
RTA-RTE V6.8.0
Toolchain Integration Guide

RTA-RTE V6.8.0
Toolchain Integration Guide

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this doc-
ument. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract. Under no circumstances
may any part of this document be copied, reproduced, transmitted, stored in a retrieval
system or translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2019 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document: 10756-TC-001 EN - 05-2019

Revision: 92501 [RTA-RTE 6.8.0]

This product described in this document includes software developed by the Apache
Software Foundation (http://www.apache.org/).

2 Copyright

RTA-RTE V6.8.0
Toolchain Integration Guide

Contents

1 Introduction 4
1.1 About this Manual . 4
1.2 Who Should Read this Manual? . 4
1.3 Document Conventions . 4

2 Compiler Toolchain 6
2.1 Adding a new Compiler Toolchain . 6
2.2 AUTOSAR Headers . 6
2.3 C Library . 8

3 Compiler Abstraction 9
3.1 Memory Section Description File . 9
3.2 File Selection . 10
3.3 Example . 11

4 Dependencies and Outputs 12
4.1 Contract Phase . 12
4.2 RTE Phase . 13
4.3 Compile-time . 15
4.4 Link-time . 17
4.5 Run-time . 17
4.6 Templates . 17

5 Legacy Systems 21
5.1 Resource Reuse . 21
5.2 Fixed Task Set . 21

6 Operating System 23
6.1 Overview . 23
6.2 AUTOSAR R4.0 OS support . 24
6.3 AUTOSAR R3.0 OS support . 26
6.4 AUTOSAR R1.0 OS support . 29
6.5 OSEK 2.2.3 support . 31
6.6 OS Abstraction Layer . 33

7 Build Environment 38
7.1 Option sub-files . 38
7.2 Make . 38
7.3 Incremental Build . 39
7.4 Error reporting . 39

8 Contact, Support and Problem Reporting 42

Contents 3

RTA-RTE V6.8.0
Toolchain Integration Guide

1 Introduction

1.1 About this Manual

This guide provides a reference for the integration of RTEs generated by RTA-RTE with
multiple operating systems and third-party build environments such as “make” or inte-
grated development environments (IDEs).

• Chapter 2 describes how to adapt RTA-RTE to a new compiler toolchain by providing
versions of four AUTOSAR header files.

• Chpater3 describes how the compiler abstraction used by RTA-RTE can be adapted
for specific project requirements using a Memory Section Description File.

• Chapter 4 describes the inputs and outputs of the RTE generator.

• Chapter 5 describes how RTEs generated by RTA-RTE can be integrated within
legacy systems that have a fixed task set.

• Chapter 6 details how multiple operating system (both AUTOSAR compliant and
non-AUTOSAR operating systems) are supported in the generated RTE and how OS
selection affects the requirements of compilation of generated code.

• Chapter 7 describes RTA-RTE’s error reporting mechanism and how this can be cus-
tomized to accommodate the requirements of third-party build environments such
as make or with third-party IDEs.

1.2 Who Should Read this Manual?

The RTA-RTE Toolchain Integration Guide is intended for the software engineer who un-
derstands the concepts and general techniques of developing an RTE-based application
and needs to know key technical detail about the use of RTA-RTE within both existing
and new applications.

It is assumed that the reader is familiar with the RTA-RTE User Guide and RTA-RTE
Reference Manual.

Related Documents

This document is intended to be read in conjunction with the RTA-RTE User Guide and
RTA-RTE Reference Manual.

This document also references information contained in the AUTOSAR Software Speci-
fications, in particular AUTOSAR Specification of RTE.

1.3 Document Conventions

Applicable version

Information, e.g. an XML fragment, that is applicable to a subset of AUTOSAR revisions
appears within a framed paragraph. The range of applicable revisions is displayed in
the frame header.

4 Introduction

RTA-RTE V6.8.0
Toolchain Integration Guide

Notes that appear like this contain important information that you need to
be aware of. Make sure that you read them carefully and that you follow any
instructions that you are given.

Notes that appear like this describe things that you will need to know if you
want to write code that will work on any target processor.

In this guide you’ll see that program code, header file names, C type names, C functions
and API call names all appear in the courier typeface. When the name of an object is
made available to the programmer the name also appears in the courier typeface,
suitably modified in accordance with the RTE naming conventions. So, for example, a
runnable called Runnable1 appears as a handle called Runnable1.

Introduction 5

RTA-RTE V6.8.0
Toolchain Integration Guide

2 Compiler Toolchain

2.1 Adding a new Compiler Toolchain

The output of the RTE generator is standard ANSI C and therefore RTA-RTE does not in-
clude command-line options to adapt the generation for a particular compiler toolchain.
The sole exception is an option to define the non-standardized pre-processor directive
used to issue a warning.

When targeting a new compiler toolchain it is necessary to provide AUTOSAR header
files that define the AUTOSAR compiler abstraction and platform types. Depending on
the toolchain, the header files can either be obtained directly from AUTOSAR or can be
adapted from exemplar files included with RTA-RTE.

2.1.1 Errors and Warnings

Code generated by RTA-RTE includes conditional code that can include both compile
time errors and warnings that are raised using C pre-processor directives embedded in
the output.

ANSI standardizes the #error pre-processor directive but no equivalent standardization
exists for a issuing “warning” message and therefore the compiler vendor is free to
do whatever they so choose – common variants are #warn, #warning and #pragma
message.

RTA-RTE includes an option, --warn-directive, to enable the default #pragma mes-
sage directive to be replaced with a toolchain specific variant. For example, the option:

-warn=warning

causes RTA-RTE to generate:

#warning ”Warning text”

instead of the default:

#pragma message ”Warning text”

#pragma message was selected as the default since ANSI requires compiler
vendors to support #pragma and to ignore unknown pragmas. Therefore by
default RTA-RTE will not cause a fatal error with an ANSI compliant compiler.

2.2 AUTOSAR Headers

RTA-RTE generated code does use target-specific AUTOSAR header files that may re-
quire modification when targeting a new toolchain

The following generic AUTOSAR header files are used by the generated RTE and task
bodies:

6 Compiler Toolchain

RTA-RTE V6.8.0
Toolchain Integration Guide

• Std_Types.h – defines standard types for AUTOSAR basic software.

A copy of Std_Types.h file is included with distributions of RTA-RTE in
{install-fldr}\External\Inc.

• Os.h – defines OS API1 The selected OS file can be overridden with a command-line
option.

Your distribution of RTA-RTE includes a version of Os.h suitable for RTA-OSEK 5.0
in the file {install-fldr}\External\Inc. If you are not using RTA-OSEK please
consult your OS documentation for information on the correct header file.

• Com.h – defines the COM API. (used only when inter-ECU communication is config-
ured).

RTA-RTE does not include AUTOSAR COM and therefore this file is not included with
your distribution.

In addition to the generic header files, generated code uses four target specific header
files that may need to be modified when targeting a new toolchain:

• Compiler.h – defines a mapping from the AUTOSAR compiler abstraction to
toolchain specific keywords.

• Compiler_Cfg.h – Configuration file for memory and pointer classes.

• Rte_MemMap.h – Configures mapping for variables, constants and code of AUTOSAR
modules to individual memory sections.

• Platform_Types.h – defines target and toolchain dependent types.

The AUTOSAR header files must be present on the compiler’s include path
when generated RTE code is compiled.

Your distribution of RTA-RTE includes exemplar AUTOSAR header files for the following
targets:

• RTA-OSEK_Task17x6 – RTA-OSEK 5.0 for Tasking C Compiler v2.2r3 and Infineon
TriCore 17x6.

• RTA-OSEK_VRTA – MinGW 3.4.2/Visual Studio and Microsoft Windows using RTA-
OSEK 5.0 for PC.

Distributions that include supported for AUTOSAR OS R3.0 and above also include sup-
port for the following targets:

• RTA-OS30_TriCoreHighTec – RTA-OS3.0 v2.0 for HighTect C Compiler v3.4.5.2 and
Infineon TriCore 17x6.

1This file is only used by the RTA-OSEK5.0 OS when the RTE generator is in compatibility mode only.

Compiler Toolchain 7

RTA-RTE V6.8.0
Toolchain Integration Guide

• RTA-OS30_VRTA – MinGW 3.4.2/Visual Studio Microsoft Windows using RTA-OS3.0
v2.0 for PC.

The exemplar AUTOSAR header files can be used as a reference when the RTE is retar-
geted for a new toolchain.

2.3 C Library

By default, RTA-RTE is independent of the C library and uses the RTE library function
Rte_memcpy when copying memory.

Alternatively, RTA-RTE will use the C library’s memcpy function if the symbol
RTE_LIBC_MEMCPY is defined when compiling the RTE library and generated code.

The standard function from the C Library may be preferred for certain targets, for exam-
ple, when the compiler supports a built-in version of the memcpy function that compiles
to inline optimal assembler.

8 Compiler Toolchain

RTA-RTE V6.8.0
Toolchain Integration Guide

3 Compiler Abstraction

RTA-RTE uses the AUTOSAR compiler abstraction macros when declaring or defining
global data and generated API functions. Unfortunately the use of the compiler ab-
straction by an RTE generator has historically been poorly specified by AUTOSAR and
this has led to incompatibilities between RTE generators when different implementa-
tion decisions lead to different usage of the compiler abstraction, for example, RTA-RTE
uses the AUTOSAR CONSTP2VAR compiler abstraction macro when declaring INOUT and
OUT function parameters since it is not required to modify where the reference points
however other RTE generators use the P2VAR macro.

Attempting to use software components that assume one convention with an RTE gen-
erated that assumes a different convention can lead to errors during compilation.
Therefore RTA-RTE permits the use of the compiler abstraction to be modified if the
RTA-RTE default is not the desired behaviour.

The use of the compiler abstraction can be changed either globally or on a per-project
basis using a Memory Section Description File.

3.1 Memory Section Description File

The Memory Section Description File is an XML file that describes how RTA-RTE should
format the compiler abstraction macros in a number of scenarios:

Scenario Name Description

FUNC_ARG_IN An IN function argument used by a gen-
erated RTE API function.

FUNC_ARG_INOUT An INOUT function argument used by a
generated RTE API function.

FUNC_ARG_OUT An OUT function argument used by a
generated RTE API function.

FUNC_RETURN The return type of a generated RTE API
function.

RAM A global variable defined in Rte.c.

ROM A global constant defined in Rte.c.

FUNC_LOCALS A function-local variable defined in
Rte.c.

TYPECAST A typecast in RTE generated code.

Each scenario is represented by a <MemClass> element within the Memory Section
Description File, for example:

<MemClass>
<name>ROM</name>
<typeDef>volatile_ref VAR(type, RTE_DATA)</typeDef>
<typeDefRef>volatile_ref P2VAR(type, RTE_DATA, ptrclass)</typeDefRef>

Compiler Abstraction 9

RTA-RTE V6.8.0
Toolchain Integration Guide

<typeDefRef2Const>volatile_ref P2CONST(type, RTE_DATA, ptrclass)</
typeDefRef2Const>

<constQualifier>false</constQualifier>
<volatileQualifier>false</volatileQualifier>
<category>Internal</category>
<description>Constant data</description>

</MemClass>

The <name> defines the scenario. RTA-RTE then uses the <typeDef>, <typeDefRef>
and <typeDefRef2Const> elements to define how to format the compiler abstraction
macros for declarations, references to variables and references to constants respec-
tively. The other elements within the <MemClass> are not used by RTA-RTE.

Within a <typeDef>, <typeDefRef> and <typeDefRef2Const> element RTA-RTE per-
forms token replacement to form the final compiler abstraction as follows:

Token Description

type Expands to the data type name.

memclass Expands to the memory class, e.g.
RTE_CODE.

ptrclass Expands to the pointer class, e.g.
RTE_APPL_DATA. RTA-RTE uses
the pointer class for the refer-
ence elements <typeDefRef> and
<typeDefRef2Const> and refers to the
pointed-to object.

volatile_ref Expands to volatile if necessary, oth-
erwise the empty string.

The <MemClass> element can be specified multiple times within the Memory Section
Description File; all such elements are encapsulated within a <MemClasses> element
which is itself within the root <MemClassConfig> element.

A full example can be found in the following file:

{install-fldr}/Examples/Configuration/memsect.xml

3.2 File Selection

The Memory Section Description File can be specified either globally for a RTA-RTE back-
end processor or selected for each build.

Global Selection

The global default location of the Memory Section Description File is specified in the
RTA-RTE configuration file:

[Options]
MemSectFile=memsect.xml

10 Compiler Abstraction

RTA-RTE V6.8.0
Toolchain Integration Guide

The MemSectFile option is specified either as an absolute path or relative to the bin
folder of the relevant RTA-RTE backend processor. Therefore the default global location
of the Memory Section Description File for backend processor is <backend> is:

{install-fldr}\bin\<backend>\memsect.xml

The Memory Section Description File is optional – if not present in the global location
then no error is raised by RTA-RTE and the default compiler abstraction macros are
used.

Command-line Selection

Alternatively the location of the Memory Section Description File can be set for a par-
ticular run of the RTE generator using the --memory-sections command-line option.
For example:

--memory-sections:memsect.xml

The MemSectFile specified using the --memory-sections command-line option is ei-
ther an absolute path or relative to the current folder when RTA-RTE is invoked. The
setting on the command-line overrides any global setting in the RTA-RTE configuration
file.

3.3 Example

Consider a SWC with a required sender-receiver port “r1” containing a data element
“array” that uses an array data type. Using the default compiler abstraction the OUT
parameter of the Rte_Read API uses the CONSTP2VAR macro:

Rte_Read_swcA_r1_array(CONSTP2VAR(unsigned char, AUTOMATIC,
RTE_APPL_DATA) data);

However if a Memory Section Description File containing the following XML fragment
to redefine how RTA-RTE generates compiler abstraction macros for the FUNC_ARG_OUT
scenario:

<MemClass>
<name>FUNC_ARG_OUT</name>
<typeDefRef>P2VAR(type, AUTOMATIC, ptrclass)</typeDefRef>
...

</MemClass>

Then the compiler abstraction generated for the OUT parameter uses the P2VAR macro:

Rte_Read_swcA_r1_array(P2VAR(unsigned char, AUTOMATIC, RTE_APPL_DATA
) data);

Compiler Abstraction 11

RTA-RTE V6.8.0
Toolchain Integration Guide

4 Dependencies and Outputs

The required inputs and generated outputs depend on the operating phase of RTA-RTE.

RTA-RTE uses command-line arguments (see the RTA-RTE Reference Manual) to select
between “Contract” and “RTE” phases and to specify the set of input files.

4.1 Contract Phase

Contract phase is selected using the --contract option. The option takes a single pa-
rameter; a reference to the SWC type for which contract phase generation is required.

The SWC type reference must be specified using an absolute reference.

It is not possible to create Contract phase outputs for multiple SWC types in a single
execution of the RTA-RTE’s RTE generator.

4.1.1 Inputs

When invoked for Contract phase generation, RTA-RTE expects the following input files:

• The SWC description according to the AUTOSAR Software-Component Template.

Information present in the input but not required by RTA-RTE is ignored.
Thus it is not necessary to strip out all non-relevant information when invok-
ing RTA-RTE’s RTE generator.

The SWC description can be included in one or more XML files each of which can con-
tain one or more AUTOSAR packages. Note that individual elements within a package
cannot be split across packages, thus, for example, all constituent elements of an ap-
plication software-component element must be specified within the same package.

4.1.2 Outputs

When invoked for Contract phase generation, RTA-RTE generates the following output
files:

• A C header file, Rte_Type.h, containing all type definitions encountered within the
input files.

• An application header file, Rte_<name>.h where <name> is the short name of
the selected SWC, containing declarations of the RTE API for the SWC type. The
generated application header file is used when compiling the SWC either for pre-
delivery test purposes or to enable delivery as object-code.

The default location of output files is the same as the folder in which RTA-RTE’s RTE
generator is invoked. The --output option can be used to explicitly set an output
folder.

12 Dependencies and Outputs

RTA-RTE V6.8.0
Toolchain Integration Guide

4.2 RTE Phase

RTE phase is selected using the --rte-phase option. The option takes a single param-
eter; a reference to the ECU instance for which RTE phase generation is required.

The ECU instance reference must be specified using an absolute instance reference.
See the RTA-RTE Reference Manual for details on how to specify an ECU instance on
the command-line

It is not possible to create RTE phase outputs for multiple ECU instances in a single
execution of RTA-RTE’s RTE generator.

4.2.1 Inputs

When invoked for RTE phase generation, RTA-RTE expects the following input files:

• The SWC descriptions according to the AUTOSAR Software-Component Template
for all SWC types used within the input.

This input defines the software components, their ports, internal behaviour and
implementation characteristics and the interfaces provided and required by the
ports

• The System description according to the AUTOSAR System Template for the ECU
instance for which RTE phase is being generated.

This input defines things like the network topology, how inter-ECU communication
is mapped to the physical network etc.

• The ECU configuration according to the AUTOSAR ECU Description for the ECU in-
stance for which the RTE is being generated.

This input defines what tasks are present, how runnable entities are mapped to
tasks, etc. and the mapping of AUTOSAR signals to COM signals for inter-ECU
sender-receiver communication.

Information present in the input but not required by RTA-RTE is ignored.
Thus it is not necessary to strip out all non-relevant information when invok-
ing RTA-RTE’s RTE generator.

As with Contract phase, the input can be included in one or more XML files each of which
can contain one or more AUTOSAR packages. There is no requirement, for example, for
all system information to be present in one file and all SWC information to be in another
file.

4.2.2 Outputs

When invoked for RTE phase generation, RTA-RTE produces considerably more output
than when invoked for Contract phase:

• A C source file, Rte.c, containing the generated RTE API and supporting data struc-
tures.

Dependencies and Outputs 13

RTA-RTE V6.8.0
Toolchain Integration Guide

• A C header file, Rte_Type.h, containing all type definitions within the input files.
For any particular SWC the type definitions generated will be the same as those
generated at Contract phase.

• One or more application header files, Rte_<name>.h where <name> is the short
name of an SWC type, containing declarations of the RTE API for the SWC type.

During RTE phase, RTA-RTE has complete information about the mapping of all SWC
instances to the ECU instance(s). Therefore, the application header file generated
during RTE phase contains additional optimizations over and above those possi-
ble during Contract phase. For example, sender-receiver communication may be
mapped to direct read/write depending on whether or not runnable entity mapping
to tasks means that explicit data consistency are not required.

• A C header file, Rte_Cbk.h, containing prototypes for all call-back functions created
within the generated RTE.

• A C header file, Rte_Const.h, containing RTE configuration constants.

This file defines constants derived from the configuration that are used to optimize
the compilation of the RTE library.

All RTE library modules must be recompiled whenever the generated file
Rte_Const.h changes.

See the RTA-RTE Reference Manual for details on the generated configurations con-
stants and for information on the RTE library.

The following output files are only created when RTA-RTE is operating in “vendor” mode:

• A C source file, <Taskname>.c, containing the generated task body for each task
containing runnable entities. Note that in compatibility mode the task bodies are
created within the generated RTE file itself.

The following files are optional – whether or not they are generated depends on the
contents of your distribution of RTA-RTE.

• <OS Name>.<suffix>, an OS configuration file for the AUTOSAR/OSEK Operating
System <OS Name>. The file name will have an appropriate extension.

• <COM Name>.oil, an OIL configuration file for AUTOSAR/OSEK COM <COM
Name>.

4.2.3 Optimization

The RTE generator can modify the generated RTE depending on command-line options.

14 Dependencies and Outputs

RTA-RTE V6.8.0
Toolchain Integration Guide

Atomic Assignment

The --atomic-assign option is used to pass target specific knowledge about AUTOSAR
platform types to the RTE generator. The option takes as a parameter a comma-
separated list of platform types (uint8, uint16, etc.), e.g.:

-atomic-assign=uint8,uint16

The option indicates that assignment of the specified types is atomic and therefore
no special mechanisms are required to be inserted into generated code by the RTE
generator.

The following types can be specified with the aa option:

• uint8, uint16 and uint32 (includes the AUTOSAR ‘char’ and ‘opaque’ metatypes
and the Std_ReturnType).

• sint8, sint16 and sint32

• boolean

• float32 and float64

4.3 Compile-time

The output of RTA-RTE is standard ANSI C and therefore RTA-RTE requires no command-
line options to adapt it for a particular compiler toolchain. However, when compiling
code generated by RTA-RTE the following dependencies should be observed.

4.3.1 C Library

By default, RTA-RTE is independent of the C library and uses the RTE library function
Rte_memcpy when copying memory.

However when RTE_LIBC_MEMCPY is defined when compiling the RTE library and gener-
ated code then RTA-RTE will use the C library’s memcpy function.

4.3.2 Include Path

The RTA-RTE distribution includes a number of include folders that must be present on
the compiler’s include path when compiling generated code:

• {install-fldr}\Inc – Core RTA-RTE include files including Rte.h.

• {install-fldr}\External\Inc – Non-target specific AUTOSAR include files, for
example Os.h and Std_Types.h.

The AUTOSAR header files can be used with any operating system, compiler and
microcontroller combinations.

Dependencies and Outputs 15

RTA-RTE V6.8.0
Toolchain Integration Guide

• {install-fldr}\External\Inc\TGT – Target specific AUTOSAR include files in-
cluding Compiler.h. and Compiler_Cfg.h. These files adapt the generated RTE
to specific operating system, compiler and microcontroller combinations.

Your distribution of RTA-RTE includes exemplar target specific files. For additional files
please contact either AUTOSAR or ETAS GmbH.

The recommended order on the include path is Inc then External\Inc and finally
External\Inc\TGT. Please consult your compiler documentation on how to set addi-
tional include folders.

4.3.3 Pre-include

The generated RTE includes a pre-include mechanism that permits a user-specified
header file to be read before any other header files are included.

To enable the pre-include mechanism define RTE_REINCLUDE when compiling Rte.c.
For example, to include the file bob.h:

-D RTE_PREINCLUDE=”\”bob.h\””

The defined pre-include header file must be encapsulated in either double
quotes or angle brackets.

4.3.4 RTE Initialization Check

The generated RTE includes a check to ensure that any inter-ECU communication
that occurs before the RTE is initialized is ignored. This check can be disabled
if, for example, it is known that no such communication can occur, by defining
RTE_OMIT_UNINIT_CHECK when compiling Rte.c.

If RTE_OMIT_UNINIT_CHECK is not defined when the RTE is compiled the check for an
un-initialized RTE occurs within each COM call-back.

4.3.5 OS Environment

RTA-RTE includes support for multiple operating systems. Different selections of OS
modify the set of OS objects created, the OS API used within the RTE library and, if
applicable, the form of the generated OS configuration.

The OS support assumes the existence of compile-time definitions that define the OS
environment on which the generated code will be run. For example, the OS support
may generate APIs compliant to the AUTOSAR OS standard but the compiled code still
needs to know which OS implementation is providing the execution environment in
order to include implementation specific header files.

The OS environment used must be defined on the command-line. Full details of OS inte-
gration, and the OS environments supported by this release of RTA-RTE, are contained
in Chapter 6.

16 Dependencies and Outputs

RTA-RTE V6.8.0
Toolchain Integration Guide

4.4 Link-time

When linking an application containing RTA-RTE generated code the following depen-
dencies should be observed.

4.4.1 RTE Library

RTA-RTE uses a library that must be compiled and linked with the generated code and
the application code to form the final executable.

The RTE library, Rte_Lib.c, is generated based on template files. The location of the
generated file can be controlled using the --output command-line option.

4.4.2 AUTOSAR modules

RTA-RTE uses the AUTOSAR COM and OS modules. Therefore these modules must be
built and linked with the application.

The interaction of RTA-RTE generated code with COM can be influenced with the follow-
ing command-line options:

• --com-symbolic-sigs – When specified, RTA-RTE generated code references COM
signals by their name rather than their handle id. The R2.0 backend also supports
the deprecated --symbolic-sigs command-line option.

• --com-version – Specifies the COM API in use. The option takes a single parameter
that specifies the COM version, e.g. -cv=2.0.

4.5 Run-time

4.5.1 Startup

The Rte_Start API must be used to start the RTE. The function ensures that runnable
entities triggered by “Timing” RTEEvents are started and activates those triggered by
“ModeSwitch” RTEEvents connected to the ENTRY of the initial mode.

The generated RTE assumes that the C startup has initialized global vari-
ables in accordance with the ANSI C standard.

4.6 Templates

RTA-RTE uses templates to define the RTE library and associated header files. The
template files are supplied with RTA-RTE as plain text and can, if required, be modified
to conform to specific user requirements.

4.6.1 Template Scripting Language

RTA-RTE templates use a markup language ‘embedded’ into templates which are then
parsed by RTA-RTE, for example:

% $outputfile=’Rte_Lib.c’
/** @file <%= $outputfile %> */

Dependencies and Outputs 17

RTA-RTE V6.8.0
Toolchain Integration Guide

#include "Rte.h"

% if $rbglobals[’RTE_IMODEINIT’] > 0
extern FUNC(void, RTE_CODE) Rte_IModeInit(void);
% end

This shows a fragment of a template that could represent the Rte_Lib.c output file.

Points to note:

• The tag /*% signals the start of a section of template script. Matching tag %*/
signals the end of that section.

• The tag //% at the start of a line signals that the entire line is a section of template
script.

• Text that is not in a script section is simply passed to the output.

• Text that is in a script section gets executed in the sequence that it appears.

• A start tag //%# is treated as a comment. No script code gets executed.

4.6.2 Template Processing

All templates are located within a single folder and are processed after the RTE has
been generated. The default location for templates is defined within the RTE’s INI file
but this can be overridden using the --template-path command-line option.

A template file must

• Begin with Rte

• End with _*, which is converted into the extension of the output file. For example
_c will be converted to .c

• Have the extension .template.

A template file with a name that matches Rte*_h.template defines a generated
header file that is processed in both RTE and contract phases.

The order in which template files are processed is not defined.

4.6.3 Template Global Definitions

The template parsing code that executes in RTA-RTE templates runs in the context of
the RTE generator and thus certain global definitions are available for use within the
template, e.g.:

//% if (RTE_CALPRM_INITRAM == 0)

The following definition parameters are defined within RTA-RTE:

18 Dependencies and Outputs

RTA-RTE V6.8.0
Toolchain Integration Guide

Parameter Name Type Notes

RTE_WOWP_EVENTS Integer Number of “wake up on
wait point” events defined
within the generated RTE.
This value is used within
the Rte_Lib.c template to
enable/disable WOWP event
based processing.

RTE_MSITABLE_SIZE Integer Number of entries in the
“minimum start interval” ta-
ble. This value is used
within the Rte_Lib.c tem-
plate to enable/disable MSI
based processing.

RTE_NUM_ALARMS Integer Number of alarms. This
value is used within the
Rte_Lib.c template to en-
able/disable alarm process-
ing.

RTE_NULL_SCHEDULE Integer Non-zero if RTA-RTE has not
generate a schedule table.
This value is used within the
Rte_Lib.c template to en-
able/disable schedule table
processing.

RTE_OS_EVENTS Integer Number of OS events used
to activate runnable entities.
This value is used within the
RTE library template to en-
able/disable code that ma-
nipulates OS events.

RTE_CALPRM_INITRAM Integer Non-zero if calibration uses
the “init-ram” method.

RTE_CALPRM_INITRAM_DEFAULTS Integer Non-zero if the RTE library,
Rte_Lib.c, must initialize
Rte_CalprmInitRAM from
Rte_CalprmInitROM during
Rte_Start. This value is
used within the RTE library
template to include/exclude
code that performs the
initialization.

Dependencies and Outputs 19

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE_IMODEINIT Integer Non-zero if RTA-RTE has
created the Rte_IModeInit
function. This value is used
within the Rte_Lib.c tem-
plate to enable/disable code
that uses the function.

RTE_USE_GETCURRENTTASKALARM Integer Non-zero if the Rte_Lib.c
must include the
Rte_GetCurrentTaskAlarm
function.

RTE_COMMS_ERROR String RTE error code for a commu-
nications error. This value
is used within templates to
provide different definitions
based on the AUTOSAR re-
lease.

The following definition parameters are defined within RTA-RTE as a result of command-
line options:

Parameter Name Type Notes

OPT_OS_TASK_AS_FUNCTION Integer Contains the value of the
--os-task-as-function
command-line option. If
the option is not specified
this definition parameter is
defined as zero.

20 Dependencies and Outputs

RTA-RTE V6.8.0
Toolchain Integration Guide

5 Legacy Systems

RTA-RTE includes support for the integration of generated RTE code into a legacy sys-
tem that has a fixed set of tasks to which RTE tasks cannot be added.

5.1 Resource Reuse

AUTOSAR manages mutual exclusive access within a SW-C via exclusive areas declared
within the SW-C type. A different implementation strategy can be declared for each
exclusive area and for those areas using the “OsResource” implementation strategy
RTA-RTE ensures that each SW-C instance accesses a different OS resource.

In normal usage RTA-RTE creates resources as required in the generated OS configura-
tion file using the following name convention:

Rte_<type>_<swci>_<ea>

Where <type> indicates whether the OS resource is “standard” or “internal”, <swci> is
an RTA-RTE identifier for the SW-C instance and <ea> is the exclusive area name.

RTA-RTE also supports an extension to the AUTOSAR standard that permits a pre-
defined OS resource to be used instead of the RTA-RTE created resource.

The specification of which resource to use for an exclusive area instance is
RTA-RTE specific.

The AUTOSAR ExclusiveAreaImplementation container in the ECU configuration has
been extended with an optional reference to the OS resource to use.

<REFERENCE-VALUE>
<DEFINITION-REF DEST=’REFERENCE-PARAM-DEF’>/RTARTE/Rte/

SwComponentInstance/ExclusiveAreaImplementation/
ExclusiveAreaOsResourceRef</DEFINITION-REF>

<VALUE-REF DEST=’PARAM-CONF-CONTAINER-DEF’>/pkg/Os/resource</VALUE-REF>
</REFERENCE-VALUE>

The declaration of the referenced OS resource must be consistent with the expecta-
tions of RTA-RTE – in particular whether the resource is “standard” or “internal”. In the
event of a mismatch, RTA-RTE will produce a warning and the specified resource will be
ignored.

RTA-RTE ensures that all generated tasks are declared as accessing the specified re-
source however the resource itself is not redeclared within the generated OS configu-
ration file.

5.2 Fixed Task Set

The option --os-task-as-function is used to enable and disable generation of task
bodies as functions. For example, the option --os-task-as-function=1 causes RTA-
RTE to emit generated task bodies as functions rather than using the OS TASK() macro.
The generated functions can then be invoked from the existing task bodies as required.
The name of the generated task body function is Rte_task_<name> where <name> is

Legacy Systems 21

RTA-RTE V6.8.0
Toolchain Integration Guide

the task name.

When building tasks as functions the tasks must still be declared in the input
so that they are visible to RTA-RTE. The pseudo-tasks must be specified with
the same priority as the legacy tasks from which they will be invoked.

For example, consider a legacy system that contains 10ms, 50ms and 100ms tasks
and a runnable entity re1 triggered by a timing event with period 50ms and mapped
to task taskA. When the task-as-function option is not used RTA-RTE defines the task
body using the following definition:

TASK(task)
{
...

However when --os-task-as-function=1 is specified, the task body definition is al-
tered to:

FUNC(void, RTE_CODE)
Rte_task_taskA()
{
...

The generated function can then be invoked from whatever legacy task is appropriate
– in this case the 50ms task.

When generating tasks as functions the mapping of runnable entities to
tasks controls the number of generated functions. It is thus possible to de-
fine multiple “task functions” to arbitrarily split the execution of runnable
entities to fit the requirements of the legacy system.

5.2.1 Interaction with RTE Mechanisms

The use of task bodies as functions is incompatible with the following RTE mechanisms:

Minimum Start Intervals – When a runnable entity specifies a minimum start inter-
val the RTE must be able to control runnable invocation at run-time to permit it to
“hold-off” execution until the minimum start interval has expired.

22 Legacy Systems

RTA-RTE V6.8.0
Toolchain Integration Guide

6 Operating System

6.1 Overview

6.1.1 OS Selection on the command line

RTA-RTE supports several embedded operating systems, selected with the command-
line option --operating-system=parameter, where parameter is one of:

• autosar40

• autosar30

• autosar10

• osek223

If not supplied, the default is autosar40 for AUTOSAR 4.x projects and autosar30 for
AUTOSAR 3.x projects.

The choice of OS influences how RTA-RTE generates OS API calls, can limit the available
RTE features (for example, the availablility of Category 2 Runnables), and writes some
constants the Rte_Const.h to enable RTE library code to be adapted at compile time.

• RTE_OSAPI_xxx defines the OS API used, e.g. OSEK or AUTOSAR 4.0

• RTE_OSCFG_xxx defines the format of the created Os Needs file if present.

6.1.2 Os Implementation preprocessor definition

If the specific OS implementation is known to RTA-RTE, the generated code may
be able to take advantage of certain implementation details that cannot be relied
upon to be available in all implementations of the standard. RTA-RTE protects such
implementation-specific code with a preprocessor conditional based on the following
symbols:

• OSENV_RTAOS40 indicates that ETAS RTA-OS is being used as the execution environ-
ment with the AUTOSAR 4.0 API. Note that the 40 refers to the AUTOSAR revision,
not the version of RTA-OS. This symbol is supported for AUTOSAR 4.0 projects.

• OSENV_RTAOS30 indicates that ETAS RTA-OS is being used as the execution envi-
ronment with an AUTOSAR 3.x API. This symbol is supported for AUTOSAR 3.x and
AUTOSAT 4.0 projects.

• OSENV_RTAOSEK indicates that RTA-OSEK 5.0 is being used as the execution envi-
ronment. This symbol is suported in projects with --operating-system=osek223.
RTA-OSEK 5.0 supports the AUTOSAR 1.0 OS API.

Operating System 23

RTA-RTE V6.8.0
Toolchain Integration Guide

• OSENV_UNSUPPORTED indicates that the used AUTOSAR Operating System is not
known to RTA-RTE. This symbol is supported by all RTA-RTE projects and avoids
code that takes advantage of any implemntation-specific knowledge. RTA-RTE will
emit code conforming with the OS API specified by the --operating-system op-
tion.

It is mandatory to define exactly one of the above symbols at compile time when-
ever RTE-generated header files are involved in the compilation unit. The appropriate
OSENV definition can either be supplied on the compiler command-line when compil-
ing the generated RTE, or specificed via the --os-define-osenv option to RTA-RTE
when generating the RTE. In this last case, RTA-RTE will write the required definition to
Rte_Const.h.

6.2 AUTOSAR R4.0 OS support

RTA-RTE can interact with a standards-conformant AUTOSAR 4.0 Operating System and
has been tested with ETAS RTA-OS. This section explains how the RTE and OS generation
tools can interact and how to integrate the generated C code.

6.2.1 OS Needs

RTA-RTE implements the AUTOSAR concept of OsNeeds, that is, given an upstream OS
configuration and an RTE configuration, RTA-RTE will generate a file osNeeds.arxml
containing information that completes the OS configuration.

At the time of writing, for SC3 and SC4 configurations, osNeeds.arxml does
not by itself complete the configuration. It is necesssary to manually add
in the ownership and access rights of the OsApplications on the various Os
objects in OsNeeds.

The option --os-file can be used to specify a different name for the osNeeds file.

The default namespace URI used in osNeeds.arxml is
http://autosar.org/schema/r4.0. The option --os-xml-namespace can be used to
set a different namespace URI.

The command-line options --os-file and os-xml-namespace only modify
the filename or namespace declaration and do not affect the contents of the
XML.

Merge RTE generated and Input XML

By default, or when --os-output-param=changed, RTA-RTE does not write task param-
eters (i.e. priority, activation limit and schedule) to the generated osNeeds.arxml if
they are present and acceptible in the upstream OS Configuration. This makes it pos-
sible to simply provide the generated osNeeds.arxml to the OS Generator along with
the upstream OS configuration to generate the OS.

This method is illustrated in Figure 6.1.

24 Operating System

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE
generator

OS
configuration

tool

Os XML for
RTE

Fixed Os
XML

OsNeeds

Figure 6.1: Interaction of RTA-RTE and Os configuration files when using option
--os-output-param=changed.

Replace Input with RTE-generated XML

When --os-output-param=all is supplied then RTA-RTE outputs all task parameters
(i.e. priority, activation limit and schedule) and the RTE resource declaration in the
generated osNeeds.arxml irrespective of whether or not RTE generation has caused
them to change.

In this mode it is likely that there will be duplicate or conflicting information between
the input Os configuration and the generated osNeeds.arxml. It is unlikely that the two
files can be merged by the OS Generator in this case.

This method is illustrated in Figure 6.2.

6.2.2 AUTOSAR R4.0 OS Interaction

AUTOSAR R4.0 introduced mechanisms to associate all RTE objects, such as timing
events and exclusive areas, with existing OS objects manually. When this is done then
the generated osNeeds.arxml can be discarded, as illustrated in Figure 6.3.

When you use R4.0 OS Interaction mechanisms it is strongly recommended
to use command-line option --strict-config-check=true to ensure that
all required OS objects are present in the input.

Operating System 25

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE
generator

OS
configuration

tool

Os XML for
RTE

Fixed Os
XML

OsNeeds

Figure 6.2: Interaction of RTA-RTE and Os configuration files when using option
--os-output-param=all.

6.2.3 Generated C

When RTA-RTE generates an RTE expecting to use an AUTOSAR 4.0 OS, it writes
#defines for the following symbols to Rte_Const.h:

Symbol Meaning

RTE_OSAPI_AUTOSAR_R40 The API used by the generated RTE is compat-
ible with AUTOSAR OS R4.0. A schedule table
is used for runnable entities activated by time.

RTE_OSCFG_AUTOSAR_R40 The generated OS configuration fragment
uses AUTOSAR R4.0 XML.

6.2.4 ETAS RTA–OS v5.x and v4.0

RTA-OS 4.0 and later are capable of generating an AUTOSAR 4.0 conformant API for use
with RTA-RTE. The OS environment macro OSENV_RTAOS40 must be defined when RTE is
used with ETAS RTA-OS, for example:

cc --DOSENV_RTAOS40 Rte.c

The 40 in OSENV_RTAOS40 relates to AUTOSAR 4.0, not the product version
of RTA-OS.

6.2.5 Other Operating Systems

To use RTA-RTE with another AUTOSAR 4.0 conformant OS product, define the macro
OSENV_UNSUPPORTED to ensure that no implementation-spefic details are used, for ex-
ample:

cc --DOSENV_UNSUPPORTED Rte.c

6.2.6 OS Header File

When operating in vendor mode, command-line option --oshdr can be used to define
the OS header file used with the generated RTE and the generated task bodies.

For example, supplying --os-header=my_header.h causes RTA-RTE to write

#include "my_header.h"

when including the OS Header file in generated code instead of the default

#include "Os.h"

6.3 AUTOSAR R3.0 OS support

The AUTOSAR R3.0 OS support has been designed to integrate with RTA-OS but can
also be used with any AUTOSAR R3.0 OS.

26 Operating System

RTA-RTE V6.8.0
Toolchain Integration Guide

Definition Notes

RTE_OSAPI_AUTOSAR_R30 The API used by the generated RTE is compat-
ible with AUTOSAR OS R3.0. A schedule table
is used for runnable entities activated by time.

RTE_OSCFG_AUTOSAR_R30 The generated OS configuration fragment
uses AUTOSAR R3.0 XML.

6.3.1 RTA–OS

The OS environment OSENV_RTAOS30 must be defined when RTA-OS is used with the
AUTOSAR R3.0 OS support. For example:

cc --DOSENV_RTAOS30 Rte.c

6.3.2 Other Operating Systems

Operating systems other than RTA-OS can be used with the AUTOSAR R3.0 OS support
if the OSENV_UNSUPPORTED environment is declared. For example:

cc --DOSENV_UNSUPPORTED Rte.c

The use of OSENV_UNSUPPORTED indicates that an operating system is be-
ing used with RTA-RTE that has not been tested by ETAS. It is important,
therefore, to carefully verify correct functioning of the RTE within your ap-
plication.

6.3.3 OS Header File

When operating in vendor mode, the AUTOSAR R3.0 OS support includes an option,
oshdr, to define the OS header file used within the generated RTE and the generated
task bodies.

The option oshdr has no effect in compatibility mode – the standard AU-
TOSAR Os.h header file is always used.

As an example, the option --oshdr=name causes RTA-RTE to use #include <name>
when including the OS Header file in generated code instead of the default #include
<Os.h>.

6.3.4 OS Configuration File

By default the AUTOSAR R3.0 OS support creates an OS configuration file fragment
name osNeeds.arxml.

If the AUTOSAR R3.0 OS support is used with other operating systems, the osfile
option can be used to rename the generated XML file fragment.

The option osfile only renames the generated file and has no effect on its
contents.

Operating System 27

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE
generator

OS
configuration

tool

Os XML for
RTE

Fixed Os
XML

OsNeeds

Figure 6.3: Interaction of RTA-RTE and Os configuration files when using R4.0 OS Inter-
action.

The default namespace URI used within osNeeds.arxml is
http://autosar.org/3.0.2. The option --os-xml-namespace can be used to
set a different namespace URI, for example:

RTEGen --os-xml-namespace=http://autosar.org/3.1.0 ...

The option osxmlns only modifies the namespace declaration within the
generated OS configuration file and has no effect on its contents.

6.3.5 OS Parameters

The --os-output-param option supports two methods of working with the
osNeeds.arxml created by RTA-RTE where it is used either instead of, or merged with,
the input XML when generating the OS.

Merge

When the --os-output-param command-line option is used with the parameter
changed then RTA-RTE does not redefine task parameters (i.e. priority, activation
limit and schedule) within the generated osNeeds.arxml unless RTE generation causes
them to change. This means that the input Os configuration and the generated
osNeeds.arxml can be merged with other Os configuration files when passed to the
OS generator.

This method is illustrated in Figure 6.4.

28 Operating System

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE
generator

OS
configuration

tool

Os XML for
RTE

Fixed Os
XML

OsNeeds

Figure 6.4: Interaction of RTA-RTE and Os configuration files when using option
-osparam=changed.

Replacement

When the --os-output-param command-line option is used with the parameter all
then RTA-RTE outputs all task parameters (i.e. priority, activation limit and schedule)
and the RTE resource declaration within the generated osNeeds.arxml irrespective of
whether or not RTE generation has caused them to change.

In this mode the input Os configuration and the generated osNeeds.arxml cannot be
merged with other Os configuration files, such as the input Os configuration, when
passed to the OS generator.

This method is illustrated in Figure 6.5.

RTA-OS does not permit parameters to be defined in multiple files and
therefore if -osparam=all is used the input XML file and generated
osNeeds.arxml file cannot be merged.

6.4 AUTOSAR R1.0 OS support

The AUTOSAR R1.0 OS support has been designed to integrate with RTA–OSEK 5.0 in
AUTOSAR SC1 compatibility mode but can also be used with any AUTOSAR R1.0 OS.

Definition Notes

Operating System 29

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE_OSAPI_AUTOSAR_R10 The API used by the generated RTE is compat-
ible with AUTOSAR OS R1.0. A schedule table
is used for runnable entities activated by time.

RTE_OSCFG_RTAOSEK The generated OS configuration fragment
uses AUTOSAR OIL with extensions for RTA–
OSEK.

RTA–OSEK 5.0 extensions in the generated OIL will be ignored by third–party
OSs.

6.4.1 RTA–OSEK 5.0

The OS environment OSENV_RTAOSEK must be defined when RTA-OSEK 5.0 is used with
the AUTOSAR R1.0 support. For example:

cc --DOSENV_RTAOSEK Rte.c

When OSENV_RTAOSEK is defined, and RTA-RTE is operating in vendor mode, the RTA-
OSEK per-task header files are used to optimize the generated task bodies.

6.4.2 Floating Point

The RTA-RTE AUTOSAR10 OS support includes RTA-OSEK specific OIL extensions to de-
fine whether or not tasks (and hence runnable entities invoked by the task) use floating
point. The default is to assume that the tasks use floating point but this can be changed
with the osfp option.

When set to 0 the option --os-fp disables floating point usage by generated tasks.
Setting the option to 1 enables floating point support.

6.4.3 Other Operating Systems

Operating systems other than RTA-OSEK can be used with the AUTOSAR R1.0 OS sup-
port if the OSENV_UNSUPPORTED environment is declared, for example:

cc --DOSENV_UNSUPPORTED Rte.c

The use of OSENV_UNSUPPORTED indicates that an operating system is be-
ing used with RTA-RTE that has not been tested by ETAS. It is important,
therefore, to carefully verify correct functioning of the RTE within your ap-
plication.

6.4.4 OS Header File

When operating in vendor mode, the AUTOSAR R1.0 support includes an option, oshdr,
to define the OS header file used within the generated RTE and the generated task
bodies.

The option oshdr has no effect in compatibility mode – the standard AU-
TOSAR Os.h header file is always used.

30 Operating System

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE
generator

OS
configuration

tool

Os XML for
RTE

Fixed Os
XML

OsNeeds

Figure 6.5: Interaction of RTA-RTE and Os configuration files when using option
-osparam=all.

As an example, the option --oshdr=name causes RTA-RTE to use #include <name>
when including the OS Header file in generated code instead of the default #include
<Os.h>.

6.4.5 OS Configuration File

By default the AUTOSAR R1.0 OS support creates an OS configuration file fragment
name rta-osek.oil.

The generated OS configuration fragment includes RTA-OSEK 5.0 specific
OIL++ statements to configure RTA-OSEK specific functionality. The OIL++
statements will be ignored by third–party OIL parsers.

If the AUTOSAR R1.0 OS support is used with other operating systems, the osfile
option can be used to rename the generated OIL file fragment.

The option osfile only renames the generated file and has no effect on its
contents. In particular, renaming the generated file does not remove the
RTA-OSEK 5.0 OIL++ statements.

As an example, the option --osfile=os.oil causes the RTA-RTE AUTOSAR R1.0 OS
support to create a file os.oil containing the generated OS configuration fragment.

6.5 OSEK 2.2.3 support

The OSEK 2.2.3 OS support has been designed to integrate with a generic OSEK OS
such as RTA-OSEK 5.0.

Operating System 31

RTA-RTE V6.8.0
Toolchain Integration Guide

Definition Notes

RTE_OSAPI_OSEK The API used by the generated RTE is compat-
ible with OSEK 2.2.3. Cyclic alarms are used
for runnable entities activated by time.

RTE_OSCFG_OSEK The generated OS configuration fragment
uses OSEK OIL.

6.5.1 RTA-OSEK 5.0

The OS environment OSENV_RTAOSEK must be defined when RTA-OSEK 5.0 is used with
the OSEK 2.2.3 support. For example:

cc --DOSENV_RTAOSEK Rte.c

When OSENV_RTAOSEK is defined, and RTA-RTE is operating in vendor mode, the RTA-
OSEK per-task header files are used to optimize the generated task bodies.

6.5.2 Other Operating Systems

Operating systems other than RTA-OSEK can be used with the OSEK 2.2.3 OS support if
the OSENV_UNSUPPORTED environment is declared. For example:

cc --DOSENV_UNSUPPORTED Rte.c

The use of OSENV_UNSUPPORTED indicates that an operating system is be-
ing used with RTA-RTE that has not been tested by ETAS. It is important,
therefore, to carefully verify correct functioning of the RTE within your ap-
plication.

6.5.3 OS Header File

When operating in vendor mode, the OSEK 2.2.3 OS support includes an option, oshdr,
to define the OS header file used within the generated RTE and the generated task
bodies.

The option oshdr has no effect in compatibility mode – the standard AU-
TOSAR Os.h header file is always used.

As an example, the option --oshdr=name causes RTA-RTE to use #include <name>
when including the OS Header file in generated code instead of the default #include
<Os.h>.

6.5.4 OS Configuration File

By default the OSEK 2.2.3 support creates an OS configuration file fragment name
osek.oil.

If the OSEK 2.2.3 support is used with other operating systems, the osfile option can
be used to rename the generated OIL file fragment.

32 Operating System

RTA-RTE V6.8.0
Toolchain Integration Guide

The option osfile only renames the generated file and has no effect on its
contents.

As an example, the option --osfile=os.oil causes the RTA-RTE OSEK 2.2.3 support
to create a file os.oil containing the generated OS configuration fragment.

6.6 OS Abstraction Layer

The final element in RTA-RTE support for multiple operating systems is the OS abstrac-
tion layer which provides support mechanisms for implementation dependent charac-
teristics of operating systems.

6.6.1 Rationale

The AUTOSAR operating system and OSEK 2.2.3 from which it is derived define standard
types used by OS APIs, e.g. TaskType, but do not define the implementation of these
types. The RTA-RTE OS abstraction layer provides the necessary mechanisms for RTA-
RTE generated code to be adapted to different OS implementations of the fundamental
OS types.

The RTA-RTE OS abstraction layer is defined in Rte_Intl.h. This file should not be modi-
fied directly; instead either the underlying template should be changed or each element
of the abstraction mechanism can be overridden using definitions on the command–line
when RTA-RTE generated code is compiled.

6.6.2 Atomic Code

RTA-RTE uses the RTE_ATOMIC macro to encapsulate short regions (typically single ex-
pressions) of atomic code:

#define RTE_ATOMIC(op) (Rte_SuspendOSInterrupts(),\
(op), \
Rte_ResumeOSInterrupts())

The supplied definition of RTE_ATOMIC macro uses the RTE mappings for
OS interrupt manipulation rather than the native AUTOSAR/OSEK APIs. This
permits redefinition of the APIs depending on the OSAPI macro defined in
Rte_Const.h.

An alternative definition of RTE_ATOMIC can be supplied if the above definition is not
suitable, for example, a compiler toolchain may offer an intrinsic function that exploits
special features of a particular CPU, for example:

#define RTE_ATOMIC(op) (_atomic(op))

The definition of RTE_ATOMIC must satisfy the following constraints:

• Preemption by any OS controlled entity (task or ISR) must be impossible for any
code within RTE_ATOMIC.

• “op” is an expression that may be comma-separated.

Operating System 33

RTA-RTE V6.8.0
Toolchain Integration Guide

• RTE_ATOMIC must be an expression and not a statement.

6.6.3 TaskType

When generating code, RTA-RTE can support task handles that are implemented either
as global variables or as a fixed value such as an integer or the address of an element
in an array.

The default mechanism within RTA-RTE assumes that a task is defined as an integer or
fixed value suitable for direct use within a C static initializer. When this is the case one
might expect to see the following definition within OS configuration code:

#define task1 (/* os specific */)

The alternative mechanism, that of a TaskType as a global variable, can also be used.
In this case one might expect to see the following definition within generated OS con-
figuration code:

TaskType task1 = (/* os specific */);

The use of a global variable rather than a fixed value is enabled then any of the follow-
ing are defined:

• OSENV_RTAOSEK

• RTE_TASKTYPE_IS_GLOBALCONST

Whatever the OS mechanism selected for the declaration of task handles RTA-RTE
needs to be able to include them within C static initializers. This is achieved through
the RTE_TASKREFTYPE definition of which can be modified depending on the selected
OS definition of TaskType to perform the correct action.

The default definition of RTE_TASKREFTYPE when task handles are fixed values is
straightforward since these values can be included within a static initializer without
modification:

#define RTE_TASKREFTYPE TaskType

However when a TaskType is a global variable then RTE_TASKREFTYPE is defined as the
address of the variable since the address can be included within a static initializer:

#define RTE_TASKREFTYPE \
P2CONST(TaskType,AUTOMATIC,RTE_OS_CDATA)

If required, an alternative definition of RTE_TASKREFTYPE can be given on the
command-line which will then override the default definition when RTA-RTE generated
code is compiled.

RTA-RTE includes macro definitions RTE_TASK_FROM_REF and RTE_REF_FROM_TASK to
convert a TaskType to and from a reference type. The definitions of these macros

34 Operating System

RTA-RTE V6.8.0
Toolchain Integration Guide

is modified depending on whether a task handle is a fixed value or a global variable.
If required, alternative definitions of RTE_TASK_FROM_REF and RTE_REF_FROM_TASK can
be given on the command-line when compiling generated RTE code which will then
override the default definition when RTA-RTE generated code is compiled.

Finally, the value RTE_TASK_REF_NO_TASK is defined as a null task reference, i.e. a value
suitable for use within a static initializer that can never itself be a valid task reference.
For example, when a task handle is a global variable then the following definition is
used since 0 can never be a valid address of a real variable:

#define RTE_TASK_REF_NO_TASK (0)

6.6.4 EventMaskType

When generating code, RTA-RTE can support OS event masks that are implemented
either as global variables or as a fixed value such as an integer or the address of an
element in an array.

The default mechanism within RTA-RTE assumes that an event mask is defined as a
fixed value suitable for direct use within a C static initializer. When this is the case one
might expect to see the following definition within generated OS configuration code:

#define event1 (/* os specific */)

The alternative mechanism, that of a EventMaskType as a global variable, can also be
used. In this case one might expect to see the following definition within generated OS
configuration code:

EventMaskType event1 = (/* os specific */);

The use of a global variable rather than a fixed value is enabled then any of the follow-
ing are defined:

• OSENV_RTAOSEK

• RTE_EVENTTYPE_IS_GLOBALCONST

Whatever the OS mechanism selected for the declaration of event masks RTA-RTE
needs to be able to include them within C static initializers. This is achieved through
the RTE_EVENTREFTYPE definition of which can be modified depending on the selected
OS definition of EventMaskType to perform the correct action.

The default definition of RTE_EVENTREFTYPE when event masks are fixed values is
straightforward since these values can be included within a static initializer without
modification:

#define RTE_EVENTREFTYPE EventMaskType

However when a EventMaskType is a global variable then RTE_EVENTREFTYPE is de-
fined as the address of the variable since the address can be included within a static
initializer:

Operating System 35

RTA-RTE V6.8.0
Toolchain Integration Guide

#define RTE_EVENTREFTYPE \
P2CONST(EventMaskType,AUTOMATIC,RTE_OS_CDATA)

If required, an alternative definition of RTE_EVENTREFTYPE can be given on the
command-line which will then override the default definition when RTA-RTE generated
code is compiled.

RTA-RTE includes macro definitions RTE_EVENT_FROM_REF and RTE_REF_FROM_EVENT to
convert a EventMaskType to and from a reference type. The definitions of these macros
is modified depending on whether an event mask is a fixed value or a global variable.
If required, alternative definitions can be given on the command-line when compiling
generated RTE code which will then override the default definition when RTA-RTE gen-
erated code is compiled.

6.6.5 AlarmType

When generating code, RTA-RTE can support Os alarms where AlarmType is imple-
mented either as global variables or as a fixed value such as an integer or the address
of an element in an array.

The default mechanism within RTA-RTE assumes that an alarm is defined as a fixed
value suitable for direct use within a C static initializer. When this is the case one might
expect to see the following definition within generated OS configuration code:

#define alarm1 (/* os specific */)

The alternative mechanism, that of a AlarmType as a global variable, can also be used.
In this case one might expect to see the following definition within generated OS con-
figuration code:

AlarmType alarm1 = (/* os specific */);

The use of a global variable rather than a fixed value is enabled then any of the follow-
ing are defined:

• OSENV_RTAOSEK

• RTE_ALARMTYPE_IS_GLOBALCONST

Whatever the OS mechanism selected for the declaration of alarms RTA-RTE needs
to be able to include them within C static initializers. This is achieved through the
RTE_ALARMREFTYPE definition of which can be modified depending on the selected OS
definition of AlarmType to perform the correct action. If required, an alternative defini-
tion of RTE_ALARMREFTYPE can be given on the command-line which will then override
the default definition when RTA-RTE generated code is compiled.

RTA-RTE includes macro definitions RTE_ALARM_FROM_REF and RTE_REF_FROM_ALARM to
convert an AlarmType to and from a reference type. The definitions of these macros
is modified depending on whether an event mask is a fixed value or a global variable.

36 Operating System

RTA-RTE V6.8.0
Toolchain Integration Guide

If required, alternative definitions can be given on the command-line when compiling
generated RTE code which will then override the default definition when RTA-RTE gen-
erated code is compiled.

Finally, the value RTE_NULL_ALARM_REF is defined as a null alarm reference, i.e. a value
suitable for use within a static initializer that can never itself be a valid alarm reference.
For example, when a alarm handle is a global variable then the following definition is
used since 0 can never be a valid address of a real variable:

#define RTE_NULL_ALARM_REF (0)

If required, an alternative definition of RTE_NULL_ALARM_REF can be given on the
command-line when compiling generated RTE code which will then override the default
definition when RTA-RTE generated code is compiled.

6.6.6 ResourceType

When generating code, RTA-RTE can support Os alarms where ResourceType is imple-
mented either as global variables or as a fixed value such as an integer or the address
of an element in an array.

• OSENV_RTAOSEK

• RTE_RESOURCETYPE_IS_GLOBALCONST

When either of the above definitions is defined, RTA-RTE assumes that ResourceType is
a global constant and defines RTE_RESOURCE_FROM_REF and RTE_REF_FROM_RESOURCE
appropriately. If required, alternative definitions can be given on the command–line
when compiling generated RTE code which will then override the default definition
when RTA-RTE generated code is compiled.

Operating System 37

RTA-RTE V6.8.0
Toolchain Integration Guide

7 Build Environment

The RTA-RTE generation tool is designed to be integrated into a third-party develop-
ment environment, such as Eclipse, provided some simple requirements are met.

The primary requirement necessary to integrate RTA-RTE is that the build environment
must be capable of invoking an external Win32 executable at the required point in the
build process. When this requirement is met RTA-RTE’s error formatting can, if required,
be modified to enable the invoking build tool to detect and correctly locate errors in the
input files passed to RTA-RTE.

7.1 Option sub-files

To overcome limitations of build environments related to the length of the command-
line RTA-RTE includes the --file option1 to read additional command-line options from
a file.

See the RTA-RTE Reference Manual for more details on the -f option.

The option can be used recursively; a file read using the -f option can include other
files if required.

7.2 Make

RTA-RTE is designed to be easy to integrate into make (or make-like) build environ-
ments.

7.2.1 Return Code

RTA-RTE’s RTE generator executable, RTEGen.exe, sets the error code depending on
whether or not RTE generation was successful:

• 0 : Success – the RTE Types and application headers (RTE and Contract phase)
and/or other files (RTE phase only) were generated without detected error.

The “success” return does not consider warnings as errors.

• Non-zero : Failure – at least one error was reported.

7.2.2 Build Dependency Information

The --makedep command-line option causes RTA-RTE to emit dependency information
for generated files to the specified file. The option takes one parameter; the name of
the file to which dependency information should be written.

The generated dependency information is designed to be directly included within Make-
files and therefore created as a set of rules each of which has the form:

<target>: <dependencies>

1The R2.0 backend also supports the --subfile command-line option.

38 Build Environment

RTA-RTE V6.8.0
Toolchain Integration Guide

The <target> of the rule defines the file for which the dependencies are defined. The
emitted information always contains exactly one <target> per rule.

The <target> may be either a C header file or an object file. To maintain compiler
independence the <target> uses a reference to the make variable $(OBJ) rather than
assuming a specific object file suffix.

The <dependencies> list contains all files upon which the <target> depends; if any
dependency is modified then the target must be rebuilt.

As an example, the following emitted rule defines the dependencies for the object file
created by compiling Rte.c:

Rte.$(OBJ): Com.h Os.h Rte.h Rte_Cfg.h
Rte_Const.h Rte_Intl.h
Rte_Main.h Rte_Type.h Rte.c

7.3 Incremental Build

By default, RTA-RTE creates all output files. However when incremental file genera-
tion is enabled using the --incremental-build command-line option then previously
generated output files are only modified if their contents has changed.

Incremental build examines the previously generated before deciding
whether it should be overwritten with the newly generated file. Thus when
incremental build is enabled the location of a previously generated file and
the corresponding newly created file must be the same.

When incremental build is enabled the generation of timestamps in output files is dis-
abled. Also when enabled the list of generated files includes an annotation, [skipped]
or [updated], that indicates whether or not incremental build overwritten an existing
file.

Incremental build does not affect the dependency information created by the
--makedep command-line option.

The error output file created by the --error-report command-line option is not
subject to incremental build – it is always created irrespective of the setting of the
--incremental-build option.

7.4 Error reporting

Uniquely raised fatal, error, warning and information messages are collected by the
RTA-RTE core and passed to the selected error reporter which is then responsible for:

• Formatting errors for output.

• Error display.

The RTA-RTE distribution includes three selectable error reporters;

Build Environment 39

RTA-RTE V6.8.0
Toolchain Integration Guide

• “file” writes all errors to the file Rte.err.

• “console” writes errors to the system error stream.

• “xml” writes errors as XML to the file RteErr.xml.

The --error-report option is used to select the required error reporter. If the option
is omitted the “console” error reporter is used as the default.

7.4.1 XML Output

The “xml” error reporter included with RTA-RTE writes error messages as XML to the file
RteErr.xml.

The XML root node is <RTEGEN> and all error messages are written within the sub-node
<MESSAGES> in the order they were raised. For example:

<RTEGEN>
<VERSION-INFO>
<RTEGen></RTEGen>

</VERSION-INFO>
<MESSAGES>
<MESSAGE>
...

</MESSAGE>
<COUNT>
<ERROR>0</ERROR>
<WARNING>1</WARNING>
<INFO>0</INFO>

</COUNT>
</MESSAGES>

</RTEGEN>

Each <MESSAGE> element includes five sub-nodes:

• <CODE> – The message code including the error class (F, E, W or I), the two-digit
container identifier and the four digit message identifier.

• <FILE> – File containing the error (if appropriate, if no file is relevant this element
will be empty).

• <LINE> – Line within the file (if appropriate, if no file is relevant this element will be
empty).

• <TEXT> – Message text.

• <LOCATION> – RTE internal location where error message was generated (if not
available this element will be empty).

For example:

40 Build Environment

RTA-RTE V6.8.0
Toolchain Integration Guide

<MESSAGE>
<CODE>W14-1205</CODE>
<FILE>swcA.arxml</FILE>
<LINE>8</LINE>
<TEXT>Generation warning -- ...</TEXT>
<LOCATION/>

</MESSAGE>

The <MESSAGES> element also includes a <COUNT> element that defines the total num-
ber of error, warning and information messages.

Build Environment 41

RTA-RTE V6.8.0
Toolchain Integration Guide

8 Contact, Support and Problem Reporting

For details of your local sales office as well as your local technical support team and
product hotlines, take a look at the ETAS website:

ETAS subsidiaries www.etas.com/en/contact.php

ETAS technical support www.etas.com/en/hotlines.php

The RTA hotline is available to all RTA-RTE users with a valid support contract.

rta.hotline.uk@etas.com
+44 (0)1904 562624. (0900-1730 GMT/BST)

Please provide support with the following information:

• Your support contract number.

• Your AUTOSAR XML and/or OS configuration files.

• The command line that results in an error message.

• The version of the ETAS tools you are using.

42 Contact, Support and Problem Reporting

www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

RTA-RTE V6.8.0
Toolchain Integration Guide

Index
Symbols
OSENV_macros, 34–37
OSENV_ macros, 26, 27, 30, 32
--atomic-assign, 15
--com-symbolic-sigs, 17
--com-version, 17
--contract, 12
--error-report, 39, 40
--file, 38
--incremental-build, 39
--makedep, 38, 39
--memory-sections, 11
--operating-system, 23, 24
--os-define-osenv, 24
--os-file, 24
--os-fp, 30
--os-output-param, 24–26, 28, 29
--os-task-as-function, 20, 21
--os-xml-namespace, 24, 28
--oshdr, 26
--output, 12, 17
--rte-phase, 13
--strict-config-check, 25
--subfile, 38
--symbolic-sigs, 17
--template-path, 18
--warn-directive, 6

A
Application header file, 12, 14
Atomic

Assignment, 15
Code, 33

B
Build Dependency Information, 38

C
C Library, 8, 15
C warnings, 6
C-Startup, 17
Com.h, 7
Compiler.h, 7
Compiler_Cfg.h, 7
Contract Phase, 12

Inputs, 12
Outputs, 12

Index 43

RTA-RTE V6.8.0
Toolchain Integration Guide

Conventions, 4

E
Error reporting, 39

I
Include path, 15
Incremental Build, 39
Initializtion check, 16

L
Legacy Systems, 21

M
Make tool, 38
memcpy, 8, 15
MemMap.h, see Rte_MemMap.h
Memory Section Description File, 9

O
OS Abstraction, 33

AlarmType, 36
Atomic code, 33
EventMaskType, 35
ResourceType, 37
TaskType, 34

OS environment, 16
Os.h, 7
OSEK 2.2.3, 31

Configuration, 32
Header file, 32

P
Phase

Contract, see Contract Phase
RTE, see RTE Phase

Platform_Types.h, 7

R
Resource reuse, 21
Return code, 38
RTA-OS 4.0, 24

Configuration, 24
Header file, 26

RTA-OSEK 5.0, 29
Configuration, 31
Floating point, 30
Header file, 30

44 Index

RTA-RTE V6.8.0
Toolchain Integration Guide

RTE Phase, 13
Inputs, 13
Outputs, 13

RTE-OS3.0, 26
Configuration, 27
Header file, 27
Parameters, 28

Rte.c, 13
RTE_ATOMIC, 33
Rte_Cbk.h, 14
Rte_Const.h, 14
RTE_LIBC_MEMCPY, 15
Rte_memcpy, 8, 15
Rte_MemMap.h, 7
RTE_OMIT_UNINIT_CHECK, 16
Rte_Type.h, 12, 14

S
Std_Types.h, 7

T
Target

Task17x6, 7
TriCoreHighText, 7
Virtual PC, 7, 8

Task-as-function option, 21
Templates, 17

Definitions, 18
Folder, 18
Language, 17

V
Vendor mode, 14
vendor mode, 26

Index 45

	Contents
	1 Introduction
	1.1 About this Manual
	1.2 Who Should Read this Manual?
	1.3 Document Conventions

	2 Compiler Toolchain
	2.1 Adding a new Compiler Toolchain
	2.2 AUTOSAR Headers
	2.3 C Library

	3 Compiler Abstraction
	3.1 Memory Section Description File
	3.2 File Selection
	3.3 Example

	4 Dependencies and Outputs
	4.1 Contract Phase
	4.2 RTE Phase
	4.3 Compile-time
	4.4 Link-time
	4.5 Run-time
	4.6 Templates

	5 Legacy Systems
	5.1 Resource Reuse
	5.2 Fixed Task Set

	6 Operating System
	6.1 Overview
	6.2 AUTOSAR R4.0 OS support
	6.3 AUTOSAR R3.0 OS support
	6.4 AUTOSAR R1.0 OS support
	6.5 OSEK 2.2.3 support
	6.6 OS Abstraction Layer

	7 Build Environment
	7.1 Option sub-files
	7.2 Make
	7.3 Incremental Build
	7.4 Error reporting

	8 Contact, Support and Problem Reporting

