable inter-runnable variables are described by the <MEASURABLE-IRV> element.

measurable_arguments ::=
<MEASURABLE-IRVS>

*measurable_irv
</MEASURABLE-IRVS>

measurable_irv ::=
<MEASURABLE-IRV>
short-name
<INSTANCE-IRV>instance_ref</INSTANCE-IRV>
<SYMBOL>
<NAME>string</NAME>
<TYPE>string</TYPE>
</SYMBOL>
</MEASURABLE-IRV>

The <SYMBOL> element describes the RTE allocated name and data type of the variable
to be measured. The <INSTANCE-ARG> element references the associated component
prototype and variable.

Example

The following XML describes a measured data element, argument and inter-runnable
variable.

148 Configuration

RTA-RTE V6.8.0
Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<MEASURABLE-INFO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:

noNamespaceSchemaLocation="measurement.xsd">
<MEASURABLE-DATA>
<MEASURABLE-DATUM>
<SHORT-NAME>SWCI0_pa_value</SHORT-NAME>
<INSTANCE-DATUM>
<SOFTWARE-COMPOSITION-REF>/TMeasurement/Compo</SOFTWARE-COMPOSITION

-REF>
<TARGET-COMPONENT-PROTOTYPE-REF>/TMeasurement/Compo/producer</

TARGET-COMPONENT-PROTOTYPE-REF>
<PORT-PROTOTYPE-REF>/TMeasurement/swc_tx/pa</PORT-PROTOTYPE-REF>
<DATA-ELEMENT-PROTOTYPE-REF>/TMeasurement/if1/value</DATA-ELEMENT-

PROTOTYPE-REF>
</INSTANCE-DATUM>
<SYMBOL>
<NAME>Rte_RxBuf_0</NAME>
<TYPE>VAR(SInt16, RTE_DATA)</TYPE>

</SYMBOL>
</MEASURABLE-DATUM>

</MEASURABLE-DATA>
<MEASURABLE-ARGS>
<MEASURABLE-ARG>
<SHORT-NAME>SWCI0_sc1_a</SHORT-NAME>
<INSTANCE-ARG>
<SOFTWARE-COMPOSITION-REF>/TMeasurement/Compo</SOFTWARE-COMPOSITION

-REF>
<TARGET-COMPONENT-PROTOTYPE-REF>/TMeasurement/Compo/client</TARGET-

COMPONENT-PROTOTYPE-REF>
<PORT-PROTOTYPE-REF>/TClientServer/swc_cli/sc1</PORT-PROTOTYPE-REF>
<ARGUMENT-REF>/TClientServer/ifs/operation/a</ARGUMENT-REF>

</INSTANCE-ARG>
<SYMBOL>
<NAME>Rte_MsBuf_0</NAME>
<TYPE>VAR(SInt16, RTE_DATA)</TYPE>

</SYMBOL>
</MEASURABLE-ARG>

</MEASURABLE-ARGS>
<MEASURABLE-IRVS>
<MEASURABLE-IRV>
<SHORT-NAME>SWCI0_irvex1</SHORT-NAME>
<INSTANCE-IRV>
<SOFTWARE-COMPOSITION-REF>/TMeasurement/Compo</SOFTWARE-COMPOSITION

-REF>
<TARGET-COMPONENT-PROTOTYPE-REF>/TMeasurement/Compo/consumer</

TARGET-COMPONENT-PROTOTYPE-REF>
<VARIABLE-REF DEST="INTER-RUNNABLE-VARIABLE">/

TInterRunnableVariables/IBswc_ex/irvex1</VARIABLE-REF>
</INSTANCE-IRV>
<SYMBOL>
<NAME>Rte_Var_SWCI0_irvex1</NAME>
<TYPE>VAR(SInt32, RTE_DATA)</TYPE>

Configuration 149

RTA-RTE V6.8.0
Reference Manual

</SYMBOL>
</MEASURABLE-IRV>

</MEASURABLE-IRVS>
</MEASURABLE-INFO>

RTA-RTE includes an XML schema describing the XML file created by RTA-RTE, see
{install-fldr}\Auxiliary.

4.8 NVRAM

AUTOSAR R4.0 introduced NvBlockSwComponentTypes for the configuration of RAM-
based mirrors of non-volatile data managed by the NVRAM manager (see Section 4.4.2).

RTA-RTE supports two forms of access to the ram-blocks declared within
NvBlockSwComponentTypes; from application SWCs using NvBlockDataMappings and
from the NVRAM manager using ClientServerPorts.

4.8.1 Nv-Block Data Mappings

<NV-BLOCK-DATA-MAPPING> elements configure read and/or write access to ram-blocks
(or to sub-elements of ram-blocks) declared by NvBlockDescriptor elements through
ports categorized by <NV-DATA-INTERFACE>s.

nvblock_data_mappings ::=
<NV-BLOCK-DATA-MAPPINGS>
+ nvblock_data_mapping
</NV-BLOCK-DATA-MAPPINGS>

nvblock_data_mapping ::=
<NV-BLOCK-DATA-MAPPING>
nvram_element
(written_var)
(read_var)
</NV-BLOCK-DATA-MAPPING>

A single <NV-BLOCK-DATA-MAPPING> can declare both read and write access to the
same nvram_element.

NVRAM Element

The nvram_element references the ram-block within the NvBlockDescriptor
via a <LOCAL-VARIABLE-REF>, <AUTOSAR-VARIABLE-IN-IMPL-DATATYPE> or
<AUTOSAR-VARIABLE-IREF> element.

nvram_element ::=
<NV-RAM-BLOCK-ELEMENT>
(local_variable_ref |
autosar_variable_ref |
autosar_variable_iref)

</NV-RAM-BLOCK-ELEMENT>

local_variable_ref ::=
<LOCAL-VARIABLE-REF>

150 Configuration

RTA-RTE V6.8.0
Reference Manual

ref
</LOCAL-VARIABLE-REF>

autosar_variable_ref ::=
<AUTOSAR-VARIABLE-IN-IMPL-DATATYPE>
<ROOT-VARIABLE-DATA-PROTOTYPE-REF>
ref
</ROOT-VARIABLE-DATA-PROTOTYPE-REF>
(impl_sub_element_mapping)
</AUTOSAR-VARIABLE-IN-IMPL-DATATYPE>

autosar_variable_iref ::=
<AUTOSAR-VARIABLE-IREF>
<ROOT-VARIABLE-DATA-PROTOTYPE-REF>
ref
</ROOT-VARIABLE-DATA-PROTOTYPE-REF>
(appl_sub_element_mapping)
</AUTOSAR-VARIABLE-IREF>

The impl_sub_element_mapping (or appl_sub_element_mapping as appropriate) is
optional; if present it defines a mapping from the port’s Nv-data element to a sub-
element of the ram-block’s data type.

impl_sub_element_mapping ::=
(<CONTEXT-DATA-PROTOTYPE-REFS>
+ context_ref
</CONTEXT-DATA-PROTOTYPE-REFS>)

<TARGET-DATA-PROTOTYPE-REF>
ref
</TARGET-DATA-PROTOTYPE-REF>

appl_sub_element_mapping ::=
(+ context_ref)
<TARGET-DATA-PROTOTYPE-REF>
ref
</TARGET-DATA-PROTOTYPE-REF>

context_ref ::=
<CONTEXT-DATA-PROTOTYPE-REF>
ref
</CONTEXT-DATA-PROTOTYPE-REF>

If present the impl_sub_element_mapping (or appl_sub_element_mapping) defines
zero or more context references and one target reference. Each reference defines one
data type element and, when combined, identify the mapped sub-element of the ram-
block.

This release of RTA-RTE does not support mappings for individual elements
of array types.

Configuration 151

RTA-RTE V6.8.0
Reference Manual

Read Access by SWCs

Read access by an application SWC occurs through a port required by the SWC and
provided by the NvBlockSwComponentType.

An NvBlockDataMapping declares read access to a ram-block through a
<READ-NV-DATA> element (the element is “read” since the ram-block is provided by
the NvBlockSwComponentType). The instance references within the <READ-NV-DATA>
element must reference a provide port ON THE NvBlock SWC.

written_var ::=
<READ-NV-DATA>
<AUTOSAR-VARIABLE-IREF>
iref
</AUTOSAR-VARIABLE-IREF>
</READ-NV-DATA>

The iref must reference a provide port and a variable data prototype within the port’s
interface. The port must be categorized by an NvDataInterface and the type of the
variable data prototype must be compatible with the referenced ram-block type.

A single provider port on an NvBlockSwComponentType can have multiple connected
require ports and thus a ram-block mirror can be read by multiple application SWCs.
RTA-RTE uses interrupt blocking to prevent simultaneous writes corrupting reads.

It is not possible to use multiple mappings to associate more than one ram-block with
the same provide port.

Write Access by SWCs

Write access by an application SWC occurs through a port provided by the SWC and
required by the NvBlockSwComponentType.

An NvBlockDataMapping declares write access to a ram-block through
an <WRITTEN-NV-DATA> element. The port instance reference within the
<WRITTEN-NV-DATA> element must reference a require port.

read_var ::=
<WRITTEN-NV-DATA>
<AUTOSAR-VARIABLE-IREF>
iref
</AUTOSAR-VARIABLE-IREF>
</WRITTEN-NV-DATA>

The <AUTOSAR-VARIABLE-IREF> element must reference a require port and a vari-
able data prototype within the port’s interface. The port must be categorized by an
NvDataInterface and the type of the variable data prototype must be compatible with
the referenced ram-block type.

A single require port can have multiple providers and thus a ram-block mirror can be
updated by multiple application SWCs.

152 Configuration

RTA-RTE V6.8.0
Reference Manual

RTA-RTE does not support fan-out from a single require port to multiple ram-
blocks.

To configure a single Write API generated for an application SWC to write to more than
one ram-block within a NvBlockSwComponentType then multiple require ports (and mul-
tiple NvBlockDataMapping elements) must be configured and connected to the provide
port.

4.8.2 Access by NVRAM manager

For each NvBlockDescriptor the RTE generator creates two API call-backs for the
NVRAM manager. The Rte_GetMirror and Rte_SetMirror APIs do not require any
specific configuration.

4.8.3 Client-Server Ports

Client-server port specifications within an NvBlockDescriptor (Section 4.4.2) cause
RTA-RTE to create call-back API functions to be invoked by the NVRAM manager.

cs_ports ::=
<CLIENT-SERVER-PORTS>
+ (client_assignment | server_assignment)
</CLIENT-SERVER-PORTS>

A client_assignment references a require port and a server_assignment references
a provide port.

Client (require) ports

Each client_assignment that references a require port categorized by a client-server
interface declares a call-back API function intended to be invoked by the NVRAM
manager. The name of this function is based on the <ROLE> declared within the
<ROLE-BASED-PORT-ASSIGNMENT> element:

client_assignment ::=
<ROLE-BASED-PORT-ASSIGNMENT>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">
ref
</PORT-PROTOTYPE-REF>
<ROLE>
string
</ROLE>
</ROLE-BASED-PORT-ASSIGNMENT>

If multiple role_based_assignment share the same declared “role” then their actions
are agregated by RTA-RTE.

RTA-RTE recognizes that standardized NvM roles NvMNotifyJobFinished and
NvMNotifyInitBlock and establishes the call-back parameters according to the AU-
TOSAR RTE and NvM specifications. For other roles the parameters of the generated
call-back function, if any, are taken from the first operation in the referenced require

Configuration 153

RTA-RTE V6.8.0
Reference Manual

port’s interface.

It is not possible to reference just a single operation in the require port there-
fore the referenced interface should have a single operation.

For each declared role, RTA-RTE creates a function Rte_<role>__<d> that includes
the servers referenced via the require ports in role based assignments that use role
<role>. The generated function name includes the component prototype name
and the NvBlockDescriptor name <d>.

If the server invoked through the referenced require port is mapped to a task then RTA-
RTE will generate code that writes the request to the server’s queue and waits for the
result. This will mean that the calling task, i.e. the NVRAM manager’s task, will need
to be declared as accessing the events. It is therefore recommended not to map the
server to a task, i.e. omit the TaskRef, in which case RTA-RTE will use a direct function
call to invoke the server.

Server (provide) ports

An NvBlockSwComponentType can also configure provided Client-Server ports. These
ports are allow the C-based API of the MVRAM manager to be invoked via ports on
application SWCs.

A server_assignment references a provide port categorized by a client-server inter-
face:

server_assignment ::=
<ROLE-BASED-PORT-ASSIGNMENT>
<PORT-PROTOTYPE-REF DEST="P-PORT-PROTOTYPE">
ref
</PORT-PROTOTYPE-REF>
<ROLE>
string
</ROLE>
</ROLE-BASED-PORT-ASSIGNMENT>

For each connected provide port referenced from a server_assignment for which
an OperationInvokedEvent is configured RTA-RTE will generate a call to NVRAM man-
ager’s C API.

The runnable entity referenced from the OperationInvokedEvent must be marked as
concurrently invocable (see Section 4.10.9) and the runnable’s symbol must be the
name of the NvM API to be invoked. The parameters passed to the NvM API are formed
from relevant port-defined arguments and the arguments to the relevant client-server
operation. In addition the OperationInvokedEvent should not be mapped to a task to
ensure direct function invocation of the NvM API from within the generated Rte_Call
function.

154 Configuration

RTA-RTE V6.8.0
Reference Manual

4.9 AUTOSAR Modes

Modes within an AUTOSAR system are declared within a <MODE-DECLARATION-GROUP>
element.

mode_group ::=
<MODE-DECLARATION-GROUP>
short_name
<INITIAL-MODE-REF>ref</INITIAL-MODE-REF>
<MODE-DECLARATIONS>
+mode_declaration
</MODE-DECLARATIONS>
</MODE-DECLARATION-GROUP>

mode_declaration ::=
<MODE-DECLARATION>
short_name
</MODE-DECLARATION>

The <MODE-DECLARATION-GROUP> element includes a reference to the group’s initial
mode. This must be a reference to a mode declared within the group.

RTA-RTE supports up to 32 modes per mode-declaration group.

4.10 Internal Behavior

The internal behavior description of a component defines the runnable entities present
and is separate from the description of the component type.

The <INTERNAL-BEHAVIOR> element defines one or more runnable entities using the
<RUNNABLE-ENTITY> element. Each runnable entity is named and the name is used to
reference the entity from other elements in the XML.

The <INTERNAL-BEHAVIOR> also defines events associated with the runnable entities
using the RTE-EVENTS element. Events can include time-triggers for the runnable entity
in which case the period at which the entity is invoked is specified.

internal_behavior ::=
<INTERNAL-BEHAVIOR>
short_name
swc_type_ref
rte_events
(interrunnable_variables)
(exclusive_areas)
(nvram_mappings)
(per_instance_calprms)
(per_instance_memorys)
(port_api_options)
(runnable_entitys)
(shared_calprms)
(multiple_instances)
</INTERNAL-BEHAVIOR>

Configuration 155

RTA-RTE V6.8.0
Reference Manual

The software component type reference indicates for which software component the
internal behavior is defined. All software-component types use the same form of com-
ponent reference:

swc_type_ref ::=
<COMPONENT-REF>ref</COMPONENT-REF>

4.10.1 RTE Events

RTE Events indicate the action the RTE should take in response to certain stimuli.

rte_events ::=
<EVENTS>

*timing_event

*data_received_event

*data_receive_error_event

*data_send_completed_event

*asynchronous_server_call_returns_event

*operation_invoked_event

*mode_switch_event

*mode_switched_ack_event
</EVENTS>

It is permitted (though of limited utility) for a software-component to define no RTE
Events. However in this case an empty <EVENTS> element must still be included.

An internal behavior for an NvBlockSwComponentType (see Section 4.4.2)
can declare only OperationInvokedEvents and the associated runnable
triggered when the event occurs. The activated runnable may only con-
figure a <SYMBOL> and a <CAN-BE-INVOKED-CONCURRENTLY> flag – no other
attributes are permitted.

Timing Event

A timing event defines the response to a time stimulus and is used to set the period for
a time-triggered runnable entity.

A <TIMING-EVENT> element includes a reference to a runnable entity to start when the
RTE event occurs.

timing_event ::=
<TIMING-EVENT>
short_name
(mode_dependency_list)
<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>
<PERIOD>time</PERIOD>
</TIMING-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

156 Configuration

RTA-RTE V6.8.0
Reference Manual

The period of a TIMING-EVENT element must be expressed in seconds. No trailing text
indicating the units is required or permitted. Fractions of a section can be expressed
using floating point format with a period (“.”) as the decimal separator.

A Timing Event cannot be the target of a wait point.

A timing event can have an optional activation offset specified in the ECU configuration
description. A different offset can be specified for each runnable entity instance (i.e.
a different offset for each timing event in each SWC instance). For details, see the
specification of ActivationOffset in Section 4.19.2.

Data Received Event

A data received event defines the response to reception of data or events on a receiver
port.

A <DATA-RECEIVED-EVENT> element includes an instance reference to the data item
received on the port and, optionally, a reference to a runnable entity to start when the
RTE event occurs.

data_received_event ::=
<DATA-RECEIVED-EVENT>
short_name
(mode_dependency_list)
(<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>)
<DATA-IREF>instance_ref</DATA-IREF>
</DATA-RECEIVED-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

The <DATA-IREF> instance reference defines the data element to which this event ap-
plies and requires a single context reference (the port prototype) and a target reference
(the data element within the interface that categorizes the port).

Data Receive Error Event

A data receive error event defines the runnable entity to activate when one of the
following situations occurs:

• An invalidated data item is received (whether via a notification from COM or by
intra-ECU communication implemented by RTA-RTE), and invalid reception handling
for this data item is not set to REPLACE (in which case a data received event will
occur instead).

• COM notifies RTA-RTE that a periodic data item has not been received within the
configured time and has therefore timed out.

Configuration 157

RTA-RTE V6.8.0
Reference Manual

A <DATA-RECEIVE-ERROR-EVENT> element includes an instance reference to the data
item received on the port and a reference to a runnable entity to start when the RTE
event occurs.

data_receive_error_event ::=
<DATA-RECEIVE-ERROR-EVENT>
short_name
(mode_dependency_list)
(<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>)
<DATA-IREF>instance_ref</DATA-IREF>
</DATA-RECEIVE-ERROR-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

The <DATA-IREF> instance reference defines the data element to which this event ap-
plies and requires a single context reference (the port prototype) and a target reference
(the data element within the interface that categorizes the port).

The activated runnable entity must use the Rte_IStatus API to read the error state—
therefore the activated runnable should declare read access to the datum (see Sec-
tion 4.10.10) to gain access to the status.

A Data Receive Error Event cannot be the target of a wait point.

Data Send Completed Event

A data send completed event defines the action taken when data or events have been
transmitted on a provided sender-receiver port.

A <DATA-SEND-COMPLETED-EVENT> element includes a reference to the data send point
and an optional reference to a runnable entity to start when the RTE event occurs.

data_send_completed_event ::=
<DATA-SEND-COMPLETED-EVENT>
short_name
(mode_dependency_list)
(<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>)
<EVENT-SOURCE-REF>ref</EVENT-SOURCE-REF>
</DATA-SEND-COMPLETED-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

The <EVENT-SOURCE-REF> reference is a simple reference that defines the data send
point to which this event applies. The send point must be declared within the same

158 Configuration

RTA-RTE V6.8.0
Reference Manual

internal behavior as the RTE event.

Asynchronous Server Call Returns Event

An asynchronous server call returns event defines how the software component client
port handles the return of an asynchronous server call.

An <ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT> element includes an optional refer-
ence to a runnable entity to start when the RTE event occurs, and a reference to the
<ASYNCHRONOUS-SERVER-CALL-POINT> within the runnable entity referenced.

asynchronous_server_call_returns_event ::=
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>
short_name
(mode_dependency_list)
(<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>)
<EVENT-SOURCE-REF>ref</EVENT-SOURCE-REF>
</ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

The <EVENT-SOURCE-REF> reference is a simple reference that defines the server call
point to which this event applies. The call point must be declared within the same
internal behavior as the RTE event.

Operation Invoked Event

An operation invoked event defines what the software component server port does in
response to a server request.

An <OPERATION-INVOKED-EVENT> element includes a reference to the server operation
that triggers the event and the runnable entity that acts as the server.

operation_invoked_event ::=
<OPERATION-INVOKED-EVENT>
short_name
(mode_dependency_list)
<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>
<OPERATION-IREF>instance_ref</OPERATION-IREF>
</OPERATION-INVOKED-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

The <OPERATION-IREF> instance reference defines the operation to which this event
applies and requires a single context reference (the port prototype) and a target refer-
ence (the operation within the interface that categorizes the port).

Configuration 159

RTA-RTE V6.8.0
Reference Manual

An Operation Invoked Event cannot be the target of a wait point.

Mode Switch Event

A Mode Switch event defines the actions of the software component when a mode
manager switches modes using the Rte_Switch API.

A MODE-SWITCH-EVENT element includes a reference to the runnable entity that is
triggered on either ENTRY to or EXIT from the referenced mode.

mode_switch_event ::=
<MODE-SWITCH-EVENT>
short_name
(mode_dependency_list)
<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>
<ACTIVATION>(ENTRY|EXIT)</ACTIVATION>
<MODE-IREF>instance_ref</MODE-IREF>
</MODE-SWITCH-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

The <ACTIVATION> element defines whether a Mode Switch Event applies to ENTRY to a
mode or EXIT from a mode. It is not possible for a single mode switch event to apply to
both entry and exit—if runnable activation is required for both then two Mode Switch
Events should be defined.

The <MODE-IREF> within a <MODE-SWITCH-EVENT> element must contain two context
references (respectively, the port prototype and the mode declaration group proto-
type within the interface categorizing the port prototype) and one target reference (the
mode within the mode declaration group that types the declaration group prototype).

A Mode Switch Event cannot be the target of a wait point.

Mode Switched Acknowledge Event

A ModeSwitchedAck event defines the actions of the software component when a mode
switch is complete.

A <MODE-SWITCHED-ACK-EVENT> element includes an optional reference to the runnable
entity that is triggered after the mode switch defined by the elements reference to a
<MODE-SWITCH-POINT> has completed.

mode_switched_ack_event ::=
<MODE-SWITCHED-ACK-EVENT>
short_name
(mode_dependency_list)
<START-ON-EVENT-REF>ref</START-ON-EVENT-REF>

160 Configuration

RTA-RTE V6.8.0
Reference Manual

<EVENT-SOURCE-REF>ref</EVENT-SOURCE-REF>
</MODE-SWITCH-EVENT>

The <START-ON-EVENT-REF> reference is an absolute reference to a runnable entity de-
clared within the same internal behavior as the RTE event. Activation of the referenced
runnable entity by RTA-RTE in response to the RTE event can be disabled using one or
more mode dependencies—see Section 4.10.2.

The <EVENT-SOURCE-REF> defines the Mode Switch Point to which the event applies.

A Mode Switched Ack Event occurs for the mode instance, not for a particular
mode. Therefore the same RTE Event will occur after each mode switch
irrespective of the requested mode.

A ModeSwitchedAckEvent that is the target of a wait point’s trigger reference produces
a blocking Rte_Feedback API call. It is not valid for a ModeSwitchedAckEvent element
that is the target of a wait point’s trigger reference to also trigger runnable entity acti-
vation.

4.10.2 Mode Dependency

An RTE event can define zero or more mode dependencies to control activation of a
referenced runnable entity by RTA-RTE.

mode_dependency_list ::=
<MODE-DEPENDENCY>
<DEPENDENT-ON-MODE-IREFS>
+mode_dependency
</DEPENDENT-ON-MODE-IREFS>
</MODE-DEPENDENCY>

Each mode dependency disables activation of the runnable entity by RTA-RTE when the
specified mode is active.

mode_dependency ::=
<DEPENDENT-ON-MODE-IREF>
instance_ref
</DEPENDENT-ON-MODE-IREF>

The <DEPENDENT-ON-MODE-IREF> within a mode dependency list must contain two con-
text references (respectively, the port prototype and the mode declaration group proto-
type within the interface categorizing the port prototype) and one target reference (the
mode within the mode declaration group that types the declaration group prototype).

When a mode dependency disables an event that would have written to a
queue (e.g. data receive when isQueued is true) RTA-RTE suppresses both
the write and the runnable entity activation.

Configuration 161

RTA-RTE V6.8.0
Reference Manual

4.10.3 Inter-Runnable Variables

Inter-runnable variables support communication between runnable entities within the
same instance of an AUTOSAR SW-C. An internal behavior can declare zero or more
inter-runnable variables using the <INTER-RUNNABLE-VARIABLE> tag:

interrunnable_variables ::=
<INTER-RUNNABLE-VARIABLES>
+interrunnable_variable
</INTER-RUNNABLE-VARIABLES>

interrunnable_variable ::=
<INTER-RUNNABLE-VARIABLE>
short_name

(sw_data_def_props_for_measurement)
<TYPE-TREF>ref</TYPE-TREF>
<COMMUNICATION-APPROACH>
(EXPLICIT|IMPLICIT)
</COMMUNICATION-APPROACH>
<INIT-VALUE-REF>ref</INIT-VALUE-REF>
</INTER-RUNNABLE-VARIABLE>

Access to an inter-runnable variable, whether read or write, is atomic. If an atomic
read-modify-write operation is required then an exclusive area must be used instead.

The <INIT-VALUE-REF> reference defines the inter-runnable variable’s initial value.
The reference should identify a constant’s value specification and not to the constant
specification element itself.

The specification within an inter-runnable variable of sw_data_def_props is optional. If
present it describes whether the variable is measurable. For more details see Sec-
tion 4.7.

4.10.4 Exclusive Areas

An internal behavior can declare zero or more exclusive areas that are used to provide
mutual exclusive access to state shared between runnable entities.

The scope of an exclusive area is restricted to a software-component in-
stance and thus an exclusive area cannot be used to control access to state
shared between software-component instances.

exclusive_areas ::=
<EXCLUSIVE-AREAS>
+exclusive_area
</EXCLUSIVE-AREAS>

exclusive_areas ::=
<EXCLUSIVE-AREA>
short_name
</EXCLUSIVE-AREA>

162 Configuration

RTA-RTE V6.8.0
Reference Manual

An <EXCLUSIVE-AREA> can be declared with an optional hint to the RTE generator as to
how the exclusive area should be implemented. See Section 4.19.2.

4.10.5 NVRAM Mapping

An internal behavior can define zero or more NVRAM mappings.

nvram_mappings ::=
<NVRAM-MAPPINGS>
+nvram_mapping
</NVRAM-MAPPINGS>

Each nvram_mapping defines a single mapping for the behavior.

nvram_mapping ::=
<NVRAM-MAPPING>
short_name
<MIRROR-BLOCK-REF>
ref
</MIRROR-BLOCK-REF>
</NVRAM-MAPPINGS>

The <MIRROR-BLOCK-REF> associates an NVRAM mapping with a per-instance memory.
When a mirror block reference is defined, the RTA-RTE RTE generator uses the Ram-
BlockLocationSymbol from the NvRamAllocation within the ECUC as the name of the
instantiated per-instance memory.

4.10.6 Calibration

An internal behavior element can define zero or more per-instance and shared calibra-
tion parameters.

Calibration Element

A calibration element prototype declares a single calibratable parameter.

calprm_element::=
<CALPRM-ELEMENT-PROTOTYPE>
short_name
(sw_addr_method_ref)
type_ref
</CALPRM-ELEMENT-PROTOTYPE>

A calibration element within an internal behavior2 can be either per-instance or shared
depending on where it is declared within the internal behavior.

The sw_addr_method_ref is used to aggregate calibration element prototypes from the
same SWC instance (and of the same type) into calibration element groups.

sw_addr_method_ref ::=

2In addition to declaring calibration parameters within an internal behavior they can also be declared
within a calibration component type. Parameters declared within a calibration component type can be
used by multiple SWC instances.

Configuration 163

RTA-RTE V6.8.0
Reference Manual

<SW-DATA-DEF-PROPS>
<SW-ADDR-METHOD-REF>ref</SW-ADDR-METHOD-REF>
</SW-DATA-DEF-PROPS>

The <SW-ADDR-METHOD-REF> must refer to a <SW-ADDR-METHOD> element.

Per-instance

The <PER-INSTANCE-CALPRMS> element aggregates all calibration elements that are
assigned unique values for each referencing SWC instance.

per_instance_calprms ::=
<PER-INSTANCE-CALPRMS>
+calprm_element
</PER-INSTANCE-CALPRMS>

Each calprm_element definition defines the name, data type, and optionally the swAd-
drMethod, of a single calibration parameter. The definition of a calprm_element is de-
scribed in Section 4.6.3.

Shared

The <SHARED-CALMRMS> element aggregates all calibration elements that have common
values for each referencing SWC instance.

shared_calprms ::=
<SHARED-CALPRMS>
+calprm_element
</SHARED-CALPRMS>

Each calprm_element definition defines the name, data type, and optionally the swAd-
drMethod, of a single calibration parameter.

Initial Values

Initial value assignment for shared and per-instance calibration parameters are con-
tained within instances of the <LOCAL-PARAMETER-INIT-VALUE-ASSIGNMENT> element:

init_values ::=
<INIT-VALUES>

*init_value_assignment
</INIT-VALUES>

An initial value assignment element contains a pair of references; the first to a constant
containing the initial value and the second the associated calibration prototype:

init_value_assignment ::=
<LOCAL-PARAMETER-INIT-VALUE-ASSIGNMENT>
<INIT-VALUE-REF>ref</INIT-VALUE-REF>

<PARAMETER-REF>ref</PARAMETER-REF>
</LOCAL-PARAMETER-INIT-VALUE-ASSIGNMENT>

164 Configuration

RTA-RTE V6.8.0
Reference Manual

The referenced calibration parameter must be in the same InternalBehavior as the Lo-
calParameterInitValueAssignment. The referenced constant and the calibration param-
eter must have the same underlying type.

4.10.7 Per-Instance Memories

An internal behavior element can define zero or more per-instance memories (PIM) that
are instantiated by RTA-RTE once for each instance of the software-component.

The per-instance memory sections within an AUTOSAR software-component are de-
clared within the <PER-INSTANCE-MEMORYS> element:

per_instance_memorys ::=
<PER-INSTANCE-MEMORYS>
+pim
</PER-INSTANCE-MEMORYS>

Each per-instance memory definition defines the name and type of a single per-instance
memory.

pim ::=
<PER-INSTANCE-MEMORY>
short_name
<TYPE>string</TYPE>
<TYPE-DEFINITION>string</TYPE-DEFINITION>
</PER-INSTANCE-MEMORY>

RTA-RTE uses the <TYPE> and <TYPE-DEFINITION> elements to form the data type of
the per-instance memory through a type definition:

typedef <TYPE-DEFINITION> <TYPE>;

Where <TYPE-DEFINITION> and <TYPE> are extracted from the input. Therefore the
<TYPE-DEFINITION> must be the required C-type and the <TYPE> the data type name.
The <TYPE-DEFINITION> is used without interpretation by RTA-RTE and is not checked
for syntactic correctness.

The <TYPE> of a per-instance memory is visible as a C typedef to a
software-component. Therefore all defined per-instance memories of a sin-
gle software-component type must have unique short names and types.

4.10.8 Port options

The <PORT-API-OPTION> element defines port-defined argument values and offers con-
trol over whether or not the port-API (indirect-API) is generated for a port.

port_api_options ::=
<PORT-API-OPTIONS>

*port_api_option
</PORT-API-OPTIONS>

Configuration 165

RTA-RTE V6.8.0
Reference Manual

Each port_api_option element defines the indirect_api options and/or the port argument
values:

port_api_option ::=
<PORT-API-OPTION>
(indirect_api)
(port_arg_values)
(enable_take_address)
<PORT-REF>ref</PORT-REF>
</PORT-API-OPTION>

The <PORT-REF> element must reference a port within the SWC type associated with
the encapsulating internal behavior.

Indirect-API (Port-API) Control

Support for the indirect API can be enabled/disabled for individual ports within a SWC
type using the <INDIRECT-API> element.

indirect_api ::=
<INDIRECT-API>(true|false)</INDIRECT-API>

Disabling the indirect-API for a port will reduce the ROM usage for a SWC instance.

The indirect-API is always generated if an SWC is declared as supporting
multiple instances irrespective of the <PORT-API-OPTION> settings.

Enable Take Address

When “enable take address” is specified for a port the API mapping generated within
the application header file will permit the address of an API function to be taken. With-
out this option the mapping may be implemented as a macro that does not support the
address operator.

enable_take_address ::=
<ENABLE-TAKE-ADDRESS>(true|false)</ENABLE-TAKE-ADDRESS>

Port-Defined Argument Values

Port-defined argument values support the interaction between SWCs and Basic Soft-
ware Modules by the automatic adaptation of server invocation by RTA-RTE depending
on the port used to invoke the server.

Port-defined arguments can only be applied to provided (server) ports.

Each port_arg_values list defines the valid argument values for the port referenced by
the Port-API options element:

port_argument_list ::=
<PORT-ARG-VALUES>

*value_spec
</PORT-ARG-VALUES>

166 Configuration

RTA-RTE V6.8.0
Reference Manual

One port-defined argument is passed to the operations within the client-server inter-
face that categorizes the referenced port for each “value” defined within the argument
list.

value_spec ::=
<xyz-LITERAL>
short_name
<TYPE-TREF>ref</TYPE-TREF>
<VALUE>string</VALUE>
</xyz-LITERAL>

4.10.9 Runnable Entities

The runnable entities within an AUTOSAR software-component are declared within the
<RUNNABLES> element:

runnable_entitys ::=
<RUNNABLES>
+runnable_entity
</RUNNABLES>

The only mandatory information for a runnable entity is its short name and symbol.
However, if the runnable entity needs to interact with the interfaces in the associated
software component then this must be stated explicitly.

runnable_entity ::=
<RUNNABLE_ENTITY>
short_name
(pure)
(data_read_points)
(data_receive_points
(data_send_points)
(data_write_points)
(runnable_entity_runs_in_exclusive_areas)
(mode_switch_points)
(read_variables)
(minimum_start_interval)
(server_call_points)
symbol
(runnable_entity_can_enter_exclusive_areas)
(wait_points)
(written_variables)
</RUNNABLE_ENTITY>

Concurrent execution

The runnable entity responsible for servicing an Operation Invoked Event for a client-
server operation can be marked as subject to concurrent execution (previous releases
of RTA-RTE referred to such runnable entities as ‘pure’) to enable un-queued execution.

pure ::=
<CAN-BE-INVOKED-CONCURRENTLY>
(true|false)

Configuration 167

RTA-RTE V6.8.0
Reference Manual

</CAN-BE-INVOKED-CONCURRENTLY>

For intra-ECU client-server communication, a runnable entity that is marked as con-
currently executable will be directly invoked by RTA-RTE irrespective of whether intra-
task or inter-task communication is involved provided all clients access the server syn-
chronously.

Concurrent execution affects runnable entities activated as a result of an
OperationInvoked RTE event as well as allowing runnables activated by
multiple RTEEvents to be mapped to preemptable tasks.

Write Accesses

When the runnable is to be used to send data on a software component interface using
implicit RTE API it must define the data write points where the data is written by the
runnable entity. Each data write access point needs to be named and must reference a
data item in a sender-receiver interface.

data_write_points ::=
<DATA-WRITE-ACCESSS>
+data_write_point
</DATA-WRITE-ACCESSS>

data_write_point ::=
<DATA-WRITE-ACCESS>
short_name
<DATA-ELEMENT-IREF>
instance_ref
</DATA-ELEMENT-IREF>
</DATA-WRITE-ACCESS>

A data write point is necessary for RTA-RTE to create the Rte_IWrite and
Rte_IInvalidate API calls.

The <DATA-ELEMENT-IREF> instance reference defines the data element to which this
event applies and requires a single context reference (the port prototype) and a target
reference (the data element within the interface that categorizes the port).

4.10.10 Read Accesses

When the runnable is used to read data on a software component interface using im-
plicit RTE API it must define the data read points where the data is read by the runnable
entity. Each data read access point needs to be named and must reference a data item
in a sender-receiver interface.

data_read_points ::=
<DATA-READ-ACCESSS>
+data_read_point
</DATA-READ-ACCESSS>

data_read_point ::=
<DATA-READ-ACCESS>

168 Configuration

RTA-RTE V6.8.0
Reference Manual

short_name
<DATA-ELEMENT-IREF>
instance_ref
</DATA-ELEMENT-IREF>
</DATA-READ-ACCESS>

A data read point is necessary for RTA-RTE to create the Rte_IRead and Rte_IStatus
API calls.

The <DATA-ELEMENT-IREF> instance reference defines the data element to which this
event applies and requires a single context reference (the port prototype) and a target
reference (the data element within the interface that categorizes the port).

Receive Points

When the runnable is used to receive data on a software component interface using the
explicit RTE API it must define the data receive points where the data is received. Each
data receive point needs to be named and reference a data item in a sender-receiver
interface.

data_receive_points ::=
<DATA-RECEIVE-POINTS>
+data_receive_point
</DATA-RECEIVE-POINTS>

data_receive_point ::=
<DATA-RECEIVE-POINT>
short_name
<DATA-ELEMENT-IREF>
instance_ref
</DATA-ELEMENT-IREF>
</DATA-RECEIVE-POINT>

A data receive point is necessary for RTA-RTE to create the Rte_Receive API calls.

The <DATA-ELEMENT-IREF> instance reference defines the data element to which this
event applies and requires a single context reference (the port prototype) and a target
reference (the data element within the interface that categorizes the port).

Send Points

When the runnable is used to send data on a software component interface using the
explicit RTE API it must define which data items are sent. Each data send point needs
to be named and must reference a data item in a sender-receiver interface.

data_send_points ::=
<DATA-SEND-POINTS>
+data_send_point
</DATA-SEND-POINTS>

data_send_point ::=
<DATA-SEND-POINT>

Configuration 169

RTA-RTE V6.8.0
Reference Manual

short_name
<DATA-ELEMENT-IREF>
instance_ref
</DATA-ELEMENT-IREF>
</DATA-SEND-POINT>

A data send point is necessary for RTA-RTE to create the Rte_Send or Rte_Write API
calls.

The <DATA-ELEMENT-IREF> instance reference defines the data element to which this
event applies and requires a single context reference (the port prototype) and a target
reference (the data element within the interface that categorizes the port).

Mode Switch Points

If a runnable is used as a mode manager that will make an Rte_Switch API call over a
sender-receiver interface, then the runnable needs to define a mode switch point.

A mode switch point is necessary for RTA-RTE to create the Rte_Switch API call.

Each mode switch point needs to be named and must reference a mode declaration
group prototype in a sender-receiver interface.

mode_switch_points ::=
<MODE-SWITCH-POINTS>
+mode_switch_point
</MODE-SWITCH-POINTS>

mode_switch_point ::=
<MODE-SWITCH-POINT>
short_name
<MODE-GROUP-IREF>
<P-PORT-PROTOTYPE-REF>
ref
</P-PORT-PROTOTYPE-REF>
<MODE-DECLARATION-GROUP-PROTOTYPE-REF>
ref
</MODE-DECLARATION-GROUP-PROTOTYPE-REF>
</MODE-GROUP-IREF>
</MODE-SWITCH-POINT>

The <MODE-SWITCH-IREF> instance reference defines the mode declaration group pro-
totype to which the switch point applies. The instance reference requires a port pro-
totype reference and a mode declaration group prototype reference (which must be
within the interface that categorizes the port).

Server Call Points

If a runnable is used as a client that will make a server call over a client-server interface,
then the runnable needs to define the server interface operation(s) that it calls.

server_call_points ::=

170 Configuration

RTA-RTE V6.8.0
Reference Manual

<SERVER-CALL-POINTS>
+ (asynchronous_server_call_point |
synchronous_server_call_point)
</SERVER-CALL-POINTS>

asynchronous_server_call_point ::=
<ASYNCHRONOUS-SERVER-CALL-POINT>
short_name
<OPERATION-IREFS>
+operation_iref
</OPERATION-IREFS>
</ASYNCHRONOUS-SERVER-CALL-POINT>

synchronous_server_call_point ::=
<SYNCHRONOUS-SERVER-CALL-POINT>
short_name
<OPERATION-IREFS>
+operation_iref
</OPERATION-IREFS>
<TIMEOUT>time</TIMEOUT>
</SYNCHRONOUS-SERVER-CALL-POINT>

The <TIMEOUT> defines the maximum time an inter-ECU call will block before returning.
No trailing text indicating the units is required or permitted. Fractions of a second can
be expressed using floating point format with a period (“.”) as the decimal separator.

operation_iref ::=
<OPERATION-IREF>instance_ref</OPERATION-IREF>

The <OPERATION-IREF> instance reference defines the operation to which this event
applies and requires a single context reference (the port prototype) and a target refer-
ence (the operation within the interface that categorizes the port).

RTA-RTE supports at most one operation_iref reference per server call point.

Symbol

The SYMBOL element provides the C name of the function that implements the runnable
entity.

symbol ::=
<SYMBOL>C-Ident</SYMBOL>

RTA-RTE expects that the symbol will be defined in an implementation of a software
component. A protyotype for the runnable entity is declared in the component’s appli-
cation header file.

Blocking API calls

When a runnable needs to block (i.e. wait on events) it must name the points at which
it waits and, for each point, define the associated <RTE-EVENT>.

Configuration 171

RTA-RTE V6.8.0
Reference Manual

wait_points ::=
<WAIT-POINTS>
+wait_point
</WAIT-POINTS>

wait_point ::=
<WAIT-POINT>
short_name
<TRIGGER-REFS>
+(<TRIGGER-REF>ref</TRIGGER-REF>)
</TRIGGER-REFS>
<TIMEOUT>time</TIMEOUT>
</WAIT-POINT>

The <TIMEOUT> elements defines the maximum time, in seconds, a blocking API call
will wait before returning. No trailing text indicating the units is required or permitted.
Fractions of a second can be expressed using floating point format with a period (“.”)
as the decimal separator.

When a blocking API call is required the <RTE-EVENT> referenced within a
trigger reference must not also reference a runnable entity.

A Wait Point is only permitted to reference the following RTE events:

• Data Received

• Data Send Completed

• Asynchronous Server Call Returns

• Mode Switched Acknowledge

Access to Exclusive Areas

Each runnable can specify whether it can get access to a critical section at runtime,
either implicitly when invoked by the generated RTE, or explicitly by making an appro-
priate RTE call.

Explicit exclusive areas are defined by a “runnable can enter” element:

runnable_entity_can_enter_exclusive_areas ::=
<CAN-ENTER-EXCLUSIVE-AREA-REFS>
+exclusive_area_reference
</CAN-ENTER-EXCLUSIVE-AREA-REFS>

exclusive_area_reference ::=
<CAN-ENTER-EXCLUSIVE-AREA-REF>
ref
</CAN-ENTER-EXCLUSIVE-AREA-REF>

Implicit exclusive areas are defined within a “runs inside exclusive area” element:

172 Configuration

RTA-RTE V6.8.0
Reference Manual

runnable_entity_runs_in_exclusive_areas ::=
<RUNS-INSIDE-EXCLUSIVE-AREA-REFS>
+implicit_area_reference
</RUNS-INSIDE-EXCLUSIVE-AREA-REFS>

implicit_area_reference ::=
<RUNS-INSIDE-EXCLUSIVE-AREA-REF>
ref
</RUNS-INSIDE-EXCLUSIVE-AREA-REF>

Exclusive areas can only be used for concurrency control within a software-
component instance.

Read Variables

Each runnable can specify whether it can get “read” access to an inter-runnable vari-
able at runtime, either implicitly or explicitly, by making an appropriate RTE call.

read_variables ::=
<READ-VARIABLE-REFS>
+read_variable
</READ-VARIABLE-REFS>

read_variable ::=
<READ-VARIABLE-REF>ref</READ-VARIABLE-REF>

Written Variables

Each runnable can specify whether it can get “write” access to an inter-runnable vari-
able at runtime, either implicitly or explicitly, by making an appropriate RTE call.

written_variables ::=
<WRITTEN-VARIABLE-REFS>
+written_variable
</WRITTEN-VARIABLE-REFS>

written_variable ::=
<WRITTEN-VARIABLE-REF>ref</WRITTEN-VARIABLE-REF>

Minimum Start Interval

The <MINIMUM-START-INTERVAL> element specifies the time (in seconds) between
which any two executions of the runnable are guaranteed to be separated.

minimum_start_interval ::=
<MINIMUM-START-INTERVAL>
time
</MINIMUM-START-INTERVAL>

A minimum start interval specification is typically used with runnable entities triggered
by DataReceivedEvents to limit the rate at which events are processed. However a
minimum start interval can be applied to any runnable entity except for those triggered
by an OperationInvokedEvent.

Configuration 173

RTA-RTE V6.8.0
Reference Manual

4.10.11 Multiple Instantiation

The <SUPPORTS-MULTIPLE-INSTANTIATION> element determines whether or not multi-
ple instances of a software component are permitted.

multiple_instances ::=
<SUPPORTS-MULTIPLE-INSTANTIATION>
(true | false)
</SUPPORTS-MULTIPLE-INSTANTIATION>

A value of “true” indicates that multiple instances of a software-component are permit-
ted whereas “false” indicates that multiple instances are forbidden.

RTA-RTE is able to apply higher levels of optimization, especially at the “Con-
tract” generation stage, when multiple instantiation is forbidden.

4.11 Implementation

The implementation description of a software component defines its implementation
characteristics.

This release of RTA-RTE uses the <SWC-IMPLEMENTATION> element to determine
whether or not a software-component is delivered as source code or object-code.

implementation ::=
<SWC-IMPLEMENTATION>
short_name
(code_descriptor)
<BEHAVIOR-REF>ref</BEHAVIOR-REF>
<SWC-IMPLEMENTATION>

An <IMPLEMENTATION> or <SWC-IMPLEMENTATION> element references an internal be-
havior element that in turn references a SWC type. This relationship permits multiple
implementation elements to be “associated” with a particular SWC type, e.g. one im-
plementation for each supported processor.

RTE generation occurs for a specific implementation and therefore RTA-RTE
needs additional information in the form of an implementation selection el-
ement to determine which <IMPLEMENTATION> or <SWC-IMPLEMENTATION>
element to use for a specific SWC instance. See Section 4.19.2

4.11.1 Code Descriptor

The <CODE-DESCRIPTOR> element determines whether the SWC type for which the im-
plementation is associated is delivered as source-code or object-code.

code_descriptor ::=
<CODE-DESCRIPTORS>

<CODE>
short_name

<ARTIFACT-DESCRIPTORS>
<AUTOSAR-ENGINEERING-OBJECT>

174 Configuration

RTA-RTE V6.8.0
Reference Manual

<CATEGORY>(SWSRC|SWOBJ)</CATEGORY>
</AUTOSAR-ENGINEERING-OBJECT>
</ARTIFACT-DESCRIPTORS>
</CODE>

</CODE-DESCRIPTORS>

When an SWC instance is delivered as “SWSRC”, RTA-RTE will elide the generation of
functions in the generated RTE wherever possible; for example a client-server Rte_Call
with an optimized API mapping that directly invokes the server runnable does not re-
quire the body of the RTE Call API to be generated.

4.12 Signals

A signal, or message, is the basic unit of communication between ECUs, usually car-
rying a single logical item of data, such as a value representing engine temperature.
AUTOSAR distinguishes between three kinds of signal: system signals, interaction layer
signals (i-signals) and COM signals, all of which may refer to the same data item. To un-
derstand the configuration of inter-ECU commumication within RTA-RTE, it is important
to understand what is referred to by the different types of signal.

System Signal —the most abstract representation of a message used to carry data,
and is the kind of signal referred to when data mappings are configured.

I-Signal —an instance of a system signal in a particular interaction layer PDU. A sep-
arate class is used in order to support “fan-out”, enabling a single system signal
to be referred to in multiple PDU instances, sent to different destinations. Conse-
quently, there may be n i-signals corresponding to a single system signal.

Com signal —an element of the COM module configuration, representing a concrete
instance of a signal. Com signals correspond directly to i-signals, i.e. for every
i-signal in the system definition that is required for the ECU being generated,
there should be a Com signal. The configuration of Com signals includes detailed
information about the communication stack that is not included in the high-level
system definition, such as repetition counts, filters, etc.

The <SYSTEM-SIGNAL> element defines an AUTOSAR signal.

system_signal ::=
<SYSTEM-SIGNAL>
short_name
<LENGTH>int</LENGTH>
</SYSTEM-SIGNAL>

The signal length is defined in bits. All other properties of the signal, such as its bit
position, are set when a signal type is mapped into a frame type.

An I-Signal describes an instance of a system signal in a particular interaction layer
PDU and hence the <I-SIGNAL> references a <SYSTEM-SIGNAL>.

Configuration 175

RTA-RTE V6.8.0
Reference Manual

i_signal ::=
<I-SIGNAL>
short_name
<SYSTEM-SIGNAL-REF>ref</SYSTEM-SIGNAL-REF>
</I-SIGNAL>

An I-Signal is referenced from an <I-SIGNAL-TO-I-PDU-MAPPING> when the signal is
packed into an I-PDU—see Section 4.14.

An I-Signal describes an instance of a system signal in a particular interaction layer
PDU and hence the <I-SIGNAL> references a <SYSTEM-SIGNAL>.

i_signal ::=
<I-SIGNAL>
short_name
<SYSTEM-SIGNAL-REF>ref</SYSTEM-SIGNAL-REF>
</I-SIGNAL>

An I-Signal is referenced from an <I-SIGNAL-TO-I-PDU-MAPPING> when the signal is
packed into an I-PDU—see Section 4.14.

4.13 System Signal Group

The <SYSTEM-SIGNAL-GROUP> element defines a group of AUTOSAR signals that can be
sent and received atomically.

signal_group_type ::=
<SYSTEM-SIGNAL-GROUP>
short_name
<SYSTEM-SIGNALS-REFS>
+signal_ref
</SYSTEM-SIGNALS-REFS>
</SYSTEM-SIGNAL-GROUP>

signal_ref ::=
<SYSTEM-SIGNALS-REF>ref</SYSTEM-SIGNALS-REF>

4.14 PDU Type

The <SIGNAL-I-PDU> element captures the definition of an I-PDU including the position
of all signals within the frame.

pdu_type ::=
<SIGNAL-I-PDU>
short_name
<LENGTH>int</LENGTH>
<SIGNAL-TO-PDU-MAPPINGS>
+signal_to_pdu_mapping
</SIGNAL-TO-PDU-MAPPINGS>
</SIGNAL-I-PDU>

The PDU length is specified in bits.

176 Configuration

RTA-RTE V6.8.0
Reference Manual

Each <I-SIGNAL-TO-I-PDU-MAPPING> element defines the name, packing order and
start position in bits of a referenced I-signal:

signal_to_pdu_mapping ::=
<I-SIGNAL-TO-I-PDU-MAPPING>
short_name
<PACKING-BYTE-ORDER>
(MOST-SIGNIFICANT-BYTE-FIRST |
MOST-SIGNIFICANT-BYTE-LAST)

</PACKING-BYTE-ORDER>
<SIGNAL-REF>ref</SIGNAL-REF>
<START-POSITION>int</START-POSITION>
</I-SIGNAL-TO-I-PDU-MAPPING>

The signal start position within the frame type is specified in bits.

The <SIGNAL-REF> element must refer to a <I-SIGNAL> defined in the input.

4.15 ECU Types

The <ECU> element captures the definition of an ECU type.

ecu ::=
<ECU>
short_name
(ecu_abstraction_ref)
</ECU>

The communication buffer definition is not used by RTA-RTE but must be specified for
the XML to be valid.

4.16 Composition

A composition defines instances of component types and the connections between
ports.

composition_type ::=
<COMPOSITION-TYPE>
short_name
component_prototypes
connector_definitions
port_prototypes
</COMPOSITION-TYPE>

4.16.1 Component Prototypes

A composition creates the component prototypes—in the XML input these are defined
using the <COMPONENTS> element:

component_instances ::=
<COMPONENTS>
+component_prototype
</COMPONENTS>

Configuration 177

RTA-RTE V6.8.0
Reference Manual

Each component prototype defines two pieces of information; a name so the prototype
can be referenced from other XML elements and a reference to the relevant software-
component type.

component_prototype ::=
<COMPONENT-PROTOTYPE>
short_name
<TYPE-TREF>ref</TYPE-TREF>
</COMPONENT-PROTOTYPE>

4.16.2 Connector Definitions

The connector definitions define the connections between provided and required ports.

connector_definitions ::=
<CONNECTORS>
+assembly_connector
+delegation_connector
</CONNECTORS>

Assembly Connector

An assembly connector connects provided and required ports within a composition (and
therefore the connection should not span a composition). A delegation connector “ex-
ports” ports within a composition to enable compositions to be further composed into
higher level compositions.

Each assembly connector defines two port instances; a provided and required port.

assembly_connector ::=
<ASSEMBLY-CONNECTOR-PROTOTYPE>
short_name
<PROVIDER-IREF>instance_ref</PROVIDER-IREF>
<REQUESTER-IREF>instance_ref</REQUESTER-IREF>
</ASSEMBLY-CONNECTOR-PROTOTYPE>

The <PROVIDER-IREF> instance reference defines the providing port prototype to which
this connector applies and requires a single context reference (the component proto-
type) and a target reference (the port prototype within the SWC type).

The <REQUIRER-IREF> instance reference defines the requiring port prototype to which
this connector applies and requires a single context reference (the component proto-
type) and a target reference (the port prototype within the SWC type).

For both <PROVIDER-IREF> and <REQUIRER-IREF> instance references the referenced
component prototype must be within the same composition as the assembly connector.

Delegation Connector

A delegation connector defines two port prototypes which must either both be provided
or both be required.

delegation_connector ::=

178 Configuration

RTA-RTE V6.8.0
Reference Manual

<DELEGATION-CONNECTOR-PROTOTYPE>
short_name
<INNER-PORT-IREF>instance_ref</INNER-PORT-IREF>
<OUTER-PORT-REF>instance_ref</OUTER-PORT-IREF>
</DELEGATION-CONNECTOR-PROTOTYPE>

The instance reference within the <INNER-PORT-IREF> should refer to a port prototype
on a component prototype within the composition, whereas the reference within the
<OUTER-PORT-REF> should refer to a port prototype of the composition itself.

Delegation connectors must always connect ports of the same type. RTA-
RTE flags attempts to connect PPorts to RPorts using delegation connectors
as invalid configurations.

Service Connector

In addition to assembly and delegation connectors, RTA-RTE supports a third type of
connector, the “SERVICE-CONNECTOR-PROTOTYPE”, which is used to connect a soft-
ware component to an AUTOSAR service. However, service connectors should not ap-
pear in a standard software composition, but are placed instead in the ECU’s software
composition, which is also where services themselves are configured on an ECU (see
Section ??).

4.16.3 Port Prototypes

A delegation connector connects a port prototype on a component prototype within the
composition to a port prototype defined within the composition.

port_prototypes::=
<PORTS>
+port_prototype
</PORTS>

The definition of port prototypes is covered in Section 4.4.1.

The port prototype within the composition can be either the source or destination of
the delegation connector.

4.17 ECU Instances

A system topology type defines the instances of ECU types:

ecu_instances ::=
<ECU-INSTANCES>
+ecu-instance
</ECU-INSTANCES>

Each ECU instance is defined using an <ECU-INSTANCE> element. As with the <SYSTEM>,
the ECU instance is named and therefore can be referenced from other elements:

ecu_instance ::=
<ECU-INSTANCE>

Configuration 179

RTA-RTE V6.8.0
Reference Manual

short_name
<ECU-TREF>ref</ECU-TREF>
(ecu_port_instances)
</ECU-INSTANCE>

ecu_instance ::=
<ECU-INSTANCE>
short_name
(ecu_connectors)
</ECU-INSTANCE>

The <ECU-TREF> element must refer to an ECU element defined within the input.

Before an ECU instance can be referenced, for example on the command
line, a topology instance must be defined that references the encapsulating
system topology type.

The ECU instance defines zero or more communication port instances:

ecu_port_instances ::=
<PORT-INSTANCES>
+ecu_port_instance
</PORT-INSTANCES>

ecu_connectors ::=
<CONNECTORS>
+communication_connector
</CONNECTORS>

communication_connector ::=
<COMMUNICATION-CONNECTOR>
short_name
<ECU-COMM-PORT-INSTANCES/>
</COMMUNICATION-CONNECTOR>

RTA-RTE does not use the <ECU-COMM-PORT-INSTANCE> element.

A communication port instance defines the port speed and the relevant port type
(within the ECU type):

ecu_port_instance ::=
<CAN-COMMUNICATION-PORT-INSTANCE>
short_name
<COMM-PORT-ID>int</COMM-PORT-ID>
<COMMUNICATION-SPEED-PORT>
int
</COMMUNICATION-SPEED-PORT>
<PORT-TREF>ref</PORT-TREF>
<PROTOCOL-VERSION>
(L-2-0-A | L-2-0-B)
</PROTOCOL-VERSION>
</CAN-COMMUNICATION-PORT-INSTANCE>

180 Configuration

RTA-RTE V6.8.0
Reference Manual

The <PORT-TREF> element references an <ECU-COMMUNICATION-PORT> on the ECU type.
It should references a communication port on the same ECU type as specified within
the <ECU-INSTANCE>.

The <PROTOCOL-VERSION> element defines whether the CAN communication port is
CAN 2.0a (L-2-0-A) or CAN 2.0b (L-2-0-B) compliant.

4.18 System Description

The system description defines the core elements of an AUTOSAR system including
how SWC prototypes are mapped onto the available ECU instances and how AUTOSAR
signals are mapped onto Com signals.

A system definition must be named so that other XML elements can refer to the system.

system ::=
<SYSTEM>
short_name
(mapping)
sw_composition
</SYSTEM>

4.18.1 Mapping Sets

The mapping of both component instances to ECU instances and, for inter-ECU com-
munication, data element prototypes to system signals is performed by the mapping
sets:

mapping ::=
<MAPPING>
short_name
(data_mappings)
(swc_mappings)
</MAPPING>

The two mapping sets are responsible for mapping component interface communica-
tion to physical data transmission and mapping components to ECUs.

4.18.2 Data Mapping

The Data Mapping maps communication between software-components to physical
(network) data transmission.

There are two categories of data mapping: those for sender-receiver and those for
client-server communication. These may be freely mixed within the <DATA-MAPPINGS>
block:

data_mappings ::=
<DATA-MAPPINGS>

*(sender_receiver_mapping | client_server_mapping)
<DATA-MAPPINGS>

Configuration 181

RTA-RTE V6.8.0
Reference Manual

Sender-Receiver Communication

Sender-receiver mappings map a data element prototype, part of a sender-receiver
interface, either to a single signal (if the data type is primitive), or to a signal group (if
the data type is complex).

sender_receiver_mapping ::=
(sender_receiver_signal_mapping |
sender_receiver_signal_group_mapping)

sender_receiver_signal_mapping ::=
<SENDER-RECEIVER-TO-SIGNAL-MAPPING>
data_element_iref
signal_ref
</SENDER-RECEIVER-TO-SIGNAL-MAPPING>

sender_receiver_signal_group_mapping ::=
<SENDER-RECEIVER-TO-SIGNAL-GROUP-MAPPING>
data_element_iref
signal_group_ref
type_mapping
</SENDER-RECEIVER-TO-SIGNAL-GROUP-MAPPING>

Data element instances consist of references to a software component instance within
a composition, a port, and a data element itself, which appears within the description
of the sender-receiver interface that characterizes the port.

data_element_iref ::=
<DATA-ELEMENT-IREF>
+component_prototype_ref
<PORT-PROTOTYPE-REF>ref<PORT-PROTOTYPE-REF>
<DATA-ELEMENT-REF>ref</DATA-ELEMENT-REF>
</DATA-ELEMENT-IREF>

The <DATA-ELEMENT-IREF> element includes one <COMPONENT-PROTOTYPE-REF> for
each level of the composition hierarchy—when nested compositions are present multi-
ple <COMPONENT-PROTOTYPE-REF> are necessary.

component_prototype_ref ::=
<COMPONENT-PROTOTYPE-REF>
ref
</COMPONENT-PROTOTYPE-REF>

signal_ref ::=
<SIGNAL-REF>ref</SIGNAL-REF>

signal_group_ref ::=
<SIGNAL-GROUP-REF>ref</SIGNAL-GROUP-REF>

Complex types are mapped to signal groups: these types may be either records or
arrays.

182 Configuration

RTA-RTE V6.8.0
Reference Manual

type_mapping ::=
<TYPE-MAPPING>
(sr_record_type_mapping | sr_array_type_mapping)
</TYPE-MAPPING>

Records are mapped using the <SENDER-REC-RECORD-TYPE-MAPPING> element:

sr_record_type_mapping ::=
<SENDER-REC-RECORD-TYPE-MAPPING>
<RECORD-ELEMENT-MAPPINGS>
+sr_record_element_mapping
</RECORD-ELEMENT-MAPPINGS>
</SENDER-REC-RECORD-TYPE-MAPPING>

Each record element, whether a primitive or complex type, is mapped using a
<SENDER-REC-RECORD-ELEMENT-MAPPING> element.

sr_record_element_mapping ::=
<SENDER-REC-RECORD-ELEMENT-MAPPING>
(sr_simple_record_element_mapping | sr_complex_record_element_mapping

)
</SENDER-REC-RECORD-ELEMENT-MAPPING>

Record elements can be primitive or complex types. For an element which is a primitive
type the mapping references a single signal.

sr_simple_record_element_mapping ::=
sr_record_element_iref
signal_ref

For record elements that are themselves complex types a nested mapping element is
used.

sr_complex_record_element_mapping ::=
<COMPLEX-TYPE_MAPPING>
(sr_record_type_mapping | sr_array_type_mapping)
</COMPLEX-TYPE_MAPPING>
sr_record_element_ref

The sr_record_element_ref references the relevant record element.

sr_record_element_ref ::=
<RECORD-ELEMENT-REF>
ref
</RECORD-ELEMENT-REF>

Arrays are mapped element-by-element, in a similar way to records, with each element
being mapped to a separate signal:

sr_array_type_mapping ::=
<SENDER-REC-ARRAY-TYPE-MAPPING>
<ARRAY-ELEMENT-MAPPINGS>
+sr_array_element_mapping

Configuration 183

RTA-RTE V6.8.0
Reference Manual

</ARRAY-ELEMENT-MAPPINGS>
</SENDER-REC-ARRAY-TYPE-MAPPING>

Each element of the array is mapped using a <SENDER-REC-ARRAY-ELEMENT-MAPPING>
element.

sr_array_element_mapping ::=
<SENDER-REC-ARRAY-ELEMENT-MAPPING>
(sr_simple_array_element_mapping | sr_complex_array_element_mapping)
</SENDER-REC-ARRAY-ELEMENT-MAPPING>

Array elements can be primitive or complex types. For an element which is a primitive
type the mapping references a single signal.

sr_simple_array_element_mapping ::=
sr_array_element_ref
signal_ref

For array elements that are themselves complex types a nested mapping element is
used.

sr_complex_array_element_mapping ::=
<COMPLEX-TYPE_MAPPING>
sr_record_type_mapping
</COMPLEX-TYPE_MAPPING>
sr_array_element_ref

Note the restriction here that an array may not contain nested array-type elements—
only records can be nested.

sr_array_element_ref ::=
<INDEXED-ARRAY-ELEMENT>
<ARRAY-ELEMENT-REF>ref</ARRAY-ELEMENT-REF>
<INDEX>int</INDEX>
</INDEXED-ARRAY-ELEMENT>

The <INDEX> gives the position of the mapped element within the array; the
<ARRAY-ELEMENT-REF> refers to the type of the array element, and should therefore
have the same value for all the mapped elements of a given array.

Client-Server Communication

The client-sever to protocol mappings maps client-sever interface communication to
system signals via an embedded reference to a communication protocol

client_server_to_protocol_mappings ::=
<CLIENT-SERVER-TO-PROTOCOL-MAPPING>
<CS-PARAMETER-MAPPINGS>
+ client_server_parameter_mapping
<CS-PARAMETER-MAPPINGS>
<MAPPED-OPERATION-IREF>
instance_ref

184 Configuration

RTA-RTE V6.8.0
Reference Manual

</MAPPED-OPERATION-IREF>
</CLIENT-SERVER-TO-PROTOCOL-MAPPING>

The <MAPPED-OPERATION-IREF> instance reference requires three context references
(the component prototype, the port prototype within the component prototype and
the operation within the interface categorizing the port) and a target reference (the
argument within the operation).

client_server_parameter_mapping ::=
<CLIENT-SERVER-PARAMETER-MAPPING>
<MAPPED-PARAMETER-IREF>
instance_ref
</MAPPED-PARAMETER-IREF>
<USED-COMM-PROTO-SIGNAL-IREF>
instance_ref
</USED-COMM-PROTO-SIGNAL-IREF>
</CLIENT-SERVER-PARAMETER-MAPPING>

The <MAPPED-PARAMETER-IREF> instance reference requires three context references
(the component prototype, the port prototype within the component prototype and
the operation within the interface categorizing the port) and a target reference (the
argument within the operation).

The <USED-COMM-PROTO-SIGNAL-IREF> instance reference merely requires a target ref-
erence; no context references are required. The target reference must refer to a
<COMM-PROTOCOL-SIGNAL-ROLE> defined in the input.

Client-Server Communication

The client-sever to signal mappings map client-server interface communication to sys-
tem signals in a way similar to the mapping of sender-receiver communications. In the
client-server case, a signal group is always used, holding not only the signals for the
parameters of the operation, but also those for various elements of meta-data, such as
sequence counters.

client_server_mapping ::=
<CLIENT-SERVER-TO-SIGNAL-GROUP-MAPPING>
(application_errors)
(composite_type_mappings)
(empty_signal)
mapped_operation_ref
(primitive_type_mappings)
(request_group_ref | response_group_ref)
(sequence_counter)
</CLIENT-SERVER-TO-SIGNAL-GROUP-MAPPING>

mapped_operation_ref ::=
<MAPPED-OPERATION-IREF>

component_prototype_ref
<PORT-PROTOTYPE-REF>ref</PORT-PROTOTYPE-REF>
<OPERATION-REF>ref</OPERATION-REF>
</MAPPED-OPERATION-IREF>

Configuration 185

RTA-RTE V6.8.0
Reference Manual

The <MAPPED-OPERATION-IREF> instance reference contains elements: the component
prototype, the port prototype within the component prototype and the operation within
the interface categorizing the port.

application_errors ::=
<APPLICATION-ERRORS>

*application_error_mapping
</APPLICATION-ERRORS >

application_error_mapping ::=
<APPLICATION-ERROR-MAPPING>
system_signal_ref
</APPLICATION-ERROR-MAPPING>

The <APPLICATION-ERRORS> element is used to provide a signal to carry an error code
from the server back to the client.

empty_signal ::=
<EMPTY-SIGNAL>
system_signal_ref
</EMPTY-SIGNAL>

sequence_counter ::=
<SEQUENCE-COUNTER>
system_signal_ref
</SEQUENCE-COUNTER >

request_group_ref ::=
<REQUEST-GROUP-REF>ref</REQUEST-GROUP-REF >

response_group_ref ::=
<RESPONSE-GROUP-REF>ref</RESPONSE-GROUP-REF >

Either a <REQUEST-GROUP-REF> or a <RESPONSE-GROUP-REF> must be specified in a
mapping (but not both), and for any given operation, there must be mappings contain-
ing each of these elements. They identify the signal group used for atomic transmission
of all the arguments and other data associated with a client-server call or response.

The <PRIMITIVE-TYPE-MAPPING> and <COMPOSITE-TYPE-MAPPING> elements are used
to collect signal mappings for the simple and complex arguments, respectively, of a
client-server operation. They include a range of XML elements very similar to those
used for sender-receiver data mappings.

primitive_type_mappings ::=
<PRIMITIVE-TYPE-MAPPING>

*primitive_type_mapping
</PRIMITIVE-TYPE-MAPPING>

primitive_type_mapping ::=
argument_ref
system_signal_ref

The argument_ref reference identifies the argument to which the mapping applies.

186 Configuration

RTA-RTE V6.8.0
Reference Manual

argument_ref ::=
<ARGUMENT-REF>ref</ARGUMENT-REF>

system_signal_ref ::=
<SYSTEM-SIGNAL-REF>ref</SYSTEM-SIGNAL-REF>

A <COMPOSITE-TYPE-MAPPING> element is used to collect signal mappings for complex
arguments (records and arrays) of a client-server operation.

composite_type_mappings ::=
<COMPOSITE-TYPE-MAPPINGS>

*(cs_record_type_mapping | cs_array_type_mapping)
</COMPOSITE-TYPE-MAPPINGS>

Since there can be multiple complex arguments the element encapsulates zero or more
mapping elements—one for each argument.

The <CLIENT-SERVER-RECORD-TYPE-MAPPING> element references the client-server ar-
gument and contains the mapping to signals.

cs_record_type_mapping ::=
<CLIENT-SERVER-RECORD-TYPE-MAPPING>
argument_ref
<RECORD-ELEMENT-MAPPINGS>
+cs_record_element_mapping
<RECORD-ELEMENT-MAPPINGS>
</CLIENT-SERVER-RECORD-TYPE-MAPPING>

Each element of the record is mapped using a <CLIENT-SERVER-RECORD-ELEMENT-MAPPING>
element.

cs_record_element_mapping ::=
<CLIENT-SERVER-RECORD-ELEMENT-MAPPING>
(cs_simple_record_element_mapping |
cs_complex_record_element_mapping)
</CLIENT-SERVER-RECORD-ELEMENT-MAPPING>

Record elements can be primitive or complex types. For an element which is a primitive
type the mapping references a single signal.

cs_simple_record_element_mapping ::=
cs_record_element_ref
signal_ref

For record elements that are themselves complex types a nested
<CLIENT-SERVER-RECORD-ELEMENT-MAPPING> element is used. The argument ref-
erence for a nested element is ignored.

cs_complex_record_element_mapping ::=
<COMPLEX-TYPE_MAPPING>
(cs_record_type_mapping | cs_array_type_mapping)
</COMPLEX-TYPE_MAPPING>
cs_record_element_ref

Configuration 187

RTA-RTE V6.8.0
Reference Manual

The relevant record element is identified by an <RECORD-ELEMENT-REF> element.

cs_record_element_ref ::=
<RECORD-ELEMENT-REF>
ref
</RECORD-ELEMENT-REF>

Arrays are mapped element-by-element, in a similar way to record, with each element
being mapped to a separate signal:

cs_array_type_mapping ::=
<CLIENT-SERVER-ARRAY-TYPE-MAPPING>

argument_ref
<ARRAY-ELEMENT-MAPPINGS>
+cs_array_element_mapping
</ARRAY-ELEMENT-MAPPINGS>
</CLIENT-SERVER-ARRAY-TYPE-MAPPING>

cs_array_element_mapping ::=
<CLIENT-SERVER-ARRAY-ELEMENT-MAPPING>
(cs_simple_array_element_mapping |
cs_complex_array_element_mapping)
</CLIENT-SERVER-ARRAY-ELEMENT-MAPPING>

cs_simple_array_element_mapping ::=
cs_array_element_ref
signal_ref

cs_complex_array_element_mapping ::=
<COMPLEX-TYPE_MAPPING>
cs_record_type_mapping
</COMPLEX-TYPE_MAPPING>
cs_array_element_ref

Note the restriction here that an array may not contain nested array-type elements.

cs_array_element_ref ::=
<CLIENT-SERVER-ARRAY-ELEMENT-MAPPING>
<INDEXED-ARRAY-ELEMENT>
<ARRAY-ELEMENT-REF>
ref
</ARRAY-ELEMENT-REF>
<INDEX>int</INDEX>
</INDEXED-ARRAY-ELEMENT>
signal_ref
</CLIENT-SERVER-ARRAY-ELEMENT-MAPPING>

An array element reference consists of a software component instance within a com-
position, a port, and an operation argument. The <INDEX> gives the position of the
mapped element within the array; the <ARRAY-ELEMENT-REF> refers to the type of the
array element, and should therefore have the same value for all the mapped elements
of a given array.

188 Configuration

RTA-RTE V6.8.0
Reference Manual

4.18.3 Software Component to Implementation Mapping

A “software-component implementation mapping” maps software component proto-
types to specific implementations. RTA-RTE uses the implementation to determine if a
SWC is implemented as source or object code.

swc_to_impl_mapping ::=
<SW-IMPL-MAPPINGS>
<SWC-TO-IMPL-MAPPING>
short_name

COMPONENT-IMPLEMENTATION-REF>ref</COMPONENT-IMPLEMENTATION-REF>
<COMPONENT-IREFS>
+component_prototype_iref
</COMPONENT-IREFS>
</SWC-TO-IMPL-MAPPING>
</SW-IMPL-MAPPINGS>

A single SWC-to-implementation mapping can associate multiple component instances
with the same implementation.

4.18.4 Software Component to ECU Mapping

A “software-component to ECU” maps software component prototypes to ECU in-
stances.

swc_mappings ::=
<SW-MAPPINGS>

*swc_to_ecu_mapping
<SW-MAPPINGS>

An SWC mapping defines neither the component prototypes nor the ECU instances—
it merely contains references to other elements that associate component prototypes
with ECU instances.

swc_to_ecu_mapping ::=
<SWC-TO-ECU-MAPPING>
short_name
<COMPONENT-IREFS>
+component_prototype_iref
</COMPONENT-IREFS>
ecu_instance_iref
</SWC-TO-ECU-MAPPING>

A single <SWC-TO-ECU-MAPPING> element can map multiple SWC prototypes to an ECU
instance. Each mapped prototype requires a <COMPONENT-IREF> element.

component_prototype_iref ::=
<COMPONENT-IREF>
instance_ref
</COMPONENT-IREF>

The <COMPONENT-IREF> instance reference defines the component prototype to be
mapped and requires at least one <SOFTWARE-COMPOSITION-REF> reference to the

Configuration 189

RTA-RTE V6.8.0
Reference Manual

top level composition, zero or more <COMPONENT-PROTOTYPE-REF> references to com-
ponent prototypes that form levels within the composition hierarchy and finally one
<TARGET-COMPONENT-PROTOTYPE-REF> that specifies the SWC prototype.

The software-components are mapped to an ECU instance defined via the
<ECU-INSTANCE-REF> element:

ecu_instance_iref ::=
<ECU-INSTANCE-REF>
instance_ref
</ECU-INSTANCE-REF>

The <ECU-INSTANCE-REF> reference defines the ECU instance to which the component
prototypes are mapped.

4.18.5 Software Composition Instance

A “software-component to ECU” mapping within a system description element identi-
fies software component prototypes via a reference to a software composition instance.

sw_compositon ::=
<SOFTWARE-COMPOSITION>
short_name
<SOFTWARE-COMPOSITION-TREF>
ref
</SOFTWARE-COMPOSITION-TREF>
</SOFTWARE-COMPOSITION>

The reference within the <SOFTWARE-COMPOSITION-TREF> refers to the system’s top-
level composition—this is the self-contained (i.e. does not delegate any ports) compo-
sition that contains all SWC instances mapped within the System element’s component
mapping.

4.19 ECU Description

The ECU Description is used to define the module configuration for the RTE (as well as
the configuration for many other AUTOSAR modules).

The top-level contain for module configuration within the ECU Description is an XML
element called a <MODULE-CONFIGURATION>. within a module’s configuration an XML
element called a <CONTAINER> is used to describe different configuration aspects.

The type of a module configuration or container element is identified by a
<DEFINITION-REF> element that defines a “path”; for AUTOSAR defined definition ref-
erences this element contains a path that always starts with /AUTOSAR. A container can
encapsulate other (sub)containers and thus a hierarchy of configuration containers is
formed.

For brevity, within the following section the ‘path’ of the encapsulated containers is
abbreviated such that the common prefix (e.g. /AUTOSAR/Rte) is replaced with ‘...’
when describing containers located at the same hierarchy level.

190 Configuration

RTA-RTE V6.8.0
Reference Manual

4.19.1 OS Module

AUTOSAR OS Configuration occurs within an instance of the container type
/AUTOSAR/Os. RTA-RTE can require access to the defined OS tasks, resources and
events.

If the RTA-RTE RTE generator requires an OS event to be able to schedule
a runnable entity and none is specified in the input then a suitable event is
constructed. See Section 10.2.5 for naming conventions.

4.19.2 RTE Module

Configuration of the RTE module occurs within an instance of the container type
/AUTOSAR/Rte. The RTE configuration container can contain one or more sub-
containers:

• .../CommonPublishedInformation—Defines the AUTOSAR version and RTA-RTE
version for which the information within the file is appropriate. The RTA-RTE RTE
generator verifies that the supplied Common Published Information is appropriate.

• .../RTEGeneration—Defines the generation parameters for RTA-RTE including the
operating mode, optimization strategy and whether or not VFB Trace Hooks are
generated.

• .../SwComponentInstance—The parent container for describing configuration of
a SW-C instance. Further sub-containers defines the mapping of one or more
runnable entity instances to OS task(s) and the implementation method to be used
for exclusive areas. The SW-C instance container can optionally describe the asso-
ciation between an software-component instance and its implementation.

• .../CalprmComponentInstance—Disables calibration support for a specified ap-
plication software-component or calibration component type.

The relationship between containers in the Rte’s module configuration container is de-
scribed in Figure 4.2.

Container CommonPublishedInformation

Configuration of version information occurs within an instance of the container type
/AUTOSAR/Rte/CommonPublishedInformation.

The Common Published Information container contains eight integer values:

• .../ArMajorVersion—An integer defining the ‘major’ part of the supported AU-
TOSAR version.

• .../ArMinorVersion—An integer defining the ‘minor’ part of the supported AU-
TOSAR version.

• .../ArMajorVersion—An integer defining the ‘patch’ revision of the supported
AUTOSAR version.

Configuration 191

RTA-RTE V6.8.0
Reference Manual

…/SwComponentInstance
Container

…/RteGeneration
Container

/AUTOSAR/Rte
Container

…/CommonPublishedInformation
Container 0..*1

1 0..*
…/CalprmComponentInstance
Container

…/RunnableEntityMapping
Sub-container 0..*

…/ExclusiveAreaImplementation
Sub-container 0..*

…/NVRamAllocation
Sub-container 0..*

…/RteMeasurementSupport
Sub-container 0..*

Figure 4.2: Top-level RTE Configuration Containers

• .../ModuleId—Not used by RTA-RTE.

• .../SwMajorVersion—An integer defining the ‘major’ part of the supported RTA-
RTE release.

• .../SwMinorVersion—An integer defining the ‘minor’ part of the supported RTA-
RTE release.

• .../SwPatchVersion—An integer defining the ‘patch’ revision of the supported
RTA-RTE release.

• .../VendorId—Not used by the RTA-RTE RTE generator.

The supported values for each integer parameter are defined in Section 11.1. If the
CommonPublishedInformation container is present in the input the contained values
are compared against the expected values and an error emitted if inconsistent.

Container RTEGeneration

Configuration of RTE generation parameters occurs within an instance of the container
type /AUTOSAR/Rte/RteGeneration. The RTE generation container can contain one or
more containers:

• .../RteGenerationMode—Defines the generation mode used; acceptable enumer-
ation values are COMPATIBILITY_MODE and VENDOR_MODE.

• .../RteVfbTrace—Enables (non-zero) or disables (zero) creation of VFB trace hook
calls in the generated RTE. Note that even when creation of hook calls is enabled
it remains necessary to enable/disable the use of individual hooks when the RTE is
compiled.

192 Configuration

RTA-RTE V6.8.0
Reference Manual

The generation of VFB trace hooks can be enabled/disabled using either the
--vfb-trace command-line option or via the RTEGeneration container. If the opti-
mization mode is specified both within RTE parameters and on the command-line
the latter specification takes precedence.

The specification of this parameter is optional; if omitted RTA-RTE will create VFB
trace hook calls.

• .../RteOptimizationMode—Defines the optimization strategy for RTE generation;
acceptable enumeration values are “RUNTIME” and “MEMORY”.

The optimization mode can be selected using either the --optimize command-line
option or via the RTEGeneration container. If the optimization mode is specified
both within RTE parameters and on the command-line the latter specification takes
precedence.

The optimization strategy parameter is optional; if omitted RTA-RTE defaults to the
“runtime” strategy.

In addition to the containers common to all AUTOSAR releases described above, the
following additional containers can be included within the RteGeneration container.

• .../RteMeasurementSupport—Enables (“true”) or disables (“false”) measure-
ment support within the generated RTE.

The specification of this parameter is optional; if omitted measurement support
within RTA-RTE is enabled.

• .../RteCalibrationSupport—Defines the global calibration method; acceptable
enumeration values are “NONE”, “SINGLE_POINTERED”, “DOUBLE_POINTERED” and
“INITIALIZED_RAM”.

The calibration method can be selected using either the --calibration-method
command-line option or via the RTEGeneration container. If the calibration method
is specified both within RTE parameters and on the command-line the latter speci-
fication takes precedence.

The calibration method parameter is optional; if omitted RTA-RTE defaults to the
“single pointered” method.

The RTE module configuration must contain at most one RTE generation container.

Sub-container RteForceBasicTask

RTA-RTE uses a sub-container within the RteGeneration container to enable the se-
lection of forced-basic semantics (see RTA-RTE User Guide) for individual tasks.

The specification of the RteForceBasicTask container is a custom RTA-RTE
feature and is not part of the AUTOSAR standards.

The RteForceBasicTask sub-container has definition reference /RTARTE/Rte/Rte-
Generation/RteForceBasicTask and may occur zero or more times within the RTE’s
module configuration

Configuration 193

RTA-RTE V6.8.0
Reference Manual

The RteForceBasicTask sub-container references an OsTask container within the ap-
plication OS module configuration and switches on or off the forced-basic semantics for
that task by means of a boolean parameter /RTARTE/Rte/RteGeneration/RteForce-
BasicTask/OverrideValue.

It is an error to specify multiple RteForceBasicTask sub-containers referring to the
same task unless all the containers for the task also specify the same OverrideValue.

An example of this vendor-specific container is shown below. For clarity the RteGener-
ation parameters have been omitted and the definition refernces shortened.

<CONTAINER>
<SHORT-NAME>...</SHORT-NAME>
<DEFINITION-REF>/AUTOSAR/Rte/RteGeneration</DEFINITION-REF>
<PARAMETER-VALUES>
...

</PARAMETER-VALUES>
<SUB-CONTAINERS>
<CONTAINER>
<SHORT-NAME>...</SHORT-NAME>
<DEFINITION-REF>
/RTARTE/Rte/RteGeneration/RteForceBasicTask

</DEFINITION-REF>
<PARAMETER-VALUES>
<BOOLEAN-VALUE>
<DEFINITION-REF>.../OverrideValue</DEFINITION-REF>
<VALUE>true</VALUE>

</BOOLEAN-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<REFERENCE-VALUE>
<DEFINITION-REF>.../TaskRef</DEFINITION-REF>
<VALUE-REF>/pkg/Os/example_task</VALUE-REF>

</REFERENCE-VALUE>
</REFERENCE-VALUES>

</CONTAINER>
</SUB-CONTAINERS>

</CONTAINER>

The names of RteForceBasicTask sub-containers are not used by RTA-RTE other than
to ensure uniqueness.

Container SwComponentInstance

The /AUTOSAR/Rte/SwComponentInstance container defines the configuration of a sin-
gle SW-C instance including the mapping of a runnable entity instance to OS tasks and
the specification of exclusive area implementation method.

The SwComponentInstance container can specify one or more sub-containers that de-
fine runnable entity mapping, specify how an exclusive area should be implemented or
define NVRAM allocation.

194 Configuration

RTA-RTE V6.8.0
Reference Manual

Component Prototype Selection

The SwComponentInstance container references the appropriate SW-C prototype us-
ing SoftwareComponentInstanceRef. This element contains a <VALUE-IREF> element
refering to the software component prototype in the context of its composition.

RTA-RTE requires that the <VALUE-IREF> element contain a set of absolute references
to the SW-C instance (i.e. the component prototype). When a single level exists
in the composition hierachy then the SoftwareComponentInstanceRef can be a sin-
gle <VALUE-REF>. However when nested compositions are used the reference must
include each level of the nesting as a <CONTEXT-REF> and must terminate with a
<VALUE-REF> that references a component-prototype.

When a /AUTOSAR/Rte/SwComponentInstance container references a service
component it should use a ServiceComponentPrototypeRef rather than a
SoftwareComponentInstanceRef.

The ServiceComponentPrototypeRef is specified as a reference to the component pro-
totype. Service components cannot be present within a nested composition and there-
fore only a single <XML-TAG> is required.

The SwComponentInstance must specify exactly one SoftwareComponentInstanceRef
or ServiceComponentPrototypeRef.

Implementation Selection

The SwComponentInstance container can optionally reference an implementation ele-
ment using an .../ImplementationRef. when specified this selects an implementa-
tion element to associate with the SW-C instance. The implementation is specified as
an absolute reference.

A SW-C instance can only be associated with a single implementation.

Runnable entity Mapping

Each runnable entity mapping sub-container maps a single RTE Event (instance and
hence triggered runnable entity instance) to a task. Each RunnableEntityMapping
defines the following parameter values:

• .../PositionInTask—The position of the runnable entity within the task (this
must be specified as an unsigned integer).

To prevent ambiguities in runnable ordering, all runnable entities mapped to a task
should have unique positions within the task. The positions specified for runnable
entities within a task need not be contiguous.

• .../RTEEventRef—The RTE Event responsible for activating the runnable entity
name. This must be specified as an absolute reference to the RTE Event within the
SW-C internal behavior definition

Configuration 195

RTA-RTE V6.8.0
Reference Manual

• .../MappedToTaskRef—The OS task to which the runnable entity is mapped. This
must be specified as an absolute reference to the OS Task definition within the OS
configuration container.

• .../OsEventRef—The OS event to be used by the RTA-RTE RTE generator (if re-
quired) to schedule the runnable entity.

The specification of an OsEvent is optional. If the RTA-RTE RTE generator
does not require an OsEvent to be used to schedule the runnable then it
will be ignored. If an OsEvent is required but not specified then the RTE
generator will construct a suitable event.

• .../ActivationOffset—The offset (in seconds) from the period. This parameter
is only applicable for TimingEvents.

The input information must contain one runnable entity mapping container for each
RTE Event that starts a runnable entity. There is no need to map RTE Events that do not
trigger a runnable.

Exclusive Area Implementation

As well as runnable entity mapping, the SwComponentInstance container can specify
one or more implementation method specifications.

Each ExclusiveAreaImplementation sub-container specifies the implementation of a
single exclusive area in the context of a SwcInstance. The sub-container provides a
mechanism to specify the implementation method (OS resource or interrupt blocking)
and, if applicable, the OS resource, used for an exclusive area instance.

• .../ExclusiveAreaRef—The exclusive area to which the implementation method
applies.

The referenced exclusive area must be declared within the internal behavior asso-
ciated with the SW-C instance.

• .../ExclusiveAreaImplMechanism—The implementation method to be used for
the referenced exclusive area. Acceptable enumeration values are: “INTERRUPT_-
BLOCKING”, “NON_PREEMPTIVE_TASKS”, “OS_RESOURCE” and “COOPERATIVE_-
RUNNABLE_PLACEMENT”.

If the specification of the implementation method is omitted for a SW-C instance,
RTA-RTE will assume that OS resources should be used.

• .../ExclusiveAreaOsResourceRef—This is an optional, vendor-specific, refer-
ence that specifies the OsResource to be used to implement the referenced Ex-
clusive Area.

When present, the .../ExclusiveAreaOsResourceRef must refer to an
OsResource container. If absent, then the default OS resource created by RTA-
RTE is used. If the exclusive area does not require an OS resource, for example it’s
use is optimized away by RTA-RTE, then the parameter is disregarded.

196 Configuration

RTA-RTE V6.8.0
Reference Manual

The DEFINITION-REF of the parameter is /RTARTE/Rte/SwComponentInstance/-
ExclusiveAreaImplementation/ExclusiveAreaOsResourceRef

Because this is a vendor-specific parameter, its DEFINITION-REF starts
/RTARTE/ not /AUTOSAR/

.

An example of the ExclusiveAreaOsResourceRef parameter is shown be-
low. For clarity the standard AUTOSAR definition references for the
ExclusiveAreaImplementation have been abbreviated.

<CONTAINER>
<SHORT-NAME>EAImplementation1</SHORT-NAME>
<DEFINITION-REF>
/AUTOSAR/.../ExclusiveAreaImplementation

</DEFINITION-REF>
<PARAMETER-VALUES>
<ENUMERATION-VALUE>
<DEFINITION-REF>/AUTOSAR/.../ExclusiveAreaImplMechanism</DEFINITION-

REF>
<VALUE>OS_RESOURCE</VALUE>

</ENUMERATION-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<REFERENCE-VALUE>
<DEFINITION-REF>/AUTOSAR/.../ExclusiveAreaRef</DEFINITION-REF>
<VALUE-REF>/pkg/ibswc/cr1</VALUE-REF>

</REFERENCE-VALUE>
<REFERENCE-VALUE>
<DEFINITION-REF>
/RTARTE/Rte/SwComponentInstance/ExclusiveAreaImplementation/

ExclusiveAreaOsResourceRef
</DEFINITION-REF>
<VALUE-REF>/pkg/Os/MyResource</VALUE-REF>

</REFERENCE-VALUE>
</REFERENCE-VALUES>

</CONTAINER>

NVRam Allocation

As well as runnable entity mapping, the SwComponentInstance container can specify
one or more NVRAM allocation specifications.

Each NVRamAllocation sub-container specifies the implementation of a single exclu-
sive area and defines the following parameter values:

• .../RamBlockLocationSymbol—The name (C identifier) associated with the
NVRAM block.

• .../RomBlockLocationSymbol—The name (C identifier) of the ROM initializer as-
sociated with the NVRAM block.

This parameter is not used by this release of RTA-RTE.

Configuration 197

RTA-RTE V6.8.0
Reference Manual

• .../SwNvRamMappingReference—An absolute reference to the NVRAM mapping
(within the SW-C instances internal behavior).

• .../NvmBlockRef—Associated NVRAM block definition (within the ECUC configura-
tion for the NVRAM manager)

Calibration Disable

RTA-RTE uses the CalprmComponentInstance container to disable calibration support
for a specified SW-C type.

Each CalprmComponentInstance container disables calibration support for a single AU-
TOSAR application SW-C or Calibration component type.

The container encapsulates a Boolean parameter and references a SW-C type. The
parameter determines whether calibration support is enabled (“true”) or disabled
(“false”) for the referenced SW-C.

• .../CalprmComponentInstanceRef—The SW-C type, specified as an absolute ref-
erence.

• .../CalibrationSupportEnabled—Boolean indicating whether or not calibration
support is enabled.

Calibration support is enabled by default and therefore a Calprm-
ComponentInstance container is only necessary to disable support to
a specified SW-C type.

The RTE Generation parameter RteCalibrationSupport can be used to globally dis-
able calibration support by selecting the calibration method “none”.

4.20 Vendor Specific XML Extensions

There are no vendor-specific XML extensions.

4.21 Post-build

The following configuration options are available after an RTE has been generated.

4.21.1 Atomicity

The generated RTE uses different mechanisms for ensuring that data reads and writes
are atomic depending on the actual size of the data item. The atomicity mechanism
can be configured, after the RTE is generated (post-build), to disable code generation
for certain data types when it is known that the underlying hardware already provides
the required atomicity, e.g. for 8-bit data types.

• RTE_<SIZE>_ATOMIC—if defined, the generated RTE assumes that integer variables
of size <SIZE> can be read and/or written atomically.

198 Configuration

RTA-RTE V6.8.0
Reference Manual

• RTE_<SIZE>_NONATOMIC—if defined, the generated RTE assumes that integer vari-
ables of size <SIZE> cannot be read and/or written atomically.

Where <SIZE> corresponds to the data item size in bits. Valid values are 8BIT, 16BIT,
32BIT, 64BIT, FLOAT32, FLOAT64 and BOOLEAN.

The default of the generated RTE is to assume that only 8-bit integers can be read/writ-
ten atomically and that all other types must be protected. If the default behavior is
not required then definitions can be placed on the command line when invoking the C
compiler to modify compilation of Rte.c and SWC implementations, for example:

$(CC) --DRTE_16BIT_ATOMIC --DRTE_32BIT_ATOMIC Rte.c

4.22 Variability

Version 5.1 of RTA-RTE introduces support for pre-build variability. Variability allows
elements of the configuration to be enabled or disabled, or values in the configuration
to be written as expressions rather than literal numbers. The containers for which RTA-
RTE supports variability are listed in subsection 4.22.1 whilst the AUTOSAR Formula
Language (AFL) is described in subsection 4.22.2.

4.22.1 Containers Supporting Pre-Build Variability

The following table lists the containers which RTA-RTE checks for pre-build variation
during the processing of input XML.

Container

APPLICATION-PRIMITIVE-DATA-TYPE

APPLICATION-RECORD-DATA-TYPE

APPLICATION-SW-COMPONENT-TYPE

ARRAY-SIZE

ASYNCHRONOUS-SERVER-CALL-POINT

ASYNCHRONOUS-SERVER-CALL-RESULT-POINT

ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT

BACKGROUND-EVENT

BSW-BACKGROUND-EVENT

BSW-CALLED-ENTITY

BSW-EXTERNAL-TRIGGER-OCCURRED-EVENT

BSW-IMPLEMENTATION

BSW-INTERNAL-TRIGGER-OCCURRED-EVENT

BSW-INTERNAL-TRIGGERING-POINT

BSW-INTERRUPT-ENTITY

BSW-MODE-RECEIVER-POLICY

BSW-MODE-SENDER-POLICY

Configuration 199

RTA-RTE V6.8.0
Reference Manual

Container

BSW-MODE-SWITCH-EVENT

BSW-MODE-SWITCHED-ACK-EVENT

BSW-MODULE-DESCRIPTION

BSW-MODULE-ENTRY

BSW-SCHEDULABLE-ENTITY

BSW-TIMING-EVENT

BSW-TRIGGER-DIRECT-IMPLEMENTATION

CALIBRATION-PARAMETER-VALUE-SET

CLIENT-SERVER-ARRAY-ELEMENT-MAPPING

CLIENT-SERVER-ARRAY-TYPE-MAPPING

CLIENT-SERVER-INTERFACE

CLIENT-SERVER-INTERFACE-MAPPING

CLIENT-SERVER-OPERATION

CLIENT-SERVER-OPERATION-MAPPING

CLIENT-SERVER-PRIMITIVE-TYPE-MAPPING

CLIENT-SERVER-RECORD-ELEMENT-MAPPING

CLIENT-SERVER-RECORD-TYPE-MAPPING

CLIENT-SERVER-TO-SIGNAL-GROUP-MAPPING

COMPLEX-DEVICE-DRIVER-SW-COMPONENT-TYPE

COMPLEX-TYPE-MAPPING

COMPOSITION-SW-COMPONENT-TYPE

COMPU-METHOD

CONSTANT-SPECIFICATION

CONSTANT-SPECIFICATION-MAPPING

CONSTANT-SPECIFICATION-MAPPING-SET

DATA-CONSTR

DATA-PROTOTYPE-MAPPING

DATA-RECEIVE-ERROR-EVENT

DATA-RECEIVED-EVENT

DATA-SEND-COMPLETED-EVENT

DATA-TYPE-MAPPING-SET

DATA-TYPE-POLICY

DATA-WRITE-COMPLETED-EVENT

ECU

ECU-ABSTRACTION-SW-COMPONENT-TYPE

ECU-INSTANCE

200 Configuration

RTA-RTE V6.8.0
Reference Manual

Container

ECU-SW-COMPOSITION

ECUC-CONTAINER-VALUE

ECUC-VALUE-COLLECTION

EXCLUSIVE-AREA

EXTERNAL-TRIGGER-OCCURRED-EVENT

EXTERNAL-TRIGGERING-POINT

FILTER

FLAT-INSTANCE-DESCRIPTOR

FLAT-MAP

I-SIGNAL

I-SIGNAL-GROUP

I-SIGNAL-TO-I-PDU-MAPPING

IMPL-INIT-VALUE

IMPLEMENTATION-DATA-TYPE

IMPLEMENTATION-DATA-TYPE-ELEMENT

INCLUDED-DATA-TYPE-SET

INDEX

INDEXED-ARRAY-ELEMENT

INTERNAL-TRIGGER-OCCURRED-EVENT

INTERNAL-TRIGGERING-POINT

IS-REENTRANT y?

IS-SERVICE y?

MODE-ACCESS-POINT

MODE-DECLARATION-GROUP

MODE-DECLARATION-GROUP-PROTOTYPE

MODE-GROUP

MODE-INTERFACE-MAPPING

MODE-MAPPING

MODE-REQUEST-TYPE-MAP

MODE-SWITCH-INTERFACE

MODE-SWITCH-POINT

MODE-SWITCHED-ACK

MODE-SWITCHED-ACK-EVENT

NETWORK-REPRESENTATION

NV-BLOCK-DATA-MAPPING

NV-BLOCK-DESCRIPTOR

Configuration 201

RTA-RTE V6.8.0
Reference Manual

Container

NV-BLOCK-SW-COMPONENT-TYPE

NV-DATA-INTERFACE

OPERATION-INVOKED-EVENT

P-PORT-PROTOTYPE

PACKING-BYTE-ORDER

PARAMETER-ACCESS

PARAMETER-DATA-PROTOTYPE

PARAMETER-INTERFACE

PARAMETER-SW-COMPONENT-TYPE

PER-INSTANCE-MEMORY

PHYSICAL-DIMENSION

PORT-API-OPTION

QUEUED-RECEIVER-COM-SPEC

R-PORT-PROTOTYPE

RAM-BLOCK

ROOT-SW-COMPOSITION-PROTOTYPE

RUNNABLE-ENTITY

SENDER-REC-ARRAY-ELEMENT-MAPPING

SENDER-REC-ARRAY-TYPE-MAPPING

SENDER-REC-RECORD-ELEMENT-MAPPING

SENDER-REC-RECORD-TYPE-MAPPING

SENDER-RECEIVER-INTERFACE

SENDER-RECEIVER-TO-SIGNAL-GROUP-MAPPING

SENDER-RECEIVER-TO-SIGNAL-MAPPING

SENSOR-ACTUATOR-SW-COMPONENT-TYPE

SERVER-ARGUMENT-IMPL-POLICY

SERVICE-COMPONENT-PROTOTYPE

SERVICE-SW-COMPONENT-TYPE

START-POSITION

SUPPORTS-ASYNCHRONOUS-MODE-SWITCH

SW-ADDR-METHOD

SW-BASE-TYPE

SW-COMPONENT-PROTOTYPE

SW-DATA-DEF-PROPS-CONDITIONAL

SW-SYSTEMCONST

SW-SYSTEMCONST-VALUE

202 Configuration

RTA-RTE V6.8.0
Reference Manual

Container

SW-SYSTEMCONSTANT-VALUE-SET

SWC-BSW-MAPPING

SWC-BSW-RUNNABLE-MAPPING

SWC-BSW-SYNCHRONIZED-MODE-GROUP-PROTOTYPE

SWC-BSW-SYNCHRONIZED-TRIGGER

SWC-IMPLEMENTATION

SWC-MODE-SWITCH-EVENT

SWC-SERVICE-DEPENDENCY

SWC-TO-ECU-MAPPING

SWC-TO-IMPL-MAPPING

SYNCHRONOUS-SERVER-CALL-POINT

SYSTEM

SYSTEM-MAPPING

SYSTEM-SIGNAL

SYSTEM-SIGNAL-GROUP

TASK

TEXT-TABLE-MAPPING

TEXT-TABLE-VALUE-PAIR

TIMING-EVENT

TRIGGER

TRIGGER-INTERFACE

TRIGGER-INTERFACE-MAPPING

TRIGGER-MAPPING

TYPE

TYPE-MAPPING

UNIT

USED-DATA-ELEMENT

V

VARIABLE-ACCESS

VARIABLE-AND-PARAMETER-INTERFACE-MAPPING

VARIABLE-DATA-PROTOTYPE

4.22.2 AUTOSAR Formula Language

Whilst the AUTOSAR Formula Language (AFL) is described fully in Section 4.8 of the
AUTOSAR Generic Structure Template, the manner in which it is integrated into the
XML is not. Here are some examples of how expressions are written.

Configuration 203

RTA-RTE V6.8.0
Reference Manual

Simple Number

...
<VARIATION-POINT>
<SHORT-LABEL>vpbe1Pct</SHORT-LABEL>
<SW-SYSCOND BINDING-TIME=’CODE-GENERATION-TIME’>1</SW-SYSCOND>

</VARIATION-POINT>
...

In this example, the result of the <SW-SYSCOND> expression is simply the number 1.

Simple Expression

...
<VARIATION-POINT>
<SHORT-LABEL>vpbe1Pct</SHORT-LABEL>
<SW-SYSCOND BINDING-TIME=’CODE-GENERATION-TIME’>1 + 4</SW-SYSCOND>

</VARIATION-POINT>
...

In this example, the result of the <SW-SYSCOND> expression is the number 5 - the result
of adding 1 and 4.

Other arithmetic operators are available (+, -, *, /).

Cross-Reference

...
<AR-PACKAGE>
<SHORT-NAME>system_constants</SHORT-NAME>
<ELEMENTS>
<SW-SYSTEMCONST>
<SHORT-NAME>switch_on</SHORT-NAME>

</SW-SYSTEMCONST>
<SW-SYSTEMCONSTANT-VALUE-SET>
<SHORT-NAME>scvs</SHORT-NAME>
<SW-SYSTEMCONSTANT-VALUES>
<SW-SYSTEMCONST-VALUE>
<SW-SYSTEMCONST-REF DEST=’SW-SYSTEMCONST’>/system_constants/

switch_on</SW-SYSTEMCONST-REF>
<VALUE>1</VALUE>

</SW-SYSTEMCONST-VALUE>
</SW-SYSTEMCONSTANT-VALUES>

</SW-SYSTEMCONSTANT-VALUE-SET>
</ELEMENTS>

</AR-PACKAGE>
...
<VARIATION-POINT>
<SHORT-LABEL>vpbe1Pct</SHORT-LABEL>
<SW-SYSCOND BINDING-TIME=’CODE-GENERATION-TIME’>
<SYSC-REF DEST=’SW-SYSTEMCONST’>/system_constants/switch_on</SYSC-REF

>
</SW-SYSCOND>

</VARIATION-POINT>

204 Configuration

RTA-RTE V6.8.0
Reference Manual

...

In this example, the result of the <SW-SYSCOND> expression is the number 1 - since that
is the value of the system constant (switch_on) which it references.

<VALUE>s contained within <SW-SYSTEMCONST>s are themselves expressions, and can
therefore reference other <SW-SYSTEMCONST>s.

Boolean Tests

...
<AR-PACKAGE>
<SHORT-NAME>system_constants</SHORT-NAME>
<ELEMENTS>
<SW-SYSTEMCONST>
<SHORT-NAME>num_cylinders</SHORT-NAME>

</SW-SYSTEMCONST>
<SW-SYSTEMCONSTANT-VALUE-SET>
<SHORT-NAME>scvs</SHORT-NAME>
<SW-SYSTEMCONSTANT-VALUES>
<SW-SYSTEMCONST-VALUE>
<SW-SYSTEMCONST-REF DEST=’SW-SYSTEMCONST’>/system_constants/

num_cylinders</SW-SYSTEMCONST-REF>
<VALUE>6</VALUE>

</SW-SYSTEMCONST-VALUE>
</SW-SYSTEMCONSTANT-VALUES>

</SW-SYSTEMCONSTANT-VALUE-SET>
</ELEMENTS>

</AR-PACKAGE>
...
<VARIATION-POINT>
<SHORT-LABEL>vpbe1Pct</SHORT-LABEL>
<SW-SYSCOND BINDING-TIME=’CODE-GENERATION-TIME’>
<SYSC-REF DEST=’SW-SYSTEMCONST’>/system_constants/num_cylinders</SYSC

-REF> == 4
</SW-SYSCOND>

</VARIATION-POINT>
...

In this example, the expression compares the value of the num_cylinders
<SW-SYSTEMCONST> against the literal 4. The result of this comparison is the number 0,
indicating FALSE.

Such an expression might be used to enable configuration which is only relevant for
four-cylinder engines.

VALUE substitution

...
<AR-PACKAGE>
<SHORT-NAME>system_constants</SHORT-NAME>
<ELEMENTS>

Configuration 205

RTA-RTE V6.8.0
Reference Manual

<SW-SYSTEMCONST>
<SHORT-NAME>num_cylinders</SHORT-NAME>

</SW-SYSTEMCONST>
<SW-SYSTEMCONSTANT-VALUE-SET>
<SHORT-NAME>scvs</SHORT-NAME>
<SW-SYSTEMCONSTANT-VALUES>
<SW-SYSTEMCONST-VALUE>
<SW-SYSTEMCONST-REF DEST=’SW-SYSTEMCONST’>/system_constants/

num_cylinders</SW-SYSTEMCONST-REF>
<VALUE>6</VALUE>

</SW-SYSTEMCONST-VALUE>
</SW-SYSTEMCONSTANT-VALUES>

</SW-SYSTEMCONSTANT-VALUE-SET>
</ELEMENTS>

</AR-PACKAGE>
...
<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>Array1</SHORT-NAME>
<CATEGORY>ARRAY</CATEGORY>
<SUB-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>Array1_element</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<ARRAY-SIZE BINDING-TIME="CODE-GENERATION-TIME"><SYSC-REF DEST="SW-

SYSTEMCONST">/system_constants/num_cylinders</SYSC-REF></ARRAY-
SIZE>

<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
...

In this example, the value of a <SW-SYSTEMCONST> is used as a <VALUE> in the definition
of an array-type.

The result of the <SW-SYSTEMCONST> might be combined in an arithmetic expression:

...
<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>Array1</SHORT-NAME>
<CATEGORY>ARRAY</CATEGORY>
<SUB-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>Array1_element</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<ARRAY-SIZE BINDING-TIME="PRE-COMPILE-TIME"><SYSC-REF
DEST="SW-SYSTEMCONST">/system_constants/num_cylinders</SYSC-REF> *

2</ARRAY-SIZE>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
...

Here, the number of elements in the array is twice the number of cylinders. Since the
array size has a BINDING-TIME of PRE-COMPILE-TIME the value is also emitted as a

206 Configuration

RTA-RTE V6.8.0
Reference Manual

Condition-Value-Macro in the Configuration header file (rte_sws_6541).

4.23 Support for the atpSplitable Stereotype

Certain containers within the input XML contain aggregates which are marked as ’split-
table’ (i.e. elements of the aggregations can exist in multiple input files - marked as
atpSplitable within the Autosar specifications). RTA-RTE now supports all relevant
splittable aggregates.

The unsupported (and irrelevant to RTA-RTE) splittable containers are as follows:

• AliasNameSet.AliasNames

• ApplicationSwComponentType.SwComponentDocumentations

• CanCluster.PhysicalChannels

• CanPhysicalChannel.FrameTriggerings

• CanPhysicalChannel.ISignalTriggerings

• CanPhysicalChannel.PduTriggerings

• ComplexDeviceDriverSwComponentType.SwComponentDocumentations

• EcuAbstractionSwComponentType.SwComponentDocumentations

• EndToEndProtection.EndToEndProfile

• EndToEndProtection.EndToEndProtectionISignalIPdus

• EndToEndProtection.EndToEndProtectionVariablePrototypes

• EndToEndProtectionSet.EndToEndProtections

• EthernetPhysicalChannel.FrameTriggerings

• EthernetPhysicalChannel.ISignalTriggerings

• EthernetPhysicalChannel.PduTriggerings

• FlexrayCluster.PhysicalChannels

• FlexrayPhysicalChannel.FrameTriggerings

• FlexrayPhysicalChannel.ISignalTriggerings

• FlexrayPhysicalChannel.PduTriggerings

• LinCluster.PhysicalChannels

• LinPhysicalChannel.FrameTriggerings

• LinPhysicalChannel.ISignalTriggerings

Configuration 207

RTA-RTE V6.8.0
Reference Manual

• LinPhysicalChannel.PduTriggerings

• NvBlockSwComponentType.SwComponentDocumentations

• ParameterSwComponentType.SwComponentDocumentations

• SensorActuatorSwComponentType.SwComponentDocumentations

• ServiceProxySwComponentType.SwComponentDocumentations

• ServiceSwComponentType.SwComponentDocumentations

• TtCanPhysicalChannel.FrameTriggerings

• TtCanPhysicalChannel.ISignalTriggerings

• TtCanPhysicalChannel.PduTriggerings

• TtcanCluster.PhysicalChannels

208 Configuration

RTA-RTE V6.8.0
Reference Manual

5 RTE Conventions

5.1 Name Space

All symbols (e.g. function names, global variables, etc.) created by the RTA-RTE RTE
generator that are visible within the global namespace use either the RTE prefix (for
definitions), Rte (variables, functions names and other symbols) or rte (some gener-
ated files).

To prevent clashes with symbols created by the RTE generator, application
software components should not create symbols in the global namespace
using the prefix rte (irrespective of case).

The generated RTE is designed to work with different components written in different
source languages and therefore does not use language specific features, such as C++
namespaces, to ensure symbol name uniqueness. A component can, however, use
language specific features to ensure unique local symbols.

5.2 Software-Component Naming

RTA-RTE does not impose any naming convention on software-components over and
above the standard AUTOSAR restrictions:

• The RTE/Rte namespace is reserved exclusively for use by RTA-RTE generated sym-
bols.

• Software-component names must only contain characters that are valid both for
C-identifiers and for filenames.

This restriction exists since the name is used to construct symbols within the gen-
erated RTE (e.g. component data structure instance name) and the name of the
application header file for the software component.

• The names of software component names must be unique.

An application header file is created for each software component type and there-
fore type names must be globally unique.

RTE Conventions 209

RTA-RTE V6.8.0
Reference Manual

6 RTE API Reference

The functions described in this section are organized by RTE API name as used by C and
C++ software components. The API mapping implemented in the application header file
used by a software component hides from the software component programmer the
need to be aware of the steps taken by the RTE generator to ensure that the generated
API functions have unique names.

6.1 API Parameter Passing

The mechanism by which the parameters are passed to the RTE by API calls and from
the RTE to runnable entities depends on the parameter class and the type of the pa-
rameter being passed.

Parameters are divided into two types:

• Primitive Types – AUTOSAR primitive types excluding strings, user defined enu-
meration types

• Complex Types – AUTOSAR string types, user defined record and array types,

Class Semantics Primitive Type Complex Type

IN Read-only by Value by Reference

IN/OUT Read-Write by Reference by Reference

OUT Write-only by Reference by Reference

Table 6.1: RTA-RTE Parameter Passing Conventions

6.2 Data Types

This section defines the RTA-RTE specific data types used by the RTE API. This section
does not describe the pre-defined AUTOSAR basic software data types nor does it define
how additional AUTOSAR data types can be configured in the XML.

6.2.1 Rte_Instance

A software component instance within an ECU is an instance of a particular component
type. Multiple instances of the same component type can be mapped to an ECU in-
stance and hence a mechanism is required to disambiguate access – for which the RTE
API uses an instance handle.

The RTE API uses component-specific instance handles defined using the typedef
Rte_Instance to provide an identifier for a component instance. All components of
the same type can share the same Rte_Instance type definition.

For ease of use the name of the instance handle type remains the same for all compo-
nents, even though the underlying types are different, since the actual type definition
is private to the component. This feature relies on the direct equivalence in C/C++ be-

210 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

tween the typedef and the underlying type.

The instance handle is omitted from the RTE API when an AUTOSAR software-
component is declared as singly instantiated in the SW-C description.

6.2.2 Std_ReturnType

The Std_ReturnType type defines the “status” and “error” values returned by RTE API
functions. The following values are defined:

• RTE_E_OK

• RTE_E_INVALID

• RTE_E_LOST_DATA

• RTE_E_MAXAGE_EXCEEDED

• RTE_E_COM_STOPPED

• RTE_E_TIMEOUT

• RTE_E_LIMIT

• RTE_E_NO_DATA

• RTE_E_TRANSMIT_ACK

• RTE_E_NEVER_RECEIVED

• RTE_E_UNCONNECTED

• RTE_E_IN_EXCLUSIVE_AREA

• RTE_E_SEG_FAULT

• SCHM_E_OK

• SCHM_E_LIMIT

• SCHM_E_NO_DATA

• SCHM_E_TRANSMIT_ACK

• SCHM_E_IN_EXCLUSIVE_AREA

6.2.3 Port Handles

RTA-RTE creates a port handle type for each interface that is used to categorize a port
on a software-component where the port has the indirect API enabled1.

1The enabling can be explicit through use of a port API option or implicit when the SWC type supports
multiple instantiation

RTE API Reference 211

RTA-RTE V6.8.0
Reference Manual

A port handle type is used in conjunction with the Rte_Ports and Rte_NPorts APIs to
support iteration over similarly typed ports.

The name of the port handle type is formed as follows:

Rte_PortHandle_<interface>_<P/R>

Where <interface> is the interface name typing the port and “P”/”R” is literal text
indicating whether the port requires or provides the interface.

If the same interface is used to type both required and provided ports then
two port handle types are created. The different port handle types are dis-
tinguished by the P/R suffix.

The port handle type is written to the software-components application header file and
therefore is uniquely defined for each component type.

6.3 Rte_Call

Std_ReturnType
Rte_Call_<p>_<o>([IN Rte_Instance <instance>,]

[IN|INOUT|OUT] param_1, ...
[IN|INOUT|OUT] param_n)

Where <p> is the port name and <o> the operation within the client-server interface
that categorizes the port.

6.3.1 Description

API call used by a client to initiate a client-server communication. The Rte_Call API is
used for both synchronous and asynchronous calls.

The Rte_Call API includes zero or more IN, IN/OUT and OUT parameters:

• IN parameters are passed by value for primitive data types and by reference for all
other types.

• OUT parameters are always passed by reference.

• IN/OUT parameters are passed by value when they are primitive data types and
the call is asynchronous and by reference for all other cases.

6.3.2 Return Values

The return value is used to indicate errors detected by the RTE during execution of the
Rte_Call call and, for synchronous communication, application errors returned from
execution of the server.

RTE_E_OK – The call completed successfully.

212 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

RTE_E_TIMEOUT (Synchronous inter-task and inter-ECU only) – No reply was received
within the configured timeout.

RTE_E_COM_STOPPED – A communications error occurred – the data has not been
successfully passed to the communication service.

RTE_E_LIMIT – Multiple asynchronous client-server communications to the same
server are attempted.

Application error – A synchronous client-server can, optionally, return an application
error. The name and values of applications errors are defined within the port’s
interface.

6.3.3 Notes

For intra-task communication, or inter-task communication to a “pure” server, the RTE
API Rte_Call may be elided completely and the call further mapped to a direct function
call of the server’s runnable entity.

A synchronous Rte_Call API is generated if a runnable entity within a software-
component’s internal behavior includes a SynchronousCallPoint specification.

An asynchronous Rte_Call API is generated if a a runnable entity within a software-
component’s internal behavior includes a AsynchronousCallPoint specification.

The OUT parameters are omitted for an asynchronous call since they are only required
to collect the result (when using Rte_Result).

6.3.4 Example

Consider a required port, ra, containing an operation op1 that takes a single IN integer
argument. The following calls can then be made:

SInt16 a = 23;
Std_ReturnType e = Rte_Call_ra_op1(self, a);
if (e == RTE_E_OK)
{
/* call succeeded */

}

6.4 Rte_Prm

<data type> const
Rte_Prm_<port>_<name>([IN Rte_Instance <Instance>])

RTE API Reference 213

RTA-RTE V6.8.0
Reference Manual

Where <name> is the name of the calibration element to access and <port> the name
of the require port name(which must be categorized by a calibration interface).

6.4.1 Description

The Rte_Prm API provides access to calibration data within calibration components.
Multiple software-component instances can access the same calibration data provided
by an instance of a calibration component.

6.4.2 Return Values

The return value is typed according to the type of the configuration data. For primitive
data types the value is returned however for complex types a pointer to the calibration
data is returned.

From the perspective of an application software component calibration data is consid-
ered to be read-only and should not be altered.

6.4.3 Notes

A Rte_Prm API is created for each calibration prototype in the calibration interface.

The --calibration-instantiation option means that RTA-RTE can either import cal-
ibration data declared by the user in an external module or can instantiate memory
for the calibration data. Due to deficiencies in the AUTOSAR XML input RTA-RTE does
not create the calibration data – see Section 10.5 and therefore the initialization of
the instantiated memory must be performed by the user before access by software-
components.

6.4.4 Example

FUNC(void, RTE_APPL_CODE)
tt1(Rte_Instance self)
{
UInt16 abc = Rte_Prm_port_abc(self);

}

6.5 Rte_CData

<data type> const
Rte_CData_<name>([IN Rte_Instance <Instance>])

Where <name> is the name of the calibration element.

6.5.1 Description

The Rte_CData API provides access to per-instance and shared calibration parame-
ters declared within a software component. All instances of a component type access
the same data for shared parameters whereas each accesses a unique copy for per-
instance parameters.

214 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

6.5.2 Return Values

The return value is typed according to the type of the configuration data. For primitive
data types the value is returned however for complex types a pointer to the calibration
data is returned.

6.5.3 Notes

A Rte_CData API is created for each per-instance or shared calibration element.

RTA-RTE does not create the calibration data – see Section 10.5. The actual calibration
data must be declared by the user in an external module.

6.5.4 Example

FUNC(void, RTE_APPL_CODE)
tt1(Rte_Instance self)
{
UInt16 abc = Rte_CData_abc(self);

}

6.6 Rte_Enter

Std_ReturnType
Rte_Enter_<area>([IN Rte_Instance <instance>])

Where <area> is the exclusive area name.

6.6.1 Description

The Rte_Enter API call is invoked by an application software component to define the
start of an exclusive area. The name of the exclusive area is included as part of the call
name.

All instances of a component are independent and therefore the scope of a exclusive
area extends only to the runnable entities within each instance of a component. When
a runnable entity has ‘entered’ an exclusive area no other runnable entity in the com-
ponent instance can enter the area until the first runnable entity has invoked Rte_Exit.

6.6.2 Return Values

RTE_E_OK – The exclusive area was entered successfully.The underlying implementa-
tion of explicit exclusive areas uses OS resources. Within the AUTOSAR OS it is
not possible for a resource lock to fail and therefore neither can the Rte_Enter
API.

6.6.3 Notes

The Rte_Enter API call is created by RTA-RTE when a runnable entity declares that it
“can enter” an exclusive area.

RTE API Reference 215

RTA-RTE V6.8.0
Reference Manual

The RTE generator will ensure that the API expands to a null macro when possible – for
example when all accessing runnable entities are mapped to the same task or mapped
to tasks that cannot preempt.

The implementation of the exclusive area will depend the implementation strategy
specified in the ECU description file. If no strategy is specified the default is “Os re-
source”.

It is not valid when using the AUTOSAR OS to wait on an OS event when
one or more resources are locked. Application software components should
therefore avoid invoking RTE APIs that may block, including synchronous
client-server calls, when an exclusive area is locked.

It is not valid when using the AUTOSAR OS to invoke any OS API when inter-
rupts are locked. RTA-RTE uses AUTOSAR OS APIs within RTE API calls and
hence application software components must exercise caution before invok-
ing any RTE API call when an exclusive area that uses “interrupt blocking” is
locked.

Invocations of Rte_Enter (and Rte_Exit) may be nested as long as areas are exited in
the reverse order they were entered. When “interrupt blocking” is used as an imple-
mentation strategy API calls should be avoided when running inside the exclusive area
to avoid problems with missed task activations.

RTA-RTE supports selection of an existing OS resource to be used to implement an ex-
clusive area using the vendor-specific ExclusiveAreaOsResourceRef parameter (see
4.19.2)

6.6.4 Example

Consider an exclusive area “A” to which a runnable declares “can enter” access. A
component can enter the area as follows:

Rte_Enter_A(self);

6.7 Rte_Exit

Std_ReturnType
Rte_Exit_<area>([IN Rte_Instance <instance>])

Where <area> is the exclusive area name.

6.7.1 Description

The Rte_Exit API call is invoked by an application software component to define the
end of an exclusive area. The name of the exclusive area is part of the API call name.

All instances of a component are independent and therefore the scope of a exclusive
area extends only to the runnable entities within each instance of a component. When
a runnable entity has ‘entered’ an exclusive area no other runnable entity in the com-

216 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

ponent instance can enter the area until the first runnable entity has invoked Rte_Exit.

6.7.2 Return Values

RTE_E_OK – The exclusive area was exited successfully.

6.7.3 Notes

The Rte_Exit API call is created by RTA-RTE when a runnable entity declares that it
“can enter” an exclusive area.

The RTE generator will ensure that the API expands to a null macro when possible – for
example when all accessing runnable entities are mapped to the same task or mapped
to tasks that cannot preempt.

Invocations of Rte_Enter (and Rte_Exit) may be nested as long as areas are exited in
the reverse order they were entered.

6.7.4 Example

Consider an exclusive area “A” to which a runnable has “can enter” access. Having
entered the area using Rte_Enter, a component can exit the area as follows:

Rte_Exit_A(self);

6.8 Rte_IFeedback

Std_ReturnType
Rte_IFeedback_<re>_<port>_<item>([IN Rte_Instance <inst>])

Where <re> is the accessing runnable entity name, <port> is the port name and <item>
the data element within the sender-receiver interface categorizing the port.

6.8.1 Description

The Rte_IFeedback API call provides access to transmission acknowledgement notifi-
cations for a sender-receiver communication. Unlike the Rte_Feedback API the API is
always non-blocking.

The Rte_IFeedback API takes no parameters other than the instance handle since the
return value is used to indicate either the success or failure of the API call and the
feedback status.

6.8.2 Return Values

RTE_E_NO_DATA – No data (feedback information) was available and no other error
occurred when the feedback read was attempted.

RTE_E_UNCONNECTED – Unconnected provider.

RTE_E_TRANSMIT_ACK – A “transmission acknowledgement” has been received.
This return value indicates no error was detected during execution of the API call.

RTE API Reference 217

RTA-RTE V6.8.0
Reference Manual

6.8.3 Notes

Transmission acknowledgement is enabled for a provided variableDataPrototype by the
presence of an AcknowledgementRequest with type transmission.

A non-blocking API is created for a provided variableDataPrototype if acknowledgement
is enabled and a DataWriteAccess references the variableDataPrototype or a Data-
WriteCompletedEvent references the runnable and the variableDataPrototype.

6.8.4 Example

Consider a provided port, pa, containing a data element val of type SInt16 that is
specified using the SUCCESS element accessed from runnable re1. The following calls
can then be made:

Rte_Write_pa_val(self, 23);
if (Rte_IFeedback_re1_pa_val(self) == RTE_E_TRANSMIT_ACK)
{
/* Transmit okay */

}

6.9 Rte_Feedback / Rte_SwitchAck

Std_ReturnType
Rte_Feedback_<port>_<item>([IN Rte_Instance <inst>])

Or

Std_ReturnType
Rte_SwitchAck_<port>_<mode>([IN Rte_Instance <inst>])

Where <port> is the port name, <item> the data element within the sender-receiver
interface categorizing the port and <mode> the mode declaration group prototype within
the sender-receiver interface categorizing the port.

6.9.1 Description

The Rte_Feedback API call provides access to transmission acknowledgement noti-
fications for a sender-receiver communication and mode switch acknowledgements
for mode managers. The API can be either non-blocking or blocking depending on
software-component configuration. Alternatively a runnable entity can be activated by
RTA-RTE when the transmission status or mode switch acknowledgement is available in
which case no API is created.

The Rte_Feedback API takes no parameters other than the instance handle since the
return value is used to indicate either the success or failure of the API call and the
feedback status.

218 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

6.9.2 Return Values

RTE_E_NO_DATA (non-blocking API only) – No data (feedback information) was avail-
able and no other error occurred when the feedback read was attempted.

RTE_E_TIMEOUT (blocking API only) – No data (feedback information) was available
within the configured timeout and no other error occurred when the feedback
read was attempted.

RTE_E_TRANSMIT_ACK – A “transmission acknowledgement” or “mode switch ac-
knowledgement” has been received. This return value indicates no error was
detected during execution of the API call.

6.9.3 Notes

Transmission acknowledgement is enabled for a provided DataElementPrototype by the
presence of an AcknowledgementRequest with type transmission.

Mode switch acknowledgement is enabled for a provided ModeDeclarationGroup-
Prototype by the presence of an ModeSwitchAck with a specified timeout.

A blocking API is created for a provided DataElementPrototype (ModeDeclarationGroup-
Prototype) if acknowledgement is enabled and a WaitPoint references a DataSend-
CompletedEvent (ModeSwitchedAckEvent) that in turn references the DataElement-
Prototype (ModeSwitchPoint).

A non-blocking API is created for a provided DataElementPrototype (ModeDeclaration-
GroupPrototype) if acknowledgement is enabled and a DataSendPoint (ModeSwitch-
Point) references the DataElementPrototype but no DataSendCompletedEvent (Mode-
SwitchedAckEvent) references the DataElementPrototype (ModeSwitchPoint).

When a DataSendCompletedEvent (ModeSwitchedAckEvent) that references a Data-
ElementPrototype (ModeSwitchPoint) and a runnable entity then RTA-RTE will trigger
the specified runnable when the acknowledgment is processed and will provide a non-
blocking API call to read the acknowledgement state. It is not valid to combine activat-
ing a runnable entity with a blocking API call.

6.9.4 Example

Consider a provided port, pa, containing a data element val of type SInt16 that is spec-
ified using the SUCCESS element with a feedback method of wake_up_of_wait_point.
The following calls can then be made:

Rte_Send_pa_val(self, 23);
if (Rte_Feedback_pa_val(self) == RTE_E_TRANSMIT_ACK)
{
/* Transmit okay */

}

6.10 Rte_IInvalidate

RTE API Reference 219

RTA-RTE V6.8.0
Reference Manual

void
Rte_IInvalidate_<re>_<p>_<d>([IN Rte_Instance <inst>))

Where <re> is the runnable entity name, <p> is the port name and <d> the data element
within the sender-receiver interface categorizing the port.

6.10.1 Description

Mark the data as “invalid”. The transmission of the invalid value will occur after the
runnable entity <re> has terminated.

6.10.2 Return Values

None.

6.10.3 Notes

An Rte_IInvalidate API is created for a provided DataElementPrototype for which a
runnable entity has DataWriteAccess where the referenced DataElementPrototype is
marked as “can invalidate”.

6.10.4 Example

Consider a provide port, pa, containing a data element val of type SInt16 which is
non-queued, accessed using implicit communication by runnable re1 and marked as
“can invalidate”. The following calls can then be made from within re1:

Rte_IInvalidate_re1_pa_val(self);

6.11 Rte_Invalidate

Std_ReturnType
Rte_Invalidate_<p>_<d>([IN Rte_Instance <inst>))

Where p is the port name and d the data element within the sender-receiver interface
that categorizes the port.

6.11.1 Description

Marks the data as “invalid” and then transmits as normal (depending on configura-
tion the transmission of the invalid data marker may occur immediately or may be
deferred).

6.11.2 Return Values

RTE_E_OK – The data has been invalidated successfully.

RTE_E_COM_STOPPED – A communications error occurred – the data has not been
successfully passed to the communication service.

220 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

6.11.3 Notes

An Rte_Invalidate API is created for a DataSendPoint that references a non-queued
DataElementPrototype that is marked as “can invalidate”.

AUTOSAR restricts invalidation to integer types.

6.11.4 Example

Consider a provide port, pa, containing a data element val of type SInt16 which is
non-queued and marked as “can invalidate”. The following call can then be made:

Rte_Invalidate_pa_val(self);

6.12 Rte_IRead

<data type>
Rte_IRead_<re>_<p>_<d>([IN Rte_Instance <inst>))

Where <re> is the runnable entity name, <p> is the port name and <d> the data element
within the sender-receiver interface categorizing the port.

6.12.1 Description

Perform an implicit read on a sender-receiver communication using non-queued se-
mantics. The API is always implemented as a macro rather than a generated function.

The data item accessed by the Rte_IRead API is guaranteed not to change during exe-
cution of runnable <re>.

The Rte_IRead API returns the read data using the API return type.

6.12.2 Return Values

Dependent on data value.

6.12.3 Notes

An Rte_IRead API is created for a required DataElementPrototype if the runnable entity
has DataReadAccess that refers to the DataElementPrototype.

Implicit communication supports primitive data types and complex types including
records.

6.12.4 Example

Consider a required port, ra, containing a data element val of type SInt16 accessed
from runnable entity re1. The following call can then be made:

SInt16 a;
a = Rte_IRead_re1_ra_val(self);

RTE API Reference 221

RTA-RTE V6.8.0
Reference Manual

6.13 Rte_IWrite

void
Rte_IWrite_<re>_<p>_<d>([IN Rte_Instance <inst>]

IN <type> <data>)

Where re is the runnable entity name, p is the port name and d the data element within
the sender-receiver interface categorizing the port.

6.13.1 Description

Perform an implicit write on a sender-receiver communication using “data” semantics.
The API is always implemented as a macro rather than a generated function.

The data item written by the Rte_IWrite API is only made visible to other components
after the runnable re has terminated.

6.13.2 Return Values

None.

6.13.3 Notes

An Rte_IWrite API is created for a required DataElementPrototype if the runnable en-
tity has DataWriteAccess that refers to the DataElementPrototype.

Implicit communication supports primitive data types and records. When a complex
data type is used the second parameter is a pointer to the data.

6.13.4 Example

Consider a provided port, pa, containing a data element val of type SInt16 accessed
from runnable entity re1. The following call can then be made:

Rte_IWrite_re1_pa_val(self, 23);

6.14 Rte_IWriteRef

<type>*
Rte_IWriteRef_<re>_<p>_<d>([IN Rte_Instance])

Where re is the runnable entity name, p is the port name and d the data element within
the sender-receiver interface categorizing the port.

6.14.1 Description

Access a reference to the RTE manager buffer used for implicit writes on a sender-
receiver communication using “data” semantics. The API is always implemented as a
macro rather than a generated function. The reference can be used to directly update
members/elements of complex types.

222 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

The data item written by the Rte_IWriteRef API is only made visible to other compo-
nents after the runnable re has terminated.

6.14.2 Return Values

Rte_IWriteRef returns a reference to the corresponding data element. Therefore the
return type of Rte_IWriteRef is dependent on the data element type.

6.14.3 Notes

An Rte_IWriteRef API shall be created for a provided DataElementPrototype if the
RunnableEntity has DataWriteAccess that refers to the DataElementPrototype. Thus
the API will be generated for both primitive and complex data types though it is most
useful with complex types to update single fields/elements of the type.

The Rte_IWriteRef API can be used as an l-value within an assignment.

6.14.4 Example

Consider a required port, ra, containing a data element val of structure type RecType
accessed from runnable entity re1. The following calls can then be made:

RecType* r = Rte_IWriteRef_re1_ra_val(self);
r->field = 23;

6.15 Rte_IrvIRead

<data type>
Rte_IrvIRead_<re>_<name>([IN Rte_Instance <inst>])

Where <re> is the runnable entity name and <name> the inter-runnable variable name.

6.15.1 Description

Provide read access to an inter-runnable variable with an IMPLICIT communication ap-
proach. Where data consistency is required, access to the inter-runnable variable by a
runnable entity is redirected to a copy created by RTA-RTE.

The Rte_IrvIRead API returns the value of the inter-runnable variable using the API
return type.

6.15.2 Return Values

Dependent on data value. Note that inter-runnable variables do not support complex
types or strings.

6.15.3 Notes

The Rte_IrvIRead API mapping is implemented as a macro written to the component’s
application header file by the RTE generator. If support for multiple instances is dis-
abled within the software-component’s internal behavior the macro is implemented as
a direct access of the component data structure.

RTE API Reference 223

RTA-RTE V6.8.0
Reference Manual

An Rte_IrvIRead API is created for each “ReadVariable” with an IMPLICIT communica-
tion approach that is referenced by a runnable entity. The generated RTE includes ap-
propriate data copies to ensure that the access to the inter-runnable variable is atomic.

The concurrency control applied to inter-runnable variable access ensures that the read
is atomic – it does not, however, ensure that a read-modify-write cycle is protected. If
such protection is required then a per-instance memory section and an exclusive area
should be used instead.

Inter-runnable variables support primitive data types (excluding strings).

6.15.4 Example

Consider an inter-runnable variable irv1 (with type SInt16 and IMPLICIT access) refer-
enced by runnable entity re1. The following API call can then be made:

SInt16 a;
a = Rte_IrvIRead_re1_irvl(self);

6.16 Rte_IrvIWrite

void
Rte_IrvIWrite_<re>_<name>([IN Rte_Instance <inst>],

IN <data>)

Where <re> is the runnable entity name and <name> the inter-runnable variable name.

6.16.1 Description

Provide write access to an inter-runnable variable. Where data consistency is required
access to the inter-runnable variable by a runnable entity is redirected to a copy cre-
ated by RTA-RTE

6.16.2 Return Values

The return value of Rte_IrvIWrite API is always void – the call is implemented as a
macro and cannot fail.

6.16.3 Notes

The Rte_IrvIWrite API mapping is implemented as a macro written to the compo-
nent’s application header file by the RTE generator. If support for multiple instances is
disabled within the software-component’s internal behavior the macro is implemented
as a direct access of the component data structure.

An Rte_IrvIWrite API is created for each “WrittenVariable” with an IMPLICIT commu-
nication approach that is referenced by a runnable entity. The generated RTE includes
appropriate concurrency control to ensure that the write of the inter-runnable variable
is atomic.

The concurrency control applied to inter-runnable variable access ensures that the

224 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

write is atomic – it does not, however, ensure that a read-modify-write cycle is pro-
tected. If such protection is required then a per-instance memory section and an exclu-
sive area should be used instead.

Inter-runnable variables support primitive data types (excluding strings).

6.16.4 Example

Consider an inter-runnable variable irv1 (with type SInt16 and IMPLICIT access) refer-
enced using ‘written’ semantics by runnable entity re1. The following API call can then
be made:

SInt16 a;
Rte_IrvIWrite_re1_irvl(self, a);

6.17 Rte_IrvRead

<data type>
Rte_IrvRead_<re>_<name>([IN Rte_Instance <inst>])

Where <re> is the runnable entity name and <name> the inter-runnable variable name.

6.17.1 Description

Provide read access to an inter-runnable variable with an EXPLICIT communication
approach. The access to the inter-runnable variable is guaranteed to be atomic.

The Rte_IrvRead API returns the value of the inter-runnable variable using the API
return type.

6.17.2 Return Values

Dependent on data value. Note that inter-runnable variables do not support complex
types or strings.

6.17.3 Notes

The Rte_IrvRead API mapping is implemented as a macro written to the component’s
application header file by the RTE generator. If support for multiple instances is disabled
the macro is implemented as a direct invocation of the function generated within the
RTE.

An Rte_IrvRead API is created for each “ReadVariable” with an EXPLICIT communi-
cation approach that is referenced by a runnable entity. The generated RTE includes
appropriate concurrency control to ensure that the access to the inter-runnable variable
is atomic.

The concurrency control applied to inter-runnable variable access ensures that the read
is atomic – it does not, however, ensure that a read-modify-write cycle is protected. If
such protection is required then a per-instance memory section and an exclusive area
should be used instead.

RTE API Reference 225

RTA-RTE V6.8.0
Reference Manual

Inter-runnable variables support primitive data types (excluding strings).

6.17.4 Example

Consider an inter-runnable variable irv1 (with type SInt16) referenced by runnable
entity re1. The following API calls can then be made:

SInt16 a;
a = Rte_IrvRead_re1_irvl(self);

6.18 Rte_IrvWrite

void
Rte_IrvWrite_<re>_<name>([IN Rte_Instance <inst>],

IN <data>)

Where <re> is the runnable entity name and <name> the inter-runnable variable name.

6.18.1 Description

Provide write access to an inter-runnable variable with an EXPLICIT communication ap-
proach. The access to the inter-runnable variable is guaranteed to be atomic.

6.18.2 Return Values

The return value of Rte_IrvWrite API is always void – the call is implemented as a
macro and therefore cannot fail.

6.18.3 Notes

The Rte_IrvWrite API mapping is implemented as a macro written to the component’s
application header file by the RTE generator. If support for multiple instances is disabled
the macro is implemented as a direct invocation of the function generated within the
RTE.

An Rte_IrvWrite API is created for each “WrittenVariable” with an EXPLICIT commu-
nication approach that is referenced by a runnable entity. The generated RTE includes
appropriate concurrency control to ensure that the write of the inter-runnable variable
is atomic.

The concurrency control applied to inter-runnable variable access ensures that the
write is atomic – it does not, however, ensure that a read-modify-write cycle is pro-
tected. If such protection is required then a per-instance memory section and an exclu-
sive area should be used instead.

Inter-runnable variables support primitive data types (excluding strings).

6.18.4 Example

Consider an inter-runnable variable irv1 (with type SInt16) referenced using ‘written’
semantics by runnable entity re1. The following API calls can then be made:

226 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

SInt16 a;
Rte_IrvWrite_re1_irvl(self, a);

6.19 Rte_IStatus

Std_ReturnType
Rte_IStatus_<re>_<p>_<d>([IN Rte_Instance <inst>])

Where <re> is the runnable entity name, <p> is the port name and <d> the data element
within the sender-receiver interface categorizing the port.

6.19.1 Description

Provide read access to the error state of an implicitly accessed datum.

6.19.2 Return Values

RTE_E_OK – No error detected.

RTE_E_COM_STOPPED – A communications error occurred – the data has not been
successfully passed to the communication service.

6.19.3 Notes

An Rte_IStatus API is created for each datum with implicit read access and a runnable
entity triggered by a DataReceiveErrorEvent.

6.19.4 Example

Consider a SW-C with port prototype pa categorized by an interface containing datum
value (with type SInt16) where the datum is accessed using ‘read’ access by re1 and
a DataReceiveErrorEvent is configured to activate re1. The following API calls can then
be made:

Std_ReturnType r;
r = Rte_IStatus_re1_pa_value(self);

6.20 Rte_IsUpdated

Std_ReturnType
Rte_IsUpdated_<p>_<vdp>([IN Rte_Instance <inst>])

Where <p> is the port name and <vdp> the VariableDataPrototype within the sender-
receiver interface categorizing the port.

6.20.1 Description

Indicate whether the VariableDataPrototype has been updated or not.

RTE API Reference 227

RTA-RTE V6.8.0
Reference Manual

6.20.2 Return Values

TRUE – DataElement updated since last read.

FALSE – DataElement not updated since last read.

6.21 Rte_MainFunction

void
Rte_MainFunction(void)

6.21.1 Description

Rte_MainFunction is a vendor-specific API used by RTA-RTE to implement Minimum
Start Intervals (Section 4.10.10).

If Minimum Start Intervals are used, then Rte_MainFunction must be called periodi-
cally to notify RTA-RTE of the passing of time. By default, RTA-RTE expects the function
to be called every 10 milliseconds, but you can choose your own period by using the
--period command-line option. Note however that all minimum start intervals in the
system must be an integer multiple of this period.

6.21.2 Return Values

None.

6.21.3 Notes

The Rte_MainFunction API is declared in Rte_Main.h.

The Rte_MainFunction API is RTA-RTE specific.

Rte_MainFunction can always be called, but when there are no Minumum
Start Intervals present, it has no effect. You can use the preprocessor
symbol RTE_MAINFUNCTION_REQUIRED to check whether it is necessary to call
Rte_MainFunction.

The configured period is made available with the pre-processor sym-
bol RTE_MAINFUNCTION_PERIOD_NS that expands to the period in nanosec-
onds. For convenience the symbols RTE_MAINFUNCTION_PERIOD_US and
RTE_MAINFUNCTION_PERIOD_MS are provided at microsecond and millisecond pre-
cision respectively. These expand to integer values when the period is an integer
multiple of one microsecond or one millisecond respectively, otherwise they expand to
floating point values.

6.21.4 Example

Assume ISR isr1 is triggered every millisecond. Rte_MainFunction can be invoked at
the correct rate using the following code:

ISR(isr1)

228 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

{
#ifdef RTE_MAINFUNCTION_REQUIRED
if ((RTE_MAINFUNCTION_PERIOD_NS % 1000000UL) != 0)
error "Configured Rte_MainFunction invocation period is not a

multiple of 1ms"
endif /* ((RTE_MAINFUNCTION_PERIOD_NS % 1000000UL) != 0) */

static uint16 count = RTE_MAINFUNCTION_PERIOD_MS;
#endif /* RTE_MAINFUNCTION_REQUIRED */

#ifdef RTE_MAINFUNCTION_REQUIRED
if (0 == --count)
{
count = RTE_MAINFUNCTION_PERIOD_MS;
Rte_MainFunction();

}
#endif /* RTE_MAINFUNCTION_REQUIRED */

...
}

6.22 Rte_Mode

Rte_ModeType_<m>
Rte_Mode_<port>_<item>([IN Rte_Instance <inst>])

Where <port> is the port name, <item> the mode declaration group prototype name
within the sender-receiver interface categorizing the port and <m> the name of the
referenced mode declaration group.

6.22.1 Description

Read the current mode for a “mode graph”.

6.22.2 Return Values

The return value from the Rte_Mode API indicates the current mode. The name of the
returned data type is derived from the name of the mode declaration group.

6.22.3 Notes

The Rte_Mode API is created when a ModeDeclarationGroupPrototype is declared within
a provided or required interface.

The Rte_Mode API is always a non-blocking API.

The Rte_Mode API generated for an unconnected port always returns the mode decla-
ration group’s initial mode. No mode switch event other than ENTRY to the initial mode
(i.e. within Rte_Start) will ever be triggered.

RTE API Reference 229

RTA-RTE V6.8.0
Reference Manual

6.22.4 Example

Consider a required port, ra, containing a mode declaration group prototype mode that
references mode declaration group mg1. The following API call can then be made:

Rte_ModeType_mg1 m = Rte_Mode_ra_mode(self);

6.23 Rte_Ports

Rte_PortHandle_<i>_<P/R>
Rte_Ports_<i>_<P/R>([IN Rte_Instance <inst>])

Where <i> is the interface name and <P/R> dependent on whether the ports ‘provide’
or ‘require’ the interface.

6.23.1 Description

The Rte_Ports API provides access to the base of an array created for each interface
(and ‘provide’ or ‘require’ usage) of a software-component. The Rte_Ports API sup-
ports iteration through similarly typed ports when combined with the Rte_NPorts API.

6.23.2 Return Values

The Rte_Ports API returns a port handle corresponding to the appropriate interface
and ‘provide’ or ‘require’ usage. Port handles are declared in the application header
file.

6.23.3 Notes

One Rte_Ports API is created for each interface (inc. ‘provide’ or ‘require’ usage) used
within a software-component. Thus a software-component includes port specifications
that both require and provide the same interface will result in two Rte_Ports APIs being
generated.

RTA-RTE includes an explicit array within the component data structure to
store individual port data structures. This is safe with regards port iteration
and consistent with the AUTOSAR SWS requirements but is inconsistent with
the example given in the AUTOSAR SWS.

6.23.4 Example

Consider a software component with two required ports, ra and rb, both typed by
interface i2. An Rte_Ports API consistent with the following signature would then be
created:

Rte_PortHandle_i2_R Rte_Ports_i2_R(Rte_Instance);

6.24 Rte_NPorts

uint8
Rte_NPorts_<i>_<P/R>([IN Rte_Instance <inst>])

230 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

Where xmltagi is the interface name and <P/R> dependent on whether the ports ‘pro-
vide’ or ‘require’ the interface.

6.24.1 Description

The Rte_NPorts API provides access to the size of the array created for each inter-
face (and ‘provide’ or ‘require’ usage) of a software-component. The Rte_NPorts API
supports iteration through similarly typed ports when combined with the Rte_Ports
API.

6.24.2 Return Values

The Rte_NPorts API returns a uint8 corresponding to the number of ports that use the
same interface and ‘provide’ or ‘require’ usage.

6.24.3 Notes

One Rte_NPorts API is created for each interface (inc. ‘provide’ or ‘require’ usage
) used within a software-component for which the indirect API is created. Thus a
software-component includes port specifications that both require and provide the
same interface will result in two Rte_NPorts APIs being generated.

6.24.4 Example

Consider a software component with two required ports, ra and rb, both typed by
interface i2. An Rte_Ports API consistent with the following signature would then be
created:

uint8 Rte_NPorts_i2_R(Rte_Instance);

The Rte_NPorts_i2_R API would return two since there are two require ports typed by
interface i2.

The Rte_NPorts API can be combined with the Rte_Ports API to support iteration over
similarly typed ports, for example:

uint8 count = Rte_NPorts_i2_R(self);
Rte_PortHandle_i2_R base = Rte_Ports_i2_R(self);
for (p = 0; p < count; p++)
{
base[p]->Send_a(49);

}

6.25 Rte_Port

Rte_PortHandle_<i>_<P/R>
Rte_Port_<port>([IN Rte_Instance <inst>])

RTE API Reference 231

RTA-RTE V6.8.0
Reference Manual

Where <port> is the port name, <i> the interface name and <P/R> dependent on
whether the ports ‘provide’ or ‘require’ the interface.

6.25.1 Description

The Rte_Port API provides access to port handle for a specified port of a software-
component. The API allows a software-component to extract a sub-group of ports typed
by the same interface in order to iterate over this sub-group.

6.25.2 Return Values

The Rte_Ports API returns a port handle corresponding to the appropriate interface
and ‘provide’ or ‘require’ usage. Port handles are declared in the application header
file.

6.25.3 Notes

One Rte_Port API is created for each port declared within a software-component.

6.25.4 Example

Consider a software component with two required ports, ra and rb, both typed by inter-
face i2. Two Rte_Port APIs would be created consistent with the following signature:

Rte_PortHandle_i2_R Rte_Ports_ra(Rte_Instance);
Rte_PortHandle_i2_R Rte_Ports_rb(Rte_Instance);

6.26 Rte_Pim

<type>*
Rte_Pim_<name>([IN Rte_Instance <inst>])

Where <name> is the short-name name of the per-instance memory section to access.

6.26.1 Description

The Rte_Pim API provides access to a named per-instance memory (PIM) section de-
fined in the software component type. The function returns a pointer to a data memory
section that can be used directly, without any need for type casting, by the software-
component.

6.26.2 Return Values

A pointer to an instance of the type defined for the per-instance memory section.

The data type of the per-instance memory section is defined in the software compo-
nent’s application header file and therefore the actual type for each generated Rte_Pim
call will vary.

232 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

6.26.3 Notes

An Rte_Pim API is created for each defined PerInstanceMemorySection within a
software-component.

RTA-RTE instantiates the per-instance memory section once for each component in-
stance. When multiple instances of a component are possible the macro is mapped to
access the state within the specified instance. When only a single instance is known
to exist, the indirection through the instance handle may be elided and thus impose no
run-time penalty on access to static memory sections.

6.26.4 Example

The following example illustrates the use of Rte_Pim. The following declaration of a
per-instance memory section:

<PER-INSTANCE-MEMORY>
<SHORT-NAME>val</SHORT-NAME>
<TYPE>dataType</TYPE>
<TYPE-DEFINITION>
struct { uint8 var1; ... }

</TYPE-DEFINITION>
</PER-INSTANCE-MEMORY>

Results in the creation by RTA-RTE of an instance of dataType that can be accessed
through the Rte_Pim_val API call:

FUNC(void, RTE_APPL_CODE)
tt1(Rte_Instance self)
{
dataType* ds = Rte_Pim_val(self);
ds->var1 = 23;
// ...

}

6.27 Rte_Read

Std_ReturnType
Rte_Read_<port>_<item>([IN Rte_Instance <inst>,]

OUT <data>)

Where <port> is the port name and <item> the data element within the sender-receiver
interface that categorizes the port.

6.27.1 Description

Perform an explicit read on a sender-receiver communication using “data” semantics.

The Rte_Read API includes exactly one OUT parameter to pass back the received data
– the data will be passed by reference for all data types.

RTE API Reference 233

RTA-RTE V6.8.0
Reference Manual

6.27.2 Return Values

RTE_E_OK – The data has been read successfully.

RTE_E_TIMEOUT (blocking API only) – No data was received within the configured
timeout.

RTE_E_NO_DATA (non-blocking API only) – No data was available for reading but no
other error occurred when the read was attempted. This return value is not con-
sidered an error.

6.27.3 Notes

The Rte_Read call is created when a DataElementPrototype has an isQueued declara-
tion of “false”.

A non-blocking API is created if a DataReceivePoint references a required DataElement-
Prototype with ‘data’ semantics

Blocking Rte_Read API calls are not permitted in the AUTOSAR RTE specifi-
cation.

When a DataReceiveEvent that references a DataElementPrototype and a runnable en-
tity then RTA-RTE will trigger the specified runnable when a datum is received and will
provide a non-blocking API call to read the received datum. It is not valid to combine
activating a runnable entity with a blocking API call.

6.27.4 Example

Consider a required port, ra, containing a data element val of type SInt16 with an
isQueued declaration of “false”. The following calls can then be made:

SInt16 a;
Std_ReturnType e = Rte_Read_ra_val(self, &a);
if (e == RTE_E_OK)
{
/* Read okay */

}

6.27.5 Related APIs

See also Rte_DRead, Rte_Receive.

6.28 Rte_DRead

<type>
Rte_DRead_<port>_<item>([IN Rte_Instance <inst>])

234 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

Where <port> is the port name and <item> the data element within the sender-receiver
interface that categorizes the port.

6.28.1 Description

Perform an explicit read on a sender-receiver communication using “data” semantics.

The Rte_Read API includes exactly one OUT parameter to pass back the received data
– the data will be passed by reference for all data types.

6.28.2 Return Values

RTE_E_OK – The data has been read successfully.

RTE_E_TIMEOUT (blocking API only) – No data was received within the configured
timeout.

RTE_E_NO_DATA (non-blocking API only) – No data was available for reading but no
other error occurred when the read was attempted. This return value is not con-
sidered an error.

6.28.3 Notes

The Rte_Read call is created when a DataElementPrototype has an isQueued declara-
tion of “false”.

A non-blocking API is created if a DataReceivePoint references a required DataElement-
Prototype with ‘data’ semantics

Blocking Rte_Read API calls are not permitted in the AUTOSAR RTE specifi-
cation.

When a DataReceiveEvent that references a DataElementPrototype and a runnable en-
tity then RTA-RTE will trigger the specified runnable when a datum is received and will
provide a non-blocking API call to read the received datum. It is not valid to combine
activating a runnable entity with a blocking API call.

6.28.4 Example

Consider a required port, ra, containing a data element val of type SInt16 with an
isQueued declaration of “false”. The following calls can then be made:

SInt16 a;
Std_ReturnType e = Rte_Read_ra_val(self, &a);
if (e == RTE_E_OK)
{
/* Read okay */

}

6.29 Rte_Receive

RTE API Reference 235

RTA-RTE V6.8.0
Reference Manual

Std_ReturnType
Rte_Receive_<port>_<item>([IN Rte_Instance <inst>,]

OUT <data>)

Where <port> is the port name and <item> the data element within the sender-receiver
interface that categorizes the port.

6.29.1 Description

Perform an explicit read on a sender-receiver communication using “event” semantics.

The Rte_Receive API includes exactly one OUT parameter to pass back the received
data – the data will be passed by reference for all data types.

6.29.2 Return Values

RTE_E_OK – The data has been read successfully.

RTE_E_TIMEOUT (blocking API only) – No data was received within the configured
timeout.

RTE_E_NO_DATA (non-blocking API only) – No data was available for reading but no
other error occurred when the read was attempted. This return value is not con-
sidered an error.

6.29.3 Notes

The Rte_Receive call is created when a DataElementPrototype is “QUEUED”.

A non-blocking API is created if a DataReceivePoint references a required DataElement-
Prototype with ‘QUEUED’ semantics

A blocking API is created if a DataReceivePoint references a required DataElement-
Prototype with ‘QUEUED’ semantics and a WaitPoint references a DataReceiveEvent
that references the same DataElementPrototype.

When a DataReceiveEvent that references a DataElementPrototype and a runnable en-
tity then RTA-RTE will trigger the specified runnable when an event is received and will
provide a non-blocking API call to read the received event. It is not valid to combine
activating a runnable entity with a blocking API call.

6.29.4 Example

Consider a required port, ra, containing a data element val of type SInt16 with the
isQueued attribute set to “true”. The following calls can then be made:

SInt16 a;
Std_ReturnType e = Rte_Receive_ra_val(self, &a);
if (e == RTE_E_OK)
{
/* Receive okay */

236 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

}

6.30 Rte_Result

Std_ReturnType
Rte_Result_<port>_<op>([IN Rte_Instance <inst>,]

[OUT <out_param_1>], ...,
[OUT <out_param_n>])

Where <port> is the port name and <op> the operation within the client-server inter-
face that categorizes the port.

6.30.1 Description

The Rte_Result API is used to poll for the result and the error state of an asynchronous
client-server communication. The call can be either blocking or non-blocking.

The Rte_Result API includes zero or more OUT parameters to pass back results from
the server. All OUT parameters are passed by reference for all data types

6.30.2 Return Values

The return value is used to indicate errors from either the Rte_Result call itself or
communication errors detected before the API call was made.

RTE_E_OK – The call completed successfully.

RTE_E_TIMEOUT (blocking call only) – No reply was received within the configured
timeout.

RTE_E_NO_DATA (non-blocking call only) – No data was available for reading but no
other error occurred when the read was attempted. This return value is not con-
sidered an error.

6.30.3 Notes

A non-blocking API is created for an AsynchronousServerCallReturnsEvent that refer-
ences a required OperationPrototype and no WaitPoint references the Asynchronous-
ServerCallReturnsEvent.

A blocking API is created for an AsynchronousServerCallReturnsEvent that references a
required OperationPrototype and a WaitPoint references the AsynchronousServerCall-
ReturnsEvent.

When an AsynchronousServerCallReturnsEvent that references an OperationPrototype
and a runnable entity then RTA-RTE will trigger the specified runnable when the server
result is received and will provide a non-blocking API call to read the received result. It
is not valid to combine activating a runnable entity with a blocking API call.

RTE API Reference 237

RTA-RTE V6.8.0
Reference Manual

6.30.4 Example

Consider a required port, pa, containing an operation op1 which is invoked asyn-
chronously with the result being collected using a blocking API call. The following calls
can then be made:

SInt16 a;
Std_ReturnType e;

Rte_Call_pa_op1(self, 1);
e = Rte_Result_pa_op1(self, &a)
if (e == RTE_E_OK)
{
/* Result received okay */

}

6.31 Rte_Send

Std_ReturnType
Rte_Send_<port>_<item>([IN Rte_Instance <inst>,]

IN <data>)

Where <port> is the port name and <item> the data element within the sender-receiver
interface that categorizes the port.

6.31.1 Description

Initiates a sender-receiver communication using queued semantics.

The Rte_Send API includes exactly one IN parameter for data – this will be passed by
value for primitive data types and by reference for all other types.

6.31.2 Return Values

RTE_E_OK – The data has been passed to communication service successfully. De-
pending on bus load the data may or may not have been transmitted.

RTE_E_COM_STOPPED – A communications error occurred – the data has not been
successfully passed to the communication service.

6.31.3 Notes

An Rte_Send API call is created when a DataSendPoint is specified for a provided Data-
ElementPrototype for which the isQueued attribute is set to “true”.

The API returns when the signal has been passed to the communication service for
transmission. Depending on the communication server the transmission may or may
not have been acknowledged by the receiver.

238 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

If a sender port has multiple receivers connected, the generated Rte_Send API will try
to write to all receivers independently. This ensures that. for example, the overflow
in one component’s queue does not prevent the transmission of this message to other
components.

6.31.4 Example

Consider a provided port, ra, containing a data element val of type SInt16 with the
isQueued attribute set to “true”. The following call can then be made:

Std_ReturnType e = Rte_Send_ra_val(self, 23);
if (e == RTE_E_OK)
{
/* Transmission okay */

}

6.32 Rte_Start

Std_ReturnType
Rte_Start(void)

6.32.1 Description

This function is invoked (typically by the ECU state manager or possibly by user code)
to start the RTE.

The Rte_Start API is responsible for starting the execution of periodic runnables and
for initiating execution of runnables trigger by ModeSwitchEvents for ENTRY to the ini-
tial mode.

When the Rte_Start API completes the RTE is initialized and the RTE’s response to
inter-ECU communication is enabled.

6.32.2 Return Values

RTE_E_OK – No error detected.

RTE_E_LIMIT – Unable to start periodic runnable entities.

6.32.3 Notes

The Rte_Start invokes OS APIs to start the execution of timing triggered runnables.

6.33 Rte_Stop

Std_ReturnType
Rte_Stop(void)

RTE API Reference 239

RTA-RTE V6.8.0
Reference Manual

6.33.1 Description

This function is invoked (typically by the ECU state manager or possibly by user code)
to stop the RTE.

The Rte_Stop API is responsible for stopping further execution of periodic runnables.
Note that runnables already running will not be terminated.

When the Rte_Stop API completes no further RTE initiated activity will take place and
the RTE’s response to inter-ECU communication is disabled.

6.33.2 Return Values

RTE_E_OK – No error detected.

RTE_E_LIMIT – Error when trying to stop periodic runnable entities.

6.33.3 Notes

The Rte_Stop API invokes OS APIs to halt execution of timing triggered runnables. The
selected API depends on the chosen OS plug-in.

6.34 Rte_Switch

Std_ReturnType
Rte_Switch_<port>_<item>([IN Rte_Instance <inst>,]

IN <data>)

Where <port> is the port name and <item> the mode declaration group prototype
name within the sender-receiver interface categorizing the port.

6.34.1 Description

Initiates a mode switch transition within a “mode graph”.

The Rte_Switch API includes exactly one IN parameter for data passed by value. The
IN parameter indicates the required ‘next’ mode.

The Rte_Switch API initiates the mode switch if the mode graph is not currently in-
volved in a transition. Otherwise the request is queued.

The Rte_Switch API supports synchronous and asynchronous mode switches. The lat-
ter method is selected when explicitly enabled by all mode users.

6.34.2 Return Values

RTE_E_OK – The mode switch request has been queued successfully.

RTE_E_LIMIT – The mode switch request has been discarded due to a full request
queue.

240 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

6.34.3 Notes

The Rte_Switch call is generated for each mode declaration group prototype within
the categorizing interface for a provided port where at least one runnable entity has a
ModeSwitchPoint declared for the mode declaration group prototype.

If a provided port has multiple receivers connected, the mode switch will apply to all
receivers.

The Rte_Switch API generated for an unconnected port discards the mode switch re-
quest and returns RTE_E_OK. No mode switch will occur as a result of the API’s invoca-
tion.

6.34.4 Example

Consider a provided port, ra, containing a mode declaration group prototype mode.
Furthermore, assume that the referenced mode declaration group defines the mode
RUN. The following Rte_Switch call can then be made:

Std_ReturnType e;
e = Rte_Switch_ra_mode(self, RTE_MODE_RUN);
if (e != RTE_E_OK)
{
/* Mode switch request failed */

}

6.35 Rte_Tick_Timeouts

void
Rte_Tick_Timeouts(void)

6.35.1 Description

Rte_Tick_Timeouts ticks the Rte_Tout_Counter and sets any necessary OS events
when alarms expire.

To prevent missed runnable activations and event settings it is important not
to tick Rte_Tout_Counter directly but to call Rte_Tick_Timeouts instead.

6.35.2 Return Values

None.

6.35.3 Notes

Rte_Tick_Timeouts is needed in when generated RTE has timeouts present in the sys-
tem and is generated for AUTOSAR OS or OSEK OS.

The Rte_Tick_Timeouts API is a vendor-specific mechanism created in or-
der to ensure compatibility with the restrictions placed by AUTOSAR OS and
OSEK OS on the use of OS API calls in Alarm Callbacks.

RTE API Reference 241

RTA-RTE V6.8.0
Reference Manual

Rte_Tick_Timeouts should be called at the interval (in microseconds) defined by RTA-
RTE in RTE_ALARM_COUNTER_TICK_INTERVAL_US.

Although the prototype is always present in Rte.h, the function itself is only gen-
erated if timeouts are present in the system. If no timeouts are present the
RTE_ALARM_COUNTER_TICK_INTERVAL_US preprocessor symbol is undefined.

It is recommended to use conditional compilation (see the example be-
low) to cause the call to Rte_Tick_Timeouts call only to be included when
RTE_ALARM_COUNTER_TICK_INTERVAL_US is defined

6.35.4 Example

This example demonstrates the recommended way of calling Rte_Tick_Timeouts from
within an ISR body.

uint8 count = USECONDS_TO_TICKS (RTE_ALARM_COUNTER_TICK_INTERVAL_US
);

...

#ifdef RTE_ALARM_COUNTER_TICK_INTERVAL_US
if (0 == --count)
{
count = USECONDS_TO_TICKS (RTE_ALARM_COUNTER_TICK_INTERVAL_US);
Rte_Tick_Timeouts();

}
#endif /* RTE_ALARM_COUNTER_TICK_INTERVAL_US */

6.36 Rte_Trigger

void
Rte_Trigger_<p>_<itp>(void)

Where <p> is the port name and <itp> is the name of the InternalTriggeringPoint.

6.36.1 Description

Trigger the execution for all runnables whose ExternalTriggerOccurredEvent is associ-
ated with the trigger.

6.37 Rte_IrTrigger

void
Rte_IrTrigger_<re>_<itp>(void)

242 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

Where <re> is the runnable entity name and <itp> is the name of the InternalTrigger-
ingPoint.

6.37.1 Description

Trigger the execution for all runnables whose InternalTriggerOccurredEvent is associ-
ated with the trigger.

6.38 Rte_Write

Std_ReturnType
Rte_Write_<port>_<data>([IN Rte_Instance <inst>,]

IN <data>)

Where <port> is the port name and <item> the data element within the sender-receiver
interface that categorizes the port.

6.38.1 Description

Rte_Write initiates sender-receiver communication using “UNQUEUED” semantics.

The call includes exactly one IN parameter for data – this will be passed by value for
primitive data types and by reference for all other types.

6.38.2 Return Values

RTE_E_OK – The data has been passed to communication service successfully. De-
pending on bus load the data may or may not have been transmitted.

RTE_E_COM_STOPPED – A communications error occurred – the data has not been
successfully passed to the communication service.

RTE_E_SIGNAL_DISCARDED – The signal was discarded (failed to pass an outgoing
filter) without being transmitted. This return is not considered to be an error.

Value-based filters are not implemented in RTA-RTE

RTE_E_LIMIT – An internal limit (e.g. queue length) has been exceeded.

6.38.3 Notes

An Rte_Write API call is created when a DataSendPoint is specified for a provided Data-
ElementPrototype with ‘data’ semantics. The Rte_Write API call is generated when the
isQueued attribute for the data element prototype is set to “false”.

The API returns when the signal has been passed to the communication service for
transmission. Depending on the communication server the transmission may or may
not have been acknowledged by the receiver.

RTE API Reference 243

RTA-RTE V6.8.0
Reference Manual

If a sender port has multiple receivers connected, the Rte_Write API must try to write
to all receivers independently. This ensures that overflow in one component’s queue
does not prevent the transmission of this message to other components.

6.38.4 Example

Consider a provided port, ra, containing a data element val of type SInt16 with the
isQueued attribute set to “false”. The following calls can then be made:

Std_ReturnType e = Rte_Write_ra_val(self, 23);
if (e == RTE_E_OK)
{
/* Transmission okay */

}

244 RTE API Reference

RTA-RTE V6.8.0
Reference Manual

7 RTE Runnable API Reference

A software-component implementation defines functions that provide the entry points
for runnable entities. The call name and parameters of the entry point function vary
depending on the event that triggers the runnable entity.

7.1 Supported RTE Events

The following classes of RTE event are supported by RTA-RTE;

Asynchronous Server Call Returns Event – a runnable entity activated when the
result of an asynchronous invocation of a client-server operation is available. The
function providing the runnable entity’s entry point has void return type and
takes no parameters (other than an instance handle if the software-component
supports multiple instantiation).

Data Receive Error Event – a runnable entity invoked by RTA-RTE when a data re-
ceive error occurs. The function providing the runnable entity’s entry point has
void return type and takes no parameters (other than an instance handle if the
software-component supports multiple instantiation).

Data Received Event – a runnable entity invoked by RTA-RTE when a signal is re-
ceived. The function providing the runnable entity’s entry point has void return
type and takes no parameters (other than an instance handle if the software-
component supports multiple instantiation).

Data Send Completed Event – a runnable entity invoked by RTA-RTE when a trans-
mission completes. The function providing the runnable entity’s entry point has
void return type and takes no parameters (other than an instance handle if the
software-component supports multiple instantiation).

Mode Switch Event – a runnable entity invoked by RTA-RTE either on entry to, or on
exit from, a mode. The function providing the runnable entity’s entry point has
void return type and takes no parameters (other than an instance handle if the
software-component supports multiple instantiation).

Uniquely, RTA-RTE supports a “fast init” activation method for Mode Switch Events
that bypasses the normal AUTOSAR activation method for events that are trig-
gered only once at system startup. See Section 7.3 below for further details.

Mode Switched Ack Event – a runnable entity invoked by RTA-RTE when a mode
transition is complete. The function providing the runnable entity’s entry point
has void return type and takes no parameters (other than an instance handle if
the software-component supports multiple instantiation).

Operation Invoked Event – a runnable entity that implements an operation in a
client-server interface. The runnable entity’s entry function can take zero or more
parameters in addition to the instance handle depending on the input configura-
tion and has a return type of void or Std_ReturnType depending on whether or
not the server returns an application error..

RTE Runnable API Reference 245

RTA-RTE V6.8.0
Reference Manual

Timing Event – Runnable entity triggered by time. The function providing the
runnable entity’s entry point has void return type and takes no parameters (other
than an instance handle if the software-component supports multiple instantia-
tion).

The name for an runnable entity’s entry point function contained within the <SYMBOL>
element in the software-component description. The application header file includes a
prototype for the required entry point function.

All runnable entities, whatever the event that triggers the runnable, must
be declared in the input XML.

7.2 Signature

Apart from runnables triggered by an OperationInvoked event all functions implement-
ing a runnable entity have the same signature:

FUNC(void, RTE_APPL_CODE)
<name>([IN Rte_Instance <instance>])

Where <name> is the runnable entity’s <SYMBOL> and <instance> is a user-defined
name for the instance handle. The instance handle is omitted if the software-
component is declared as not supporting multiple instantiation.

The function implementing the runnable should be declared as
RTE_APPL_CODE.

The function implementing an OperationInvoked event must declare a formal param-
eter list matching the operation arguments. The formal parameter list can include
port-defined arguments or operation arguments:

(FUNC(void, RTE_APPL_CODE)
| FUNC(Std_ReturnType, RTE_APPL_CODE)
<name>([IN Rte_Instance <instance>],

[IN <portDefArg_1>, ...
IN <portDefArg_n>]
[IN|INOUT|OUT <param_1>, ...
IN|INOUT|OUT <param_n>])

Where <name> is the runnable entity’s <SYMBOL> and <instance> is a user-defined
name for the instance handle. The instance handle is omitted if the software-
component is declared as not supporting multiple instantiation.

For an OperationInvoked event, the return type must be FUNC(void, RTE_APPL_CODE)
except where the interface declares one or more application errors in which case the
type must be FUNC(Std_ReturnType, RTE_APPL_CODE).

All instances of a component are independent however the runnable entities of each
instance share the same code. As a consequence multiple threads of control can be

246 RTE Runnable API Reference

RTA-RTE V6.8.0
Reference Manual

concurrently executing the same runnable entity and therefore either the runnable en-
tity must be reentrant or multiple instances must be explicitly forbidden.

7.3 SWC Initialization

AUTOSAR modes can be used to execute code when the RTE is started, e.g. to initialise
internal data structures etc. Each mode declaration group describes an initial mode –
to activate a runnable when the system is started created by a <MODE-SWITCH-EVENT>
for entry to the initial mode.

A runnable entity within a software-component can be started when the RTE is started
by declaring a <MODE-SWITCH-EVENT> for entry to an initial mode.

However for a runnable that only runs once at system start the infrastructure code
created by RTA-RTE to support the AUTOSAR mode mechanism is superfluous. There-
fore RTA-RTE provides the FastInit mechanism to optimize activation for specified Mod-
eSwitchEvents by mapping them to specified FastInit tasks as simple function calls. The
use of a FastInit task both simplifies the activation code necessary for the runnable as-
sociated with the event as well as removing the normal infrastructure code created by
RTA-RTE to support the AUTOSAR mode mechanism.

The FastInit mechanism must be enabled for each applicable ModeSwitchEvent using
the --fast-init command-line option.

An event that is specified as FastInit will not be activated by RTA-RTE during
a user-triggered mode switch. Instead the FastInit task must be activated
by user code at the appriopriate time.

RTE Runnable API Reference 247

RTA-RTE V6.8.0
Reference Manual

8 VFB Tracing

When VFB tracing is enabled within the RTE module configuration (see Section 4.19.2)
RTA-RTE inserts VFB Trace event hook calls into generated code. However VFB trac-
ing must also be globally enabled within the user-supplied configuration file and the
specific required hooks enabled for tracing to have an effect.

8.1 Enabling VFB Tracing

During RTE generation phase, the RTE generator creates a header file, Rte_Hook.h,
that defines the signature and usage of VFB Trace event hook calls. The generated
Rte_Hook.h file #includes the user-supplied configuration file Rte_Cfg.h that:

• Globally enables or disables all VFB Trace events.

• Enables individual VFB Trace events.

8.1.1 Global Enable

The following definition, within Rte_Cfg.h, globally disables all VFB Trace events:

#define RTE_VFB_TRACE (0)

And the following definition globally enables VFB Trace events:

#define RTE_VFB_TRACE (1)

When VFB Tracing is globally disabled no VFB Trace hooks will be made (irrespective of
the configuration of individual trace events) and the VFB Trace hooks embedded within
the generated RTE by RTA-RTE will have zero run-time impact.

When VFB Tracing is globally enabled individual trace events are enabled within
Rte_Cfg.h by defining the name of the trace event hook function. For example, the
“OS Task Dispatch” trace event is enabled by the following definition in Rte_Cfg.h:

#define Rte_Task_Dispatch

Whereas the “API Start” trace event for software-component type swc, port pa, data
item d2 and API call Rte_Write would be enabled by the following definition in
Rte_Cfg.h:

#define Rte_WriteHook_swc_pa_d2_Start

8.2 Trace Events

8.2.1 RTE API Start

RTE API Start is invoked by the RTE when an API call is made by a software component.

void
Rte_<api>Hook_<c>_<ap>_Start([IN Rte_Instance <inst>,]

<params>)

248 VFB Tracing

RTA-RTE V6.8.0
Reference Manual

Where <api> is the API root name (Write, Call, Feedback, etc.), <c> the software-
component type name and <ap> the access point (combination of port name and data
item name/operation name separated by an underscore).

The parameters of the RTE API Start trace event hook are the same as the correspond-
ing RTE API. The Instance handle is elided when a software-component is singly instan-
tiated.

8.2.2 RTE API Return

RTE API Return is invoked by the RTE just before an API call returns control to a compo-
nent.

void
Rte_<api>Hook_<c>_<ap>_Return([IN Rte_Instance <inst>,] <params>)

Where <api> is the API root name (Write, Call, Feedback, etc.), <swc> the software-
component type name and <ap> the access point (combination of port name and data
item name/operation name separated by an underscore).

The parameters of the RTE API Return trace event hook are the same as the corre-
sponding RTE API. The Instance handle is elided when a software-component is singly
instantiated.

8.2.3 Signal Transmission

A trace event indicating a transmission request of an Inter-ECU signal or signal group
by the RTE. Invoked by the RTE just before Com_SendSignal or Com_SendSignalGroup
is invoked.

void
Rte_ComHook_<signal>_SigTx(<data>)

Where <signal> is the system signal name and <data> is a pointer to the signal data
to be transmitted.

For a system signal, the parameter of the signal transmission trace event hook is the
data to be transmitted.

8.2.4 Signal Reception

A trace event indicating an attempt to read Inter-ECU signal by the RTE. Invoked by the
RTE after successful return from Com_ReceiveSignal.

void
Rte_ComHook_<signal>_SigRx(<data>)

Where <signal> is the system signal name and <data> is a pointer to the signal data
received.

The parameter of the signal reception trace event hook is the data received.

VFB Tracing 249

RTA-RTE V6.8.0
Reference Manual

8.2.5 COM Notification

A trace event indicating the start of a COM notification. Invoked by the generated RTE
code on entry to the COM call-back.

void
Rte_ComHook_<signal>(void)

Where <signal> is the system signal name.

8.2.6 OS Task Activation

A trace event invoked by the RTE immediately before activating the specified task.

void
Rte_Task_Activate(TaskType t)

Where <t> is the handle of the task to be activated.

8.2.7 OS Task Dispatch

A trace event invoked by the RTE immediately on dispatch of the specified generated
task (provided it contains runnable entities).

void
Rte_Task_Dispatch(TaskType t)

Where <t> is tha handle of the task to be activated.

8.2.8 OS Task Set Event

A trace event invoked immediately before generated RTE code attempts to set an OS
Event.

void
Rte_Task_SetEvent(TaskType task, EventType ev)

Where <t> is tha handle of the task to be activated and <ev> the Os event to be set.

8.2.9 OS Task Wait Event

A trace event invoked immediately before generated RTE code attempts to wait for an
OS Event.

void
Rte_Task_WaitEvent(TaskType task, EventType ev)

Where <t> is tha handle of the task to be activated and <ev> the Os event(s).

8.2.10 OS Task Wait Event Return

A trace event invoked immediately before generated RTE code returns from waiting for
an OS Event.

250 VFB Tracing

RTA-RTE V6.8.0
Reference Manual

void
Rte_Task_WaitEventRet(TaskType task, EventType ev)

Where <t> is tha handle of the task to be activated and <ev> the set Os event(s).

8.2.11 Runnable Entity Invocation

Event invoked by the RTE just before execution of runnable entry starts via its entry
point. This trace event occurs after any copies of data elements are made to support
the Rte_IRead API Call.

void
Rte_Runnable_<swc>_<reName>_Start(IN Rte_Instance <inst>)

Where <swc> is the software-component type name and <reName> the runnable entity
name.

8.2.12 Runnable Entity Termination

Event invoked by the RTE immediately execution returns to RTE code from a runnable
entity. This trace event occurs before write-back of data elements are made to support
the Rte_IWrite API Call.

void
Rte_Runnable_<c>_<reName>_Return([IN Rte_Instance <inst>)]

Where <swc> is the software-component type name and <reName> the runnable entity
name.

8.3 Trace Event Implementation

The implementation of a trace event hook function is entirely within the user domain –
all that is necessary to supply when linking is a function implementation that conforms
to one of the trace event signatures defined above.

For example, the task dispatch event might be implemented as follows:

#include <Os.h>
#include Rte_Hook.h’’

void Rte_Task_Dispatch(TaskType t)
{

if (t == taskA)
{

/* Log task A dispatch */
}

}

VFB Tracing 251

RTA-RTE V6.8.0
Reference Manual

8.4 Optimization

Enabling VFB tracing, either via the ECU configuration description or the command-line
option, disables certain optimizations within the generated RTE:

• Intra-task (and inter-task to a ‘pure’ server) client-server communication is not op-
timized to a direct function call.

252 VFB Tracing

RTA-RTE V6.8.0
Reference Manual

9 Memory Mapping and Compiler Abstraction

9.1 Memory mapping principles

RTA-RTE-generated code and data allocations are placed into memory sections using
the AUTOSAR memory mapping scheme. Declarations and definitions of code and data
objects are wrapped with Memory Allocation Keywords (MAKWs), allowing RTE code
to remain target-independent. You must supply or generate the Rte_MemMap.h file
that provides the compiler-specific memory mapping implementation (e.g. emitting
#pragmas, redefining memory section macros).

9.1.1 Format of Memory Allocation Keywords

Regardless of the type of object, all MAKWs generated by RTA-RTE conform to a stan-
dard format:

<PREFIX>_[<INFIX>_]<ACTION>_<SECNAME>

A MAKW’s <ACTION> is either START_SEC for MAKWs that denote the start of a memory
section, or STOP_SEC for MAKWs that denote the end of a section. Within the generated
code, each START_SEC MAKW will be followed by a corresponding STOP_SEC MAKW. The
MAKW system does not support nesting, so a section must be stopped before a new
one can be started.

9.2 Memory mapping for code objects

All code objects generated by RTA-RTE are wrapped in MAKWs where the <PREFIX> is
RTE. With the exception of task bodies that have a specific SwAddrMethod assigned,
code objects use the SwAddrMethod CODE, and thefore the MAKW <SECNAME> is also
CODE. All MAKWs associated with a code object also contain an infix that is used to
identify the context in which the generated code will be executed.

The MAKW infix and the associated memory section information in the
Rte_BSWMD.arxml report can help with the configuration of a memory protection
scheme to ensure freedom from interference requirements are satisfied. For code
objects, this information is always generated. If isolation of code objects is not required
in your system, you can configure your memory mapping to allocate multiple AUTOSAR
MemorySections to one physical memory section.

When configuring a memory protection scheme, you must ensure that all code objects
are accessible from all contexts in which they will be executed, including trusted con-
texts if applicable.

The infixes used for the various categories of code objects are as follows:

9.2.1 SWCT-related code

For APIs and other generated functions associated with a specific SWCT, the section
identification infix is the ShortName of that SWCT. Each generated API is wrapped with
RTE_<SWCT>_START_SEC_CODE and RTE_<SWCT>_STOP_SEC_CODE.

/* RTE API FUNCTION PROTOTYPES */

Memory Mapping and Compiler Abstraction 253

RTA-RTE V6.8.0
Reference Manual

#define RTE_SWCA_START_SEC_CODE
#include "Rte_MemMap.h"
FUNC(Std_ReturnType, RTE_CODE) Rte_<API>(...);
#define RTE_SWCA_STOP_SEC_CODE
#include "Rte_MemMap.h"

/* RTE API FUNCTION BODIES */
#define RTE_SWCA_START_SEC_CODE
#include "Rte_MemMap.h"
FUNC(Std_ReturnType, RTE_CODE) Rte_<API>(...)
{

...
}
#define RTE_SWCA_STOP_SEC_CODE
#include "Rte_MemMap.h"

9.2.2 BSWMD-related code

For Basic Software Scheduler (SchM) APIs associated with a specific BSWMD, the section
identification infix is the ShortName of that BSWMD. Each generated API is wrapped with
RTE_<BSWMD>_START_SEC_CODE and RTE_<BSWMD>_STOP_SEC_CODE.

/* RTE API FUNCTION PROTOTYPES */
#define RTE_BSWA_START_SEC_CODE
#include "Rte_MemMap.h"
FUNC(Std_ReturnType, RTE_CODE) SchM_<API>(...);
#define RTE_BSWA_STOP_SEC_CODE
#include "Rte_MemMap.h"

/* RTE API FUNCTION BODIES */
#define RTE_BSWA_START_SEC_CODE
#include "Rte_MemMap.h"
FUNC(Std_ReturnType, RTE_CODE) SchM_<API>(...)
{

...
}
#define RTE_BSWA_STOP_SEC_CODE
#include "Rte_MemMap.h"

9.2.3 Task bodies

Each task body is wrapped with RTE_<TASK>_START_SEC_<NAME> and
RTE_<TASK>_STOP_SEC_<NAME>.

For task bodies, the task name is used as the section identification infix. By default,
task bodies use the default SwAddrMethod CODE, so the <NAME> portion of the MAKW is
also CODE.

254 Memory Mapping and Compiler Abstraction

RTA-RTE V6.8.0
Reference Manual

A user-specified SwAddrMethod applies to a task body when its corresponding OsTask
contains an OsMemoryMappingCodeLocationRef. When a user-specified SwAddrMethod
applies, the <NAME> portion of the MAKW is the shortName of the referenced
SwAddrMethod.

/* RTE_TASKBODIES_START */

/* The OsTask for taskTx does not reference /
/ a swAddrMethod (default "CODE" assumed) */

#define RTE_TASKTX_START_SEC_CODE
#include "Rte_MemMap.h"
TASK(taskTx)
{

...
}
#define RTE_TASKTX_STOP_SEC_CODE
#include "Rte_MemMap.h"

/* The OsTask object for taskRx references a /
/ swAddrMethod with shortName "TaskRxSADM" */

#define RTE_TASKRX_START_SEC_TaskRxSADM
#include "Rte_MemMap.h"
TASK(taskRx)
{

...
}
#define RTE_TASKRX_STOP_SEC_TaskRxSADM
#include "Rte_MemMap.h"

9.2.4 Communication callbacks

COM and LdCom callback functions documented in sections 5.9.1 and 5.9.2 of
[SWS_Rte] (e.g. Rte_COMCbk_<sn>) use the section identification infix SIG_<sn>, where
<sn> is the name of the COM signal, COM signal group or LdComIPdu associated with
the callback function.

/* RTE CALLBACKS */
#define RTE_SIG_MYSIGNAL_UINT32_START_SEC_CODE
#include "Rte_MemMap.h"
FUNC(void, RTE_CODE) Rte_COMCbk_MySignal_UInt32(void)
{

...
}
#define RTE_SIG_MYSIGNAL_UINT32_STOP_SEC_CODE
#include "Rte_MemMap.h"

Memory Mapping and Compiler Abstraction 255

RTA-RTE V6.8.0
Reference Manual

9.2.5 OS callbacks

OS callback functions (including alarm callbacks and IOC pull receiver callbacks) use
the section identification infix OSCBK_<cbkname>, where <cbkname> is the name of the
function generated by RTA-RTE to implement the callback.

#define RTE_OSCBK_RTE_TIMEOUTALARM2_CBK_START_SEC_CODE
#include "Rte_MemMap.h"
ALARMCALLBACK(Rte_TimeoutAlarm2_Cbk)
{

...
}
#define RTE_OSCBK_RTE_TIMEOUTALARM2_CBK_STOP_SEC_CODE
#include "Rte_MemMap.h"

9.2.6 NVM access code

Code that is used to access an NvBlockDescriptor in an NvBlockSwComponentType
uses the section identification infix <SWCT>_<NvBlockDescriptorName>.

NVM access code includes the NVM service callbacks documented in section
5.9.3 of [SWS_Rte]. As Rte_GetMirror is expected to be executed in a differ-
ent context from the other NVM callbacks, it is further differentiated by an ad-
ditional NVM_ in its section identification infix, meaning that it uses the infix
NVM_<SWCT>_<NvBlockDescriptorName>.

In both cases, <SWCT> is the name of the NvBlockSwComponentType and
<NvBlockDescriptorName> is the name of the NvBlockDescriptor for which the code
is generated.

9.2.7 Lifecycle APIs

The RTE lifecycle APIs (enumerated in section 5.7 of [SWS_Rte]), Basic Soft-
ware Scheduler (SchM) lifecycle APIs (section 6.7 of [SWS_Rte]), and the function
Rte_MainFunction use the section identification infix MAIN, resulting in them being
wrapped with RTE_MAIN_START_SEC_CODE and RTE_MAIN_STOP_SEC_CODE

/* RTE LIFECYCLE API FUNCTION PROTOTYPES */
#define RTE_MAIN_START_SEC_CODE
#include "Rte_MemMap.h"
FUNC(Std_ReturnType, RTE_CODE) Rte_Start(void);
#define RTE_MAIN_STOP_SEC_CODE
#include "Rte_MemMap.h"

/* RTE LIFECYCLE API FUNCTION BODIES */
#define RTE_MAIN_START_SEC_CODE
#include "Rte_MemMap.h"
FUNC(Std_ReturnType, RTE_CODE) Rte_Start(void)
{

256 Memory Mapping and Compiler Abstraction

RTA-RTE V6.8.0
Reference Manual

...
}
#define RTE_MAIN_STOP_SEC_CODE
#include "Rte_MemMap.h"

9.2.8 RTE library code

RTE code not related to any SWC, task or callback is assigned one of three possible
section identification infixes depending on the behaviour of the code:

• If the function modifies global state, the infix used is SYS, giving MAKWs
RTE_SYS_START_SEC_CODE and RTE_SYS_STOP_SEC_CODE.

• If the function calls OS or BSW functions, the infix is EXT, giving MAKWs
RTE_EXT_START_SEC_CODE and RTE_EXT_STOP_SEC_CODE.

• If the function neither modifies global state nor calls OS/BSW functions, the infix is
LIB, giving MAKWs RTE_LIB_START_SEC_CODE and RTE_LIB_STOP_SEC_CODE.

The SYS category is the highest priority, so if a function both modifies global state
directly and calls OS or BSW functions, it is considered to belong to the SYS group.

9.3 Memory mapping for data objects

Data objects generated by RTA-RTE are wrapped in MAKWs where the <PREFIX>
is RTE and the <SECNAME> is derived from the SwAddrMethod referenced by the
AutosarDataPrototype.

If the SwAddrMethod has a memoryAllocationKeywordPolicy of
addrMethodShortName, the resulting <SECNAME> is the SwAddrMethod’s shortName.

If the SwAddrMethod has a memoryAllocationKeywordPolicy of
addrMethodShortNameAndAlignment, the resulting <SECNAME> is the SwAddrMethod’s
shortName plus one of the following alignment suffixes:

• _BOOLEAN

• _8

• _16

• _32

• _64

• _UNSPECIFIED

Consequently, if a configuration results in a global buffer for a VariableDataProtype
associated with a SwAddrMethod named group1, and that SwAddrMethod has a
memoryAllocationKeywordPolicy of swAddrMethodShortName, RTA-RTE generates the
following MAKWs around the declaration or definition of the global buffer:

Memory Mapping and Compiler Abstraction 257

RTA-RTE V6.8.0
Reference Manual

#define RTE_START_SEC_group1
#include "Rte_MemMap.h"
...
#define RTE_STOP_SEC_group1
#include "Rte_MemMap.h"

9.3.1 Default SwAddrMethods

When data implied by the input model has no associated SwAddrMethod, RTA-RTE uses
a default SwAddrMethod according to the AUTOSAR Memory Mapping specification:

• VAR_CLEARED for variables that are uninitialized, or initialized to zero.

• VAR_INIT for variables with initial values.

• CONST for constants.

• CALIB for calibration parameters.

• CODE for code.

These SwAddrMethods will always exist in any RTE implementation generated by RTA-
RTE. If the input configuration provides a SwAddrMethod with the same shortName as
any of these defaults, the provided and internal definitions must be compatible. RTA-
RTE will raise a warning if this is not the case.

9.3.2 SwAddrMethods for Mode Machine Instance variables

The SwAddrMethod for Mode Machine Instance variables (ModeCurrent, ModeNext,
ModeQueue, ModeQindex, ModeOld and ModeStatus) is the first-encountered
SwAddrMethod applied to the ImplementationDataType that is mapped to the asso-
ciated ModeDeclarationGroup.

Where an ImplementationDataType is typed by referencing another
ImplementationDataType, RTA-RTE will follow these references until a SwAddrMethod
is found. If no user defined SwAddrMethod is found, RTA-RTE will apply a default
SwAddrMethod.

To allow specific Mode Machine Instances to be allocated to identifiable memory sec-
tions, a SwAddrMethod can be assigned directly using a FlatInstanceDescriptor.

This FlatInstanceDescriptor references the ModeDeclarationGroupPrototype in
the PPortPrototype of the ModeManager, and has the role MMI_SWADDRMETHOD. Note
that this role is specific to RTA-RTE and is not specified by AUTOSAR.

The SwAddrMethod referenced by this FlatInstanceDescriptor will be used in
preference to any SwAddrMethod that is associated with the MMI’s mapped
ImplementationDataType.

258 Memory Mapping and Compiler Abstraction

RTA-RTE V6.8.0
Reference Manual

9.3.3 Context-specific MAKWs for data objects

To provide support for freedom from interference (FFI) in a safety-relevant system,
RTA-RTE allows the generation of data objects into context-specific memory sections.
Memory protection can then be configured to ensure that write access to those data
objects is not permitted from outside the relevant execution context.

Objects that are always allocated to context-specific sections

Some types of data object are always allocated to context-specific sections in the gen-
erated RTE when the input configuration contains EcucPartitions:

For the following objects, the MAKW <INFIX> is set to the shortName of the
EcucPartition from which the objects are accessed:

• Queue variables (queue buffer and dynamic structure) used for queued communi-
cation within a single partition.

• Mode machine instance variables used for mode switching

• Runnable activation flags

The MAKW <SECNAME> for these objects is set based on the applicable SwAddrMethod,
therefore the generated MAKW will have the form:

#define RTE_<EcucPartition>_START_SEC_<SwAddrMethod>[_<Alignment>]

The following objects use context-specific memory sections where the MAKW <INFIX>
is not based on the name of the EcucPartition:

• Resource lock counter variables - the <INFIX> is shortName of the OsApplication
associated with the resource

• Resource handle arrays and resource lock counter arrays - these use the <INFIX>
SYS

• Prescalar counter variables - the <INFIX> is the shortName of the OsTask in which
the prescalar variables are used.

• Variables that store ArTypedPerInstanceMemorys when they are aggregated by
a BswInternalBehavior - the <INFIX> here is the shortName of the parent
BswModuleDescription

The --use-partition-sections option has no effect on data objects that
are always allocated to context-specific memory sections. For these objects
the context-specific MAKW infix is always generated. If isolation of these
objects is not required in your system, you can configure your memory map-
ping to allocate multiple AUTOSAR MemorySections to one physical memory
section.

Memory Mapping and Compiler Abstraction 259

RTA-RTE V6.8.0
Reference Manual

Objects that are optionally allocated to context-specific sections

The remaining types of variable data object can optionally be allocated to partition-
specific memory sections by enabling the --use-partition-sections option.

When --use-partition-sections is enabled, the MAKW <SECNAME> for these objects
is prepended with either the shortName of the EcucPartition associated with those
objects, or the shortName of the associated OsApplication where it is not mapped to
an EcucPartition:

#define RTE_START_SEC_<EcucPartition>_<SwAddrMethod>[_<Alignment>]

or

#define RTE_START_SEC_<OsApp>_<SwAddrMethod>[_<Alignment>]

9.4 Reporting RTE objects to other AUTOSAR tooling

Code and data objects created by RTA-RTE are described in the Rte_BSWMD.arxml re-
port which is produced along with the generated RTE implementation.

Each SwAddrMethod used in the generated RTE will be described in the
Rte_BSWMD.arxml report, inside an ARPackage named SwAddrMethods.

Within the Rte_BSWMD.arxml, information about the memory sections used by the gen-
erated RTE implementation can be found in a ResourceConsumption with shortName
ResConsumption

This information can be used in the process of generating the Rte_MemMap.h memory
mapping file.

9.4.1 Reporting of SectionNamePrefixes

For each MAKW containing an <INFIX> that is used in the generated RTE,
a SectionNamePrefix will be emitted inside the ResourceConsumption named
ResConsumption in the generated Rte_BSWMD.arxml file, with symbol and shortName
both equal to RTE_<INFIX>:

<RESOURCE-CONSUMPTION>
<SHORT-NAME>ResConsumption</SHORT-NAME>

<MEMORY-SECTIONS>
...
</MEMORY-SECTIONS>

<SECTION-NAME-PREFIXS>
<SECTION-NAME-PREFIX>
<SHORT-NAME>RTE_MAIN</SHORT-NAME>
<SYMBOL>RTE_MAIN</SYMBOL>

</SECTION-NAME-PREFIX>
</SECTION-NAME-PREFIXS>

</RESOURCE-CONSUMPTION>

260 Memory Mapping and Compiler Abstraction

RTA-RTE V6.8.0
Reference Manual

No SectionNamePrefix is emitted for MAKWs that do not contain an
<INFIX>, and the corresponding MemorySections do not reference a pre-
fix. The default prefix of RTE will apply to RTE-related objects that do not
reference any other prefix.

9.4.2 Reporting of MemorySections

For each MAKW used in the generated RTE, a corresponding MemorySection will be
emitted inside the ResourceConsumption in the generated Rte_BSWMD.arxml file.

If the MAKW contains an <INFIX>, the MemorySection will:

• Have shortName RTE[_<INFIX>]_<SWADDRMETHOD>[_<ALIGNMENT>]

• Have alignment <ALIGNMENT>

• Reference the RTE_<INFIX> SectionNamePrefix

• Reference the <SWADDRMETHOD> SwAddrMethod

• Have symbol <SWADDRMETHOD>[_<ALIGNMENT>]

If the MAKW does not contain an <INFIX>, the MemorySection will:

• Have shortName <SWADDRMETHOD>[_<ALIGNMENT>]

• Have alignment <ALIGNMENT>

• Reference the <SWADDRMETHOD> SwAddrMethod

• Have symbol <SWADDRMETHOD>[_<ALIGNMENT>]

The optional [_<ALIGNMENT>] in the MemorySection symbol and shortName
exists if an alignment applies to the objects contained in that section. Even
where an alignment applies, it will not affect the generated MemorySection
if the referenced SwAddrMethod has a memoryAllocationKeywordPolicy of
addrMethodShortName.

If the MemorySection has code objects allocated to it, it will also reference an
ExecutableEntity for each C symbol contained in that memory section:

<RESOURCE-CONSUMPTION>
<SHORT-NAME>ResConsumption</SHORT-NAME>

<MEMORY-SECTIONS>
<MEMORY-SECTION>
<SHORT-NAME>RTE_MAIN_CODE</SHORT-NAME>
<EXECUTABLE-ENTITY-REFS>
<EXECUTABLE-ENTITY-REF BASE="Rte_BSWMD_BswModuleDescriptions"

DEST="BSW-CALLED-ENTITY">
Rte/RteInternalBehavior/Rte_Start

Memory Mapping and Compiler Abstraction 261

RTA-RTE V6.8.0
Reference Manual

</EXECUTABLE-ENTITY-REF>
<EXECUTABLE-ENTITY-REF BASE="Rte_BSWMD_BswModuleDescriptions"

DEST="BSW-CALLED-ENTITY">
Rte/RteInternalBehavior/Rte_Stop

</EXECUTABLE-ENTITY-REF>
</EXECUTABLE-ENTITY-REFS>
<PREFIX-REF BASE="Rte_BSWMD_BswImplementations"

DEST="SECTION-NAME-PREFIX">
Rte/ResConsumption/RTE_MAIN

</PREFIX-REF>
<SW-ADDRMETHOD-REF BASE="Rte_BSWMD_SwAddrMethods"

DEST="SW-ADDR-METHOD">
CODE

</SW-ADDRMETHOD-REF>
<SYMBOL>CODE</SYMBOL>

</MEMORY-SECTION>
</MEMORY-SECTIONS>

<SECTION-NAME-PREFIXS>
...
</SECTION-NAME-PREFIXS>

</RESOURCE-CONSUMPTION>

9.4.3 Generation of Rte_MemMap.h

In a typical system, the Rte_MemMap.h will be generated automatically, using the
MemorySection information contained in Rte_BSWMD.arxml. Each MemorySection is
associated with one START_SEC and one STOP_SEC MAKW (each of which may be used
multiple times in the generated RTE code).

The MAKWs can be constructed from the MemorySection data following the rules set
out by AUTOSAR in [SWS_MemMap_00022].

By default RTA-RTE uses the Memory Allocation Sequence both for data al-
locations and for external declarations. Some compilers issue warnings for
this; others issue warnings if the declarations differ from the allocations. The
--deviate-memmap-decls=0 option can be used to disable the generation
of MAKWs around declarations.

9.4.4 ApplicationSwComponentType-specific MemMap.h

RTA-RTE expects a <shortName>_MemMap.h for each ApplicationSwComponentType
used in the ECU configuration. This file is for the entry points of the RunnableEntitys in
the ASW Component. This feature does not apply to entry points in BSW compoments.

RTA-RTE can generate skeleton ‹shortName›_MemMap.h files for associated SWCs. Use
the --samples option to do this.

262 Memory Mapping and Compiler Abstraction

RTA-RTE V6.8.0
Reference Manual

The sample memory map files generated by RTA-RTE are intended as exam-
ples only and should be verified as suitable for the chosen target develop-
ment hardware configuration before use.

9.4.5 Variation: Implicit Communication

When option --implicit-allocation-method is enabled, the task-specific
implicit buffer structures are placed according to SwAddrMethods named
VAR_IMPLICITSR_‹TASKNAME› where ‹TASKNAME› is the OsTask.shortName con-
verted to upper case.

9.5 Compiler Abstraction

The AUTOSAR compiler abstraction enables objects located with the memory mapping
to be referenced. This is achieved through the definition of object classes within the
file Compiler_Cfg.h.

9.5.1 Defined Classes

RTA-RTE defines the following object classes:

RTE_CONST – Memory class used to access objects declared within the generated RTE
using RTE_*_SEC_CONST_*.

RTE_DATA – Memory class used to access objects declared within the generated RTE
using RTE_*_SEC_DATA_*.

RTE_CODE – Memory class used to access (i.e. create function pointers) to objects de-
clared within the generated RTE using RTE_*_SEC_CODE.

RTE_APPL_CONST – Memory class uses to access constant data within an application,
typically via a pointer passed into an RTE API.

RTE_APPL_DATA – Memory class uses to access data within an application, typically via
a pointer passed into an RTE API.

RTE_APPL_CODE – Memory class used to access (i.e. create function pointers) to objects
declared within the application code space.

RTE_OS_CDATA – Memory class used to access constant data within the operating sys-
tem.

RTE_LIBCODE – Memory class used to declare and access RTE library functions.

No object class exists, or is required by the generated RTE, for access to objects created
with the TASKBODY memory class.

9.5.2 Customization

RTA-RTE permits customization of the compiler abstraction through an XML Memory
Section Description File. See RTA-RTE Toolchain Integration Guide for more details.

Memory Mapping and Compiler Abstraction 263

RTA-RTE V6.8.0
Reference Manual

10 External Dependencies

RTA-RTE references symbols that are in the scope of external libraries and other AU-
TOSAR modules, in particular:

• C library (optional).

• OS Configuration.

• COM APIs (optional, only required when inter-ECU communication is present).

• OS APIs.

• Calibration parameters.

10.1 C Library

By default, RTA-RTE is independent of the C library and uses the RTE library define
function Rte_memcpy to copy memory.

Alternatively, RTA-RTE can be configured to use the C library’s memcpy function if the
symbol RTE_LIBC_MEMCPY is defined when compiling both the RTE library and gener-
ated code.

The standard memcpy function from the C Library may be preferred for certain targets,
for example, to reduce code size by sharing memcpy with other modules that already
use the C Library or to improve the efficiency of compiled code by using a version of
the memcpy function “built-in” to the compiler that produces optimal inline assembler.

10.2 OS Configuration

The RTE and OS for a particular ECU have a complex relationship in that the OS con-
figuration partly influences the RTE and the RTE configuration partly influences the OS.
At the minimum the names and priorities of the Os tasks that will execute the runnable
entities and the Os tasks and Os ISRs that will execute the schedulable entities are nec-
essary as an input to RTE generation. This information defines the concurrency model
of the system and defines the set of tasks whose bodies are part of the generated
RTE. The RTE will however require additional Os objects, for example to schedule those
tasks, to provide for the execution of only the activated runnables during particular task
executions and to serialize access to application / BSW module code and internal state,
depending on the configuration of the involved software components and BSW mod-
ules. Furthermore the configuration may require particular settings for the Os tasks,
for example an Os task that executes at least one runnable entity with a WaitPoint may
need to be an extended task.

RTA-RTE optionally generates an OS configuration file (see Section 2.3) containing def-
initions for all OS objects used by the generated RTE and the necessary configuration
for those Os tasks that have runnable entities or schedulable entities mapped to them.
If this file is not used during OS configuration then the following OS objects will be
required to be created:

264 External Dependencies

RTA-RTE V6.8.0
Reference Manual

10.2.1 Resources

RTE_RESOURCE* OsResources to support RTE APIs.

RTA-RTE uses an RTE-specific OsResource with an OsResourceProperty of
STANDARD to serialize access to internal RTE state.

For systems that define only a single OsApplication, or do not define any
OsApplications at all, RTA-RTE requires one resource named RTE_RESOURCE.

Where a system defines multiple OsApplications, RTA-RTE requires one resource
for each OsApplication, named RTE_RESOURCE_OS_APP_OsApp.shortName.

The required resources must be included in the configuration passed to the Op-
erating System. For single-OsApplication systems, RTA-RTE will include the con-
figuration of RTE_RESOURCE in the OsNeeds report if it is not already present in
the input configuration. For multi-OsApplication systems, the system integrator
must configure the required resources manually.

Any task containing code that uses an RTE API needs to be declared as
locking RTE_RESOURCE, or the RTE_RESOURCE_OS_APP_<NAME> for the
OsApplication in which the task executes. Additionally, any task or
ISR in whose context BSW modules may call back into RTE-generated
code for notifications (e.g. for notification of COM reception) must also
be declared as locking this resource. Failure to do so may result in
runtime errors.

Rte_EA_<i>_<n>/Rte_EI_<i>_<n> An AUTOSAR standard / internal resource created
to ensure serialized access to exclusive area <n> within runnable entities from
SW-C instance <i>.

The name of the SW-C prototype, <i>, is an internal name created by the RTA-RTE
RTE generator. The mapping between user visible component prototype name
and internal name is included in Rte_Const.h.

RTA-RTE will not create a resource if an existing resource is specified within the
ECUC file (see Section 4.19.2).

RTA-RTE will optimize away the use of an OS resource if either all accessing
runnable entities are mapped to the same task or all accessing runnable entities
are mapped to tasks with the same priority. If the use of the resource is optimized
away by RTA-RTE then no OS object need be created.

10.2.2 Schedule Tables

Rte_ScheduleTable An AUTOSAR OS Schedule table used within the generated RTE for
execution of tasks containing runnable entities triggered by Timing RTE events.

10.2.3 Counters

The RTA-RTE RTE generator uses counters for driving alarms required by generated
code.

External Dependencies 265

RTA-RTE V6.8.0
Reference Manual

Rte_Tick_Counter An AUTOSAR OS Counter used by application code to control exe-
cution of Rte_ScheduleTable or generated periodic alarms.

The required counter tick rate depends on periods of Timing RTE events and is
indicated by an RTA-RTE information message and by a definition within the gen-
erated file Rte_Const.h.

Rte_TOut_Counter An AUTOSAR OS Counter used by application code to control exe-
cution of sporadic alarms, e.g. for timeouts.

The required counter tick rate is fixed at 1ms and is defined within the generated
file Rte_Const.h.

To prevent missed runnable activations and event settings it is important
not to tick Rte_Tout_Counter directly but instead to call the generated RTE
API Rte_Tick_Timeouts instead, see Section 6.35.

10.2.4 Alarms

The RTA-RTE RTE generator uses alarms for handling timeouts, for scheduling sporadic
activities and, optionally, for scheduling periodic activities.

Rte_<task>_timeoutAlarm An AUTOSAR OS Alarm used within the generated RTE to
indicate a timeout for a runnable mapped to OS task <task>.

Rte_Alarm_<i>_<p>_<d> Sporadic alarm created to indicate a timeout for SWC in-
stance <i>, port <p> and datum/mode group <d>.

rte_alAct_<p>_<o> or rte_alAct_<ev> Periodic alarm defined for a TimingEvent.

If the ECUC associates OS event <ev> with the timing event instance has a defined
OS event then the _<ev> form of the name is used. Otherwise the alarm name
includes the timing event period <p> and offset <o>.

To prevemt overlong names, this release of RTA-RTE assigns internal names
to alarms rather than constructing names according to the scheme above.
Consult the generated OS configuration for details.

10.2.5 Events

The RTA-RTE RTE generator uses OS events both for internal task scheduling and for
handling the wake-up-of-waitpoint receive mode.

Rte_Activity An AUTOSAR OS event used within the generated RTE for Wake-up-of-
waitpoint handling to indicate that an RTE Event has occurred.

The OS event must be referenced by any task that contains runnable entities that
can wait.

The event mask must be ’1’ and must be the same for all tasks using the event.

266 External Dependencies

RTA-RTE V6.8.0
Reference Manual

Rte_Timeout An AUTOSAR OS event used within the generated RTE for Wake-up-of-
waitpoint handling to indicate a timeout has occurred while waiting for an RTE
event.

The event must be referenced by any task that contains runnable entities that
can wait and have a timeout specified.

The event mask must be ’2’ and must be the same for all tasks using the event.

When required, the RTA-RTE RTE generator uses OS events to perform internal task
scheduling. If the OS event name is not specified in the ECU description, the RTE gen-
erator constructs OS event names as follows:

Rte_Ev_<period>_<offset> An AUTOSAR OS event created to indicate a Timing RTE
event has occurred when multiple runnable entities are mapped to a task. The
<period> and <offset> are the period and offset of the Timing RTE event. All
runnable entities within a task with the same period share the same event.

This OS event is only created when no user-supplied OS event is referenced within
the RTE Event’s runnable entity map and runnable entities triggered by Timing
RTE events and other RTE events are mapped to the same task.

Rte_Ev_<i>_<p>_<d> An AUTOSAR OS event created to trigger runnable started by an
event associated with SW-C prototype <i>, port <p> and datum <d>.

The name of the SW-C prototype, <i>, is the internal name not the name declared
within the composition since the latter is not necessarily unique.

This OS event is only created when no user-supplied OS event is referenced within
the RTE Event’s runnable entity map and runnable entities triggered by Timing
RTE events and other RTE events are mapped to the same task.

The names of OS events used for internal task scheduling can also be spec-
ified in the ECU description. If specified the ECU description name will over-
ride the default name defined in the table above.

10.3 AUTOSAR COM

AUTOSAR COM module is a mandatory requirement of RTA-RTE when inter-ECU commu-
nication is used (RTA-RTE implements intra-ECU communication without using COM).

10.3.1 Initialization

COM must be started before the RTE. Therefore the RTE is not responsible for initializing
COM and Rte_Start does not invoke the Com_Init API.

RTA-RTE uses periodic transmission when “cyclic” or “n-times” communication is used.
Therefore the Com_StartPeriodic API should be used to initialize periodic activity
within COM in addition to invoking Com_Init.

External Dependencies 267

RTA-RTE V6.8.0
Reference Manual

10.3.2 Data Types

RTA-RTE uses AUTOSAR data types when communicating with COM. The definitions of
these data types are defined in Rte_Type.h and this file can be used to make the type
definitions visible to a COM implementation.

10.3.3 Transmission and Invalidation

RTA-RTE uses signals or signal groups for transmission and therefore the following COM
APIs are used:

Com_SendSignal(Com_MessageIdentifier,
Com_ApplicationDataRef)

Com_UpdateShadowSignal(Com_MessageIdentifier,
Com_ApplicationDataRef)

Com_InvalidateSignal(Com_MessageIdentifier)
Com_InvalidateShadowSignal(Com_MessageIdentifier)
Com_SendSignalGroup(Com_SignalGroupIdType)

10.3.4 Reception

RTA-RTE uses signals or signal groups for reception and therefore the following COM
APIs are used:

Com_ReceiveSignal(Com_MessageIdentifier,
Com_ApplicationDataRef)

Com_ReceiveShadowSignal(Com_MessageIdentifier,
Com_ApplicationDataRef)

Com_ReceiveSignalGroup(Com_SignalGroupIdType)

10.3.5 Call-backs

RTA-RTE uses COM call-backs to receive notification when communication related
events have occurred; for example data reception. The call-backs are created in Rte.c
but must be declared in the COM configuration attached to the appropriate signal.

Callbacks are used for the following events:

Rte_COMCbk_<signal> – Data reception.

Rte_COMCbkTOut_<signal> – Data reception timeout.

Rte_COMCbkInv_<signal> – Invalid data reception.

Rte_COMCbkTAck_<signal> – Acknowledgement of data transmission.

10.4 Operating System

An Operating System module is a mandatory requirement of RTA-RTE.

268 External Dependencies

RTA-RTE V6.8.0
Reference Manual

10.4.1 Concurrency Control

Internally RTA-RTE uses an AUTOSAR OS resource for concurrency control. In a multi-
core system this become an OS resource for each AUTOSAR core, for core-local con-
currency control. Generated code can either use an OS resource or interrupt blocking
depending on the configuration. The following OS APIs are therefore used to control
concurrency:

GetResource(ResourceType)
ReleaseResource(ResourceType)
SuspendOSInterrupts(void)
ResumeOSInterrupts(void)

All OS tasks or ISRs that invoke RTE API functions must be declared as locking the
standard resource RTE_RESOURCE in a single-core system. This is done automatically in
the generated OS configuration for all generated tasks.

For a multi-core system, tasks and ISRs on the master core (with core ID zero) must be
declared as locking RTE_RESOURCE and tasks and ISRs on slave cores (core ID greater
than zero) must be delcared as locking the standard resources RTE_RESOURCE_CORE<n>
where <n> is the core ID of the slave core.

10.4.2 Alarms

RTA-RTE uses alarms for periodic and sporadic events. The following OS APIs are used
to manipulate alarms:

SetRelAlarm(AlarmType, TickType, TickType)
CancelAlarm(AlarmType)

10.4.3 Events

RTA-RTE uses OS events to implement certain RTE events, for example, APIs requiring
a WaitPoint and for RTA-RTE code within generated task bodies. The following APIs are
used to manipulate OS events:

SetEvent(TaskType, EventType)
WaitEvent(EventType)
GetEvent(TaskType, EventType*)
ClearEvent(EventType)

10.4.4 Tasks

RTA-RTE uses tasks to execute runnable entities. The following OS APIs are used to
manipulate tasks:

ActivateTask(TaskType)
ChainTask(TaskType)
TerminateTask(void)
GetTaskID(void)

External Dependencies 269

RTA-RTE V6.8.0
Reference Manual

10.4.5 Schedule Tables

RTA-RTE uses an AUTOSAR schedule table to execute tasks containing runnable entities
triggered by Timing RTE events. The following OS APIs are used to manipulate the
schedule table:

// OS R1.0:
StartScheduleTable(ScheduleTableType, TickType)
// OS R3.0:
StartScheduleTableRel(ScheduleTableType, TickType)
StopScheduleTable(ScheduleTableType)

10.5 Calibration

RTA-RTE supports the following calibration methods:

• “None” – no software support is generated (RTE APIs for accessing calibration pa-
rameters access the allocated data directly). The RTE generator expects calibration
parameters to be updated externally, e.g. by direct memory access from calibra-
tion hardware.

• “Single-pointered” – RTA-RTE generates a reference table (in RAM) that locates cal-
ibration data. The calibration values returned by individual generated RTE APIs can
be modified by changing pointers in the reference table to point to alternate values
in either RAM or ROM.

• “Double-pointered” – RTA-RTE generates a reference table (in ROM) and a refer-
ence base (in RAM) that points to the table. The calibration values returned by all
generated RTE APIs can be modified by changing the base pointer to reference a
different table.

• “Init-RAM” – RTA-RTE generates a RAM copy of all parameters and an initializing
ROM block. Generated RTE APIs access the RAM copy.

• “Single-pointered2” – RTA-RTE generates individual reference pointers (in RAM) that
locate calibration data. The calibration values returned by individual generated RTE
APIs can be modified by changing those reference pointers. This is a non-AUTOSAR
extension.

For the pointered methods, all calibration parameters within an SW-C that ref-
erence the same swAddrMethod are grouped within a calibration parameter
group. Grouping can also optionally be enabled for method “None” using the
--deviate-group-calibration-none command-line option.

If no <SW-ADDR-METHOD> is referenced the name nullSWAddr is used.

To be able to import or instantiate the required calibration parameter groups, RTA-RTE
must define both the type and the instance names.

270 External Dependencies

RTA-RTE V6.8.0
Reference Manual

For the “Init-RAM” method the calibration parameters are also grouped in the same way
but the groups are further collected into a structure for allocation of the RAM and ROM
blocks. This allows a single copy operation to initialize all RAM blocks. To be able to
instantiate the RAM and ROM blocks RTA-RTE must define the type and instance names
of the RAM and ROM block structures, the type names for calibration parameter groups
and the order and names of the elements in the RAM/ROM block structures.

10.5.1 Type Name

Non-grouped Parameters

When using the calibration method “None” RTA-RTE does not normally create calibra-
tion parameter groups and hence instantiated parameters simply uses the data type of
the calibration parameter. When the --deviate-group-calibration-none command-
line option is enabled the group naming follows the same rules as for the pointered
methods.

Grouped Parameters

A calibration parameter group is implemented as a C structure. The type is declared
within Rte_Type.h and the type name is:

Rte_CGT<loc>_<swci>_<swAddr>

Where:

• <loc> is an RTA-RTE symbol depending on the location of the calibration parameter
definitions:

• c – calibration parameters within a CalPrmComponentType.

• u – calibration parameters within an unconnected RPort within an Application-
ComponentType.

• s – shared calibration parameters within a SWC Type.

• i – per-instance parameters within a SWC Type.

• <swci> is as follows:

• For calibration parameters within a CalPrmComponentType, calibration param-
eters within unconnected RPorts of an ApplicationComponentType and per-
instance calibration parameters declared within a SWC type, this field is the
SWC instance internal name1.

• For shared calibration parameters declared within an SWC type, this field is the
SWC type name.

• <swAddr> is the swAddrMethod name, except for calibration parameters within an
unconnected RPort when it is the port name followed by the swAddrMethod name,
separated by an underscore.

1The RTE configuration constants file includes support for associating component prototypes and the
RTE’s internal name. See Sections 10.5.5 and ??.

External Dependencies 271

RTA-RTE V6.8.0
Reference Manual

The type of each group is also described, using AUTOSAR XML, in the Mc-
SupportData file created by RTA-RTE.

Note that the type name of the data structure is based on the internal RTA-
RTE SWCI identifier and a data type is declared for each instance of the SWC
type because different SwAddrMethods may be applied to different instances using
FlatInstanceDescriptors and hence the groups may be different for each instance.

10.5.2 Instance Name

Non-grouped Parameters

When using the calibration method “none” the instance name is taken from the flatmap
instance if one is available for the calibration parameter instance. The name of the
flatmap instance must be globally unique.

If no flatmap instance is available then RTA-RTE uses the name of the calibration pa-
rameter. RTA-RTE will raise an error if it detects two calibration parameters are declared
with the same name. To avoid this error either use a flatmap instance to rename one
ot both of the parameters or enable generation of calibration parameter groups using
the appropriate command-line option.

Grouped Parameters

RTA-RTE instantiates calibration parameter groups as required.

The name of allocated/imported instance of the calibration parameter group is:

Rte_CG<loc>_<swci>_<swAddr>

Where:

• <loc> is an RTA-RTE symbol depending on the location of the calibration parameter
definitions, as for the calibration parameter group type:

• c – calibration parameters within a CalPrmComponentType.

• u – calibration parameters within an unconnected RPort within an Application-
ComponentType.

• s – shared calibration parameters within a SWC Type.

• i – per-instance parameters within a SWC Type.

• <swci> is as follows:

• For calibration parameters within a CalPrmComponentType, calibration param-
eters within unconnected RPorts of an ApplicationComponentType and per-
instance calibration parameters declared within a SWC type, this field is the
SWC instance internal name2.

2The RTE configuration constants file includes support for associating component prototypes and the
RTE’s internal name. See Sections 10.5.5 and ??.

272 External Dependencies

RTA-RTE V6.8.0
Reference Manual

• For shared calibration parameters declared within an SWC type, this field is the
SWC type name.

• <swAddr> is the swAddrMethod name, except for calibration parameters within an
unconnected RPort when it is the port name followed by the swAddrMethod name,
separated by an underscore.

10.5.3 Init-RAM Structures

When using calibration method “Init-RAM” RTA-RTE creates a single combined RAM
block containing space for all the calibration parameters and a single combined ROM
block with the initializer for every calibration parameter. Both blocks use the following
structure type:

Rte_CalprmInitRAMType

The RAM block is instantiated as a variable of that type called:

Rte_CalprmInitRAM

and the ROM block is instantiated as a constant of that type called:

Rte_CalprmInitROM

This scheme allows a single copy operation to perform the initialization of all parame-
ters at once.

Within the blocks the parameters are grouped together following the same scheme
as for the pointered calibration methods, namely by SW-C and swAddrMethod. Each
element of the Rte_CalprmInitRAMType structure is itself a structure, for a calibration
parameter group. The names of the calibration parameter group structure types follow
the same rules as for the pointered calibration methods, as set out in section 10.5.1.
The element names are:

CG<loc>_<swci>_<swAddr>

Where:

• <loc> is an RTA-RTE symbol depending on the location of the calibration parameter
definitions:

• c – calibration parameters within a CalPrmComponentType.

• u – calibration parameters within an unconnected RPort within an Application-
ComponentType.

• s – shared calibration parameters within a SWC Type.

• i – per-instance parameters within a SWC Type.

• <swci> is as follows:

External Dependencies 273

RTA-RTE V6.8.0
Reference Manual

• For calibration parameters within a CalPrmComponentType, calibration param-
eters within unconnected RPorts of an ApplicationComponentType and per-
instance calibration parameters declared within a SWC type, this field is the
SWC instance internal name3.

• For shared calibration parameters declared within an SWC type, this field is the
SWC type name.

• <swAddr> is the swAddrMethod name, except for calibration parameters within an
unconnected RPort when it is the port name followed by the swAddrMethod name,
separated by an underscore.

The elements appear in the Rte_CalprmInitRAMType structure sorted by name.

10.5.4 Examples

The following examples illustrate the allocation of calibration parameters to groups and
the import of parameters by RTA-RTE.

Shared Calibration Parameters

Consider a SWC type swcA that declares shared calibration parameters A and B both of
which reference swAddrMethod Md.

Since both calibration parameters reference the same swAddrMethod and are declared
in the same SWC type they are allocated to the same calibration parameter group. The
type definition within Rte_Type.h is therefore:

typedef struct {
<type> A;
<type> B;

} Rte_CGTs_swcA_Md;

And the instance name is:

Rte_CGs_swcA_Md

For the “Init-RAM” method the type definition is unchanged but the group is instantiated
within the RAM and ROM block structures, appearing as an element of the structure as
follows:

typedef struct {
Rte_CGTs_swcA_Md CGs_swcA_Md;

} Rte_CalprmInitRAMType;

CalPrmComponent Types

Consider a CalPrmComponent type CalData that provides a single port pd categorized
by a calibration interface that declares calibration parameters A and B both of which
reference swAddrMethod Md.

3The RTE configuration constants file includes support for associating component prototypes and the
RTE’s internal name. See Sections 10.5.5 and ??.

274 External Dependencies

RTA-RTE V6.8.0
Reference Manual

Since both calibration parameters reference the same swAddrMethod and are declared
in the same component type they are allocated to the same calibration parameter
group. However, unlike the example above the names within the generated structure
are prefixed with the port name to ensure uniqueness if the same interface categorizes
more than one port. The type definition within Rte_Type.h is therefore:

typedef struct {
<type> pd_A;
<type> pd_B;

} Rte_CGTc_<i>_Md;

and the instance names is:

Rte_CGc_<i>_Md

where <i> is the RTA-RTE internal name for the instance of the calibration component
type.

For the “Init-RAM” method the type definition is unchanged but the group is instantiated
within the RAM and ROM block structures, appearing as an element of the structure as
follows:

typedef struct {
Rte_CGTc_<i>_Md CGc_<i>_Md;

} Rte_CalprmInitRAMType;

Where <i> is the RTA-RTE internal name for the instance of the calibration component
type.

10.5.5 SWC Instance Internal Names

To ensure uniqueness when creating imported instance names for calibration param-
eters, RTA-RTE uses an internally allocated SWC instance name. A mapping between
a user-visible name for the component prototype and the internal name is defined in
Rte_Const.h.

For each instantiated software component prototype, Rte_Const.h includes a #define
that maps the full path to the prototype to the internal name. For example, a com-
ponent prototype C1 within composition Comp1 within package pkg will have a path of
_pkg_Comp1_C1. Where nested compositions are used the path includes the name of
each level of the hierarchy.

10.5.6 McSupportData

RTA-RTE writes an XML description of the calibration data to the file
Rte_McSupportData.arxml. Third-party tools may use this to generate an A2L
file for use in calibration and measurement. To cause calibration parameters to be
reported to the McSupportData, each must have a FlatInstanceDescription referencing
it.

External Dependencies 275

RTA-RTE V6.8.0
Reference Manual

In the absence of a relevant FlatInstanceDescription, RTA-RTE emits a warning and
there will be no calibration information emitted for that parameter.

10.5.7 Special Treatment of Arrays of Curves and Maps

As an addition to AUTOSAR-specified behavior, RTA-RTE supports a shorthand way to
associate input variables with axes held in an array or structure, or axes with curves or
maps held in an array or structure.

When a calibration parameter is typed by a complex ApplicationDataType whose leaf
elements have category CURVE, MAP, COM_AXIS, or RES_AXIS, it is not necessary to
write a SwCalPrmAxisSet for each leaf element.

If an InstantiationDataDefProps references the whole complex calibration parame-
ter, then RTA-RTE will attempt to apply its SwCalPrmAxisSet to each member of the
complex calibration parameter. Additionally, if this is the case, the SwCalPrmAxisSet
may reference, instead of the valid axis or input variable, an array or structure of the
same shape as that containing the curve, map or axis, and RTA-RTE will walk both com-
plex types, associating the elements pairwise.

For example, an array of ten curves having a standard axis in their SwCalPrmAxisSet
might be referenced by an InstantiationDataDefProps containing a
SwCalPrmAxisSet having a swVariableRef referencing port data characterized
by a scalar type. In this case, that port data instance will be used as the input variable
for all ten curves.

Alternatively, the InstantiationDataDefProps.swVariableRef might reference an ar-
ray of ten scalars, in which case RTA-RTE will treat the first scalar as the input variable
for the first curve, the seconds scalar as the input variable for the second curve, etc.

276 External Dependencies

RTA-RTE V6.8.0
Reference Manual

11 Parameters of Implementation

This chapter provides details of limits and constraints imposed by RTA-RTE.

11.1 AUTOSAR Common Published Information

RTA-RTE supports the following values for the Common Published Information (Sec-
tion 4.19.2).

Parameter R4.0

ArMajorVersion 4

ArMinorVersion 0

ArPatchVersion 1, 2 or 3

ModuleId Not used

SwMajorVersion 1

SwMinorVersion 0

SwPatchVersion 0

VendorId Not used

RTA-RTE will accept RTE generator version numbers up to and including the specified
version. Higher version numbers are rejected with an error.

The specification of common published information is optional. If not spec-
ified, RTA-RTE assumes that default AUTOSAR revision applies – see Sec-
tion 4).

11.2 API Legitimacy

RTE API calls, other than the RTE Lifecycle API functions, are invoked by runnable enti-
ties from within task bodies generated by RTA-RTE.

The RTE Lifecycle API functions can be invoked as follows:

RTE API Task ISR (Cat 2) OS Startup hook

Rte_Start 3 3 31

Rte_Stop 3 3 32

Rte_MainFunction 3 3 7

Category 1 ISRs must not invoke RTE API functions.

11.3 Tasks and Runnable Entities

1When OSEK OS is used Rte_Start cannot be invoked from the StartupHook since it invokes the OSEK
API SetRelAlarm.

2When OSEK OS is used Rte_Stop cannot be invoked from the StartupHook since it invokes the OSEK
API CancelAlarm.

Parameters of Implementation 277

RTA-RTE V6.8.0
Reference Manual

Parameter Limit

Maximum number of tasks 256 (subject to support from un-
derlying operating system).

Maximum number of runnable en-
tities mapped to an OS task.

No limit imposed by RTA-RTE.

Maximum number of
TimingEvents.

No limit imposed by RTA-RTE.
However the use of non-harmonic
periods may result in large sched-
ule tables that exceed the limits of
the underlying operating system.

Maximum number of runnable en-
tities activated during a mode
switch.

No limit imposed by RTA-RTE.

11.4 Queued Communication

Parameter Limit

Maximum number of entries in
a queue (for queued communica-
tion).

65535

Maximum size of each entry in a
queue (intra-ECU communication).

65535 bytes

Maximum size of each entry in a
queue (inter-ECU communication).

8 bytes

11.5 Scheduling

Parameter Limit

Minimum supported TimingEvent
period

1µs3

Maximum number of expiry points 10000

11.6 Modes and Mode Switches

Parameter Limit

Maximum number of mode dec-
larations per mode declaration
group.

32

Maximum size of a mode switch
queue.

255

3This value is the minimum supported by RTA-RTE. The practical minimum supported timing event
period is dependent on the underlying OS implementation and will typically be significant larger.

278 Parameters of Implementation

RTA-RTE V6.8.0
Reference Manual

11.7 Inter-ECU Communication

Parameter Limit

Maximum length of signal for a
client-server sequence counter

16 bits.

RTA-RTE always uses 16-bit types to maintain counter state since System signals do not
include the length.

Parameters of Implementation 279

RTA-RTE V6.8.0
Reference Manual

12 AUTOSAR Revision Support

This chapter provides details of optional behavior enabled using the --sws command-
line option.

The --sws command-line option can be used to select the following AUTOSAR revision
specific behavior:

Behavior –sws Notes
Mode definitions
within application
types header or BSW
module interlink types
header files.

4.0.1 or
4.0.2

Definition uses a type-cast and paren-
thesis.

4.0.3
No type-cast or parenthesis are present
but instead the definition uses a U suffix
to indicate that it is an unsigned value.

Type definitions and
preprocessor symbol
definitions for modes
are wrapped in an
include guard symbol.

Use of BSW module
description
short-name for entry
point prototype
definitions.

4.0.1
Memory mapping and compiler abstrac-
tion macros use short-name unmodified.

4.0.2 and
above

Memory mapping and compiler ab-
straction macros convert short-name to
upper-case before use.

280 AUTOSAR Revision Support

RTA-RTE V6.8.0
Reference Manual

13 Contact, Support and Problem Reporting

For details of your local sales office as well as your local technical support team and
product hotlines, take a look at the ETAS website:

ETAS subsidiaries www.etas.com/en/contact.php

ETAS technical support www.etas.com/en/hotlines.php

The RTA hotline is available to all RTA-RTE users with a valid support contract.

rta.hotline.uk@etas.com
+44 (0)1904 562624. (0900-1730 GMT/BST)

Please provide support with the following information:

• Your support contract number.

• Your AUTOSAR XML and/or OS configuration files.

• The command line that results in an error message.

• The version of the ETAS tools you are using.

Contact, Support and Problem Reporting 281

www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

RTA-RTE V6.8.0
Reference Manual

Index
Symbols
--append-name-to-buffer, 23
--atomic-assign, 24
--bit-pack-type, 25
--bsw-scope-limit-defns, 27
--bsw, 26
--calibration-disable, 28
--calibration-instantiation, 29, 214
--calibration-method, 30, 193
--client-server-global-optimization, 31
--com-symbolic-sigs, 32
--com-version, 33
--contract, 34
--deviate-allow-supportsmulti-sharedmemorys, 39
--deviate-allow-unmapped-swci-config, 35
--deviate-appl-impl-compu-method, 36
--deviate-appl-impl-display-format, 37
--deviate-bsw-any-partition, 38, 49
--deviate-enum-cast, 40
--deviate-group-calibration-none, 41, 270, 271
--deviate-ignore-datatype-semantics, 42
--deviate-implicit-cat2-mdd, 43
--deviate-implicit-modify-for-loopbacks, 44
--deviate-memmap-decls=0, 262
--deviate-memmap-decls, 45
--deviate-omit-implicit-cds, 46
--deviate-physical-dimension-compatibility, 47
--deviate-prefer-no-empty-executions, 48
--deviate-split-swci-support, 49
--deviate-trace-implicit-api, 51
--deviate-unconnected-pmode-behavior, 52
--disable-warning, 53, 108
--error-as-warning, 54, 108
--error-report, 55
--exclusive-area-optimization, 56
--fast-init, 57, 247
--file, 58
--force-basic-tasks, 59
--have-64bit-int-types, 60
--help, 61
--implicit-allocation-method, 62, 263
--implicit-read-return-const, 63
--implicit-use-global-buffers, 64
--incremental-build, 65
--initial-value-rounding, 66

282 Index

RTA-RTE V6.8.0
Reference Manual

--ioc-header, 67
--ioc-xml-namespace, 68
--local-mcsd, 69
--makedep, 70
--mcore-spinlocks-always, 71
--mcsd-policy, 72
--measurement, 73
--memory-sections, 74
--notimestamps, 75
--operating-system, 76
--optimize, 77, 193
--os-define-osenv, 78
--os-fp, 79
--os-header, 80
--os-output-param, 81
--os-permit-extended-tasks, 82
--os-task-as-function, 83
--os-xml-namespace, 84
--output, 14, 19, 85
--period, 86, 228
--preferred-intra-core-protection-scheme, 87
--protection-threshold-copy-bytes, 88
--quiet, 89
--report, 90
--rte, 91, 113, 114
--samples, 92, 262
--strict-config-check, 93
--strict-initial-values-check, 94
--strict-unconnected-rport-check, 95
--sws, 96, 280
--task-recurrence, 97
--template-path, 98
--terminate-background-tasks, 99
--test-license, 100
--text-value-spec-policy, 101
--toolchain-significant-len, 102
--use-partition-sections, 103, 259, 260
--variability-also-bind, 104
--version, 105
--vfb-trace, 106, 193
--warn-directive, 107
--warning-as-error, 108
--xfrm-ignore-inplace, 109
--, 22

A

Index 283

RTA-RTE V6.8.0
Reference Manual

AFL, 203
API

BSW API
Rte_GetMirror, 153
Rte_MainFunction, 228
Rte_NvMNotifyInitBlock, 153
Rte_NvMNotifyJobFinished, 153
Rte_SetMirror, 153
Rte_Start, 239
Rte_Stop, 239
Rte_Tick_Timeouts, 241

SWC API
Rte_Call, 212
Rte_CData, 214
Rte_DRead, 234
Rte_Enter, 215
Rte_Exit, 216
Rte_Feedback, 218
Rte_IFeedback, 217
Rte_IInvalidate, 219
Rte_Invalidate, 220
Rte_IRead, 221
Rte_IrTrigger, 242
Rte_IrvIRead, 223
Rte_IrvIWrite, 224
Rte_IrvRead, 225
Rte_IrvWrite, 226
Rte_IStatus, 227
Rte_IsUpdated, 227
Rte_IWrite, 222
Rte_IWriteRef, 222
Rte_MainFunction, 16, 86
Rte_Mode, 229
Rte_NPorts, 230
Rte_Pim, 232
Rte_Port, 231
Rte_Ports, 230
Rte_Prm, 213
Rte_Read, 233
Rte_Receive, 235
Rte_Result, 237
Rte_Send, 238
Rte_Switch, 240
Rte_Trigger, 242
Rte_Write, 243

ApplicationArrayDataType, 129

284 Index

RTA-RTE V6.8.0
Reference Manual

ApplicationPrimitiveDataType, 128
ApplicationRecordDataType, 129
ApplicationValueSpecification, 139
Array of curve/map

Calibration, 276
ArrayValueSpecification, 140
Assembly connector, 178
AUTOSAR, 9

Compiler_Cfg.h, 263
Formula Language, 203
Package, 114
Sub-package, 114

C
C Library, 15, 264
Calibration

Com-spec, 122
Configuration, 28, 143, 163, 193
Data, 144
Init-RAM Structure, 273
Initial Values, 122, 164
Instance name, 272
Method, 15, 30
Type name, 271

Client-server
Application Error, 145
Call point, 170
Com-spec, 127
Configuration, 144, 184, 185
Port-Defined argument values, 166
RTE Event, 159

Command-line
Examples, 20
Options, 20

Command-line option
file, 58

Compiler Abstraction, 263
Component Prototype

Implementation, 189
Instantiation, 177
Mapping, 189

Composition
Assembly connector, 178
Configuration, 177
Delegation connector, 178
Port prototype, 179

Index 285

RTA-RTE V6.8.0
Reference Manual

Service connector, 179
CompuMethod

of Category IDENTICAL, 135
of Category LINEAR, 135
of Category RAT_FUNC, 136
of Category TEXTTABLE, 136

ConstantReference, 141
ConstantSpecification, 140

D
DataTypeMappingSet, 137
Delegation connector, 178
Deprecated Command-line Options

-O, see --optimize
-aa, see --atomic-assign
-bpt, see --bit-pack-type
-bsld, see --bsw-scope-limit-defns
-b, see --bsw
-cd, see --calibration-disable
-ci, see --calibration-instantiation
-cm, see --calibration-method
-csgo, see --client-server-global-optimization
-cv, see --com-version
-cy, see --com-symbolic-sigs
-c, see --contract
-dv8-constr2028, see --deviate-allow-supportsmulti-sharedmemorys
-dv8aicm, see --deviate-appl-impl-compu-method
-dv8aidf, see --deviate-appl-impl-display-format
-dv8ausc, see --deviate-allow-unmapped-swci-config
-dv8bap, see --deviate-bsw-any-partition
-dv8ec, see --deviate-enum-cast
-dv8gcpn, see --deviate-group-calibration-none
-dv8ic2mdd, see --deviate-implicit-cat2-mdd
-dv8idts, see --deviate-ignore-datatype-semantics
-dv8imflb, see --deviate-implicit-modify-for-loopbacks
-dv8md, see --deviate-memmap-decls
-dv8omitcds, see --deviate-omit-implicit-cds
-dv8pdc, see --deviate-physical-dimension-compatibility
-dv8pnee, see --deviate-prefer-no-empty-executions
-dv8sss, see --deviate-split-swci-support
-dv8tia, see --deviate-trace-implicit-api
-dv8upb, see --deviate-unconnected-pmode-behavior
-dw, see --disable-warning
-eao, see --exclusive-area-optimization
-eaw, see --error-as-warning
-err, see --error-report

286 Index

RTA-RTE V6.8.0
Reference Manual

-fbt, see --force-basic-tasks
-fi, see --fast-init
-f, see --file
-h, see --help
-iam, see --implicit-allocation-method
-ib, see --incremental-build
-igb, see --implicit-use-global-buffers
-int64, see --have-64bit-int-types
-iochdr, see --ioc-header
-iocxmlns, see --ioc-xml-namespace
-irrc, see --implicit-read-return-const
-ivr, see --initial-value-rounding
-l, see --local-mcsd
-mc, see --mcsd-policy
-mem, see --memory-sections
-ms, see --measurement
-m, see --makedep
-nts, see --notimestamps
-osenv, see --os-define-osenv
-osfp, see --os-fp
-oshdr, see --os-header
-osparam, see --os-output-param
-ospet, see --os-permit-extended-tasks
-osxmlns, see --os-xml-namespace
-os, see --operating-system
-o, see --output
-picps, see --preferred-intra-core-protection-scheme
-ptcb, see --protection-threshold-copy-bytes
-p, see --period
-q, see --quiet
-rn, see --append-name-to-buffer
-rp, see --report
-r, see --rte
-samples, see --samples
-scc, see --strict-config-check
-siv, see --strict-initial-values-check
-spla, see --mcore-spinlocks-always
-sws, see --sws
-terminate-background-tasks, see --terminate-background-tasks
-tf, see --os-task-as-function
-tl, see --test-license
-tp, see --template-path
-tr, see --task-recurrence
-tsl, see --toolchain-significant-len
-ups, see --use-partition-sections
-ur, see --strict-unconnected-rport-check

Index 287

RTA-RTE V6.8.0
Reference Manual

-vab, see --variability-also-bind
-vt, see --vfb-trace
-v, see --version
-warn, see --warn-directive
-we, see --warning-as-error
-xfrm-ignore-inplace, see --xfrm-ignore-inplace
-, see --, see --text-value-spec-policy

E
ECU Description, 190
ECU Type

Configuration, 177
Instance, 179

ECUC, 9
Error messages, 18
Exclusive areas, 172

Configuration, 162

F
Files

Rte.err, 55
Filter, 124
force-basic semantics, 59
forced-basic semantics, 193
Formula Language, 203

I
Implementation (SWC), 174

Source/object code, 174
ImplementationDataType, 130

of Category ARRAY, 133
of Category STRUCTURE, 134
of Category TYPE_REFERENCE, 131
of Category VALUE, 132

ImplementationDataTypeElement, 135
Implicit

reception, 168
transmission, 168

IncludedDataTypeSet, 141
Indirect API, 166
Instance handle, 210
Inter-ECU

PDU Type, 176
System signal, 175
System signal group, 176

Inter-runnable variables
Configuration, 162

288 Index

RTA-RTE V6.8.0
Reference Manual

Read, 173
Write, 173

Interface, 142
Calibration, 143
Client-server, 144
Nv-Data, 143
Sender-receiver, 142

Internal Behavior
Calibration, 163
Exclusive area, 162
Inter-runnable variables, 162
Multiple instantiation, 174
NVRAM mapping, 163
Port option, 165
Runnable entity, 167

Internal behavior, 155
RTE Event, 156

Invocation, 11
Exit codes, 18

M
MAKW, 253
McSupportData, 275
Measurement

Configuration, 73, 146
Global enable, 15, 193
Schema, 150

memcpy, 15, 264
Memory Allocation Keyword, 253
Memory Mapping, 253

Generating Rte_MemMap.h, 260
Mode dependency, 161
Mode Manager, 170
Mode manager

Acknowledgment, 121
Com-spec, 120

Mode Switch
Asynchronous, 121, 240
Synchronous, 240

Mode user
Com-spec, 121

Modes
Configuration, 155

N
nativeDeclaration, 133
NumericalValueSpecification, 139

Index 289

RTA-RTE V6.8.0
Reference Manual

Nv-Data
Configuration, 143

NVRAM, see also BSW API
Callback API, 153
Nv-Block Data Mapping, 150
Read Access, 152
Role Based Port Assignment, 153
Write Access, 152

NVRAM mapping, 163

O
Optimization, 77

Configuration, 193
VFB tracing, 252

Os
Alarm, 266
Counters, 16, 265
Events, 266
Resources, 265

Os config, 191
Output

Console, 17, 55
Error messages, 18
File, 55

Output files, 11
Application header, 12
Basic Software Module Description file, 13
COM config, 13, 14
McSupportData file, 13
OS config, 13, 14, 16, 264
Rte.c, 12
Rte.err, 13
Rte.h, 12
Rte_Cbk.h, 12
Rte_Cfg.h, 248
Rte_Const.h, 12, 15, 19, 248, 265, 266
Rte_Hook.h, 12
Rte_Intl.h, 12
Rte_Lib.c, 18
Rte_lib.c, 12
Rte_Main.h, 12
Rte_Type.h, 12, 268, 271
Task body, 13

P
PDU Type

Configuration, 176

290 Index

RTA-RTE V6.8.0
Reference Manual

Phase
BSW, 26
Configuration, 192
Contract, 34
LocalMCSD, 69
RTE, 91, 248

Port
Configuration, 116

Port-Defined argument values, 166
Port-options, 165

Indirect API, 166
Take address, 166

Pure runnable, 167

R
RecordValueSpecification, 140
Reference

Absolute, 112
ECU Instance, 113
Instance, 113
Relative, 112

RTA-OSEK, 9
RTE, 9

Configuration, 110, 191
Namespace, 209

RTE API, see API
RTE Event

Asynchronous Server Call Returns, 159, 245
Data Receive Error, 157, 245
Data Received, 157, 245
Data Send Completed, 158, 245
Mode dependency, 161
Mode Switch, 160, 245
Mode Switched Ack, 245
Mode Switched Acknowledge, 160
Operation Invoked, 159, 245
Timing, 156, 246

RTE Library, 18
Rte_Activity, 266
Rte_Instance, 210
RTE_LIBC_MEMCPY, 15, 19
Rte_memcpy, 15, 264
Rte_PortHandle, 211
Rte_ScheduleTable, 265
Rte_Tick_Counter, 266
Rte_Timeout, 267

Index 291

RTA-RTE V6.8.0
Reference Manual

Rte_TOut_Counter, 266
Rte_UserCfg.h, 19
RTE_VFB_TRACE, 248
RteForceBasicTask, 193
Runnable, 167

Blocking API, 171
Call point, 170
Data read access, 168
Data write access, 168
Exclusive areas, 172
Minimum start interval, 173
Mode switch, 170
Re-entrant, 167
Read variables, 173
Receive point, 169
Send point, 169
Signature, 246
Symbol, 171
Waitpoint, 171
Written variables, 173

Runnable Entity Mapping, 195

S
Sender-receiver

Acknowledgment, 119
Alive timeout, 124
Com-spec, 119, 122
Configuration, 142, 182
Filter, 124
Initial Value, 124
Initial Values, 120
Invalid value, 120, 139
Invalidation, 124
Receive point, 169
RTE Event, 157, 158
Send point, 169
Timeout, 120

Services
Reference, 195

Splitable stereotype, 207
Std_ReturnType, 211
SWC Type

Configuration, 115
Implementation, 174
Instantiation, 177, 194
Multiple instantiation, 174

292 Index

RTA-RTE V6.8.0
Reference Manual

Naming, 209
Port, 116

System
Configuration, 181

System signal
Configuration, 175
Reference to, 177

System signal group
Configuration, 176

T
TextTableMapping, 138
typeEmitter, 131

U
Unit, 138
User Configuration File, 19

V
VFB Trace

COM Notification, 250
Configuration, 248
OS Task Activation, 250
OS Task Dispatch, 250
OS Task Set Event, 250
OS Task Wait Event, 250
OS Task Wait Event Return, 250
RTE API Return, 249
RTE API Start, 248
Runnable Invocation, 251
Runnable Termination, 251
Signal Reception, 249
Signal Transmission, 249

VFB Tracing
Configuration, 106, 192

W
Wait point, 171

X
XML, 9

Merge, 114
Splitable Elements, 115
Vendor specific, 198

Index 293

	Contents
	1 About this Manual
	1.1 Who Should Read this Manual?
	1.2 Document Conventions
	1.3 Acronyms and Abbreviations

	2 Invocation
	2.1 Command-line Usage
	2.2 Output Files
	2.3 OS Configuration File
	2.4 COM OIL File
	2.5 RTE Configuration Constants
	2.6 Screen Output
	2.7 Error and Information Messages
	2.8 Exit Codes
	2.9 RTE Library
	2.10 User Configuration File

	3 Command-line options
	3.1 Examples
	3.2 Interaction with ECUC configuration
	3.3 –
	3.4 –append-name-to-buffer
	3.5 –atomic-assign
	3.6 –bit-pack-type
	3.7 –bsw
	3.8 –bsw-scope-limit-defns
	3.9 –calibration-disable
	3.10 –calibration-instantiation
	3.11 –calibration-method
	3.12 –client-server-global-optimization
	3.13 –com-symbolic-sigs
	3.14 –com-version
	3.15 –contract
	3.16 –deviate-allow-unmapped-swci-config
	3.17 –deviate-appl-impl-compu-method
	3.18 –deviate-appl-impl-display-format
	3.19 –deviate-bsw-any-partition
	3.20 –deviate-allow-supportsmulti-sharedmemorys
	3.21 –deviate-enum-cast
	3.22 –deviate-group-calibration-none
	3.23 –deviate-ignore-datatype-semantics
	3.24 –deviate-implicit-cat2-mdd
	3.25 –deviate-implicit-modify-for-loopbacks
	3.26 –deviate-memmap-decls
	3.27 –deviate-omit-implicit-cds
	3.28 –deviate-physical-dimension-compatibility
	3.29 –deviate-prefer-no-empty-executions
	3.30 –deviate-split-swci-support
	3.31 –deviate-trace-implicit-api
	3.32 –deviate-unconnected-pmode-behavior
	3.33 –disable-warning
	3.34 –error-as-warning
	3.35 –error-report
	3.36 –exclusive-area-optimization
	3.37 –fast-init
	3.38 –file
	3.39 –force-basic-tasks
	3.40 –have-64bit-int-types
	3.41 –help
	3.42 –implicit-allocation-method
	3.43 –implicit-read-return-const
	3.44 –implicit-use-global-buffers
	3.45 –incremental-build
	3.46 –initial-value-rounding
	3.47 –ioc-header
	3.48 –ioc-xml-namespace
	3.49 –local-mcsd
	3.50 –makedep
	3.51 –mcore-spinlocks-always
	3.52 –mcsd-policy
	3.53 –measurement
	3.54 –memory-sections
	3.55 –notimestamps
	3.56 –operating-system
	3.57 –optimize
	3.58 –os-define-osenv
	3.59 –os-fp
	3.60 –os-header
	3.61 –os-output-param
	3.62 –os-permit-extended-tasks
	3.63 –os-task-as-function
	3.64 –os-xml-namespace
	3.65 –output
	3.66 –period
	3.67 –preferred-intra-core-protection-scheme
	3.68 –protection-threshold-copy-bytes
	3.69 –quiet
	3.70 –report
	3.71 –rte
	3.72 –samples
	3.73 –strict-config-check
	3.74 –strict-initial-values-check
	3.75 –strict-unconnected-rport-check
	3.76 –sws
	3.77 –task-recurrence
	3.78 –template-path
	3.79 –terminate-background-tasks
	3.80 –test-license
	3.81 –text-value-spec-policy
	3.82 –toolchain-significant-len
	3.83 –use-partition-sections
	3.84 –variability-also-bind
	3.85 –version
	3.86 –vfb-trace
	3.87 –warn-directive
	3.88 –warning-as-error
	3.89 –xfrm-ignore-inplace

	4 Configuration
	4.1 Supported namespace and schema versions
	4.2 References
	4.3 Packages
	4.4 Software Components
	4.5 AUTOSAR Types and Data Conversion
	4.6 Interfaces
	4.7 Measurement
	4.8 NVRAM
	4.9 AUTOSAR Modes
	4.10 Internal Behavior
	4.11 Implementation
	4.12 Signals
	4.13 System Signal Group
	4.14 PDU Type
	4.15 ECU Types
	4.16 Composition
	4.17 ECU Instances
	4.18 System Description
	4.19 ECU Description
	4.20 Vendor Specific XML Extensions
	4.21 Post-build
	4.22 Variability
	4.23 Support for the atpSplitable Stereotype

	5 RTE Conventions
	5.1 Name Space
	5.2 Software-Component Naming

	6 RTE API Reference
	6.1 API Parameter Passing
	6.2 Data Types
	6.3 Rte_Call
	6.4 Rte_Prm
	6.5 Rte_CData
	6.6 Rte_Enter
	6.7 Rte_Exit
	6.8 Rte_IFeedback
	6.9 Rte_Feedback / Rte_SwitchAck
	6.10 Rte_IInvalidate
	6.11 Rte_Invalidate
	6.12 Rte_IRead
	6.13 Rte_IWrite
	6.14 Rte_IWriteRef
	6.15 Rte_IrvIRead
	6.16 Rte_IrvIWrite
	6.17 Rte_IrvRead
	6.18 Rte_IrvWrite
	6.19 Rte_IStatus
	6.20 Rte_IsUpdated
	6.21 Rte_MainFunction
	6.22 Rte_Mode
	6.23 Rte_Ports
	6.24 Rte_NPorts
	6.25 Rte_Port
	6.26 Rte_Pim
	6.27 Rte_Read
	6.28 Rte_DRead
	6.29 Rte_Receive
	6.30 Rte_Result
	6.31 Rte_Send
	6.32 Rte_Start
	6.33 Rte_Stop
	6.34 Rte_Switch
	6.35 Rte_Tick_Timeouts
	6.36 Rte_Trigger
	6.37 Rte_IrTrigger
	6.38 Rte_Write

	7 RTE Runnable API Reference
	7.1 Supported RTE Events
	7.2 Signature
	7.3 SWC Initialization

	8 VFB Tracing
	8.1 Enabling VFB Tracing
	8.2 Trace Events
	8.3 Trace Event Implementation
	8.4 Optimization

	9 Memory Mapping and Compiler Abstraction
	9.1 Memory mapping principles
	9.2 Memory mapping for code objects
	9.3 Memory mapping for data objects
	9.4 Reporting RTE objects to other AUTOSAR tooling
	9.5 Compiler Abstraction

	10 External Dependencies
	10.1 C Library
	10.2 OS Configuration
	10.3 AUTOSAR COM
	10.4 Operating System
	10.5 Calibration

	11 Parameters of Implementation
	11.1 AUTOSAR Common Published Information
	11.2 API Legitimacy
	11.3 Tasks and Runnable Entities
	11.4 Queued Communication
	11.5 Scheduling
	11.6 Modes and Mode Switches
	11.7 Inter-ECU Communication

	12 AUTOSAR Revision Support
	13 Contact, Support and Problem Reporting

