
RTA-OSEK
fåÑáåÉçå=qêá`çêÉ=Ñ~ãáäó=ïáíÜ=íÜÉ=q~ëâáåÖ=`çãéáäÉê
cÉ~íìêÉë=~í=~=dä~åÅÉ

• OSEK/VDX OS version 2.2 certified OS

• RTOS overhead: 28 bytes RAM, 192 bytes ROM

• Category 2 interrupt latency: 33 CPU cycles

• Applications include: Engine Management, Transmission, 3-phase Motor
Control, etc.
oq^Jlpbh

RTA-OSEK provides an application design environment that com-
bines the smallest and fastest OSEK RTOS with an unique timing
analysis tool.

This port data sheet discusses the Infineon TriCore family port of
the RTA-OSEK kernel alone and should be read in conjunction
with the Technical Product Overview “Developing Embedded
Real-Time Applications with RTA-OSEK” available from LiveDevic-
es.

The kernel element of RTA-OSEK is a fixed priority, pre-emptive
real-time operating system that is compliant to the OSEK/VDX OS
standard version 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor communication us-
ing OSEK COM Conformance Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst case bounds and
little variability in execution time. The kernel is particularly suited
to systems with very tight constraints on hardware costs and
where run-time performance must be guaranteed.

The kernel is configured using an offline tool provided with RTA-
OSEK. Determining in advance which features are used allows
memory requirements to be minimized and API calls to be opti-
mized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single stack – even ex-
tended tasks. This allows dramatic reductions in application stack
space requirements.

The RTA-OSEK kernel is designed to be scalable. When a task uses
queued activation or waits on events, the additional RTOS over-
head required to support these features is paid by the task rather
than by the system. This means that a basic single activation task
uses the same resources in a BCC1 system as it does in an ECC2
system.

`çãéáäÉêL^ëëÉãÄäÉêLiáåâÉê

The libraries, containing the code for the RTA-OSEK kernel, have
been built using the following tools:

• Tasking TriCore VX-toolset C compiler version 2.1r1

• Tasking TriCore VX-toolset assembler version 2.1r1

• Tasking TriCore VX-toolset object linker version 2.1r1

jÉãçêó=jçÇÉä

The TriCore/Tasking has a flat 32-bit memory model. RTA-OSEK
makes use of 24-bit relative addressing internally which requires
the library to be contained within a 1024K byte memory block.
32-bit addressing is used externally providing no restrictions on
placement of user code and data.

loqf=aÉÄìÖÖÉê=pìééçêí

ORTI is the OSEK Run-Time Interface that is supported by RTA-
OSEK for the following debuggers:

• Tasking Crossview Pro 2.1r1

Further information about ORTI for RTA-OSEK can be found in
the ORTI Guide.

e~êÇï~êÉ=båîáêçåãÉåí

RTA-OSEK supports all variants of the Infineon TriCore family 1.3
CPU architecture (rider D), including the TC1766 and TC1796.

fåíÉêêìéí=jçÇÉä

255 interrupt levels are supported. Category 2 interrupts may
share priority levels or may have unique multi-level priorities. Cat-
egory 1 interrupts may share the priority level 255 or may have
unique multi-level priorities.

cäç~íáåÖ=mçáåí=pìééçêí

The Infineon TriCore uses software floating point. The libraries
supplied with the Tasking toolchain are reentrant on a per func-
tion basis. Please consult the Tasking Tricore Reference Manual
for detailed information.

`çåíÉñí=p~îÉ=^êÉ~ë=E`p^ëF

All RAM figures quoted in this data sheet do not include CSAs.

bî~äì~íáçå=_ç~êÇ=pìééçêí

This port of RTA-OSEK Component can be used with any Infineon
TriCore evaluation board. An example application is provided to
run on the Triboard TC1796 evaluation board. This application
can be adapted for other target boards by adjusting the linker
command file (e.g., to alter the allocation of program sections)
and one source file (if alternative output pins are required).

cìåÅíáçå~äáíó

The below table outlines the restrictions on the maximum
number of operating system objects allowed by RTA-OSEK.

Note that OSEK specifies that queued activations in an ECC2 sys-
tem are only possible for basic tasks. Where tasks share a priority
level, the maximum number of queued activations per priority lev-
el is 255.

The number of alarms, tasksets, schedules and schedule arrival-
points is only limited by available hardware resources.

jÉãçêó=rë~ÖÉ

The memory overhead of RTA-OSEK is:

In addition to the RTOS overhead, each object used by an appli-
cation has the following memory requirements:

In addition to these static memory requirements each task priority
and Category 2 interrupt has a stack overhead (in addition to ap-
plication stack usage). The single stack model means that this
overhead applies to each priority level rather than to each task.
Similarly, for Category 2 interrupts this overhead applies for each
unique interrupt priority. The below table shows stack usage for
these objects.

RTA-OSEK provides an optimization for task termination if the
user can guarantee that tasks only terminate from their entry
function. Tasks that terminate from elsewhere are not eligible for
this optimization and duly require 16 more stack bytes per priority
level than indicated in the table above.

BCC1 BCC2 ECC1 ECC2

Max no of tasks 32 plus an idle task

Max tasks per priority 1 32 1 32

Max queued activations 1 255 1 255

Max events per task n/a n/a 32 32

Max nested resources 255

Max alarms not limited by RTA-OSEK

Max standard resources 255

Max internal resources not limited by RTA-OSEK

Max application modes 4294967295

Memory type Overhead (bytes)

RAM 28

ROM/Flash 204

Object RAM Bytes ROM Bytes

BCC1 task 0 36

BCC2 task 10 52

ECC1 task 28 60

ECC2 task 30 68

Category 1 ISR 0 0

Category 2 ISR 0 64

Resource 0 20

Internal Resource 0 0

Event 0 4

Alarm 12 60

Counter 4 44

Taskset (RW) 4 4

Taskset (RO) 0 4

Schedule 16 36

Arrivalpoint (RW) 12 12

Arrivalpoint (RO) 0 12

Object Stack Bytes

Task priority level 12

Category 2 interrupt 3

mÉêÑçêã~åÅÉ

The following table gives the key kernel timings for operating sys-
tem behavior in CPU cycles.

All performance figures are for the non-optimized interface to
RTA-OSEK. Using the optimized interface will result in shorter ex-
ecution times for some operations. All tasks use lightweight ter-
mination and no pre or post task hooks were specified.

The execution time for every kernel API call is available on request
from LiveDevices.

Task Type Basic Extended Ref

Category 1 ISR Latency 93 93 K

Category 2 ISR Latency 126 126 A

Normal Termination 83 296 D

ChainTask 234 627 J

Pre-emption 242 499 C

Triggered by alarm 388 645 F

Schedule 209 514 Q

ReleaseResource 275 503 M

SetEvent n/a 693 S

Category 2 exit switch latency 220 475 E

Figure 1 - Category 1 interrupt with return to interrupted task

Figure 2 - Category 2 interrupt with return to interrupted task

K L
Interrupt Asserted

 RTA-OSEK activity

 Category 1 ISR

 Task

A B

 RTA-OSEK activity

 Category 2 ISR

 Task
Interrupt A sserted

Figure 3 - Category 2 interrupt activates a higher priority task

Figure 4 - Task activates a higher priority task

Figure 5 - Alarm activates task

Figure 6 - Task chaining

EA

 RTA-OSEK activity

 Category 1 ISR

 Task T2

 Task T1

TerminateTask()

Interrupt A sserted

Task T2 ready to run

ActivateTask (T2)

C D

 RTA-OSEK activity

 Task T2

 Task T1
ActivateTask(T2)

TerminateTask()

F

 RTA-OSEK activity

 Task T2

 Task T1
A larm activates T2

TerminateTask()

J

 RTA-OSEK activity

 Task T1

ChainTask(T1)

 Task T2

_ÉåÅÜã~êâë

The following sections shows benchmarks for RTA-OSEK memory
usage for BCC1, BCC2, ECC1 and ECC2 conformant applica-
tions. The applications have the following framework:

• 8 tasks plus the idle task

• All basic tasks are lightweight tasks

• 1 Category 2 ISR with a 10ms minimum inter-arrival time

• 1 Counter

• 7 or 8 alarms, all attached to the same counter

• No resources or internal resources

• No hooks

• No schedules

• No tasksets

• Built using standard status

The following table shows the task priority configuration for each
benchmark application:

The overhead figures give the ROM and RAM required for RTA-
OSEK in addition to that required by the application. The RAM
figure is shown split into RAM data and RAM stack.

_``N

The BCC1 application uses 8 basic tasks with unique priorities.

This application has the following overheads:

Figure 7 - Schedule() call

Figure 8 - Activation by SetEvent()

Figure 9 - ReleaseResource()

Q

 RTA-OSEK activity

 Task T2

 Task T1

TerminateTask()

Schedule()

ActivateTask(T2)

S

 RTA-OSEK activity

 Task T2

 Task T1

WaitEvent(E1)

SetEvent(T2,E1)

M

 RTA-OSEK activity

 Task T2
ReleaseResource(R1)

 Task T1

Ta
sk

/IS
R

St
a

ck
 (

b
y

te
s)

Pe
ri

o
d

 (
m

s)

B
C

C
1

B
C

C
2

EC
C

1

EC
C

2

ISR1 10 10 IPL1 IPL1 IPL1 IPL1

A 10 10 8 8 8 8

B 20 20 7 7 7 7

C 30 20 6 6 6 6

D 40 30 5 5 5 5

E 50 50 4 4 4 4

F 60 80 3 3 3 3

G 70 100 2 2 2 2

H 80 150 1 1 1 2

Idle 10 - idle idle idle idle

Memory usage Bytes

OS ROM 2032

OS RAM 232

comprising RAM data 128

comprising RAM stack 104

Contact addresses:

iáîÉaÉîáÅÉë=iíÇK

^íä~ë=eçìëÉ

iáåâ=_ìëáåÉëë=m~êâ

lëÄ~äÇïáÅâ=iáåâ=oç~Ç

lëÄ~äÇïáÅâ

vçêâ=vlNM=Pg_I=dêÉ~í=_êáí~áå

mÜçåÉ HQQ=ENVMQF=RS=OR=UM

c~ñ HQQ=ENVMQF=RS=OR=UN

áåÑç]äáîÉÇÉîáÅÉëKÅçã

ïïïKäáîÉÇÉîáÅÉëKÅçã

bq^p=dãÄe

_çêëáÖëíê~≈É=NQ

TMQSV=píìííÖ~êíI=dÉêã~åó

mÜçåÉ HQV=ETNNF=U VS SNJNMO

c~ñ HQV=ETNNF=U VS SNJNMS

ë~äÉë]Éí~ëKÇÉ

ïïïKÉí~ëKÇÉ

bq^p=fåÅK

PMON=jáääÉê=oç~Ç

^åå=^êÄçêI=jf=QUNMPI=rp^

mÜçåÉ HN=EUUUF=bq^p=fk`

c~ñ HN=ETPQF=VVTJVQQV

ë~äÉë]Éí~ëKìë

ïïïKÉí~ëKìë

bq^p=hKhK

nìÉÉåÛë=qçïÉê=`JNTc

OJPJRI=jáå~íçãáê~á

káëÜáJâì

vçâçÜ~ã~=OOMJSONTI=g~é~å

mÜçåÉ HUN=EQRF=OOOJMVMM

c~ñ HUN=EQRF=OOOJMVRS

ë~äÉë]Éí~ëKÅçKàé

ïïïKÉí~ëKÅçKàé

bq^p=pK^KpK

NI=éä~ÅÉ=ÇÉë=bí~íëJråáë

pfif`=PMT

VQRUU=oìåÖáë=`ÉÇÉñI=cê~åÅÉ

mÜçåÉ HPP=ENF=RS TM MM RM

c~ñ HPP=ENF=RS TM MM RN

ë~äÉë]Éí~ëKÑê

ïïïKÉí~ëKÑê

bq^p=hçêÉ~=`çKI=iíÇK

PcI=p~ãëÉìåÖ=_äÇÖK=SNJN

v~åÖà~ÉJÇçåÖI=pÉçÅÜçJÖì

pÉçìäI=hçêÉ~

mÜçåÉ HUO=EOF=RT=QTJMNS

c~ñ HUO=EOF=RT=QTJNOM

ë~äÉë]Éí~ëKÅçKâê

ïïïKÉí~ëKÅçKâê

ïïïKÉí~ëÖêçìéKÅçã

pìÄàÉÅí=íç=ÅÜ~åÖÉë=EMVLMQF
_``O

The BCC2 application uses 8 basic tasks with unique
priorities.

Tasks A-G are attached to 7 alarms. Task H is activat-
ed multiple times from Task A and has maximum
queued activation count of 255.

This application has the following overheads:

b``N

The ECC1 application uses 7 basic tasks and 1 extend-
ed task with unique priorities. Task H is the extended
task and it waits on a single event that is set by basic
tasks A-G.

This application has the following overheads:

b``O

The ECC2 application uses 6 basic tasks and 2 extend-
ed tasks. Tasks G and H are the extended tasks and
share a priority. The extended tasks wait on a single

event that is set by tasks A-F.

This application has the following overheads:

pí~Åâ=léíáãáò~íáçå

Using stack optimization with the benchmark exam-
ple identifies that the following tasks can share inter-
nal resources:

"Tasks A, B and C

"Tasks D, E and F

"Tasks G and H

The benefit of this optimization is shown in the fol-
lowing table:

Memory usage Bytes

OS ROM 2296

OS RAM 229

comprising RAM data 124

comprising RAM stack 105

Memory usage Bytes

OS ROM 2782

OS RAM 277

comprising RAM data 156

comprising RAM stack 121

Memory usage Bytes

OS ROM 3324

OS RAM 340

comprising RAM data 194

comprising RAM stack 146

Total Stack Space
(bytes)

BCC
1

BCC
2

ECC
1

ECC
2

Non-optimized 484 485 501 526

OS Overhead 104 105 131 146

Application Overhead 380 380 380 380

Optimized 224 224 241 241

OS Overhead 44 44 61 61

Application Overhead 180 180 180 180

	RTA-OSEK
	Infineon TriCore family with the Tasking Compiler
	RTA-OSEK
	Compiler/Assembler/Linker
	Memory Model
	ORTI Debugger Support
	Hardware Environment
	Interrupt Model
	Floating Point Support
	Context Save Areas (CSAs)
	Evaluation Board Support
	Functionality
	Memory Usage
	Performance
	Benchmarks
	BCC1
	BCC2
	ECC1
	ECC2
	Stack Optimization

